
Tor over QUIC

Jaap Heijligers

Abstract

Tor is the most popular tool for anonymous online communication. However,
the performance of Tor’s volunteer-run network is suboptimal when network
congestion occurs. Within Tor, many connections are multiplexed over a single
TCP connection between relays, which causes a head-of-line blocking problem,
degrading relay performance. In this thesis, Tor’s TCP transport layer protocol
is replaced by QUIC, a UDP-based protocol that natively supports multiplexing
streams asynchronously, effectively solving head-of-line blocking. Its performance
is evaluated within various network environments through Containernet, a flexible
Docker-based network test bed that allows for simple reproduction of results.
Along with testing multiple congestion control algorithms, the impact of using
Hystart++ within Tor over QUIC is evaluated. It is found that QUIC over Tor
can perform up to 50% better in time to last byte performance than vanilla
Tor in a realistic network environment, while featuring more consistent time
to first byte performance. Additionally, the evaluations shows that throughput
consistency and fairness amongst downloaders are improved as well, Besides
offering improved performance, Tor over QUIC is designed with deployability
and security in mind. This makes QUIC an attractive replacement as Tor’s
transport layer protol.

Acknowledgements
Thanks to Stefanie, who has been a great supervisor. She consistently provided
valuable feedback and guidance in our weekly meetings. Thanks to Tasha, who is
now my fiancée, for always supporting me and for proofreading the thesis. Thanks
for Wladimir and Cyril for helping with technical aspects of the thesis, and
furthermore, thanks to my friends and family for being supportive throughout.

1

Contents

1. Introduction 6

2. Background 9
2.1 Transport layer . 9

User Datagram Protocol (UDP) 10
Transmission Control Protocol (TCP) 11
Congestion control algorithms . 12
Multiplexing . 15
TLS . 15
QUIC . 16
Congestion and flow control . 20

2.2 Tor . 22
Circuits . 23
Streams . 23
Cells . 24
Channels . 25
Performance model . 25

3. Related work 27
Multiplexing . 27
End-to-end Congestion control . 27
Hop-by-hop vs End-to-end . 28

Hop-by-hop . 28
End-to-end . 28

UDP Tor (Viecco) . 29
DTLS (Reardon) . 29
uTor . 29
DefenestraTor . 29
QUUX . 30
Adding QUIC support to the Tor network 30
Mind the Gap . 30
KIST . 30

4. Design and Setup 32
4.1 Design . 32

Goals . 32
Adding QUIC to Tor . 34

4.2 Implementation . 38

2

Background . 38
4.3 Simulation . 42

Shadow . 42
Chutney . 42
Mininet . 43
Containernet . 43

5. Performance evaluation 44
Measuring bandwidth . 44
Containernet . 45
Scenario 1 - Containernet Baseline . 46
Scenario 2 - Latency . 48
Scenario 3 - Loss . 52
Scenario 4 - Jitter . 57
Scenario 5 - Realistic network . 59
Scenario 6 - Fairness . 60
Scenario 7 - Load . 62

6. Conclusion 65

References 68

3

List of Tables

1 Layers with their functions within the OSI model 9

2 Alternative transport protocols for Tor 28

3 Popular QUIC libraries . 36

4 Baseline - Average (standard deviation) of TTLB 48
5 Latency - Average (standard deviation) of TTLB 52
6 Loss - Average (standard deviation) of TTLB 57
7 Jitter - Average (standard deviation) of TTLB 58
8 Realistic - Average (standard deviation) of TTLB 60
9 Fairness - Average (standard deviation) of bandwidth and Jain’s

fairness. 62
10 Load - Average (standard deviation) of TTLB 63

4

List of Figures

1 QUIC vs TCP head-of-line blocking 10
2 TCP connection establishment 11
3 TCP retransmission . 12
4 Congestion window growth in CUBIC’s congestion avoidance

phase[12] . 14
5 TCP + TLS handshake . 16
6 QUIC within the OSI model . 17
7 QUIC handshakes . 18
8 Multiplexing head-of-line blocking in TCP and QUIC 19
9 Tor Onion Routing . 22
10 The Tor Network . 23
11 Tor cell anatomy . 24
12 Onion routing through channels 25

13 Channel Implementation . 40

14 Tor test network setup . 46
15 Baseline - TTFB 320 KiB, uncapped 47
16 Baseline - TTLB 320 KiB, uncapped 47
17 Latency - TTFB 320 KiB 10 ms latency 49
18 Latency - TTFB 320 KiB 25 ms latency 49
19 Latency - TTFB 320 KiB 50 ms latency 50
20 Latency - TTLB 320 KiB 10 ms latency 51
21 Latency - TTLB 320 KiB 25 ms latency 51
22 Latency - TTLB 320 KiB 50 ms latency 52
23 Loss - TTFB 320 KiB, 0.01% loss 53
24 Loss - TTFB 320 KiB, 0.1% loss 54
25 Loss - TTFB 320 KiB, 1% loss 54
26 Loss - TTLB 320 KiB, 0.01% loss 55
27 Loss - TTLB 320 KiB, 0.1% loss 56
28 Loss - TTLB 320 KiB, 1% loss 56
29 Jitter - TTLB 320 KiB, 25 ms latency, 10 ms jitter 58
30 Jitter - TTLB 320 KiB, 25 ms latency, 25 ms jitter 59
31 Realistic network - TTLB 320 KiB, 25 ms latency, 0.01% loss, 0.1

ms jitter . 60
32 Fairness - 2 clients, TTLB 5000 KiB 61
33 Load - 15 continuous downloaders, TTFB 320 KiB 62
34 Load - 15 continuous downloaders, TTLB 320 KiB 63

5

1. Introduction

As tracking, surveillance and censorship become more widespread, methods to
increase privacy on the Internet become increasingly important. One way to
increase online privacy is by using Tor[1]. Tor is free and open source software
that lets its users connect to the Internet anonymously. It does this by directing
the user’s internet traffic through the Tor network: a set of volunteer-run Tor
servers that conceal all traffic that goes through them. Using Tor makes it
difficult for adversaries to obtain the user’s location. Additionally, the user’s
online behavior becomes difficult to track when they use Tor. Amongst its many
users, whistleblowers and journalists use Tor to protect themselves from corrupt
governments[2].

The Tor network has gained popularity over time, but its performance is limited
by the amount of volunteer-run relay servers. Currently, the Tor network consists
of over 7000 relays[3], that in total serve more than 2 million users. The packets
that a user sends are routed through a Tor circuit, a path through 3 relays, each
located in a different country, before arriving at the destination server. When
the Tor network has too many users and not enough relays to handle their traffic,
the network becomes overburdened and network performance suffers.

Because there are many more users than relays, and each user’s circuit passes
through 3 relays, the Tor network can be seen as many interconnected relays.
Any relay is connected to many relays, and any two relays are part of the circuit
of many users.

To reduce resource consumption, all circuits between two relays are multiplexed
over a single TCP connection rather than using a single TCP connection for each
circuit. However, TCP ensures in-order delivery, which means that if a packet of
one circuit is dropped, all other circuits between these two relays are on hold
until the packet is retransmitted. This problem, known as head-of-line blocking,
limits the efficiency of the Tor network, especially as more packet loss occurs.

QUIC[4] is a UDP-based transport layer protocol which can be used as a
replacement for TCP. QUIC features various improvements to performance,
latency and congestion control. Additionally, QUIC features native multiplexing
by supporting multiple individual streams within one QUIC connection. All
streams within a QUIC connection operate independently, and each stream
has its own congestion and flow control. By using QUIC, when a packet is
dropped, only the streams that correspond to this packet are on hold while the
packet is resent, while other streams can continue transmission. This is ideal for
applications which rely heavily on multiplexing, such as Tor.

6

Various research has been done on the performance of Tor. Jansen et al. propose
improvements to Tor’s scheduler and Tschorsch and Scheuermann[5] show that
using a backpressure-based flow control algorithm can improve performance
and fairness in the Tor network. However, these approaches do not eliminate
head-of-line blocking, leaving a need for an alternative transport layer proto-
col. Various alternative transport layer protocols have been proposed as well.
Viecco[6] proposes using TCP across the entire circuit, rather than between
each two relays. Reardon and Goldberg[7] propose using a user-space TCP
implementation on top of DTLS, and Nowlan et al.[8] aim to eliminate head-of-
line blocking by circumventing TCP’s in-order delivery through a kernel patch.
However, the deployability of these approaches is severely limited. Ossification
prevents the deployment of many unpopular transport layer protocols, and
the requirement of kernel modifications makes deployment of Tor infeasible.
QUIC has been proposed for integration with Tor as well, by both Clark[9]
and Sabée[10]. However, the former uses a largely unmaintained library, and
the latter implementation proved unstable while its source code is unavailable
for improvement. Additionally, these works use an Internet Draft version of
the QUIC protocol while QUIC is now a Proposed Standard, and only limited
experimentation is conducted within these papers.

In this thesis, QUIC is implemented in Tor as an alternative to the current
TCP-based connection between Tor relays. Because the QUIC protocol has only
recently been promoted to a Proposed Standard, rather than an Internet draft,
this is, to our best belief, the first work that integrates version 1 of the QUIC
protocol. The Quiche library is used, which now implements QUIC version 1.
It is backed by Cloudflare, and the library is used in production throughout
Cloudflare’s network.

Integrating QUIC with Tor requires several design decisions to be made. It is
decided to implement QUIC hop-by-hop rather than end-to-end. This approach
can take full advantage of QUIC’s multiplexing and comes with less complexity,
while an end-to-end approach comes with the risk of compromising anonymity
and is difficult to deploy.

Protecting user privacy is the core of Tor’s application. Because a hop-by-hop
design is used, the impact of QUIC on security and privacy is limited. Due to
the use of header encryption, QUIC exposes less information than TCP, which
makes attacks on anonymity more difficult. Even though more research on
the anonymity implications needs to be done, this inspires confidence that the
integration of QUIC does not degrade Tor’s protection of user privacy.

Tor currently only supports TCP as its transport layer protocol. Since QUIC is
UDP-based, and UDP is a connectionless protocol, core parts of Tor had to be
redesigned. Additionally, to use QUIC’s multiplexing effectively within Tor, a
major refactor of Tor’s connection and scheduling design was required. To allow
Tor to fall back to TCP over TLS at runtime when QUIC is unsupported, QUIC
has been implemented independently of Tor’s current transport layer protocol,
such that both designs can be used interchangeably. To allow future research to
base their work on the implementation efforts of this thesis, the source code is
made available publicly.

Both the QUIC protocol and the Quiche library are ready for production use,

7

no kernel patch is required, and maintenance of the QUIC library is done by a
large company. QUIC, through Quiche, comes closer to a feasible alternative for
Tor’s transport layer protocol than previous proposals.

The implementation of QUIC, which is referred to as Tor over QUIC, is evaluated
through Containernet. Containernet[11] is a network emulator that uses Docker
containers as its hosts. It allows for defining network topologies with restrictions
imposed to its links, such as limited latency and added loss. Additionally, the
use of Docker makes experiments that use it more robust and reproducible.

Beyond finding the difference between QUIC and vanilla Tor, the impact of several
of QUIC’s congestion control configurations are explored. QUIC’s performance
is evaluated while using the CUBIC and Reno congestion control algorithms.
Additionally, the impact of enabling Hystart++, an improvement of the slow
start mechanism in congestion control, is explored.

The impact of latency, loss and jitter on Tor are evaluated, as well as realistic
network conditions, fairness between users, and the performance of the Tor
network when it is under heavy load.

It is shown that QUIC performs better when using CUBIC than when using Reno
in every scenario. Enabling Hystart++ is shown to always be beneficial when
using CUBIC. However, when using Reno, Hystart++ can lead to performance
degradation in a loaded network.

Overall, QUIC with CUBIC and Hystart++ shows better Time to Last Byte
performance than vanilla Tor in each evaluated scenario. In a loaded Tor network,
QUIC performs 50% better than vanilla Tor. QUIC’s advantage increases as
more loss is added to the network environment. Additionally, QUIC is shown to
provide more fairness to its users than vanilla Tor. When two users download
through the network simultaneously, the available bandwidth is not only higher,
but also distributed more equally amongst them. Overall, QUIC is shown to
be a very promising alternative to Tor’s transport layer protocol, in terms of
performance, fairness and deployability. The code of the Tor adaptations, and of
the experimental test bed are open source such that results can be reproduced
easily.

Overview of Thesis

In chapter 2, background on both transport layer protocols and Tor is provided,
with focus on performance. In chapter 3, previous work is discussed in detail.
The design goals, implementation of QUIC within Tor and an overview of the
network test bed are laid out in chapter 4. Chapter 5 includes a performance
evaluation, in which Tor over QUIC’s performance is explored in relation to
vanilla Tor. Chapter 6 discusses future work and chapter 7 concludes this thesis.

8

2. Background

In this thesis, the transport protocol that is used in the Tor network is compared
to QUIC in relation to performance. This chapter provides background on trans-
port protocols along with their performance characteristics. Then background
on Tor is provided, along with Tor’s performance model.

2.1 Transport layer
Communication over the Internet is a complex problem that has been researched
extensively over the past decades. This problem can be approached by dividing
intercommunication up into layers, each with their own sub-problems. Most
commonly, the standardised OSI model is used to model computer system
communications.

The OSI model divides the responsibilities of communication into 7 layers.
Whereas the higher layers are more application and use-case specific, the lower
layers are more general and application independent.

Table 1: Layers with their functions within the OSI model

Layer Function
7 Application High-level APIs
6 Presentation Encoding, compression, encryption
5 Session Communication sessions
4 Transport Reliable transmission, segmentation,

acknowledgement, multiplexing
3 Network Multi-node networking, addressing,

routing, traffic control
2 Data link Reliable transmission of data

through a physical layer
1 Physical Transmission of raw bit streams over

a physical medium

The bottom two layers ensure that bit streams can be sent reliably over physical
mediums between devices, such as Wi-Fi and Ethernet. The network layer
provides addressing within a network of devices. For example, IP, the Internet
protocol, is a network layer protocol that specifies how packets can be routed

9

throughout the Internet. The transport layer builds on top of the network
layer and describes end-to-end error control. The most common transport layer
protocols are TCP and UDP. On the Internet, these protocols are used on top
of IP.

User Datagram Protocol (UDP)
UDP is a relatively simple transport layer protocol, it is used to send messages,
called datagrams, from one host to another. UDP is used on top of IP and
provides checksums for limited data integrity checking. UDP is lossy, which
means that when a datagram is dropped, the protocol does not ensure that the
datagram is resent and delivered to its destination. UDP does not ensure that
its datagrams arrive in the order they are sent either. Due to its simplicity and
low overhead, UDP is often used in time sensitive applications, such as Internet
calls and video streams.

UDP

Datagram 1
Datagram 2

Datag
ram

 3

Datag
ram

 4

dropped
Datagram 5

Datagram 6

Figure 1: UDP datagrams can get lost or delayed, and UDP does not detect or
retransmit these. Effectively, this makes UDP a lossy protocol.

10

Transmission Control Protocol (TCP)
TCP is a transport layer protocol that, contrary to UDP, ensures reliable and in-
order delivery. Where UDP is connectionless, in TCP a connection is established
before data can be sent over it. To establish a TCP connection, a 3-way
handshake is done, as seen in figure 2. After successful connection establishment,
the TCP connection is considered open. The connection can now transport a
stream of bytes.

TCP
SYN

SYN / ACK

ACK, Data 1

ACK 1, Data 2

ACK 2

Figure 2: TCP connection establishment. After the 3-way handshake (SYN,
SYN/ACK, ACK), data can be sent. Each received segment is acknowledged
such that missing segments are detected and retransmitted. TCP provides a
reliable in-order bytestream to its upper layer.

In UDP, messages are called datagrams. TCP’s messages are called segments.
In TCP, each sent segment is acknowledged by the receiver. If the sender notices
that it did not receive an acknowledgement within some time, it will consider
the packet lost, and the packet will be retransmitted. Additionally, packets come
with a sequence number. The sequence number represents the byte number of
the first byte of the packet within the stream. If the receiver receives a packet
with a sequence number that doesn’t match the amount of received bytes, i.e., a
gap in the bytestream occurs, a lost packet is detected. In this case the receiver
will not expose the new data to the upper layer until the gap is recovered. This
ensures that packets are delivered to the session layer reliably and in order. An
example of retransmission after packet loss can be seen in figure 3.

11

TCP retransmit
SYN

SYN / ACK

dropped

ACK, Data 1

ACK 1, Data 2

Data 3

Data 4

ACK 2, ACK 4
Retransmit 3

3 missing, 4 on hold

Data 3

3, 4 delivered

Figure 3: TCP retransmission. The left side receives segments with Data 2
and 4, but not 3. Acknowledgements are sent for the received segments. When
the right side notices that the segment with data 3 was never received, it is
retransmitted. Data 4 is on hold on the left side until the retransmission of 3 is
received, such that all segments are delivered in-order to the upper layer.

TCP uses flow control, through which the receiving end can specify how much
more data can be sent by the receiver before waiting for an acknowledgement.
This prevents the receiver from getting overwhelmed when the sender can send
packets faster than the receiver can process. In TCP, this is implemented as a
sliding window. Through the sliding window, the receiver tells the sender how
many unacknowledged bytes can be sent. If the sender sends bytes the size of
the full window, it has to wait until some packets are acknowledged before it is
allowed to send any more bytes. This prevents the receiver from receiving more
data than it can handle.

Additionally, congestion control is used in TCP to detect when the network,
rather than the receiver, is overburdened. For example, congestion can be
detected through packet loss, i.e. when no acknowledgment is received for the
packets that it has sent. When this is the case, the sender knows that some
packets are lost or delayed, likely due to network congestion. As a result, the
sender will lower its sending rate based on the used congestion control algorithm.
This prevents overburdening the network.

Congestion control algorithms
Within TCP, congestion control is based on a congestion window. This window
denotes the maximum amount of unacknowledged bytes that can be in flight at
any point. A congestion control algorithm is in charge of growing this window

12

when no congestion is detected i.e., the network can handle higher bandwidth.
Additionally, when congestion is detected, the congestion control algorithm
decides how much the congestion window is lowered. Two popular congestion
control algorithms are Reno and CUBIC.

Fast retransmit

Normally, TCP detects loss by waiting for an acknowledgement. An acknowl-
edgement is expected after roughly one round trip time (RTT), so if a packet
isn’t received after a small multiple of the measured RTT, loss is detected.
Because this delay in loss detection limits performance, an alternative method
of detecting loss was introduced, which is called fast retransmit. If the receiver
receives packets out-of-order, e.g. if after packet #1 and #2, packet #4 is re-
ceived, the receiver resends the acknowledgement for packet #2, which is still
the last in-order packet it has received. The sender then receives a duplicate
acknowledgement for packet #2. If the receiver now receives packet #5 and
packet #3 is still not available, a third acknowledgement of packet #2 is sent.

If the sender receives two acknowledgements for the same packet, this could either
mean that packet re-ordering has happened, or a packet has been lost. However,
when a third duplicate acknowledgement has happened, then the sender can be
reasonably certain that the packet was lost and a fast retransmit will occur. This
allows the sender to retransmit a packet before the acknowledgement timeout
for the packet occurs. As such, a packet is retransmitted faster than it would be
by only relying on acknowledgement timeouts.

Reno

Reno is a basic congestion control algorithm for TCP. It uses three phases: slow
start, fast recovery and congestion avoidance.

It starts within the slow start phase. In this phase, the congestion window is
roughly doubled every RTT. This continues until either packet loss is detected,
which is followed by fast recovery, or the congestion window has reached a certain
threshold (sstresh), which is followed by congestion avoidance.

If three duplicate acknowledgements are received, Reno enters its fast recovery
state. In this state, the congestion window is halved. Reno stays in fast recovery
until it has recovered from the packet loss. After that, congestion avoidance is
entered.

In congestion avoidance, Reno roughly adds the size of one packet to the
congestion window for every RTT. It continues to do so until packet loss is
detected, and fast recovery is entered.

If an acknowledgement timeout occurs, rather than receiving three duplicate
acknowledgements, the congestion window is reset to its initial value, and the
slow start phase is entered.

CUBIC

CUBIC’s main difference from Reno is in its congestion avoidance phase. Instead
of increasing the congestion window linearly, it features concave growth towards

13

the last window size at which loss occurred. This ensures that the congestion
window is maximized in case loss happens at this same window size again. Then,
convex growth is used to grow beyond this point. This is done to make sure that
if the network allows for higher bandwidth now, that it is found swiftly. The
growth function, which is based on the last window size at which loss occurred,
can be seen in figure 4.

Additionally, when loss occurs, the congestion window is only reduced by 30%
in CUBIC rather than 50% in Reno.

Figure 4: Congestion window growth in CUBIC’s congestion avoidance phase[12]

Hystart

Slow start tries to find a bandwidth limit swiftly by doubling the congestion
window every RTT. Setting the slow start threshold too low will start congestion
avoidance too soon which risks using a too low congestion window. Setting the
slow start threshold too high will result in loss and leads to immediate reduction
of the congestion window.

To find a middle ground, Hystart is proposed, which is created by the same
people behind CUBIC. Later, Hystart was improved upon by Microsoft engineers
in the form of Hystart++, which is currently an IETF Internet Draft[13] [14].

Within the slow start phase, Hystart detects an increase in RTT, and attempts
to exit slow start before actual packet loss occurs. This helps to converge to an
optimal congestion window quicker, as slow start’s exponential congestion window
growth can lead to overshooting the optimal congestion window. Additionally,
Hystart++ adds a limited slow start (LSS) phase between slow start and the
congestion avoidance phase. This is done because RTT fluctuations often happen
before the optimal congestion window is found. LSS will grow the congestion
window faster than congestion avoidance, but much slower than slow start’s
exponential growth. LSS is used until packet loss is detected, after which fast
recovery, and then congestion avoidance are used.

14

Multiplexing
There is a limit to how many TCP connections a server can handle. Additionally,
if a client create multiple TCP connections to the same server, the three-way-
handshake has to be done for each connection. To mitigate this extra latency,
and to keep servers from being overburdened, multiplexing can used to send
multiple streams of data over the same TCP connection.

A typical use case for TCP multiplexing is web browsing. A web browser
requests multiple resources from a server through HTTP. In HTTP/1.0, an
early version of HTTP, one TCP connection per HTTP request was made. To
improve performance, HTTP/1.1 defaults to keeping TCP connections open
such that multiple HTTP requests can be done in succession over the same
connection. This only requires one TCP handshake to be done. Additionally,
HTTP/1.1 supports pipelining: multiple HTTP requests can be sent over the
connection before receiving any responses, rather than doing each request-
response successively. The requirement of returning responses fully, in the same
order as the corresponding requests, is a limitation of HTTP pipelining.

HTTP/2 improves on this model by adding streams on top of the TCP connection.
Each HTTP request is sent over a separate stream such that responses can be
sent in arbitrary order. Additionally, HTTP/2 allows responses to be sent in
chunks, which allows responses to be intermingled.

Due to HTTP/2’s reliance on TCP, a design mismatch occurs. Where HTTP/2
sees its connection as a collection of separate streams, TCP still operates as a
single byte stream. When a packet is dropped, TCP’s in-order-delivery property
requires it to hold on to any consecutive packets until the dropped packet is
retransmitted. This means that when a packet for one HTTP/2 stream is
dropped, the application cannot access arriving packets from any stream until
the TCP connection is recovered. This delay is called head-of-line blocking [3].

Tor’s design is similar to HTTP/2. Tor multiplexes separate circuits over a single
TCP connection. Similarly, Tor also suffers from head-of-line blocking. When a
packet is dropped, the receiver does not have access to incoming circuit packets
until the lost packet is retransmitted.

TLS
While the transport layer is responsible for packets reaching their destination
in a controlled manner, it does not attempt to protect this data from potential
adversaries. Encryption can be used to deny man-in-the middle attacks, and
to guarantee users’ privacy. Notably, TLS is a protocol that runs on top of
transport layer protocols, and provides authentication and encryption.

To create a TLS connection, a handshake is done in which certificates are
exchanged and verified. After this is done and the client accepts the server’s
identity, a cipher is decided upon. This cipher is then used to encrypt the
underlying byte stream according to their exchanged shared secret.

Due to TLS’s requirement for a reliable transport, TLS is most often used on
top of TCP. However, adaptions have been made to make TLS work with the
unreliable UDP protocol, in the form of DTLS.

15

TCP only allows higher layers to exchange data after its three-way handshake has
been completed. When TCP is used in combination with TLS, their combined
handshakes require three full round trips between hosts to set up the connection
with encryption. This imposes a latency cost on all new connections.

TCP + TLS
SYN

SYN / ACK

TLS ClientHello

TLS ServerHello

TLS ClientFinished

TLS ServerFinished

Figure 5: TCP + TLS handshake. Because of separation of concerns between
layers in the OSI model, the TLS handshake can only start after 1 RTT of the
TCP handshake. Because the TLS handshake takes up 2 RTT, it takes 3 RTT
before application data can be sent.

QUIC
QUIC is a protocol built on top of UDP that addresses multiple of TCP’s
problems in modern use cases. It has built-in support for multiplexing, and uses
TLS 1.3 internally to provide encryption. Furthermore, QUIC aims to reduce
latency and congestion.

While QUIC is used on top of UDP, it implements many of the features that TCP
provides such as reliability and in-order delivery. Additionally, QUIC replaces
TLS, which is often used on top of TCP, by including the TLS 1.3 handshake in
its connection establishment. As such, QUIC doesn’t fit in one single layer in
the OSI model. Instead, it takes on the responsibilities of multiple layers and
combines those efficiently. QUIC’s position within the OSI model is illustrated
in figure 6.

16

Network IP

TCP
UDP

TLS

Transport

Session

Application Tor Tor over
QUIC

TLS

QUIC

HTTP HTTP/3

Figure 6: QUIC within the OSI model. While QUIC is implemented on top
of UDP, it implements some of the features of UDP’s sibling, TCP, such as
reliability, in-order delivery, and congestion control. While TLS can run on top
of TCP independently, QUIC embeds TLS in its handshake. This allows QUIC
to cut down on handshake latency.

Handshakes

In TCP, after sending a SYN packet, a client has to wait for an acknowledgement
before it can send any higher layer data. After this TCP handshake, TLS can
start its own handshake, in the form of supported protocols and a key exchange.
Because QUIC replaces both TCP and TLS, both handshakes are merged into
one.

TLS 1.2 and earlier require two full round trips for their handshake. TLS 1.3[15]
improves on this by combining the exchanges of supported ciphers and the
exchange of keys. Where a client and a server would first agree on which cipher
to use before exchanging cryptographic keys, the client guesses a supported
cipher suite, and immediately sends its key share along.

Additionally, TLS 1.3 introduces zero round trip time (RTT) resumption.
Through this, the server sends a pre-shared key (PSK) to the client on ini-
tial connection. Whenever the client reconnects to the server, it can send along
this PSK to authenticate. Encrypted application data can now be sent immedi-
ately, without needing to wait for a reply. A drawback of this method is its lack
of protection against replay attacks. Even though the data of the resumption
packet is encrypted, an adversary could record the data and resend it to the
server. In this case, TLS provides no mechanism for the server to protect against
this.

Since QUIC comes with TLS 1.3 support, and combines the transport layer
and TLS handshakes, latency can be reduced dramatically over a TCP + TLS
setup. Where the latency of a traditional reliable connection is 3 round trip
times, QUIC brings this down to 1 RTT for initial connections. Additionally,
this can be brought down to 0 RTT for follow-up connections, though extra care
has to be taken to protect against replay attacks. An overview of the QUIC

17

handshakes can be seen in figure 7.

QUIC 1-RTT

Initial: TLS{CH}

Initial: T
LS{SH}, Ack

Handshake: TLS{EE, CERT, FIN}

1-RTT: Data

Initial: AckHandshake: TLS{FIN}, Ack
1-RTT: Data, Ack

Handshake: Ack

1-RTT: HD, Data, Ack

QUIC 0-RTT
Initial: TLS{CH}0-RTT: Data

Initial: T
LS{SH}, Ack

Handshake: TLS{EE, FIN}

1-RTT: Data, Ack

Initial: AckHandshake: TLS{FIN}, Ack
1-RTT: Data, Ack

Handshake: Ack

1-RTT: HD, Data, Ack

CH: ClientHello
SH: ServerHello
EE: EncryptedExtensions
CERT: Certificates
FIN: Finished
HD: Handshake done

Figure 7: QUIC Handshakes. QUIC uses a 1-RTT handshake for its first
connection. In later connections to the same server, previously exchanged keys
can be used for a 0-RTT handshake. Initial, Handshake, 0-RTT and 1-RTT are
QUIC packet types. Multiple QUIC packets can be coalesced into a single UDP
datagram[4]. In both scenario’s, the server can immediately send data back,
which is called “0.5-RTT data.”

Streams

QUIC has multiplexing built-in through streams. Each QUIC connection can
contain multiple streams, and each stream has its own priority, congestion control
and flow control. Data within streams is delivered in-order, but streams are
independent of each other. Whereas the TCP based HTTP/2 protocol provides
a similar multiplexing mechanism, TCP’s in-order delivery property can still
cause head-of-line blocking. In HTTP/2, as soon as a stream packet is sent over
TCP, it will be delivered in the order that it is passed to TCP, even if packets of
other streams are blocked in the meantime. QUIC solves this problem by relying
on UDP and implementing in-order delivery on a per-stream basis.

Head-of-line blocking can still occur in QUIC, but this will happen for a specific
stream, as only individual streams guarantee in-order-delivery. Packet loss on
one stream will not affect the performance of other streams within the same
QUIC connection.

18

Multiplexing over TCP

dropped

Stream 1
Stream 2

ACK 2

ACK 1 missing: retransmit

2, 3 on hold

1, 2, 3 delivered

QUIC

dropped

Stream 1
Stream 2

Stream 2, ACK 2

2 delivered

1 delivered

Stream 3

ACK 3

Stream 3

3 delivered

Stream 3, ACK 3

Stream 1, ACK 1Stream 2
Stream 3

Stream 1, ACK 1

sequence mismatch

Figure 8: Multiplexing head-of-line blocking in TCP and QUIC. TCP ensures in-
order delivery on the connection level where QUIC ensures this only per-stream.
In TCP, when a segment is dropped, all other segments have to wait for its
retransmission. In QUIC, a dropped packet affects only the packet’s stream, and
packets from other streams will still be delivered on arrival.

Ossification

The Internet does not only consist of client and servers, middleboxes such
as NATs, firewalls, intrusion detection systems, and proxies are increasingly
prevalent[16]. These middleboxes can look into the contents of packets such
as protocol metadata. Some middleboxes will route or deny packets based on
this information. Unfortunately, many middleboxes are implemented incorrectly.
This has been a problem for rolling out both new protocols and new versions of
existing protocols.

In 2017, TLS 1.3 was deployed to a part of Chrome and Firefox users. However,
a larger connection failure rate than expected was perceived amongst this group.
This was caused by middleboxes that were written for compatibility with older
TLS versions, but failed to work well with this new version[17]. Eventually
a workaround for this problem was used by advertising the TLS 1.2’s version
in TLS 1.3 packets while introducing a new versioning mechanism. In this
case, the widespread usage of faulty middleboxes forced the protocol to adopt a
workaround, adding complexity and sacrificing efficiency. In a similar fashion,
it is found that TCP headers are used and even modified by middleboxes in

19

various ways, which makes the deployment of some TCP extensions difficult[16].
This reduction in flexibility in protocol design, which is caused by middleboxes,
is called protocol ossification.

Protocol ossification makes deploying new protocols difficult as well. SCTP is a
transport layer protocol that was developed in 2000. It supports multiplexing
multiple streams over a single connection. However, middleboxes do not recognize
the protocol and some simply block it. This has made it impossible to use the
protocol reliably over the Internet. As a result, SCTP is mainly used in controlled
environments[18].

A solution to ossification is use of encryption. If a middlebox cannot decrypt a
packet, middleboxes cannot make decisions based on its contents. Middleboxes
are still able to drop all UDP packets, however, the scope of damage they can
do to the evolution of the protocol is severely limited. For this reason, QUIC
encrypts not only application data, but also its own headers. This allows the
QUIC protocol to evolve without the risk of middleboxes changing headers based
on a specific version. Additionally, QUIC is already implemented in major web
browsers and used on the web. This makes it unlikely that new middleboxes will
block QUIC in its entirety.

One of the main goals of QUIC was to be deployable immediately, without
waiting for middleboxes to update. This excluded any protocol but TCP and
UDP from consideration, as other transport layer protocols are typically blocked
or degraded by middleboxes[19]. Additionally, evolving TCP to circumvent
in-order-delivery to prevent head-of-line blocking appeared infeasible. While
modification of TCP is plausible, major modifications such as this could take
10 years to deploy. This is mainly because TCP is implemented in operating
system kernels, which are generally slow to update. When based on UDP, most
of QUIC can run in user space, which allows for faster protocol updates in the
future.

QUIC version 1

Google initially designed QUIC internally, it published details about the protocol
to the public in 2013[20]. In 2015, an Internet Draft of the specification was
submitted to the IETF, and a QUIC working group was established. In May
2021, after iterating through draft versions, the IETF officially formalized QUIC
as RFC 9000[4]. This means that QUIC version 1 is now a proposed standard,
which may become an Internet Standard in the future.

Besides RFC 9000, the IETF published RFC 8999, 9001 and 9002 as well. These
describe version-independent properties of QUIC, using TLS to secure QUIC,
and loss detection and congestion control within QUIC, respectively.

Congestion and flow control
QUIC’s congestion and flow control differ from TCP in a couple of ways, as
specified in RFC 9002[21].

20

Packet numbering

QUIC packets use one of three types of encryption: Initial, Handshake, or
Application data. QUIC packet numbers are tracked for each encryption level
individually i.e., each encryption level comes with its own packet number space.
For each connection, all QUIC packet numbers start at 0 and increase monoton-
ically. Even when a QUIC packet is retransmitted, the packet number of the
retransmitted packet is higher than the packet number of the original packet.
This is different from TCP, which assigns the original sequence number to re-
transmitted segments. QUIC does not allow repeating packet numbers as to
prevent ambiguity, it allows for endpoints to distinguish between original and
retransmitted packets.

Acknowledgements

RFC 2018[22] introduces selective acknowledgements (SACKs) in TCP through
which a receiver can selectively acknowledge segments that are received after
a gap. Through these SACKs, the sender only has to retransmit the missing
packets instead of all packets since the detected gap. QUIC comes with a similar
mechanism. Where TCP can only specify three SACK ranges in a single packet,
QUIC allows for many SACK ranges. This allows QUIC to recover quicker from
loss in high loss, high throughput scenarios.

TCP allows a receiver to discard unacknowledged data, even if this data is part of
a selective acknowledgement range. Discarding data that has been acknowledged
through SACKs, but not yet by a normal acknowledgement, is called reneging.
This can occur when the receiver runs out of buffer space. However, this adds
complexity and memory pressure to the sender, as its sent data cannot be freed
after a SACK has been received, only after a normal ACK. For this reason,
QUIC does not allow reneging at all.

Additionally, QUIC contains improvements to timeout calculation, the minimum
congestion window is increased to from one to two packets, and handshake
packets are not handled differently than other packets anymore in QUIC.

21

2.2 Tor
Internet packets contain an origin and destination address. The origin IP address
can be used to trace a packet back to its sender. Additionally, this IP address
can be used to roughly determine the geographic location of the user who sent
the packets[23]. Tor[1] is an overlay network that aims to protect its users
against tracking, surveillance and censorship. This is done by encrypting the
user’s Internet traffic and routing it through multiple hops such that no direct
connection between the user and its destination exists. This makes it difficult
for an adversary to know where the user’s traffic is coming from, and what kind
of traffic the user is sending.

Tor’s source code[24] and Tor’s specification[25] live in separate source code
repositories.

HTTP Packet

Encrypted for B

HTTP Packet

Encrypted for B

HTTP Packet

Encrypted for A

Client Relay A Relay B Server

Figure 9: Tor Onion Routing. Cells are encrypted by the client in several “layers,”
one for each relay in the circuit. Each next relay “peels” a layer of encryption
off, the circuit id becomes visible and the relay now knows to which relay the
remaining data should be forwarded. The innermost “skin” is decrypted by the
exit node, and sent to the destination server.

22

Client

Guard
node

Relay
node

Exit
node

Guard
node

Guard
node

Relay
node

Relay
node

Tor

Onion
service

Server

Internet

Client

Figure 10: The Tor Network. By default, three hops are used between the client
and the destination. The last hop must be an exit node for connections towards
a server outside of the Tor network. However, onion services operate within the
Tor network, this allows the server to operate anonymously too, rather than only
the client.

Circuits
When a user connects to a server through Tor, Tor first tries to create a circuit.
This is done by asking one of the dedicated directory authorities about available
relays. Tor picks three random relays, proportional to the amount of bandwidth
they can handle, and starts creating a path between them. First, it connects to
the first relay, then it sends an extend request telling the first relay to connect
to the second relay. This process is repeated for the second relay to connect to
the third relay. When all relays accept this circuit, the circuit is opened, and
the user can now send data through it.

When Tor is used to connect to a server on the Internet, the last relay in the
Tor circuit connects to the destination server. This means that the server can
see the IP address of the last relay in the circuit. Additionally, this last relay
can see the data that the user wants to send to the destination server.

Because the last relay in the circuit bridges the Tor network with the rest of
the Internet, it is called an exit node. Not all relays in the Tor network are exit
nodes. As such, some relays can only be used at the start or in the middle of a
circuit.

Streams
Tor functions as an overlay network that forwards TCP streams. When a user
runs the Tor client, a SOCKS proxy is started. Any application that supports

23

SOCKS can use this to route its TCP streams through the Tor network. For
example, the user can configure their browser to use the Tor client as its proxy.
Now, the browser’s HTTP traffic will be sent through a Tor circuit. Internally,
Tor uses a stream identifier to distinguish between TCP streams within a circuit.
These stream ids are end-to-end encrypted such that only the client and exit
node can distinguish TCP streams. Other relays in the circuit will know to
which circuit the data belongs, but not which stream.

Cells
All data that is sent over circuits is packed into cells. Cells contain an identifier
for the circuit it belongs to and a command which specifies the purpose of the
cell. Additionally, cells contain a payload, optionally with padding. There are
two types of cells: fixed-width cells and variable-length cells. Fixed-width cells
use padding such that each of the cells has the same length. This is done to
protect against attacks that use the size of cells to infer what kind of data is
sent. Tor nodes use fixed-width cells to forward end-to-end stream data. Relays
use variable length cells for their initial handshake. These cells can contain
certificates, supported versions or authentication data.

TCP
TLS
Cell

[2] command: RELAY
[1] circuit id
[509] payload

Encryption for Relay 1
Relay Packet Relay Cell Payload

Encryption for Relay 2
Encryption for Exit Relay

Cell data
[1] Relay command: RELAY_DATA
[2] 'Recognized'
[2] Stream ID
[4] Digest
[2] Length
[498] Data + Padding

Figure 11: Relays exchange cells with “command” and “circuit_id” fields and
a payload. The relay cell payload is encrypted for each individual relay on the
path, these are the onion’s “layers.” Each relay “peels off” a layer by decrypting
the payload through its private key. The exit node can then decrypt the cell data.
A “RELAY_DATA” cell contains a stream id that corresponds to an end-to-end
TCP connection and a payload that is ultimately sent to the user’s destination.

24

Channels

Relay Relay

Channel

Cell
command: RELAY
circuit_id: 1

Cell
command: RELAY
circuit_id: 2

Figure 12: Cells are sent between relays over a channel. The circuit id allows to
relay to know the next destination of the cell.

For two Tor nodes to communicate with each other, they set up a channel. A
channel is responsible for transmitting cells from one node to another. Where a
circuit is a path across 3 relays over which one client’s cells are sent, a channel
is the transport for all cells that are sent between two relays. As such, cells on a
circuit will cross multiple channels, and a single channel will transport cells from
many circuits. TLS channel is currently the only implementation of a channel
within Tor’s source code, however a QUIC-based implementation is created in
this thesis.

To establish a TLS channel, a node creates a TCP connection to the next
node in the circuit. Then, it establishes a TLS connection on top of the TCP
connection. After this, the channel initiates a Tor link handshake. In this
handshake, VERSIONS, NETINFO, CERTS and AUTHENTICATE cells are
exchanged for version negotiation, validation of timestamps and IP addresses,
and for client authentication. After the channel establishment completes, relay
cells can be sent over the channel.

Each channel corresponds to a single connection. The channel is responsible for
serializing cells unto the connection’s output buffer and extracting cells from the
connection’s input buffer. The connection, on the other hand, is responsible for
transmitting the data from its buffer to the destination node. Currently, this
boils down to encrypting the data through TLS and handing it off to the kernel’s
TCP implementation.

Performance model
In this thesis, the performance Tor over QUIC is explored. There are a couple
of factors to take into consideration when analyzing Tor’s performance.

In an ideal scenario, Tor routes users’ traffic with maximum bandwidth and
minimum latency. Additionally, ideally, heavy downloaders aren’t able to suffo-
cate the bandwidth of small downloaders, such that some measure of fairness
between users is maintained.

Tor is a network that forwards many TCP streams, divided into cells, through
multiple relays. The performance of the network largely depends on the available

25

bandwidth of the relays. Additionally, latency, jitter and packet loss can impact
routing performance. Given the relays, and the network they have available, the
efficiency of the protocol leaves room for optimisation.

Between two relays, Tor circuits are multiplexed over a single TCP connection.
Tor is designed like this such that relays can handle many connections at once.
This allows for better performance and scalability than when using a single TCP
connection per circuit. If a relay handles 1000 connections and 1000 circuits per
connection, each with their own TCP connection, then one million open sockets
would need to be handled. This is well above the limit for most computers and
routers[26].

Even though multiplexing has a performance benefit over running many TCP
connections simultaneously, multiplexing streams over TCP has its downsides.
Head-of-line blocking will block the progress of all circuits between two relays
when a single packet is dropped. This has a performance impact on all circuits
that pass through these two relays. This effect becomes greater as the network
is more lossy.

Tor uses a sliding window mechanism for end-to-end flow control. This makes
sure that no more than a maximum number of cells are in transit at any given
time. For every 100 cells that are received, the receiving end sends a SENDME
cell back to the sender. This allows the sender to send another 100 cells. If the
sender’s window is exhausted, it has to wait with sending any more cells until
more SENDME cells are received.

Currently, when a relay receives a cell, it is required to forward this cell reliably.
If a relay drops a cell, the onion encryption fails, and the circuit is invalidated
and broken down. Due to this restriction, a relay’s buffers can fill up if it receives
more cells than it can send. This leads to congestion at a relay, which increases
latency throughout the network.

In 2017 Tor’s default scheduler, which is responsible for the amount of cells that
channels are allowed to send, was replaced by the KIST scheduler[27]. KIST
throttles channels based on socket metadata it obtains from the kernel. This
limits over-sending which improves circuit congestion.

26

3. Related work

Various research has been done to improve the performance of Tor. Performance
issues roughly boil down to either inefficient multiplexing or inadequate end-to-
end flow control.

The most relevant contributions are those that propose alternative transport
protocols for Tor. Some background and categorization of these transport
protocols is provided, then individual contributions are classified and discussed
based on this categorization.

Multiplexing
When multiplexing multiple streams over a single TCP connection, packet loss
can lead to head-of-line blocking. Tor is particularly effected by this as any
two relays multiplex all shared circuits over a single TCP connection. This is
currently a performance limitation within the Tor network.

Multiple solutions have been proposed to combat this in the form of alternative
transport layer protocols. Caution needs to be taken with these proposals as
ossification and lack of deployability become concerns for realistic usage of these
protocols. Additionally, alternative transport layer protocols might expose new
vulnerabilities that threaten anonymity.

End-to-end Congestion control
Tor’s SENDME cell based end-to-end flow control has been proven to limit perfor-
mance of the Tor network. Due to its long feedback time and simple window
algorithm, and because cells are not allowed to be dropped once they’re sent,
relays can end up with long cell queues. This impacts both latency and through-
put.

Additionally, overburdened relays impact the inter-circuit fairness within the
network. Bulk downloaders send more cells, and get more bandwidth than web
users within Tor. Adversely, web users benefit from lower latencies where bulk
downloader don’t. Various studies have proposed solutions for relay congestion
within the Tor network to improve latency and fairness.

27

Hop-by-hop vs End-to-end
When it comes to proposals of alternative transport protocols, a major design
decision is whether to use the protocol hop-by-hop or end-to-end.

Hop-by-hop
Hop-by-hop protocol connections are established between each two consecutive
nodes in a circuit. This is a more standard approach since Tor uses hop-by-hop
TCP connections in its network. Alternative hop-by-hop transport protocols
aim to tackle the head-of-line blocking problem, as this is an issue that arises
between nodes. However, end-to-end congestion often remains a performance
problem.

End-to-end
Within Tor, end-to-end congestion control is managed by a simple sliding window
algorithm, which has been shown to be inadequate and limit Tor’s performance.

In end-to-end transport protocols, a connection is created between the initiator
of the Tor circuit and the chosen exit node, instead of between each node. End-
to-end transport protocols aim to improve on circuit wide congestion control.
Alternative end-to-end transport protocols do come with additional costs. A
circuit can only use this protocol if all nodes within the circuit support it. This
makes deployment more difficult than replacement of hop-by-hop protocols, for
which only two consecutive nodes have to support the protocol for it to be used.
Additionally, with these protocols, there is a risk for metadata of the initiator to
be leaked to the destination, this must be considered very carefully as the origin
must remain anonymous for Tor to be effective.

Table 2: Alternative transport protocols for Tor

Paper Protocol HoL1 Fair2 Fp3 Depl4 Repr5

Vanilla Tor hop-by-hop TCP + TLS - - + ++ +
UDP Tor[6] end-to-end TCP over UDP + + - - -
DTLS[7] hop-by-hop userspace uTCP over DTLS + + + - -
uTor[8] hop-by-hop kernelspace uTCP + + + -- -
QUUX[9] hop-by-hop QUIC + ?6 + - +
QUIC Tor[10] hop-by-hop QUIC + + + - -

1Solves Head-of-line blocking
2Whether a more fair distribution between bulk and light traffic is ensured
3Fingerprinting resilience
4How difficult it would be to deploy this protocol
5Reproducibility: whether the source code is available, the experiment can be re-run, and

the results from the paper can be reproduced
6Fairness is not evaluated within the QUUX paper

28

UDP Tor (Viecco)
Viecco[6] proposed an alternative architecture to improve fairness between users
in onion routing systems.

Rather than relays talking TCP to each other, the client establishes a TCP
connection with the exit node. This connection is relayed over UDP, such that
relay nodes can drop and reorder packets, the end-to-end TCP connection will
handle congestion control. The exit node reassembles the TCP request and sends
it to the server. Cryptography is adapted to support out-of-order delivery. Since
the client’s TCP is forwarded through multiple nodes, fingerprinting attacks
remain. The study includes an experiment, but no link to the relevant source
code could be found.

DTLS (Reardon)
Reardon et al[7] try to tackle the head-of-line blocking problem. Originally, Tor
was designed to multiplex all circuits between two relays over a single TCP
connection, to prevent running out of sockets on the host’s TCP stack. This
multiplexing caused congestion control and the head-of-line-blocking problems.
Reardon’s architecture uses a user space TCP stack instead, which is capable
of handling many connections simultaneously. This allows Tor to dedicate a
separate TCP connection per circuit. These connections are then made between
hops on top of DTLS, a secure datagram based protocol. The study includes an
experiment, but the source code is not included, as such the experiment cannot
be reproduced easily.

uTor
uTor’s[8] approach is similar to Reardon’s. Unordered TCP is used to tackle the
head-of-line blocking problem. uTor, however, does this through a kernel patch
that allows read() calls to return a future region of the TCP stream out-of-order.
The on-the-wire format could be unchanged, and only a small change to the
Tor code has to be made, making this one of the more elegant solutions to the
head-of-line blocking problem. However, the potential for deployment is severely
limited due to the requirement of installing a kernel patch. Even though the
paper features some experiments with their QUIC implementation within Tor, no
available source code could be found. As such, the results of these experiments
could not be verified.

DefenestraTor
DefenestraTor[28] aims to improve Tor performance by replacing its congestion
and flow control by the N23 algorithm used in ATM networks. This is a credit
based flow control algorithm that signals congestion through backpressure. The
study shows that this algorithm helps combat congestion and improves response
times and bandwidth of web usage within Tor.

29

QUUX
QUUX[9] is a Master’s thesis featuring a QUIC implementation for Tor based on
libquic, which is the QUIC library extracted from Chromium’s source code[29].
Experiments with varying loss are done through both Chutney and Shadow. A
significant performance advantage over vanilla Tor is shown at various loss levels.
Source code and experiment sources are included with the paper. An attempt
at reproducing the results of the paper have been done, but unfortunately the
modified Tor code resulted in compilation failures that were difficult to remedy.

The extracted libquic library has not been in active development, and the IETF
QUIC specification has evolved since then. As such, it is valuable to implement
Tor over QUIC with a more recent, actively developed, QUIC library.

Adding QUIC support to the Tor network
In this master’s thesis[10], TCP and TLS are replaced by QUIC through Cloud-
flare’s Quiche library. QUIC is used on a hop-by-hop basis. Support for different
streams and built-in TLS ensure for authenticity and prevents the head-of-line
blocking problem. The study shows some promising Time to First Byte results in
its experiments. Unfortunately, the prototype implementation would sometimes
stall, leading to worse latencies and bandwidth than vanilla Tor. Additionally,
limitations in the used network simulators, Chutney and Shadow, prevent large
scale network simulations to be run.

Mind the Gap
Besides work on transport protocols, research on Tor performance has been
conducted on other areas as well.

Tschorsch and Scheuermann’s “Mind the gap” paper[5] proposes BackTap, a
backpressure-based flow control algorithm that replaces Tor’s end-to-end sliding
window algorithm. It’s shown that this algorithm has a great impact on relieving
congestion on the Tor network. When using backpressure in consecutive relays,
rather than the current end-to-end flow control algorithm, the feedback loop for
congestion is shorter, and congestion can be dealt with more swiftly. Additionally,
the study claims to improve fairness, both between Tor circuits and between Tor
traffic and unrelated network traffic.

KIST
Jansen et al. propose KIST[27], which attributes congestion in the Tor network
to the fact that relays write too much data to their sockets’ output buffers,
which causes increased queueing delays. Additionally, sockets are written to
sequentially, rather than following the relay’s circuit priority. This means that the
prioritization of circuits is effectively relinquished from Tor code to the kernel’s
TCP implementation. KIST is an alternative scheduler for Tor which uses socket
metadata to make informed decisions on how much data should be sent to its
sockets. This approach has shown to reduce congestion and improve latency

30

throughout the Tor network. The KIST scheduler has since been implemented
in Tor.

31

4. Design and Setup

Between two Tor relays, all circuits are multiplexed over a single TCP connection.
This comes at a performance cost. Due to head-of-line blocking, a single dropped
packet will block all streams between two relays. Additionally, TCP’s congestion
control will throttle all streams when a congestion is detected, this favors bulk
downloaders over users with light usage and affects fairness. Integrating QUIC
into Tor has the potential to remedy these issues due to QUIC’s built-in UDP-
based multiplexing and its per-stream congestion control.

When replacing Tor’s inter-relay TCP connections with QUIC, certain design
decisions have to be made. Namely, QUIC can be implemented as transport
between relays, or as end-to-end protocol between the client and exit node.

4.1 Design
Goals
To improve on both vanilla Tor and previous work, certain design goals are
established. Most of these goals are similar to those in previous work on Tor
over QUIC. However, reproducibility is added as a goal. This will help future
research to build on top of this thesis.

Head-of-line blocking

As explained in chapter 2, Tor suffers from head-of-line blocking. This limits the
efficiency in which TCP streams can be multiplexed between Tor relays.

Within the QUIC design, head-of-line blocking only happens within individual
streams, not on the connection level. Tor circuits can be mapped to QUIC
streams based on their circuit id, such that head-of-line blocking of a single
circuit will not impact other circuits on the same connection. QUIC should be
implemented in this way, such that head-of-line blocking, as it currently occurs
within Tor, is solved.

Fairness

Due to Tor’s multiplexing over TCP, TCP’s congestion control applies to all
circuits between two Tor relays as well. This impacts fairness between circuits,
as TCP’s backoff will lower the transmission rate of the entire connection. For
example, if a bulk downloader and a light user of Tor use circuits that go through

32

the same congested link, both their circuits will be throttled proportionally.
This leaves the light user with less bandwidth because they put less load on
the network, while ideally, bandwidth is distributed equally amongst users. By
relying on QUIC’s per-stream congestion and flow control, fairness should be
improved in the QUIC implementation. Jain’s fairness index[30] will be used to
calculate the fairness of the implementation.

Privacy and security

Providing privacy and security is essential for Tor to operate. Users use Tor
such that they can increase their privacy on the Internet. If Tor’s security were
to be compromised, then this would affect its users’ privacy as well.

Correlation attacks are important to consider when designing an alternative
transport protocol for Tor. An attacker could observe both ends of a circuit, and
de-anonymize users based on patterns of bandwidth, congestion and protocol
metadata.

Numerous attacks on Tor have been shown, of which some based on fingerprinting
of TCP’s metadata. Especially if QUIC is used end-to-end, fingerprinting must
be mitigated specifically.

The Tor over QUIC design should not allow attacks on privacy to happen that
are not possible within Tor currently. To prevent metadata leakage between the
client and the exit node, QUIC is integrated in a hop-by-hop fashion instead
of end-to-end. Because most of QUIC’s headers are encrypted, QUIC exposes
less information than TCP. For example, on top of the headers that UDP have
in common, TCP exposes a sequence number, acknowledgement number, flags,
window size and options. UDP does not expose additional information over
TCP, and QUIC only exposes a connection identifier and a limited amount of
flags. QUIC’s encryption of other headers should improve against attacks that
use transport protocol headers for attacks against Tor.

Deployability

The Tor over QUIC design must be deployable. Ossification puts a limitation on
which transport protocols can be deployed successfully. Since middleboxes tend
to block less popular transport layer protocols such as SCTP, it is desirable to
use either TCP or UDP. Additionally, ossification must also be considered when
using TCP extensions, as those can cause middleboxes to deny packets as well.

Previous research, such as uTor[8], proposes a transport protocol that requires
a kernel patch to run. Kernel patches are difficult to install and likely need
manual intervention to install. It would take a long time before a decent share of
Tor relays can patch their kernel to allow for an alternative transport protocol
to be deployed. It is preferred to use a protocol based on TCP or UDP, as
these are already widely available in kernels across modern operating systems.
Alternatively, a userspace protocol could be used, such that the protocol can be
upgraded along with Tor itself.

If QUIC is implemented end-to-end, then every relay within a circuit needs to
be updated before the new protocol can be used. This is a drawback that makes
QUIC over Tor difficult to deploy as well. Since relays update their Tor version

33

gradually, it is preferred to optimistically support a new protocol on a per-link
basis. Such that only two relays need support for the new protocol to connect
to each other through it. This would greatly increase the pace at which the new
protocol can be deployed at scale.

As such, QUIC is integrated in a hop-by-hop fashion. The kernel’s UDP imple-
mentation is used. On top of this, the QUIC protocol can be included into Tor
in the form of a library. This allows QUIC to be updated easily along with Tor
updates.

Reproducibility

Only few of the previous studies contain access to the source code that is used
to run their experiment. This makes it difficult to reproduce the experiment and
verify the results. Additionally, the implementation has to be redone when build-
ing on top of previous research. Only few of the proposed alternative transport
protocols contain enough resources to reproduce the published experiments.

The predecessor of this paper[10] contains an experiment based on an implemen-
tation of QUIC over Tor. Unfortunately, the source code and test setup for this
experiment could not be obtained. Because of this, the implementation effort
that made the thesis possible must be redone to build on top of its work.

To streamline this process this in the future, an additional requirement will be
reproducibility. Through the use of publicly hosted source code, and inclusion
of any scripts that are required to run the experiment, the experiment can be
made fully reproducible.

The source code for the Tor fork, which integrates with QUIC, can be found at
GitHub[31].

Adding QUIC to Tor
QUIC is generally a good fit for an alternative transport protocol for Tor. QUIC’s
streams can map unto Tor’s circuits which will remedy the head-of-line blocking
problem. QUIC’s per-stream congestion control provides the means to improve
fairness.

Because QUIC is used in HTTP/3, it is already deployed widely globally. Ruth
et al.[32] showed in 2018 that 2.6% to 9.1% of all Internet traffic uses the QUIC
protocol. This inspires confidence for the deployability of QUIC within Tor.

End-to-end or Hop-by-hop

Two major designs exist for using Tor over QUIC: end-to-end and hop-by-hop.

In the end-to-end design, a QUIC connection is made between the two edges of
the Tor network, spanning across relays. The individual QUIC packets are then
forwarded between hops over UDP.

Tor currently offers no end-to-end congestion control. Because of this, many cells
can get stuck at a single congested relay, which degrades the overall bandwidth
of all circuits that pass this relay. Using QUIC end-to-end such that its flexible
congestion control will limit the amount of cells sent by the client would solve

34

this issue. However, the end-to-end design comes with security and deployability
issues that make it infeasible to use.

In end-to-end designs, the headers and parameters of the protocol will be sent
from the client to the Tor exit node. An adversary that observes both ends of
this connection could relate this information and de-anonymize a user. Relating
metadata, re-ordering packets and explicit congestion control information can
all be used to create a covert channel.

For example, if an adversary controls the first relay in a circuit, and an end-to-end
QUIC design is used, the adversary can send encoded messages to the exit node.
This can be done by reordering the packets in a specific way. Because QUIC is
UDP based, and used end-to-end, the relays on the path will forward the UDP
packets without reordering them. Through this, the modified ordering from the
first relay on the path can persist throughout the circuit until the exit node is
reached. This reordering could be used to encode the address of the user[33].
Vanilla Tor doesn’t have this problem as TCP is used between relays. Because
of TCP’s in-order delivery, each relay will ensure all packets are sent in the order
the client initially sent them.

The end-to-end information leakage is a problem for Tor’s anonymity requirement
that is not easy to circumvent.

In end-to-end designs, QUIC packets are forwarded through the Tor network
over UDP, encrypted with DTLS. Because DTLS is not a reliable transport,
packets that are dropped between relays must be retransmitted from the client,
even if the packet drop occurs just before the exit node. Since relays of a Tor
circuit are chosen to be in different jurisdictions, there is a much higher latency
than in typical non-Tor QUIC connections. This extra delay for retransmitting
will negatively affect the performance of the end-to-end design.

In hop-by-hop designs, a QUIC connection is made between each pair of relays.
This means that both TCP and TLS as they are integrated in Tor now are
both replaced by a QUIC connection with TLS built-in. In hop-by-hop designs,
Tor circuits are mapped to QUIC streams, this allows for efficient multiplexing
without head-of-line blocking. Additionally, QUIC allows for flow control and
congestion control to happen both on a per-stream and a per-connection basis.
This can solve the lack of fairness between circuits within Tor, dedicating an
equal amount of bandwidth to each QUIC stream.

Hop-by-hop designs are advantageous for deploying as well. Rather than each
relay within a circuit, only two connected relays need to be updated to a Tor
version that supports QUIC to take advantage of its benefits. Since it can take
some time for relays to update their Tor version, this more flexible requirement
will make deployment beneficial sooner.

This design can save on complexity as well. Within the end-to-end design, the
TCP and TLS stack need to be replaced by UDP and DTLS to allow for out-
of-order forwarding of UDP packets while retaining encryption between relays.
On top of that, a QUIC connection needs to be made between the client and
the exit node. In a hop-by-hop design, only the TCP and TLS stack need to be
replaced by QUIC.

35

0-RTT

TLS 1.3 introduces a feature called “zero round trip time connection resumption”
(0-RTT), which allows the client to send user data immediately, effectively
lowering the handshake latency to zero. This can be done when the client has
saved a Session Ticket that it has obtained through an earlier connection with
the server. The data can be encrypted and sent along with the TLS handshake
data immediately, without having to wait for a response from the server.

Since QUIC integrates with TLS 1.3, this feature can be enabled in QUIC.
Additionally, QUIC adds to this latency reduction by providing zero round trip
time connection establishment. Where both TCP and TLS would both add
latency through their own handshakes, QUIC can bring this down to zero.

However, by enabling 0-RTT in TLS 1.3, replay attacks become a possibility.
When an adversary eavesdrops a connection and records the data of a 0-RTT
handshake, it is able to replay this data to the server. The server will not be
able to distinguish between the original sender’s packet and the adversary’s

Because Tor aims to provide a high level of anonymity and security, it is unwanted
to become vulnerable to replay attacks. Additionally, the connections between
relays are long-lived, and fast connection establishment has only a limited impact
on performance. 0-RTT will be turned off for Tor, and a single round trip will
be required for the connection handshake.

Fallback

Because Tor relays are operated by volunteers, it is not feasible to update the
Tor version of all relays at once. To prevent disruptions in the network when
deploying Tor over QUIC, a fallback needs to be available. When two relays
both support QUIC, a QUIC connection is established. When at least one of the
relays does not support QUIC, the relays must connect over TCP + TLS. This
distinction can happen primarily through advertising. Tor’s directory servers
keep track of relay metadata. QUIC support could be a new field within these
directories, such that the availability of QUIC becomes well-known. This will
allow for gradual deployment of QUIC over Tor.

QUIC libraries

There are a number of open-source QUIC implementations that could be used
for integration with Tor.

Table 3: Popular QUIC libraries

Name License Language Owner
Chromium[34] Free C++ Google
mvfst[35] MIT C++ Facebook
ngtcp2[36] MIT C ngtcp2
Quinn[37] Apache Rust Quinn-rs
Neqo[38] Apache Rust Mozilla
Quiche[39] BSD 2 Rust Cloudflare

36

Chromium

Before QUIC development was transferred to the IETF, Google had initially
designed and developed the QUIC protocol. The effectiveness of this protocol
was tried out in the Chromium browser. The experiment was successful and
Chromium QUIC protocol now conforms to the IETF specification. QUIC in
Chromium is production-ready and deployed globally. However, this implemen-
tation contains little publicly available documentation which makes it difficult
to use[34]. Since the implementation shows little dedication to support third
party usage, breaking changes might occur without notice.

Mvfst

Mvfst is a C++ QUIC implementation created by Facebook. It aims to be
performant and has been tested on a large scale[35]. The implementation’s API
is still in alpha phase. This makes it unfit for integration with Tor.

ngtcp2

ngtcp2[36] is an open source implementation of the QUIC protocol, written in C.
It has support for multiple cryptography library backends. Its documentation is
limited, and the project is not backed by a company which might impact the
project’s longevity. No claims of production-readiness are made.

Quinn

Quinn[37] is an open source QUIC implementation written in Rust. It dif-
ferentiates itself through its Futures-based asynchronous API. Futures are a
paradigm of the Rust language that can simplify working with asynchronous
operations. However, since Tor is written in C, and the library’s core focus
is asynchronous programming in Rust, this library is not a great fit for Tor
integration. The library has a decent amount of documentation, but there is no
mention of interoperability with C.

Neqo

Neqo[38] is Mozilla’s QUIC implementation, used in the Firefox browser. It
is written in Rust, and it’s deployed widely within Firefox. Like Chromium’s
implementation, Neqo contains little documentation, and is mainly focused on
integration with its browser.

Quiche

Quiche[39] is a QUIC implementation in Rust backed by Cloudflare. This imple-
mentation is flexible in its usage because it leaves I/O operations such as socket
and event loop usage to the application. Quiche contains more documentation
than alternative implementations, and integrates with well known third party
applications such as Curl and NGINX. Additionally, Quiche has good support
for C interoperability, which makes it attractive for Tor integration.

Cloudflare is a company that provides web infrastructure such as content delivery,
DNS and DDoS protection. Quiche is used in production for Cloudflare’s edge

37

network.

Quiche is distributed under BSD 2-clause license which is compatible with Tor’s
BSD 3-clause license.

Due to its flexibility, reliability, good support for third party usage and license-
compatibility, Quiche is a good fit for integration with Tor. As such, this is the
library that is used to implement Tor over QUIC.

4.2 Implementation
Integrating Quiche with Tor is not a straight forward process. Ideally, separation
of concerns is used, and only the part of the code that handles the transport layer
protocol has to be changed. This is unfortunately not the case. Implementation
difficulties, and the decisions that are made to overcome these, are laid out in
this section. The source code of the fork can be found on GitHub[31].

Background
Some familiarity with the general structure of Tor’s codebase is required to
understand the issues that come with QUIC integration. The most relevant
abstractions are channels and connections.

Abstractions

Tor’s source code contains abstractions that use an object-oriented style to define
classes and subclasses. Macros are used to convert a class to its subclass and
vice-versa.

For example, the connection class has a subclass called or_connection. Where
conn is a reference to a connection , TO_OR_CONN(conn) can be used to convert
a connection to its or_connection counterpart.

This subclass mechanism is used for channels as well as connections.

Connections

The connection class deals with reading and writing bytes over connections.
There are several subclasses for connection, such as listener_connection and
or_connection. Each connection aims to represent either a TLS connection,
a TCP socket, a unix socket or a UDP socket.

The OR connection subclass (or_connection) reads and writes data over TLS
to another relay. This subclass handles all onion routing cells.

Channels

Channels are a higher level abstraction than connections. Where connections use
buffers to read and write data, each channel owns a single connection which
it uses to transmit cells to another relay. Currently, the only subclass of channel
is TLS channel (channel_tls), which uses an or_connection internally.

38

The OR connection is responsible for encoding cells and sending them over a
TCP connection. The TLS channel sits between its superclass, channel, and its
OR connection. The TLS channel communicates with channel by implementing
the functions in channel’s interface. Beyond passing cells from the upper layer
to its or_connection, TLS channel adds a layer of authentication on top of TLS
through the Tor link handshake. This handshake uses AUTHENTICATE and CERTS
cells to verify the Tor identity of the relay that it is connected to.

QUIC channel

To integrate QUIC with Tor, the Quiche[39] library is used. Quiche is written in
Rust, but it provides C bindings through a single header file. Where Tor’s TLS
channel uses OpenSSL[40] to implement TLS, Quiche uses BoringSSL[41] for its
TLS implementation.

Because QUIC can only be used when two subsequent relays on a path support
it, QUIC and TLS must be able to run alongside each other. When QUIC is not
supported by two relays, the TLS channel can then be used as fallback.

There are two ways in which Quiche can be added to Tor: by creating an
alternative channel class, and by creating an alternative connection class.

Intuitively, as QUIC functions as a transport layer protocol, it makes sense to
use TLS channel, and split its OR connection into two implementations: the
original TLS over TCP connection and a new QUIC connection. However, the
design of TLS channel is incompatible with Quiche in two ways.

First, TLS channel uses a listener connection. Internally, this is a server-side
TCP socket that is bound to the onion routing port (ORPort). When a client
connects to this socket, a new TCP socket is created, this socket is used to
create the corresponding OR connection. This model is incompatible with QUIC
because UDP sockets are connectionless. Within QUIC, an incoming UDP
datagram needs to be parsed by QUIC to know the corresponding client. In
TCP, the client is known based on the socket on which the packet is received.
Where TLS channel exposes a function that takes an or_connection from a
known client, for QUIC support a separate function that receives a datagram
from unknown origin is required.

Additionally, TLS channel accesses OR connection’s internal TLS certificate
in its Tor link handshake. Quiche uses TLS internally, but doesn’t expose the
certificates that are exchanged. This warrants a change to the Tor link handshake
such that it can operate irrespective of the TLS handshake certificates.

Because of these fundamental differences, it is decided to create an alternative
channel, rather than an alternative connection. Through this, QUIC channel
can operate parallel to TLS channel. The channel superclass provides a number
of functions that are implemented by both QUIC channel and TLS channel, and
the channel superclass decides which of the subclasses is used.

It is possible to create a connection subclass for QUIC connections, similar to
how TLS channel uses an OR connection. However, the connection class contains
a single input buffer, and a single output buffer. This does not translate well
to QUIC which requires a buffer per stream. Due to this lack of multiplexing

39

support of connections, and because Quiche already implements most of the
responsibilities of the connection class, it is decided to not create a QUIC
connection subclass. Instead, QUIC channel uses Quiche directly. This avoids
complexity caused by interface incompatibility with the connection class. An
overview of the resulting architecture of QUIC channel can be seen in figure 13.

Channel

OR connection
Quiche

TLS channel QUIC channel

Connection

Figure 13: Channel Implementation

Routing

Tor uses an event loop to keep track of when sockets can read and write efficiently.
When data arrives at a socket, an event is fired. In vanilla Tor, the TCP socket
that data arrives at corresponds to an OR connection. This OR connection is
then passed to a function of its corresponding TLS channel.

Because UDP is a connectionless protocol, and a UDP socket is typically not
bound to a specific source, an alternative approach is used for QUIC. Since
channels correspond to a QUIC connection, rather than a socket, an incoming
datagram must be parsed by QUIC before its corresponding channel can be found.
As such, QUIC channel provides a function that is called whenever incoming
UDP data is received on the relay’s ORPort. The incoming datagram is parsed,
and if the connection id of the QUIC packet is known, the corresponding channel
is found in a hashmap. Otherwise, a new QUIC channel is instantiated, and
inserted into the map.

QUIC streams

To prevent head-of-line blocking between Tor circuits, each circuit is assigned to
a stream. A hashmap is used to map circuit ids to QUIC stream ids. If a cell
with an unknown circuit id is sent or received by a channel, a new QUIC stream
id is assigned to this circuit. Since the QUIC specification requires stream ids to
be monotonically increasing, there is no choice to be made for which stream id
to pick.

There could be concerns regarding the amount of extra information that is
exposed by using a stream id per circuit. However, QUIC’s stream ids are
encrypted, QUIC is used in a hop-by-hop fashion, and relays already know the

40

circuit ids of the cells they forward. Additionally, relays know how many circuits
are forwarded between each other. As such, using monotonically increasing
QUIC stream ids between relays does not expose extra unknown information.

Buffers

Each OR connection contains a single input and output buffer. However, QUIC’s
multiplexing necessitates a buffer per-stream, rather than per-connection. This
allows streams to move independently, solving head-of-line blocking for Tor cir-
cuits. A hashmap is used to map a channel and a stream id to their corresponding
buffer.

KIST Scheduler

In 2017, introduced the KIST scheduler to replace its vanilla scheduler. KIST
schedules cells on connections based on kernel information of sockets. Unfortu-
nately, this method relies on TCP, and cannot be used for UDP without major
adaptations. Because of this, when using QUIC, KIST’s fallback scheduler,
KISTLite, is used.

KISTLite is still an upgrade over the vanilla scheduler, but leaves for some
performance improvement. In future work, the KIST scheduler can be adapted
to work with QUIC as well.

Scheduler interface

QUIC features per-stream congestion and flow control, and QUIC streams are
mapped to Tor circuits. Tor’s scheduler uses channel’s interface to find out how
many bytes are queued and how many cells can be written. After deciding how
many cells the channel should write, it pops the cells from a chosen queue.

The amount of cells that QUIC channel can write, depends on which circuit
the cells belong to i.e., which QUIC stream is used. To take this into account,
channel’s interface needs to be changed, and the way the scheduler works will
then depend on which channel type is used.

This change is out of scope of this thesis. Instead, a more simple approach is
used. The sum of the sizes of the output buffers of the QUIC connection is used.
Only as many cells as fit within a constant high-water mark are allowed. When
enough cells are flushed, and the sum of queued output bytes is lower than a
constant low-water mark, then more cells are requested. This approach is similar
to how TLS channel operates. However, to obtain optimal performance while
operating multiple streams, the low-water and high-water marks are increased
compared to TLS channel. While this change made a significant impact for QUIC
in a rudimentary performance benchmark, increasing the low-water high-water
marks in vanilla Tor did not lead to a performance improvement. As such, QUIC
requires a larger buffer size to reach optimal performance.

Identity cells

Within the Tor link handshake, the TLS certificates are used to obtain and
verify an identifier for the relay on the other side. Currently, it’s not possible

41

to access these certificates when using Quiche. A workaround is used to make
the Tor network operate, however this approach is not secure for production use.
In a future version, the Quiche library must allow access to used certificates.
Alternatively the Tor link handshake can be made independent of the TLS
encryption that its connection uses.

OpenSSL and BoringSSL

Quiche is written in Rust, and C bindings are provided as a single header file.
To use Quiche in a C project such as Tor, normally a static library is created,
and included in compilation. However, Tor uses OpenSSL and Quiche uses
BoringSSL. BoringSSL is a fork of OpenSSL with no compatibility guarantees.
As a result, including Quiche in Tor as a static library causes conflicts. To
remedy this, Quiche is built as a shared library instead.

4.3 Simulation
To test the effectiveness of an alternative transport protocol within Tor, a Tor
network has to be simulated. To do this, most commonly, Chutney or Shadow
are used.

Shadow
Shadow[42] is a network simulator that is focused on simulating Tor on a
single machine. Even though Shadow supports simulating the network for other
applications, its main focus is Tor.

Instead of using the operating system, Shadow runs application code directly
while simulating system calls. This allows it to simulate networks at a larger
scale. Shadow can be used to run thousands of network connected processes on
a single machine.

Unfortunately, Shadow has limited support for UDP, this makes it difficult to
use QUIC in this simulator.

Chutney
Chutney[43] is a network simulator that runs multiple Tor instances on the host
operating system. It consists of a set of scripts that set up a test network and
allows for some basic monitoring.

Tor instances that are launched by Chutney address each other over the loopback
interface. As such, a unique port number is assigned for each function of each
instance.

Chutney is useful for testing a Tor network efficiently, but it lacks support for
adding latency and loss between instances. A separate bridge can be used to add
latency, but packet loss is still not supported due to the way TCP retransmit
works within Mininet[10].

42

Mininet
Mininet[44] is a tool that creates a virtual network that runs real kernel, switch
and application code. It can run on a single machine, and allows for creating
various network topologies. Through Mininet, links between nodes can be
customized. Bandwidth, loss, latency and jitter can be set on each individual
link within the virtual network topology.

Within Mininet, custom network topologies can be created in the form of a
Python class. Programs on the host operating system can be executed from a
node within Mininet. In this case, the process will use the virtual network to
interact with the other nodes.

Containernet
Containernet is a fork of Mininet that uses Docker containers rather than the
operating system as its hosts. Using Docker has the advantage of running a
reproducible operating system environment. Instead of reinstalling binaries
on the host operating system to change a program, Docker containers can be
swapped out easily without affecting the host.

Containernet can be configured through Python. A network topology is defined
with hosts as Docker containers and links between them. The Docker containers
can be created with limited memory or CPU, and the links can have bandwidth,
latency, loss and jitter restrictions imposed on them.

For Tor, this means that the efficiency of transport protocols can be evaluated,
with different levels of memory, CPU, bandwidth and latency limitations. This
is vital for testing the effectiveness of congestion control within the Tor network.

Additionally, the usage of Docker for the hosts, and Python for the network
topology, the entire experiment can easily be made reproducible. Docker con-
tainers can be shared such that peers can run an exact replica of the hosts used
in the experiment.

In this thesis, a Tor configuration that works with Containernet is generated,
and a Containernet setup with restricted links between hosts will be used to
discover performance characteristics of Tor running over QUIC.

Containernet’s adaptions for simulating Tor, which is used for the experiments
in this thesis, along with tooling, can be found at GitHub[45]. Because both the
implementation of QUIC within Tor and the network simulation infrastructure
are open source, reproducing the results that are found in this thesis should be
possible. This aims to satisfy the reproducibility goal.

43

5. Performance evaluation

To evaluate the performance of Tor over QUIC, experiments are done both
through chutney and Containernet. Specifically, download throughput, Time to
First Byte (TTFB) and Time to Last Byte (TTLB) of different Tor setups are
measured.

Environments with varying bandwidth, latency, loss and jitter are used to
compare the impact of vanilla Tor and Tor over QUIC. Additionally, the way in
which several circuits interact when their paths share a relay is explored.

A study from 2010[46] contains guidelines for how accurately model Tor perfor-
mance evaluation. Later studies[27][9] use this as a baseline for their experimen-
tation. In this thesis, this trend is continued. Namely, Tor usage is categorized
into two types of workloads: web usage through HTTP and downloading through
BitTorrent. Bittorrent is not recommended by Tor[47] as a user’s IP address can
still be leaked by BitTorrent clients. However, the study found that BitTorrent
usage attributed to 5% of Tor clients, and 40% of the total amount of bandwidth
in Tor.

A web usage workload is modeled as a small download of 320 KiB, and a bulk
downloading workload, such as BitTorrent, is modeled by a larger request of 5
MiB. Even though websites have grown in size, and are often larger than 320 KiB
now, this is still the used size such that results can be compared with previous
studies on Tor.

For the experiments, an initial download is done such that a Tor circuit is created
before the experiment is started. This ensures that no added latency due to
circuit creation is found in the results of the experiments. Circuit creation time
is not measured as this happens infrequently, and thus has a small impact on
quality of experience.

In these experiments, by default, QUIC uses CUBIC as its congestion control
algorithm and Hystart++ enabled. This conforms to Quiche’s default settings,
and recommended usage. Vanilla Tor uses CUBIC as well, as this is the default
congestion control algorithm for TCP within Linux.

Measuring bandwidth
Bwtool, a bandwidth measurement tool, is created to perform these experiments.
Bwtool serves a file of given size over HTTP, and then downloads this file over

44

a given SOCKS proxy i.e., a Tor client process. Bwtool measures the TTFB,
TTLB, and the time of reception of each chunk of given size.

Bwtool integrates with SOCKS, rather than HTTP, because HTTP clients tend
to not expose the time of reception of the response’s first byte. Instead, HTTP
clients receive and parse HTTP headers, and then expose the HTTP body as a
byte stream[48][49]. Bwtool records the first byte of the entire HTTP response,
rather than the first byte of the HTTP body.

Note that when an experiment on a file of, for example, 320 KiB is done, that
the actual download size is 320 KiB plus the size of the HTTP headers. This
means that roughly 204 extra bytes are downloaded in each of the experiments.

The use of SOCKS itself is not expected to have a big impact on the results.
SOCKS is a lightweight protocol, and the Tor client typically runs on the same
host as the application that connects to it. Within these experiments, Bwtool,
which is the SOCKS client, and the Tor client, which is the SOCKS server, run
on the same host as well. As a result, SOCKS imposes a minimal amount of
restrictions to latency and bandwidth. A simple test is done to confirm this.
A file of 1 GB is downloaded by Bwtool, through a local SOCKS proxy. The
resulting TTFB is 4 ms and the average throughput is 357 MB / s. This provides
confidence that SOCKS has a minimal impact on the results of the experiments
in this thesis.

Containernet
For Containernet experiments, a star topology is used. There is a single switch,
and each host is only connected to this switch. Each link imposes a set amount of
latency. A minimal Tor network is used, which contains 3 directory authorities,
3 exit nodes and 3 clients. The bandwidth of each link is capped at 100 MiB per
second, as is the case in the Tor modeling study[46]. This is chosen as a high
amount of bandwidth such that it is not the bottleneck of download performance
within Tor.

45

Directory
Authority

Directory
Authority

Directory
Authority Relay

Client Relay

Client Client Relay Relay

Switch

Figure 14: Tor Test Network setup using a star topology. Links are denoted by
arrows. The links have limited bandwidth, and imposed latency. Two links are
traversed between each pair of hosts.

In some scenarios, latency is applied to each link. Note that if a single link
has 10 ms latency, each two hosts have two links between them, such that a
packet takes twice the per-link latency to arrive at the next host i.e., 20 ms. A
Tor circuit contains 3 hops, and Bwtool acts as both the client and the server.
Bwtool resides in the same Docker container as the Tor process it uses. In total,
4 edges, or 8 links, are traversed to send a packet to the server through Tor.
This means that a round trip over Tor bridges 16 links. Bwtool uses HTTP over
TCP over SOCKS. To calculate the TTFB, two round trips are necessary: one
for the TCP handshake and one for the HTTP request itself. This means that
the minimum TTFB is equal to 32 times the latency of an individual link in the
Containernet topology.

Since the round trip time of a Tor circuit averages around 400 ms, and 16 links
are passed for a single circuit round trip, a link latency of 25 ms is chosen in
scenario 4, 5 and 7.

Scenario 1 - Containernet Baseline
For the experiments in this thesis Containernet is used for its flexibility. However,
Containernet has not been used before for performance analysis of Tor. To detect
significant performance regressions caused by Containernet, Chutney is compared
to Containernet.

To make this comparison, a basic experiment is run on both simulators. A small
Tor network is run, and Bwtool is used to measure the bandwidth of a 320
KiB download over the network. No restrictions are imposed to the bandwidth,
latency or loss of the links. The TTFB and TTLB are measured throughout 100
runs in each simulator.

46

Figure 15: Baseline - TTFB 320 KiB, uncapped

Figure 16: Baseline - TTLB 320 KiB, uncapped

47

Table 4: Baseline - Average (standard deviation) of TTLB

Baseline .
QUIC Chutney 0.143s (σ 0.044)
QUIC Containernet 0.123s (σ 0.011)
Vanilla Chutney 0.183s (σ 0.038)
Vanilla Containernet 0.178s (σ 0.015)

In figure 15, it can be seen that the TTFB is similar in both experimental setups.
The TTFB for QUIC within Containernet is slightly higher overall, and the
TTFB for QUIC within Chutney is slightly less consistent than both vanilla
measurements. On the other hand, the TTLB in figure 16 shows that QUIC
has a lower TTLB than vanilla within both network simulators. Overall, the
bandwidth in Containernet is slightly higher.

Since no latency or loss restrictions are applied in these benchmarks, performance
is mainly limited by CPU and the host’s networking performance. In further
experiments, it is expected that restrictions on the network links do become
bottlenecks for Tor throughput. Overall, the simulators provide similar results in
an ideal scenario, in which simulator inefficiencies are exposed the most. There
is confidence that Containernet is suitable for performing at least small-scale
simulations, especially when links are restricted, such that these restrictions
become the performance bottleneck.

Scenario 2 - Latency
Next, the impact of latency on both transport protocols within a minimal Tor
setup is explored. A file of 320 KiB is downloaded through Bwtool within
Containernet. For this experiment, a latency of 10 ms, 25 ms and 50 ms are
applied to each link within the topology. This is based on the circuit round-trip
latencies from Tor’s website for performance metrics[50]. Note that there is no
loss introduced to this environment. As such, congestion control algorithms
might have minimal impact on the measured performance. To explore this,
QUIC Reno, which replaces CUBIC with the Reno congestion control algorithm,
is added as an alternative in the experiments.

The TTLB and TTFB are recorded throughout 100 runs for both vanilla and
Tor over QUIC with CUBIC and Reno. While QUIC has Hystart++ enabled by
default, the label “nh” indicates that Hystart++ is disabled.

48

Figure 17: Latency - TTFB 320 KiB 10 ms latency

Figure 18: Latency - TTFB 320 KiB 25 ms latency

49

Figure 19: Latency - TTFB 320 KiB 50 ms latency

As explained earlier, the theoretical minimum of the TTFB is 32 times the
latency that is applied to each link. These minimums for 10 ms, 25 ms and 50 ms
are 320 ms, 800 ms and 1600 ms respectively. In figures 17, 18 and 19, the 90th
percentile of the test runs are close to these theoretical minimums. This means
that both vanilla Tor and Tor over QUIC open connections through the network
efficiently. For the 10th percentile slowest TTFB results, QUIC performs slightly
more consistently than vanilla, especially in the 50 ms latency experiment.

In figure 17, observe that vanilla Tor’s TTFB is generally 0.01 second lower
than Tor over QUIC’ s TTFB. This corresponds to the results seen in figure
15. Oddly, this did not appear when running QUIC over Chutney. Due to the
complexity of the simulators, it is difficult to pinpoint the cause of this difference.
Due to its relatively small impact, it has not been investigated further.

50

Figure 20: Latency - TTLB 320 KiB 10 ms latency

Figure 21: Latency - TTLB 320 KiB 25 ms latency

51

Figure 22: Latency - TTLB 320 KiB 50 ms latency

Table 5: Latency - Average (standard deviation) of TTLB

Latency 10ms 25ms 50ms
QUIC 0.574s (σ 0.029) 1.285s (σ 0.013) 2.484s (σ 0.006)
QUIC nh 0.574s (σ 0.033) 1.284s (σ 0.009) 2.487s (σ 0.022)
QUIC Reno 0.579s (σ 0.052) 1.282s (σ 0.016) 2.489s (σ 0.026)
QUIC Reno nh 0.569s (σ 0.007) 1.282s (σ 0.017) 2.567s (σ 0.143)
Vanilla 0.833s (σ 0.038) 1.919s (σ 0.101) 3.851s (σ 0.205)

In figures 20, 21 and 22, the TTLB values of the 320 KiB download tests are
shown for 10 ms, 20 ms and 50 ms latency links. Here, Tor over QUIC both
has higher throughput and higher consistency than vanilla Tor. In each of the
experiments, on average, vanilla Tor downloads took 40% longer to finish.

In each of the experiments in this scenario, QUIC CUBIC and QUIC Reno
perform similarly. This shows that CUBIC does not have a significant advantage
over CUBIC, or vice versa, in a simulation without imposed packet loss.

Scenario 3 - Loss
Now, loss is added to the experimental setup. This allows us to explore the
performance of both Tor over QUIC and vanilla Tor in an environment with
imposed loss. The SLA page of ISP Sprint[51] contains statistics of packet loss
throughout the globe. For example, in July 2021, packet loss within Europe

52

was 0.0018%, and packet loss within the South Pacific was 0.0001%. To find
the impact of packet loss on Tor, a packet loss rate of 0.01%, 0.1% and 1% are
applied to all links in the network. Bandwidth is again limited to 100 MiB/s
and there are no restrictions imposed on latency. QUIC with both CUBIC and
Reno, and vanilla Tor are evaluated in this setup. An experiment with 0.001%
loss has been conducted as well, but its results are not included as they are not
significantly different from the Containernet baseline.

To show the impact of Hystart++ in download performance, test runs with
Hystart++ disabled in combination with QUIC CUBIC and QUIC Reno are
added to the experiment as well.

Figure 23: Loss - TTFB 320 KiB, 0.01% loss

53

Figure 24: Loss - TTFB 320 KiB, 0.1% loss

Figure 25: Loss - TTFB 320 KiB, 1% loss

In figure 23 and 24, there is only a small difference in the TTFB values of all

54

configurations. Similar to figure 15, vanilla Tor’s TTFB is lower than any of
the QUIC configurations. In figure 25, it can be seen that vanilla Tor’s TTFB
can be significantly slower than QUIC in 23 of its slowest runs. Where QUIC is
resilient against high amounts of packet loss, vanilla Tor depends on timeouts.
Where all QUIC configurations finish within 0.13 seconds, vanilla Tor’s worst
case TTFB took 0.67 seconds.

Figure 26: Loss - TTLB 320 KiB, 0.01% loss

55

Figure 27: Loss - TTLB 320 KiB, 0.1% loss

Figure 28: Loss - TTLB 320 KiB, 1% loss

56

Table 6: Loss - Average (standard deviation) of TTLB

Loss 0.01% 0.1% 1%
QUIC 0.121s (σ 0.012) 0.126s (σ 0.013) 0.175s (σ 0.030)
QUIC nh 0.121s (σ 0.013) 0.124s (σ 0.015) 0.174s (σ 0.030)
QUIC Reno 0.121s (σ 0.010) 0.131s (σ 0.013) 0.176s (σ 0.027)
QUIC Reno nh 0.124s (σ 0.012) 0.131s (σ 0.011) 0.179s (σ 0.034)
Vanilla 0.178s (σ 0.013) 0.195s (σ 0.027) 0.474s (σ 0.155)

In figure 23, 24 and 25 the TTLB measurements are shown. While vanilla Tor
generally does better in TTFB performance, vanilla Tor’s TTLB falls behind all
QUIC configurations in lossy environments. This could be expected as vanilla
Tor performed worse than QUIC in the baseline scenario. However, this effect is
greater as more loss is added to the environment. The average TTLB for QUIC
in this the scenario with 1% loss is 0.175 seconds. In contrast, vanilla’s average
TTLB is 0.474 seconds, a 171% increase.

In the Containernet baseline scenario, without loss, the average TTLB values
within Containernet were 0.123 seconds and 0.178 seconds for Tor over QUIC and
vanilla Tor respectively, an increase of 45%. Overall, vanilla Tor is significantly
more impacted by loss than Tor over QUIC. For QUIC, the impact of replacing
CUBIC with Reno, and the inclusion of Hystart++, are minimal in this scenario.
This can be partially explained by the lack of latency in this scenario, which
reduces the impact of retransmissions that are not based on timeouts, when the
round trip time reaches zero.

Scenario 4 - Jitter
In the original Hystart algorithm, jitter could cause a premature exit from the
slow start phase. Hystart++ attempts to remedy this by adding a limited slow
start phase (LSS), as described in chapter 2.

On Sprint’s SLA webpage[51], it can be seen that the jitter values are generally
low. In August 2021, the average measured jitter was 0.1614 ms, 0.0011 ms and
0.4398 ms for North America, Europe, and between Europe to North America
respectively.

While the jitter that ISPs measure is relatively low, more jitter will be found in
less stable network environments, such as rural areas or in computers connected
to Wi-Fi. An experiment with realistic jitter values, below 1 ms, did not yield
significantly different results than experiments using no jitter at all. As such,
in this scenario, higher jitter values are used than would be found in a healthy
network. In later scenarios, a more realistic jitter value of 0.1 ms is used.

In this scenario, experiments with 25 ms latency and jitter values of 10 ms and 25
ms are conducted. No loss is imposed on the network. The jitter in Containernet
follows a normal distribution, where the jitter value is the standard deviation of
the distribution.

57

Table 7: Jitter - Average (standard deviation) of TTLB

Jitter 10ms 25ms
QUIC 1.280s (σ 0.012) 1.288s (σ 0.013)
QUIC nh 1.281s (σ 0.014) 1.290s (σ 0.020)
QUIC Reno 1.323s (σ 0.070) 1.708s (σ 0.251)
QUIC Reno nh 1.319s (σ 0.062) 1.909s (σ 0.312)
Vanilla 1.920s (σ 0.093) 1.925s (σ 0.098)

Figure 29: Jitter - TTLB 320 KiB, 25 ms latency, 10 ms jitter

58

Figure 30: Jitter - TTLB 320 KiB, 25 ms latency, 25 ms jitter

In figure 29 and 30 the results can be seen. The main difference with the
experiment with 25 ms latency and no jitter at figure 21, is QUIC with Reno’s
performance. QUIC with Reno performs roughly 3% worse when 10 ms jitter
is added. When 25 ms jitter is added, QUIC with Reno performs 25% worse
with Hystart++ enabled, and even 33% worse when Hystart++ is disabled.
Contrary to this, both QUIC with CUBIC and vanilla Tor are all within 1% of
their measurements with both 10 ms and 25 ms jitter added.

Reno’s poor performance can be explained by how it deals with loss. High
amounts of jitter cause packet reordering, which can be perceived as loss by
congestion control algorithms. CUBIC can quickly return to the congestion
window size at which loss occurred due to its 30% window reduction and concave
growth. Reno will reduce its congestion window by 50% when loss is detected,
and it will only increase its window linearly in congestion avoidance. This keeps
Reno’s congestion window low in high jitter network environments.

Scenario 5 - Realistic network
Next, the network restrictions of the previous scenarios are combined to create a
realistic network environment.

In this scenario, a realistic network environment is simulated to explore Tor’s
performance. As previously substantiated, a latency value of 25 ms is used, 0.01%
loss is added, and the per-link bandwidth is capped at 100 MiB/s. Additionally,
0.1 ms jitter is added, as described in scenario 4.

59

Table 8: Realistic - Average (standard deviation) of TTLB

Realistic network
QUIC 1.289s (σ 0.032)
QUIC nh 1.308s (σ 0.050)
QUIC Reno 1.402s (σ 0.083)
QUIC Reno nh 1.403s (σ 0.085)
Vanilla 1.968s (σ 0.175)

Figure 31: Realistic network - TTLB 320 KiB, 25 ms latency, 0.01% loss, 0.1 ms
jitter

In previous experiments QUIC and QUIC without Hystart++ performed similarly.
As seen in figure 31, in an experiment which combines latency, jitter and loss,
Hystart++ makes more of an impact. Especially in the 20% slowest runs,
QUIC with Hystart++ outperforms QUIC without Hystart++. This can be
attributed to Hystart++’s ability to converge faster to a stable window size, and
Hystart++’s limited slow start phase, as explained in Chapter 2.

As with previous experiments, QUIC vastly outperforms vanilla Tor in this
single-circuit setup.

Scenario 6 - Fairness
To measure the fairness between multiple circuits, multiple clients will download
through the Tor network simultaneously. Each circuit’s path is preconfigured,

60

such that channels do not overlap at random. Instead, all circuits will share
exactly one channel between the second hop and the exit node.

To calculate the fairness of throughput, Jain’s fairness index is used[30]. Jain’s
index is commonly used to compute fairness in networks. The index works for
any number of connections, is independent of scale, and, unlike min-max fairness,
Jain’s fairness index is continuous. It is defined as such:

F = (
∑n

i=1 xi)2

n ·
∑n

i=1 xi
2

In this formula, n is the number of connections, xi is the throughput of connection
i, and F is the fairness, which is between 1

n and 1.

For this experiment, two separate clients will download 5000 KiB through Bwtool
simultaneously. The environment is identical to the one used in the realistic
network scenario. The two circuits will have the same middle node and exit
node, but distinct clients and entry nodes. This means that exactly one channel
is shared between both circuits. Five runs are done for both QUIC with CUBIC
and vanilla Tor.

Figure 32: Fairness - 2 simultaneous clients, TTLB 5000 KiB, 25 ms latency,
0.01% loss, 0.1 ms jitter

61

Table 9: Fairness - Average (standard deviation) of bandwidth and
Jain’s fairness.

Bandwidth (KB/s) Jain’s fairness
QUIC 512 (σ 6.64) 0.99996 (σ 2.75e-5)
Vanilla 341 (σ 20.6) 0.998 (σ 3.04e-3)

In figure 32, performance of each individual client can be seen. In table 9, the
average bandwidth and the average values of Jain’s fairness index are shown.
In this experiment, QUIC features both a higher throughput and near perfect
fairness between clients in each of the runs. This satisfies the initial goal, which
aims for the QUIC implementation to not concede fairness to vanilla Tor.

Scenario 7 - Load
For the last scenario, the performance of Tor over QUIC is evaluated in a larger
scale network. This scenario includes 16 relay nodes, 16 client nodes and 3
directory authorities. 15 client nodes will download 5000 KiB repeatedly to
add load to the network. The last client is used to download 320 KiB, which is
measured. In this scenario, vanilla Tor and Tor over QUIC are evaluated, along
with each combination of Reno and Hystart++. The same network restriction
as in scenario 5, are used, such that this scenario may resemble real world
performance.

Figure 33: Load - 15 continuous downloaders, TTFB 320 KiB, 25 ms latency,
0.01% loss, 0.1 ms jitter

62

Figure 34: Load - 15 continuous downloaders, TTLB 320 KiB, 25 ms latency,
0.01% loss, 0.1 ms jitter

Table 10: Load - Average (standard deviation) of TTLB

Load
QUIC 1.384s (σ 0.054)
QUIC nh 1.409s (σ 0.129)
QUIC Reno 1.868s (σ 0.606)
QUIC Reno nh 1.601s (σ 0.237)
Vanilla 2.076s (σ 0.122)

As shown in figure 33, on average, all QUIC variants outperform vanilla Tor
in TTFB performance. Additionally, QUIC with CUBIC and Hystart++ out-
performs all other QUIC variants, especially in the 10% slowest measurements.
Vanilla Tor’s 99th percentile performance is on par with all QUIC variants but
QUIC with CUBIC and Hystart++. This inspires confidence in the performance
characteristics of combining QUIC with CUBIC and Hystart++. Contrary to
this, QUIC with Reno performs significantly worse when Hystart++ is enabled
than when it is not. This effect is apparent in figure 34 as well, which shows
TTLB performance. Where QUIC with CUBIC benefits from Hystart++, es-
pecially in its slower runs, QUIC with Reno performs significantly worse when
Hystart++ is enabled.

Generally, in this scenario, QUIC with CUBIC is superior to QUIC with Reno.
QUIC with CUBIC and Hystart++ performs better than any other QUIC variant.

63

Additionally, all QUIC variants generally outperform vanilla Tor.

On average, QUIC with CUBIC and Hystart++ features 50% better download
performance than vanilla Tor within this loaded test network.

64

6. Conclusion

In this thesis, the integration of QUIC version 1 within Tor has been designed
and implemented. Containernet, a flexible, Docker-based, network test bed has
been used to test this implementation in various network environments.

By mapping Tor circuits to QUIC streams, our implementation eliminates the
head-of-line blocking problem that is present in vanilla Tor. This lets users
achieve higher bandwidth within the Tor network when loss occurs.

Our implementation is designed with deployability in mind. This is reflected
in the choice of QUIC library, Quiche, which implements version 1 of the
QUIC protocol. QUIC is more fit for production use than previously proposed
alternative transport protocols because it is built on top of UDP, and because
of its exhaustive encryption which prevents ossification. Additionally, because
QUIC implemented as a user space protocol, it can be bundled with Tor without
requiring kernel modifications.

Due to the hop-by-hop nature of the implementation, replacing TCP with QUIC
has a limited impact on the security and anonymity of the Tor network, though
more research is to be done on this topic.

Our implementation is evaluated through Containernet, a flexible Docker-based
network test bed. Containernet allows the implementation to be evaluated in
a wide range of network environments. Additionally, because both the source
code of the Tor modifications and the test bed are open source, the results of
this thesis are easily reproduced, such that future work can build on our work.

It is shown that QUIC over Tor performs best when used with CUBIC and
Hystart++ enabled, rather than when using the Reno congestion control algo-
rithm. Additionally, QUIC over Tor, when used with CUBIC and Hystart++,
outperforms vanilla Tor in all evaluated environments. QUIC over Tor has a
larger advantage over Tor when more latency and loss is added. However, in a
scenario with realistic network conditions and high load on the Tor network, Tor
over QUIC still shows a 50% performance improvement over vanilla Tor. Besides
providing an overall higher bandwidth to its users, Tor over QUIC distributes
its bandwidth more fairly amongst its users, reaching a near perfect score on
Jain’s fairness index.

Even though the QUIC protocol and Quiche are production ready, the code as
delivered with this thesis needs more work before it can be included with Tor.

In its current state, Quiche does not expose the certificates that are used for

65

its handshake. Meanwhile, the Tor link handshake as it is implemented in TLS
channel uses the certificates of its TLS connection to establish authentication
on top of TLS. As such, the current QUIC implementation simply sends its
“authenticated” identity over the wire. This is not secure, and the Tor link
handshake implementation needs more work to be made secure again. Since this
thesis focuses on performance, rather than security and its attack vectors, future
work could fix this.

Within this study, QUIC has been shown to perform well within network with up
to 15 Tor relays. To get a better sense of the performance of Tor in production,
a larger scale experiment needs to be performed. It would be ideal if the Shadow
simulator were to be adapted as to support the UDP based QUIC protocol.
Since Shadow has a focus on relatively large experiments on Tor, this would be
a good fit for exploring Tor over QUIC’s properties in such an environment.

Right now, the KIST scheduler cannot be used within Tor over QUIC as-is. This
is because KIST uses kernel information about used TCP sockets to make an
informed decision about optimal scheduling. QUIC uses UDP such that KIST’s
fallback, KISTLite, is used for scheduling when QUIC is enabled.

Additionally, the interface of the scheduler does not account for the possibility of
scheduling based on differences of individual streams. QUIC multiplexes different
circuits over the same QUIC connection, and QUIC allows for stream-specific
congestion and flow control. It can be beneficial for the scheduler to access the
capacity that QUIC allows each stream to send. Through this, QUIC streams
that are limited by flow or congestion control would not receive cells from the
scheduler. On the other hand, QUIC streams that have more available capacity
could receive more cells from the scheduler.

Since this thesis is mainly focused on performance, more work can be done
to explore the security considerations of using Tor over QUIC. The traffic
characteristics of QUIC are different from the characteristics of TCP + TLS.
Research can be done to investigate whether this allows for fingerprinting.

Additionally, because QUIC’s multiplexing is more efficient, it’s possible that
end-to-end traffic looks less similar than in vanilla Tor. Research can be done to
see whether it’s possible to create a covert channel based on delayed cells on one
end, and then perceiving this delay on the other end of the circuit.

Even though QUIC’s hop-by-hop congestion control is shown to be efficient, Tor’s
basic end-to-end flow control window can still lead to performance deficiency. It
is possible to signal congestion up the circuit through backpressure, such that
the sender can limit its sending rate. QUIC is ideal for this scenario, as it comes
with per-stream rate limiting out of the box. Right now, backpressure is not
utilized, and it is still possible for relays to become congested, adding latency
for all circuits that pass through. Backpressure based flow control can help this
problem.

QUIC is now implemented at the channel level, rather than at the connection
level. This makes it easier to switch between these two implementations, as
both follow the same channel interface. The TLS channel and QUIC channel
classes can be made to coexist without too much difficulty. However, ideally
a connection will eventually default to QUIC, and fallback to TLS if QUIC is

66

not supported. This fallback mechanism needs to be implemented. When this
is done, QUIC could be rolled out to Tor gradually. As such, when two relays
connect, they can already provide the benefits that QUIC has to offer without
requiring QUIC support from the other relays on the circuit.

Overall, QUIC’s performance within Tor is very promising, and few hurdles
remain for QUIC to be integrated into Tor.

67

References

[1] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” Naval Research Lab Washington DC, 2004.

[2] A. Forte, N. Andalibi, and R. Greenstadt, “Privacy, anonymity, and
perceived risk in open collaboration: A study of tor users and wikipedi-
ans,” in Proceedings of the 2017 ACM conference on computer supported
cooperative work and social computing, 2017, pp. 1800–1811.

[3] “Tor metrics.” https://metrics.torproject.org/.

[4] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed and
Secure Transport.” RFC 9000; RFC Editor, May-2021.

[5] F. Tschorsch and B. Scheuermann, “Mind the gap: Towards a
backpressure-based transport protocol for the tor network,” in 13th
USENIX symposium on networked systems design and implementation
(NSDI 16), 2016, pp. 597–610.

[6] C. Viecco, “UDP-OR: A fair onion transport design,” HotPETS, 2008.

[7] J. Reardon and I. Goldberg, “Improving tor using a TCP-over-DTLS
tunnel,” in Proceedings of the 18th conference on USENIX security sym-
posium, 2009, pp. 119–134.

[8] M. F. Nowlan, D. I. Wolinsky, and B. Ford, “Reducing latency in tor
circuits with unordered delivery,” in 3rd USENIX workshop on free and
open communications on the internet (FOCI 13), 2013.

[9] A. Clark, “QUUX: a QUIC un-multiplexing of the Tor relay transport,”
Master’s thesis, University College London, United Kingdom, 2016.

[10] W. Sabée, “Adding QUIC support to the Tor network,” Master’s thesis,
TU Delft, The Netherlands, 2003.

[11] M. Peuster, H. Karl, and S. van Rossem, “MeDICINE: Rapid prototyping
of production-ready network services in multi-PoP environments,” in 2016
IEEE conference on network function virtualization and software defined
networks (NFV-SDN), 2016, pp. 148–153.

68

https://metrics.torproject.org/

[12] V. Tyagi, S. Pandey, and T. Kumar, “A survey of TCP congestion
control algorithm in wireless network: BIC and CUBIC,” in International
conference on technological and management advances in the new age
economy: An industry perspective, 2014.

[13] J. Choi, “CUBIC and HyStart++ support in quiche,” May-2020. [Online].
Available: https://blog.cloudflare.com/cubic-and-hystart-support-in-
quiche/.

[14] P. Balasubramanian, Y. Huang, and M. Olson, “HyStart++: Modified
Slow Start for TCP,” Internet Engineering Task Force; Internet Engi-
neering Task Force, Internet-Draft draft-ietf-tcpm-hystartplusplus-03, Jul.
2021.

[15] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.3.”
RFC 8446; RFC Editor, Aug-2018.

[16] B. Hesmans, F. Duchene, C. Paasch, G. Detal, and O. Bonaventure, “Are
TCP extensions middlebox-proof?” in Proceedings of the 2013 workshop
on hot topics in middleboxes and network function virtualization, 2013,
pp. 37–42.

[17] N. Sullivan, “Why TLS 1.3 isn’t in browsers yet,” The Cloudflare Blog,
Aug-2018. [Online]. Available: https://blog.cloudflare.com/why-tls-1-3-
isnt-in-browsers-yet/.

[18] J. Corbet, “QUIC as a solution to protocol ossification,” [LWN.net],
Jan-2018. [Online]. Available: https://lwn.net/Articles/745590/.

[19] J. Roskind, “QUIC - MULTIPLEXED STREAM TRANSPORT OVER
UDP,” 2012. [Online]. Available: https://docs.google.com/document/d/1
RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/edit.

[20] “Experimenting with QUIC,” Chromium Blog, Jun-2013. [Online]. Avail-
able: https://blog.chromium.org/2013/06/experimenting-with-quic.html.

[21] J. Iyengar and I. Swett, “QUIC Loss Detection and Congestion Control.”
RFC 9002; RFC Editor, May-2021.

[22] S. Floyd, J. Mahdavi, M. Mathis, and Dr. A. Romanow, “TCP Selective
Acknowledgment Options.” RFC 2018; RFC Editor, Oct-1996.

[23] I. Poese, S. Uhlig, M. A. Kaafar, B. Donnet, and B. Gueye, “IP geolocation
databases: unreliable?” SIGCOMM Comput. Commun. Rev., vol. 41,
no. 2, pp. 53–56, Apr. 2011.

[24] “Tor’s source code,” tor. [Online]. Available: https://gitweb.torproject.or
g/tor.git/.

[25] “Tor’s protocol specifications,” tor. [Online]. Available: https://gitweb.t
orproject.org/torspec.git/.

69

https://blog.cloudflare.com/cubic-and-hystart-support-in-quiche/
https://blog.cloudflare.com/cubic-and-hystart-support-in-quiche/
https://blog.cloudflare.com/why-tls-1-3-isnt-in-browsers-yet/
https://blog.cloudflare.com/why-tls-1-3-isnt-in-browsers-yet/
https://lwn.net/Articles/745590/
https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/edit
https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/edit
https://blog.chromium.org/2013/06/experimenting-with-quic.html
https://gitweb.torproject.org/tor.git/
https://gitweb.torproject.org/tor.git/
https://gitweb.torproject.org/torspec.git/
https://gitweb.torproject.org/torspec.git/

[26] R. Dingledine and S. J. Murdoch, “Performance improvements on tor
or, why tor is slow and what we’re going to do about it,” 2009. [Online].
Available: https://svn-archive.torproject.org/svn/projects/roadmaps/2
009-03-11-performance.pdf.

[27] R. Jansen, M. Traudt, J. Geddes, C. Wacek, M. Sherr, and P. Syverson,
“KIST: Kernel-informed socket transport for tor,” ACM Trans. Priv.
Secur., vol. 22, no. 1, Dec. 2018.

[28] M. AlSabah, K. Bauer, I. Goldberg, D. Grunwald, D. McCoy, S. Savage,
and G. M. Voelker, “DefenestraTor: Throwing out windows in tor,” in
Privacy enhancing technologies, 2011, pp. 134–154.

[29] “Chrome’s QUIC implementation.” [Online]. Available: https://chromi
um.googlesource.com/chromium/src/net/+/refs/heads/main/quic.

[30] R. K. Jain, D.-M. W. Chiu, W. R. Hawe, and others, “A quantitative
measure of fairness and discrimination,” Eastern Research Laboratory,
Digital Equipment Corporation, Hudson, MA, 1984.

[31] Jaapp-, “Jaapp-/tor: Tor over QUIC,” GitHub. [Online]. Available:
https://github.com/Jaapp-/tor.

[32] J. Rüth, I. Poese, C. Dietzel, and O. Hohlfeld, “A first look at QUIC in
the wild,” in Passive and active measurement, 2018, pp. 255–268.

[33] K. Hogan, “Security analysis of Tor over QUIC,” Master’s thesis, MIT,
2020.

[34] “QUICHE,” Google Git. [Online]. Available: https://quiche.googlesource.
com/quiche.

[35] Facebookincubator, “Facebookincubator/mvfst: An implementation of
the QUIC transport protocol.” GitHub. [Online]. Available: https:
//github.com/facebookincubator/mvfst.

[36] ngtcp2, “ngtcp2/ngtcp2: ngtcp2 project is an effort to implement IETF
QUIC protocol,” GitHub. [Online]. Available: https://github.com/ngtcp
2/ngtcp2.

[37] Quinn-Rs, “Quinn-rs/quinn: Futures-based QUIC implementation in
rust,” GitHub. [Online]. Available: https://github.com/quinn-rs/quinn.

[38] Mozilla, “Mozilla/neqo,” GitHub. [Online]. Available: https://github.c
om/mozilla/neqo.

[39] Cloudflare, “Cloudflare/quiche: Savoury implementation of the QUIC
transport protocol and HTTP/3,” GitHub. [Online]. Available: https:
//github.com/cloudflare/quiche.

[40] Inc. OpenSSL Foundation, “OpenSSL.” [Online]. Available: https:
//www.openssl.org/.

70

https://svn-archive.torproject.org/svn/projects/roadmaps/2009-03-11-performance.pdf
https://svn-archive.torproject.org/svn/projects/roadmaps/2009-03-11-performance.pdf
https://chromium.googlesource.com/chromium/src/net/+/refs/heads/main/quic
https://chromium.googlesource.com/chromium/src/net/+/refs/heads/main/quic
https://github.com/Jaapp-/tor
https://quiche.googlesource.com/quiche
https://quiche.googlesource.com/quiche
https://github.com/facebookincubator/mvfst
https://github.com/facebookincubator/mvfst
https://github.com/ngtcp2/ngtcp2
https://github.com/ngtcp2/ngtcp2
https://github.com/quinn-rs/quinn
https://github.com/mozilla/neqo
https://github.com/mozilla/neqo
https://github.com/cloudflare/quiche
https://github.com/cloudflare/quiche
https://www.openssl.org/
https://www.openssl.org/

[41] “BoringSSL.” [Online]. Available: https://boringssl.googlesource.com/bor
ingssl/.

[42] R. Jansen and N. Hopper, “Shadow: Running tor in a box for accurate
and efficient experimentation,” in Proceedings of the 19th symposium on
network and distributed system security (NDSS), 2012.

[43] Torproject, “Torproject/chutney: Unofficial git repo – report
bugs/issues/pull requests on https://gitlab.torproject.org/ –,” GitHub.
[Online]. Available: https://github.com/torproject/chutney.

[44] M. P. Contributors, Mininet. [Online]. Available: http://mininet.org/.

[45] Jaapp-, “Jaapp-/tor-containernet,” GitHub. [Online]. Available: https:
//github.com/Jaapp-/tor-containernet.

[46] “Methodically modeling the tor network,” in 5th workshop on cyber security
experimentation and test (CSET 12), 2012.

[47] arma, “Bittorrent over tor isn’t a good idea,” Tor Blog, Apr-2010. [Online].
Available: https://blog.torproject.org/bittorrent-over-tor-isnt-good-idea.

[48] “Advanced usage,” Advanced Usage - Requests 2.26.0 documentation. [On-
line]. Available: https://docs.python-requests.org/en/master/user/adva
nced/.

[49] “Http.client - HTTP protocol client,” http.client - HTTP protocol client -
Python 3.9.6 documentation. [Online]. Available: https://docs.python.or
g/3/library/http.client.html.

[50] “Performance | tor metrics,” Tor Metrics. [Online]. Available: https:
//metrics.torproject.org/onionperf-latencies.html.

[51] IP/MPLS Products from Sprint. [Online]. Available: https://www.sprint
.net/tools/sla-performance/sl.

71

https://boringssl.googlesource.com/boringssl/
https://boringssl.googlesource.com/boringssl/
https://github.com/torproject/chutney
http://mininet.org/
https://github.com/Jaapp-/tor-containernet
https://github.com/Jaapp-/tor-containernet
https://blog.torproject.org/bittorrent-over-tor-isnt-good-idea
https://docs.python-requests.org/en/master/user/advanced/
https://docs.python-requests.org/en/master/user/advanced/
https://docs.python.org/3/library/http.client.html
https://docs.python.org/3/library/http.client.html
https://metrics.torproject.org/onionperf-latencies.html
https://metrics.torproject.org/onionperf-latencies.html
https://www.sprint.net/tools/sla-performance/sl
https://www.sprint.net/tools/sla-performance/sl

	1. Introduction
	2. Background
	2.1 Transport layer
	User Datagram Protocol (UDP)
	Transmission Control Protocol (TCP)
	Congestion control algorithms
	Multiplexing
	TLS
	QUIC
	Congestion and flow control

	2.2 Tor
	Circuits
	Streams
	Cells
	Channels
	Performance model

	3. Related work
	Multiplexing
	End-to-end Congestion control
	Hop-by-hop vs End-to-end
	Hop-by-hop
	End-to-end

	UDP Tor (Viecco)
	DTLS (Reardon)
	uTor
	DefenestraTor
	QUUX
	Adding QUIC support to the Tor network
	Mind the Gap
	KIST

	4. Design and Setup
	4.1 Design
	Goals
	Adding QUIC to Tor

	4.2 Implementation
	Background

	4.3 Simulation
	Shadow
	Chutney
	Mininet
	Containernet

	5. Performance evaluation
	Measuring bandwidth
	Containernet
	Scenario 1 - Containernet Baseline
	Scenario 2 - Latency
	Scenario 3 - Loss
	Scenario 4 - Jitter
	Scenario 5 - Realistic network
	Scenario 6 - Fairness
	Scenario 7 - Load

	6. Conclusion
	References

