Linear and Efficient Power Amplifier for WiFi

Anil Kumar Kumaran

Linear and Efficient Power Amplifier for WiFi

Thesis

to obtain the degree of Master at Delft University of Technology, publicly defended on Tuesday, August 25, 2020 at 2:00 PM

by

Anil Kumar Kumaran

Master committee composition:

Prof. dr. L.C.N. de Vreede Dr. S.M. Alavi

Dr. Fan Ir. M. D'Avino

Professor, Academic Supervisor, Chair	TU Delft
Assistant Professor,	TU Delft
Academic Supervisor, Committee	
Assistant Professor, Committee	TU Delft
Industrial Supervisor, Committee	SiTime

Copyright © 2020 by A.K. Kumaran

An electronic version of this dissertation is available at http://repository.tudelft.nl/.

To my lovely parents, Kumaran and Sasikala To my handsome brother, Arun and his wife Deepa And last, but not least, to our beautiful angel Nitara.

Acknowledgements

After toiling for exactly one year, it is my delight to express my gratitude to everyone who has facilitated this wonderful journey.

First and foremost, I would like to express my deepest gratitude to my academic supervisor Dr. Morteza S. Alavi. I respect him for showing me the scope of highquality research from the very beginning. His ability at improving the readability of technical reports is amazing and I wish I have learned more from him. Moreover, I wasn't just able to improve my technical expertise but also presentation skills during this time. Next, I would like to thank my industrial supervisor, Ir. Marco D'avino for mentoring me during this period. He was always available for clearing my technical and non-technical queries. I extend my profound thanks to my master committee members, Prof. dr. L.C.N. de Vreede and Dr. Fan.

Further, I am also grateful to Kave Kianush, Ir. Koen van Hartingsveldt and Ir. Krass Maklev for providing me an opportunity to collaborate with *Catena Microelectronics B.V.* for my thesis and financially supporting me during this time. I would also like to extend my profound thanks to Jaimy de Koning, Ivaylo Bakalski, Atze van der Goot, Marcel van de Wiel, and Vinothkannan Ilamurugan for clearing my doubts in layout, teaching shortcuts, setting up cadence environment as well as sending files when work from home started. I would like to thank my other colleagues in the company who made my stay there more pleasant, especially Cynthia Thepass for helping me with all the administration works.

Due to unforeseen circumstances, my tapeout planned with *Catena Microelectronics B.V.* was canceled. But, my academic supervisor Dr. Morteza S. Alavi provided an opportunity to have tapeout with TU Delft. I am extremely thankful for getting this chance and this tapeout couldn't have been possible without the help and support of certain experts. I am grateful to Atef Akhnoukh for helping me during this tapeout and Antoon Frehe for providing amazing support on server related problems. Further, I want to wholeheartedly thank Ir. Masoud Pashaeifar, a Ph.D. researcher at TU Delft for having numerous zoom calls to help me set up the environment for PEX and LVS, clear technical queries and providing study materials during the period of the thesis. I would like to thank Ph.D. researcher Ir. M.R.Beikmirza for sharing the decoupling capacitors. I want to convey my deepest gratitude to other master students especially Jun Feng for helping me with LVS and fixing density issues in the chip and also Madhumitha Jayavel for all the fun we had during tea breaks before the Corona outbreak. I would like to thank Pragati Kidambi Murali and Ashwita Nair for proofreading my thesis and giving valuable comments.

The master thesis time is a stressful period and I couldn't overcome this without the encouragement and support from my friends especially Kanya, Ashwita, Sreedhar, Pragati, and Kriti. Finally, I would like to thank my parents, brother, sister, and niece Nitara for providing me with constant support and encouragement all the time.

Anil Kumar Kumaran Delft, August 25th 2020

Contents

Ac	ckno	wledgements	v
St	ımm	ary	xi
1	Intr	oduction	1
	1.1	Types of power amplifiers	2
		1.1.1 Transistor operated as a dependent current source	2
		1.1.2 Transistor operated as a switch	3
		1.1.3 Transistor operated in overdriven mode	4
		1.1.4 Mixed mode power amplifier	5
	1.2	Project specification for WiFi 802.11n (LBPA 11n)	6
	1.3	Problem statement	6
	1.4	Class F.	6
	1.5	Power amplifier architecture	8
	1.6	Division of thesis report	9
	Refe	erences	9
_			
2	Con	itinuous Class F	11
	2.1	Continuous Class F	11
		2.1.1 Drain efficiency of Continuous Class F	12
	2.2	Extended Continuous Class F	15
		2.2.1 Drain efficiency of Extended Continuous Class F	15
		2.2.2 Extended Continuous Class-F with second harmonic	
		impedance on the edge of the smith chart $(\beta = \frac{\alpha}{2})$	16
		2.2.3 Extended Continuous Class-F with second harmonic	
		impedance inside the smith chart $(\beta > \frac{\alpha}{2})$	18
	0.2	Conclusion	01
	2.5 Dofe		21
	Kele	fiences	21
3	Des	ign of output network	23
	3.1	Impedance calculation	23
	3.2	Output network requirements	24
	3.3	Design A (Balun, second harmonic trap and output capaci-	
		tance)	26
	3.4	Design B (Balun and output capacitance)	29
	3.5	Design C (Balun, RF choke, second harmonic trap and output	
		capacitance)	31
	3.6	Design D (Balun, RF choke and output capacitance)	33

	3.7 3.8 Refe	Comparison of output networks $3.7.1$ Impedance at first harmonic (ω_0) $3.7.2$ Impedance at second harmonic $(2\omega_0)$ $3.7.3$ Impedance at third harmonic $(3\omega_0)$ $3.7.4$ Impedance at low frequency $(0-100 \text{ MHz})$ $3.7.4$ Impedance at low frequency $(0-100 \text{ MHz})$ $3.7.4$ Impedance at low frequency $(0-100 \text{ MHz})$	35 35 36 36 37 38 38
4	Des 4.1 4.2 4.3 4.4	ign of output stage Stacked transistor	39 42 43 45 46 48
	4.5 Refe	output 1 dB compression point	48 50 50
5	Des 5.1 5.2 5.3 Refe	ign of driverDriver specification.Driver designConclusioncrences.	53 53 54 57 58
6	Des	ign of inter-stage matching	59
	6.1	 Types of inter-stage matching	59 62 63 64
	6.2	Double tuned transformer vs Normal transformer	65
	6.3	Conclusion	67 67
7	Ent	ire PA (Driver, inter-stage, output stage & output network)	69
	7.1 7.2	PA performance based on schematics	69 70 71 72 72
	7.3	7.2.4 Performance comparison	73 74

8	Lay	out	75
	8.1	Conversion to TSMC 40 nm	75
	8.2	Layout	77
		8.2.1 Driver	77
		8.2.2 Inter-stage matching	78
		8.2.3 Output stage	79
		8.2.4 Output network	80
	8.3	Comparison between TSMC 22 nm ULL and TSMC 40 nm	82
	8.4	Conclusion	85
9	Pos	t layout simulation results	87
	9.1	Peak power and output 1 dB compression point	89
	9.2	PA efficiency.	89
	9.3	Voltage gain	90
	9.4	Drain efficiency	91
	9.5	QAM results	92
	9.6	Two-tone test	94
	9.7	Performance comparison with State-of-the-Art	94
	Refe	rences	95
10	Con	clusion	97
	10.1	Future work	97
	Cale		
A	Cal	culation of drain source capacitance (L_{DS}) of the top tran-	00
A		culation of drain source capacitance (L_{DS}) of the top tran- or	99
A	A.1	C_{DS} of thick oxide device in the output stage	99 99 100
A	A.1 A.2	C_{DS} of thick oxide device in the output stage	99 99 100
A B	A.1 A.2 Bias	C_{DS} of thick oxide device in the output stage	99 99 100 101
A B C	A.1 A.2 Bias	Constraint source capacitance (L_{DS}) of the top tran- or C_{DS} of thick oxide device in the output stage C_{DS} of thick oxide device in the driver sing for the driver and output stage ematics results II	9999100101103
A B C	sist A.1 A.2 Bias Sch C.1	Construction of drain source capacitance (L_{DS}) of the top tran- or C_{DS} of thick oxide device in the output stage C_{DS} of thick oxide device in the driver sing for the driver and output stage ematics results II Efficiency versus R_{DNW}	 99 100 101 103
A B C	sist A.1 A.2 Bias Sch C.1 C.2	culation of drain source capacitance (L_{DS}) of the top tran- or C_{DS} of thick oxide device in the output stage. C_{DS} of thick oxide device in the driver.sing for the driver and output stageematics results IIEfficiency versus R_{DNW} Voltage and current waveforms at the drain of the top transis-	 99 99 100 101 103
A B C	sist A.1 A.2 Bias Sch C.1 C.2	culation of drain source capacitance (L_{DS}) of the top tran- or C_{DS} of thick oxide device in the output stage. C_{DS} of thick oxide device in the driversing for the driver and output stageematics results IIEfficiency versus R_{DNW} Voltage and current waveforms at the drain of the top transis- tor (M_2)	 99 99 100 101 103 104
A B C D	sist A.1 A.2 Bias Sch C.1 C.2 Post	culation of drain source capacitance (L_{DS}) of the top tran- or C_{DS} of thick oxide device in the output stage. C_{DS} of thick oxide device in the driver.sing for the driver and output stageematics results IIEfficiency versus R_{DNW} Voltage and current waveforms at the drain of the top transis- tor (M_2)t layout simulation results II	 99 99 100 101 103 103 104 105
A B C D	Sch C.1 C.2 Pos D.1	culation of drain source capacitance (L_{DS}) of the top tran- or C_{DS} of thick oxide device in the output stage. C_{DS} of thick oxide device in the driver.sing for the driver and output stageematics results IIEfficiency versus R_{DNW} Voltage and current waveforms at the drain of the top transis- tor (M_2)t layout simulation results IIQAM results	 99 99 100 101 103 103 104 105 105
A B C D	sist A.1 A.2 Bias Sch C.1 C.2 Pos D.1	culation of drain source capacitance (L_{DS}) of the top tran- or C_{DS} of thick oxide device in the output stage	 99 99 100 101 103 103 104 105 105 105
A B C D	sist A.1 A.2 Bias Sch C.1 C.2 Pos D.1	culation of drain source capacitance (L_{DS}) of the top tran- or C_{DS} of thick oxide device in the output stage	 99 99 100 101 103 103 104 105 105 105 107
A B C D	sist A.1 A.2 Bias Sch C.1 C.2 Post D.1	culation of drain source capacitance (L_{DS}) of the top tran- or C_{DS} of thick oxide device in the output stage	 99 99 100 101 103 103 104 105 105 107 109
A B C D	sist A.1 A.2 Bias Sch C.1 C.2 Pos D.1	culation of drain source capacitance (L_{DS}) of the top tran- or C_{DS} of thick oxide device in the output stage	 99 99 100 101 103 103 104 105 105 105 107 109 111
A B C D	sist A.1 A.2 Bias Sch C.1 C.2 Pos D.1	culation of drain source capacitance (L_{DS}) of the top tran- or C_{DS} of thick oxide device in the output stage	 99 99 100 101 103 103 104 105 105 105 107 109 111 112
A B C D	sist A.1 A.2 Bias Sch C.1 C.2 Pos D.1 D.2 D.3	culation of drain source capacitance (L_{DS}) of the top tran- or C_{DS} of thick oxide device in the output stage	 99 99 100 101 103 103 104 105 105 105 107 109 111 112 112 112
A B C D	sist A.1 A.2 Bias Sch C.1 C.2 Pos D.1 D.2 D.3	culation of drain source capacitance (C_{DS}) of the top tran- or C_{DS} of thick oxide device in the output stage.sing for the driver and output stageematics results IIEfficiency versus R_{DNW} Voltage and current waveforms at the drain of the top transis- tor (M_2)t layout simulation results IIQAM resultsD.1.1 Frequency = 2.4 GHzD.1.2 Frequency = 2.1 GHzD.1.3 Frequency = 2.7 GHzSingle-tone testTwo-tone testD.3.1 Harmonic balance simulationD.3.2 Transient simulation	 99 99 100 101 103 103 104 105 105 107 109 111 112 112 112 113
A B C D	sist A.1 A.2 Bias Sch C.1 C.2 Pos D.1 D.2 D.3 D.4	culation of drain source capacitance (C_{DS}) of the top tran- or C_{DS} of thick oxide device in the output stage	 99 99 100 101 103 103 104 105 105 107 109 111 112 112 113 113

List of Figures	117
List of Tables	121
Abbreviations & Acronyms	123
Nomenclature	124

Summary

CMOS technology is one of the feasible solutions to meet the world's growing demand for high data rates because it offers the prospect of SoC at a low cost. But, the PA forms the major bottleneck in making SoC because the PAs in high data rate wireless communication systems have the requirement of high-efficiency and good linearity even at backed-off power levels. Currently, PAs are mostly of classes A and B. Both of these are linear, but their peak efficiencies are only *50%* and *78%* respectively.

This thesis focuses on implementing Continuous Class F (CCF) PA for **WiFi 802.11n** over the bandwidth 2.1 - 2.7 GHz, which meets the requirement of highefficiency and good linearity even at backed-off power levels. The CCF PA overcomes Class F's disadvantage of limited bandwidth as well as maintains peak efficiency of 90.7%¹ over the entire bandwidth. The designed PA has four main blocks: the driver, inter-stage matching, output network, and output stage. The procedure to implement each of these blocks is explained extensively in chapters 3, 4, 5, and 6. The layout of the chip is carried out in TSMC 40 nm, and the chip size is 1.4 mm². From post layout simulations, the CCF PA has a maximum efficiency of 30% and EVM of -25 dB at 3 dB back-off across the bandwidth 2.1 - 2.7 GHz. The tapeout of the chip is planned in March 2021. Later, the chip can be tested, and simulation results shall be validated. To the best knowledge of the author, this is the first CCF chip at 2.4 GHz band.

¹when *3* harmonics in voltage are considered

1

Introduction

In today's scenario, there is a growing demand for high-speed transmissions at low cost in the area of Wireless Local Area Networks (WLANS) and home audiovisual networks. So, wireless communication systems like Wireless Fidelity (WiFi) are undergoing a brisk growth to fulfill this requirement. Every wireless communication system consists of a radio frequency (RF) transmitter and receiver. An RF transmitter comprises functional blocks such as digital to analog converter (DAC), an up-conversion mixer, an oscillator, a power amplifier (PA), and a bandpass filter (BPF) (refer Figure 1.1). Among all these blocks, the PA is the most vital and crucial module because its performance considerably influences the overall performance of the RF transmitter. Moreover, PA is the most power-hungry component, as well as the linearity limiting block in the RF transmitter. The basic functional requirement of PAs is to amplify the input signal to the required output power so that the signal propagates the desired distance to reach the receiver.

Figure 1.1: Basic block diagram of radio frequency (RF) transmitter [1]

The advancements in complementary metal–oxide semiconductor (CMOS) technology has helped wireless communication systems significantly to achieve high data rates at low cost. CMOS technology is advantageous compared to other technologies like gallium arsenide (GaAs) and gallium nitride (GaN), because it operates at a lower power supply, thus reducing power dissipation in the circuit and also lower fabrication cost. Moreover, CMOS also offers the prospect of integrating RF/digital/analog functions on a single chip at a lower cost. Thus, leading to a highly integrated system on chip (SoC) which is of high demand these days.

However, CMOS PAs are a major roadblock in these efforts to create highly integrated SoC, due to both the low breakdown voltage of the transistor and lossy substrate. The PAs developed especially for high data rate wireless communication systems are required to have high efficiency and good linearity even at the backed-off power levels to efficiently amplify a multiplexing signal with a high peak-to-average power ratio.

Besides the roadblocks, the CMOS PA is a promising candidate for contemporary wireless devices to satisfy these demands and enable it to create highly integrated SoC. So at present, the research is focused on making the CMOS PA operate at lower power while generating a relatively high output power with high efficiency and good linearity even at backed-off power [1] [2].

Therefore, this thesis is focused on designing a CMOS PA for a specific application **WiFi 802.11n (LBPA_11n)** using TSMC 22 nm ULL¹. Firstly, in this chapter, an overview of existing classes of PAs and their advantages and disadvantages are discussed briefly. Further, this chapter summarizes the project specifications for the **WiFi 802.11n** application and consequently the problem statement. This is followed by the section which discusses PA architecture in detail. Finally, the chapter elucidates the division of the thesis report.

1.1. Types of power amplifiers

PAs can be classified into 3 types based on the operation of the transistor. The fourth category, mixed mode PAs are a combination of 2 classes of PAs.

- Transistor operated as a dependent current source;
- Transistor operated as a switch;
- Transistor operated in over-driven mode (partially as a dependent source and partially as a switch);
- Mixed mode PAs. [3].

1.1.1. Transistor operated as a dependent current source

In Class A, B, AB, and C, the transistor is operated as a dependent current source. This type of operation is suitable for linear PAs. The difference between these classes lies in the biasing point and conduction angle. This is shown in Table 1.1.

1

¹Since the tapeout in **TSMC 22 nm ULL** was canceled by *CATENA MICROELECTRONICS B.V.*, the design was ported to **TSMC 40 nm**, so that tapeout could happen through TU Delft in *March 2021*

	Class A Class A		Class B	Class C
Conduction angle	360°	180° – 360°	180°	<180°
Drain efficiency (η_D)	<50%	<78%	<78%	<100%
Gain	Maximum by matching	Moderate	Poor	Poor
Linearity	Good	Moderate	Poor	Poor

Table 1.1: Conduction angle, peak drain efficiency, gain and linearity of Class A, AB, B and C PAs

1.1.2. Transistor operated as a switch

The main motivation to use the transistors as switches is to achieve high drain efficiency (η_D). When the transistor conducts a high drain current I_D , the drain-to-source voltage V_{DS} is low. Thus, resulting in low power loss.

- 1. Class D [3]
 - There are 2 types in Class D: Voltage Mode (VM) and Current Mode (CM);
 - CM eliminates switching losses due to the device output shunt capacitance;
 - VM has low voltage stress since the voltage across each transistor is equal to supply voltage;
 - Peak factor of 1 and 3.14 for VM and CM respectively;
 - Less switching power dissipation from the transistors in VM mode;
- 2. Class E (ZVS and ZCS) [3]
 - There are 2 types in Class E: Zero Voltage Switching (ZVS) and Zero Current Switching (ZCS)
 - In ZVS, the transistor turns on at zero voltage, and the transistor may turn on at zero derivatives. The transistor output capacitance, the choke parasitic capacitance, and the stray capacitance are absorbed into the shunt capacitance C;
 - In ZCS, the transistor turns off at zero current, reducing turn-off switching loss to zero. Even if, the transistor switching time is an appreciable fraction of the cycle of the operating frequency;
 - Class E has a simple load network;
 - Switching speed is limited only by the active device if optimum parameters of the load network are set.

- Peak factor is 3.6 times V_{DD} . Thus, creating an issue in the breakdown voltage.
- Class-E operation is based on the elimination of the current–voltage overlap region at the device turn-on transient, but it does not provide any solution for the large overlap region at the device turn-off;
- Disadvantages of ZCS is that output capacitance is not absorbed, turn on power loss, and lower efficiency.

Class D and E have very high efficiency (ideally 100%) but linearity is poor. It is useful for constant envelope signals.

1.1.3. Transistor operated in overdriven mode

There are 2 types of PAs when the transistor is operated in overdriven mode:

- 1. Class F and Inverse Class F
 - Efficiency is 100% and linearity is better than switching PAs;
 - Complex circuit due to different harmonic termination;
 - Switching speed limited by active devices and number of the controlled harmonic components composing the collector voltage and current waveforms.

Class F	Inverse Class F
Odd harmonics are open and	Odd harmonics are short and
even harmonics are short	even harmonics are open
Maximum drain voltage is $2V_{DC}$	Maximum drain voltage is πV_{DC}
Current in the transistor	Current in the transistor goes
goes up to πI_{DC}	up to 2 <i>I_{DC}</i> [4]
The active device is biased	Active device is biased at half
near the cut off region	the maximum expected current
DC current and the output	Irrespective the input power value,
optimum load depends on	the DC current and the output
the input power	load optimum value remains constant
AM/AM response has a gain	Double compression in
expansion and then compression	AM/AM response [5]

Table 1.2 shows the main differences between Class F and Inverse Class F.

Table 1.2: Main differences between Class F and Inverse Class F

1.1. Types of power amplifiers

- 2. Class J/J* [6]
 - Uses reactive loading for fundamental and second harmonic, namely

$$Z_{Fund_{-}J} = R_{Fund_{-}B}(1 \pm j), \qquad Z_{Sec_{-}J} = \mp j \frac{3\pi}{8} R_{Fund_{-}B}$$
 (1.1)

with $R_{Fund_B} = \frac{2V_{DD}}{I_{peak}}$;

- In Class J, it is inductive fundamental loading where in Class J*, it is capacitive fundamental loading;
- All higher harmonic are shorted;
- Voltage swing of $2\sqrt{2}V_{DS}$ on the active device;
- Exactly the same efficiency as Class B;
- Since Class J PAs don't require harmonic resonators to achieve the maximum efficiency, there is a potential for increasing PA efficiency bandwidth compared with other linear amplifiers [7].

1.1.4. Mixed mode power amplifier

Mixed Mode PA comprises of 2 classes of PA. This is done to overcome limitations in one of the classes.

- 1. Class DE [3] [8]
 - Use dead time to reduce power losses and extend to higher operating frequency than Class D;
 - Operating frequency lower than Class E;
 - It is switching class so linearity is poor.
- 2. Class E/F [8]
 - Uses Class E and Inverse Class F;
 - Lower peak factor than both the classes;
 - Higher operating frequency than Class E as it can tolerate more shunt capacitor;
 - It is switching class so linearity is poor.
- 3. Bi-harmonic EM Class [8]
 - Degradation in the efficiency of Class E at a higher frequency. This is due to the increased switching power losses with increasing values of the turn-off switching time;
 - Allow power flow in the system at two or more harmonically related frequencies;
 - It needs 2 amplifiers.
 - Less input drive since it can tolerate slower switching time.

1.2. Project specification for WiFi 802.11n (LBPA_11n)

Application	WiFi 802.11n (LBPA_11n)	
Average P _{OUT} @-30 dB EVM	>16.5	dBm
Error vector magnitude (EVM)	<-30	dB
Operating band	2.4 - 2.5 But targeted bandwidth is from 2.1 - 2.7 GHz (25%) so as to cover LTE band	GHz
Channel bandwidth (max)	40	MHz
Peak power	>25	dBm
Output 1dB compression point	>22	dBm
Voltage gain	20 - 25	dB
Supply voltage	2.7	V
Technology	TSMC 22 nm-ULL	

Table 1.3: Specifications for the project

Table 1.3 shows specifications that the PA has to meet in order to be used in application **WiFi 802.11n (LBPA_11n)**. The bandwidth is chosen from 2.1 - 2.7 GHz so that PA can be used for **WiFi 802.11n**, as well as **LTE**. Thus, making it a multipurpose PA. Since the project was carried out in collaboration with the company *CATENA MICROELECTRONICS B.V.*, it was planned to design this PA such that it can be directly inserted into their existing WiFi chip. Owing to the previous decision, the concepts like Predistortion, Envelope Elimination and Restoration, Envelope Tracking, Doherty and Out-phasing [9] which are used to improve linearity and efficiency were not considered in this design as it will require a significant change in the WiFi chip.

1.3. Problem statement

The problem statement is very well defined and straight forward in this thesis. It is to design a fully CMOS PA in TSMC 22 nm ULL with a supply voltage of 2.7 V which meets linearity requirement for **WiFi 802.11n**, as well as be energy efficient for the bandwidth of 2.1 - 2.7 GHz.

1.4. Class F

Based on the PAs discussed in section 1.1 and project statement presented in section 1.3, the Class F PA is the best choice to obtain high efficiency with good linearity which is the main requirement of the problem statement. The main motivation for this decision was that Class F has a higher efficiency (90.7% when three harmonics are considered which is shown in Table 1.4) than Classes A, B, AB, and J/J*. It has better linearity than Class C and switching PAs because the transistor can be biased

6

in Class B region. Moreover, linearity improvement techniques like Predistortion can't be used. In Class F, higher harmonics are used to shape waveform such that overlap between current and voltage is lower. In addition, Class F has a lower peak factor than Inverse Class F. Thus, Class F PA has been chosen for the application of **WiFi 802.11n** with the targeted bandwidth.

Number of barmonics in surront	Numb	er of har	monics i	n voltage		
(m)	used in	used in the matching network (<i>n</i>)				
	n = 1	n = 3	n = 5	n = ∞		
1	0.5	0.5774	0.6033	0.637		
2	0.7071	0.8165	0.8532	0.9003		
4	0.7497	0.8656	0.9045	0.9545		
ω	0.785	0.9069	0.9477	1		

Table 1.4:	Maximum	efficiency	capability	y of Class	F PA	[10]
------------	---------	------------	------------	------------	------	-----	---

From Table 1.4, it is seen that with n = 3 and $m = \infty$, efficiency of 90.7% can be reached. Using higher harmonics in n doesn't increase efficiency much (For eg. for n = 5, efficiency increases only by 4%). Moreover, using higher harmonic increases the complexity of circuit and component losses which in turn reduces efficiency. So it is better to use up to 3^{rd} harmonic in the voltage waveform.

Generalized drain source (V_{DS}) voltage containing all frequencies up to third harmonic [11] is given by:

$$V_{DS} = 1 - \frac{2}{\sqrt{3}}\cos\theta + \frac{1}{3\sqrt{3}}\cos 3\theta$$
 (1.2)

Drain current (I_{DS}) which is half sine wave is given by

$$I_{DS} = \frac{1}{\pi} + \frac{1}{2}\cos\theta + \frac{2}{3\pi}\cos 2\theta - \frac{2}{15\pi}\cos 4\theta$$
(1.3)

 I_{DS} has its peak at 0°. It is shifted by 90°. Load impedance at fundamental, second and third harmonic bands

$$Z_{1f} = \frac{4}{\sqrt{3}}$$

$$Z_{2f} = 0$$

$$Z_{3f} = \infty$$
(1.4)

In Figure 1.2, amplitude is normalised to V_{DD} . It is seen from Figure 1.2 that peak factor is 2.

Class F PAs can operate with an efficiency of 90.7% when considering up to third harmonic but are limited to narrow bandwidths (typically 10%) due to the

stringent requirement of short and open circuit harmonic terminations. But the bandwidth requirement here is around 25%. So, the continuous mode concept has been introduced and illustrated to overcome the bandwidth limitation [12]. This is explained in detail in chapter 2.

Figure 1.2: Voltage (V) and current (I) waveform for Class F PA

1.5. Power amplifier architecture

The architecture of PA is shown in the Figure 1.3.

Figure 1.3: Architecture of designed PA

It was decided to have a push-pull (differential) PA compared to single-ended PA due to the following reasons:

- The common-mode noise and the substrate coupling is reduced since the current is discharged to the ground twice per cycle. Also, the interference problem is reduced since the substrate noise component is removed twice in the circuit;
- Output power was doubled compared to a single-ended configuration, and the optimum load was also reduced. The matching losses were consequently reduced;

8

- The transistor size and the current flowing through it can be reduced by using a differential configuration. Since the drain output voltage can be spread over both transistors, nearly twice the supply voltage can be handled without having issues in breakdown voltage [1];
- Second-order nonlinearities are reduced. If a differential circuit is balanced, then ideally, no even order nonlinearities are present and no even order harmonic and intermodulation products are generated [13].

Push-pull PAs also have a few disadvantages. One main disadvantage is that the circuit needs to be analyzed in common mode separately for stability issues unlike single ended circuits. Also, push-pull PAs have more complex circuitry compared to single-ended ones [1]. Since the advantages are more, it was chosen to have push-pull PA.

1.6. Division of thesis report

The thesis report consists of *10* chapters in total including introduction. The chapter 2 explains in detail about the concept and critical details of Continuous Class F (CCF). The chapters 3, 4, 5 and 6 explains the step by step process to design the output network, output stage, driver and inter-stage matching which all together forms the PA cell. The chapter 7 shows the results of the PA with schematics. The chip layout and post-layout results are reviewed in chapter 8 and 9. Finally, chapter 10 shows the future work.

References

- [1] M. A. S. Bhuiyan, M. T. I. Badal, M. B. I. Reaz, M. L. Crespo, and A. Cicuttin, *Design architectures of the cmos power amplifier for 2.4 ghz ism band applications: An overview*, Electronics 8, 477 (2019).
- [2] N. Ryu, B. Park, and Y. Jeong, A fully integrated high efficiency rf power amplifier for wlan application in 40 nm standard cmos process, IEEE Microwave and Wireless Components Letters 25, 382 (2015).
- [3] M. K. Kazimierczuk, *RF Power Amplifier, 2nd Edition* (John Wiley & Sons, 2014).
- [4] F. Fortes and M. J. do Rosario, A second harmonic class-f power amplifier in standard cmos technology, IEEE Transactions on Microwave Theory and Techniques 49, 1216 (2001).
- [5] T. Sharma, J. Roberts, D. G. Holmes, R. Darraji, J. K. Jones, and F. M. Ghannouchi, On the double-inflection characteristic of the continuous-wave am/am in class-f-1 power amplifiers, IEEE Microwave and Wireless Components Letters 28, 1131 (2018).
- [6] M. S. Alavi, F. van Rijs, M. Marchetti, M. Squillante, T. Zhang, S. J. C. H. Theeuwen, Y. Volokhine, H. F. F. Jos, M. P. v. d. Heijden, M. Acar, and L. C. N. de Vreede, *Efficient Idmos device operation for envelope tracking amplifiers*

through second harmonic manipulation, in 2011 IEEE MTT-S International Microwave Symposium (2011) pp. 1–4.

- [7] S. Rezaei, L. Belostotski, F. M. Ghannouchi, and P. Aflaki, *Integrated design of a class-j power amplifier*, IEEE Transactions on Microwave Theory and Techniques **61**, 1639 (2013).
- [8] A. Grebennikov and N. Sokal, Switchmode RF Power Amplifiers. 1st ed. (Elsevier Inc., 2007).
- [9] S. C. Cripps, *Advanced techniques in RF power amplifier design* (Artech House, 2003).
- [10] F. H. Raab, *Maximum efficiency and output of class-f power amplifiers*, IEEE Transactions on Microwave Theory and Techniques **49**, 1162 (2001).
- [11] S. C. Cripps, P. J. Tasker, A. L. Clarke, J. Lees, and J. Benedikt, On the continuity of high efficiency modes in linear rf power amplifiers, IEEE Microwave and Wireless Components Letters **19**, 665 (2009).
- [12] J. Chen, S. He, F. You, R. Tong, and R. Peng, *Design of broadband high-efficiency power amplifiers based on a series of continuous modes*, IEEE Microwave and Wireless Components Letters 24, 631 (2014).
- [13] S. Eduard, Broadband circuits for optical fiber communication (Wiley, 2005).

2

Continuous Class F

This chapter illustrates the theoretical concept of Continuous Class F (CCF) and equations governing it. It further describes the different variants existing in CCF based on the termination of fundamental (Z_{1f}) and second harmonic (Z_{2f}) impedance. Lastly, the chapter also explains which variant is the best candidate for the design of fully CMOS differential PA targeted for the specifications of the *WiFi 802.11n* application.

2.1. Continuous Class F

Generalized drain source voltage (V_{DS}) containing all frequencies up to fourth harmonic [1] is given by:

$$V_{DS} = (1 - \alpha \cos \theta)^2 (1 + \beta \cos \theta) (1 - \gamma \sin \theta)$$
(2.1)

where θ is the conduction angle. Variables α , β , and γ will be solved in this section. On expanding the above equation,

$$V_{DS} = \left(1 + \frac{\alpha^2}{2} - \alpha\beta\right) - \left(2\alpha - \beta - \frac{3}{4}\alpha^2\beta\right)\cos\theta + \gamma\left(\frac{\alpha\beta}{2} - 1 - \frac{\alpha^2}{4}\right)\sin\theta - \left(\alpha\beta - \frac{\alpha^2}{2}\right)\cos 2\theta + \gamma\left(\alpha - \frac{\beta}{2} - \frac{\alpha^2\beta}{4}\right)\sin 2\theta - \left(\frac{\alpha^2\beta}{4}\right)\cos 3\theta + \left(2.2\right)\gamma\left(\frac{\alpha\beta}{2} - \frac{\alpha^2}{4}\right)\sin 3\theta - \frac{\alpha^2\beta\gamma}{8}\sin 4\theta$$

Second harmonic impedance must be kept reactive (real part = 0) to achieve the maximum drain efficiency (η_D):

$$\Rightarrow \beta = \alpha/2$$

Then, differentiate voltage amplitude of fundamental to find its maximum peak

$$\Rightarrow \alpha = \frac{2}{\sqrt{3}}$$

Now, V_{DS} after substitution is shown below:

$$V_{DS} = \underbrace{1}_{DC} - \underbrace{\frac{2}{\sqrt{3}}\cos\theta - \gamma\sin\theta}_{\text{Fundamental}} + \underbrace{\frac{7\gamma}{6\sqrt{3}}\sin2\theta}_{\text{Second harmonic}} + \underbrace{\frac{1}{3\sqrt{3}}\cos3\theta}_{\text{Third harmonic}}$$
(2.3)

Drain current (I_D) is a half sinusoid which is similar to Class F and is given by:

$$I_D = \frac{1}{\pi} + \underbrace{\frac{1}{2}\cos\theta}_{\text{Fundamental}} + \underbrace{\frac{2}{3\pi}\cos2\theta}_{\text{Second harmonic}} - \underbrace{\frac{2}{15\pi}\cos4\theta}_{\text{Fourth harmonic}}$$
(2.4)

It is clearly seen that V_{DS} and I_D are chosen in such a way that no power is dissipated at higher harmonics [2].

2.1.1. Drain efficiency of Continuous Class F

DC power:

$$P_{DC} = 1 * \frac{1}{\pi} = \frac{1}{\pi}$$
(2.5)

Fundamental power:

$$P_{FUND} = \frac{1}{2} \left(\frac{2}{\sqrt{3}}\right) \left(\frac{1}{2}\right) = \frac{1}{2\sqrt{3}}$$
 (2.6)

Power dissipated in device:

$$P_{\text{DEV}} = \frac{1}{2\pi} \int_0^{2\pi} V_{DS} I_D = \frac{1}{2\pi} \left(\frac{1}{\pi} * 2\pi - \frac{2}{\sqrt{3}} * \frac{1}{2} * \int_0^{2\pi} \frac{1 + \cos 2\theta}{2} \right) = \frac{1}{\pi} - \frac{1}{2\sqrt{3}}$$
(2.7)

All terms comprising of $\cos n\theta$ and $\sin m\theta$ (where n = 1, 2, 3, 4 and m = 1, 2) will evaluate to θ under the integral θ to $2\pi \operatorname{except} \cos^2 \theta$. Drain efficiency (η_D) :

$$\eta_D = \frac{P_{FUND}}{P_{DC}} = \frac{\pi}{2\sqrt{3}} = 90.7 \ \% \tag{2.8}$$

From Equation 2.8, it is seen that γ doesn't affect η_D mathematically. But voltage waveform's shape (peak factor) depends on γ which is shown in Figure 2.1. But in reality, I_D depends on V_{DS} , so η_D will have an impact with respect to γ . This is shown in Figure 2 in [3] which is a device simulation. Thus, η_D reduces as γ increases in a practical scenario.

2

Figure 2.1: V_{DS} and I_D waveform for CCF with $-1.5 < \gamma < 1.5$

From Figure 2.1, it is seen that at $\gamma = 0$, waveform is identical to Class F. Also, V_{DS} remains positive for the range $-1 < \gamma < 1$. It is necessary to keep V_{DS} positive so that it doesn't perform as switching PA and has a good linearity. Figure 2.1 indicates that peak factor increases if $\gamma \neq 0$ and reaches a value of 3.12 times supply (V_{DD}) when $\gamma = -1$ or 1.

Figure 2.2: Device power (P_{DEV}) for CCF with $\gamma = -1, 0, 1$

From the Figure 2.2, it is evident that power consumed by transistor, P_{DEV} (area under the curve) is constant for $\gamma = -1$, 0, 1. Thus, proving that η_D in CCF is independent of γ .

From Equation 2.3 and 2.4, load impedance at fundamental (Z_{1f}) , second (Z_{2f}) and third harmonic (Z_{3f}) bands are [4]

$$Z_{1f} = \frac{4}{\sqrt{3}} + j2\gamma = \frac{2}{\sqrt{3}}R_{CCF} + jR_{CCF}\gamma$$

$$Z_{2f} = 0 - j\frac{\pi}{2}\frac{7\sqrt{3}}{6}\gamma = 0 - j\frac{\pi}{2}R_{CCF}\gamma$$

$$Z_{3f} = \infty$$
(2.9)

In Equation 2.9, $\frac{7\sqrt{(3)}}{6} = 2.02$ and R_{CCF} can be assumed as 2. In CCF, Z_{3f} remains open-circuited similar to Class F. Meanwhile, Z_{1f} and Z_{2f} has a reactive part, unlike Class F. From the Figure 2.3, it is observed that if the reactive part of Z_{1f} decreases, then the reactive part of Z_{2f} increases. Thus, showing that the reactive part of Z_{1f} is inversely proportional to the reactive part of Z_{2f} .

Figure 2.3: Fundamental reactive impedance (X1) and second harmonic reactive impedance (X2) normalized to fundamental real impedance (R1) as a function of γ

Figure 2.4 explains that

- Z_{1f} is on constant resistance circle. Reactive part of Z_{1f} changes from inductive to capacitive as γ increases;
- Z_{2f} is on edge of the smith chart. Thus, confirming that it has only a reactive part. Also, reactive changes from capacitive to inductive as γ increases;
- Z_{3f} is open-circuited.

The key point in this new PA mode lies in varying the reactive part of the Z_{1f} and Z_{2f} in accordance with Equation 2.9. By doing so, voltage waveform can be maintained above zero and also maintain a constant high-efficiency state and maximum output power.

This set of viable loads gives a new design space which increases flexibility in PA design. The most important observation to highlight is that PA designers don't necessarily need to provide a short-circuit at Z_{2f} , but have a choice of a significantly wider design space over which maximum η_D is maintained. Thus, helping to operate in a wider bandwidth [2].

Figure 2.4: Smith chart showing variation of Z_{1f} , Z_{2f} , Z_{3f} for $-1 < \gamma < 1$

2.2. Extended Continuous Class F

Drain source voltage (V_{DS}) in Equation 2.1 is

$$V_{DS} = (1 - \alpha \cos \theta)^2 (1 + \beta \cos \theta) (1 - \gamma \sin \theta)$$

In Extended Continuous Class F (ECCF), α and β are also varied instead of choosing $\alpha = \frac{2}{\sqrt{3}}$ and $\beta = \frac{\alpha}{2}$. This gives us a larger design space while designing CCF. There are 2 cases:

- If $\beta = \frac{\alpha}{2}$, then the Z_{2f} will be on edge of the smith chart;
- If $\beta > \frac{\alpha}{2}$, then the Z_{2f} will move into the smith chart.

2.2.1. Drain efficiency of Extended Continuous Class F Similar to subsection 2.1.1, η_D of ECCF is calculated from V_{DS} (Equation 2.2) and I_D (Equation 2.4).

DC power:

$$P_{DC} = \frac{1}{\pi} \left(1 + \frac{\alpha^2}{2} - \alpha \beta \right) \tag{2.10}$$

Fundamental power:

$$P_{FUND} = \frac{1}{2} \left(\beta - 2\alpha + \frac{3\alpha^2 \beta}{4} \right)$$
(2.11)

Drain efficiency (η_D) :

$$\eta_D = \frac{P_{FUND}}{P_{DC}} = \frac{\frac{1}{2} \left(\beta - 2\alpha + \frac{3\alpha^2 \beta}{4}\right)}{\frac{1}{\pi} \left(1 + \frac{\alpha^2}{2} - \alpha\beta\right)}$$
(2.12)

From Equation 2.12, it is seen that η_D depends on α and β . The section 2.1 shows CCF which delivers the maximum η_D because the value of $\alpha = \frac{2}{\sqrt{3}}$ was chosen in order to represent the standard Class F condition, having an η_D of 90.7%. In ECCF, by varying α , β and γ , η_D (for example greater than 75%) can be maintained over a wider design space than CCF explained in section 2.1.

2.2.2. Extended Continuous Class-F with second harmonic impedance on the edge of the smith chart $(\beta = \frac{\alpha}{2})$

In order to avoid that V_{DS} waveform drop below 0, for $\beta = \frac{\alpha}{2}$, the below conditions must be achieved:

$$\begin{array}{l} -2 \leq \alpha \leq 2, \quad \alpha \neq 0 \\ -1 \leq \gamma \leq 1 \end{array}$$
(2.13)

The range of α and β shown in Equation 2.13 will be smaller taking into account different values of β .

Figure 2.5: V_{DS} and I_D waveform for ECCF with $0.75 < \alpha < 1.5$, $\beta = \alpha/2$ and $\gamma = 0$

From Figure 2.5, we can see that with increasing values of α , bigger "troughs" are formed in the V_{DS} waveform. This means lower fundamental voltage which directly leads to a lower η_D .

Figure 2.6: Smith chart showing variation of Z_{1f} , Z_{2f} and Z_{3f} for 0.75 < α < 1.25, $\beta = \frac{\alpha}{2}$ and $-1 < \gamma < 1$

Figure 2.7: Drain efficiency (η_D) and P_{OUT} for constant $\beta = \alpha/2$ and $\gamma = 0$ as a function of α , where $0.75 < \alpha < 1.5$

Assuming a constant value of $\beta = \frac{\alpha}{2}$ and varying the α and γ shows that the Z_{2f} still varies on the edge of the smith chart, while the Z_{1f} varies both in magnitude and phase as shown in Figure 2.6. For $0.75 < \alpha < 1.5$, efficiencies are above 75% which is shown in Figure 2.7. In Figure 2.7, the highest η_D is achieved for $\alpha = \frac{2}{\sqrt{3}}$,

which is the Class F condition. But there exists a larger design space from which a range of Z_{1f} can be chosen, which still provides efficiencies greater than 75%. Those theoretical values of output power (P_{OUT}) and η_D remain constant over the range of $-1 < \gamma < 1$.

 V_{DS} waveform can be maintained above 0, if the parameter α satisfy criteria specified in Equation 2.13. But, to maintain η_D greater than the specified value (for example 75%), the range of α has to be further reduced which is shown below.

$$0.75 \le \alpha \le 1.5$$

2.2.3. Extended Continuous Class-F with second harmonic impedance inside the smith chart $(\beta > \frac{\alpha}{2})$

In this case, β is not restricted to $\beta = \frac{\alpha}{2}$ as in the previous section. These conditions deliver a larger range of design space which provides η_D greater than 75%.

$\beta = \alpha/2$	$\beta = \alpha/1.9$	$\beta = \alpha/1.8$	$\beta = \alpha/1.7$	$\beta = \alpha/1.6$	$\beta = \alpha/1.5$	$\beta = \alpha/1.4$
0.75< <i>α</i> <1.5	0.75< <i>α</i> <1.45	0.8< <i>α</i> <1.45	0.8< <i>α</i> <1.35	0.85< <i>α</i> <1.3	0.9< <i>α</i> <1.2	<i>α</i> =1.05
-1<γ<1	-1<γ<1	-1<γ<1	-0.9<γ<0.9	-0.5<γ<0.5	-0.2<γ<0.2	γ=0

Table 2.1: Design space for which the V_{DS} is positive and the drain efficiency (η_D) is greater than 75% [2]

Table 2.1 shows a span of α and γ values which gives a non-zero crossing V_{DS} waveform and a minimum η_D of 75%. It is seen that as β increases, the range of α and γ to achieve non-zero V_{DS} waveform and η_D of 75% reduces.

Figure 2.8: V_{DS} and I_D waveforms for constant $\beta = \alpha/1.6$ and $\gamma = 0$ as a function of α , where $0.75 < \alpha < 1.5$

Figure 2.8 shows that with an increasing value of α , bigger troughs are formed in the V_{DS} waveforms which leads to lower η_D .

Figure 2.9: Smith chart showing variation of Z_{1f} , Z_{2f} and Z_{3f} for $\beta = \alpha/1.9$ when varying $0.75 < \alpha < 1.45$ and $-1 < \gamma < 1$

Figure 2.9 shows load impedance for $-1 < \gamma < 1$ and $0.75 < \alpha < 1.45$ and it confirms that

- Z_{1f} is not on constant resistance circle anymore;
- Z_{2f} is inside the smith chart which validates it has a real part too. It is also seen that as α increases, Z_{2f} moves inside. Thus, increasing real part of Z_{2f};
- Z_{3f} is open-circuited.

From Figure 2.9, it is seen that each Z_{1f} has its appropriate Z_{2f} . By choosing these values, we can achieve η_D above 75%.

Since β value has increased, the range of α to achieve non-zero V_{DS} waveform and η_D above 75% has reduced from 0.75 < α < 1.5 to 0.85 < α < 1.3, as shown in Figure 2.10. For the case of $\beta = \alpha/1.4$, there is only one point of α and γ which provides nonzero V_{DS} waveform and η_D above 75%. 2

Figure 2.10: Drain efficiency (η_D) as a function of α and β for constant $\gamma = 0$

Figure 2.11 shows the maximum η_D as a function of β for a given optimum α . It is seen that the η_D decreases with increasing values of β , but efficiencies greater than 75% are still maintained [2].

This variant of ECCF allows us to have a real part at Z_{2f} , unlike CCF explained in section 2.1 and ECCF explained in subsection 2.2.2. Thus, further increasing design space and flexibility for PA designers.

Figure 2.11: Drain efficiency (η_D) of ECCF as a function of β for $\gamma = 0$ and optimum value of $\alpha = 1.15$

2.3. Conclusion

This chapter explained the concept of Continuous Class F (CCF) and Extended Continuous Class F (ECCF). After understanding and analyzing different classes of PA for η_D and linearity, CCF (considering up to 3^{rd} harmonic) will be the best candidate for the *WiFi 802.11n* application with targeted bandwidth of *2.1 - 2.7 GHz* (*600 MHz*). It has a higher η_D (*90.7%*) than Class A, B, and AB. Also, it is more linear than Class C, and switching PAs like Class D and E. ECCF provides the flexibility of the real part in Z_{2f} and variable real part in Z_{1f} . But this happens at the cost of η_D . Since η_D and linearity is the most critical and crucial factors, CCF has been chosen over ECCF.

References

- S. C. Cripps, P. J. Tasker, A. L. Clarke, J. Lees, and J. Benedikt, On the continuity of high efficiency modes in linear rf power amplifiers, IEEE Microwave and Wireless Components Letters 19, 665 (2009).
- [2] V. Carrubba, A. L. Clarke, M. Akmal, J. Lees, J. Benedikt, P. J. Tasker, and S. C. Cripps, On the extension of the continuous class-f mode power amplifier, IEEE Transactions on Microwave Theory and Techniques 59, 1294 (2011).
- [3] N. Tuffy, L. Guan, A. Zhu, and T. J. Brazil, A simplified broadband design methodology for linearized high-efficiency continuous class-f power amplifiers, IEEE Transactions on Microwave Theory and Techniques 60, 1952 (2012).
- [4] S. N. Ali, P. Agarwal, S. Gopal, S. Mirabbasi, and D. Heo, A 25–35 ghz neutralized continuous class-f cmos power amplifier for 5g mobile communications achieving 26% modulation pae at 1.5 gb/s and 46.4% peak pae, IEEE Transactions on Circuits and Systems I: Regular Papers 66, 834 (2019).
3

Design of output network

This chapter unravels the design of four output networks which satisfies the requirements of CCF. Before explaining the design of each output network, the calculation for the impedance that is needed to be presented at the drain of the differential pair to obtain the required peak output power (P_{OUT}) is described below.

3.1. Impedance calculation

Assuming there is a 2 dB loss in the output network and the peak P_{OUT} requirement is 25 dBm, then 27 dBm should be considered as the peak P_{OUT} in the ideal case to meet the requirement.

As explained in the previous chapter, only up to the 3^{rd} harmonics in voltage are considered.

Peak output power:

Peak $P_{OUT} = 27 \ dBm$ Peak $P_{OUT} = 501.19 \ mW$

Supply voltage (V_{DD}),

$$V_{DD} = 2.7 V$$

Single ended voltage swing

$$V_{FUND}(SE) = \frac{2}{\sqrt{3}} V_{DD} = 3.12 \ V \tag{3.1}$$

Since only 3 harmonics are considered, V_{DD} is multiplied by $\frac{2}{\sqrt{3}}$ and not $\frac{4}{\pi}$ as in ideal Class F with all harmonics considered [1]. Differential ended voltage swing:

$$V_{FUND}(DE) = 2^* V_{FUND}(SE) = 6.24 V$$

Impedance to be seen at the drains of the differential pair to get the required peak P_{OUT} of 27 dBm is

$$R_D(DE) = \frac{V_{FUND}(DE)^2}{2 * \text{Peak } P_{OUT}} = 38.7 \ \Omega$$
(3.2)

Third Harmonic First Harmonic Second Harmonic Class of Operation $(2\omega_0)$ $(3\omega_0)$ (ω_0) $|Z_{D}|$ needs to be high Class F $\Re(Z_D) = 38.7 \Omega$ $\Re(Z_D) = 0 \Omega$ (2.4 GHz) $\Im(Z_D) = 0 \Omega$ $\Im(Z_D) = 0 \Omega$ (≈ 1000 Ω). $\Re(Z_D) = \mathbf{0} \ \Omega$ $\Re(Z_D) = 38.7 \Omega$ CCF $\Im(Z_D)$ need to change from + to - $\Im(Z_D)$ need to change from - to + $|Z_D|$ needs to be high (2.1 - 2.7 GHz) OR (≈ 1000 Ω). OR $\Im(Z_p)$ need to change from - to + $\mathfrak{J}(Z_p)$ need to change from + to -

3.2. Output network requirements

Table 3.1: Output network requirements at 1st, 2nd and 3rd harmonic

From Table 3.1, it is seen that the PA operates in the standard Class F mode at 2.4 GHz with a short at 2^{nd} harmonic and an open at 3^{rd} harmonic. But, for all other frequencies, the PA performs in the CCF mode. One main conclusion that can be drawn from the above table is that if the reactive part at 1^{st} harmonic changes from inductive to capacitive, then the reactive part at 2^{nd} harmonic needs to change from capacitive to inductive. Thus, suggesting that the reactive part at the 1^{st} and 2^{nd} harmonic needs to have an inverse relation.

The four output networks which satisfy CCF are given below (refer Figure 3.1):

• Design A

It has a balanced to unbalanced (balun), second harmonic trap (L_2C_2) and output load capacitance (C_L) ;

• Design B

It has a balun and output load capacitance (C_L) ;

• Design C

It has a balun, RF choke, second harmonic trap (L_2C_2) and output load capacitance (C_L) ;

Design D

It has a balun, RF choke and output load capacitance (C_L) .

The balun and C_L are present in all the four designs (refer Figure 3.1). Since it is a differential PA, the balun does the necessary function of converting differential-

24

ended signal (balanced) to a single-ended signal (unbalanced) as the load (antenna) is single-ended. The significance of C_L is explained in the section 3.3.

(c) Design C (with RF choke and with L_2C_2) (d) Design D (with RF choke and no L_2C_2)

Figure 3.1: Output network designs

3.3. Design A (Balun, second harmonic trap and output capacitance)

Drain source capacitance of the transistor (C_{DS}) is 1.87 pF in Figure 3.2. This is calculated in the Appendix A after the output stage was designed and it remains the same for the design of all other output networks. $C_{DCP} = 100 \text{ pF}$ is the decoupling capacitor which is added to provide RF ground and blocks DC. L_{BND} is used to model bond wire inductance from the V_{DD} , and the value is approximated as 1 nH. V_{DD} is fed through the center tap of the balun. The second harmonic trap (L_2C_2) is a series resonator at second harmonic (4.8 GHz) and thereby, creating a short at the same frequency. The balun is modelled using ideal transformer, magnetizing inductance (L_m), leakage inductance (L_k) and coupling coefficient (km) as explained in [2]. L_m and L_k are related to primary inductance (L_p) by the below formula.

$$L_k = (1 - km^2) * L_P \tag{3.3}$$

$$L_m = km^2 * L_P \tag{3.4}$$

Figure 3.2: Schematics of *Design A* (balun, L_2C_2 and C_L)

From Figure 3.3, it is seen that the following conditions have to be satisfied to obtain real part of the drain impedance (R_D) as 38.7 Ω and reactive part of the drain impedance (X_D) as 0 Ω at ω_0 (2.4 GHz). Z_{SB} represents the total impedance of second harmonic trap (L_2C_2) and balun.

$$R_{SB}(\omega_0) = 29.83 \ \Omega$$
 (3.5)

Figure 3.3: Differential mode equivalent circuit of *Design A* (balun, L_2C_2 and C_L)

$$X_{SB}(\omega_0) = 16.63 \ \Omega \tag{3.6}$$

In order to obtain high impedance at the drain of the transistor at $3\omega_0$ (7.2 GHz), C_{DS} needs to resonate out with the reactive part (X_{SB}) of Z_{SB} (total impedance of L_2C_2 and balun).

$$X_{SB}(3\omega_0) = 24.96 \ \Omega \tag{3.7}$$

Ideally, the real part should be 0 to obtain high impedance at 3^{rd} harmonic. As seen in Figure 3.4, as the value of the real part increases, the magnitude of impedance at 3^{rd} harmonic reduces exponentially. Figure 3.4 also shows the significance of C_L as it is required to short the load resistance R_L (50 Ω). Thus, helping to obtain high impedance at 3^{rd} harmonic. That's why, all four designs have C_L .

Figure 3.4: Magnitude of Z_D versus the real part of Z_{SB} at 3^{rd} harmonic

From Figure 3.5a, it is seen that having a larger $R_{SB}(\omega_0)$ helps to have a more flatter real part at 1st harmonic, thus helping to get constant P_{OUT} across the bandwidth of 2.1 - 2.7 GHz. But this is at the expense of lower impedance at 3rd harmonic. Also, increasing $R_{SB}(3\omega_0)$ helps to get a more linear imaginary part at 1st harmonic.

(a) Real part (\Re) and reactive part (\Im) at 1^{st} (b) Magnitude at 3^{rd} harmonic

Figure 3.5: Impedance (Z_D) at 1^{st} and 3^{rd} harmonic for different values of $R_{SB}(3\omega_0)$

The assumption is made to obtain 1000Ω at 3^{rd} harmonic for all designs. This assumption helps to compare all the designs on the same scale and reduce the effect of 3^{rd} harmonic. In section 4.4, it is demonstrated that 3^{rd} harmonic impedance doesn't have much influence on important parameters like maximum drain efficiency (η_D) and output 1 dB compression point (OP1dB). 1000Ω can be achieved with

$$R_{SB}(3\omega_0) = 0.5 \ \Omega \tag{3.8}$$

There are 5 unknowns in the circuit: transformer coupling (km), turn ratio in the transformer (N), primary inductance (L_P) , capacitor for second harmonic trap (C_2) , and output capacitance (C_L) . Assuming km = 0.8 (variation of km is explained in section 7.2) and using four Equation 3.5, 3.6, 3.7 and 3.8, the remaining unknowns can be calculated. *Maple 2018.2* is used to find solutions of the above-mentioned equations.

$$N = 1.34$$
$$L_P = 2.2 nH$$
$$C_L = 0.9 pF$$
$$C_2 = 1.5 pF$$

From Figure 3.6, it is evident that L_2C_2 should have a series resonance at $2\omega_0$ (4.8 GHz) to get short at the same frequency.

$$L_2 = \frac{1}{4 * \omega_0^2 * C_2} = 0.73 \ nH \tag{3.9}$$

Figure 3.6: Common mode equivalent circuit of *Design A* (balun, L_2C_2 and C_L)

3.4. Design B (Balun and output capacitance)

In this design, L_2C_2 is removed. The V_{DD} is provided through the center tap of the balun and bond wire ($L_{BND} \approx 1 \text{ nH}$) as in the previous design.

Figure 3.7: Schematics of Design B (balun and C_L)

The following criteria have to be satisfied to obtain $R_D = 38.7 \Omega$ and $X_D = 0 \Omega$ at ω_0 (2.4 GHz).

$$R_B(\omega_0) = 29.83 \ \Omega \tag{3.10}$$

$$X_B(\omega_0) = 16.27 \ \Omega \tag{3.11}$$

In order to obtain high impedance at the drain of the transistor at $3\omega_0$ (7.2 GHz), C_{DS} needs to resonate out with the reactive part of Z_B .

Figure 3.8: Differential equivalent half circuit of Design B (balun and C_L)

$$X_B(3\omega_0) = 23.65 \ \Omega \tag{3.12}$$

The below mentioned condition has to be met to obtain 1000Ω at 3^{rd} harmonic as discussed in the previous design.

$$R_B(3\omega_0) = 0.5 \ \Omega \tag{3.13}$$

There are 4 unknowns in the circuit: km, N, L_P and C_L . Using four Equation 3.10, 3.11, 3.12 and 3.13, the above-mentioned unknowns can be computed.

$$km = 0.72$$

 $N = 0.9$
 $L_P = 0.63 nH$
 $C_L = 3.96 pF$

Figure 3.9: Common mode equivalent circuit of Design B (balun and C_L)

From Figure 3.9, C_{DCP} can be tuned such that C_{DCP} resonates with L_P , L_{BND} and C_{DS} to provide a short at $2\omega_0$ (4.8 GHz). Apart from this task, C_{DCP} also provides RF ground and blocks DC.

$$C_{DCP} = 4.58 \ pF$$
 (3.14)

3.5. Design C (Balun, RF choke, second harmonic trap and output capacitance)

The main motivation to use RF choke in *Design C* and *Design D* is that *CATENA MICROELECTRONICS B.V* already had a well-designed RF choke. Also, their earlier products had RF choke so replacing the old PA with the new one in the WiFi chip will be easier. In Figure 3.10, RF chokes have inductance of 5 nH each. $C_{DCP} = 100$ pF is the decoupling capacitor which is added to provide RF ground and to block DC.

Figure 3.10: Schematics of Design C (balun, RF choke, L_2C_2 and C_L)

Figure 3.11: Differential mode equivalent circuit of *Design C* (balun, RF choke, L_2C_2 and C_L)

The following constraints have to fulfilled to obtain $R_D = 38.7 \Omega$ and $X_D = 0 \Omega$ at ω_0 (2.4 GHz).

$$R_{SB}(\omega_0) = 35.72 \ \Omega \tag{3.15}$$

$$X_{SB}(\omega_0) = 10.3 \ \Omega$$
 (3.16)

In order to achieve high impedance at the drain of the transistor at $3\omega_0$ (7.2 GHz), C_{DS} needs to resonate out with the reactive part of Z_{SB} and RF choke.

$$X_{SB}(3\omega_0) = 24.96 \ \Omega \tag{3.17}$$

The value of $R_{SB}(3\omega_0)$ is chosen to achieve 1000 Ω at 3^{rd} harmonic.

$$R_{SB}(3\omega_0) = 0.6\ \Omega\tag{3.18}$$

There are 5 unknowns in the circuit: km, N, L_P , C_2 , C_L . Using four Equation 3.15, 3.16, 3.17 and 3.18 and assuming km = 0.8, the remaining unknowns can be solved.

$$N = 1.14$$

 $L_P = 2.23 \ nH$
 $C_L = 1.10 \ pF$
 $C_2 = 1.37 \ pF$

Figure 3.12: Common mode equivalent circuit of *Design C* (balun, RF choke, L_2C_2 and C_L)

From Figure 3.12, it is evident that to get short at $2\omega_0$ (4.8 GHz), L_2C_2 should have a series resonance at $2\omega_0$.

$$L_2 = \frac{1}{4 * \omega_0^2 * C_2} = 0.8 \ nH \tag{3.19}$$

32

3.6. Design D (Balun, RF choke and output capacitance)

Compared to the previous design, L_2C_2 is removed in this design and RF choke is not fixed to 5 nH.

Figure 3.13: Schematics of Design D (balun, RF choke and C_L)

Figure 3.14: Differential mode equivalent circuit of *Design D* (balun, RF choke and C_L

Since RF choke is not fixed, it can be calculated if C_{DS} resonates with it at 1^{st} harmonic.

RF choke =
$$\frac{1}{\omega_0^2 C_{DS}}$$
 = 2.35 *nH* (3.20)

To achieve the required P_{OUT} , impedance of 38.7 Ω is needed at the drain of the transistor.

$$R_B(\omega_0) = 38.7 \ \Omega$$
 (3.21)

$$X_B(\omega_0) = 0 \ \Omega \tag{3.22}$$

In order to obtain high impedance at the drain of the transistor at $3\omega_0$ (7.2 GHz), C_{DS} needs to resonate out with the reactive part of Z_B and RF choke.

$$X_B(3\omega_0) = 26.61 \ \Omega \tag{3.23}$$

The value of $R_B(3\omega_0)$ is chosen to achieve 1000 Ω at 3^{rd} harmonic.

$$R_B(3\omega_0) = 0.6\ \Omega\tag{3.24}$$

There are 4 unknowns in the circuit: km, N, L_P and C_L . Using four Equation 3.21, 3.22, 3.23 and 3.24, the four unknowns can be solved.

$$N = 0.84$$

 $L_P = 0.86 \ nH$
 $C_L = 3.95 \ pF$
 $km = 0.77 \ pF$

Figure 3.15: Common mode equivalent circuit of *Design D* (balun, RF choke and C_L)

From Figure 3.15, C_{DCP} can be tuned to provide a short at $2\omega_0$ (4.8 GHz) similar to Design B.

$$C_{DCP} = 2.56 \ pF$$
 (3.25)

34

3.7. Comparison of output networks **3.7.1.** Impedance at first harmonic (ω_0)

Figure 3.16: Impedance (Z_D) at 1^{st} harmonic (ω_0)

From Figure 3.16a, it is seen that the real part at 1^{st} harmonic is flatter in the bandwidth 2.1 - 2.7 GHz for Design A and C unlike Design B and D. This, in turn, leads to constant P_{OUT} in the specified bandwidth. The reason for the constant real part of Design A and C is due to the presence of L_2C_2 . L_2C_2 is a series resonance at 2^{nd} harmonic, thus it acts as a varying capacitor at 1^{st} harmonic (Figure 3.17).

Figure 3.17: Series Resonance (L_2C_2)

Design B and D have a high reactive part at 1^{st} harmonic as compared to Design A and C (Figure 3.16b) which is due to the presence of the L_2C_2 in Design A and

C. Since reactive part at 1^{st} harmonic for *Design B* and *D* have higher slope, the corresponding γ value will also be high, (refer Equation 2.9) which directly relates to higher maximum drain voltage (refer Figure 2.1).

3.7.2. Impedance at second harmonic $(2\omega_0)$

Figure 3.18: Impedance (Z_D) at 2^{nd} harmonic $(2\omega_0)$

From Figure 3.18a and 3.18b, it is seen that all 4 design have similar response at 2^{nd} harmonic.

3.7.3. Impedance at third harmonic $(3\omega_0)$

Figure 3.19: Magnitude of Z_D at 3^{rd} harmonic $(3\omega_0)$

As designed, four output networks have an impedance of 1000Ω at 3^{rd} harmonic. It is also seen that impedance at 2.1 GHz and 2.7 GHz is less than 200Ω for all four designs.

3.7.4. Impedance at low frequency (0-100 MHz)

(b) Common mode impedance

Figure 3.20: Impedance at low frequency

Figure 3.20a and 3.20b shows that differential and common mode impedance isn't large (less than 4Ω) between 0 - 100 MHz. In case, the impedance was large, it can reduce third order intercept point (IP_3) due to indirect mixing [3] [4] [5].

Designs	RF choke / L _{BND} (nH)	L _P (nH)	Ν	km	L _s (nH)	C _L (pF)	L ₂ (nH)	С ₂ (pF)	C _{DCP} (pF)
A (no RF choke & with L_2C_2)	1	2.22	1.32	0.8	3.87	0.93	0.74	1.48	100
B (no RF choke & no L_2C_2)	1	0.63	0.9	0.72	0.51	3.96	-	-	4.58
C (with RF choke & with L_2C_2)	5	2.23	1.14	0.8	2.9	1.1	0.8	1.37	100
D (with RF choke & no L_2C_2)	2.35	0.86	0.84	0.77	0.61	3.95	-	-	2.56

Table 3.2: The value of components in all 4 output network designs

3.8. Conclusion

This chapter explained the procedure to design the four output networks using lossless capacitors and inductors, namely *Design A* (no RF Choke and with L_2C_2), *Design B* (no RF Choke and no L_2C_2), *Design C* (with RF Choke and with L_2C_2) and *Design D* (with RF Choke and no L_2C_2). The balun and C_L is common for all the designs. Except at 1^{st} harmonic, the response of all four output networks is very much identical. In terms of the number of components, *Design B* has the least (only balun and C_L). But *Design A* and *C* outperform others at 1^{st} harmonic by having a flatter real part as well as a smaller reactive part in the bandwidth *2.1 - 2.7 GHz*.

The final decision of selecting the output network will be carried out after designing the output stage which is explained in the subsequent chapter and measuring few parameters like η_D , peak P_{OUT} , OP1dB, and IM3.

References

- A. Grebennikov and N. Sokal, Switchmode RF Power Amplifiers. 1st ed. (Elsevier Inc., 2007).
- [2] J. R. Long, *Monolithic transformers for silicon rf ic design*, IEEE Journal of Solid-State Circuits **35**, 1368 (2000).
- [3] J. Brinkhoff, A. E. Parker, and M. Leung, *Baseband impedance and linearization of fet circuits*, IEEE Transactions on Microwave Theory and Techniques **51**, 2523 (2003).
- [4] J. Brinkhoff and A. E. Parker, Implication of baseband impedance and bias for fet amplifier linearization, in IEEE MTT-S International Microwave Symposium Digest, 2003, Vol. 2 (2003) pp. 781–784 vol.2.
- [5] J. Brinkhoff and A. E. Parker, Effect of baseband impedance on fet intermodulation, IEEE Transactions on Microwave Theory and Techniques 51, 1045 (2003).

4

Design of output stage

In this chapter, the design of the output stage is elucidated. Since CCF has a higher peak factor (around 3.12 for $\gamma = +/-1$) than other classes of PA, breakdown voltage of the transistor becomes the main bottleneck. One way to mitigate this is to select voltage supply (V_{DD}) equal to half of the breakdown voltage of the transistor in Class A and B. But, the lower headroom limits the linear voltage range of the transistor. Also, the drain efficiency (η_D) reduces since output current (I_D) increases proportionally leading to a greater loss in the output matching network [1]. Added to this, the device is also larger to handle the larger current. Thereby increasing more losses in the device.

Maximum V_{DD} of the thick oxide and the nominal device is 1.98 V and 1.05 V respectively in TSMC 22 nm ULL technology. Using the rule of thumb that breakdown voltage is $\sqrt{2}V_{DD}$, then the breakdown voltage of the thick oxide and the nominal device is 2.8 V and 1.5 V respectively. **Cascode** [1], **Self biasing cascode** [2] and **Stacked** [3] [4] are few techniques in the literature to counter breakdown voltage issue. The first two techniques use two transistors on top of each other, bottom one being nominal device and upper one being thick oxide. Since the type of PA is CCF and targeted peak output power (P_{OUT}) is 27 dBm (ideal case), these techniques fail to bring the voltage swing below the breakdown voltage requirement. Thus, the concept of stacked transistor is a promising candidate to solve breakdown voltage which is discussed briefly in the below section.

4.1. Stacked transistor

The capacitors C_2 and C_3 in Figure 4.1 allows drain and source to sustain large voltage swings in a way that each transistor has the same drain source voltage (V_{DS}) , gate source voltage (V_{GS}) and drain gate voltage (V_{DG}) swings unlike the scenario of cascoded transistors. This way, the V_{DS} , V_{GS} , and V_{DG} swings can be designed to be within breakdown voltage limits. The output voltage swings of all three transistors are added in phase so that the total voltage swing at the top

Figure 4.1: Schematic of triple-stacked field-effect transistor (FET) PA [3]

transistor's drain is three times higher than the maximum available V_{DS} swing for a single transistor with a constant current swing. It is made sure that each transistor delivers the same power. The optimum load impedance increases linearly with the number of transistors (*n*) in series. Thus, the stacked design has *n* times lower input capacitance. So, a larger device can be used with tolerable input capacitance to minimize the knee voltage effect on the P_{OUT} and η_D . By doing so, the stacked transistor can overcome two major limitations of metal-oxide semiconductor field-effect transistor (MOSFET), namely, low breakdown voltage, and high knee voltage [3].

Figure 4.2: Small signal model of stacked transistors (common gate transistors)

Figure 4.2 shows small signal model of stacked transistors (Figure 4.1).

$$Z_{si} \approx (1 + \frac{C_{GS}}{C_i})(\frac{1}{g_m}||\frac{1}{sC_{GS}})$$
$$\omega_T = \frac{g_m}{C_{GS}}, s = j\omega_c$$
$$Z_{si} = \frac{1}{g_m}(1 + \frac{C_{GS}}{C_i}), f_o << f_t$$
(4.1)

$$A_{v} = \frac{g_{m1}R_{D}}{\left(1 + \frac{sC_{GS2}}{g_{m2}}\right)\left(1 + \frac{sC_{GS3}}{g_{m3}}\right)\left(1 + \frac{sC_{GS4}}{g_{m4}}\right)} \approx g_{m1}R_{D}, f_{o} < f_{t}$$
(4.2)

Equation 4.1 shows that if $C_i \gg C_{GS}$, then it becomes a cascoded transistor. To operate transistor as a stacked transistor, C_{GS} has to be comparable to C_i (preferably 0.5 to 2 times).

Parameter	Single FET	n-Parallel FET	n-Stacked FET
Peak drain current	I _m	$n.I_m$	I _m
Peak drain voltage	V _m	V_m	n.V _m
Input capacitance	C_g	$n.C_g$	C_g
Output impedance	R _{opt}	$\frac{R_{opt}}{n}$	n.R _{opt}
Output power	$\frac{1}{8}V_m I_m$	$\frac{1}{8}V_m.n.I_m$	$\frac{1}{8}$.n.V _m .I _m
Voltage gain	$g_m.R_{opt}$	$n.g_m.rac{R_{opt}}{n}$	$g_m.n.R_{opt}$

Table 4.1: Comparison of parallel and stacked-transistor configurations [4]

From Table 4.1, it is seen that the *n* stacked FET PA has *n* times higher voltage gain and power gain. The input and output impedance are *n* times and n^2 times higher than *n* parallel transistor PA respectively. This leads to improved input and output matching in the specified bandwidth as well as less power loss in the output matching network [4].

One main disadvantage of the stacked transistor is that C_{GS} is non-linear in nature and impedance of stacked transistor depends on C_{GS} , thus leading to a reduction in linearity. In CMOS, body effect and source bulk capacitance (C_{SB}) progressively reduce the gain of the transistors in the upper sections of the stack. Also, the breakdown voltage of the drain–bulk junction diode limits the maximum allowable voltage swing in the stacked transistor. To overcome this, a triple-well CMOS process can be used if it is available in the technology.

The stacked transistor also leads to lower η_D compared to cascode. The reason behind this is that each transistor has C_{GD} and this capacitance leads to a shift in current compared to voltage (refer Figure 4.4). This leads to a larger overlap between current and voltage thereby reducing η_D . The overlap is directly proportional to the number of transistors in the stack. So it is better to have the least number of transistors to satisfy the breakdown voltage criteria. The design of having 3 transistors (2 nominal devices and 1 thick oxide device) is chosen as shown in Figure 4.3. The reason for not choosing 1 nominal and 2 thick oxide devices is that thick oxide has larger capacitance than nominal device, thereby leading to a larger shift in current and larger overlap in current and voltage. Subsequently, reducing η_D .

Instead of the nominal device, ultra-low or low threshold devices can be used since it has higher transconductance. But linearity is inferior for those devices, thus the nominal device was used.

Figure 4.3: Schematics of Figure 4.4: Plot showing current and voltage overlap stacked transistor

4.2. Output stage design

In this section, aspect ratios (W/L) and the biasing voltages (OS_V_{B2} , OS_V_{B1} and OS_V_{B0}) for the transistors in the output stage are discussed extensively. Differential impedance ($R_D(DE)$) between the drains of the output stage was calculated in Equation 3.2 to be

$$R_D(DE) = 38.7 \ \Omega$$

Single ended (*SE*) impedance to be seen at the drain of the differential pair to get required P_{OUT} of 27 dBm is

$$R_D(SE) = \frac{R_D(DE)}{2} = 19.39 \ \Omega \tag{4.3}$$

Single ended current swing in the fundamental band

$$I_{FUND}(SE) = \frac{V_{FUND}(SE)}{R_D(SE)} = 160.76 \ mA \tag{4.4}$$

Maximum current in the fundamental band

$$I_{FUND_MAX}(SE) = I_{FUND}(SE) = 160.76 \ mA$$
 (4.5)

DC current (I_{DC}) is calculated by [5]

$$I_{DC}(SE) = \frac{2}{\pi} I_{FUND_MAX}(SE) = 102.34 \ mA \tag{4.6}$$

DC power (P_{DC}) dissipated is given by

$$P_{DC} = 2 * V_{DD} * I_{DC}(SE) = 552.64 \ mW \tag{4.7}$$

Drain efficiency (η_D) is given by

$$\eta_D = \frac{P_{\text{OUT}}}{P_{DC}} = 90.7 \ \% \tag{4.8}$$

4.2.1. Design of top and bottom transistors

This subsection describes the procedure to design the top transistors ($M_2 \& M_5$) and the bottom transistors ($M_0 \& M_3$) shown in Figure 4.5.

W/L and biasing voltages for the top and bottom transistors are calculated by plotting the load-line. Figure 4.6 shows I_D vs V_{DS} of bottom transistor on left hand side (nominal device) and I_D vs V_{DS} of top transistor on right hand side (thick oxide device). Table 4.2 shows the aspect ratio of the top and bottom transistors. Load-line is drawn using $V_{FUND}(SE)$ and $I_{FUND}(SE)$ which is calculated in Equation 3.1 and 4.4. DC line is plotted using $I_{DC}(SE)$ calculated from Equation 4.6. From this, the aspect ratio as well as the biasing voltage of the top and bottom transistors are calculated. Deep N well is used in the top transistor (thick oxide) to counter drain-bulk breakdown. Deep N well is connected to V_{DD} via 2 $K\Omega$ since it helps in increasing efficiency (refer Figure C.1). Moreover, N well capacitance is in series with channel capacitance, thereby reducing the total parasitic capacitance [6].

Figure 4.5: Schematics of the output stage

Figure 4.6: Load-line for the output stage

Transistors	Top transistor (M_2 & M_5)	Bottom transistor (M ₀ & M ₃)
	Thick oxide	Nominal
Finger width (W)	1 um	1 um
Fingers (F)	32	32
Multiplier (M)	80	50
Total Width (W_T)	2.56 mm	1.6 mm

Table 4.2: Aspect ratio (W/L) of the top and bottom transistors in the output stage

4.2.2. Design of middle transistor

Since biasing voltages of top and bottom transistors are known, V_{DS} of middle transistor ($M_1 \& M_4$) can be calculated. For each multiplier, corresponding V_{GS} can be be found from Figure 4.8. The simulation was carried out to see effect of middle transistor's aspect ratio and biasing voltage on η_D and peak P_{OUT} which is shown in Table 4.3.

The multiplier for the middle transistor is chosen as 50 even though 40 has slightly better performance. The reason behind this is that the multiplier of the bottom transistor is 50 and having multiplier of middle transistor similar to this helps in the layout. Note that C_{ST1} and C_{ST2} are kept large (100 pF) so that it acts as cascode so as to get maximum η_D .

Figure 4.8: I_D vs V_{GS} at $V_{DS} = 0.9$ V for M_1 for different values of multiplier

Multiplier	V _{GS}	η_D	POUT
(M)	(V)	(%)	(dBm)
50	0.39	77.7	27.5
40	0.41	78	27.4
30	0.45	77.9	27.3
20	0.51	76.9	27.2

Table 4.3: Drain efficiency (η_D) and peak P_{OUT} for different values of multiplier

4.2.3. Design of C_{ST1} and C_{ST2}

As discussed in section 4.1, to obtain stacked operation, C_{ST} should be 0.5 - 2 times of C_{GS} . C_{GS} of the middle transistors ($M_1 \& M_4$) and the top transistors ($M_2 \& M_5$) are 0.47 pF and 1.56 pF, respectively.

Figure 4.9: Drain efficiency (η_D) , P_{OUT} , V_{DS} , V_{GS} , V_{GD} versus C_{ST2}

Input power level is kept 1 *dB* higher than the input compression point for this analysis ($P_{in} = 5 \ dBm$). X axis in the Figure 4.9 denotes the factor that needs to be multiplied with C_{GS2} to obtain the value of C_{ST2} in *pF*. From Figure 4.9, it is seen that η_D and P_{OUT} increases as C_{ST2} increases. This confirms the result that cascode has higher η_D than stacked. Also, it is seen that V_{DS} , V_{GS} and V_{GD} is lower in stacked

operation (when value of C_{ST2} is lower). This means there is a trade off between efficiency and nodal voltages while choosing the value of C_{ST2} . Note that during this optimization, value of C_{ST1} is kept as 100 pF.

$$C_{ST2} = 1.5 * C_{GS2} \approx 2.4 \ pF$$

Figure 4.10: Drain efficiency (η_D) , P_{OUT} , V_{DS} , V_{GS} , V_{GD} versus C_{ST1}

In this analysis also, input power level is kept 1 *dB* higher than the input compression point ($P_{in} = 5 dBm$). The X axis in Figure 4.10 denotes the factor that needs to be multiplied with C_{GS1} to obtain the value of C_{ST1} in *pF*. From Figure 4.10, it is seen that η_D and P_{OUT} increases as C_{ST1} increases similar to the previous case. It is seen that nodal voltages (V_{DS} , V_{GS} and V_{GD}) doesn't have a larger dependence on C_{ST1} . This means there is no added advantage in having C_{ST1} in stacked operation for nodal voltage. This is the reason C_{ST1} is chosen to operate in cascode. Note that during this optimization, value of C_{ST2} is kept as 2.4 *pF*.

$$C_{ST1} = 10 * C_{GS1} \approx 5 \ pF$$

The biasing point OS_{D_0} of the bottom transistor ($M_0 \& M_3$) can be reduced to get higher η_D as the PA moves closer to a switching PA. But, this degrades the linearity. In this case, OS_{D_0} was optimized to O.32 V such that η_D is higher without trading the linearity much.

4.3. Comparison of output networks with output stage

In this section, four output network designs are tested with output stage and input transformer. Input transformer converts single-ended input signal to differential signal and provides input matching over the bandwidth of 2.1 - 2.7 GHz. The biasing voltage for the bottom transistor is fed through the center tap of the input transformer. Input transformer is designed using the concept of double tuned transformer [7] [8]. Error vector magnitude (EVM) is calculated for all four designs using the script¹ provided by CATENA MICROELECTRONICS B.V.

Figure 4.11: Block diagram showing the input transformer, output stage and output network

From Table 4.4 shown in the next page, it is seen that there is comparatively a large variation in peak P_{OUT} and output 1dB compression point (OP1dB) across bandwidth (2.1 - 2.7 GHz) in the case of *Design B* and *D* unlike the Design *A* and *C*. This is due to large variation in the real part of 1^{st} harmonic for Design *B* and *D* (refer Figure 3.16a). *Design A* was chosen even though *Design C* performs slightly better. The reason is that RF choke in *Design C* is outside the chip and thus making it vulnerable to the outside factors. It is always easier to replicate the results if the entire design is inside the chip and there is no outside components. This applies when the PA is integrated into the WiFi chip as well.

4.4. Influence of 3rd harmonic impedance on drain efficiency and output 1 dB compression point

Figure 4.12 shows the influence of 3^{rd} harmonic impedance on maximum η_D and OP1dB for the frequency 2.4 GHz with Design A^2 output network and output stage. The 3^{rd} harmonic impedance in Design A can be adjusted by varying R_{SB} which was discussed in the section 3.3 (Figure 3.5b). It is observed that as the 3^{rd} harmonic impedance increases, there is negligible effect on maximum η_D and OP1dB.

¹Script uses AM (amplitude modulation) - AM and AM - PM (phase modulation) to calculate EVM. Since the script is propriety of CATENA MICROELECTRONICS B.V., it is confidential.

²no RF choke and with L_2C_2

		ŏ	esign A		De	sign B		Ğ	sign C		De	sign D	
4	arameters	ou)	RF chol	ex	l on)	RF chol	é	(with	RF cho	oke	(with	RF cho	ke
-			భ			త			త			భ	
		wi	th L_2C_2)		DC	L_2C_2)		wit	:h L ₂ C ₂)		u	L_2C_2)	
Clas	s of Operation	Class F	ŏ	LE L	Class F	CC	E.	Class F	ö	н	Class F	S	ų,
Fre	duency (<i>GHz</i>)	2.4	2.1	2.7	2.4	2.1	2.7	2.4	2.1	2.7	2.4	2.1	2.7
Pea	ik Pout (<i>dBm</i>)	26.9	26.5	26.5	26.9	25.8	28	27	26.4	27	26.9	25.9	28
10	P1dB (<i>dBm</i>)	25.6	25.5	25.4	25.6	25.2	27.6	25.7	25.4	26.1	25.7	25.3	27.7
	Maximum	70.3	60.8	69.69	70.6	52.7	6.99	70	61	71	70.9	53.2	66.8
(%) ⁻ "	@ P1dB	61.8	59.6	64.7	62.3	51.9	65.2	61.9	59.8	66.7	62.8	52.4	65.3
	@ Pout = 18 dBm	21.6	21.3	22.1	21.6	19.3	19.3	21.4	21.4	21.4	21.6	19.3	19.2
	@ Pout = 16.5 dBm	16.4	16.2	16.7	16.4	14.9	14.9	16.3	16.3	16.3	16.4	14.8	14.8
	@ Pout = 18 dBm	-31.1	-30.2	-29.3	-30.9	-22.2	-33.8	-31.9	-29.1	-32.4	-31.2	-22.5	-33.6
	@ Pout = 16.5 dBm	-35	-34.8	-34	-34.7	-25.7	-34	-35.7	-33.9	-36.2	-35	-26	-33.8
Volt	age Gain (<i>dB</i>)	22.9	22.3	23.2	22.9	21	20.9	22.7	22.4	22.6	22.9	21	20.8
IM3 (<i>dBc</i>)	@ Pin = -20 dBm	-64.5	-64.8	-64.4	-64.6	-61.5	-62.9	-64.5	-64.8	-64	-64.6	-61.6	-62.8
	@ Pin = 5 dBm	-13.2	-13	-12.6	-13.1	-12.9	-16.5	-13.4	-12.8	-13.2	-13.2	-12.9	-16.7
0)IP3 (<i>dBm</i>)	34.7	34.6	35	34.8	31.2	31.7	34.5	34.8	34.2	34.7	31.3	31.6

4.4. Influence of 3^{rd} harmonic impedance on drain efficiency and output 1 dB compression point 49

Table 4.4: Comparison between four output network designs

4

Figure 4.12: Drain efficiency (η_D) and output 1 dB compression point (*OP1dB*) versus 3^{*rd*} harmonic impedance at 2.4 GHz

From Figure 3.5b, it is evident that the 3^{rd} harmonic impedance at 2.1 GHz and 2.7 GHz is around 52 Ω and 74 Ω respectively. At the same time, Table 4.4 clearly indicates that the maximum η_D at 2.1 GHz and 2.7 GHz for Design A is 60.8% and 69.6%. This confirms that there is no need to have a open circuit or high impedance at 3^{rd} harmonic as it has very trivial effect on the parameters like η_D and 0P1dB.

4.5. Conclusion

This chapter explained the procedure to calculate the biasing voltages and W/L for the stack of three transistors. Further, the four output network designs were compared and *Design A* (no RF choke and L_2C_2) was chosen. The chapter also showed that 3^{rd} harmonic impedance has insignificant effect on η_D and OP1dB. The following chapter explains the procedure for the design of driver.

References

- B. Razavi, *Rf microelectronics: pearson new international edition* (Pearson Education Limited, 2013).
- [2] T. Sowlati and D. M. W. Leenaerts, A 2.4-ghz 0.18-μm cmos self-biased cascode power amplifier, IEEE Journal of Solid-State Circuits 38, 1318 (2003).
- [3] J. Jeong, S. Pornpromlikit, P. M. Asbeck, and D. Kelly, A 20 dbm linear rf

power amplifier using stacked silicon-on-sapphire mosfets, IEEE Microwave and Wireless Components Letters **16**, 684 (2006).

- [4] S. Pornpromlikit, J. Jeong, C. D. Presti, A. Scuderi, and P. M. Asbeck, A wattlevel stacked-fet linear power amplifier in silicon-on-insulator cmos, IEEE Transactions on Microwave Theory and Techniques 58, 57 (2010).
- [5] A. Grebennikov and N. Sokal, Switchmode RF Power Amplifiers. 1st ed. (Elsevier Inc., 2007).
- [6] H. Le, J. Crossley, S. R. Sanders, and E. Alon, A sub-ns response fully integrated battery-connected switched-capacitor voltage regulator delivering 0.19w/mm2 at 73% efficiency, in 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers (2013) pp. 372–373.
- [7] V. Bhagavatula, T. Zhang, A. R. Suvarna, and J. C. Rudell, An ultra-wideband if millimeter-wave receiver with a 20 ghz channel bandwidth using gain-equalized transformers, IEEE Journal of Solid-State Circuits 51, 323 (2016).
- [8] M. Vigilante and P. Reynaert, On the design of wideband transformer-based fourth order matching networks for E -band receivers in 28-nm cmos, IEEE Journal of Solid-State Circuits 52, 2071 (2017).

5

Design of driver

This chapter explains the procedure to design the driver. The sole reason to add the driver is to increase the voltage gain (G_V). This should be done without decreasing the output 1dB compression point (OP1dB) and the output third order intercept (OIP3).

5.1. Driver specification

	IIP3	12	dBm
Output stage	Power gain (G _P)	22.4	dB
output stuge	OIP3	34.7	dBm
	OP1dB	25.6	dBm

Table 5.1: Specifications of the output stage obtained after simulation of the schematics

Table 5.1 shows specifications obtained from the simulation of both output stage and *Design A*¹ output network at 2.4 GHz. Assume that the total *OIP*3 should be around 33 dBm and total power gain (G_P)

will be around 35 dB.

$$\Rightarrow$$
 G_{P_Driver} = 35 - 22.7 \approx 13 dB

¹no RF choke with L_2C_2

Using the below equation, *IIP*3_{Driver} can be calculated.

$$\frac{1}{IIP3_{\text{Total}}} = \frac{1}{IIP3_{\text{Driver}}} + \frac{G_{P_\text{Driver}}}{IIP3_{\text{OutputStage}}}$$
(5.1)

$$\Rightarrow$$
 IIP3_{Driver} = 5 dBm

$$OIP3_{\text{Driver}} = IIP3_{\text{Driver}} + G_{P_\text{Driver}} = 18 \ dBm \tag{5.2}$$

Theoretically, *OIP*3 is 10 dB higher than *OP*1dB.

$$OP1dB_{\text{Driver}} = OIP3_{\text{Driver}} - 10 = 8 \ dBm \tag{5.3}$$

$$IP1dB_{\text{Driver}} = OP1dB_{\text{Driver}} - G_{P \text{ Driver}} + 1 = -4 \ dBm \tag{5.4}$$

The important specifications *OIP*3 and *OP*1*dB* of the driver are calculated above.

5.2. Driver design

The driver needs to have decent linearity and voltage gain. Moreover, efficiency of PA is decided primarily by the output stage. So, it is wise to start with Class A driver. Then, later shift the biasing point to get the operation of Class AB such that linearity of the complete PA isn't degraded much. Peak output power can be assumed as

Differential-ended peak $P_{OUT} = 9 \ dBm$ Single-ended peak $P_{OUT} = 6 \ dBm$ Single-ended peak $P_{OUT} = 3.98 \ mW$

Supply voltage

 $V_{DD} = 2.7 V$

Single ended (SE) voltage swing

$$V_{FUND}(SE) = V_{DD} = 2.7 V$$
(5.5)

Single ended impedance to be seen at the drains of the driver

$$R_D(SE) = \frac{V_{FUND}^2(SE)}{2P_{\text{OUT}}} = 915.58 \ \Omega$$
 (5.6)

Single ended current swing at the fundamental band

$$I_{FUND}(SE) = \frac{V_{FUND}(SE)}{R_D(SE)} = 2.95 \ mA$$
(5.7)

Maximum current at the fundamental band

$$I_{FUND_MAX}(SE) = 2 * I_{FUND}(SE) = 5.90 mA$$
(5.8)

DC current is calculated by [1]

$$I_{DC}(SE) = \frac{I_{FUND_MAX}(SE)}{2} = 2.95 \ mA \tag{5.9}$$

DC power dissipated is given by

$$P_{DC}(SE) = V_{DD} * I_{DC}(SE) = 7.96 mW$$

Drain efficiency (η_D) is given by

$$\eta_D = \frac{P_{\text{OUT}}}{P_{DC}(SE)} = 50 \%$$

Since the peak P_{OUT} is 6 dBm and is operated as class A, simple cascode structure can be used for driver (shown in Figure 5.1).

Figure 5.1: Schematics of the driver

Figure 5.2: Schematics of test bench for simulating driver

Figure 5.3 shows I_D versus V_{DS} of the nominal device on left side and I_D versus V_{DS} of thick oxide device on the right side. Load-line is plotted using V_{FUND} and I_{FUND} which is calculated using Equation 5.5 and 5.7. From this, the W/L and biasing voltages of the top and bottom transistors can be calculated.

Figure 5.2 shows test bench used to test the driver cell. L_D is used to feed the V_{DD} and C_{AC} is used to block DC in the R_D . R_D isn't a physical component, but it is the impedance seen from the drain of the driver. It is added here solely for simulation purpose. In reality, V_{DD} for the driver is fed through the center tap of the inter-stage transformer.

Figure 5.3: Load-line for the driver

Transistors	Top transistor (<i>M</i> ₇ & <i>M</i> ₉) Thick oxide	Bottom transistor ($M_6 \& M_8$) Nominal
Finger width (W)	1 um	1 um
Fingers (F)	32	32
Multiplier (M)	80	50
Total width (W_T)	2.56 mm	1.6 mm

Table 5.2: Aspect ratio (W/L) of the transistors in the driver

The biasing point and aspect ratio of the transistors in the driver cell was tuned such that the class of operation shifts to AB instead of A as well as meet the *OIP3* and *OP1dB* specifications. The optimized biasing point and aspect ratio of the transistors are shown in Table 5.4. $R_D = 200 \Omega$ needs to be presented to the drain of the driver cell. This value is selected so that the voltage gain (G_V) and the linearity requirements of the driver cell are met. The function of capacitor $D_{-}C_{B1}$ is to make sure that the thick oxide devices ($M_7 \& M_9$) acts as a cascode. Meanwhile, $D_{-}C_{B0}$ acts as an AC coupling capacitor and makes sure that only the AC signal reaches the gate of the bottom transistors ($M_6 \& M_8$).

	Width (W) (um)	1
$M_7 \& M_9$	Fingers (F)	32
	Multiplier (M)	6
	Width (W) (um)	1
M ₆ & M ₈	Fingers (F)	32
	Multiplier (M)	2
D_V _{B1} (V)		1.35
D_V _{B0} (V)		0.38
D_C _{B1} (<i>pF</i>)		5
D	C_{B0} (pF)	5

 Table 5.3:
 Component values for the driver schematics

	IIP3	12	dBm
Output stage	Power gain	22.4	dB
(From simulation of schematics)	OIP3	34.7	dBm
	OP1dB	12 22.4 34.7 25.6 4.1 13.9 18.0 9.4 33.4 -2.9	dBm
	IIP3	4.1	dBm
Driver	Power gain	13.9	dB
(From simulation of schematics)	OIP3	18.0	dBm
	OP1dB	9.4	dBm
Total	OIP3	33.4	dBm
(Calculated by using Equation 5.1)	IIP3	-2.9	dBm

Table 5.4: OIP3 of the driver, output stage and entire system at 2.4 GHz

Table 5.4 shows the *OIP*3 and *OP*1*dB* of the driver and the output stage individually at 2.4 GHz which is obtained from the simulation of schematics. By using the Equation 5.1, *OIP*3 and *IIP*3 is computed for both the driver and output stage together and is presented in the last row of the Table 5.4. The performance of the driver at 2.1 GHz and 2.7 GHz are identical to that of 2.4 GHz. But it is important to note that the results tabulated here are at the schematics level and before integrating with the output stage.

5.3. Conclusion

This section explained the procedure to calculate biasing point and W/L of the transistors in the driver. The subsequent chapter explains the design of inter-stage between the driver and the output stage.

5

References

[1] A. Grebennikov and N. Sokal, *Switchmode RF Power Amplifiers. 1st ed.* (Elsevier Inc., 2007).
6

Design of inter-stage matching

This chapter illustrates the procedure to design the inter-stage matching between the **driver** (designed in chapter 5) and the **output stage** (designed in chapter 4). The main function of inter-stage matching is to present 200 Ω between the drains of the driver over the bandwidth of 2.1 - 2.7 GHz so as to meet the requirements of linearity and output 1 dB compression point (*OP1dB*). But the main motivation to use transformer as the inter stage matching compared to other alternatives are:

- It provides isolation between supplies of the driver and the output stage;
- It provides wide band matching over the entire bandwidth (2.1 2.7 GHz).

The concept of double tuned transformer was used to achieve matching over the entire bandwidth [1] [2]. But the double tuned network needs low transformer coupling (km), thus increasing the size of transformer in the layout. Also, inductance of primary and secondary coils is comparatively higher than normal transformer matching (can be seen in the later section). Considering these reason, normal transformer matched at 2.4 GHz was also considered as a candidate for the inter stage matching.

The following section compares 3 cases:

- Case 1 : Double tuned matching without parallel capacitor (C_{SEC});
- Case 2 : Double tuned matching with parallel capacitor (C_{SEC});
- Case 3 : Normal transformer matching.

6.1. Types of inter-stage matching

The input impedance of the output stage was measured by doing S-parameter simulation:

 $Rin_{os} = 2.11 \ k\Omega$

$$Cin_{OS} = 0.81 \ pF$$

The output capacitance of the driver was measured similar to the output stage. The technique is discussed in the Appendix A.

$$C_{DS DRIVER} = 99.5 fF$$

The output resistance of the driver is

$$Rout_{DRIVER} = 15 \ k\Omega$$

Figure 6.1: Schematics of double tuned transformer

Figure 6.2: Differential half circuit of double tuned transformer

The schematics of double tuned transformer is shown in Figure 6.1. In the differential half circuit (Figure 6.2), the transformer is modelled using primary inductance $(L_{P_{IS}})$, secondary inductance $(L_{S_{IS}})$ and mutual inductance between them (M), which is elucidated in [3]. Z_{DT} is calculated as

$$Z_{DT} = \frac{-\omega \left(-Cin_{OS}R_{P}T\omega^{2} + jT\omega - L_{P_{IS}}R_{P}\right)}{\left(jTR_{P}C_{PRI}Cin_{OS}\omega^{4} + C_{PRI}T\omega^{3} + j\left(C_{PRI}L_{P_{IS}} + Cin_{OS}L_{S_{IS}}\right)R_{P}\omega^{2} + L_{S_{IS}}\omega - jR_{P}\right)}$$
(6.1)

where

$$T = -L_{P_IS}L_{S_IS} + M^2$$

$$km = \frac{M}{\sqrt{L_{P_IS}L_{S_IS}}}$$

$$R_P = R_{SEC} ||Rin_{OS}|$$

The R_{SEC} is added in parallel to Rin_{OS} in order to reduce the input resistance of the output stage. In case R_{SEC} is not added or the value is higher than 200 Ω , then the input resistance of the output stage is high and there will be a large dip occurring at 2.4 GHz (Figure 6.3a). Consequently, 200 Ω won't be seen by the driver at 2.4 GHz, thus affecting the linearity performance of the PA and voltage gain of the driver at that frequency. This is the reason that the designs with double tuned transformer have $R_{SEC} \approx 200 \ \Omega$. In addition, R_{SEC} around 200 Ω keeps the turn ratio of the inter-stage transformer to be unity. On the contrary, a value lower than 200 Ω (for eq. 150 Ω) can reduce voltage gain of the system and also bring two peaks together. Thus, having lower matching at 2.1 GHz and 2.7 GHz. From Figure 6.3, it is seen that the spacing between the peaks is primarily determined by transformer coupling (km_{LS}) whereas $L_{S,LS}$ decides at which frequency the peak occurs.

(a) Without R_{SEC}

Figure 6.3: $\Re(Z_{DT})$ for different values of km and R_{SEC}

Figure 6.4a and 6.4b shows the schematics of double tuned transformer with and without C_{SEC} . Normal transformer matching schematics (Figure 6.4c) is similar to schematics of double tuned transformer without C_{SEC} (Figure 6.4a) but the value of $L_{P IS}$, $L_{S IS}$ and km_{IS} is different.

(c) Normal transformer matching (Case 3)

Figure 6.4: Inter-stage designs

6.1.1. Case 1 : Double tuned matching without parallel capacitor (*C*_{SEC})

The capacitance (C_{PRI}) connected to the primary side of transformer (refer Figure 6.5) is calculated as

$$C_{PRI} = Cin_{OS} * N^2 - \frac{C_{DS_DRIVER}}{2}$$
(6.2)

The turn ratio of transformer

$$N = \sqrt{\frac{R_{SEC}}{200}} \tag{6.3}$$

The primary inductance $L_{P IS}$ can be calculated as

$$L_{P_IS} = \frac{L_{S_IS}}{N^2} \tag{6.4}$$

The variables available for tuning is secondary inductance $(L_{S_{IS}})$, resistance added at secondary side (R_{SEC}) and transformer coupling (km_{IS}) . The values of components are shown in Table 6.1.

Figure 6.5: Schematics of double tuned matching without parallel capacitor (C_{SEC})

6.1.2. Case 2 : Double tuned matching with parallel capacitor (C_{SEC})

Compared to the previous design, a capacitance C_{SEC} is added to secondary side. This is done to reduce both $L_{P_{IS}}$ and $L_{S_{IS}}$.

The capacitance (C_{PRI}) connected to the primary side of transformer (refer Figure 6.6) is calculated as

$$C_{PRI} = (Cin_{OS} + C_{SEC}) * N^2 - \frac{C_{DS} DRIVER}{2}$$
(6.5)

N and $L_{S_{IS}}$ can be calculated using the Equation 6.3 and 6.4. Like the previous design, $L_{S_{IS}}$, R_{SEC} and km_{IS} are available for tuning. In addition to this, C_{SEC} is also available. The values of components are shown in Table 6.1.

Figure 6.6: Schematics of double tuned matching with parallel capacitor C_{SEC}

6.1.3. Case 3 : Normal transformer matching

In this case, transformer is designed to provide 200 Ω only at 2.4 GHz and not at other frequencies like 2.1 GHz and 2.7 GHz. R_{SEC} is added here so that the turn ratio of the inter-stage transformer is not very large so as to present 200 Ω between the drains of the driver. The main motivation to test this design is that $L_{P_{_IS}}$ and L_{S_IS} is lower than previous designs and also km_{IS} is high. The above-mentioned specifications reduces the transformer size in layout significantly. The values of components are shown for normal transformer matching in Table 6.1.

Figure 6.7: Schematics of normal transformer matching

6.2. Double tuned transformer vs Normal transformer

	Case 1 : Double tuned	Case 2 : Double tuned	Case 3 : Normal
	transformer matching	transformer matching	transformer
	without C _{SEC}	with C _{SEC}	matching
<i>R_{SEC}</i> (Ω)	200	160	200
C _{SEC} (pF)	-	0.5	-
L _{P_IS} (nH)	2.7	2.25	1.25
L _{S_IS} (nH)	2.7	1.8	1.25
km _{IS}	0.4	0.35	0.85
C _{PRI} (pF)	0.7	0.95	1

This section compares the performance of the PA with the 3 designs of inter-stage.

The differential impedance (both real and imaginary part) presented to the drains of the driver is shown in Figure 6.8. It is seen that normal transformer matching (case 3) doesn't present 200 Ω at 2.1 GHz and 2.7 GHz which is expected as per the design. The other 2 inter-stage designs which uses double tuned network concept present around 200 Ω for the entire bandwidth (2.1 - 2.7 GHz).

Figure 6 8: Impedance presented to the driver

Figure 6.8: Impedance presented to the driver for *3* designs of inter-stage matching

From Table 6.2, it is seen that normal transformer matching (*case 3*) has similar performance at 2.1 GHz and 2.7 GHz in terms of maximum efficiency even though

Table 6.1: Component values for the 3 designs of inter-stage matching

		Case 1 : Double tuned			Case 2 : Double tuned			Case 3 : Normal		
		Transfo	mer m	atching	transfor	mer ma	atching	transformer		
		wit	hout Cs	SEC	with C _{SEC}			matching		
Clas	s of Operation	Class F	C	CF	Class F	C	CF	Class F	C	CF
Fre	quency (<i>GHz</i>)	2.4	2.1	2.7	2.4	2.1	2.7	2.4	2.1	2.7
OP1dB (<i>dB</i>)		25.0	25.0	25.3	25.1	25.1	25.3	23.1	24.7	25.1
	Max	67.3	62.1	67.5	67.4	60.9	70.6	69.1	61.7	68.2
Efficiency	@ P1dB	56.2	56.1	61.8	56.1	57.5	62.0	48.4	55.1	61.3
(η)(%)	@ Pout = 18 dBm	20.1	19.9	20.5	20.1	20.0	20.5	20.2	19.9	20.6
	@ Pout = 16.5 dBm	15.2	15.1	15.4	15.2	15.1	15.4	15.2	15.1	15.5
EVM	@ Pout = 18 dBm	-31.4	-28.5	-30.3	-30.9	-29.7	-27.6	-25.3	-25.8	-28.4
(<i>dB</i>)	@ Pout = 16.5 dBm	-36.8	-34.2	-34.9	-35.3	-35.1	-31.5	-29.4	-29.3	-34.4
Volt	age Gain (<i>dB</i>)	30	29.7	30.5	28.4	29.4	30.5	30.0	24.2	27.3

Table 6.2: Performance of PA with 3 inter-stage designs

the driver doesn't see an impedance of 200 Ω . This shows efficiency is dominated by the output stage and not the driver. But in terms of EVM, there is a significant degradation for normal transformer matching (case 3) even at 2.4 GHz where the impedance is matched to 200 Ω . This can be attributed to the large AM-PM shift for normal transformer matching which is showcased in Figure 6.9a. Figure 6.9b shows that the trend is same for 2.1 GHz and 2.7 GHz. Double tuned transformer with C_{SEC} (case 2) is selected as it has lower value of $L_{P_{-IS}}$ and $L_{S_{-IS}}$ than case 1 as well as better EVM performance compared to case 3.

(b) AM-PM for 2.1 GHz and 2.7 GHz

Figure 6.9: Phase difference between input of the driver and the output of the output stage (AM-PM) for 3 designs of inter-stage matching (*DT* - double tuned transformer and *NT* - normal transformer)

6.3. Conclusion

This chapter illustrated the procedure to design the inter-stage matching. The interstage matching is designed using double tuned transformer with C_{SEC} (*case 2*) as it has lower $L_{P_{IS}}$ and $L_{S_{IS}}$ and better EVM performance. Upcoming chapter shows the entire circuit of the PA and final results using schematics.

References

- [1] M. Vigilante and P. Reynaert, On the design of wideband transformer-based fourth order matching networks for *E*-band receivers in 28-nm cmos, IEEE Journal of Solid-State Circuits **52**, 2071 (2017).
- [2] V. Bhagavatula, T. Zhang, A. R. Suvarna, and J. C. Rudell, An ultra-wideband if millimeter-wave receiver with a 20 ghz channel bandwidth using gain-equalized transformers, IEEE Journal of Solid-State Circuits **51**, 323 (2016).
- [3] J. R. Long, *Monolithic transformers for silicon rf ic design*, IEEE Journal of Solid-State Circuits **35**, 1368 (2000).

7

Entire PA (Driver, inter-stage, output stage & output network)

This chapter shows the results of the entire circuit (driver, inter-stage, output stage and output network) schematics at 125° C. It also checks if circuit is layout friendly in terms of the size of the transformer and inductance of primary and secondary coils in the output network.

7.1. PA performance based on schematics

Figure 7.1: PA architecture

The chapters 5, 6, 4, and 3 discussed the design of the driver, inter-stage matching, output stage and output network respectively.

From two-tone test, *OIP*3 for the entire system consisting of the driver, interstage matching, output stage and output network was simulated to be *32.2 dBm* at *2.4 GHz*. This matches with the value (*33.4 dBm*) calculated in chapter 5. Thus, confirming that linearity is dictated by the output stage and not the driver.

Class of Operation		Class F	C	CF
Frequency (<i>GHz</i>)		2.4	2.1	2.7
OP1dB (<i>dB</i>)		25.1	25.1	25.3
	Max	67.4	60.9	70.6
Efficiency	@ P1dB	56.1	57.5	62
(η)(%)	@ Pout = 18 dBm	20.1	20.0	20.5
	@ Pout = 16.5 dBm	15.2	15.1	15.4
EVM	@ Pout = 18 dBm	-30.9	-29.7	-27.6
(<i>dB</i>)	@ Pout = 16.5 dBm	-35.3	-35.1	-31.5
Volt	age Gain (<i>dB</i>)	28.4	29.4	30.5
IM3	@ Pin = -20 dBm	-40.5	-46	-46.3
(dBc)	@ Pin = -7 dBm	-15.1	-19.9	-13.1
C	DIP3 (<i>dBm</i>)	32.2	31.5	35.9

Table 7.1: Performance of PA with the driver, inter-stage, output stage and output network

The value of inductance of primary and secondary coils are 2.2 nH and 3.9 nH. These values are pretty large and can't be created inside the chip efficiently. In the chapter 3, value of transformer coupling (km) is chosen as 0.8 for designing the output network where ever the number of variables is more than the number of equations. Below section discusses the effect of varying transformer coupling (km) on component values and performance of the PA.

7.2. Influence of transformer coupling (*km*) in the output network on PA performance

From Table 7.2, it is seen that reducing transformer coupling (km) reduces inductance of the primary (L_P) and the secondary coil (L_S) of the output balun. At the same time, inductance of second harmonic trap (L_2) increases with km. The Design

7.2. Influence of transformer coupling (*km*) in the output network on PA performance 71

Output Network	L _{BND}	L_P	N	km	L _S	C _L	L_2	<i>C</i> ₂	C _{DCP}	Selected
Design	(nH)	(<i>nH</i>)	IV	кт	(<i>nH</i>)	(<i>pF</i>)	(<i>nH</i>)	(<i>pF</i>)	(<i>pF</i>)	Designs
	1	3	1.38	0.85	5.8	0.9	0.7	1.5	100	
	1	2.2	1.34	0.8	3.9	0.9	0.7	1.5	100	I
Design A	1	1.7	1.25	0.75	2.7	1	0.8	1.4	100	
(no PE Choke &	1	0.7	0.94	0.7	0.7	3	2.4	0.5	100	
with I C	1	1.2	1.15	0.7	1.6	1.3	0.9	1.3	100	
	1	0.8	0.99	0.69	0.8	2.4	1.5	0.8	100	II
	1	1.1	1.11	0.69	1.4	1.5	0.9	1.2	100	III
	No solution exist for values of km below 0.69									

Table 7.2: Component values in Design A for different transformer coupling km

I (highlighted in blue in Table 7.2) represents Design A¹ output network with km = 0.8 in the output balun which was previously chosen in chapter 4. The *Design II* (highlighted in red in Table 7.2) and *Design III* (highlighted in green in Table 7.2) denotes variants of Design A output network with km = 0.69 in the output balun. These 2 designs are shortlisted to be compared with *Design I* because they have the least value of L_P , L_S and L_2 compared to the others in the table. In the following subsection, impedance of *Design II* and *III* will be compared with that of *Design I* at 1^{st} , 2^{nd} and 3^{rd} harmonic.

7.2.1. Impedance at first harmonic (ω_0)

Figure 7.2: Impedance (Z_D) at 1^{st} harmonic (ω_0) for different values of km

From Figure 7.2a, it is seen that real part at 1st harmonic is flatter in the bandwidth 2.1 - 2.7 GHz for Design I compared to Design II and III. Also, reactance is larger in Design II and III compared to Design I which is shown in Figure 7.2b.

¹no RF choke and with L_2C_2

7.2.2. Impedance at second harmonic $(2\omega_0)$

From Figure 7.3a and 7.3b, it is seen that *Design II* has larger magnitude at 2^{nd} harmonic compared to other designs. Since in CCF, 1^{st} harmonic reactance and 2^{nd} harmonic reactance should have an inverse relationship. Thus, in *Design II*, reactance is larger at 1^{st} and 2^{nd} harmonic, therefore keeping the CCF requirements intact.

7.2.3. Impedance at third harmonic $(3\omega_0)$

Figure 7.4: Magnitude of Z_D ($|Z_D|$) at 3^{rd} harmonic ($3\omega_0$) for different values of km

As designed, *3* variants of Design A² output network have an impedance of 1000Ω at 3^{rd} harmonic. It is also seen that impedance at 2.1 GHz and 2.7 GHz is less for all 3 output network designs. From the section 4.4, it is important to note that the 3^{rd} harmonic impedance doesn't have significant effect on the PA performance.

Frequency (GHz)	Parameter	Ι	II	III
2.4	η @ Ρ1dB (%)	56.1	56.5	55.9
	OP1dB (<i>dBm</i>)	25.1	25.3	25.3
	η @ Pout = 18 dBm (%)	20.1	20.0	19.9
2.17	η @ Pout = 16.5 dBm (%)	15.2	15.1	15.0
	EVM @ Pout = 18 dBm (<i>dB</i>)	-30.9	-30.7	-31.7
	EVM @ Pout = 16.5 dBm (<i>dB</i>)	-35.3	-34.4	-35.8
2.1	η @ Ρ1dB (%)	57.5	55.9	57.5
	OP1dB (<i>dBm</i>)	25.1	25.1	25.0
	η @ Pout = 18 dBm (%)	20.0	19.4	20.0
	η @ Pout = 16.5 dBm (%)	15.1	14.8	15.1
	EVM @ Pout = 18 dBm (<i>dB</i>)	-29.7	-25.2	-27.1
	EVM @ Pout = 16.5 dBm (<i>dB</i>)	-35.1	-29.6	-32.1
	η @ Ρ1dB (%)	70.6	69.5	71.4
	OP1dB (<i>dBm</i>)	25.3	26.6	26.3
27	η @ Pout = 18 dBm (%)	20.5	18.6	19.4
2.7	η @ Pout = 16.5 dBm (%)	15.4	14.2	14.7
	EVM @ Pout = 18 dBm (<i>dB</i>)	-27.6	-33.6	-32.6
	EVM @ Pout = 16.5 dBm (<i>dB</i>)	-31.5	-35	-35.1

7.2.4. Performance comparison

Table 7.3: Efficiency (η) , OP1dB and EVM for 3 variants of Design A output network based on different km values

From Table 7.3, it is seen that all 3 designs have similar performance at 2.4 GHz. Even though efficiency remains same at 2.1 GHz and 2.7 GHz, EVM performance is different in each case. Design II is chosen because it has lower inductance for primary and secondary coils for the output balun and the performance of PA isn't

²no RF choke and with L_2C_2

affected a lot.

The performance of the PA with Design A output network (*Design II*) is tabulated in Table 7.4. The plots showing the voltage and current waveforms at the drain of the top transistor (M_2) at 2.1, 2.4 and 2.7 GHz are available in Appendix C.

Clas	Class F	CC	CF	
Frequency (GHz)		2.4	2.1	2.7
OP1dB (<i>dB</i>)		25.3	25.1	26.6
	Max	68.6	59.2	69.5
Efficiency	@ P1dB	56.5	55.9	60.8
(%)	@ Pout = 18 dBm	20.0	19.4	18.6
	@ Pout = 16.5 dBm	15.1	14.8	14.3
EVM	@ Pout = 18 dBm	-30.7	-25.2	-33.6
(<i>dB</i>)	@ Pout = 16.5 dBm	-34.4	-29.6	-35.0
Volt	age Gain (<i>dB</i>)	28.3	29.3	28.6
IM3	@ Pin = -20 dBm	-40.0	-42.4	-46.3
(dBc)	@ Pin = -7 dBm	-15.6	-18.4	-14.7
C	0IP3 (<i>dBm</i>)	31.9	31.74	32.1

Table 7.4: Performance of the PA with the driver, inter-stage, output stage and Design A output network (*Design II*)

7.3. Conclusion

This chapter showed the performance of PA for different variants of Design A based on values of transformer coupling (km). In the end, *Design II* (with km = 0.69and $L_P = 0.8$ *nH*) is chosen because it has smaller inductance for primary and secondary coils. Thus, making it layout friendly. Next chapter describes layout of each component in detail.

8

Layout

This chapter explains the layout of the driver, inter-stage, output stage, and output network (*Design A*¹) as well as the layout of the entire PA chip. Due to unforeseen circumstances, tape-out in TSMC 22 nm ULL was canceled by the company CATENA MICROELECTRONICS B.V. Later, the entire design was ported to TSMC 40 nm so that the tape out could happen through TU DELFT in March 2021.

8.1. Conversion to TSMC 40 nm

Table 8.1 compares the aspect ratio (W/L) of the transistors in the driver and output stage, also the values of components in the inter-stage matching and output network between TSMC 22 nm ULL and TSMC 40 nm.

The number of multipliers (*M*) for the transistors in the output stage is higher for 40 nm than 22 nm due to lower transconductance (g_m) of the nominal device in 40 nm.

By specification, the maximum V_{DD} of the thick oxide is 2.5 V in 40 nm compared to that of 1.98 V in 22 nm. The value of C_{ST2} is increased from 2.4 pF to 6 pF in 40 nm since the thick oxide device has a higher breakdown voltage in this technology.

But for the driver, the thick oxide has lower M in 40 nm than 22 nm. Here, the reason is that 40 nm has flatter g_m , thereby better linearity. So, M of thick oxide device could be reduced in 40 nm. The nominal device in the driver still has more multipliers in 40 nm because of lower g_m .

The value of components for the inter-stage in 40 nm were calculated in the same way as shown in the chapter 6. The component values in the output network was kept same for for 22 nm and 40 nm. Even though the drain source capacitance (C_{DS}) was 1.87 pF in 22 nm and 1.7 pF in 40 nm. This didn't have any significant effect on the performance of the PA.

¹no RF choke, with L_2C_2 and km = 0.69 in the output balun

Technology		22 nm	40 nm	Unit			
Driver							
M_ & M_	W * N * M	1*32*6	1*32*4	um			
	^{& M} ₉ L 30	40	nm				
M. & M.	W * N * M	1*32*2	1*32*4	um			
1116 C 1118	L	30	40	nm			
D_	_V _{B1}	1.35	1.36	V			
D_	_V_B0	0.38	0.46	V			
D_C_{B1}		5	1	рF			
D_C_{B0}		5	1	рF			
-	<i>b</i> 0			F			

Tech	nology	22 nm	40 nm	Unit			
Output stage							
M & M	W * N * M	1*32*80	1*32*80	um			
m ₂ c m ₅	L	30	*32*80 1*32*80 1 30 40 r *32*50 1*32*80 u 30 40 r	nm			
М. & М.	W * N * M	1*32*50	1*32*80	um			
<i>m</i> ₁ α <i>m</i> ₄	L	30	40	nm			
M. & M.	W * N * M	1*32*50	1*32*80	um			
m ₀ G m ₃	L	30	40	nm			
OS	V_{B2}	2.26	2.31	V			
OS	_V_B1	1.09	1.36	V			
$OS_{V_{B0}}$		0.32	0.46	V			
С	<i>C_{ST1}</i> 5 5		рF				
С	ST2	2.4	6	рF			

Technology	22 nm	40 nm	Unit	Technology	22 nm	40 nm	Unit
Inter-stage matching				Outp	ut networl	C	
R _{SEC}	160	190	Ω	L_P	0.8	0.8	nH
C _{SEC}	0.5	0.11	рF	L _S	0.8	0.8	nH
L _{P_IS}	2.25	2.25	nH	km	0.69	0.69	
L _{S_IS}	1.8	1.8	nH	L ₂	1.4	1.4	nH
km	0.35	0.35		<i>C</i> ₂	0.8	0.8	рF
C_{PRI}	0.95	1	рF	C_L	2.4	2.4	рF

Table 8.1: Component values and aspect ratios of the transistors in TSMC 22 nm

 ULL and TSMC 40 nm

8.2. Layout

This section shows the layout of the driver, inter-stage, output stage and output network.

8.2.1. Driver

In Figure 8.2, the biasing circuit is highlighted in yellow which is common to both P and N cells. The resistor of 53 Ω is added between each input of the driver and ground (marked with a green rectangle in the right side of Figure 8.2). This is done to obtain 50 Ω matching at inputs of the PA chip to make testing easier.

Figure 8.2: Layout of the driver

8.2.2. Inter-stage matching

Figure 8.3: Layout of inter-stage matching

Due to the parasitic capacitance and resistance in the layout of inter-stage matching (Figure 8.3), C_{SEC} and R_{SEC} are removed. Also, C_{PRI} (marked with a blue rectangle in Figure 8.2) was reduced from 1 pF to 0.33 pF. Moreover, L_{P_IS} and L_{S_IS} was also reduced to 2.1 nH and 1.1 nH respectively to get required matching in the bandwidth 2.1 - 2.7 GHz². The reason to reduce the inductance is the presence of increased parasitic capacitance due to ultra thick metal layer in 40 nm. Figure 8.4 shows the differential impedance presented to the drain of the driver for ideal and momentum (MoM) simulation case. For this simulation, the outputs of the interstage transformer ($OS_V_{in_p} \& OS_V_{in_n}$) are connected to RC extracted view of the output stage which is followed by the MoM^3 simulation of the output network.

Figure 8.4: Differential impedance presented to the drain of the driver (Z_{D_Driver}) for ideal and (MoM) simulation case

8.2.3. Output stage

In Figure 8.5, P and N cells are marked with a red rectangle. Each cell consist of 4 unit cells which is marked with a blue rectangle in Figure 8.5 and enlarged image is shown in the right side. The biasing voltages OS_V_{B2} , OS_V_{B1} , and OS_V_{B0} are generated using 3 biasing circuit (highlighted in yellow rectangle in Figure 8.5) which is common to both P and N cells. When individual biasing circuits were provided for each unit cell in the output stage, there wasn't much improvement in the EVM performance. Moreover, there was significant degradation in efficiency

²previous value of $L_{P IS}$ and $L_{S IS}$ was 2.25 nH and 1.8 nH which is available in Table 8.1

³Momentum file included both inter-stage and output network

Figure 8.5: Layout of output stage

due to increased current consumption in the biasing circuits. Owing to this reason, it was chosen to have global biasing circuits for both P and N cells in the output stage.

8.2.4. Output network

The main motivation to have balun with diameter of 600 um is to have high self resonance frequency (at least above 8.4 GHz). The designed balun has self resonant frequency of 10 GHz. The drain of each unit cell in the output stage is connected to output balun at the locations marked with red arrow (P1, P2, P3 and P4) in Figure 8.5. The capacitors C_2 and C_L are marked in blue and purple respectively.

The entire output network except the capacitors (C_2 and C_L) were simulated in the ADS momentum. The *MoM* simulation of capacitors take a long time due to fringe capacitance and smaller mesh. Instead of *MoM* simulation, *RC* extracted view can be used to calculate capacitance by performing PEX and both these values matches pretty well.

Figure 8.7 denotes the impedance (Z_{D_OS}) seen from the drains of the output stage for ideal case⁴ versus non-ideal case⁵. Ideal case (blue dotted line) is plotted with $C_{DS} = 1.7 \ pF$ which is calculated for 40 nm after the layout of output stage transistors were completed⁶. P1, P2, P3, and P4 (marked with red arrow in Figure 8.6) denotes the points where each unit cell of the output stage is connected to

⁴lossless components

⁵*MoM simulation* for balun and inductor L_2 whereas *RC extracted view* for capacitors C_2 and C_L

⁶Using the technique explained in Appendix A

Figure 8.6: Layout of output network (balun, second harmonic trap L_2C_2 , load capacitance C_L)

the output balun. This simulation is carried out to estimate the inductance between each unit cell and its effect on output network response.

Figure 8.7: Impedance $(Z_D \ OS)$ at 1^{st} harmonic (ω_0) for ideal and MOM simulation

Figure 8.8 showcases the reactive part and magnitude of Z_{D_OS} at 2^{nd} harmonic. It is seen that $|Z_{D_OS}|$ for the non-ideal case doesn't reach 0 because of finite quality factor and attains minimum value of 2.3Ω at 4.6 GHz. Another observation made from Figure 8.8a is that zero crossing of $\Im(Z_{D_OS}(\omega_0))$ has shifted to 4.6 GHz compared to 4.8 GHz in the ideal case. But, the requirement for CCF operation is the increasing trend at $\Im(Z_{D_OS}(2\omega_0))$, so shifting of zero crossing from 4.8 GHz to 4.6 GHz doesn't have significant effect on the performance of PA.

Figure 8.8: Impedance $(Z_{D_{OS}})$ at 2^{nd} harmonic $(2\omega_0)$ for ideal and *MoM* simulation

Figure 8.9: Magnitude of $Z_{D_{OS}}$ at 3^{rd} harmonic $(3\omega_0)$ for ideal and *MoM* simulation

Figure 8.9 shows that the peak of $|Z_{D_{OS}}(3\omega_0)|$ for the ideal case is shifted slightly from 7.2 GHz which is due to change in C_{DS} from 1.87 pF to 1.7 pF. Similarly, for non-ideal case, $|Z_{D_{OS}}(3\omega_0)|$ is lower (around 100 Ω). But, it was explained in section 4.4 that 3^{rd} harmonic impedance has trivial effect on PA performance.

8.3. Comparison between TSMC 22 nm ULL and TSMC 40 nm

Table 8.2 shows the performance of PA in 22 nm and 40 nm with

 RC extracted view for the driver, reference generators, output stage and capacitors (C₂ & C_L) in the output network;

Reference	e Generator -						
RC Extracted							
Driver w	ith biasing -						
RC E	xtracted		TCMC			TCMC	
Output Stag	e with biasing -						
RC E	xtracted	22		L	-	40 NM	
Inter	-stage &						
Output	t Network						
- МоМ							
Class of	Class of Operation		CCF		Class F CCF		CF
Freque	Frequency (<i>GHz</i>)		2.1	2.7	2.4	2.1	2.7
Output F	91dB (<i>dBm</i>)	22.6	22.4	23.9	23	23	22.1
	Max	35.1	35.3	33.2	40.8	41.2	33.7
Ffficiency (%)	@ P1dB	31.7	30.2	32.3	35.3	34.6	26.4
	@ Pout <i>18 dBm</i>	18.0	17.5	16.7	17.1	16.5	15.2
	@ Pout 16.5 <i>dBm</i>	14.2	13.8	13.3	13.2	12.8	12.1
Voltage	Gain (<i>dB</i>)	26.4	28.1	24.0	24.8	26.8	20.2
Output Net	work Loss (<i>dB</i>)	-2.1	-2.1	-2.2	-1.2	-1.2	-1.4
OIP3 (dBm)		30.7	29.1	28.0	33.8	34.9	31.5
IM3 @ Pi	n = <i>-20 dBm</i>	-37.6	-30.9	-37.8	-46.3	-44.4	-50.9
IM3 @ P	in = <i>-7 dBm</i>	-13.0	-12.0	-15.1	-14.9	-12.5	-22.8

Table 8.2: Performance of PA in TSMC 22 nm ULL and TSMC 40 nm

• *MoM* simulation for inter-stage transformer, output balun and *L*₂ of second harmonic trap.

The metal stack in 22 nm consist of 5 Mx, 2 Mz and AP whereas in 40 nm consists of 4 Mx, 1 Mz, 1 Ultra and AP. The presence of ultra thick layer has its own merits and demerits. It helps to get higher quality factor in 40 nm (at least 13 compared to 7 in 22 nm). But ultra thick metal layer leads to higher capacitance due to increased area. This had significant effect on the design of the output network and inter-stage.

In the case of the output network, the spacing between the drains of output stage (Figure 8.6) were increased to counter increased capacitance. Otherwise, there was peaking in the gain plot which signifies lower phase margin and can lead to instability.

Likewise, in the case of inter-stage matching, L_{P IS} and L_{S IS} were reduced

to counter increased parasitic capacitance because of ultra thick metal layer and thereby, get required matching in the bandwidth 2.1 - 2.7 GHz.

Figure 8.10: Pin layout of CCF chip

The pin diagram of the CCF is shown in Figure 8.10. Figure 8.11 portrays the layout of the complete chip including decoupling capacitors⁷ and dummy metal fill⁸. The reference generators are marked with a blue rectangle in Figure 8.11. Reference generator circuit takes 1 V as input and has on chip resistor of 2.35 K Ω to generate a required current for biasing. Then , this current is copied using current mirrors to the biasing circuit to generate the biasing voltages for the output stage $(OS_V_{B2}, OS_V_{B1} \text{ and } OS_V_{B0})$ and the driver $(D_V_{B1} \text{ and } D_V_{B0})$ (refer Figure B.2 and B.1).

The CCF PA chip has been provided with 3 separate grounds:

- AVSS_IN_PRI connected to the driver;
- AVSS_ACTIVE connected to output stage;
- AVSS_OUT_SEC connected only to output of balun and load capacitance (C_L).

⁷Decoupling capacitor consists of a MOM cap, MOS cap and 9 KΩ DQ resistor. The decoupling capacitor was designed by MSc M.R.Beikmirza.

⁸The dummy metal fill was done for passive components like inter-stage transformer and output balun manually such that the performance is not lost.

The motivation to keep grounds of the driver and output stage separate is similar to the reason of having transformer for inter-stage matching, that is, to prevent coupling between them. Since there will be large swing at the output of the balun, it is better to keep different grounds for the output stage and output of the balun. All three grounds are connected together on the printed circuit board (PCB).

8.4. Conclusion

This chapter initially explained the conversion of the design⁹ to TSMC *40 nm* from TSMC *22 nm* ULL. It also compared the performance of the PA in *22 nm* and *40 nm*. Then, the chapter described the layout of the driver, inter-stage, output stage and output network. The following chapter showcases the post layout results of Continuous Class F power amplifier.

⁹including aspect ratio of transistors, biasing voltage and component values in the output network and inter-stage

Figure 8.11: Chip of Continuous Class F (CCF) power amplifier (PA)

9

Post layout simulation results

The core design which consists of reference current generators, driver, inter-stage matching, output stage and output network is marked with blue rectangle in Figure 9.1. The reference generators, driver, C_{PRI} (part of inter-stage matching), output stage, and C_2 and C_L (part of output network) are modeled using RC extracted view. The transformer (part of the inter-stage), balun and L_2 (part of the output network) are modeled using Momentum $(M \circ M)$ simulation. The inter-stage transformer and output balun with L_2 was simulated in a single momentum file. The inputs of the inter-stage $(D_{v_{out p}} and D_{v_{out n}})$ were left open and a port was placed between the outputs (between $OS_{V_{in} n}$ and $OS_{V_{in} n}$). Similarly, at the inputs of the balun (P1, P2, P3 and P4 of OS_{Vout_p} and OS_{Vout_p}), ports were placed and the outputs were left open. Then, the isolation between the inter-stage transformer and output balun was measured to be -40 dB. The ground plane is kept 40 um away from the transformers so that the parameters of the output network (L_P, L_S, km) and inter-stage transformer (L_P, L_S, L_S, km_{IS}) are not varied so much. To further minimize the effect of ground plane, slots are added at the side facing the transformer. This reduces eddy currents as well [1]. The dummy metals were also added to the momentum file for simulation so that the effect of these are also considered [2].

The bondwire inductance (L_{BND_VDD}) for the supply of the driver and output stage $(AVDD_OS \text{ and } AVDD_DRIVER)$ is assumed to be 1.5 nH. Since $AVDD_OS$ is provided by 9 pins (refer Figure 8.10), the L_{BND_VDD} is reduced to 1.5 nH/9¹. Also, supply and ground are interleaved (refer Figure 8.11) so mutual inductance between the supply L_{BND} can be neglected [3]. Similarly, L_{BND_VDD} for the supply of the driver is reduced to 1.5 nH/4. For the 3 grounds, namely $AVSS_IN_PRI$, $AVSS_ACTIVE$ and $AVSS_OUT_SEC$, the L_{BND_GND} is assumed to be 0.5 nH. Since there are multiple pins connected to ground similar to supply, the approximated bondwire inductance for $AVSS_IN_PRI$, $AVSS_ACTIVE$ and $AVSS_OUT_SEC$ becomes 1.5 nH/9, 1.5 nH/9 and 1.5 nH/4, respectively.

¹Since it is parallel connection and assuming all bondwire inductance are equal.

All the pads except OUT pad and $AVSS_OUT_SEC$ pads have electrostatic diodes (ESD) and these are taken from ELCA² inventory. These pads have a capacitance of $C_{PAD} = 0.7 \ pF$. The electrostatic diodes (ESD) are removed for the OUT pad (highlighted with a purple rectangle in Figure 8.11) since the balun provides isolation to the active devices. Moreover, adding ESD reduces the linearity since it contains a significant amount of nonlinear capacitance. The pad capacitance for OUT was simulated in MoM and the value was calculated to be $0.3 \ pF$.

Below sections shows the results with schematics portrayed in Figure 9.1 for temperatures -40° C, 27°C, 70°C and 125°C.

Figure 9.1: Schematics consisting of core design, decoupling capacitor (C_{DCP}), bondwire inductance (L_{BND}) and pad capacitance (C_{PAD}) to model the entire chip

²Electronic Circuits and Architectures (ELCA), a research group in TU Delft

9.1. Peak power and output 1 dB compression point

The input power was swept from -30 dBm to 2 dBm in the harmonic balance test (considering 15 harmonics) for different temperatures. From Figure 9.2 and 9.3, it seen that peak P_{OUT} and OP1dB increases at lower temperature. The reason is that at lower temperature both mobility and threshold voltage decreases with temperature. But decrease in mobility means lesser drain current (I_D) and lower power, whereas decrease in threshold voltage signifies increase in I_D and higher power. In this case, threshold voltage dominates the I_D so there is increase in P_{OUT} and OP1dB at lower temperatures.

Figure 9.2: Peak power (*P*_{OUT}) across frequency for different temperature

24 23.5 2 (dBm) 22.5 OP1dB (22 Temp = -40° C $Temp = 27^{\circ} C$ 21.5 $Temp = 70^{\circ} C$ $Temp = 125^{\circ} C$ 21 2.1 2.4 2.7 Frequency (GHz)

Figure 9.3: Output 1 dB compression point (*OP1dB*) across frequency for different temperatures

Figure 9.4: Maximum efficiency (η) of **Figure 9.5:** Efficiency (η) of the system at P1dB

The system here refers to the entire PA which consists of the driver, inter-stage matching, output stage and output network. Figure 9.4 and 9.5 shows the η of the system at maximum and P1dB whereas, η at $P_{OUT} = 18 \, dBm$ and $16.5 \, dBm$ is plotted in Figure 9.6 and 9.7 respectively. From the figures, it is seen that η increases as the temperature reduces. The reasoning for this is same as the one explained for

9.2. PA efficiency

the increase in P_{OUT} at lower temperatures.

Across the frequency, η is maximum at 2.4 GHz because the PA operates in Class F condition. Theoretically, CCF has constant η_D over the entire bandwidth and is independent of γ (refer chapter 2). In reality, change in V_{DS} will have an impact on I_D and also on η_D . So, in practical scenario, η_D reduces with increase in γ .

Figure 9.6: Efficiency (η) of the system **Figure 9.7:** Efficiency (η) of the system at $P_{OUT} = 18 \ dBm$ at $P_{OUT} = 16.5 \ dBm$

9.3. Voltage gain

Figure 9.8: Voltage gain of the system over frequency for different temperatures

Figure 9.8 shows the voltage gain (G_V) of the system across frequency for different temperatures. There is a variation of about 1 dB in the G_V in the bandwidth 2.1 - 2.7 GHz. As the temperature reduces, threshold voltage reduces and P_{OUT}

increases as explained earlier. Thus, leading to increase in the G_V of the system. At 2.4 GHz, the driver and output stage has G_V of 11 dB and 15 dB, respectively. On the other hand, inter-stage and output network has G_V of -2.6 dB and 0.9 dB, respectively.

9.4. Drain efficiency

Figure 9.9: Maximum drain efficiency **Figure 9.10:** Drain efficiency (η_D) of the output stage output stage at P1dB

The drain efficiency (η_D) of the output stage at peak and P1dB is plotted in Figure 9.9 and 9.10, respectively. It is seen that maximum η_D at 125°C is 49% where as the maximum system η at 125°C is only 30%. This loss can be attributed to the passive efficiency of the output balun.

For the output balun, quality factor of primary (Q_P) and secondary (Q_S) coils are measured as 12.8 and 11.5 respectively at 2.4 GHz. The coupling factor (km)is designed to be 0.69 in the output balun. Using the following variables, passive efficiency (η_{P_OS}) of the output balun at 2.4 GHz can be computed with equation described in [4].

$$\eta_{P_{OS}} = \frac{1}{1 + 2\sqrt{\left(1 + \frac{1}{Q_P Q_S km^2}\right)\frac{1}{Q_P Q_S km^2} + \frac{2}{Q_P Q_S km^2}}} = 78.5\%$$
(9.1)

But, the above equation holds for the following conditions:

- $L_P \cong \frac{L_S}{n^2};$
- for the optimum value of C_L given by $\frac{1}{\omega C_L} = \omega L_S$;
- for the optimum inductance which is given by $\omega L_P = \frac{R_L}{n^2 \sqrt{\frac{1}{Q_S^2} + \frac{Q_P}{Q_S} \cdot km^2}}$ [4].

For $R_L = 50 \Omega$ and $\omega = 2\pi * 2.4e9$

$$\Rightarrow L_P = 4.1 \ nH$$

2 7

The transformer efficiency is reduced when the inductance value is above or below the optimum value determined previously. Since L_P is lower than optimum value, $\eta_{P OS}$ is around 60%.

The quality factor of the primary $(Q_{P_{IS}})$ and secondary $(Q_{S_{IS}})$ coils in the interstage transformer is measured as 6.9 and 5 respectively. By design, transformer coupling km_{IS} of the inter-stage is 0.35 so that matching is achieved across the entire bandwidth (2.1 - 2.7 GHz) using double tuned transformer concept. Similarly, passive efficiency $(\eta_{P_{IS}})$ of the transformer in the inter-stage is also calculated using the above Equation 9.1.

$$\eta_{P\ IS} = 39\ \%$$

From Equation 9.1, it is seen that low coupling factor (km) reduces passive efficiency. But the efficiency of PA is dominated by the output stage. So, loss in the transformer efficiency at the inter-stage matching doesn't matter much.

9.5. QAM results

To test linearity and calculate EVM, 64 quadrature amplitude modulation (QAM) and 16 QAM signals with bandwidth of 40 MHz were created in MATLAB and fed to the circuit (Figure 9.1).

Figure 9.11: Constellation diagram for *64* QAM signal with *40 MHz* bandwidth at *2.4 GHz* (maximum power)

The test was conducted at full power, 3 dB back off and 6 dB back off for 16

QAM signal³ with 40 MHz bandwidth to calculate the EVM at the same power levels. The constellation diagrams and output spectrum for full power and back off cases at 2.1 GHz and 2.7 GHz are available in Appendix D.

Figure 9.12: EVM calculated for *16* QAM signal with *40 MHz* bandwidth at maximum power, *3 dB* back off and *6 dB* back off for *2.1 GHz*, *2.4 GHz* and *2.7 GHz*

Figure 9.13: Output spectrum for *64* QAM signal (maximum power) and *16* QAM signal at *2.4 GHz* (maximum power, *3 dB* back off and *6 dB* back off)

 $^{^{3}\}textit{64}$ QAM signal simulation takes long duration that's why 16 QAM signals are used for simulating back off cases

As seen in Figure 9.13, at 6 dB back off, left and right side of the spectrum is not even. This is because memory effect is dominant than non-linearity and it leads to amplitude variation of IM products with frequency. The memory effect is mainly due to the biasing and matching network. It can be prevented by feedback mechanism which is explained in [5], but it is computation intensive. Another technique is to shunt envelope signal which is main contributor for memory effect and linearity [6].

9.6. Two-tone test

Two-tones with spacing of 10 MHz and 40 MHz at 2.1 GHz, 2.4 GHz and 2.7 GHz were applied to the circuit (refer Figure 9.1). The dotted and solid lines in Figure 9.14 refers to 40 MHz and 10 MHz tone spacing respectively. This simulation was carried out to find which contributes significantly to EVM and ACLR degradation. Figure 9.14, Figure D.15, and Figure D.16 showcases AM-AM and AM-PM⁴ for 2.4 GHz, 2.1 GHz and 2.7 GHz with input voltage on x axis.

Figure 9.14: AM-AM and AM-PM for 2.4 GHz with input voltage on x axis

9.7. Performance comparison with State-of-the-Art

The performance of the CCF PA is compared with State-of-the-Art PA at 2.4G-Band in Table 9.1. The main highlight of this design is that it maintains the performance (peak power, output P1dB, efficiency and EVM) over a wide bandwidth 2.1 - 2.7 GHz (25%). Compared to the digital PAs, the proposed design doesn't have digital predistortion or integrated T/R switch. Even though, maximum efficiency is not better than the State-of-the-Art, efficiency at $P_{OUT} = 18 \ dBm$ and EVM is comparatively good. One of the main drawback of the proposed design is the chip area. Similarly, peak power and OP1dB for the designs in [7] and [8] is higher because the designs have used parallel combined transistors or more than one amplifier.

 $^{^{4}}$ y axis shows normalised phase that is phase is subtracted from the starting phase so that it starts from 0.
References

- [1] D. Mühlhaus, *Effect of ground cutout size on rfic inductor performance,* (Accessed 6 August 2020).
- [2] D. Mühlhaus, *60 ghz on-chip balun transformer: effect of dummy metal fill,* (Accessed 6 August 2020).
- [3] Designers-guide.org, *Power supply noise reduction,* (Accessed 6 August 2020).
- [4] I. Aoki, S. D. Kee, D. B. Rutledge, and A. Hajimiri, *Distributed active transformer-a new power-combining and impedance-transformation technique*, IEEE Transactions on Microwave Theory and Techniques **50**, 316 (2002).
- [5] F. Roger, An analog approach to power amplifier predistortion, **54**, 60 (2011).
- [6] J. Cha, I. Kim, S. Hong, B. Kim, J. Lee, and H. Kim, *Memory effect minimization and wide instantaneous bandwidth operation of a base station power amplifier*, Microwave Journal **50**, 66 (2007).
- [7] H. Ahn, S. Back, I. Nam, D. An, J. Lee, M. Jeong, B. Kim, Y. Lee, H. Kim, Y. Ho, and O. Lee, A fully integrated –32-db evm broadband 802.11abgn/ac pa with an external pa driver in wlp 40-nm cmos, IEEE Transactions on Microwave Theory and Techniques 67, 1870 (2019).
- [8] N. Ryu, B. Park, and Y. Jeong, A fully integrated high efficiency rf power amplifier for wlan application in 40 nm standard cmos process, IEEE Microwave and Wireless Components Letters 25, 382 (2015).
- [9] Z. Deng, E. Lu, E. Rostami, D. Sieh, D. Papadopoulos, B. Huang, R. Chen, H. Wang, W. Hsu, C. Wu, and O. Shanaa, 9.5 a dual-band digital-wifi 802.11a/b/g/n transmitter soc with digital i/q combining and diamond profile mapping for compact die area and improved efficiency in 40nm cmos, in 2016 IEEE International Solid-State Circuits Conference (ISSCC) (2016) pp. 172–173.
- [10] R. Winoto, A. Olyaei, M. Hajirostam, W. Lau, X. Gao, A. Mitra, and O. Carnu, 9.4 a 2×2 wlan and bluetooth combo soc in 28nm cmos with on-chip wlan digital power amplifier, integrated 2g/bt sp3t switch and bt pulling cancelation, in 2016 IEEE International Solid-State Circuits Conference (ISSCC) (2016) pp. 170–171.
- [11] Y. Chung, C. Liao, C. Lin, Y. Shih, C. Li, M. Hung, M. Liu, P. Wu, J. Hsu, M. Hsu, S. Chen, P. Chang, C. Chen, Y. Chang, J. Chen, T. Chang, and G. Chien, A dual-band 802.11abgn/ac transceiver with integrated pa and t/r switch in a digital noise controlled soc, in 2015 IEEE Custom Integrated Circuits Conference (CICC) (2015) pp. 1–8.

Reference	This work ¹	MTT [7]	ISSCC'16 [9]	ISSCC'16 [10]	CICC'15 [11]	MWCL'15 [8]
Technology	40 nm CMOS	40 nm CMOS	40 nm CMOS	28 nm CMOS	55 nm CMOS	40 nm CMOS
Support WiFi standard	11n	11abgn/ac	11 abg/n	11 abg/n	11 abgn/ac	119
Bandwidth	2.1 - 2.7 GHz	2.4 - 2.5 / 4.9 - 5.9 GHz	2.4 / 5.5 GHz	2.45 / 5.5 GHz	2.4 / 5 GHz	2.4 GHz
PA Topology	Analog PA	Analog PA	Digital PA	Digital PA	Analog PA	Analog PA
Class of Operation	CCF	Parallel combined transistors. One of the transistor is biased at A and other at B	NA	NA	Class AB	Main amplifier with class AB bias and an auxiliary amplifier with class C bias
Digital pre-distortion	ON	No	Yes	Yes	Yes	No
Integrated external PA Driver	Yes	Yes	N	N	No	Yes
Integrated T/R switch	No	No	Yes	Yes	Yes	No
Area	1.4 mm ²	$0.27 \ mm^2$	0.3 mm^2 (TX area) and off chip balun	NA	2.1 mm ²	$0.54 \ mm^2$
Peak Power (dBm)	23.5 dBm @ 2.1 GHz 23.6 dBm @ 2.4 GHz 23.4 dBm @ 2.7 GHz	27*	27*	27.8*	23*	NA
Output P1dB (dBm)	22.5 dBm @ 2.1 GHz 22 dBm @ 2.4 GHz 21.5 dBm @ 2.7 GHz	27*	NA	NA	NA	24.6
PAE (%)	Max Eff at 2.1, 2.4 & 2.7 GHz are 26.5%, 29.82% & 27.9% Eff @ Pout = 18 dBm at 2.1, 2.4 & 2.7 GHz are 12.7%,14.84% & 14.6%	Peak PAE - 40% 15% PAE @ EVM = -25 dB for 2.45 GHz 11 ac mcs8*	DPA Efficiency 14.5% @ 8 dB-backoff	Peak PAE - 22% 15% PAE @ EVM = -25 dB for 2.447 GHz 11n40*	10.5% PAE at 2.45 @ EVM = -32 dB*	Peak drain efficiency - 38% 14% PAE @ EVM = -25 dB for 2.45 GHz with WLAN 802.11g 54 mbps 64-QAM OFDM signal
Gain (dB)	25.7	25*	NA	NA	NA	37
EVM	-27.6 dB @ 2.1 GHz 6 dB-backoff -25 dB @ 2.4 GHz 3 dB-backoff -30.3 dB @ 2.7 GHz 3 dB-backoff (with 16 QAM 40 MHz signal)	-25 dB @ Pout = 22 dBm at 2.45 GHz 20 MHz BW 11n mcs7*	-25 dB @ Pout = 20 dBm at 2.4 Ghz H740 mcs7*	-25 dB @ Pout = 22 dBm at 2.447 GHz 11n40*	-32 dB @ Pout = 17.5 dBm at 2.45 GHz 11n mcs7 20MHz*	-25 dB @ Pout = 18.5 dBm at 2.445 GHz WLAN 802.11g 54 mbps 64-QAM OFDM signal BW = 20 MHz*

¹ From simulation. * Graphically estimated.

9

10

Conclusion

In this thesis, CMOS CCF PA is designed successfully without compromising the linearity and also satisfying the larger bandwidth and efficiency requirements. The PA was developed for **WiFi 802.11n** and LTE, thus making it a multipurpose PA. This PA consist of four basic building blocks: the driver, inter-stage matching, output stage and output network.

The design of the output network was explained in chapter 3 and Design A (no RF choke and with L_2C_2) was chosen because it had flatter real part at the first harmonic and lower number of components. Even though performance degraded a bit, the coupling factor (km) for the output balun was chosen as 0.69 (Design II) to reduce L_P and L_S and make it layout friendly.

The output stage consists of *3* transistors (*2* nominal devices and *1* thick oxide device) which uses the concept of stacked transistors to overcome the breakdown voltage issue (refer chapter 4). Further, the driver cell was added to increase the voltage gain of the PA without reducing the linearity. It is a simple cascode structure that operates in Class AB and the design is explained in chapter 5.

Using the double tuned transformer, the inter-stage achieved the required matching over the bandwidth 2.1 - 2.7 GHz (refer chapter 6). Further, chapter 8 portrayed the layout of the CCF chip and also shed light on the layout techniques used to improve the performance. From the post layout simulation chapter (chapter 9), it is seen that the entire design of PA is very promising. It has wider bandwidth (25%) than the State-of-the-Art PAs. It also has an EVM of -25 dB for a 16 QAM 40 MHz signal centered at 2.4 GHz at 3 dB back-off which excels most of the State-of-the-Art PAs.

10.1. Future work

The tape out of the chip is planned in *March 2021*. So, the next task is to design the PCB board so that the CCF chip can be tested and validated against the simulation results. Finally, this is the first chip that uses the concept of CCF across the

bandwidth 2.1 - 2.7 GHz.

Few recommendations where the future research can be focused so as to improve the performance of CCF PAs. Firstly, the chip size of $1.4 \text{ }mm^2$ is considerably large to be integrated in a WiFi chip. So, if the results for efficiency and linearity are matching with the simulation, then the future work will be primarily focused on reducing the area of output network since it occupies the largest area in the chip. Secondly, power combining techniques such as distributed active transformer could be employed to reach higher power and efficiency. Thirdly, EVM and linearity at lower power is dominated by the memory effect. So to reduce the memory effect, negative feedback or shunting the envelope signal can be employed. Since C_1 value is important for the response of the output network, it can be replaced with capacitor banks so that tuning can be done after the chip is fabricated. But the trade off is the losses in the switch and linearity. Finally, the output network is heavily dependent on the notion that the output of PA is always loaded with an ideal and fixed 50 Ω resistor which resembles the impedance of an ideal antenna. But, this isn't the case in reality. So, to counter this, one method is to have antenna tuning circuitry.

A

Calculation of drain source capacitance (*C*_{DS}) of the top transistor

This chapter explains the procedure to calculate C_{DS} of top most transistor (thick oxide device) in a stack. The C_{DS} of the top most transistor in the output stage is used in chapter 3 for designing output networks. Whereas, the C_{DS} of the top most transistor in the driver is utilized in chapter 6 for designing inter-stage matching.

A.1. *C*_{DS} of thick oxide device in the output stage

Figure A.1: Schematics to calculate C_{DS} of the top most transistor in the output stage

Figure A.2: Plot showing step input at the gate of the bottom transistor and oscillation at the drain of top transistor

When a pulse is given at the gate of bottom transistor, there will be oscillation at the drain of the top transistor. The frequency of oscillation will be given by the capacitor C_{DS} and inductor L_D (1 nH) connected at the drain of the top transistor (See Figure A.1). Also, frequency can be calculated from time period which is marked in Figure A.2.

$$T = 271.4 * 10^{-12}$$

$$\omega = \frac{2\pi}{T} = 2.32 * 10^{10}$$

$$C = \frac{1}{\omega^2 * 1 * 10^{-9}} = 1.87 \ pF$$

(A.1)

On the other hand, C_{DS} value obtained from parameters of the transistor is 0.71 pF. This value isn't right since it is obtained from only small signal analysis.

A.2. *C*_{DS} of thick oxide device in the driver

The C_{DS} of the top most transistor in the driver is calculated identical to that done in the previous section.

Figure A.3: Schematics to calculate C_{DS} of the top most transistor in the driver

Figure A.4: Plot showing step input at the gate of the bottom transistor and oscillation at the drain of top transistor

$$T = 62.66 * 10^{-12}$$

$$\omega = \frac{2\pi}{T} = 10 * 10^{10}$$

$$C = \frac{1}{\omega^{2*1*10^{-9}}} = 99.5 fF$$
(A.2)

B

Biasing for the driver and output stage

Figure B.1: Biasing unit for the driver

Figure B.2: Biasing unit for the output stage

102

Schematics results II

C.1. Efficiency versus *R*_{DNW}

Figure C.1: Maximum efficiency of the system versus R_{DNW}

C.2. Voltage and current waveforms at the drain of the top transistor (M_2)

Figure C.2: Voltage and current waveforms at the drain of M₂ at 2.4 GHz

Figure C.3: Voltage and current waveforms at the drain of M_2 at 2.1 GHz

Figure C.4: Voltage and current waveforms at the drain of M₂ at 2.7 GHz

D

Post layout simulation results II

Figure D.1: Constellation diagram for *16* QAM signal with *40 MHz* bandwidth at *2.4 GHz* (maximum power)

Figure D.2: Constellation diagram for *16* QAM signal with *40 MHz* bandwidth at *2.4 GHz* (*3 dB* backoff)

Figure D.3: Constellation diagram for *16* QAM signal with *40 MHz* bandwidth at *2.4 GHz* (*6 dB* back off)

D.1.2. Frequency = 2.1 GHz

Figure D.4: Constellation diagram for *16* QAM signal with *40 MHz* bandwidth at *2.1 GHz* (maximum power)

Figure D.5: Constellation diagram for *16* QAM signal with *40 MHz* bandwidth at *2.1 GHz* (*3 dB* backoff)

Figure D.6: Constellation diagram for *16* QAM signal with *40 MHz* bandwidth at *2.1 GHz* (*6 dB* back off)

Figure D.7: Output spectrum for *16* QAM signal at *2.1 GHz* (maximum power, *3 dB* back off and *6 dB* back off)

D.1.3. Frequency = 2.7 GHz

Figure D.8: Constellation diagram for *16* QAM signal with *40 MHz* bandwidth at *2.7 GHz* (maximum power)

Figure D.9: Constellation diagram for *16* QAM signal with *40 MHz* bandwidth at *2.7 GHz* (*3 dB* backoff)

Figure D.10: Constellation diagram for *16* QAM signal with *40 MHz* bandwidth at *2.7 GHz* (*6 dB* back off)

Figure D.11: Output spectrum for *16* QAM signal at *2.7 GHz* (maximum power, *3 dB* back off and *6 dB* back off)

D.2. Single-tone test

Single tone at 2.1 GHz, 2.4 GHz and 2.7 GHz were fed into circuit (Figure 9.1) and input power was swept from -30 dBm to 2 dBm to plot AM-AM and AM-PM for above-mentioned frequencies.

Figure D.12: AM-AM and AM-PM for 2.4 GHz

Figure D.13: AM-AM and AM-PM for 2.1 GHz

Figure D.14: AM-AM and AM-PM for 2.7 GHz

Figure D.15: AM-AM and AM-PM for 2.1 GHz with input voltage on x axis

Figure D.16: AM-AM and AM-PM for 2.7 GHz with input voltage on x axis

Figure D.17: IM3 across frequency for different temperatures

D.3.2. Transient simulation

Two-tones with spacing of 40 MHz at 2.1 GHz, 2.4 GHz and 2.7 GHz were applied to the circuit (refer Figure 9.1) and transient simulation was conducted to capture AM-AM and AM-PM.

(c) AM-AM & AM-PM for 2.7 GHz

Figure D.18: AM-AM and AM-PM plots for *2.1 GHz*, *2.4 GHz*, and *2.7 GHz* with input power on x axis

D.4. Noise

The noise was simulated using pss and pnoise in cadence with beat frequency of 2.4 GHz. The main contributors for the integrated noise in the bandwidth 2.38 GHz - 2.42 GHz is shown in Figure D.20. The main noise contributor is the flicker noise of the thick oxide device used in the reference generators of the driver and output stage for mirroring current. This can be reduced by using PMOS instead of NMOS for current mirroring.

Figure D.19: Output noise simulation result

% Of Total Device Param Noise Contribution 0.000268693 /CHIP/CORE/RC/REF_D_M10 fn 24.01 /CHIP/CORE/RC/Driver Biasing M1 fn 0.000204873 13.96 /CHIP/CORE/RC/REF_OS_M10 fn 0.000188129 11.77 /CHIP/CORE/RC/REF_D_M9 fn 0.000145623 7.05 /CHIP/CORE/RC/REF D M11 id 0.000103877 3.59 /CHIP/CORE/RC/REF_D_M10 id 0.000102978 3.53 fn /CHIP/CORE/RC/REF OS M9 0.000101962 3.46 /CHIP/CORE/RC/Driver Biasing M1 id 9.89226e-05 3.25 /CHIP/CORE/RC/REF D M9 id 7.99953e-05 2.13 /CHIP/CORE/RC/Driver Biasing M3 id 7.51799e-05 1.88 Integrated Noise Summary (in V) Sorted By Noise Contributors Total Summarized Noise = 0.000548339 Total Input Referred Noise = 3.30537e-05 The above noise summary info is for pnoise_usb data

Figure D.20: Top 10 noise contributors in the bandwidth 2.38 GHz - 2.42 GHz

D.5. Nodal voltages

Eron - 2	4 CH-	P1dB	P1db + 1dB	Max Power		Freq =	-	P1dB	P1db + 1dB	Max Power		
Freq = 2.	4 GHZ	Pin = -5 dBm	Pin = -4 dBm	Pin = 2 dBm	İ	2.1 -2.7 GHz		2.1 -2.7 GHz		Pin = -5 dBm	Pin = -4 dBm	Pin = 2 dBm
		Output	Stage		1			Output Stage				
	M_2	3.5	3.7	4.1			<i>M</i> ₂	4.0	4.2	4.9		
V _{DS}	M_1	1.3	1.3	1.4		V_{DS}	M_1	1.4	1.4	1.5		
	M ₀	1.3	1.3	1.4			M_0	1.3	1.3	1.4		
	M_2	1.5	1.5	1.6			M_2	1.5	1.5	1.6		
V _{GS}	M_1	1.0	1.1	1.1		V _{GS}	M_1	1.0	1.1	1.1		
	M ₀	1.1	1.2	1.7			M ₀	1.1	1.2	1.7		
	M_2	3.1	3.2	3.6			M_2	3.6	3.8	4.4		
V_{DG}	M_1	1.1	1.1	1.1	1	V_{DG}	M_1	1.1	1.1	1.1		
	M ₀	1.5	1.6	2.2			M_0	1.5	1.6	2.2		
	M_2	3.5	3.7	4.1	1		M_2	4.0	4.2	4.9		
V_{DB}	M_1	2.5	2.5	2.6	1	V_{DB}	M_1	2.5	2.5	2.6		
	M ₀	1.3	1.3	1.4	1		M_0	1.3	1.3	1.4		
	M_2	2.9	2.9	3.0			M_2	2.9	2.9	3.0		
V_{GB}	M_1	1.6	1.6	1.7	1	V_{GB}	M_1	1.6	1.7	1.7		
	M ₀	1.1	1.2	1.7	1		M_0	1.1	1.2	1.7		
	<i>M</i> ₂	2.5	2.5	2.6	1		<i>M</i> ₂	2.5	2.5	2.6		
V_{SB}	M_1	1.3	1.3	1.4	1	V_{SB}	M_1	1.3	1.3	1.4		
	M ₀	0.0	0.0	0.0	1		M ₀	0.0	0.0	0.0		
V _{DPsub}		6.0	6.2	6.6	1	V _{DPsub}		6.5	6.8	7.5		
V _{DNWPsub}	M_2	3.4	3.4	3.5		V _{DNWPsub}	<i>M</i> ₂	3.4	3.4	3.5		
V _{DNWBulk}		1.8	1.8	1.9	1	V _{DNWBulk}	1	1.8	1.8	1.9		
		Driv	er		1			Dri	ver			
	M_7	3.3	2.6	2.7		V	M_7	2.7	2.8	3.5		
VDS	M_6	1.5	1.2	1.2		VDS	M_6	1.2	1.2	1.5		
V	M_7	1.4	1.1	1.2		V	M_7	1.2	1.2	1.4		
'gs	M_6	1.0	0.8	0.8		*GS	M_6	0.8	0.9	1.1		
Vac	<i>M</i> ₇	2.8	1.9	2.1		Vac	<i>M</i> ₇	2.1	2.2	2.9		
*DG	<i>M</i> ₆	1.0	0.6	0.7		*DG	M_6	0.7	0.7	1.0		

List of Figures

1.1 1.2 1.3	Basic block diagram of radio frequency (RF) transmitter [1] Voltage (V) and current (I) waveform for Class F PA Architecture of designed PA	1 8 8
2.1 2.2 2.3	V_{DS} and I_D waveform for CCF with $-1.5 < \gamma < 1.5$.3 .3
2.4 2.5 2.6	a function of γ	.4 .5 .6
2.7	1.25, $\beta = \frac{\alpha}{2}$ and $-1 < \gamma < 1$. 1 Drain efficiency (η_D) and P_{OUT} for constant $\beta = \alpha/2$ and $\gamma = 0$ as a	.7
2.8	V_{DS} and I_D waveforms for constant $\beta = \alpha/1.6$ and $\gamma = 0$ as a function of α , where $0.75 < \alpha < 1.5$.	.7 .8
2.9	Smith chart showing variation of Z_{1f} , Z_{2f} and Z_{3f} for $\beta = \alpha/1.9$ when varying $0.75 < \alpha < 1.45$ and $-1 < \gamma < 1$.	.9
2.10 2.11	Drain efficiency (η_D) as a function of α and β for constant $\gamma = 0$ 2 Drain efficiency (η_D) of ECCF as a function of β for $\gamma = 0$ and optimum	20
3.1	Output network designs	.0
3.2 3.3	Schematics of <i>Design A</i> (balun, L_2C_2 and C_L) 2 Differential mode equivalent circuit of <i>Design A</i> (balun, L_2C_2 and C_L) 2	26 27
3.4 3.5 3.6	Magnitude of Z_D versus the real part of Z_{SB} at 3^{ra} harmonic 2 Impedance (Z_D) at 1^{st} and 3^{rd} harmonic for different values of $R_{SB}(3\omega_0)$ Common mode equivalent circuit of Design 4 (balun L_2C_2 and C_2)	28 28
3.7 3.8	Schematics of <i>Design B</i> (balun and C_L) 2 Differential equivalent half circuit of <i>Design B</i> (balun and C_L) 3	9 0
3.9 3.10	Common mode equivalent circuit of <i>Design B</i> (balun and C_L) 3 Schematics of <i>Design C</i> (balun, RF choke, L_2C_2 and C_L) 3	0 1
3.11	Differential mode equivalent circuit of <i>Design C</i> (balun, RF choke, L_2C_2 and C_L)	1
3.13	and C_L)	2 3

3.14	Differential mode equivalent circuit of <i>Design D</i> (balun, RF choke and	
3.15	C_L . Common mode equivalent circuit of <i>Design D</i> (balun, RE choke and	33
3.16 3.17 3.18 3.19 3.20	$\begin{aligned} & C_L \\ & Impedance (Z_D) \text{ at } 1^{st} \text{ harmonic } (\omega_0) \\ & Series \text{ Resonance } (L_2C_2) \\ & Impedance (Z_D) \text{ at } 2^{nd} \text{ harmonic } (2\omega_0) \\ & Magnitude \text{ of } Z_D \text{ at } 3^{rd} \text{ harmonic } (3\omega_0) \\ & Impedance \text{ at low frequency} \\ \end{aligned}$	34 35 35 36 36 37
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12	Schematic of triple-stacked field-effect transistor (FET) PA [3] Small signal model of stacked transistors (common gate transistors) Schematics of stacked transistor	40 40 42 42 44 45 45 46 47 48 50
5.1 5.2 5.3	Schematics of the driver Schematics of test bench for simulating driver Load-line for the driver Schematics	55 55 56
6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	Schematics of double tuned transformer . Differential half circuit of double tuned transformer . $\Re(Z_{DT})$ for different values of km and R_{SEC} . Inter-stage designs . Schematics of double tuned matching without parallel capacitor (C_{SEC}) Schematics of double tuned matching with parallel capacitor C_{SEC} Schematics of normal transformer matching . Impedance presented to the driver for 3 designs of inter-stage matching Phase difference between input of the driver and the output of the output stage (AM-PM) for 3 designs of inter-stage matching (DT - double tuned transformer and NT - normal transformer)	60 61 62 63 64 64 65 66
7.1 7.2 7.3 7.4	PA architecture Impedance (Z_D) at 1^{st} harmonic (ω_0) for different values of km Impedance (Z_D) at 2^{nd} harmonic $(2\omega_0)$ for different values of km Magnitude of Z_D (Z_D) at 3^{rd} harmonic $(3\omega_0)$ for different values of km	69 71 72 72

8.1	Entire schematics of the PA consisting of the driver, inter-stage match-	70
0.2	Ing, output stage and output network	70
0.2	Layout of inter stage matching	/0 70
0.3	Ldyout of filler-stage matching	/0
0.4	for ideal and (MoM) simulation case	79
8.5	Layout of output stage	80
8.6	Layout of output network (balun, second harmonic trap L_2C_2 , load capacitance C_L)	81
8.7	Impedance $(Z_{D \ OS})$ at 1 st harmonic (ω_0) for ideal and MoM simulation	81
8.8	Impedance $(Z_{D,QS})$ at 2^{nd} harmonic $(2\omega_0)$ for ideal and <i>MoM</i> simu-	
	lation	82
8.9	Magnitude of Z_{D-OS} at 3^{rd} harmonic $(3\omega_0)$ for ideal and MoM simulation	82
8.10	Pin layout of CCF chip	84
8.11	Chip of Continuous Class F (CCF) power amplifier (PA)	86
9.1	Schematics consisting of core design, decoupling capacitor (C_{DCP}) ,	
	bondwire inductance (L_{BND}) and pad capacitance (C_{PAD}) to model	
	the entire chip	88
9.2	Peak power (P _{OUT}) across frequency for different temperature	89
9.3	Output 1 dB compression point (<i>OP</i> 1 <i>dB</i>) across frequency for differ-	
	ent temperatures	89
9.4	Maximum efficiency (η) of the system	89
9.5	Efficiency (η) of the system at P1dB	89
9.6	Efficiency (η) of the system at $P_{OUT} = 18 \ dBm$.	90
9.7	Efficiency (η) of the system at $P_{OUT} = 16.5 \ dBm$	90
9.8	Voltage gain of the system over frequency for different temperatures	90
9.9	Maximum drain efficiency (η_D) of the output stage	91
9.10	Drain efficiency (η_D) of the output stage at P1dB	91
9.11	Constellation diagram for 64 QAM signal with 40 MHz bandwidth at 2.4 GHz (maximum power)	92
9.12	EVM calculated for 16 QAM signal with 40 MHz bandwidth at maxi-	
	mum power, 3 dB back off and 6 dB back off for 2.1 GHz, 2.4 GHz	
	and 2.7 GHz	93
9.13	Output spectrum for 64 QAM signal (maximum power) and 16 QAM	
	signal at 2.4 GHz (maximum power, 3 dB back off and 6 dB back off)	93
9.14	AM-AM and AM-PM for 2.4 GHz with input voltage on x axis	94
A.1	Schematics to calculate C_{DS} of the top most transistor in the output	۵۵
Δ 2	Plot showing step input at the gate of the bottom transistor and	59
M.Z	oscillation at the drain of ton transistor	90
<u>ک</u> ک	Schematics to calculate C_{-} of the top most transistor in the driver	100
Λ.Δ	Plot showing step input at the gate of the bottom transistor and	100
A.T	oscillation at the drain of top transistor	100

B.1 B.2	Biasing unit for the driver	101 102
C.1 C.2 C.3 C.4	Maximum efficiency of the system versus R_{DNW} . Voltage and current waveforms at the drain of M_2 at 2.4 GHz Voltage and current waveforms at the drain of M_2 at 2.1 GHz Voltage and current waveforms at the drain of M_2 at 2.7 GHz	103 104 104 104
D.1	Constellation diagram for <i>16</i> QAM signal with <i>40 MHz</i> bandwidth at <i>2.4 GHz</i> (maximum power)	105
D.2	Constellation diagram for <i>16</i> QAM signal with <i>40 MHz</i> bandwidth at <i>2.4 GHz</i> (<i>3 dB</i> backoff)	106
D.3	Constellation diagram for <i>16</i> QAM signal with <i>40 MHz</i> bandwidth at 2.4 GHz (6 dB back off)	106
D.4	Constellation diagram for <i>16</i> QAM signal with <i>40 MHz</i> bandwidth at <i>2.1 GHz</i> (maximum power)	107
D.5	Constellation diagram for <i>16</i> QAM signal with <i>40 MHz</i> bandwidth at 2.1 GHz (3.4B backoff)	107
D.6	Constellation diagram for <i>16</i> QAM signal with <i>40 MHz</i> bandwidth at 2.1 GHz (6 dB back off)	107
D.7	Output spectrum for 16 QAM signal at 2.1 GHz (maximum power, 3 dB back off and 6 dB back off)	100
D.8	Constellation diagram for 16 QAM signal with 40 MHz bandwidth at	100
D.9	Constellation diagram for <i>16</i> QAM signal with <i>40 MHz</i> bandwidth at	109
D.10	Constellation diagram for 16 QAM signal with 40 MHz bandwidth at	109
D.11	Output spectrum for 16 QAM signal at 2.7 GHz (maximum power, 3	110
D.12	<i>dB</i> back off and <i>6 dB</i> back off)	110 111
D.13	AM-AM and AM-PM for 2.1 GHz	111
D.14 D.15	AM-AM and AM-PM for 2.7 GHz.	111
D.16	AM-AM and AM-PM for 2.7 GHz with input voltage on x axis	112
D.17	IM3 across frequency for different temperatures	112
D.18	AM-AM and AM-PM plots for 2.1 GHz, 2.4 GHz, and 2.7 GHz with	
	input power on x axis	113
D.19	Output noise simulation result	114
D.20	iop 10 noise contributors in the bandwidth 2.38 GHz - 2.42 GHz	114

List of Tables

1.1 1.2	Conduction angle, peak drain efficiency, gain and linearity of Class A, AB, B and C PAs Main differences between Class F and Inverse Class F	3 4
1.3 1.4	Specifications for the project Maximum efficiency capability of Class F PA [10]	6 7
2.1	Design space for which the V_{DS} is positive and the drain efficiency (η_D) is greater than 75% [2]	18
3.1 3.2	Output network requirements at 1^{st} , 2^{nd} and 3^{rd} harmonic The value of components in all 4 output network designs	24 37
4.1 4.2	Comparison of parallel and stacked-transistor configurations [4] Aspect ratio (W/L) of the top and bottom transistors in the output	41
4.3 4.4	Drain efficiency (η_D) and peak P_{OUT} for different values of multiplier . Comparison between four output network designs	45 46 49
5.1 5.2 5.3 5.4	Specifications of the output stage obtained after simulation of the schematics . Aspect ratio (W/L) of the transistors in the driver . Component values for the driver schematics . 01P3 of the driver, output stage and entire system at 2.4 GHz .	53 56 57 57
6.1 6.2	Component values for the 3 designs of inter-stage matching Performance of PA with <i>3</i> inter-stage designs	65 66
7.1 7.2 7.3	Performance of PA with the driver, inter-stage, output stage and output network Component values in Design A for different transformer coupling km Efficiency (η), $OP1dB$ and EVM for 3 variants of Design A output network based on different km values	70 71 73
7.4	Performance of the PA with the driver, inter-stage, output stage and Design A output network (<i>Design II</i>)	74
8.1 8.2	Component values and aspect ratios of the transistors in TSMC 22 nm ULL and TSMC 40 nm Performance of PA in TSMC 22 nm ULL and TSMC 40 nm	77 83

9.1	Performance comparison with State-of-the-Art 2.4G-Band WLAN CMOS PAs	96
D.1	Nodal voltages in the output stage and driver of the PA in 40 nm .	115

Abbreviations & Acronyms

- ACLR adjacent channel leakage ratio. 94
- **balun** balanced to unbalanced. 24, 26, 27, 29–34, 38, 70, 71, 73, 75, 80, 81, 83–85, 87, 88, 91, 117–119
- **BPF** bandpass filter. 1
- **CCF** Continuous Class F. xi, 9, 11, 13–16, 20, 21, 23, 24, 39, 49, 66, 70, 72, 74, 81, 84–86, 90, 94, 96–98, 117, 119
- CM Current Mode. 3
- CMOS complementary metal-oxide semiconductor. xi, 2, 6, 11, 41, 96, 97, 122
- **DAC** digital to analog converter. 1
- ECCF Extended Continuous Class F. 15, 16, 20, 21, 117
- **ESD** electrostatic diodes. 88
- **EVM** Error vector magnitude. xi, 6, 48, 49, 66, 67, 70, 73, 74, 79, 92–94, 96–98, 119, 121
- **FET** field-effect transistor. 40, 41, 118
- GaAs gallium arsenide. 2

GaN gallium nitride. 2

- **LTE** Long Term Evolution. 6, 97
- **MOSFET** metal-oxide semiconductor field-effect transistor. 40
- **OFDM** Orthogonal Frequency Division Multiplexing. 96
- **PA** power amplifier. xi, 1–9, 11, 13–15, 20, 21, 24, 31, 39–41, 47, 48, 54, 61, 65–67, 70, 73–77, 81–86, 89, 90, 92, 94, 96–98, 115, 117–119, 121, 122
- **PCB** printed circuit board. 85, 97

QAM quadrature amplitude modulation. 92, 93, 96, 97, 105–110, 119, 120

- RF radio frequency. 1, 2, 117
- **SoC** system on chip. xi, 2
- VM Voltage Mode. 3
- WiFi Wireless Fidelity. xi, 1, 2, 6, 7, 11, 21, 31, 48, 97, 98
- WLAN Wireless Local Area Network. 1, 96, 122
- **ZCS** Zero Current Switching. 3, 4
- **ZVS** Zero Voltage Switching. 3

Nomenclature

- η Efficiency $η_D$ Drain Efficiency $ω_0$ Fundamental Frequency Band (2.4 GHz) C_L Output Load Capacitance
- C_{DCP} Decoupling Capacitance
- *C*_{DS} Drain Source Capacitance
- C_{GS} Gate Source Capacitance
- *C*_{*PRI} Parallel* Capacitor added between Primary Terminals of the Inter-Stage Matching</sub>
- C_{SB} Source Bulk Capacitance
- *C*_{SEC} Parallel Capacitor added between Secondary Terminals of the Inter-Stage Matching
- DE Differential Ended
- *G_P* Power Gain
- G_V Voltage Gain
- $I_{DC}(SE)$ Single Ended DC current
- *I_D* Drain Current
- $I_{FUND MAX}(SE)$ Single Ended Maximum Current at the fundamental band
- $I_{FUND}(SE)$ Single Ended Current Swing at the Fundamental band
- *IM3* Third Order Intermodulation
- *IP3* Third Order Intercept Point
- *km* Coupling Coefficient in the Output Balun
- *km*_{1S} Coupling Coefficient in the Inter-stage Matching
- *L*₂*C*₂ Second Harmonic Trap

- *L_k* Leakage Inductance in the Transformer
- *L*_{BND} Bondwire Inductance
- *L_m* Magnetizing Inductance in the Transformer
- *L_{P IS}* Primary Inductance of the Inter-stage matching
- *L_P* Primary Inductance of the Output Balun
- *L_{S_IS}* Secondary Inductance of the Inter-stage Matching
- *L_S* Secondary Inductance of the Output Balun
- *N* Turn Ratio in the Transformer
- 01P3 Output Third Order Intercept
- OP1dB Output 1dB Compression Point
- POUT Output Power
- *P_{DC}* DC Power Consumption
- P_{FUND} Power at the fundamental band
- *P_{in}* Input Power
- *R_D* Real part of Drain Impedance
- R_L Load Impedance = 50 Ω
- $R_D(DE)$ Differential Impedance at the Drain of the Differential Pair
- $R_D(SE)$ Single Ended Impedance at the Drain of the Transistor
- R_{SEC} Parallel Resistor added between Secondary Terminals of the Inter-Stage Matching
- SE Single Ended
- *V_{DD}* Supply Voltage
- V_{DG} Drain Gate Voltage
- V_{DS} Drain Source Voltage
- V_{FUND}(DE) Differential Ended Voltage Swing at Fundamental Band
- V_{FUND}(SE) Single Ended Voltage Swing at Fundamental Band
- *V_{GS}* Gate Source Voltage
- *W*/*L* Aspect Ratio of the Transistor

- *X_D* Reactive part of Drain Impedance
- *Z_D* Drain Impedance
- *Z*_{1*f*} Load Impedance at Fundamental band
- Z_{2f} Load Impedance at Second Harmonic band
- Z_{3f} Load Impedance at Third Harmonic band
- Z_{SB} Total Impedance of Second Harmonic Trap and Balun