
Quality of Service Routing in the Internet

Theory, Complexity and Algorithms

Quality of Service Routing in the Internet

Theory, Complexity and Algorithms

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus Prof.dr.ir. J.T. Fokkema,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op dinsdag 14 september 2004 om 15.30 uur

door

Fernando Antonio KUIPERS

elektrotechnisch ingenieur
geboren te ’s Gravenhage.

Dit proefschrift is goedgekeurd door de promotor:
Prof.dr.ir. P.F.A. Van Mieghem

Samenstelling promotiecommissie:

Rector Magnificus, Voorzitter
Prof.dr.ir. P.F.A. Van Mieghem, Technische Universiteit Delft, promotor
Prof.dr.ir. I.G.M.M. Niemegeers, Technische Universiteit Delft
Prof.dr.ir. N.H.G. Baken, Technische Universiteit Delft
Prof.dr.ir. C. Roos, Technische Universiteit Delft
Prof.dr. J. Domingo-Pascual, Universitat Politècnica de Catalunya
Prof. Ing. G. Ventre, Università di Napoli Federico II
Dr.ir. H. De Neve, Alcatel Belgium

Published and distributed by: DUP Science

DUP Science is an imprint of
Delft University Press
P.O. Box 98
2600 MG Delft
The Netherlands
Telephone: +31 15 27 85 678
Telefax: +31 15 27 85 706
E-mail: info@library.tudelft.nl

ISBN 90-407-2523-3

Keywords: QoS routing, algorithm, complexity

Copyright c° 2004 by F.A. Kuipers

All rights reserved. No part of the material protected by this copyright notice may be
reproduced or utilized in any form or by any means, electronic or mechanical, including
photocopying, recording or by any information storage and retrieval system, without
written permission from the publisher: Delft University Press

Printed in The Netherlands

to Theo, Maria and Carolina

vi

Contents

1 Introduction 1
1.1 Routing in the Internet . 1
1.2 Quality of service . 2
1.3 Notation . 6
1.4 Problem statement . 7
1.5 Outline . 8

2 Graphs, algorithms and complexity 11
2.1 Graph theory . 11

2.1.1 Graph definitions . 11
2.1.2 Graph representation . 12

2.2 Classes of graphs . 14
2.2.1 Random graph . 14
2.2.2 Waxman graph . 15
2.2.3 Power-law graph . 15
2.2.4 Lattice . 16

2.3 Algorithmic complexity . 18
2.4 NP-completeness . 21

3 Shortest path algorithms 23
3.1 Elementary graph algorithms . 24

3.1.1 Breadth-first search . 25
3.1.2 Depth-first search . 25

3.2 Classical shortest path algorithms . 25
3.2.1 Bellman-Ford algorithm . 27
3.2.2 Dijkstra algorithm . 29
3.2.3 Bi-directional search . 31

3.3 Best-first search . 36
3.3.1 A* algorithm . 36

3.4 Mathematical programming . 37
3.4.1 Linear programming . 38

vii

viii CONTENTS

3.4.2 Dynamic programming (Floyd-Warshall algorithm) 41

4 Concepts of exact MCP algorithms 45
4.1 Definition of the path length l(P) . 45

4.1.1 Different (non-linear) length functions 48
4.1.2 Visualization of the search space 50

4.2 The k-shortest path algorithm . 51
4.3 Dominated paths . 54

4.3.1 Definition of non-dominance . 54
4.3.2 An attainable bound for kmax 56

4.4 Look-ahead . 60
4.4.1 The look-ahead concept . 60
4.4.2 Complexity of look-ahead . 62
4.4.3 Other look-ahead applications 62

4.5 Bi-directional search in multiple dimensions 63
4.6 The SAMCRA algorithm . 64

4.6.1 Meta-code SAMCRA . 65
4.6.2 Complexity of SAMCRA . 67
4.6.3 Example of the operation of SAMCRA 69

4.7 Conclusions . 72

5 Overview of QoS algorithms 77
5.1 Heuristics . 77

5.1.1 Jaffe’s algorithm . 77
5.1.2 Iwata’s algorithm . 78
5.1.3 TAMCRA . 79
5.1.4 Chen’s algorithm . 80
5.1.5 Randomized algorithm . 81
5.1.6 H_MCOP . 81
5.1.7 Limited path heuristic . 82

5.2 �-approximation . 83
5.2.1 Puri’s algorithm . 84
5.2.2 Xue’s algorithm . 84

5.3 Exact algorithms . 85
5.3.1 SAMCRA . 85
5.3.2 HAMCRA . 86
5.3.3 A*Prune . 87

5.4 Special (non-MCP) QoS algorithms . 87
5.5 Performance evaluation . 88

5.5.1 Simulation set-up . 88
5.5.2 Simulation results . 89

CONTENTS ix

5.5.3 Simulation conclusions . 91
5.6 Conclusions . 92

6 Multicast QoS routing 95
6.1 Problem definition . 96
6.2 Properties of multicast QoS routing . 97
6.3 MAMCRA . 100
6.4 Discussion of multicast QoS routing . 105

6.4.1 Tuning MAMCRA . 105
6.4.2 QoS negotiation . 105
6.4.3 QoS multicast protocol . 106
6.4.4 QoS multicast in an active network 106

6.5 Performance evaluation of MAMCRA 107
6.6 Conclusions . 109

7 Link-disjoint QoS routing 111
7.1 Problem definition . 111
7.2 Related work . 113

7.2.1 Link-disjoint paths in one dimension 113
7.2.2 Disjoint paths in multiple dimensions 114

7.3 Path augmentation for solving LPP . 115
7.3.1 The steps of LBA . 115
7.3.2 LBA is based on the shortest path 118
7.3.3 LBA is loop-free . 120
7.3.4 Optimality of LBA . 121

7.4 Extending LBA to multiple dimensions 121
7.4.1 Operations of MLBA . 121
7.4.2 Problems in multiple dimensions 123

7.5 DIMCRA . 125
7.5.1 Operations of DIMCRA . 125
7.5.2 Properties of DIMCRA . 128

7.6 Conclusions . 129

8 The complexity of exact MCP algorithms 131
8.1 Related work . 131
8.2 Worst-case complexity analysis . 133
8.3 The impact of link correlation on complexity 139

8.3.1 Theory . 139
8.3.2 Simulation results . 142
8.3.3 Inter-link correlation . 148

8.4 The impact of constraints on complexity 153

x CONTENTS

8.4.1 Theory . 153
8.4.2 Simulation results . 157
8.4.3 Estimation of the shortest path length in a lattice 160

8.5 Conclusions . 163

9 QoS dynamics 165
9.1 Introduction to QoS stability . 165
9.2 Related work . 167

9.2.1 Traffic prediction . 168
9.2.2 Network update triggering . 168
9.2.3 Network update distribution . 168
9.2.4 Inaccurate network state . 169

9.3 Stability of a path . 169
9.3.1 Mathematical analysis . 170
9.3.2 Simulations for ∆w . 172
9.3.3 Simulations for ∆l . 174

9.4 Conclusions on QoS stability . 176
9.5 Introduction to dynamic QoS algorithms 177
9.6 Problem statement . 177
9.7 Traffic engineering algorithms . 178

9.7.1 Overview . 178
9.7.2 Limitations . 179

9.8 SAMCRA-B . 179
9.9 Performance evaluation . 180

9.9.1 Scenario 1: influence of bandwidth constraint 182
9.9.2 Scenario 2: influence of one QoS constraint 183
9.9.3 Scenario 3: influence of both QoS constraints 184

9.10 Conclusions on dynamic QoS algorithms 184

10 Conclusions 187

A Approximate analysis 193
A.1 Approximate analysis of QoS complexity 193

A.1.1 Analysis for a single link weight (m = 1) 193
A.1.2 Analysis for multiple link weights (m > 1) 195
A.1.3 Perfect negative correlation (m = 2) 197

A.2 Approximate analysis of path stability 198

B Abbreviations 203

Bibliography 205

CONTENTS xi

Samenvatting (Summary in Dutch) 219

Acknowledgements 223

Curriculum Vitae 225

xii CONTENTS

Summary

Title: Quality of Service Routing in the Internet: Theory, Complexity and Algorithms

An enormous amount of packets daily traverse the Internet towards their intended
destination. The Internet consists of many network elements that direct these packets on
the correct path leading towards the destination. This process of finding and following
a path to the destination is called routing. Of course, routing is not infallible and
packets may get lost: the current Internet cannot give any guarantees regarding the
packets it transports, i.e. there are no guarantees on the delay that packets experience,
on the jitter, or the packet loss, nor can it guarantee the bandwidth available along the
travelled path. However, many new multi-media applications cannot properly operate
without such guarantees, e.g. for a voice conversation, the maximum delay must be
bounded. Finding paths that can meet such demands is called Quality of Service (QoS)
routing.
The aims of this thesis are to:

1. analyze the algorithmic concepts of QoS routing

2. investigate the complexity of QoS routing

3. discuss the dynamics of QoS routing

The first three chapters formalize the problems under consideration, define the no-
tation used and provide the necessary background material, including the following
definitions (Chapter 2):
Algorithm: An algorithm is any well-defined computational procedure that takes

some value, or set of values, as input and produces some value, or set of values, as
output. An algorithm is thus a sequence of computational steps that transform the
input into the output.
Complexity: Complexity refers to the intrinsic minimum amount of resources needed

to solve a problem or execute an algorithm.
QoS routing is NP-complete, which means that to find the exact solution, algorithms

require, in the worst case, a running time that cannot be bounded by a polynomial
function. The last section of Chapter 2 discusses the theory of NP-complexity.

xiii

xiv SUMMARY

To understand QoS algorithms we also need to be familiar with simple (one-dimensional)
shortest path algorithms. Therefore, Chapter 3 explains the breadth-first search, the
depth-first search, the Bellman-Ford algorithm, the Dijkstra algorithm, bi-directional
search, the A* algorithm, and mathematical programming. An important property
that these algorithms share is that subpaths of shortest paths in one dimension are also
shortest paths.
After clarifying the background material we reach the heart of the matter in Chap-

ter 4, namely the concepts underlying exact QoS routing. As a result of QoS routing
with multiple constraints, subsections of shortest paths in multiple dimensions are not
necessarily shortest paths themselves. In the computation of multi-constrained paths, it
may for this reason be necessary to consider multiple subpaths. This has consequences
for the size of the search space, which may grow exponentially. To reduce the size of
the search space, two techniques, non-dominance and look-ahead, are used and incor-
porated into the SAMCRA algorithm. SAMCRA stands for Self-Adaptive Multiple
Constraints Routing Algorithm and is an exact QoS algorithm proposed by us. Besides
SAMCRA, many other QoS algorithms exist. By far the largest part of these QoS
algorithms are heuristics. Chapter 5 discusses these QoS algorithms and evaluates their
performance. This large-scale performance evaluation has never been conducted before.
The conclusions indicate that the SAMCRA-like algorithms perform best.
Chapters 6 and 7 may be considered elaborations, since they look at extensions

to QoS routing. First, multicast QoS routing is discussed. Multicast refers to the
communication between one source and multiple destinations. In multicast routing
packets are duplicated at appropriate points, which leads to an efficiency gain over
multiple unicast (single source-destination pair) sessions. Multicast QoS routing also
relies on this principle, but the efficiency gain can be less than in the one-dimensional
case. We propose the MAMCRA algorithm, which is the first general algorithm for
multicast QoS routing.
In Chapter 7, link-disjoint QoS routing is targeted. Link-disjoint routing consists

of finding two paths that do not share any links. These two paths are important if
reliability is desired: one path can be used as the primary path and if this path fails,
one can immediately switch to the second back-up path. Link-disjoint paths could
also be used for load balancing. Similarly to Chapter 6 (multicast QoS routing), we
discuss the problems surrounding link-disjoint QoS routing and propose the algorithm
DIMCRA, which is the first general algorithm for link-disjoint QoS routing.
Chapters 4-7 extensively and uniquely contribute to the first aim of this thesis: to

analyze the algorithmic concepts behind QoS routing. The second goal of investigat-
ing the complexity of QoS routing, is attained by Chapter 8. Chapter 8 argues that
the complexity of QoS routing is feasible in practice and that worst cases are only en-
countered if the network simultaneously obeys four conditions on: (1) the underlying
topology, (2) the size of the link weights, (3) the (negative) correlation among the link
weights and (4) the values of the constraints.

SUMMARY xv

The third and final aim of the thesis is to discuss the dynamics of QoS routing.
Chapter 9 is devoted to this discussion and also provides some preliminary work in the
area of QoS dynamics. The key research questions are clearly identified and basically
reduce to the question of how to keep the network up to date on the current state
of the QoS link weights. The work and simulations presented give some ideas about
the stability of QoS paths and the performance of SAMCRA in a dynamic network:
here, too, SAMCRA outperforms the other implemented algorithms. However, the
conclusions presented Chapter 9 should merely be interpreted as guidelines, as more
simulations should be conducted to substantiate them.

Author: Fernando A. Kuipers

xvi SUMMARY

Chapter 1

Introduction

“Quality of Service Routing in the Internet:” such a title deserves some scrutiny, which
is provided in this Introduction.

1.1 Routing in the Internet

The Internet is a collection of networks interconnected to each other. As a public
commodity, the Internet is considered to be a great success: almost everybody knows
and uses the Internet. This success is contributed to several factors: the Internet is
simple, affordable, fair (everybody receives about the same treatment), and it provides
a sense of freedom (nobody owns the Internet). These factors were in fact part of the
architectural design principles for the Internet, whose origin can be traced back to a 1969
project of the US Department of Defense. The project turned out to be a success and
the Internet started to grow (first including government and research organizations and
later also private companies). Nowadays the Internet connects millions of users to each
other. These users have computers of varying capabilities, of various vendors, running
different operating systems. Users can communicate with each other over the Internet
thanks to the TCP/IP protocol suite. The TCP/IP protocol suite is the combination
of different protocols at various layers [153]:

• The link layer handles all the hardware details.
• The network layer handles the movement of packets (i.e., routing) around the
network.

• The transport layer provides a flow of data between two hosts for the application
layer above.

• The application layer handles the details of the particular application.

1

2 CHAPTER 1. INTRODUCTION

The title of this thesis, “Quality of Service Routing in the Internet,” therefore relates
to the network layer. Routing in general involves two entities, namely the routing
protocol and the routing algorithm. The routing protocol has the task of acquiring
information about the current state of the network and to distribute this information
to all the nodes (routers) in the network. Based on the view of the network that the
routing protocol has provided, the routing algorithm is used to compute the paths that
packets must follow in order to reach their destination. The routing algorithm therefore
heavily depends on the accuracy of the routing protocol. If the routing protocol is not
able to provide each node with a consistent view of the network, then routing loops
may occur (i.e., packets do not reach their destination) and proper communication is
hindered.
In the current Internet (since the beginning), routing focusses on connectivity and

is referred to as best-effort routing. It is only important to know whether links or nodes
are connected to the network. This kind of network state information is (quasi) static
because links/nodes go down only sporadically. Routing in the Internet is decomposed
into two levels: (1) intra-domain routing, where routing is performed within a network,
and (2) inter-domain routing, for routing between networks. The current dominant
intra-domain routing protocol is called Open Shortest Path First (OSPF). OSPF is
called a link state protocol, because it monitors links (and consequently also nodes),
and if a change in link state has occurred, it floods this information through the entire
network. It only does so periodically, typically every 15 minutes, because the link state
is (quasi) static. Based on this information, the Dijkstra algorithm is used at each node
to compute the shortest paths (usually based on the hop count) to all other nodes in
the network.

1.2 Quality of service

Quality of service, abbreviated as QoS, has many definitions. For example, according
to the QoS Forum: “Quality of Service is the ability of a network element to have some
level of assurance that its traffic and service requirements can be satisfied.” QoS can be
considered to be subjective, because users can differ in their perception of what is good
quality and what is not. However, the level of assurance at which traffic and service
requirements are satisfied can be quantized. The best-effort paradigm does not provide
any assurance on the traffic handled and therefore we classify best-effort routing as a
paradigm that does not offer QoS. Still, best-effort routing seems to function properly,
which questions the need for new QoS mechanisms. We will argue why QoS is needed
for the future. In the business world, QoS could determine whether you can have
a normal voice conversation, whether a video conference is productive, and whether
a multimedia application actually improves productivity for your staff. At home, it
could for instance determine whether you will have cause to complain about the quality

1.2. QUALITY OF SERVICE 3

of a video-on-demand movie. Overall, we see that new applications are increasingly
demanding higher quality than the one-size-fits-all best-effort service offered by the
initial Internet design.
We can think of many other situations in which QoS is needed. For instance, if we

look at the distinction between one-way and two-way communication, we notice that
one-way communication can accept relatively long delays. However, delay hinders two-
way, interactive communication if the round-trip time exceeds 300 ms. For example,
conducting a voice conversation over a satellite link illustrates the problem with long
delays. Combined video and audio is very sensitive to differential delays. We for instance
quickly notice when the speech is out of sync with lip movement. Data communication
protocols are very sensitive to errors and loss. An undetected error can have severe
consequences if it is part of a downloaded program. Loss of a packet frequently requires
retransmission, which decreases throughput and increases response time. On the other
hand, many data communication protocols are less sensitive to delay variation. These
are all examples that illustrate that it is important to assure that traffic and service
requirements like delay, jitter, loss and throughput can be satisfied.
An other reason for introducing QoS is that it could enhance the performance of

operational networks. For instance, QoS mechanisms could lead to a better balancing of
the load in a network and consequently a more efficient use of the network’s resources.
This efficiency gain will result in an increase of revenues for the network providers, which
leads us to another important argument in favor of QoS, namely “money.” Some people
argue that bandwidth1 is the answer to the question how to obtain QoS. Bandwidth is
indeed a key component for offering QoS, because without a proficient infrastructure
many services cannot be delivered. Such a QoS-infrastructure will most likely consist
of optical fibers that extend all the way to the end-users (FttH). However, bandwidth
alone is not the answer, since it cannot optimize network performance and the only
way to improve the network is therefore via over-dimensioning. Over-dimensioning is
very costly, resource inefficient and it still cannot guarantee QoS. By offering differ-
ent levels of QoS one can differentiate between users and hence provide tailor-made
service/pricing. This extra flexibility over best-effort Internetting opens new business
opportunities. Unfortunately solid business cases accompanied with good billing and
accounting models are still missing, which may explain the fact that QoS is still a
scarce commodity in the Internet. Another factor hindering the global breakthrough
of QoS routing is the increased complexity compared to simple best-effort routing.
The complexity of QoS routing is investigated in this thesis. Despite these difficulties
surrounding QoS routing, its merit is globally recognized and much research has al-

1The formal definition of bandwidth stems from the field of electrical engineering, where it represents
the difference between the highest and lowest frequencies (Hz) of a transmission channel/band. In the
field of computer networking, the term bandwidth is often used to denote the data rate or capacity,
i.e. the amount of data (bits) that is or can be sent through a network connection per second. For the
sake of convention, we maintain the definition for bandwidth in the field of computer networking.

4 CHAPTER 1. INTRODUCTION

ready been done on the subject. The pioneering work on QoS started with ATM. The
ATM Forum’s PNNI standard defines a routing protocol for distributing topology and
load information throughout the network and a signaling protocol for processing and
forwarding connection requests from the source. ATM is a connection-oriented technol-
ogy. ATM allows a user to specify, when setting up a call, QoS constraints that an ATM
network must be able to guarantee for that call. Call establishment consists of two op-
erations: (1) the selection of a path based on multiple constraints, and (2) the setup of
the connection state at each point along that path. Path selection is done in such a way
that the path chosen appears to be capable of supporting the QoS constraints requested,
based on currently available information. The processing of the call setup at each node
along the path confirms that the resources requested are in fact available. If they are
not, then crankback occurs, which causes a new path to be computed if possible. Thus
the final outcome is either the establishment of a path satisfying the constraints, or
refusal of the call. The concepts of ATM aided in introducing QoS in IP. One of the
first QoS architectures for IP was the Integrated Services (IntServ) architecture [22].
IntServ distinguishes between three categories of services: Guaranteed Service [149],
Controlled Load [175] and best-effort. An application can request a reservation for a
flow (typically via the Resource reSerVation Protocol (RSVP) [180]) for a guaranteed or
controlled load QoS, with a traffic specification (TSpec) that defines the exact amount
of service required. Guaranteed Service in IntServ can provide firm (mathematically
provable) upper bounds on the queueing delay through the network, which allows it
to make guarantees on bandwidth, delay and queueing losses (there are none). In or-
der to accomplish this, packet classifiers, packet schedulers, and admission control are
used. The controlled load service in IntServ cannot give specific upper bounds on the
queueing delay. Nevertheless, the service ensures that a very high percentage of the
packets do not experience excessive delays. The controlled load service provides the
flow of packets with QoS closely approximating the QoS that the same flow would
receive from best-effort service under unloaded network conditions. This is achieved
through admission control. The main drawback of IntServ (and ATM) is that they
require per-flow state and per-flow processing, which is not scalable in large networks
(such as the Internet). To cope with these scalability problems, aggregation of flows is
needed, which led to the proposal of the Differentiated Services (DiffServ) architecture
[20]. The principle of DiffServ is simply to classify packets into several classes, which
are treated differently according to different packet scheduling and policing rules, or
more poetically “all packets are equal, but some packets are more equal than others.”
Compared to IntServ, DiffServ improves scalability at the cost of less predictable service
to flows.
In the context of IP QoS architectures we also want to mention MultiProtocol Label

Switching (MPLS) [140]. MPLS uses labels to expedite forwarding compared to con-
ventional IP routing. A label distribution protocol is used to inform the MPLS-capable
routers how to forward packets with a specific label. Since the labels are shorter than

1.2. QUALITY OF SERVICE 5

IP addresses, the packets can be forwarded at a faster rate. The use of labels also cre-
ates other advantages, like the support of explicit routing. This gives network/service
providers a great deal of flexibility to divert and route traffic around link failures, con-
gestion and bottlenecks, and to provide QoS routing. Nowadays, MPLS is often used
to build virtual private networks that can span different Internet domains.
In addition to IntServ, DiffServ and MPLS other QoS architectures were proposed,

such as combinations of the aforementioned architectures or the Nimrod architecture
[25]. However, to fully utilize the potential of these QoS architectures, the way of path
selection should also be QoS-aware. For example, in the context of ATM (PNNI), QoS
routing is performed by source nodes to determine suitable paths for connection re-
quests. These connection requests specify QoS constraints that the path must obey.
Since ATM is a connection-oriented technology, a path selected by PNNI will remain in
use for a potentially long period of time. It is therefore important to choose a path with
care. The IntServ/RSVP framework is also able to guarantee some specific QoS con-
straints. However, this framework relies on the underlying IP routing table to reserve
its resources. As long as this routing table is not QoS-aware, paths may be assigned
that cannot guarantee the constraints, which will result in blocking. In MPLS a source
node selects a path, possibly subject to QoS constraints, and uses a signaling protocol
(e.g., RSVP or CR-LDP) to reserve resources along that path. In the case of DiffServ,
QoS-based routes can be requested, for example, by network administrators for traffic
engineering purposes. Such routes can be used to ensure a certain service level agree-
ment [176]. Even the high-capacity optical networks (SONET/SDH/WDM) require the
use of constraint-based path selection algorithms to cope with the various transmission
impairments (e.g., attenuation, crosstalk, dispersion, non-linearities) along the optical
path. Different paths are likely to show different performance in terms of transmission
quality. If electronic regeneration is used in optical networks, the various transmission
impairments can be combatted, but different sets of limitations are imposed (e.g., ad-
ditional delay, reduced reliability and increased operational cost). Therefore, to ensure
QoS, multi-constrained routing algorithms are needed. These examples all indicate the
importance of constraint-based routing algorithms, both in ATM and IP.
To enable QoS routing, it is necessary to implement state-dependent, QoS-aware

networking protocols. Examples of such protocols are PNNI [158] of the ATM Forum
and the QoS-enhanced OSPF protocol [7]. For the first task in routing (i.e., the rep-
resentation and dissemination of network-state information), both OSPF and PNNI
use link state routing, in which every node tries to acquire a “map” of the underlying
network topology and its available resources via flooding. Despite its simplicity and
reliability, flooding involves unnecessary communications and causes inefficient use of
resources, particularly in the context of QoS routing that requires frequent distribution
of multiple, dynamic parameters, e.g., using triggered updates [6]. Designing efficient
QoS routing protocols is still an open issue. The focus of this thesis is on QoS algorithms
and their complexity. For this study we assume that the network-state information is

6 CHAPTER 1. INTRODUCTION

temporarily static and has been distributed throughout the network and is accurately
maintained at each node using QoS link state routing protocols. Once a node possesses
the network-state information, it performs the second task in QoS routing, namely com-
puting paths based on multiple QoS constraints. Before giving the formal definition of
the multi-constrained path problem, first the notation is established.

1.3 Notation

A network is represented as a graph G = (V,E) consisting of a set V of N = |V | nodes
and a set E of M = |E| links. Nodes (in the literature also referred to as vertices or
points) represent the routers or switches in a network, while the links (also referred to
as edges, arcs or lines) represent the communication links (e.g., optical fiber, wireless
channel, ...). We only consider connected graphs without self-loops and at most one
link between a pair of nodes. A specific link in the set E between nodes u and v is
denoted by (u, v). Each link (u, v) ∈ E from node u to node v is characterized by
an m-dimensional link weight vector �w(u, v) = [w1(u, v), w2(u, v), · · · , wm(u, v)], where
wi(u, v) > 0 ∀(u, v) ∈ E and the m components refer to QoS measures such as delay,
jitter, loss, available bandwidth, cost, etc. A path in G is denoted by P or more
specifically Ps→t if the path goes from a source node s to a destination node t. A
QoS routing algorithm has the task to compute the path P that obeys multiple QoS
constraints. The values Li are the user requested quality of service desires and �L is
called the constraints vector. The QoS measures belong to two different classes: (1)
additive2 and (2) min-max QoS measures. For additive QoS measures, the value (further
called the weight) of the QoS measure along a path is the sum of the QoS weights on
the links defining that path. Examples of additive QoS measures are the delay, the hop
count and the cost. For min-max QoS measures, the path weight of the QoS measure
is the minimum (or maximum) of the QoS weights of the links that constitute that
path. Typical examples of min-max measures are the minimum needed bandwidth and

2For multiplicative measures, the value of the QoS measure along a path is the product of the QoS
values of the constituent links of the path. By taking the (sometimes negative sign of the) logarithm
of the multiplicative measures on each link, they are transformed into positive, additive measures. An
important example is the packet loss, or more precisely 1 minus the probability of packet loss. Indeed,
if at a node the average incoming traffic [number of packets/s] is λ and if p denotes the probability of
packet loss, then the average outgoing traffic equals (1 − p)λ. The next hop assuring a packet loss q
has incoming traffic (1− p)λ and outgoing (1− p)(1− q)λ. Implicitly independence has been assumed.

Hence, along a path with h hops the end-to-end probability of packet loss is 1 −
hY

k=1

(1− pk). The

end-to-end packet arrival probability
hY

k=1

(1− pk) is maximized by minimizing −
Ph

k=1 log (1− pk),

where − log (1− pk) are positive, additive measures. This explains why only two different classes need
to be considered.

1.4. PROBLEM STATEMENT 7

(policy related) transit flags. Routing with (link) constraints on min-max QoS measures
consists of omitting all links (and possibly disconnected nodes) from the topology that
do not satisfy one of the constraints. We call this topology filtering. In contrast, (path)
constraints on additive QoS measures cause more difficulties. Hence, without loss of
generality and if not stated otherwise, all QoS measures are assumed to be additive.

1.4 Problem statement

For additive QoS measures the weight of a path P = n1 → n2 → · · ·→ nh+1 consisting
of h hops (links) equals the vector-sum of the weights of its constituent links

�w(P) =
hX

j=1

�w(nj, nj+1) (1.1)

The problem of finding a path that satisfies multiple QoS constraints is known as
the multi-constrained path problem and is formally defined as follows:

Definition 1 Multi-Constrained Path (MCP) problem: Consider a network G = (V,E).
Each link (u, v) ∈ E is specified by a link weight vector with as components m addi-
tive QoS link weights wi(u, v) ≥ 0 for all 1 ≤ i ≤ m. Given m constraints Li, where
1 ≤ i ≤ m, the problem is to find a path P from a source node s to a destination node
t such that

wi(P)
def
=

X
(u,v)∈P

wi(u, v) ≤ Li (1.2)

for all 1 ≤ i ≤ m.

A path that satisfies allm constraints is referred to as a feasible path. There may be
many different paths in the graphG that satisfy the constraints. According to definition
1, any of these paths is a solution to the MCP problem. However, it might be desirable
to retrieve the path with smallest length l(P) from the set of feasible paths. The precise
definition of length l(.) is important and will be discussed in Section 4.1. The problem
that additionally optimizes some length function l(.) is called the multi-constrained
optimal path problem and is formally defined as follows,

Definition 2 Multi-Constrained Optimal Path (MCOP) problem: Consider a network
G = (V,E). Each link (u, v) ∈ E is specified by a link weight vector with as components
m additive QoS link weights wi(u, v) ≥ 0 for all 1 ≤ i ≤ m. Given m constraints Li,
where 1 ≤ i ≤ m, the problem is to find a path P from a source node s to a destination
node t satisfying (1.2) and, in addition, minimizing some length criterion such that
l(P) ≤ l(P 0), for all paths P 0, P between s and t that satisfy (1.2).

8 CHAPTER 1. INTRODUCTION

Both the MCP and MCOP problems are instances of QoS routing. The MCOP
problem is considered to be more difficult than the MCP problem, because a solution
to the MCOP problem is also a solution to the MCP problem, but not necessarily vice
versa.
One of the most investigated problems in the context of QoS routing is the Restricted

Shortest Path (RSP) problem. The RSP problem is a subproblem of MCOP, in which
the goal is to find a path with minimal cost (i.e., length) that obeys one constraint
(typically) on the delay.
The main goal of this thesis is to find an exact algorithm for the MC(O)P problem

and to evaluate its complexity. The MC(O)P problem is generally considered to be a
hard problem for which heuristics should be proposed. The view we uphold is different
from the mainstream and may therefore be found controversial. However, our complex-
ity study will strengthen our claim that exact QoS routing is possible in practice.

1.5 Outline

The outline of this thesis is schematically depicted in Figure 1.1. The main body of

Conclusions (Ch. 10)Complexity (Ch. 8)

Dynamics (Ch. 9)

Link-disjoint (Ch. 7)

Multicast (Ch. 6)

Extensions to QoS routing

Overview (Ch. 5)

Concepts (Ch. 4)

Unicast QoS algorithmsIntroduction (Ch. 1)

Background (Ch. 2)

SP algorithms (Ch. 3)

Conclusions (Ch. 10)Complexity (Ch. 8)

Dynamics (Ch. 9)

Link-disjoint (Ch. 7)

Multicast (Ch. 6)

Extensions to QoS routing

Overview (Ch. 5)

Concepts (Ch. 4)

Unicast QoS algorithmsIntroduction (Ch. 1)

Background (Ch. 2)

SP algorithms (Ch. 3)

Figure 1.1: Schematic overview of the thesis outline.

the thesis consists of 10 chapters divided over 6 pillars: Introduction, unicast QoS rout-
ing algorithm(s), extensions to QoS routing, the complexity of QoS routing, dynamic
QoS routing, and conclusions. The direct (horizontal) path from Introduction to Con-
clusions signifies the main focus of this thesis, while the side-steps to QoS extensions

1.5. OUTLINE 9

and dynamic QoS routing should be considered as (important) extensions to the main
theory.
Amore detailed description of the content of each chapter follows. In addition to this

Introductory chapter, Chapters 2 and 3 are also classified under Introduction. Chapter
2 presents the minimal background knowledge that is required to fully understand this
thesis. It covers graph theory, the definition of an algorithm, and complexity theory.
To understand the “more sophisticated” QoS algorithms one must be familiar with
the simple yet elegant shortest path algorithms. Chapter 3 can be scrutinized for an
explanation of the classical shortest path algorithms and their underlying concepts.
Some of these concepts may also be used for QoS routing. Chapter 4 immediately
plunges into the heart of matter and discusses the concepts inherent to exact QoS
routing. Equipped with these concepts, the advantages and disadvantages of different
QoS algorithms are better understood. Chapter 5 presents a detailed overview of the
lion’s share of proposed QoS algorithms. Moreover, a thorough evaluation of these
algorithms is presented based on simulations. Such an extensive comparison study has
never been undertaken before. Chapters 3 to 5 focus on unicast QoS routing in which the
goal is to find a QoS-compliant path between a single source and a single destination. In
Chapter 6 the extension from unicast to multicast QoS routing is examined, where the
goal is to find QoS-compliant paths from a source to multiple destinations. Chapter 6
points out the problems in multicast QoS routing and proposes a multicast QoS routing
algorithm. QoS routing also relates to security, reliability and robustness. In addition
to a single path between source and destination, it may be desirable to find a backup
path that does not share any links with the primary path. Chapter 7 therefore looks at
link-disjoint QoS routing. Again problems and solutions are identified. The extensions
to multicast and link-disjoint QoS routing in Chapters 6 and 7 were for the first time
examined by us. The main focus of the thesis continues in Chapter 8, which explores
the complexity of QoS routing. In the past, the problem of finding a feasible path for
QoS routing was shown to be difficult in the worst case, although the precise conditions
that constitute this worst case where never identified. Chapter 8 presents pioneering
work in this field, resulting in promising conclusions for exact QoS routing in practice.
QoS routing does not only consist of appropriate path selection, but also consists of
acquiring information on the current state of the network and its link weights. These
link weights are typically dynamic in nature, which is the topic of Chapter 9. Chapter
9 presents some preliminary steps on the difficult path towards dynamic QoS routing.
Finally Chapter 10 presents the conclusions.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Graphs, algorithms and complexity

In this chapter basic theory on graphs, algorithms and complexity is provided. This
background material is necessary to understand the following chapters.

2.1 Graph theory

The theory of graphs is a large and complex research area. In this section some basic
graph theory, graph definitions, and ways to represent a graph are explained.

2.1.1 Graph definitions

There are many definitions in graph theory. The book of Harary [69] is considered a
classical reference in the field and many definitions follow his notation.

Definition 3 Adjacency: Node v is adjacent to node u in the graph G if (u, v) ∈ E.

Definition 4 Complete graph: In the complete graph (also referred to as full mesh)
(u, v) ∈ E, ∀u, v ∈ V . KN denotes the complete graph with N nodes.

Definition 5 Connected: A graph G is connected if each pair of nodes is connected
by a path, otherwise the graph is disconnected. A graph is k-connected if there exist k
node-disjoint paths between each pair of nonadjacent nodes.

Definition 6 Cycle: A cycle is a walk for which all nodes except the first and last are
distinct. If there are no cycles in a graph it is called acyclic.

Definition 7 Degree: The degree of a node u gives the number of adjacent nodes to u.
The degree sequence of a graph gives for each node the corresponding degree.

Definition 8 Path: A path is a walk whose vertices are distinct.

11

12 CHAPTER 2. GRAPHS, ALGORITHMS AND COMPLEXITY

Definition 9 Planar: A graph is planar if it can be embedded in a plane without cross-
ing any links.

Definition 10 Regular: A graph is k-regular if all nodes have degree k.

Definition 11 Simple: A graph is simple if it does not have any self-loops or parallel
links.

Definition 12 Tree: A tree is a connected acyclic simple graph.

Definition 13 Walk: A walk in a graph G is an alternating sequence v0, e1, v1, ...
, ek, vk of nodes vi and links ei, where ei is a link connecting vi−1 and vi.

2.1.2 Graph representation

A graph is completely determined by either adjacencies or incidences, which both can
be represented in matrix-form.
A link (u, v) ∈ E is said to be incident to nodes u and v, and vice versa. If the links

are numbered from j = 1 to M , then the incidence matrix I[G] = iuj of an undirected
graph G is obtained as follows:

iuj = 1, if node u is incident to link

= 0, otherwise

for all nodes u ∈ V and all links j ∈ E. If the graph G is a directed graph, the directed
link (u, v) from node u to v is said to be incident from u and incident to node v. The
incidence matrix I[G] follows as:

iuj = +1, if link j is incident to node u

= −1, if link j is incident from node u

= 0, otherwise

for all nodes u ∈ V and all links j ∈ E.
If (u, v) ∈ E then nodes u and v are said to be adjacent. The adjacency matrix

A[G] = auv corresponding to the undirected graph G is defined as:

auv = 1, if (u, v) ∈ E

= 0, otherwise

If the graph G is directed, the directed link (u, v) from u to v is in E, then node u
is said to be adjacent to node v and node v is adjacent from u. The definition for the
adjacency matrix remains the same.

2.1. GRAPH THEORY 13

If the graph is dense, then the adjacency matrix is a memory efficient way of rep-
resenting that graph. If the graph is not dense, then it is more efficient to use linked-
lists to identify the adjacencies. This is called the adjacency-list representation. The
adjacency-list contains for each node u ∈ V a list adj[u] with pointers to all nodes that
are adjacent to u.

Both the adjacencymatrix and adjacency-list are easily adapted to represent weighted
graphs. Figure 2.2 exemplifies the adjacency representations for the weighted graph in
Figure 2.1.

1

2

3

4

0.1
3.0

0.7
8.0

0.6
2.0

0.1
11.0

0.4
6.0

Figure 2.1: An example graph with two weights per link.

3 0.6 2.02 0.1 3.01

4 0.7 8.03 0.4 6.01 0.1 3.02

3 0.1 11.02 0.7 8.04

4 0.1 11.02 0.4 6.01 0.6 2.03

Figure 2.2: Adjacency-list representation of the graph in Figure 2.1.

14 CHAPTER 2. GRAPHS, ALGORITHMS AND COMPLEXITY

Figure 2.3: An example of a random graph in the class G0.04(100).

2.2 Classes of graphs

In this section four classes of graphs that are relevant to this thesis are discussed: the
class of random graphs, Waxman graphs, power-law graphs, and lattices.

2.2.1 Random graph

The classic article on Random graphs is that of Erdös and Rényi [43]. However their
random graph model was discovered eight years earlier by Solomonoff and Rapoport
[152], but the paper of Erdös and Rényi [43] provides a more in-depth analysis and is
therefore best known. The book of Bollobas [21] is a classical reference in the field of
random graphs. The simplest model investigated by Erdös an Rényi was the random
graph Gp(N) consisting of N nodes. The probability that two nodes in the graph
Gp(N) are connected equals p. On average Gp(N) therefore contains p

N(N−1)
2

links. If
p = 1 we have the complete graph with the maximum number of links N(N−1)

2
. The

probability of having i adjacent nodes, i.e. the degree distribution, equals the binomial¡
N−1
i

¢
pi(1−p)N−1−i, with average degree da = p(N−1). For large N the binomial takes

the Poisson form e−dadia
i!
. Figure 2.3 gives an example of a random graph.

2.2. CLASSES OF GRAPHS 15

Erdös and Rényi [44] also identified a phase transition (see Chapter 8.3) in random
graphs. The probability that almost every graph Gp(N) is connected is restricted from
below by the critical threshold pc ∼ lnN

N
for N large. Thus if p > pc then almost all

graphs Gp(N) are connected, else almost all graphs are disconnected.
Let Xh denote the random variable of the number of paths with h hops between the

source node s and the destination node t in Gp(N). Van Mieghem [162] has shown that

E[Xh] =
(N − 2)!

(N − h− 1)p
h, 1 ≤ h ≤ N − 1

The total number of paths in Gp(N) is obtained by summing over all possible hop
counts

PN−1
h=1 Xh. The maximum number of paths in any graph is upper bounded by

the number of paths in the complete graph, which equals be(N − 2)!c [161].

2.2.2 Waxman graph

The class of Waxman graphs belongs to the class of random graphs, where the proba-
bility of existence of a link between two nodes decays exponentially with the geographic
distance between those two nodes. Such graphs are often chosen because of their resem-
blance to actual network topologies. More formally, the Waxman graphs belong to the
class Gpij(N) with pij = f(�ri−�rj), where the vector �ri represents the position of a node
i and all nodes are uniformly distributed in a hyper-cube of size z in the m-dimensional
space. The dependence on distance is reflected by f(�r), which is a positive real function
of the m coordinates of the vector �r. For example, for the Waxman graph, the distance
function is f(�r) = e−α|�r|, where |�r| is a norm denoting a distance from the origin. The
idea of relating the probability of a link between node i and node j to some function of
the distance between those nodes stems from the correspondence with realistic telecom-
munication networks. The farther two nodes lie separated, the smaller the need for a
direct link between them. Figure 2.4 gives an example of a Waxman graph.

2.2.3 Power-law graph

Modelling the Internet topology is an important but difficult problem [50]. At present
an accurate model is still missing. However, many topological properties of the Internet
seem fairly well captured by power laws [48]. Albert and Barabasi [3] demonstrated via
empirical results that also many other complex networks follow power laws. This clearly
motivates our interest in power-law graphs as representing realistic network topologies.
In power-law graphs the nodal degree distribution is Pr[d = i] = ci−τ , where c is a
constant such that

PN−1
i=1 ci−τ = 1. Measurements in the Internet [48] suggest that

τ ≈ 2.4. Figure 2.5 gives a 100-node example graph drawn from the class of power-law
graphs.

16 CHAPTER 2. GRAPHS, ALGORITHMS AND COMPLEXITY

Figure 2.4: An example of a Waxman graph with N = 100 nodes.

There are two possible ways of creating power-law graphs. The first is growing a
connected power-law graph following some rules of preferential attachment [12]. By
growing a graph, often only a sub-class of the class of power-law graphs can be con-
structed. The second way of generating power-law graphs is by generating a degree
sequence from the power-law degree distribution and then creating a graph from this
prescribed degree sequence. Asano [8] provided an algorithm to generate a connected
graph from a given degree sequence, provided it exists. We have used this approach to
generate connected power-law graphs. Unfortunately by removing disconnected graphs,
the degree distribution of the connected graphs may be slightly different from the ex-
pected distribution, as they favour sequences with high degrees. For our simulation
studies this discrepancy can be tolerated.

2.2.4 Lattice

We only consider a subclass of the class of lattices, namely rectangular two-dimensional
lattices with size z1 and z2 and N = (z1 + 1)(z2 + 1).
The class of lattices is extremely regular. In a sense, if we imagine a spectrum of

graphs, then the class of random graphs is at one extreme of this spectrum while the

2.2. CLASSES OF GRAPHS 17

Figure 2.5: An example of a power-law graph with N = 100 nodes.

18 CHAPTER 2. GRAPHS, ALGORITHMS AND COMPLEXITY

class of lattices is at the other. Figure 2.6 gives an example of a square lattice with
N = 100 nodes. All interior nodes have degree 4. The shortest-hop path between two
diagonal corner points in the rectangular two-dimensional lattice has h = z1 + z2 hops.
Any path in a rectangular two-dimensional lattice can be represented by a sequence
of r(ight), l(eft), u(p) and d(own). A shortest-hop path between two diagonal corners
consists of z1 r’s (or l’s) and z2 d’s (or u’s). The total number of such shortest-hop paths
equals

¡
z1+z2
z1

¢
.

2.3 Algorithmic complexity

Before explaining the complexity of an algorithm, first the definition of an algorithm is
provided. The word “algorithm” originates from the Persian author Abu Ja’far Muham-
mad ibn Musa Al-Khwarizmi, who wrote a book (around 825 A.D.) on Hindu-Arabic
numerals. Unfortunately the original book is lost, but a Latin translation with the title
“Algoritmi de numero Indorum” survived, which gave birth to the word “algorithm.”
The word algebra is also likely to come from the work of Al-Khwarizmi. Several
definitions of an algorithm exist:

• Cormen et al. [34]: An algorithm is any well-defined computational procedure that
takes some value, or set of values, as input and produces some value, or set of
values, as output. An algorithm is thus a sequence of computational steps that
transform the input into the output. We can also view an algorithm as a tool
for solving a well-specified computational problem. The statement of the problem
specifies in general terms the desired input/output relationship. The algorithm
describes a specific computational procedure for achieving that input/output rela-
tionship.

• Schrijver [145]: An algorithm can be seen as a finite set of instructions that per-
form operations on certain data. The input of the algorithm will give the initial
data. When the algorithm stops, the output will be found in prescribed locations
of the data set.

• Merriam-Webster Dictionary: An algorithm is a procedure for solving a mathe-
matical problem in a finite number of steps that frequently involves repetition of
an operation.

We prefer the description of Cormen et al., as it best captures the algorithms stud-
ied in this thesis. In the definition of Cormen et al. an abstract problem Q is defined
to be a binary relation on a set I of problem instances and a set S of problem so-
lutions. For a computer program to be able to solve an abstract problem, problem
instances must be represented in a form that the program understands. Two popular

2.3. ALGORITHMIC COMPLEXITY 19

Figure 2.6: An example of a square lattice with N = 100 nodes.

20 CHAPTER 2. GRAPHS, ALGORITHMS AND COMPLEXITY

computer representations are the Turing machine [160] and the random access machine
(RAM). Since current computers, contrary to quantum computers, use binary strings
to represent problem instances, this means (among others) that numbers only increase
logarithmically with the size of the input (i.e., the length of the binary strings defines
the input).

Definition 14 Polynomial-time algorithm: An algorithm is called a polynomial-time
algorithm if it terminates after a number of computational steps bounded by a polynomial
in the input size.

Polynomial-time algorithms are often called efficient algorithms. Note that if the
number of steps increases polynomial with some numeric values (e.g., link weights) in-
stead of logarithmically as the input size, this is not a polynomial-time algorithm. Garey
and Johnson [57] have named such algorithms “pseudo-polynomial-time algorithms.”
The complexity of an algorithm is an important criterion for evaluating algorithms.

Formally, complexity refers to the intrinsic minimum amount of resources needed to
solve a problem or execute an algorithm. Complexity can refer to time-complexity
(e.g., polynomial running time) or space-complexity (memory usage). If not specifi-
cally stated otherwise, the term complexity refers to time-complexity. Complexity can
also be subdivided into average-case complexity, amortized complexity and worst-case
complexity.
The worst-case complexity gives an upper bound on the number of computational

steps (running time) as a function of the input. The average-case complexity gives the
expected running time as a function of the (average) input. The amortized complexity
guarantees the average-case complexity in the worst-case. Often the complexity is de-
noted in the asymptotically most relevant input parameters. The following asymptotic
notations are used:

Definition 15 Θ-notation: f(x) ∈ Θ(g(x)) as x → x0 if positive constants c1 and c2
exist such that c1g(x) ≤ f(x) ≤ c2g(x) for all x sufficiently close to x0.

Definition 16 O-notation: f(x) ∈ O(g(x)) as x → x0 if a positive constant c exists
such that |f(x)| ≤ c|g(x)| for all x sufficiently close to x0.
Definition 17 Ω-notation: f(x) ∈ Ω(g(x)) as x → x0 if a positive constant c exists
such that cg(x) ≤ f(x) for all x sufficiently close to x0.

Definition 18 o-notation: f(x) ∈ o(g(x)) as x → x0, given any µ > 0, we have that
|f(x)| < µ|g(x)| for all x sufficiently close to x0.
Definition 19 ω-notation: f(x) ∈ ω(g(x)) as x→ x0, given any µ > 0, we have that
0 ≤ µg(x) < f(x) for all x sufficiently close to x0.

The Θ-notation refers to upper and lower bounds, while the O-notation and o-
notation only refer to upper bounds, and the Ω-notation and ω-notation only refer to
lower bounds.

2.4. NP-COMPLETENESS 21

2.4 NP-completeness

In this section we discuss informally the classes P, NP and co-NP. These classes only con-
tain decision problems, of which the solution is either a “yes” or a “no.” Many abstract
problems are not decision problems, but optimization problems (e.g., the shortest path
problem). Luckily, such optimization problems can often be rephrased in polynomial
time to a decision problem. This holds for all problems considered in this thesis.
In the previous section a polynomial-time algorithm was defined. Informally, we can

define the class P as the class of decision problems, which are solvable by a polynomial-
time algorithm.
The class NP stands for Nondeterministic Polynomial-time solvable decision prob-

lems. The term “nondeterministic” is a heritage from the early days when NP was
defined in terms of nondeterministic machines [57]. Nowadays an equivalent, but more
simple definition is used:
The class NP is the class of decision problems, whose solutions can be checked/verified

by a polynomial-time algorithm.
Finally the class co-NP is defined as the class of decision problems ∈ NP, for which

the complementary problem also belongs to NP.
The relationship between the classes P and NP is fundamental for the theory of NP-

completeness, but due to its complexity this relation is still not fully understood. One
obvious relationship that can be deduced from the definitions of P and NP is that P ⊆
NP. The question that still remains unsolved is whether P 6= NP? In [34] four possible
scenarios are provided (see Figure 2.7), of which the last scenario (P⊂NP∩co-NP) is
widely believed to be the most likely. If indeed P 6= NP, then problems in NP\P cannot

P=NP=co-NP PNP=co-NP

P=NP∩co-NP NPco-NP
NP∩co-NP

P
co-NP NP

P=NP=co-NPP=NP=co-NP PNP=co-NP PNP=co-NP

P=NP∩co-NP NPco-NP P=NP∩co-NP NPco-NP
NP∩co-NP

P
co-NP NPNP∩co-NP

P
co-NP NP

Figure 2.7: Four possible scenarios for the relation between P and NP.

be solved by polynomial-time algorithms and are therefore considered intractable. The
class of NP-complete problems is believed to be contained in NP\P (see Figure 2.8).

22 CHAPTER 2. GRAPHS, ALGORITHMS AND COMPLEXITY

NP∩co-NP

P

co-NP NP

co-NP-complete NP-complete

NP∩co-NP

P

co-NP NP

co-NP-complete NP-complete

Figure 2.8: A possible scenario for the class of NP-complete problems.

Cook [33] in 1971 introduced the concept of NP-completeness and formulated the
first NP-complete problem, referred to as the satisfiability (SAT) problem. A problem
Π is defined to be NP-complete if

1. Π ∈ NP , and

2. Π0 ≤p Π for every Π0 ∈ NP

where Π0 ≤p Πmeans that problem Π can be reduced in polynomial-time to problem
Π0 and therefore by solving Π0 we can retrieve the solution to Π in polynomial time.
NP-complete problems are the hardest problems in NP and consequently, if any NP-
complete problem could be solved in polynomial time, then all NP-complete problems
could be solved in polynomial time and P=NP. Conversely, if any problem in NP is
not solvable in polynomial time, then all NP-complete problems cannot be solved in
polynomial time. Garey and Johnson [57] have discussed several techniques for proving
NP-completeness. The simplest technique is called proof by restriction. These proofs
consist of showing that problem Π contains as a special case a known NP-complete
problem Π0. If this is the case, then problem Π is also NP-complete. This also shows
that the theory of NP-completeness is based on a worst-case analysis. In fact, a problem
Π could be NP-complete, while a subproblem Π0 of Π could be in P.
The main problems considered in this thesis (MCP and MCOP, see Section 1.4)

have all been proven to be NP-complete.

Chapter 3

Shortest path algorithms

In this chapter we overview classical (one-dimensional) shortest path algorithms. A
selection is made based on the impact the algorithms have had and their relevance to
this thesis. In addition to the original papers, three excellent books, [34], [2], and [145],
were regularly consulted. These books provide an in-depth coverage of many algo-
rithms. In this chapter we confine to explaining breadth-first search, depth-first search,
the Bellman-Ford algorithm, the Dijkstra algorithm, bi-directional search, the A* algo-
rithm, and mathematical programming. The methods of mathematical programming
can be generally applied and entire books have been devoted to the subject. Only their
applicability as a shortest path algorithm is relevant for this chapter.
The notation used in this chapter is presented in Section 1.3. For our meta-codes

we have used the same convention as in [34].
Before the shortest path algorithms are discussed, the shortest path problem is first

formally defined:

Definition 20 Shortest Path (SP) problem: Given a graph G = (V,E), a source node
s and destination node t. Each link (u, v) ∈ E between nodes u and v (u, v ∈ V)
is specified by a single weight w(u, v) ≥ 0. Find a path P ∗ from s to t for which
w(P ∗) =

P
(u,v)∈P∗ w(u, v) is minimum, i.e. w(P

∗) ≤ w(P), ∀P .

In the definition of the shortest path problem we assume the weights to be non-
negative and additive, since it is highly unlikely that negative weights will be used in the
Internet. Some shortest path algorithms, e.g. Bellman-Ford, can also handle negative
link weights provided that there are no negative cycles present. These instances of the
SP problem can be solved in polynomial time, however, in general the SP problem (with
possibly negative cycles) is an NP-complete problem [2]. If there are negative cycles,
walks could traverse these cycles infinitely. It is not simple to prohibit the revisiting
of nodes (which is not allowed for a path) and this makes the problem NP-complete.
Note that the detection of negative cycles is not an NP-complete problem. The SP

23

24 CHAPTER 3. SHORTEST PATH ALGORITHMS

problem is a nice example of a problem that is NP-complete in the worst-case, but
which has instances that are solvable in polynomial time. Fortunately these instances
∈ P are also most relevant in practice. Next, a brief explanation of two elementary
graph algorithms, namely breadth-first search and depth-first search is provided.

3.1 Elementary graph algorithms

The meta-code of a basic algorithm for searching a tree in a graph G = (V,E) is
displayed in Figure 3.1 and denoted as the search algorithm.

Search(G, s)
1. for each node u ∈ V
2. do color[u] ← white
3. π[u]← nil
4. color[s] ← grey
5. Q← {s}
6. while Q 6= ∅
7. do u← extract a node from Q
8. for each v ∈ Adj[u]
9. do if color[v] = white
10. then color[v] ← grey
11. π[v]← u
12. add v to Q

Figure 3.1: A search algorithm.

The search algorithm colors the nodes white, grey or black. All nodes are
initially white and become grey when the search algorithm discovers that node and
consequently stores it in the set Q. Q contains all discovered grey nodes. The search
algorithm proceeds by extracting, according to some rule, a grey node to discover its
neighboring nodes that were not yet discovered. Newly discovered nodes are colored
grey and are added to the set Q. The extracted node is colored black and shall
not be examined anymore. The search algorithm continues extracting and discovering
nodes until the set Q is empty and all nodes have been examined. The predecessor of a
node u is stored in the vector π[u]. This vector can be used to construct the tree rooted
at s in the graph G.
The search algorithm in Figure 3.1 does not specify how to extract a node from

Q. Different rules lead to different algorithms. The two fundamental strategies are
breadth-first search and depth-first search.

3.2. CLASSICAL SHORTEST PATH ALGORITHMS 25

3.1.1 Breadth-first search

Breadth-first search uses a first-in first-out (FIFO) rule to extract nodes. Nodes are
extracted from the head of the queue Q and stored in the tail of Q. By searching in this
breadth-first way, first the nodes with a one-hop distance are colored, then the nodes
at a two-hop distance, and continuing up to the nodes at distance H hops, where H
gives the maximum hop count between s and any other node in G. The tree returned
by breadth-first search is therefore a shortest path tree in terms of hop count. The
complexity of breadth-first search is O(N +M) [34].

3.1.2 Depth-first search

Contrary to breadth-first search, depth-first search, as indicated by the name, searches
into the depth of a graph. Depth-first search uses a last-in first-out (LIFO) rule, where
nodes are inserted at and extracted from the head of the queue Q. Depth-first search
therefore explores paths as far as possible and then “backtracks” to initiate a new
search until all links have been explored. Depth-first search returns a depth-first forest
(possibly) consisting of several depth-first trees. Depth-first search can therefore also
easily be used on disconnected graphs and is often used to obtain information on the
structure of a graph. The complexity of depth-first search is Θ(N +M) [34].

3.2 Classical shortest path algorithms

In this section the classical algorithms Bellman-Ford and Dijkstra are described. Both
algorithms can return the shortest path tree rooted at a source. A description of
these classical algorithms and their implementations can also be found in [54] and for
a performance evaluation we refer to [30]. Many variations of these algorithms have
been proposed in the literature, mainly based on different proposals for a priority queue
[31]. Before exploring the different algorithms, we first give an important property of
one-dimensional shortest paths and describe the technique of relaxation that is used by
many shortest path algorithms.

Property 21 Subpaths of shortest paths in one dimension are also shortest paths.

Proof. We will give a proof by contradiction. Assume that P is the shortest path
from s to t, i.e. P = s, ..., u, ..., v, ..., t. Let Q be a subpath of P from node u ∈ P to
v ∈ P , i.e. Q = u, ..., v. If Q0 instead of Q is the shortest path from u to v, we can
find the path P 0 = s, ..., Q0, ...t that is shorter than path P = s, ..., Q, ..., t with length
l(P) =

P
(u,v)∈P w(u, v) = w(Ps→u)+w(Q)+w(Pvt) >w(Ps→u)+w(Q

0)+w(Pvt) = l(P 0),
which is a contradiction since P is the shortest path from s to t.

26 CHAPTER 3. SHORTEST PATH ALGORITHMS

Property 21 is important, because as will be explained in Chapter 4, the absence of
this property in multi-dimensional shortest paths induces many complications.
Property 21 is used in the technique of relaxation to obtain the shortest path length

in a monotonically decreasing fashion. Each node u ∈ V maintains an estimate d[u]
of the shortest path distance from the source node s to node u. Based on property 21
we know that subpaths of shortest paths must also be shortest. Therefore, if d[v] >
d[u]+w(u, v) we can improve the “shortest” path to v found sofar by going via the node
u to node v, using link (u, v). This process of checking whether we can improve the
distance estimate of a path to a node v by going via a different path to a neighboring
node u and taking the link (u, v), is called relaxing the node v. Initially all estimates
d[u] ∀u ∈ V are set to infinity. In Figures 3.2 and 3.3 the meta-code for the initialization
and the relaxation are given. Both Bellman-Ford and Dijkstra use these functions.

Initialize(G, s, d, π)
1. for all nodes v ∈ N
2. d[v]←∞
3. π[v]← nil
4. d[s]← 0

Figure 3.2: Initialization.

Relax(u, v, w, d, π)
1. if d[v] > d[u] + w(u, v)
2. d[v]← d[u] + w(u, v)
3. π[v]← u

Figure 3.3: Relaxation.

Lines 1-3 of the Initialize routine in Figure 3.2 set for all the nodes the estimates
to infinity and the predecessors to nil. Only the estimate d[s] of the source node is set
to 0 in line 4, since the search is started from the source itself. Line 1 of the procedure
Relax checks whether the distance d[v] can be improved by going via the node u and
link (u, v) to node v. If this is the case then the estimate and predecessor of node v are
updated in lines 2 and 3.
Figure 3.4 gives a small example to illustrate the routines Initialize and Relax.

Figure 3.4(a) illustrates the initialization. Since s is the source node it also is the
starting point of the Bellman-Ford and Dijkstra algorithms. There are two neighboring
nodes to s and therefore also two links to relax. Both links pass the relaxation test
and therefore their estimates and predecessors are updated (see Figure 3.4(b)). In the

3.2. CLASSICAL SHORTEST PATH ALGORITHMS 27

s

a

t

s

a

t

s

a

t

d[a]=1

π[a]=s

d[t]=2

π[t]=a

d[s]=0

π[s]=NIL

d[a]=1

π[a]=s

d[t]=3

π[t]=s

d[s]=0

π[s]=NIL

d[t]=INF

π[t]=NIL

d[a]=INF

π[a]=NIL

d[s]=0

π[s]=NIL

333

111

1 1 1

(a) (c)(b)

s

a

t

s

a

t

s

a

t

s

a

t

s

a

t

s

a

t

d[a]=1

π[a]=s

d[t]=2

π[t]=a

d[s]=0

π[s]=NIL

d[a]=1

π[a]=s

d[t]=3

π[t]=s

d[s]=0

π[s]=NIL

d[t]=INF

π[t]=NIL

d[a]=INF

π[a]=NIL

d[s]=0

π[s]=NIL

333

111

1 1 1

(a) (c)(b)

Figure 3.4: Example operation of routines Initialize and Relax.

next step (Figure 3.4(c)), the link (a, t) can be relaxed and hence the estimate d[t]
and concurrently π[t] must be updated. The choice of which nodes to examine first is
different for Bellman-Ford and Dijkstra and will be discussed below.

3.2.1 Bellman-Ford algorithm

The Bellman-Ford algorithm [17], [89], [117] is based on the Bellman equations (set-up
for the complete graph):

d(0)[i] = w(i,N), i = 1, ..., N

and

d(k+1)[i] = minj 6=i
¡
w(i, j) + d(k)[j]

¢
, i = 1, ..., N − 1

d(k+1)[N] = 0

¾
for k = 0, 1, 2, ...

where d(i)[u] is the estimate of the shortest path distance from s to u found at the i-th
iteration.
Just as in breadth-first search, the Bellman-Ford algorithm traverses the graph by

first examining 1-hop paths, then 2-hop paths up to paths with H ≤ N−1 hops, where
H denotes the maximum minimum hop count between any two nodes in the graph.
At an iteration h, the algorithm examines whether it can relax a link, obtaining the

28 CHAPTER 3. SHORTEST PATH ALGORITHMS

shortest paths with at most h hops. The meta-code of the Bellman-Ford algorithm is
given in Figure 3.5.

BellmanFord(G,w, s)
1. Initialize(G, s, d(0), π)
2. for h← 1 to N − 1
3. do for each link (u, v) ∈ E
4. do Relax(u, v, w, d(h), π)
5. for each link (u, v) ∈ E
6. do if d(N−1)[v] > d(N−1)[u] + w(u, v)
7. then return false
8. return true

Figure 3.5: The Bellman-Ford algorithm.

Line 1 initializes the estimates and predecessors of the nodes as indicated in Figure
3.5. Line 2 gives the expansion of the hop count up to the maximum N − 1. Lines 3
and 4 relax the edges in G. Lines 5 to 8 check if there are no negative-length cycles
present. When nonnegative weights are assumed as in definition 20, these lines can be
omitted.
We will give a small example on the execution of Bellman-Ford. However, contrary

to many books we will not depict the search with graphs, but with an activity table.
This gives a better understanding of how an algorithm works once it is programmed in
some computer language.
Consider the topology in Figure 3.6. The goal is to find the shortest path from

source node s = 1 to destination node t = 8. The activity table is given in Table 3.1.
The notation x, y in Table 3.1 refers to d(h)[u], π[u]. The edges are scanned in

lexicographic order as follows: (1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (3, 5), (4, 5), (4, 6),
(4, 7), (5, 6), (6, 7), (6, 8), (7, 8). h in the activity table refers to line 2 in the meta-code
(Figure 3.5). At each iteration h all edges (u, v) ∈ E are relaxed. It may occur that the
distance d[v] of a node v is updated multiple times during an iteration. To illustrate
this an iteration line is split where appropriate.
The Bellman-Ford algorithm has some drawbacks, for instance by relaxing all nodes

at each iteration. In fact, the first h iterations are only relevant for the links E0 on the
paths that are at most h hops distanced from the source. If h is small it is likely that
E0 ⊆ E is only a small subset of E and hence many links E\E0 are needlessly relaxed.
This is why Bellman-Ford best works on sparse graphs.
An other inefficiency stems from the Bellman-Ford equations. They only allow

iteration h to use the information of previous h − 1 iterations. However it may occur
that d(h)[v] is decreased by relaxing the edge (u, v) and that this new information is

3.2. CLASSICAL SHORTEST PATH ALGORITHMS 29

1

7

6

5

4

3

2

81

4

7

5

1

2

6

9

2
3

8 6

4

11

77

66

55

44

33

22

881

4

7

5

1

2

6

9

2
3

8 6

4

Figure 3.6: Example topology.

not used when relaxing the edge (v, w), which is lexicographically larger than (u, v).
By using that new information, some steps in the Bellman-Ford execution could be
skipped, thereby increasing performance. However, this destroys the property that at
each iteration h we have at most h-hop count paths.
A big advantage of Bellman-Ford is that it can be used as a distributed algorithm,

as is done in RIP [75], [115], the first protocol used in the Internet. This distributed
capability is easily seen from the Bellman equations.
The Bellman-Ford algorithm has a worst-case complexity of O(NM), since it takes

at most N − 1 iterations and for each iteration M relaxations.

3.2.2 Dijkstra algorithm

Edsger Wybe Dijkstra is widely considered to be one of the pioneers in shortest path
routing. His algorithm [40], simply referred to as the Dijkstra algorithm, has had an
enormous impact in many fields.
The Dijkstra algorithm uses the principle of relaxation and the fact that subsections

of shortest paths are also shortest paths. For each node v ∈ V in the graph the Dijkstra
algorithm maintains the attribute d[v], which reflects the shortest weight sofar from the

30 CHAPTER 3. SHORTEST PATH ALGORITHMS

Table 3.1: Activity table

h 1 2 3 4 5 6 7 8
0 0 ∞,∅ ∞,∅ ∞,∅ ∞,∅ ∞,∅ ∞,∅ ∞,∅
1 | 4,1 8,1 ∞,∅ ∞,∅ ∞,∅ ∞,∅ ∞,∅
2 | | 7,2 13,2 ∞,∅ ∞,∅ ∞,∅ ∞,∅
2 | | | 10,3 14,3 ∞,∅ ∞,∅ ∞,∅
3 | | | 9,3 13,3 ∞,∅ ∞,∅ ∞,∅
3 | | | | 12,4 15,4 17,4 ∞,∅
4 | | | | 11,4 14,4 16,4 ∞,∅
4 | | | | | 13,5 16,4 21,6
5 | | | | | 12,5 14,6 19,6
6 | | | | | | 13,6 18,6
7 | | | | | | | 17,7
8 | | | | | | | |

source node to v. The Dijkstra algorithm also keeps track of the predecessor π[v] that
is either another node or nil.

Dijkstra(G, s, t)
1. Initialize(G, s, d, π)
2. queue Q← V
3. while Q 6= ∅
4. extract-min(Q)→ u
5. if u = t
6. return path
7. else
8. for each v ∈ adj[u] /*for each neighbor of u*/
9. Relax(u, v, w, d, π)

Figure 3.7: The Dijkstra algorithm.

Figure 3.7 gives the meta-code of the Dijkstra algorithm. Line 1 of the meta-code
initializes all nodes. Line 2 inserts all nodes in the queue Q. The main algorithm starts
at line 3. Line 4 extracts the node u from the queue that has the shortest weight (i.e.,
d[u] ≤ d[v] ∀v 6= u ∈ Q). Node u can be regarded as the new scanning node towards
destination t. Lines 5 and 6 are optional, if the goal is only to retrieve the shortest
path between a source and a single destination. The original Dijkstra algorithm does

3.2. CLASSICAL SHORTEST PATH ALGORITHMS 31

not have lines 5 and 6 and returns the shortest path tree rooted at source node s. In
Figure 3.7, line 5 checks whether the extracted node is different from the destination
node t, else the algorithm is finished and the shortest path can be returned via the
predecessor list π, running backward from t to s (line 6). Lines 7 to 9 perform the
relaxation procedure for each adjacent node v of u.
The worst-case complexity of the Dijkstra algorithm, when using Fibonacci heaps

[53], equals O(N logN +M). The proof that the Dijkstra algorithm is exact, can be
found in [34]. If the Dijkstra algorithm is executed on a graph with negative weights,
it may occur that the shortest path is not found. By slightly modifying the Dijkstra
algorithm to examine/extract nodes multiple times, the shortest path in a graph with
negative weights (but no negative cycles) is guaranteed to be found. However, contrary
to the Bellman-Ford algorithm, the Dijkstra algorithm may require an exponential
running time [88].

3.2.3 Bi-directional search

Nearly all shortest path algorithms proposed, are designed to find a shortest paths
tree, rooted at the source to all other nodes. In practice, these algorithms (after a small
modification) are often only used to find a path between a single source-destination pair.
For instance, a car-navigation system only needs to find the optimal route between the
current car position and the intended destination. This particular use of the classical
shortest path algorithms may be somewhat inefficient. A potential improvement in
computational efficiency stems from the idea to search for the best path alternately
from the source s and destination t. We refer to this algorithm as the bi-directional
search algorithm. It was first proposed by Dantzig [35] in 1960 and later corrected
by Nicholson [122]. The efficiency gain of the bi-directional search algorithm can be
significant for some classes of graphs as presented and explained below.
The concept of bi-directional search originated after observing that the Dijkstra

algorithm examines a number of “unnecessary” nodes, especially when the shortest
(sub)path grows towards the destination. To reduce the number of unnecessary scans,
it is better to start scanning from the source node s as well as from the destination node
t. Figure 3.8 presents a graph, which was deemed a difficult topology in [30], because
the Dijkstra algorithm needs to evaluate all nodes before reaching the destination t from
the source s. This situation is circumvented by alternating between scanning from the
source node and scanning from the destination node1. In that case, a large part of the
topology will not be scanned, clearly resulting in a higher efficiency.
Alternating between two directions and meeting in the middle is not always enough

to find the shortest path, as illustrated in Figure 3.9. Keeping track of the minimum

1In case of a directed graph, the scan-procedure from destination t towards source s should proceed
in the reversed direction of the links.

32 CHAPTER 3. SHORTEST PATH ALGORITHMS

77777

7

7

7

7 7 7 7 7

7 7 7 7 7

6
5432

1
s

t

77777

7

7

7

7 7 7 7 7

7 7 7 7 7

6
5432

1
s

t

Figure 3.8: Example of a difficult topology for the Dijkstra algorithm.

shortest path length found so far is necessary. Since the Dijkstra algorithm is executed
from two sides, two queues Qs and Qt, two attributes ds[] and dt[], and two predecessor
lists πs and πt are needed. The bi-directional search algorithm extracts a node u by
alternating between Qs and Qt. If a node u has been extracted from Qs and from Qt

and if the end-to-end path length is smaller than or equal to the shortest discovered
(but not extracted) path so far, then we have found the shortest path by concatenating
the two sub-paths from s to u and u to t.
The meta-code of the bi-directional search (BDS) algorithm is given in Figure 3.10.

Lines 1-4 give the initialization for the two queues. The main algorithm starts at
line 7. Lines 8-13 alternate between extracting a node u from Qs and from Qt. If a node
has been extracted from Qs and Qt (i.e., it has been extracted twice in total) and if
the end-to-end path length is smaller or equal to the shortest (but not extracted) path
sofar (represented by minlength), then the shortest path is found and can be returned
by concatenating the two subpaths from s to u and u to t. Else, the algorithm proceeds
with its alternating search. Depending on whether node u was extracted from Qs or Qt,
lines 17-21 initiate the relaxation procedure. When necessary, lines 22 and 23 update
minlength.
The worst-case complexity of this algorithm is identical to that of the Dijkstra

algorithm, namely O(N logN +M).

Property 22 The bi-directional search algorithm is exact.

3.2. CLASSICAL SHORTEST PATH ALGORITHMS 33

2

2.5 2

11

s t

2

2.5 2

11

s t

Figure 3.9: Because the number of hops of the shortest (upper) path is unequal, the
middle link is counted twice before a node on this path is extracted twice. The end-
to-end length of the upper path (l(P) = 4) is discovered before the node on the lower
path is extracted twice. The length of the lower path (l(P) = 4.5) is larger than the
length of the upper path and this lower path should therefore not be returned.

Proof. Since the Dijkstra algorithm is exact, we have two shortest path trees, one
rooted at the source and the other at the destination. Since subpaths of shortest paths
are shortest paths, whenever these two trees touch each other, we will have found the
shortest path between source and destination. This shortest path length is stored in
minlength (line 23). When a node is extracted twice and the shortest path has an even
number of hops, this means we will have retrieved the shortest path. However, when
the shortest path has an odd number of hops, then the middle link will be counted
twice, which may result in another (even hop count) path to be extracted (twice) first.
However, since the actual shortest path is shorter, minlength will also be shorter and
hence will not allow the larger path to be returned.
The remainder of this subsection is devoted to the performance evaluation of the

bi-directional search algorithm. The expected efficiency gain of the bi-directional search
algorithm versus the Dijkstra algorithm is compared. The performance measure is based
on the average number of extracted nodes of both algorithms,

EXN =
1

T

TX
i=1

nbidirectional(i)

nDijkstra(i)

where T refers to the total number of examined topologies in a particular class of
graphs and nbidirectional(i) and nDijkstra(i) refer to the number of extracted nodes by
the bi-directional search algorithm and the Dijkstra algorithm, respectively. We have
considered two classes of graphs that possess a different law for the hop count, namely
the random graph G0.2(N) and the square lattice.
For the link weights we have used uniformly distributed random variables in the

range [0,1). In each class of graphs, a connected graph was generated, in which the

34 CHAPTER 3. SHORTEST PATH ALGORITHMS

BDS(G, s, t)
1. Initialize(G, s, ds, πs)
2. Initialize(G, t, dt, πt)
3. Qs ← V
4. Qt ← V
5. minlength ←∞
6. alternate ← 1
7. while Qs 6= ∅ and Qt 6= ∅
8. if alternate = 1
9. extract-min(Qs) → u
10. alternate ← 0
11. else
12. extract-min(Qt) → u
13. alternate ← 1
14. if u /∈ {Qs, Qt} and ds[u] + dt[u] ≤ minlength
15. return path
16. else
17. for each v ∈ Adj[u]
18. if alternate = 0
19. Relax(u, v, w, ds, πs)
20. else
21. Relax(u, v, w, dt, πt)
22. if ds[v] + dt[v] < minlength
23. minlength ← ds[v] + dt[v]

Figure 3.10: Bi-directional search algorithm.

shortest path between two randomly chosen (different) nodes was calculated with both
algorithms. At each calculation, the number of extracted nodes was stored. This
procedure was repeated T =104 times. The results for both classes of graphs, for
different sizes of N , are plotted in Figure 3.11.

Figure 3.11 shows that for very small graphs (i.e., N ≤ 25) the Dijkstra algorithm is
more efficient than the bi-directional search algorithm. However, for larger graphs the
bi-directional search algorithm displays a higher efficiency. For uniform link weights,
this efficiency gain is smallest for the class of two-dimensional lattices, where it seems
to saturate at 62% of Dijkstra’s extracted nodes. This gain is already substantial.
However, the efficiency gain in the class of random graphs is much larger and continues
to decrease with N in our simulated range. The reason most likely lies in the random
structure of the graph, which makes it more probable for the Dijkstra algorithm to scan

3.2. CLASSICAL SHORTEST PATH ALGORITHMS 35

N

0 1000 2000 3000 4000 5000 6000 7000 8000

E
XN

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Random Graph
2d lattice

Figure 3.11: EXN as a function of N for the class random graphs and the two-
dimensional lattices.

nodes that are outside of “the scope” of the shortest path.

We present an order estimate for the gain plotted in Figure 3.11. The shortest path
tree in the class of random graphs Gp(N) with independent exponential or uniformly
distributed link weights is a uniform recursive tree (URT) [164]. A URT grows by
attaching a new node uniformly to any of the already existent nodes in the URT. In
the bi-directional search algorithm, two separate URTs are grown, URTs and URTt

rooted at source s and destination t, respectively. The scanning processes create two
URTs of about equal size. Let v denote the typical size of the URTs when they meet.
When the two URTs meet, any node in URTs can be potentially attached to any node
in URTt, corresponding roughly to v2 possibilities. This implies that both URTs are
connected if the number of interconnection possibilities includes about all nodes, hence,
v2 = O (N) from which v = O

³√
N
´
. This estimate explains that the performance

measure EXN decreases roughly as O (N−0.5), where simulations (up to N = 8000)
give EXN = O (N−0.45).

36 CHAPTER 3. SHORTEST PATH ALGORITHMS

The argument why EXN → 0.6 in the two-dimensional lattice is as follows. Since
the link weights are uniformly distributed, we may expect that the shortest path tree
grows as an isotropic diffusion process with radius r around s and t, respectively. The
number of nodes in each circle is about αr2, where α is a constant. When these two
circles touch each other, the shortest path is found which happens if 2r is about the
distance R between s and t. In case of the Dijkstra algorithm, only the circle from
s finds the shortest path if node t is enclosed, which needs about αR2 nodes to be
discovered. Hence, in the bi-directional search algorithm about 2αr2 nodes need to be
discovered, while αR2 = 4αr2 in the Dijkstra process, which leads to a gain factor of
0.5. The actually simulated value is somewhat less, a gain of about 0.4, which is mainly
due to neglecting the effect of the finite boundaries in the square lattice. In summary,
by taking into account the underlying graph structure, it is possible to estimate roughly
the performance measure EXN or efficiency gain of the bi-directional search algorithm
over the Dijkstra algorithm.

3.3 Best-first search

Best-first search can be seen as an important technique that lies somewhere between
breadth-first search and depth-first search. Best-first search predicts the quality of the
set of (sub)paths. It first explores the “best” subpaths, which seem most likely to lead
to the shortest path. The estimations are computed via an evaluation length function
l(), which may depend on the current node u, the destination, the information gathered
by the search up to node u and on any extra knowledge about the problem domain [131].
The estimates are heuristic in nature and may therefore be misleading. The different
types of best-first search algorithms differ in the evaluation function they employ. Two
well known best-first search algorithms are the Dijkstra algorithm (see Section 3.2.2),
which uses the weights of the subpaths as estimates for the best end-to-end path length
and the A* algorithm, which will be described below.

3.3.1 A* algorithm

The A* algorithm was described formally for the first time by Hart et al. [71], [72].
The length function l() that A* uses is composed out of two parts, namely the weight
d[u] of a subpath from s to some node u, plus a lower-bound function b(u) that bounds
the weight of the shortest path from u to t. The values of d[u] (with d[s] = 0) can
be overestimated, but will decrease monotonically towards the weight w(P ∗s→u) of the
shortest path P ∗s→u from s to u. The closer the lower bounds b(u) are to w(P ∗u→t), the
better informed the A* algorithm is. If b(u) = 0, then the A* algorithm reduces to the
Dijkstra algorithm, also referred to as blind uniform cost algorithm. Assume we have
two A* algorithms: A∗1 and A

∗
2, with lower-bound functions b1() and b2(), respectively.

3.4. MATHEMATICAL PROGRAMMING 37

If b1(u) > b2(u) ∀u ∈ V \{t}, then A∗1 is better informed and hence more efficient than
A∗2. Of course, the difficulty lies in obtaining lower bounds that are as accurate as
possible while still easily computable. For a good discussion of the properties of the A*
algorithm we refer to [131].
As a possible application of the A* algorithm, let us consider an electronic route-

planner in a car that needs to find the shortest route between a starting point (e.g.,
Delft) and a destination (e.g., The Hague). The route-planner is equipped with a
detailed road map of The Netherlands. We could use an A* algorithm with b(u) = 0
∀u ∈ V (i.e. the Dijkstra algorithm), but in this case better lower bounds can be
obtained by using the geographical distances between points in the road map and the
destination. Only if there exists a straight road between a point u and the destination
will the geographical distance b(u) equal w(P ∗u→t), else b(u) < w(P ∗u→t).
Since b(u) ≥ 0 ∀u ∈ V this approach outperforms the Dijkstra approach by sooner

directing the search in the correct direction.
Like the bi-directional search algorithm (see Section 3.2.3), it is also possible to make

a bi-directional variant of the A* algorithm [135], which can be even more efficient in
finding the shortest path between two nodes in a graph.

3.4 Mathematical programming

A mathematical programming problem is a problem with the objective to minimize (or
maximize) a real-valued function of real or integer variables, often subject to constraints
on the variables. In mathematical form:
Find �X = {x1, ..., xn}, which minimizes (maximizes) f(�X) subject to constraints (if

any)

gj(�X) ≤ 0, j = 1, 2, ..., q

hj(�X) ≤ 0, j = 1, 2, ..., p

where �X is an n-dimensional vector, f() the objective function, g() the inequality
constraints and h() the equality constraints. The term “programming” therefore does
not refer to computer programming, which it predates, but to optimization.
Some of the most used techniques that are classified under mathematical program-

ming are linear programming, integer programming, non-linear programming and dy-
namic programming. Linear and dynamic programming are briefly discoursed upon in
light of the shortest path problem. More mathematical programming techniques are
described in [137].

38 CHAPTER 3. SHORTEST PATH ALGORITHMS

3.4.1 Linear programming

By formulating the general linear programming (LP) problem and developing the sim-
plex method, Dantzig [36] laid the cornerstones for a wide applicability of linear pro-
gramming.
As the name implies, in linear programming the objective function and the con-

straints appear as linear functions over a polyhedron. A subset R of Rp is called a
polyhedron if there exists a p× p matrix A and a vector b ∈ Rq (for some q ≥ 0), such
that R = {x| Ax ≤ b}. There are several possible ways in which a linear programming
problem can be formulated, but the standard form is as follows:
Minimize

pX
j=1

cjxj

subject to the constraints

pX
j=1

aijxj = bi, i = 1, 2, ..., q

xj ≥ 0, j = 1, 2, ..., p

or in matrix form:
Minimize

cT(p×1)x(p×1)

subject to the constraints

A(q×p)x(p×1) = b(q×1)
x(p×1) ≥ 0(p×1)

Any linear programming problem can be written in the standard form by using
appropriate transformations [137]. We can transform “maximize f” into “minimize
−f ,” we can introduce slack variables yi such that

Pp
j=1 aijxj ≤ bi ⇒

Pp
j=1 aijxj +

yi = bi and if xi is unrestricted in sign, it can be written as xi = x+i − x−i , where
x+i ≥ 0, x−i ≥ 0.
The following maximization example is used to illustrate the search in linear pro-

gramming:
Maximize x1 + x2 subject to

x1 + 2x2 ≤ 5

x1 ≤ 3

x2 ≤ 2

x1, x2 ≥ 0

3.4. MATHEMATICAL PROGRAMMING 39

(3,1)

(0,0) (3,0)

(0,2) (1,2)

(3,1)

(0,0) (3,0)

(0,2) (1,2)

Figure 3.12: Feasible polyhedron

The feasible region is colored grey in Figure 3.12. This region is called a polyhedron
and has five extreme points, namely (0, 0), (3, 0), (3, 1), (1, 2), (0, 2).

To find the point which maximizes x1 + x2 in the polyhedron, we slide the line
x1+x2 outwards from the origin (0, 0) as far as possible until we encounter the extreme
point (3, 1). This is the solution, because sliding the line any further means leaving
the polyhedron. It is not a coincidence that the solution is an extreme point, because
a linear programming problem always has an extreme point as (one of) its optimal
solution(s). In fact, this property is extensively used by the simplex method. Non-
extreme points cannot be returned by the simplex method, but only by interior point
methods. Before explaining how to solve the SP problem through LP, we want to
mention one last property of linear programming, namely that of duality. For more
properties/theorems we refer to the literature, e.g. [36], [145], [137], [139].

The basic idea of duality is that every “primal” LP problem has associated with it
another “dual” problem, which are closely interrelated. Given that the primal problem
is stated in the following form:

Minimize

pX
j=1

cjxj

40 CHAPTER 3. SHORTEST PATH ALGORITHMS

subject to

pX
j=1

aijxj ≥ bi, i = 1, 2, ..., q

xj ≥ 0, j = 1, 2, ..., p

Then the dual problem is obtained as follows:
Maximize

qX
i=1

biyi

subject to

qX
i=1

aijyi ≤ ci, j = 1, 2, ..., p

yi ≥ 0, i = 1, 2, ..., q

From the above equations it is easily seen that the dual of a dual problem equals
the primal problem. Two fundamental theorems that describe the relation between the
primal and dual problems are referred to as the weak duality theorem and the strong
duality theorem. These theorems are provided here, but for the proofs we refer to the
literature (for instance [2]).

Theorem 23 Weak duality theorem: If x is any feasible solution of the primal problem
and y is any feasible solution of the dual problem, then

Pq
i=1 biyi ≤

Pp
j=1 cjxj.

Theorem 24 Strong duality theorem: If any one of the pair of primal and dual prob-
lems has a finite optimal solution, so does the other one and both have the same objective
function values.

After having discussed the linear programming fundamentals, we will now apply the
LP technique to solve the shortest path (SP) problem. Actually, we will only write
the SP problem as an LP problem, after which a linear programming solver (such as
simplex) can be used to solve the problem.
To each directed link (i, j), we associate an N-dimensional (row)vector �vij consisting

of zeros except for −1 at the i-th component and +1 at the j-th component, thus

�vij = (0, ..., 0,−1, 0, ..., 0, 1, 0, ..., 0)

The total of all link vectors �vij forms an incidence matrix AM×N . An important
property of A is that each row sum equals zero.

3.4. MATHEMATICAL PROGRAMMING 41

We denote the link weight (resistance) vector by �c or cM×1where

�c = (w(1, 2), ..., w(1, j), ..., w(1, N), w(2, 1), w(2, 3), ..., w(N − 1, N))

Consider first the flow problem specified by a demand vector dN×1, where the com-
ponent dj = −1 if unit traffic is injected at node j into the network, dj = 0 if neither
traffic enters nor leaves the network and dj = 1 if unit traffic leaves the network at node
j. Assume for simplicity first that

dN×1 = (−1, 0, ..., 0, 1, 0, 0, ..., 0)

which represents the situation where only in the sender (node 1) traffic is injected and
at a receiver (node j) the traffic leaves the network. Let the vector �x (or in different
notation xM×1) denote the traffic flow vector in each link with xj = 1 if a flow passes
through link j, else xj = 0. At each node j, the sum of input flows and output flows
must be equal to dj. In matrix form,

ATx = d

The interest lies in finding the traffic flow vector that minimizes the total weight
cTx =

P
(i,j)∈P w(i, j)xij. This problem is called the primal formulation of the shortest

path problem in the linear programming framework,

min
�x

cTx subject to ATx = d �x ≥ 0

If the objective function and/or the constraints cannot be expressed in linear func-
tions of the decision variables, we have to resort to a different optimization technique
(non-linear programming).
When all/some variables are constrained to take integer values, we refer to such

optimization problems as all/mixed integer programming problems.

3.4.2 Dynamic programming (Floyd-Warshall algorithm)

Richard Bellman [16] has provided us with the foundations of dynamic programming.
Dynamic programming was designed as a tool for optimally solving a specific class of
decision problems. These dynamic programming problems are characterized by their
hierarchical structure. Similarly to divide-and-conquer algorithms [34], dynamic pro-
gramming subdivides (sub)problems into manageable pieces, which are solved and then
used to retrieve the final solution to the overall problem. Contrary to divide-and-
conquer, the “manageable” pieces can be used by multiple parent (sub)problems.
Dynamic programming relies on the principle of optimality [16]:

42 CHAPTER 3. SHORTEST PATH ALGORITHMS

An optimal policy has the property that whatever the initial state and initial decision
are, the remaining decisions must constitute an optimal policy with regard to the state
resulting from the first decision.
This means that an optimal solution to a problem must be based on optimal so-

lutions to the subproblems of this problem. This means that dynamic programming
can be regarded as a memoryless process, because solutions to subproblems only rely
on solutions to subsubproblems, but not to earlier solutions. The best way to explain
dynamic programming is most likely through examples. Here we confine to describing
the Floyd-Warshall algorithm, which is a dynamic programming algorithm that finds
the shortest paths between all pairs of nodes in the graph.
The Floyd-Warshall algorithm was proposed by Floyd [49], who based it on a

theorem of Warshall [173]. The Floyd-Warshall algorithm considers subsets V (k) =
{1, 2, ..., k} of the set V = V (N) = {1, 2, ..., N} of all nodes. d(k)[u, v] represents the
length of the shortest path from u to v, given that the intermediate nodes are taken
from the set V (k). d(0)[u, v] therefore refers to the weight of the direct link between u
and v, if it exists. If the intermediate nodes of the shortest path between u and v are
present in the set V (k − 1), they will also be present in the set V (k). Consequently,
if all N nodes are used: V (N) = V , and then all shortest paths between all pairs of
nodes are found. The dynamic programming requirement of a hierarchical structure is
therefore present and can be represented in a recursive formula:

d(k)[u, v] = min
¡
d(k−1)[u, v], d(k)[u, k] + d(k)[k, v]

¢
The two terms in the min operator respectively signify that either node k is not an

intermediate node on the shortest path from u to v or node k is an intermediate node
on the shortest path from u to v. The predecessor π(k)[u, v] of node v on the shortest
path from u to v contains the intermediate nodes from the set V (k). The meta-code
is given in Figures 3.13 and 3.14. D(i) denotes the matrix of the components d(i)[u, v],
Π(i) denotes the matrix with components π(i)[u, v], INF [N ×N] is the N ×N-matrix
with as components all ∞, and NIL[N ×N] is the matrix with nil as components.
The Floyd-Warshall algorithm has a complexity of Θ(N3). More efficient algo-

rithms for the all-pairs shortest paths problem exist, however only Floyd-Warshall was
explained to illustrate a dynamic programming application.

3.4. MATHEMATICAL PROGRAMMING 43

InitializeFW(G,D(0),Π(0))
1. for u← 1 to N
2. for v ← 1 to N
3. if (u, v) ∈ E
4. then d(0)[u, v]← w(u, v)
5. π(0)[u, v]← u
6. do d(0)[u, u]← 0
7. π(0)[u, v]← nil
8. return D(0),Π(0)

Figure 3.13: Initialization for the Floyd-Warshall algorithm.

Floyd-Warshall(G)
1. D(0) ← INF [N ×N]
2. Π(0) ← NIL[N ×N]
3. InitializeFW(G,D(0),Π(0))
4. for k ← 1 to N
5. do for u← 1 to N
6. do for v ← 1 to N
7. d(k)[u, v]← min

¡
d(k−1)[u, v], d(k)[u, k] + d(k)[k, v]

¢
8. return D(N),Π(N)

Figure 3.14: The Floyd-Warshall algorithm.

44 CHAPTER 3. SHORTEST PATH ALGORITHMS

Chapter 4

Concepts of exact MCP algorithms

Chapters 2 and 3 have provided an introduction into the field of algorithms and com-
plexity. This basic theory is the first step in accomplishing the main goal of this thesis,
which is to find an algorithm that can solve the MCP problem (finding a path subject
to multiple constraints) efficiently in practice. See Section 1.4 for a formal definition of
the MCP problem.
Although usually first the state-of-the-art in algorithms is reviewed, we take a less

conventional approach. This chapter starts by discussing some fundamental concepts of
exact MCP algorithms. This discussion embodies some of our key research results and
will lead to a better understanding of the state-of-the-art in MCP algorithms, which are
evaluated in Chapter 5. Note that the list of concepts presented here is not exhaustive
and more concepts may exist that might improve MCP algorithms. The first concept
discussed is that of the path length function.

4.1 Definition of the path length l(P)

The weight vector of a path as defined in (1.1) is a vector-sum. As in linear algebra, the
length of a (path) vector requires a vector norm to be defined. The presented framework
applies for any definition of length l(.) that obeys the vector norm criteria: (a) l(�p) > 0
for all non-zero vectors �p and l(�p) = 0 only if �p = 0, (b) for all vectors �p and �u holds
the triangle inequality l(�p+ �u) ≤ l(�p) + l(�u). If �p and �u are non-negative vectors (i.e.,
all vector components are non-negative), then l(�p + �u) ≥ l(�p), because the length of a
non-negative vector cannot decrease if a non-negative vector is added. The definition
of the path length l(P) is needed to be able to compare paths, since the link weight
components all reflect different QoS measures with specific units.
First we review the straightforward choice of a linear path length as proposed by

Jaffe [85],

45

46 CHAPTER 4. CONCEPTS OF EXACT MCP ALGORITHMS

w2(P)

L2

L1 w1(P)

Figure 4.1: In m = 2 dimensions, each path P between the source node and the
destination node has a point representation in the (w1(P), w2(P))-plane. The parallel
lines shown are equilength lines d1w1(P) + d2w1(P) = l, which contain solutions with
equal length l. Clearly, all solutions lying above a certain line have a length larger
than the ones below or on the line. The shortest path returned by Dijkstra’s algorithm
applied to the reduced graph, is the first solution (encircled) intersected by a set of
parallel lines with slope −d1

d2
. In this example, the shortest path (encircled) lies outside

the constraints area.

l(P) =
mX
i=1

diwi(P) = �d.�w(P) (4.1)

where di are positive real numbers. By replacing the link weight vector �w (u, v) of
each link (u, v) in the graph G by the single metric �d.�w(u, v) according to (4.1), the
m-parameter problem is transformed to a single parameter problem enabling the use
of Dijkstra’s shortest path algorithm. The Dijkstra algorithm applied to the reduced
graph will return a path P that minimizes l(P) defined by (4.1).
When scanning the solution space with a straight equilength line l(P) = l as in

Figure 4.1, the area scanned outside the constraint region is minimized if the slope of
the straight equilength lines satisfies d1

d2
= L2

L1
. In m-dimensions, the largest possible

volume of the solution space that can be scanned subject to wi(P) ≤ Li is reached for
the plane which passes through the maximum allowed segments Li on each axis. The
equation of that plane is

Pm
i=1

wi(P)
Li

= 1. Hence, the best choice in (4.1) is di = 1
Li
, for

all 1 ≤ i ≤ m. In that case, half of the constraints volume is scanned before a solution

4.1. DEFINITION OF THE PATH LENGTH L(P) 47

outside that volume with l(P) > 1 can possibly be selected. In addition, this optimum
choice also normalizes each component wi(P) by Li (in a specific unit). In spite of the
advantage that the simple Dijkstra shortest path algorithm can be used, the drawback
of (4.1) is that the shortest path does not necessarily satisfy all constraints.

w1(P)

w2(P)

L2

L1

() () l
L

Pw
L

Pw
qqq

=

+

/1

2

2

1

1

w1(P)

w2(P)

L2

L1

() () l
L

Pw
L

Pw
=

+

2

2

1

1

Figure 4.2: Illustration of curved equilength lines.

As illustrated in Figure 4.2, curved equilength lines match the constraint boundaries
much better. The non-linear definition,

lq(P) =

Ã
mX
i=1

·
wi(P)

Li

¸q!1
q

(4.2)

is well-known as Holder’s q-vector norm [60] and is fundamental in the theory of classical
Banach spaces (see Royden [142, Chapter 6]). Obviously, the best match is obtained in
the limit when q →∞, since then the equilength lines are rectangles precisely conform
to the constraint boundaries (see Figure 4.3). In that case, the definition (4.2) reduces
to the maximum vector component divided by the corresponding constraint,

l∞(P) = max
1≤i≤m

·
wi(P)

Li

¸
(4.3)

If the shortest path, computed with length definition (4.3), has length larger than 1 and,
hence, violates at least one of the constraints, no other path will satisfy the constraints.
Thus, finding the shortest path with the definition (4.3) of path length solves the multi-
constrained path (MCP) problem. However, the shortest path is not guaranteed to be
found with Dijkstra’s algorithm, which relies on property 21 of a linear path length
definition that subsections of shortest paths are also shortest paths.

Theorem 25 In multiple dimensions and using a non-linear definition of the path
length, the subsections of shortest paths are not necessarily shortest paths.

48 CHAPTER 4. CONCEPTS OF EXACT MCP ALGORITHMS

(a) (b) (c) (d)

L1

L2

Figure 4.3: Equilength lines are rectangles conform to the constraint boundaries.

Proof. The proof relies on the inequality l(P+Q) ≤ l(P)+l(Q). Consider two paths P1
and P2, for which l(P1) < l(P2) and assume that, by adding a same link a to both paths,
the paths P3 and P4 can be constructed. Let us first focus on the case where the equality
sign holds, typically if q = 1 in (4.2). By construction, we have l(P3) = l(P1+a) and by
the equality sign, l(P1+a) = l(P1)+l(a) and analogously, l(P4) = l(P2+a) = l(P2)+l(a).
Since l(P1) < l(P2), there holds that l(P3) < l(P4) or, the subpaths of shortest paths
with linear definition of path length are again shortest paths, leading to the well-known
and intuitive result. When the inequality sign holds in l(P+Q) ≤ l(P)+l(Q), typically if
q > 1 as readily verified from (4.2), we arrive in a similar fashion to the set of inequalities
l(P4) = l(P2 + a) < l(P2) + l(a); l(P3) = l(P1 + a) < l(P1) + l(a) and l(P3) < l(P4).
However, from this set, it cannot be concluded whether l(P3) ≤ l(P4) or l(P3) > l(P4).
It suffices to show that the latter situation may exist in order to prove the theorem. This
can be illustrated via the example graph of Figure 4.4. For the constraints (14, 11, 22),
the shortest path from node a to node i runs over node c, e and f . According to the
definition (4.3), the path length of P (i− f − e− c− a) equals 0.95, which means that
it satisfies all constraints. However, as illustrated in Figure 4.4, the shortest path from
node a to node e does not traverse node c but node b.

4.1.1 Different (non-linear) length functions

Depending on the constrained optimization problem, we can use different length func-
tions, provided they obey the criteria for length. Two types of length functions, namely
the linear length function (4.1) and the non-linear length function (4.3), have already
been examined. Here a third semi-linear length function is introduced:

l(P) =

½ Pm
i=1 diwi(P), if wi(P) ≤ Li for i = 1, ...,m

∞, else
(4.4)

This semi-linear length function can be considered a combination of the functions

4.1. DEFINITION OF THE PATH LENGTH L(P) 49

4
1
7

2
3
9

2
5
5

7
8
2

3
5
4

3
7
1

5
4
6

2
1
2

3
3
25

3
8

2
2
7

a
b

c g

e
f

i

a

d
b

c g

e
f

i 2
3
9

2
1
23

3
2

5
3
8

a

d
b

c g

e
f

i
0.86
0.91
0.95

shortest path from a to node e shortest path from a to node i

graph with three measures
and three constraints (14, 11 and 22)

Figure 4.4: Illustration of the property that, when using a non-linear path length
definition, subsections of shortest paths are not necessarily shortest paths. Indeed,
the length l(a − b − e) = max

¡
4+3
14

, 1+7
11

, 7+1
22

¢ ' 0.727 is smaller than l(a − c − e) =
max

¡
2+5
14

, 3+3
11

, 9+8
22

¢ ' 0.772, although a− c− e is a subsection of the shortest path.

50 CHAPTER 4. CONCEPTS OF EXACT MCP ALGORITHMS

(4.1) and (4.3). Strictly speaking, length function (4.4) is non-linear, because it uses a
linear function only inside the constraints surface. These constraints are confining and
make length function (4.4) non-linear and thus theorem 25 applies. Nonetheless, the
distinction between semi-linear and non-linear is intentionally maintained, because in
some instances (see Section 3.2.3) they can lead to different properties.
Two possible length functions (besides function (4.3)) for some specific problems

encountered in QoS routing are also presented. The two problems considered are the
Restricted Shortest Path (RSP) problem and the Hop-Constrained Maximum Band-
width (HCMB) problem.
RSP length function:
Given a graph G = (V,E), where each link is characterized by a delay and (mone-

tary) cost, a source node s and a destination node t. Given a delay-constraint D, the
problem is to find a path P within the delay-constraint for which the cost is minimum.
A suitable length function for this problem is:

l(P) =

½
c(P), if d(P) ≤ D
∞, else

where c(P) is the cost of path P and d(P) is the delay of P . The length function only
optimizes for one measure, the cost. This is an example of a semi-linear length function.
Therefore, again, the subsections of shortest paths are not necessarily shortest paths.
Guo and Matta [66] have used a similar approach to solve the RSP problem.
Hop-Constrained Maximum-Bandwidth (HCMB) problem:
Given a graph G = (V,E), where each link has a specified capacity (bandwidth).

Given a source s and a destination t, find a path P with no more than H hops that has
maximum capacity.
A possible length function for this problem is:

l(P) =

½ 1
BW (P)

, if h(P) ≤ H

∞, else

where BW (P) is the minimum available bandwidth of path P and h(P) is the number
of hops taken by P . The length function is very similar to that for RSP, but is given
to illustrate that min/max parameters can also be incorporated. A discussion of the
HCMB problem can be found in ([7], [63]).

4.1.2 Visualization of the search space

Figure 4.1 has clarified the linear length search in a two-dimensional space. Each dot
in that space represented a path and the weights of that path. The set of paths (dots),
from which the solution must be retrieved, is called the search space. The set of dots
in Figure 4.1 has been manually constructed. In this section the real search space in

4.2. THE K-SHORTEST PATH ALGORITHM 51

two different classes of graphs is visualized for the (m = 2) two-dimensional case. The
class of random graphs and the class of square lattices are examined, both with N = 49
nodes and uniformly distributed link weights. Figures 4.5 and 4.6 give the search spaces
as they change with the level of correlation (ρ) between the two weights per link. Only
the first 100 shortest paths according to path length (4.1), with di = 1 for i = 1, ...,m
are plotted.
Because length (4.1) is used, the first 100 paths of the search space do not extend

beyond a certain linear equilength line and therefore seem flattened. If all paths in
the search space would have been plotted, this would have been avoided, but this
is computationally not tractable. All search spaces are depicted on the same scales.
Immediate from the plots is that the weights of paths in random graphs are shorter
than in the lattices. This is caused by a higher expected hop count in the class of
square lattices. Also the shortest paths in the class of two-dimensional lattices are
likely to be minimum-hop paths, contrary to the class of random graphs. This is
observed for ρ = −1, where all the 100 paths lie on the equilength line with length
w1(P) + w2(P) = w1(P) + h− w1(P) = h. For the random graphs, the 100 paths are
scattered over different hop count paths, as illustrated by the different lines. Besides
the two above-mentioned differences, the “clouds” of dots from the random graphs
and lattices are quite similar, indicating that the link weight distribution is the most
formative factor of the search space.

4.2 The k-shortest path algorithm

The previous section has argued that a linear length cannot guarantee exactness in mul-
tiple dimensions. We must therefore resort to non-linear length functions. A corollary
of theorem 25 is that the use of non-linear functions requires not only shortest subpaths
to be stored, but also non-shortest subpaths. This can be accomplished via a k-shortest
path algorithm (Chong et al., [32]). A k-shortest path algorithm is similar to Dijkstra’s
algorithm. Instead of storing at each intermediate node only the previous hop and the
length of the shortest path from the source to that intermediate node, we can store the
shortest, the second shortest, the third shortest, ..., up to the k-shortest path together
with the corresponding length. It is possible to store less than k paths at a node, but
not more. There exist many k-shortest path algorithms. The paper of Eppstein [42]
lists many of the references to these algorithms.
In case the value of k is not restricted, the k-shortest path algorithm returns all

possible paths ordered in length between source and destination (the search space in
the previous section was obtained in this way). The value of k can be limited, in which
case there always is a possibility that the multi-constrained path cannot be found. If k
is not restricted, exactness is guaranteed.
The fact that k is not restricted in an exact algorithm, implying that all possible

52 CHAPTER 4. CONCEPTS OF EXACT MCP ALGORITHMS

w1

0 2 4 6 8

w
2

0

2

4

6

8 random
lattice

ρ = −1.0

w1

0 2 4 6 8

w
2

0

2

4

6

8 random
lattice

ρ = −0.8

ρ = −0.6

w1

0 2 4 6 8

w
2

0

2

4

6

8 random
lattice

w1

0 2 4 6 8

w
2

0

2

4

6

8 random
lattice

ρ = -0.4

ρ = -0.2

w1

0 2 4 6 8

w
2

0

2

4

6

8 random
lattice

w1

0 2 4 6 8

w
2

0

2

4

6

8 random
lattice

ρ = 0

Figure 4.5: Search spaces for the class of random graphs and the class of lattices, for
correlation coefficients -1, -0.8, -0.6, -0.4, -0.2 and 0.

4.2. THE K-SHORTEST PATH ALGORITHM 53

w1

0 2 4 6 8

w
2

0

2

4

6

8 random
lattice

ρ = 0.2

w1

0 2 4 6 8

w
2

0

2

4

6

8 random
lattice

ρ = 0.4

ρ = 0.6

w1

0 2 4 6 8

w
2

0

2

4

6

8 random
lattice

w1

0 2 4 6 8

w
2

0

2

4

6

8 random
lattice

ρ = 0.8

w1

0 2 4 6 8

w
2

0

2

4

6

8 random
lattice

ρ = 1.0

Figure 4.6: Search spaces for the class of random graphs and the class of lattices, for
correlation coefficients 0.2, 0.4, 0.6, 0.8 and 1.

54 CHAPTER 4. CONCEPTS OF EXACT MCP ALGORITHMS

paths between source and destination may need to be computed, gives rise to the alluded
NP-complete character of the MCP problem. In [162], Van Mieghem has shown that
the number of all possible paths between source and destination is less than or equal
to be(N − 2)!c, where e ' 2.718. This bound scales in the number of nodes N in a
non-polynomial fashion. Thus, the maximum value kmax ≤ be(N − 2)!c, for any graph.
Bounds for the minimum value kmin needed to find the exact path are difficult to obtain
a priori.

4.3 Dominated paths

If the value of k in a k-shortest path based algorithm is unrestricted, then it is necessary
to reduce the search space to increase the computational efficiency. One such search-
space-reducing technique is that of non-dominance.

4.3.1 Definition of non-dominance

Confining to m = 2 dimensions, consider two paths P1 and P2 from a source to
some intermediate node, each with path weight vector (w1(P1), w2(P1)) = (x1, y1) and
(w1(P2), w2(P2)) = (x2, y2), respectively. Figure 4.7 represents two possible scenarios
for these two paths.

(a) (b)

x3/ L1

y3/ L2

•

w2(P)/ L2

w1(P)/ L1

1

1

•

•

x2/ L1x1/ L1

y1/ L2

y2/ L2

• •

w2(P)/ L2

w1(P)/ L1

1

1

•

•

x2/ L1 x1/ L1

y1/ L2

y2/ L2

•

Figure 4.7: Dominated paths: in scenario (a), P1 dominates P2, but in scenario (b)
neither P1 nor P2 is dominant. The shortest path is encircled.

In scenario (a), P1 is shorter than P2 and wi(P1) < wi(P2) for all 1 ≤ i ≤ m
components. In that case, any path from the source to the final destination node that

4.3. DOMINATED PATHS 55

uses P1 will be shorter than any other path from this source to that destination that
makes use of P2. Indeed, if, for all i, wi(P1) ≤ wi(P2), then wi(P1) + ui ≤ wi(P2) + ui
for any ui. For all definitions of length l(.) satisfying the vector norm criteria (such as
(4.3)) then holds: l(�w(P1) + �u) ≤ l(�w(P2) + �u), for any vector �u. Hence, certainly P2
will never be a subpath of a shortest path and therefore P2 should not be examined
further. Using the terminology of Henig [77], P2 is said to be dominated by P1 if, for
all i, wi(P1) ≤ wi(P2).
In scenario (b), both paths have crossing abscissa and ordinate points: wi(P1) <

wi(P2) for some indices i, but wj(P1) > wj(P2) for at least one index j. In such scenario,
the shortest path (P1 in Figure 4.7 (b) with definition (4.3)) between the source and
some intermediate node is not necessarily part of the shortest path from source to
destination. This is demonstrated in Figure 4.7 (b) by adding the path vector (x3, y3),
which completes the path towards the destination. It illustrates that P2 (and not the
shortest subpath P1) lies on that shortest path. Hence, if two subpaths have crossing
abscissa-ordinate values, all m components of both paths must be stored in the queue.
Alternatively, two paths are non-dominated if �w(P1)− �w(P2) is not a suitable link weight
vector (or path vector), because at least one of its components is negative. Formally
defined:

Definition 26 A path P is called non-dominated if there1 does not exist a path P 0,
for which wi(P

0) ≤ wi(P) for all link weight components i except for at least one j for
which wj(P

0) < wj(P).

Theorem 27 If for all m QoS measures, there is no negative cycle in the graph G,
then a walk containing a loop is always dominated by the same walk (path) without the
loop.

Proof. If no negative cycles appear in G, then traversing a cycle (loop) Q will never
decrease any weights and therefore walk P will always dominate walk P + Q, since
wi(P) ≤ wi(P +Q) = wi(P) + wi(Q), for all i = 1, ...,m.

Definition 28 The Pareto set is defined as the set of all non-dominated paths between
s and t.

The non-dominated weight vectors can be further classified into two groups, namely
supported and unsupported. Unsupported non-dominated vectors are dominated by
a convex combination of other non-dominated vectors (see Figure 4.8). Although the

1If there are two or more different paths between the same pair of nodes that have an identical
weight vector, only one of these paths suffices. In the sequel we will therefore assume one path out
of the set of equal weight vector paths as being non-dominated and regard the others as dominated
paths.

56 CHAPTER 4. CONCEPTS OF EXACT MCP ALGORITHMS

distinction between supported and unsupported vectors may be very useful to many
multiple criteria decision making problems, it cannot be applied to constraint-based
routing without scarifying exactness, because omitting an unsupported path from the
search space may result in omitting the only feasible path.

unsupportedunsupported

Figure 4.8: An unsupported node/path.

By making the non-dominance property more strict, it is possible to device �-
approximation schemes. We call this restricted version of dominance ε-dominance.

Definition 29 A set of non-dominated paths is ε-non-dominated if the “distance” be-
tween the non-dominated paths is ≥ ε, where the distance between two paths P1and P2
is defined as maxi=1,...,m (|wi(P1)− wi(P2)|).

Therefore, if a path Q is dominated by a path P , then Q is also ε-dominated by P ,
but not necessarily vice versa. Figure 4.9 illustrates the concept of ε-dominance, where
the squares around the points (paths) have size 2ε.

4.3.2 An attainable bound for kmax

The worst-case amount of non-dominated paths is determined by the granularity of the
constraints. In reality most protocols will only allocate a fixed, positive number of bits
per measure. In that case, the constraints Li can be expressed as an integer number of
a basic measure unit. For example, the delay component can be expressed in units of

4.3. DOMINATED PATHS 57

dominated

ε-dominated

dominated

ε-dominated

Figure 4.9: Visualization of ε-dominance.

ms. The worst-case number of partial paths that have to be maintained in parallel in
each node is min(L1, L2) for m = 2 as shown in Figure 4.10.
Since the concept of path dominance reduces the m-dimensional search space, the

worst-case number of partial paths is

kmax = min

· Qm
i=1 Li

max1≤i≤m Li
, be(N − 2)!c

¸
(4.5)

where the second argument of the min-operator denotes the maximum number of paths
that exists between two nodes in any graph (see [162]). This argument applies in
case the granularity is infinitely small or, equivalently, for real values of wi. The first
argument applies in case of a finite granularity, as shown below:

Theorem 30 If all weight components have a finite granularity, the number of non-
dominated paths within the constraints cannot exceed

m
i=1 Li

max1≤i≤m Li
.

Proof. Without loss of generality, assume that L1 ≤ L2 ≤ ... ≤ Lm, such that
m
i=1 Li

max1≤i≤m Li
reduces to

m−1Q
i=1

Li. First, if m = 1, there is only one shortest and non-

dominated path possible within the constraint L1. This case reduces to single parameter

shortest path routing. For m ≥ 2, the maximum number of distinct paths2 is
mQ
i=1

Li.

2Two paths are called distinct if their path weight vectors are not identical.

58 CHAPTER 4. CONCEPTS OF EXACT MCP ALGORITHMS

(a) w2(P)/L2

w1(P)/L1

1

1

1/L1

1/L2

•
•

•
••

X X

(b) w2(P)/L2

w1(P)/L1

1

1

1/L1

1/ L2

•
•

•
•

•X

X

Figure 4.10: (a) only two partial paths should be maintained in parallel; (b) any path
dominated by all should be discarded. The ’X’ refers to dominated paths.

Two paths P1 and P2 do not dominate each other if, for at least two different link
weight components 1 ≤ a 6= b ≤ m holds that wa(P1) < wa(P2) and wb(P1) > wb(P2).
This definition implies that, for any couple of non-dominated paths P1 and P2, at
least two components of the m-dimensional vector �w(P1) must be different from �w(P2).
Equivalently, if we consider an (m − 1)-dimensional subvector �v by discarding the j-
th component in �w, at least one component of �v(P1) must differ from �v(P2). The
maximum number of different subvectors �v equals

Qm
i=1;i6=j Li. If j 6= m such that

Lj < Lm, within the
Qm

i=1;i6=j Li possibilities, there are paths for which only the j-th
and/or m-th component differ, while all the other components are equal. In order for
these paths not to dominate each other, the j-th and m-th component must satisfy
the condition that if wm(P1) > wm(P2), then wj(P1) < wj(P2) or vice versa. For the
m-th component, there are Lm different paths for which wm(P1) = Lm > wm(P2) =
Lm − 1 > ... > wm(PLm) = 1. Since Lj < Lm, there are only Lj paths for which
wj(P1) = 1 < wj(P2) = 2 < ... < wj(PLj) = Lj. Therefore, there are pathsP1 and
P2 for which wm(P1) > wm(P2), but wj(P1) = wj(P2). Hence, only Lj instead of Lm

non-dominated paths are possible, leading to a total of Lj
Lm

Qm
i=1;i6=j Li =

m−1Q
i=1

Li non-

dominated paths. This proofs the upper bound kmax =
m−1Q
i=1

Li.

Corollary 31 The first bound
m
i=1 Li

max1≤i≤m Li
in (4.5) on the number of non-dominated

paths within the constraints can be attained.

4.3. DOMINATED PATHS 59

Proof. Without loss of generality assume that L1 ≤ L2 ≤ ... ≤ Lm. We will show that
there exist sequences {L1, L2, ..., Lm} for which the bound

m
i=1 Li

max1≤i≤m Li
is achieved. If for

each pair of paths Pi, Pj the m-th link weight component obeys

wm(Pi) ≥ wm(Pj) +
m−1X
k=1

(wk(Pj)− wk(Pi)) (4.6)

then
m
i=1 Li

max1≤i≤m Li
is a strict, attainable bound. Formula (4.6) is found by recursively

applying the following prerequisite, recalling that the smallest difference between two
weight components is one unit: if for two paths P1, P2 applies that wj(P1)−wj(P2) = 1
(in units of the j-th weight component) for only one j of the first m− 1 measures and
wi(P1) − wi(P2) = 0 for the other 1 ≤ i 6= j ≤ m − 1, then for non-dominance to
apply, the m-th weight components must satisfy wm(P1)−wm(P2) ≤ −1. If (4.6) is not
obeyed, then wm(P1) > wm(P2)− 1, i.e. wi(P1) ≥ wi(P2) for i = 1, ...,m and according
to the definition of non-dominance P1 is then dominated by P2. The largest possible
difference between two path vectors provides us with a lower bound on Lm,

Lm ≥ 1 +
m−1X
i=1

(Li − 1)

When this bound is not satisfied, then the number of non-dominated paths within the
constraints is smaller than

m
i=1 Li

max1≤i≤m Li
.

For example, in m = 5 dimensions, with L1 = 1, L2 = 2, L3 = 3, L4 = 3, L5 =

6 (≥ 1 + 1 + 2 + 2), all m
i=1 Li

max1≤i≤m Li
= 18 non-dominated vectors are

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
6 5 4 5 4 3 4 3 2 5 4 3 4 3 2 3 2 1

Although there exist many problems that are NP-complete, the average-case com-
plexity might not be intractable, suggesting that such an algorithm could have a good
performance in practice. The theory of average-case complexity was first advocated by
Levin [106]. Below, a lemma is given that suggests that the average and even amor-
tized 3 complexity of solving the MCP problem is polynomial in time for fixed m and all
weights wi independent random variables.

3Amortized analysis differs from average-case analysis in that probability is not involved; an amor-
tized analysis guarantees the average performance of each operation in the worst-case [34].

60 CHAPTER 4. CONCEPTS OF EXACT MCP ALGORITHMS

Lemma 32 The expected number of non-dominated vectors in a set of T i.i.d. vectors
in m dimensions is upper bounded by (lnT)m−1.

A proof of Lemma 32 can be found by adopting a similar approach as presented by
Barndorff-Nielsen and Sobel [13], or by Bentley et al. [18].
To gain some insight into the number of non-dominated paths in a graph, assume

that the path-vectors are i.i.d. vectors. Then, in the worst-case, there exist T =
be(N − 2)!c paths, leading us to an expected number of non-dominated paths between
the source and destination in the worst-case of

(lnT)m−1 = (ln(be(N − 2)!c))m−1 ≤ (1 + (N − 2) ln(N − 2))m−1

Hence, the amortized complexity is polynomial in N for fixed m.
In the limit m → ∞ and for wj independent random variables, all paths in G =

(V,E) are non-dominated, which leads to the following lemma.

Lemma 33 If the m components of the link weight vectors are independent random
variables and the constraints Lj are such that 0 ≤ wj

Lj
≤ 1, then any path with H hops

has precisely a length (as defined by (4.3)) equal to H in the limit m→∞.

Proof. Consider a path P from source to destination withH hops. ThenPr[wj(P)/Lj >
H] = 0. Moreover, with length function (4.3), Pr[l(P) > H] = 0. Since it is assumed
that the link weights are independent, we have Pr[l(P) ≤ H−ε] =Qm

j=1 Pr[wj(P)/Lj ≤
H − ε]. But, for any real ε > 0 and each j, Pr[wj(P)/Lj ≤ H − ε] < 1, Pr[l(P) ≤
H−ε] = 0 form→∞. Hence, in that limit, each path withH hops has length precisely
equal to H.
This means that for m → ∞ it suffices to calculate the minimum-hop path, irre-

spective of the link weight distribution of the m independent components. Since the
minimum-hop problem is an instance of a single measure shortest path problem, it has
polynomial complexity. Of course, this limit case m → ∞ mainly has theoretically
value. In realistic QoS routing, only a few link weights are expected to occur. The
number m of QoS link weights is a design choice for the QoS routing protocol.

4.4 Look-ahead

4.4.1 The look-ahead concept

Besides path dominance, the look-ahead concept can be viewed as an additional4 mech-
anism to reduce the search space of possible paths. The idea, first introduced in the

4There may exist more search-space-reducting methods. The use or even existence of other search-
space-reducting methods may rely on the specifics of the topology and link weight structure.

4.4. LOOK-AHEAD 61

field of Artificial Intelligence and named A* (see Chapter 3), is to further limit the
set of possible paths by using information of the remaining subpath towards the des-
tination. The look-ahead concept proposes to compute the shortest path tree rooted
at the destination to each node n ∈ V in the graph G for each of the m link weights
separately. Hence, for each link weight component 1 ≤ i ≤ m, the lowest value from
the destination to a node n ∈ V is stored in the queue of that node n. In total, a
one-dimensional shortest path algorithm is executed m times resulting in N −1 vectors
with shortest values for each link weight component from a node n to the destination t.
The basic importance of look-ahead is to provide each node n with an exact, attainable
lower bound of wi (Pn→t), for each individual link weight component i. We denote by
P ∗n→t;i the shortest path in the link weight component i from node n to the destination
t. Since a one-dimensional shortest path algorithm is executed m times for each link
weight separately, the shortest path P ∗n→t;i is likely different from P ∗n→t;j for different
link weight components i 6= j. Let us denote the vector with these lower bounds by
�b (n), with bi (n) = wi

¡
P ∗n→t;i

¢
.

Why are these exact, attainable lower bounds bi (n) so useful? First, at any inter-
mediate node n and for each suitable path Ps→n, the inequality

wi (Ps→n) + bi (n) ≤ Li (4.7)

should be satisfied for all measures i = 1, ...,m. Indeed, if the sum of the link weight
component, of a subpath Ps→n from the source s to the intermediate node n, and the
lowest possible value bi (n) = wi

¡
P ∗n→t;i

¢
, of the shortest remaining subpath P ∗n→t;i from

that intermediate node n to the destination t, exceeds the constraint Li, then subpath
Ps→n can never be complemented with a path Pn→t to satisfy the constraint Li. Hence,
the subpath Ps→n that violated one of the inequalities in (4.7) should not be considered
further as a possible candidate of the multi-constrained routing problem. The check of
compliance to the inequalities (4.7) can reduce the number of paths in the search space
of possible paths.
A second improvement is based on the knowledge of the m one-dimensional shortest

paths P ∗t→s;i. If the length l
¡
P ∗t→s;i

¢
= l

¡
P ∗s→t;i

¢
< 1, this means that the inverse

path P ∗s→t;i that minimizes the sum of the i-th link weight component possesses an
m-dimensional length smaller than 1 and thus meets all the constraints. This implies
that there already exists a path from source s to destination t with length shorter than
1 and that the overall m-dimensional shortest path must at least be smaller or equal in
length than this path P ∗s→t;i.
A third possible improvement of look-ahead is to store in each queue l(Ps→n +

P ∗n→t;i) instead of l (Ps→n). Thus, the length of the sum of the vector �w (Ps→n) and the
lower-bound vector �b (n) is the comparison metric stored in the queue at each node.
This change favors the paths with lowest “predicted” end-to-end length rather than the
path with the so far lowest length. Observe that in the end at the destination queue,

62 CHAPTER 4. CONCEPTS OF EXACT MCP ALGORITHMS

••

w2(P)

w1(P)

L2

•

w1(P1)

•

L1w1(P2)

w2(P2)

b2(n)

b1(n)

b2(n)

b1(n)

•w2(P1)

Figure 4.11: The look-ahead constraints check in two dimensions m = 2: the addition
of the intermediate path’s link weight vector �w (P) and the lowest possible remaining
link weight vector �b(n) must lie within the constrained region.

the stored “predicted” lengths are the same as the actual lengths. Simulations in [167]
show that the look-ahead technique indeed reduces the complexity of solving MCP.

4.4.2 Complexity of look-ahead

The complexity of the three look-ahead improvements consists of the sum of (a)m times
the complexity of Dijkstra’s (or another shortest path algorithm) O (mN logN +mM)
and (b) m times the computation of the length of a path, which is at most O (m2N).
Hence, only for a sufficiently large number of nodes N , the look-ahead concept is ex-
pected to improve the performance, mainly by limiting the search space of possible
paths. Since the search space of possible paths can grow as a factorial, i.e. O ((N − 2)!)
for large N , this suggests that the improvements will pay off the small increase in
complexity.

4.4.3 Other look-ahead applications

Instead of employing a one-dimensional shortest path algorithm per individual link
weight component, other polynomial-time multiple-parameter routing algorithms (e.g.,
TAMCRA [38] with small k, or Jaffe’s linear length algorithm [85]) could be used to
determine the end-to-end predictions. In that case, again the paths from the destina-
tion t to all other nodes are computed. It is possible to store the m weights of these

4.5. BI-DIRECTIONAL SEARCH IN MULTIPLE DIMENSIONS 63

paths at their corresponding node, or each node n in the graph only receives one path
length l (Pt→n) corresponding to the length used in the main multiple-parameter routing
algorithm.
For any non-linear length holds that l (Ps→t) ≤ l (Ps→n)+ l (Pn→t). For length (4.3),

the constraints require that l (Ps→t) ≤ 1, such that the look-ahead tests (4.7) could be
replaced by the possibly too stringent5 test l (Ps→n) ≤ 1− l (Pn→t). Since polynomial-
time heuristics are used, the lengths l (Pt→n) are not necessarily the smallest possible.
Hence, SAMCRA, for example equipped with TAMCRA as look-ahead, cannot exactly
solve the MCOP problem: it is only exact for the less restrictive MCP, because the end-
to-end path length l(Ps→t) is exact and it is verified to be feasible. However, since non-
linear length algorithms are likely to outperform linear length algorithms, TAMCRA
may lead SAMCRA’s search sooner into the correct direction. This is indeed observed
in [102].
In case of a linear length as in Jaffe’s algorithm with length (4.1), the lengths

l (PB→n) = l (P ∗n→B) are shortest and, hence, they can serve as single lower bounds b (n),
provided the MCP algorithm uses the same (semi) linear length within the constraints,
e.g. length function (4.4). Clearly, the advantage of a routing algorithm with a linear
length is that an attainable lower bound can be obtained.

4.5 Bi-directional search in multiple dimensions

1
5

4
1

3
3

4
1

1

3

2

4
A i B

1
5

4
1

3
3

4
1

1

3

2

4
A i B

Figure 4.12: Example of bi-directional search in multiple dimensions.

In Section 3.2.3, the concept of bi-directional search in one dimension was described.
This section analyzes whether the concept of bi-directional search can be extended from
m = 1 to m > 1 dimensions. The complicating factor is the non-linear length (4.3),

5If bounds larger than the lower bounds �b are used, the search space reduction may be too stringent,
which may exclude finding a feasible solution.

64 CHAPTER 4. CONCEPTS OF EXACT MCP ALGORITHMS

which causes that subsections of shortest paths in m > 1 dimensions are not necessarily
shortest paths themselves. If two shortest paths (one originating at the source node
and the other at the destination node) in m > 1 dimensions meet at an intermediate
node, the resulting complete path is not necessarily the shortest path from source to
destination. We must keep track of the shortest length of the complete paths found so
far. Even if a new complete path exceeds the length of a previously found complete
path, that new path cannot be discarded as illustrated in Figure 4.12. In this figure,
the links represent paths, with their corresponding path weight vector. The arrows
indicate the order of arrival of these subpaths at node i. Once the first two subpaths
have arrived at node i, the first complete path is obtained with weight vector (7,4). If
the constraints are (10,10), then the length of this path equals 0.7. Once the third path
arrives at node i, it makes a complete path with the second path, with total length 0.8.
However, this subpath cannot be removed, because combined with path 4, it forms the
shortest path with link weight vector (5,6) and length 0.6. This example also illustrates
that, at some intermediate nodes, multiple paths have to connect with each other.

The problems in multiple dimensions complicate the recognition of the true shortest
path. In other words, an efficient stop criterion is absent and therefore the search for
paths must be continued until the queue is empty. The bi-directional search in m > 1
dimensions has more potential for the MCP problem, where the routing algorithm can
stop as soon as a complete path obeys the constraints. Bi-directional search has also
more potential for QoS algorithms that use a (semi) linear length function. If the
semi-linear length (4.4) is used, then if two paths P1 (originating from the source)
and P2 (originating from the destination) meet at a node, the same approach as in
Section 3.2.3 can be adopted, provided that the complete path obeys the constraints.
In other words, the first complete path that is extracted and that obeys minlength
(and the constraints) is also the shortest path according to (4.4) within the constraints.
For bi-directional search in m > 1 dimensions, a semi-linear length function is more
convenient to handle than a fully non-linear length function. In [102], we have proposed
HAMCRA, a bi-directional variant of SAMCRA, which solves the MCP problem exact
by using SAMCRA in one direction and TAMCRA in the other.

4.6 The SAMCRA algorithm

The previous sections have listed four concepts for an exact and efficient QoS routing
algorithm. All four concepts are present in SAMCRA. This section is devoted to the
detailed presentation of the SAMCRA algorithm. In the meta-code, some functions
(Insert, Extract-min, Decrease-key) are borrowed from Cormen et al. [34].

4.6. THE SAMCRA ALGORITHM 65

Initialize(G,m, s, t)
1. for each v ∈ V
2. counter[v] ← 0
3. maxlength ← 1.0
4. for i = 1, ...,m
5. Dijkstra(G, s, t, i) → bi(n), P

∗
s→t;i

6. if l(P ∗s→t;i) < maxlength
7. maxlength ← l(P ∗s→t;i)
8. queue Q← ∅
9. counter[s] ← counter[s] +1
10. Insert(Q, s, counter[s], nil, l(�b(s)))

Figure 4.13: Meta-code Initialization phase.

4.6.1 Meta-code SAMCRA

The subroutine Initialize (see Figure 4.13) initializes the necessary parameters for
the main algorithm and computes the look-ahead information. Lines 1 and 2 set the
number of stored paths (counter[]) at each node to zero. maxlength refers to the max-
imum length that a (sub)path may have. Paths with length l(P) > maxlength can
be discarded, because they either violate the constraints or are larger than an already
found end-to-end path. maxlength is initially set to 1.0 in line 3, corresponding to the
constraint values. The look-ahead lower bounds �b are calculated in line 5 with the
function Dijkstra(G, s, t, i). This function finds for each individual QoS measure i
the lower bounds bi(n) from any node n ∈ V to the destination node t. An efficient
way to accomplish this is to compute, for each measure i, a shortest path tree with the
Dijkstra algorithm from the destination t to all other nodes. Also, for each measure
i, the shortest paths from s to t are stored. For each of these m shortest paths, line
6 computes the length (4.3) and checks whether one of them has a lower length than
maxlength. If this happens, in line 7, maxlength is updated with the new lower value,
because if we already have a path with length < 1.0, it is pointless to evaluate paths
with larger length. SAMCRA starts with the source node s, which is inserted into the
queue (line 10).
The subroutine Feasibility (see Figure 4.14) checks whether paths dominate each

other or violate the maxlength value. A (sub)path u[i] refers to the i-th path that
is stored at node u. The vector �d(u[i]) represent a subpath weight vector �w (Ps→u).
Feasibility extends the i-th path at node u towards the neighboring node v, where
already counter[v] nodes are stored. The weight vector of this extended path equals
�d[u[i]] + �w(u, v). For each of the counter[v] subpaths v[j] stored at node v (lines 2-3),

66 CHAPTER 4. CONCEPTS OF EXACT MCP ALGORITHMS

Feasibility(G,u, i, v,counter,d,w,maxlength)
1. dominated ← 0
2. for j = 1, ...,counter[v]
3. if

³
�d[u[i]] + �w(u, v)

´
− �d[v[j]] ≥ �0

OR l(�d[v[j]]) > maxlength
4. v[j]← black

5. else if �d[v[j]]−
³
�d[u[i]] + �w(u, v)

´
≥ �0

6. dominated ← 1
7. return dominated

Figure 4.14: Meta-code Feasibility.

the path weight vector �d[v[j]] is subtracted from �d[u[i]] + �w(u, v) to verify whether
the resulting vector consists of only non-negative components. If all components of
the difference vector are non-negative, then the subpath v[j] is dominated by the ex-
tended path (see Section 4.3). Line 3 also checks whether the subpath v[j] violates
the maxlength value. If the subpath v[j] is either dominated or exceeds maxlength, it
need not be considered anymore and is marked black in line 4. A path marked black
has become obsolete and may be replaced by a new path. Line 5 checks whether the
extended path itself is dominated by a subpath v[j]. If so, it is labelled “dominated.”
Our final subroutine is called Updatequeue (see Figure 4.15).
Updatequeue has the task of updating the queue Q with a new path, namely the

extended path from u[i] to node v. Lines 1-2 check if any black paths exist with larger
predicted_length than the new extended path. If so, it replaces the black path v[j]
with the extended path in lines 3-5. Line 3 decreases the predicted_length of subpath
v[j] with the smaller predicted_length from the extended path and updates the path
weight vector (line 4) and predecessor list (line 5). If the queue Q is updated through
decrease-key in lines 3-5, the subroutine Updatequeue stops in line 6 and returns
to the main algorithm. However, if lines 1-6 fail and no black paths can be replaced,
then the extended path is inserted in the queue (lines 7-10). In this case, not the real
length of this subpath is stored, but its predicted_length. However, SAMCRA can be
used with different length function as discussed in Section 4.1.
The main algorithm (see Figure 4.16) starts with the execution of the subroutine

Initialize (line 1). Provided the queue Q is not empty (otherwise no feasible path
is present), the Extract-min function in line 3 selects the minimum path length in
the queue Q and returns u[i], the i-th path Ps→u stored in the queue at node u. With
these numbers and the predecessor list π, the entire path can be reconstructed via
backtracing. The extracted path is marked grey in line 4. If the node u, corresponding

4.6. THE SAMCRA ALGORITHM 67

Updatequeue(Q, u, i, v, j, d, w, π, counter[v],
predicted_length)
1. for j ← 1 to counter[v]
2. if v[j] = black AND

l
³
�d[v[j]] +�b[v]

´
> predicted_length

3. Decrease-key(Q, v, j,predicted_length)
4. �d[v[j]]← �d[u[i]] + �w(u, v)
5. π[v[j]]← u[i]
6. return
7. counter[v] ← counter[v] +1
8. Insert(Q, v,counter[v], predicted_length)
9. �d[v[counter[v]]] ← �d[u[i]] + �w(u, v)
10. π[v[counter[v]]]← u[i]

Figure 4.15: Meta-code Updatequeue.

to the extracted path u[i], equals the destination t, the shortest path satisfying the
constraints is returned. If u 6= t, the scanning procedure is initiated in line 8. Line 8
describes how the i-th path up to node u is extended towards its neighboring node v,
except for the previous node where it came from. The previous node on the path u[i] is
stored in the predecessor list π. Returning to this previous node induces a loop, which
must be avoided. Since the link weights are non-negative, paths that have a loop are
always dominated by paths without loops. This property relieves us from the task of
storing/backtracing the entire path u[i] to avoid loops. Line 9 invokes the Feasibility
subroutine to check whether all stored paths at node v are non-dominated and obey
maxlength. Feasibility also checks whether the new extended path is not dominated
by previously stored paths at node v. In line 10, the length of the predicted end-to-
end path weight vector (composed of the real subpath weight vector from s to v plus
the lower-bound vector from v to t) is calculated. Line 11 tests if the new extended
path is non-dominated and has a predicted_length ≤ maxlength. If this is the case it
can be stored and the queue must be updated (line 12). Removing paths for which
predicted_length > maxlength is the search space reduction of the look-ahead concept.
Finally, maxlength can be updated in lines 13-14.

4.6.2 Complexity of SAMCRA

The calculation of the worst-case complexity of SAMCRA as presented above will be
computed. First, the worst-case complexity of the subroutines is determined, after
which the total worst-case complexity of SAMCRA is constructed.

68 CHAPTER 4. CONCEPTS OF EXACT MCP ALGORITHMS

SAMCRA(G, m, s, t, L)
1. Initialize(G,m, s, t) → �b
2. while Q 6= ∅
3. Extract-min(Q) → u[i]
4. u[i]← grey
5. ifu = t
6. return path
7. else
8. for each v ∈ adj[u]\{π[u[i]], s}
9. Feasibility(G, u, i, v, counter, d, w, maxlength)

→ dominated

10. predicted_length ← l
³
�d[u[i]] + �w(u, v) +�b[v]

´
11. if predicted_length < maxlength

AND dominated 6= 1
12. Updatequeue(Q, u, i, v, j, d, w, π, counter[v],

predicted_length)
13. if v = B AND

predicted_length < maxlength
14. maxlength ← predicted_length

Figure 4.16: Meta-code SAMCRA.

The initialization phase has a polynomial-time complexity. Initializing counter takes
mO(N) times. Executing heap-optimized Dijkstra (lines 4-5) leads tomO(N logN+M)
and m times computing a length of a path (line 6) leads to mO(mN). The other
operations take O(1), leading to a total worst-case complexity of O(N +mN logN +
mM +m2N + 1) = O(mN logN +mM +m2N).
The complexity of the Feasibility subroutine depends on the calculation of length

and verification of dominance. Calculating the length (4.3) of a weight vector takes
O(m), while verifying path dominance between two paths takes O(m) at most. Since
there can be at most kmax paths at a node, the Feasibility subroutine takes at most
O(kmaxm).
The complexity of the subroutine Updatequeue depends on the specifics of the

heap structure (e.g., Fibonacci or Relaxed heaps). Lines 1 and 2 take at mostO(kmaxm).
The heap functions Decrease-key (line 3) and Insert (line 8) can be performed in
O(1). Updating �d (lines 4 and 9) takes at most O(m). The total worst-case complexity
of Updatequeue leads to O(kmaxm).
The total worst-case complexity of SAMCRA is constructed as follows. The ini-

tialization phase adds O(mN logN + mM + m2N). The queue Q can never contain

4.6. THE SAMCRA ALGORITHM 69

more than kmaxN path lengths. When using a Fibonacci or Relaxed heap to struc-
ture the queue, selecting the minimum path length among kmaxN different path lengths
takes at most a calculation time of the order of O(log(kmaxN)) [34]. As each node
can be selected at most kmax times from the queue, the Extract-min function in
line 3 takes O(kmaxN log(kmaxN)) at most. Returning a path in line 6 takes at most
O(N). The for-loop starting on line 8 is invoked at most kmax times from each side
of each link in the graph, leading to O(kmaxM). Feasibility takes O(kmaxm). Cal-
culating the length in line 10 takes O(m) and updating the queue takes O(kmaxm).
Combining all those contributions yields a total worst-case complexity for SAMCRA of
O(mN logN +mM +m2N +N + kmaxN log(kmaxN) + k2maxmM) or

CSAMCRA = O(kmaxN log(kN) + k2maxmM) (4.8)

where m is fixed. When the link weights are real numbers, the granularity is infinitely
small implying that the first argument in (4.5) is infinite and, hence, kmax = O(N !) =
O(exp(N lnN)). But, as argued before, in practice these measures will have a finite
granularity, such that the link weights wi are integers (in units specified by the QoS
qualifier). Hence, kmax is limited by the first, finite argument in (4.5). This means that,
for a fixed number of constraints m and finite granularity in the constraints, SAMCRA
has a pseudo-polynomial-time complexity.
For a single constraint (m = 1 and kmax = 1), SAMCRA’s complexity reduces to

the complexity of the Dijkstra algorithm: CDijkstra = O(N logN +M). By restricting
k at the expense of possibly loosing exactness, an optimized version of TAMCRA is
obtained. It is also possible to stop SAMCRA, when a feasible path (not necessarily
shortest) is found, which significantly reduces the execution time, especially for loose
constraints. For the MCP problem, this option is recommended.

4.6.3 Example of the operation of SAMCRA

Consider the topology drawn in the top of Figure 4.17. We are asked to find a path
from A to B subject to the constraints vector �L = (10, 10).
SAMCRA returns the shortest path satisfying the �L-vector in 7 steps (including

initialization). Whenever a path is extracted from the queue (line 3 of the meta-code),
the corresponding box is colored in grey. The arrows refer to lines 8-12. The algorithm
stops when the first entry of the destination node B is extracted from the queue.
In step Init of Figure 4.17, the initialization phase of SAMCRA is displayed. The

lower-bound vectors �b (n) are displayed in boxes beside the nodes. The initialization
phase also examines the two shortest Dijkstra paths P ∗A→B;1 and P ∗A→B;2 from A to B,
where P ∗A→B;1 = ACEFB with �w(P ∗A→B;1) = (4, 12) and where P

∗
A→B;2 = ADEB with

�w(P ∗A→B;2) = (8, 4). The path P ∗A→B;2 lies within the constraints, wi(P
∗
A→B;2) ≤ Li for

70 CHAPTER 4. CONCEPTS OF EXACT MCP ALGORITHMS

F

E

D

C

A B

1
2

1
2

4
2

1
1

3
1

3
3

1
2

maxlength = 1.0

1
6

F

E

D

C

A B

1
2

1
2

4
2

1
1

3
1

3
3

1
2

maxlength = 1.0

1
6

F

E

D

C

A B

1
2

1
2

4
2

1
1

3
1

3
3

1
2

0
0

3
6

4
4

3
3

2
2

1
2

Init maxlength = 0.8

1
6

F

E

D

C

A B

1
2

1
2

4
2

1
1

3
1

3
3

1
2

0
0

3
6

4
4

3
3

2
2

1
2

Init maxlength = 0.8

1
6

F

E

D

C

A B

1
2

1
2

4
2

1
1

3
1

3
3

1
2

maxlength = 1.0

1
6

F

E

D

C

A B

1
2

1
2

4
2

1
1

3
1

3
3

1
2

maxlength = 1.0

1
6

F

E

D

C

A B

1
2

1
2

4
2

1
1

3
1

3
3

1
2

0
0

3
6

4
4

3
3

2
2

1
2

Init maxlength = 0.8

1
6

F

E

D

C

A B

1
2

1
2

4
2

1
1

3
1

3
3

1
2

0
0

3
6

4
4

3
3

2
2

1
2

Init maxlength = 0.8

1
6

Figure 4.17: Example of the operation of SAMCRA (initialization).

4.6. THE SAMCRA ALGORITHM 71

F

E

D

C

A B

1
2

1
2

4
2

1
1

3
1

3
3

1
2

0
0

3
6

4
4

3
3

2
2

1
2

0.0

0.8

0.5

0.6

1 maxlength = 0.8

1
6

F

E

D

C

A B

1
2

1
2

4
2

1
1

3
1

3
3

1
2

0
0

3
6

4
4

3
3

2
2

1
2

0.0

0.8

0.5

0.6

1 maxlength = 0.8

1
6

F

E

D

C

A B

1
2

1
2

4
2

1
1

3
1

3
3

1
2

0
0

3
6

4
4

3
3

2
2

1
2

0.5

0.7

0.7

0.8

0.6

2 maxlength = 0.7

1
6

F

E

D

C

A B

1
2

1
2

4
2

1
1

3
1

3
3

1
2

0
0

3
6

4
4

3
3

2
2

1
2

0.5

0.7

0.7

0.8

0.6

2 maxlength = 0.7

1
6

F

E

D

C

A B

1
2

1
2

4
2

1
1

3
1

3
3

1
2

0
0

3
6

4
4

3
3

2
2

1
2

0.0

0.8

0.5

0.6

1 maxlength = 0.8

1
6

F

E

D

C

A B

1
2

1
2

4
2

1
1

3
1

3
3

1
2

0
0

3
6

4
4

3
3

2
2

1
2

0.0

0.8

0.5

0.6

1 maxlength = 0.8

1
6

F

E

D

C

A B

1
2

1
2

4
2

1
1

3
1

3
3

1
2

0
0

3
6

4
4

3
3

2
2

1
2

0.5

0.7

0.7

0.8

0.6

2 maxlength = 0.7

1
6

F

E

D

C

A B

1
2

1
2

4
2

1
1

3
1

3
3

1
2

0
0

3
6

4
4

3
3

2
2

1
2

0.5

0.7

0.7

0.8

0.6

2 maxlength = 0.7

1
6

Figure 4.18: Example of the operation of SAMCRA (steps 1 and 2).

72 CHAPTER 4. CONCEPTS OF EXACT MCP ALGORITHMS

i = 1, 2, and P ∗A→B;2 has length l(P ∗A→B;2) = 0.8, which is smaller than the initialized
maxlength = 1. maxlength therefore is lowered6 to 0.8.
The main algorithm starts in step 1 of Figure 4.18 by scanning the neighbors of

node A. In step 2, the path with the minimum predicted end-to-end length, which
corresponds to node E in Figure 4.18 with l(�w(PAE)+�b(E)) = 0.5, is extracted from the
queue and the scanning procedure from E is invoked. The path PAED, with �w (PAED) =
(4, 4), is not stored because it is dominated by the previously stored path PAD stored at
node D. The same holds for the path towards node C, PAEC . Besides being dominated
by the previously stored path PAC , its length l(�w(PAEC)) also exceeds maxlength. The
paths toward nodes B and F are stored and maxlength is updated with the length of
the end-to-end path PAEB. In step 3, shown in Figure 4.19, the scanning procedure
from node D is invoked. In step 4, two subpaths are stored at node F : PAEF with
�w (PAEF) = (4, 5) and predicted length l(�w(PAEF) + �b(F)) = 0.7, and PADEF with
�w (PADEF) = (5, 4) and predicted length l(�w (PADEF)+�b(F)) = 0.6. In step 5, in Figure
4.20, a new end-to-end path PADEFB is found with predicted length 0.6. maxlength is
therefore set to 0.6. Note that this predicted length equals the real length, because we
have attained a complete path from A to B. In the next and final step, the destination
node B is extracted. This implies that the shortest path, minimizing the length (4.3)
and within the constraints, has been found. By using the predecessor list π, this shortest
path PADEFB is reconstructed in the reverse direction (as in Dijkstra’s algorithm).
Since the granularity is 1 (the vector components are all integers), we observe that,

although with (4.5) kmax = 10, kmin = 2 suffices for the exact solution, because two
queue entries are needed at node F , while all the other nodes store less entries. If k was
restricted to 1, no path satisfying the constraints would have been found. SAMCRA
guarantees that, if there is a compliant path, this path is always found.

4.7 Conclusions

Four concepts for exact QoS routing were identified: a non-linear length function,
the k-shortest paths approach, the principle of non-dominance and the look-ahead
technique. The multiple QoS constraints make any length function non-linear. Mo-
tivated by this constraints surface we have proposed the non-linear length function
l(P) = maxi=1,...,m

³
wi(P)
Li

´
. A problem of the inherent non-linearity is that subsections

of shortest paths are not necessarily shortest themselves, which necessitates to evaluate
multiple paths at a node. This is accomplished by a k-shortest paths approach. In the
worst-case this k-shortest paths approach could evaluate all possible paths and there-
fore efficient search-space-reducing techniques are required. Two such techniques are

6If only a solution to the MCP problem is required, the algorithm can be stopped since a feasible
path from A to B has been found.

4.7. CONCLUSIONS 73

F

E

D

C

A B

1
2

1
2

4
2

1
1

3
1

3
3

1
2

0
0

3
6

4
4

3
3

2
2

1
2

0.7

0.7

0.8

0.6

0.6

3 maxlength = 0.7

1
6

F

E

D

C

A B

1
2

1
2

4
2

1
1

3
1

3
3

1
2

0
0

3
6

4
4

3
3

2
2

1
2

0.7

0.7

0.8

0.6

0.6

3 maxlength = 0.7

1
6

F

E

D

C

A B

1
2

1
2

4
2

1
1

3
1

3
3

1
2

0
0

3
6

4
4

3
3

2
2

1
2

0.7

0.7

0.8

0.6

0.6

4 maxlength = 0.7

1
6

F

E

D

C

A B

1
2

1
2

4
2

1
1

3
1

3
3

1
2

0
0

3
6

4
4

3
3

2
2

1
2

0.7

0.7

0.8

0.6

0.6

4 maxlength = 0.7

1
6

F

E

D

C

A B

1
2

1
2

4
2

1
1

3
1

3
3

1
2

0
0

3
6

4
4

3
3

2
2

1
2

0.7

0.7

0.8

0.6

0.6

3 maxlength = 0.7

1
6

F

E

D

C

A B

1
2

1
2

4
2

1
1

3
1

3
3

1
2

0
0

3
6

4
4

3
3

2
2

1
2

0.7

0.7

0.8

0.6

0.6

3 maxlength = 0.7

1
6

F

E

D

C

A B

1
2

1
2

4
2

1
1

3
1

3
3

1
2

0
0

3
6

4
4

3
3

2
2

1
2

0.7

0.7

0.8

0.6

0.6

4 maxlength = 0.7

1
6

F

E

D

C

A B

1
2

1
2

4
2

1
1

3
1

3
3

1
2

0
0

3
6

4
4

3
3

2
2

1
2

0.7

0.7

0.8

0.6

0.6

4 maxlength = 0.7

1
6

Figure 4.19: Example of the operation of SAMCRA (steps 3 and 4).

74 CHAPTER 4. CONCEPTS OF EXACT MCP ALGORITHMS

F

E

D

C

A B

1
2

1
2

4
2

1
1

3
1

3
3

1
2

0
0

3
6

4
4

3
3

2
2

1
2

0.7

0.7

0.8

0.6

0.6

5 maxlength = 0.6

1
6

F

E

D

C

A B

1
2

1
2

4
2

1
1

3
1

3
3

1
2

0
0

3
6

4
4

3
3

2
2

1
2

0.7

0.7

0.8

0.6

0.6

5 maxlength = 0.6

1
6

F

E

D

C

A B

1
2

1
2

4
2

1
1

3
1

3
3

1
2

0
0

3
6

4
4

3
3

2
2

1
2

0.7

0.7

0.8

0.6

End maxlength = 0.6

1
6

F

E

D

C

A B

1
2

1
2

4
2

1
1

3
1

3
3

1
2

0
0

3
6

4
4

3
3

2
2

1
2

0.7

0.7

0.8

0.6

End maxlength = 0.6

1
6

F

E

D

C

A B

1
2

1
2

4
2

1
1

3
1

3
3

1
2

0
0

3
6

4
4

3
3

2
2

1
2

0.7

0.7

0.8

0.6

0.6

5 maxlength = 0.6

1
6

F

E

D

C

A B

1
2

1
2

4
2

1
1

3
1

3
3

1
2

0
0

3
6

4
4

3
3

2
2

1
2

0.7

0.7

0.8

0.6

0.6

5 maxlength = 0.6

1
6

F

E

D

C

A B

1
2

1
2

4
2

1
1

3
1

3
3

1
2

0
0

3
6

4
4

3
3

2
2

1
2

0.7

0.7

0.8

0.6

End maxlength = 0.6

1
6

F

E

D

C

A B

1
2

1
2

4
2

1
1

3
1

3
3

1
2

0
0

3
6

4
4

3
3

2
2

1
2

0.7

0.7

0.8

0.6

End maxlength = 0.6

1
6

Figure 4.20: Example of the operation of SAMCRA (steps 5 and 6).

4.7. CONCLUSIONS 75

“the principle of non-dominance” that excludes paths P 0 for which already a path P
is known that has weights wi(P) ≤ wi(P

0), for i = 1, ...,m and “the concept of look-
ahead.” Look-ahead computes lower-bound vectors to assist in determining whether a
path can become feasible or not. Based on these four concepts we have proposed the
exact algorithm SAMCRA. Naturally, in addition to the four concepts, others may ex-
ist, e.g. a preprocessing of the graph that prunes links that cannot be on the shortest
path or a bi-directional search. Based on such new concepts SAMCRA could evolve
over time and maintain the top-position it has acquired today.

76 CHAPTER 4. CONCEPTS OF EXACT MCP ALGORITHMS

Chapter 5

Overview of QoS algorithms

Finding a path subject to multiple constraints is known to be an NP-complete problem.
Hence, accurate constraint-based path selection algorithms with a fast running time are
scarce. Numerous heuristics and a few exact algorithms have been proposed. In this
chapter, we compare the lion’s share of these algorithms. The main focus is on multi-
constrained path algorithms, which are classified under heuristics, �-approximation al-
gorithms and exact algorithms. The performance evaluation of these algorithms is
presented based on complexity analysis and simulation results and may shed some light
on the difficult task of selecting the proper algorithm for a QoS-capable network. Also
some attention is given to algorithms that do not solve the MCP problem, but which
were proposed to solve specific instances of the MCP problem, like the restricted short-
est path problem.

5.1 Heuristics

5.1.1 Jaffe’s algorithm

Jaffe [85] presented two MCP algorithms for them = 2 dimensional case. The first is an
exact pseudo-polynomial-time algorithmwith a worst-case complexity ofO(N5b logNb),
where b is the largest weight in the graph. Because of this prohibitive complexity,
only the second algorithm, hereafter referred to as Jaffe’s algorithm, is discussed. Jaffe
proposed using a shortest path algorithm on a linear combination of the two link weights:

w(u, v) = d1 · w1(u, v) + d2 · w2(u, v) (5.1)

where d1 and d2 are positive multipliers.
As discussed in Section 4.1, the shortest path based on a linear combination of

link weights does not necessarily reside within the constraints. Jaffe had also observed
this fact and therefore evaluated a non-linear path length function of the form f(P) =

77

78 CHAPTER 5. OVERVIEW OF QOS ALGORITHMS

max{w1(P), L1}+max{w2(P), L2}, whose minimization can guarantee to find a feasible
path, if such a path exists. However, because no simple shortest path algorithm can
cope with this non-linear length function, Jaffe approximated the non-linear length by
the linear length function (4.1). Andrew and Kusuma [4] generalized Jaffe’s analysis to
an arbitrary number of constraints, m, by extending the linear length function to

l(P) =
mX
i=1

diwi(P)

and the non-linear function to

l(P) =
mX
i=1

max (wi(P), Li)

By choosing di = 1
Li
we maximize the volume of the solution space that can be scanned

by linear equilength lines subject to wi(P) ≤ Li. Furthermore, when using Dijkstra’s
algorithm [40] with Fibonacci heaps, the complexity for Jaffe’s algorithm becomes
O(N logN +mM).
If the returned path is not feasible, then Jaffe’s algorithm stops, although the search

could be continued by using different values for di, which might result in a feasible
path. This type of search is referred to as Lagrangian relaxation, in which the values
di are altered by the algorithm itself. Unfortunately, in some cases, even if all possible
combinations of di are exhausted, a feasible path may not be found using linear search.
As shown in Chapter 4, an exact algorithm must necessarily use a non-linear length
function, even though a non-linear function cannot be minimized with a simple shortest
path algorithm.

5.1.2 Iwata’s algorithm

Iwata et al. [84] proposed a polynomial-time heuristic to solve the MCP problem. The
algorithm first computes one (or more) shortest path(s) based on one QoS measure
and then checks if all the constraints are met. If this is not the case, the procedure is
repeated with another measure until a feasible path is found or all QoS measures are
examined. Like Jaffe’s algorithm, Iwata’s algorithm is also a special case of Lagrangian
relaxation. A similar approach has been proposed by Lee et al. [104].
The problem with Iwata’s algorithm is that there is no guarantee that any of the

shortest paths, with respect to each individual measure, is close to a path within the
constraints. This is illustrated in Figure 5.1, which shows twenty paths of a two-
constraint problem applied to a random graph with 100 nodes. Only the second and
third shortest path for measure 1, and the second and fourth shortest path for measure
2, lie within the constraints.
Via Dijkstra’s algorithm and when only considering one shortest path per QoS

measure, we can obtain a complexity of O(mN logN +mM).

5.1. HEURISTICS 79

0
0

1 2 43

1
2
3

L2

L1

w2(P)

w1(P)

Figure 5.1: Twenty shortest paths for a two-constraint problem. Each path is repre-
sented as a dot and the coordinates of each dot are its path-weights for each measure
individually.

5.1.3 TAMCRA

TAMCRA is short for a “Tunable Accuracy Multiple Constraints Routing Algorithm”
[38], [37]. TAMCRA is a heuristic that is based on three concepts: (1) a non-linear
measure for the path length, (2) a k-shortest path approach [32], and (3) the principle
of non-dominated paths [77]. These three principles were explained in Chapter 4.

1. non-linear path-length measure. Motivated by the geometry of the constraints
surface in m-dimensional space, the length of a path P is defined as l(P) =

max1≤i≤m
³
wi(P)
Li

´
.

A solution to the MCP problem is a path whose weights are all within the con-
straints: l(P) ≤ 1.

2. k-shortest path algorithm. This algorithm (e.g., as presented in [32]) is essentially
Dijkstra’s algorithm, with extensions to return not only the shortest path to a
given destination, but also the second shortest, the third shortest, . . . , up to
the k−th shortest path. In TAMCRA the k-shortest path concept is applied to
intermediate nodes i on the path from the source node s to the destination node
t to keep track of multiple sub-paths from s to i. In TAMCRA the maximum
queue size k allowed at a node is predetermined by the user.

80 CHAPTER 5. OVERVIEW OF QOS ALGORITHMS

3. Principle of non-dominance. A path Q is said to be dominated by a path P if
wi(P) ≤ wi(Q) for i = 1, ..,m, with an inequality for at least one i. This property
allows TAMCRA to efficiently reduce the search space without compromising the
solution.

TAMCRA has a worst-case complexity of

O(kN log(kN) + k2mM)

In TAMCRA the allocated queue space is predefined via k and hence the complexity
is polynomial. The accuracy of TAMCRA can be tuned via k, where better performance
can be achieved with a larger k. Simulation results for different values for k can be found
in [38].

5.1.4 Chen’s algorithm

Chen and Nahrstedt [27] provided an approximate algorithm for the MCP problem.
This algorithm first transforms the MCP problem into a simpler problem by scaling
down m− 1 (real) link weights to integer weights as follows:

w∗i (u, v) =
»
wi(u, v) · xi

Li

¼
for i = 2, 3, . . . ,m,

where xi are predefined positive integers. The simplified problem consists of finding a
path P , for which w1(P) ≤ L1 and w∗i (P) ≤ xi, 2 ≤ i ≤ m. A solution to this simplified
problem is also a solution to the original MCP problem, but not necessarily vice versa
(because the conditions of the simplified problem are more strict). Since the simplified
problem can be solved exactly, Chen and Nahrstedt have shown that the MCP problem
can be exactly solved in polynomial time provided that at least m−1 QoS measures have
bounded integer weights.
To solve the simplified MCP problem, Chen and Nahrstedt proposed two algorithms

based on dynamic programming: the Extended Dijkstra’s Shortest Path algorithm
(EDSP) and the Extended Bellman-Ford algorithm (EBF). The algorithms return a
path that minimizes the first (real) weight, provided that the other m − 1 (integer)
weights are within the constraints. According to Chen and Nahrstedt, the EBF algo-
rithm is expected to give better performance in terms of execution time when the graph
is sparse and the number of nodes is relatively large.
The complexities of EDSP and EBF are O(x22 · · · x2mN2) and O(x2 · · · xmNM),

respectively. To achieve good performance, large xi’s are needed, which makes this
approach rather computationally intensive for practical purposes. By adopting the
concept of non-dominance, like in SAMCRA, this algorithm could1 reduce its search
space, resulting in a faster execution time.

1All algorithms in Section 5.5 maintained their original forms, without any possible improvements.

5.1. HEURISTICS 81

5.1.5 Randomized algorithm

Korkmaz and Krunz [97] proposed a randomized heuristic for the MCP problem. The
concept behind randomization is to make random decisions during the execution of an
algorithm [118], so that unforeseen traps can potentially be avoided when searching
for a feasible path. The proposed randomized algorithm is divided into two parts: an
initialization phase and a randomized search. In the initialization phase, the algorithm
computes the shortest paths from every node u to the destination node t with respect
to each QoS measure and with respect to the linear combination of all m measures.
This look-ahead information (see Section 4.4) will provide lower bounds for the path
weight vectors of the paths from u to t. Based on the information obtained in the
initialization phase, the algorithm can decide whether there is a chance of finding a
feasible path or not. If so, the algorithm starts from the source node s and explores
the graph using a randomized breadth-first search (BFS, see Chapter 3). In contrast
to conventional BFS, which systematically discovers every node that is reachable from
node s, the randomized BFS discovers nodes from which there is a good chance to
reach the destination t. By using the information obtained in the initialization phase,
the randomized BFS can check whether this chance exists before discovering a node.
If there is no chance of reaching the destination, the algorithm foresees the trap and
avoids exploring such nodes any further. In the randomized algorithm, the objectives
of the look-ahead property are twofold. First, the lower-bound vectors obtained in the
initialization phase are used to check whether a sub-path from s to u can become a
feasible path. This is a search-space-reducing technique. Second, a different preference
rule for extracting nodes can be adopted based on the predicted end-to-end length, i.e.
the length of the sub-path weight vector plus the lower-bound vector. The randomized
BFS continues searching by randomly selecting discovered nodes until the destination
node is reached. If the randomized BFS fails in the first attempt, it is possible to
execute only the randomized BFS again so that the probability of finding a feasible
path can be increased.
Under the same network conditions, multiple executions of the randomized algorithm

may return different paths between the same source and destination pair. However,
some applications might require the same path again. In such cases, path caching
should be used [132].
The worst-case complexity of the randomized algorithm is O(mN logN +mM).

5.1.6 H_MCOP

Korkmaz and Krunz [96], [98] also provided a heuristic called H_MCOP. This heuristic
tries to find a path within the constraints by using the non-linear path length function
(4.3) of SAMCRA. In addition, H_MCOP tries to simultaneously minimize the weight
of a single “cost” measure along the path. To achieve both objectives simultaneously,

82 CHAPTER 5. OVERVIEW OF QOS ALGORITHMS

H_MCOP executes two modified versions of Dijkstra’s algorithm in the backward and
forward directions. In the backward direction, H_MCOP uses Dijkstra’s algorithm for
computing the shortest paths from every node to the destination node t with respect
to w(u, v) =

Pm
i=1

wi(u,v)
Li

. Later on, these paths from every node u to the destination
node t are used to estimate how suitable the remaining sub-paths are. In the forward
direction, H_MCOP uses a modified version of Dijkstra’s algorithm. This version
starts from the source node s and discovers each node u based on a path P , where P
is a heuristically determined complete s-t path that is obtained by concatenating the
already traveled sub-path from s to u and the estimated remaining sub-path from u to t.
Since H_MCOP considers complete paths before reaching the destination, it can foresee
several infeasible paths during the search. If paths seem feasible, then the algorithm can
switch to explore these feasible paths based on the minimization of the single measure.
Although similar to the look-ahead property, this technique only provides a preference
rule for choosing paths and cannot be used as a search-space-reducing technique.
The complexity of the H_MCOP algorithm is O(N logN + mM). If one deals

only with the MCP problem, then H_MCOP could be stopped whenever a feasible
path is found during the search in the backward direction, reducing the computational
complexity. The performance of H_MCOP in finding feasible paths can be improved
by using the k-shortest path algorithm and by eliminating dominated paths.

5.1.7 Limited path heuristic

Yuan [179] presented two heuristics for the MCP problem. The first “limited gran-
ularity” heuristic has a complexity of O(NmM), whereas the second “limited path”
heuristic (LPH) has a complexity of O(k2NM), where k corresponds to the queue size
at each node. The author claims that when k = O(N2 log2N), the limited path heuris-
tic has a very high probability of finding a feasible path, provided that such a path
exists. However, applying this value results in an excessive execution time.
According to Yuan, the performance of both algorithms is comparable when m ≤ 3.

For m > 3, LPH performs better than the limited granularity heuristic. Moreover,
the limited granularity heuristic closely resembles the algorithm of Chen and Nahrstedt
(discussed in Section 5.1.4).
LPH is an extended Bellman-Ford algorithm that uses two of the concepts of TAM-

CRA. Both use the concept of non-dominance and maintain at most k paths per node.
However, TAMCRA uses a k-shortest path approach, while LPH stores the first (and
not necessarily shortest) k paths. Furthermore LPH does not check whether a sub-path
obeys the constraints, but only checks at the end for the destination node. An obvious
difference is that LPH uses a Bellman-Ford approach, while TAMCRA uses a Dijkstra-
like search. Simulations (not shown) reveal that Bellman-Ford-like implementations
require more execution time than Dijkstra-like implementations, especially when the
graphs are dense.

5.2. �-APPROXIMATION 83

5.2 �-approximation

An �-approximation algorithm is an algorithm that is not necessarily exact, but which
can provide a solution quantifiably close to the exact solution. The solution provided
by an �—approximation algorithm is guaranteed to be within a factor (1+�) of the exact
solution, where � > 0. Such a performance guarantee is not provided by heuristics and
in this sense �—approximation algorithms are considered to be better than heuristics.
Unfortunately, their complexity is a function of 1

�
and therefore their running time in

practice is usually excessive.

Almost all proposed �—approximation algorithms in the field of QoS routing focus
on the RSP problem and can therefore only handle two QoS measures/constraints.
Warburton [172] was the first to develop a fully polynomial-time approximation scheme
(FPTAS) for the RSP problem, assuming acyclic graphs. Hassin [73] improved this
algorithm and provided two �-optimal approximation algorithms with the complexities
of O((MN

�
+ 1) log logB) and O(MN2

�
log(N

�
)), where B is an upper bound on the cost

c(P) of a path. It is assumed that the link weights are positive integers. Hassin’s
first �-optimal approximation algorithm initially determines an upper bound (UB) and
a lower bound (LB) on the optimal cost denoted by OPT . For this, the algorithm
initially starts with LB = 1 and UB = sum of (N-1) largest link-costs, and then sys-
tematically adjusts them using a testing procedure. Once these bounds are found, the
approximation algorithm bounds the cost of each link by rounding and scaling it accord-
ing to: c0(u, v) =

j
c(u,v)(N−1)

�LB

k
∀ (u, v) ∈ E. Finally, it applies a pseudo-polynomial-

time algorithm on these modified weights. The second approximation algorithm uses a
slightly different technique called interval partitioning, in which a set of positive num-
bers Q = {p1, p2, . . . , pm} is partitioned into subsets R1, . . . , Rr+1 such that pi ∈ Rj if
and only if X(j−1)

r
< pi ≤ Xj

r
for j = 1, . . . , r, and pi ∈ Rr+1, if and only if pi > X, where

X is a given positive number. Phillips [133] and Lorenz and Raz [111] provided further
improvements of which the latter has the best complexity O(MN(log logN + 1

�
)).

Orda [125] and Lorenz et al. [112] modified �-optimal approximation algorithms to
scale better in hierarchical networks. Ergün et al. [45] proposed an �-optimal approxi-
mation algorithm for a RSP-related problem, in which one link weight is a function of
the other. Goel et al. [59] considered a related problem, in which the least-cost path
from a given source to all destinations is searched, while satisfying the delay constraint
∆ for each path. For this problem, Goel et al. provided an �-approximation algorithm
with the complexity of O((M +N logN)D

�
), where D can be at most N − 1.

In comparison with the number of �—approximation algorithms that solve the RSP
problem, only very few papers propose �—approximation algorithms for the MCP prob-
lem. In this section the contribution of two papers [136], [177] is discussed.

84 CHAPTER 5. OVERVIEW OF QOS ALGORITHMS

5.2.1 Puri’s algorithm

Puri and Tripakis [136] presented three algorithms for routing with multiple constraints
(the MCP problem), an exact pseudo-polynomial-time algorithm, an �—approximation
algorithm and a heuristic. The algorithms were first presented for the case m = 2,
after which the generalization to m ≥ 2 of the algorithms was dealt with. The
pseudo-polynomial algorithm (like the algorithm of Yuan [179]) uses a Bellman-Ford-like
search and removes unfeasible and dominated paths. The �—approximation algorithm is
based on their pseudo-polynomial algorithm, but it uses a more strict principle of non-
dominance, where non-dominated paths that are “too close” to another non-dominated
path are considered dominated (see ε-dominance in Section 4.3). The authors [136] have
defined a step error ε = min(L1,L2)�

N
for the casem = 2 and have increased the constraints

by factor (1+ �). Thus only the set of ε-dominated paths with distance ε is maintained.
The total error accumulated over a path is then upper bounded by min(L1, L2)� and
the constraints are therefore never exceeded more than this error. The authors have
claimed that an extension to m > 2 is trivial and that the worst-case complexity of this
algorithm equals O(NmM(1 + 1

�
)m), but this statement is wrong. Such a complexity

can be attained only at the loss of �-approximation. The heuristic proposed by Puri
and Tripakis is essentially a Lagrangian relaxation approach (see Section 5.1) and is
not further discussed here.

5.2.2 Xue’s algorithm

Xue, Sen and Banka [177] proposed an �—approximation algorithm that solves the
MCOP problem. Like Puri’s algorithm [136], first an exact pseudo-polynomial-time
algorithm was devised, after which the pseudo-polynomial algorithm was reduced via
some techniques to the �—approximation algorithm. The pseudo-polynomial algorithm
solves a special case of the MCP problem, where all constraints have the same value. It
achieves this by first constructing a directed graphGL with node set VL = V {0, 1, ..., L}m−1
and edge set EL. If (u, v) is an undirected edge in E, then EL contains directed edges
from (u, d2[u],..., dm[u]) to (v, d2[v],..., dm[v]), where di[u] = di[v] +wi(u, v). The length
of all such edges is w1(u, v). In addition, EL also contains zero length edges from (t, d2[t],
... , dj[t], ... , dm[t]) to (t, d2[t], ... , dj[t] + 1, ... , dm[t]) for one j ∈ {2, 3, ...,m}. Based
on this graph, the shortest paths from (s, 0, ..., 0) to all other nodes in GL are computed
and if a path with length ≤ L exist towards (t, L, L, ..., L), then this path is a feasible
path. The worst-case complexity of this pseudo-polynomial algorithm is O(MLm−1 +
NLm−1 log(NLm−1)). Xue et al. applied an approximate test procedure (similar to Has-
sin’s test procedure [73]) to the pseudo-polynomial algorithm along with scaling and
rounding of the weights to arrive at an �—approximate solution. The worst-case com-
plexity of this �—approximation algorithm is O((MNm−1 + Nm log(Nm)) log log

¡
mM
2

¢
+
¡
1
�

¢m−1 ¡
MNm−1 +Nm log

¡
Nm

�m−1
¢¢
). The authors have recognized that the complex-

5.3. EXACT ALGORITHMS 85

ity of their algorithm is high and even claimed that this holds for almost all FPTAS
algorithms. The simulations we have performed with �-approximation algorithms agree
with this claim.

5.3 Exact algorithms

Because the MCP problem is NP-complete, only a few exact algorithms were proposed.
In this section these exact algorithms are elucidated.

5.3.1 SAMCRA

SAMCRA (see Section 4.6) stands for a Self-Adaptive Multiple Constraints Routing
Algorithm and is the exact successor of TAMCRA [38]. SAMCRA is based on four
fundamental concepts: (1) a non-linear measure for the path length, (2) a k-shortest
path approach [32], (3) the principle of non-dominated paths [77] and (4) the concept
of look-ahead. These four principles were explained in Chapter 4.

1. non-linear path-length measure. The length of a path P is defined, as l(P) =

max1≤i≤m
³
wi(P)
Li

´
. Depending on the specifics of a constrained optimization prob-

lem, SAMCRA can be used with different length functions, provided they obey
the criteria for length in vector algebra. Examples of length functions were given
in Chapter 4.

2. k-shortest path algorithm. In SAMCRA the k-shortest path concept is applied to
intermediate nodes i on the path from the source node s to the destination node
t to keep track of multiple sub-paths from s to i. The value of k is adaptively
controlled by SAMCRA.

3. Principle of non-dominance. A path Q is said to be dominated by a path P , if
wi(P) ≤ wi(Q) for i = 1, ..,m, with an inequality for at least one i. SAMCRA
only considers non-dominated (sub)-paths.

4. Concept of look-ahead. First calculating paths in polynomial time from the des-
tination and then applying this information to find a feasible path between the
source and destination is especially useful when graphs become “hard to solve,”
i.e., N,M and m grow large. This look-ahead property allows us to compute
lower bounds on end-to-end paths, which can be used to check the feasibility of
paths. Moreover, better preference rules can be adopted to extract nodes from
the queue.

86 CHAPTER 5. OVERVIEW OF QOS ALGORITHMS

SAMCRA has a worst-case complexity of

O(kN log(kN) + k2mM)

SAMCRA self-adaptively controls the value for k, which can grow exponentially in
the worst case. Knowledge about k is crucial to the complexity of SAMCRA.
The self-adaptivity in k makes SAMCRA an exact MCOP algorithm: SAMCRA

guarantees to find the shortest path within the constraints, provided that such a path
exists. In this process, SAMCRA only allocates queue space when truly needed and
self-adaptively adjusts the number of stored paths k in each node.

5.3.2 HAMCRA

We [102] have also proposed an exact hybrid MCP algorithm that integrates the speed of
TAMCRA with the exactness of SAMCRA. Both SAMCRA and TAMCRA use a non-
linear length function, the k-shortest path approach and only consider non-dominated
paths.
Since HAMCRA is composed of SAMCRA and TAMCRA, it is also based on these

three concepts. In HAMCRA, first the TAMCRA algorithm is executed with a queue-
size k = 1 from the destination node to all other nodes in the graph. This is similar to
bi-directional search, because HAMCRA also scans from the destination node. However,
the scanning procedure does not alternate between the source and the destination.
TAMCRA could also be used with k > 1, which would lead to a better accuracy at
the cost of increased complexity (of TAMCRA). The running time of TAMCRA (with
k = 1) is comparable to that of the Dijkstra algorithm. At each node, the path weight
vector found by TAMCRA from that node to the destination is stored. These values
will later be used to predict the end-to-end path length. If TAMCRA has found a path
within the constraints between the source and the destination, HAMCRA can stop
and return this path. If TAMCRA was not able to return a feasible path, HAMCRA
continues by executing the SAMCRA algorithm from the source node. The difference
between HAMCRA and SAMCRA is that HAMCRA uses the information obtained by
TAMCRA and only stores predicted end-to-end lengths in the queue, instead of the
real lengths of the sub-paths. The predicted end-to-end length is found by summing
the real weights of a path from source s to the intermediate node u with the weights of
the TAMCRA path from u to the destination t. The algorithm continues searching in
this way until a feasible path from s to t is found or until the queue is empty.
HAMCRA also uses the look-ahead technique discussed in Section 4.4 to reduce the

search space. However, the difference with SAMCRA is that HAMCRA uses TAM-
CRA instead of the lower-bounds for its predictions. Such a prediction (if erroneous)
could be larger than the real end-to-end path length. Ergo, HAMCRA may extract a
non-shortest path first. Consequently, HAMCRA using TAMCRA cannot guarantee an

5.4. SPECIAL (NON-MCP) QOS ALGORITHMS 87

exact solution to the MCOP problem. If lpredicted(P) ≤ lactual(P), as is the case with
lower-bound predictions, a solution to MCOP can be guaranteed. Unfortunately, sim-
ulations have shown that such lower-bound predictions are usually not as good as the
TAMCRA predictions, leading to an increased running time [102]. The hybrid combi-
nation of SAMCRA and TAMCRA, on the other hand, seems “a winning combination”
for the MCP problem.

5.3.3 A*Prune

Liu and Ramakrishnan [109] considered the problem of finding not only one but multiple
(K) shortest paths satisfying the constraints. The length function used is the same as
Jaffe’s length function. The authors proposed an exact algorithm called A*Prune. If
there are no K feasible paths present, the algorithm will only return those that are
within the constraints. For the simulations K was assigned the value 1.
For each QoS measure, A*Prune first calculates the shortest paths from the source

s to all nodes i ∈ V \{s} and from the destination t to all nodes i ∈ V \{t}. The
weights of these paths will be used to evaluate whether a certain sub-path can indeed
become a feasible path (similar look-ahead features were also used in [97]). After this
initialization phase, the algorithm proceeds in a Dijkstra-like fashion. The node with
the shortest predicted end-to-end length2 is extracted from a heap and then all of its
neighbors are examined. The neighbors that form a loop or lead to a violation of the
constraints are pruned. The A*Prune algorithm continues extracting/pruning nodes
until K constrained shortest paths from s to t are found or until the heap is empty.
The A*Prune algorithm is therefore similar to the SAMCRA algorithm, except that

the principle of non-dominance is not used and an other length function is adopted. The
worst-case complexity of A*Prune is O(N !(m + h+N logN)), where h is the number
of hops of the retrieved path. The authors [109] have mentioned that it is possible to
implement a Bounded A*Prune algorithm with a polynomial-time complexity, at the
risk of loosing exactness.

5.4 Special (non-MCP) QoS algorithms

Several proposals in the literature have aimed at addressing special, yet important,
sub-problems in QoS routing. For example, researchers addressed QoS routing in the
context of bandwidth and delay. Routing with these two measures is not NP-complete.
Wang and Crowcroft [171] presented a bandwidth-delay based routing algorithm, which
simply prunes all links that do not satisfy the bandwidth constraint and then finds the
shortest path with respect to delay in the pruned graph. A much researched problem

2The length function is a linear function of all measures. If there are multiple sub-paths with equal
predicted end-to-end lengths, the one with the so-far shortest length is chosen.

88 CHAPTER 5. OVERVIEW OF QOS ALGORITHMS

is the NP-complete Restricted Shortest Path (RSP) problem (see Section 1.4). In the
literature, the RSP problem is also studied under different names such as the delay-
constrained least-cost path, minimum-cost restricted-time path, and constrained short-
est path. Many heuristics were proposed for this problem, e.g., [73], [138], [90], [67].
Several path selection algorithms based on different combinations of bandwidth, delay,
and hop count were discussed in [125] (for example widest-shortest path and shortest-
widest path). In addition, new algorithms were proposed to find more than one feasible
path with respect to bandwidth and delay (for instance Maximally Disjoint Shortest
andWidest Paths) [156]. Kodialam and Lakshman [94] proposed bandwidth guaranteed
dynamic routing algorithms. Orda and Sprintson [126] considered the pre-computation
of paths with minimum hop count, and bandwidth guarantees. They also provided
some approximation algorithms that take into account certain constraints during the
pre-computation. Guerin and Orda [62] focused on the impact of advance reservation
on the path selection process. They described possible extensions to path selection
algorithms in order to make them advance-reservation aware and evaluated the added
complexity introduced by these extensions. Fortz and Thorup [52] investigated how to
set link weights based on previous measurements so that the shortest paths can provide
better load balancing and can meet the desired QoS constraints. The path selection
problem becomes simpler when dependencies exist between the QoS measures, for ex-
ample as a result of implementing specific scheduling schemes at network routers [113].
Specifically, if Weighted Fair Queueing (WFQ) scheduling is employed at the routers,
and the constraints are on bandwidth, queueing delay, jitter, and loss, then the problem
can be reduced to a standard shortest path problem by representing all the constraints
in terms of bandwidth. However, although queueing delay can be formulated as a
function of bandwidth, this is not the case for the propagation delay, which cannot be
ignored in high-speed networks.

5.5 Performance evaluation

In this section we will evaluate MCP algorithms via simulations and complexity analysis.

5.5.1 Simulation set-up

We have simulated with Waxman graphs and lattices. The weights of a link were
assigned independent uniformly distributed random variables in the range (0, 1]. We
also simulated with two negatively correlated QoS measures, for which the link weights
were assigned as follows: w1 was uniformly distributed in the range (0, 1] and w2 =
1− w1.
The choice of the constraints is important, because it determines how many (if

any) feasible paths exist. We adopted two sets of constraints, namely strict and loose

5.5. PERFORMANCE EVALUATION 89

constraints. We have omitted the results for loose constraints, because under loose
constraints all MCP algorithms obtained a (near) optimal success rate in a low execution
time. For MCOP algorithms, loose constraints increase the number of feasible paths and
hence the search space. This makes it difficult to find the optimal path. Fortunately,
MCOP algorithms can be easily adapted to solve only MCP, by stopping as soon as a
feasible path is reached. The set of strict constraints was chosen as follows:

Li = wi(P), i = 1, ...,m

where P is the path for which maxj=1,...m (wj(P)) is minimum. In this case only one
feasible path is present in the graph and hence MCP equals MCOP. This allows us to
fairly compare MCP and MCOP algorithms.
During all simulations, the success rate and the normalized execution time were

stored. The success rate of an algorithm is defined as the number of times that an
algorithm returned a feasible path divided by the total number of iterations. The nor-
malized execution time of an algorithm is defined as the execution time of the algorithm
(over all iterations) divided by the execution time of Dijkstra’s algorithm.

5.5.2 Simulation results

Our simulations revealed that the �-approximation algorithms and the Bellman-Ford-
based algorithms (Chen’s algorithm and the Limited Path Heuristic) required signifi-
cantly more execution time than their Dijkstra-based counterparts. These algorithms
have therefore been omitted from the results presented here.
Figure 5.2 gives the success rate and normalized execution time for the class of Wax-

man graphs and lattices, with m = 2. The exact algorithms SAMCRA and A*Prune
always give success rate = 1. The difference in the success rate of the heuristics under
strict constraints is significant. Jaffe’s algorithm and Iwata’s algorithm perform signif-
icantly worse than the others. In the class of two-dimensional lattices with negatively
correlated weights this difference disappears as the success rates of all heuristics tend
to zero as N increases, even for fairly small N .
Figure 5.2 also displays the normalized execution time that the algorithms needed

to obtain the corresponding success rate. For the class of Waxman graphs (with inde-
pendent link weights), the execution time of the exact algorithm SAMCRA does not
deviate much from the polynomial time heuristics. In fact, all algorithms display a
polynomial execution time. For the class of lattices (with negatively correlated link
weights), the execution times of the exact algorithms grow exponentially, which is the
price paid for exactness in hard topologies.
We have also simulated the performance of the algorithms as a function of the

number of constraints m (m = 2, 4, 6, and 8) under independent uniformly distributed
link weights. The results for the class of Waxman graphs (N = 100) and lattices

90 CHAPTER 5. OVERVIEW OF QOS ALGORITHMS

N

0 100 200 300 400

S
uc

ce
ss

 ra
te

0.0

0.2

0.4

0.6

0.8

1.0

SAMCRA/A*Prune
Jaffe
Iwata
H_MCOP
Rand
TAMCRA

N

0 100 200 300 400

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

SAMCRA
Jaffe
Iwata
H_MCOP
Rand
A*Prune
TAMCRA

N

5 10 15 20 25 30 35 40

S
uc

ce
ss

 ra
te

0.0

0.2

0.4

0.6

0.8

1.0

SAMCRA/A*Prune
Jaffe
Iwata
H_MCOP
Rand
TAMCRA

N

10 15 20 25 30 35

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

0

2

4

6

8

10

12

14

16

SAMCRA
Jaffe
Iwata
H_MCOP
Rand
A*Prune
TAMCRA

Figure 5.2: For m = 2 and under strict constraints, the success rate (left) and normal-
ized execution time (right) for the class of Waxman graphs (above) and lattices (below)
as a function of the number of nodes.

(N = 49) are plotted in Figure 5.3. The algorithms display a similar ranking in success
rate as in Figure 5.2. Some algorithms display a linear increase in execution time.
All these algorithms have an initialization phase in which they execute the Dijkstra
algorithm m times. Finally, if m grows, A*Prune slightly outperforms SAMCRA. This
can be attributed to the non-dominance principle, which looses in strength if m grows.
However, the time needed to check for non-dominance (under independent weights) is
only manifested in a small difference between the execution times of SAMCRA and
A*Prune.

5.5. PERFORMANCE EVALUATION 91

5.5.3 Simulation conclusions

The conclusions presented here are only valid for the considered classes of graphs,
namely the Waxman graphs and the square lattices. The simulation results indicated
that SAMCRA-like algorithms performed best at an acceptable computational cost,
which can be attributed to the following features, which were discussed in Chapter 4:

1. Dijkstra-based search
Our simulations indicated that, even on sparse graphs, Dijkstra-like search runs
significantly faster than a Bellman-Ford-like search.

2. A non-linear length function
A non-linear length function is a prerequisite for exactness. When the link weights
are positively correlated, a linear approach may give a high success rate in finding
feasible paths, but under different circumstances the returned path may signifi-
cantly violate the constraints.

3. Search space reduction
Reducing the search space is always desirable, because this reduces the execution
time of an algorithm. The non-dominance principle is a very strong search-space-
reducing technique, especially when the number of constraints m is small. When
m grows the look-ahead concept together with the constraint values provide a
better search space reduction.

4. Tunable accuracy through a k-shortest path functionality
Routing with multiple constraints may require that multiple paths be stored at a
node, necessitating a k-shortest path approach. By tuning the value of k, a good
balance between success rate and computational complexity may be reached.

5. Look-ahead functionality
The look-ahead concept is based on information from path trees rooted at the
destination, which are computed in polynomial time. These path trees are used
to reduce the search space and to facilitate the search for a feasible path. In the
latter functionality a predicted end-to-end path length may lead the search sooner
in the correct direction, thereby saving in execution time.

The exactness of the TAMCRA-like algorithms depends on the value of k. If k is
not restricted, then both MCP and MCOP problems can be solved exactly, as done by
SAMCRA. Although k is not restricted in SAMCRA, simulations on Waxman graphs
with independent uniformly distributed random link weights show that the execution
time of this exact algorithm increases only linearly with the number of nodes, pro-
viding a scalable solution to the MC(O)P problem. Simulation results also show that
TAMCRA-like heuristics with small values of k render near-exact solutions. The results

92 CHAPTER 5. OVERVIEW OF QOS ALGORITHMS

for the class of two-dimensional lattices with negatively correlated link weights are com-
pletely different. In such hard topologies, the heuristics are useless whereas the exact
algorithms display an exponential execution time. Perhaps the best approach for such
(unrealistic) graphs is via a hybrid algorithm (like HAMCRA [102]) that uses a good
heuristic to make intelligent choices on which path to follow, combined with an exact
SAMCRA-like algorithm that incorporates all the four above-mentioned concepts. If a
solution to MCP suffices, then this algorithm should be stopped as soon as a feasible
path is encountered. In Chapter 8 we will argue that the probability of encountering
hard topologies is very low in practice.

5.6 Conclusions

Several researchers have investigated the constraint-based path selection problem and
have proposed various algorithms, mostly heuristics. This chapter has evaluated these
algorithms as proposed for the multi-constrained (optimal) path problem, via simula-
tions in the class of Waxman graphs and the much harder class of two-dimensional
lattices. Tables 5.1 and 5.2 display the worst-case complexities of the algorithms eval-
uated in this chapter.

Algorithm time complexity
Jaffe’s algorithm O(N logN +mM)
Iwata’s algorithm O(mN logN +mM)
SAMCRA, TAMCRA O(kN log(kN) + k2mM)
EBF O(x2 · · · xmNM)
Randomized algorithm O(mN logN +mM)
H_MCOP O(N logN +mM)
A*Prune O(N !(m+N +N logN))

Table 5.1: Worst-case time complexity of the considered QoS path selection algorithms.

The simulation results show that the worst-case complexities of Tables 5.1 and 5.2
should be interpreted with care. For instance, the real execution time of H_MCOP
will always be longer than that of Jaffe’s algorithm under the same conditions, since
H_MCOP executes the Dijkstra algorithm twice compared to one time for Jaffe’s algo-
rithm. In general, the simulation results indicate that SAMCRA-like algorithms that
use a k-shortest path algorithm with a non-linear length function, while eliminating
paths via the non-dominance and look-ahead concepts, give the better performance
for the considered problems (RSP [99], MCP, MCOP). The performance and complex-
ity of these algorithms is easily adjusted by controlling the value of k. When k is
not restricted, the SAMCRA-like algorithms lead to exact solutions. In the class of

5.6. CONCLUSIONS 93

Algorithm space complexity
Jaffe’s algorithm O(N)
Iwata’s algorithm O(N)
SAMCRA, TAMCRA O(kmN)
EBF O(x2 · · · xmN)
Randomized algorithm O(mN)
H_MCOP O(mN)
A*Prune O(mN !)

Table 5.2: Worst-case space complexity of the considered QoS path selection algorithms.

Waxman or random graphs with uniformly distributed link weights, simulation results
suggest that the execution times of such exact algorithms increase linearly with the
number of nodes. The exponential increase in execution time is only observed in the
class of two-dimensional lattices. Heuristics perform poorly in such topologies, whereas
exactness comes at a high price in complexity. In our simulations the polynomial-time �-
approximation schemes displayed an extensive execution time and were therefore omit-
ted from the plots. More research is necessary to indicate whether these algorithms
might provide a good alternative for exact algorithms in large and hard topologies.

94 CHAPTER 5. OVERVIEW OF QOS ALGORITHMS

m

1 2 3 4 5 6 7 8 9

S
uc

ce
ss

 ra
te

0.0

0.2

0.4

0.6

0.8

1.0

SAMCRA/A*Prune
Jaffe
Iwata
H_MCOP
Rand
TAMCRA

m

1 2 3 4 5 6 7 8 9

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

0

2

4

6

8

10

SAMCRA
Jaffe
Iwata
H_MCOP
Rand
A*Prune
TAMCRA

m

1 2 3 4 5 6 7 8 9

S
uc

ce
ss

 ra
te

0.0

0.2

0.4

0.6

0.8

1.0 SAMCRA/A*Prune
Jaffe
Iwata
H_MCOP
Rand
TAMCRA

m

1 2 3 4 5 6 7 8 9

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

1

2

3

4

5

6

7

8

9

SAMCRA
Jaffe
Iwata
H_MCOP
Rand
A*Prune
TAMCRA

Figure 5.3: The success rate and normalized execution time as a function of m, under
strict constraints. The results above are for Waxman graphs, with N = 100 and below
for the lattices withN = 49. In both classes of graphs the link weights were independent
uniformly distributed random variables.

Chapter 6

Multicast QoS routing

In the previous chapters we have explicated unicast QoS routing, in which the goal is
to find a path between a source and one destination, subject to multiple constraints.
Although unicast QoS routing is the prime focus of this thesis, we will devote this
chapter to multicast QoS routing. The main problem considered is that of routing
from a single source node to a set of p destination nodes, also called multicast source
routing or point-to-multipoint routing. The advances in technology and the fast emerg-
ing multimedia applications have provided great impetus for new (real-time) multicast
applications. A frequently encountered example of a real-time multicast application is
video-conferencing. Video-conferencing, as a good representative of the class of real-
time multicast applications, requires sufficient bandwidth and, in addition, limits on
the maximum delay, jitter and (packet) loss. These requirements, which are considered
the same for all members, are referred to as QoS constraints. Many multicast applica-
tions will not operate properly if QoS cannot be guaranteed. Hence, future multicast
algorithms must be capable of satisfying a set of QoS-constraints. To the best of our
knowledge, we [101] were the first to investigate the general problem of multicast QoS
routing, with m ≥ 2 constraints.
A main property of multicast routing is the efficient use of resources [165]. Because

each of the p destination nodes will receive the same information, unicast (sending the
information p times over each shortest path to each individual multicast participant) is
inefficient since, most likely, there will be some overlap among the set of shortest paths.
Multicasting as few duplicate packets as possible and only duplicating them if necessary
clearly is more efficient. For the case of a single measure, multicast source routing can
be implemented by forwarding the packet of a flow or session over the shortest path tree.
The more general problem of multipoint-to-multipoint leads to the minimum Steiner
tree problem [80].
The main contributions of this chapter are arranged as follows. Section 6.1 will give

a formal definition of the main problems of multicast routing with multiple constraints.
Since all previous research on multicast routing focuses on finding a multicast tree [143]

95

96 CHAPTER 6. MULTICAST QOS ROUTING

and often only considers a fixed number of constraints (for instance only delay and jitter
in [141]), Section 6.2 shall discuss multi-constrained multicast trees. In this section,
we will demonstrate that finding a tree subject to multiple constraints is not always
possible. In Section 6.3 SAMCRA is extended to a multicast QoS algorithm called
MAMCRA: Multicast Adaptive Multiple Constraints Routing Algorithm. MAMCRA
finds the set of shortest paths to all destinations and then reduces the consumption
of resources without violating the QoS constraints. Section 6.4 gives a discussion on
multicast routing and poses some suggestions. Section 6.5 gives a small performance
evaluation of MAMCRA, after which Section 6.6 concludes this chapter.

6.1 Problem definition

A communication network is modeled as an undirected graph G = (V,E), where V is
the set of nodes and E is the set of links. Each link is characterized by a link weight
vector �w consisting of m components wi, for i = 1, . . . ,m. We presume that the full
network topology is known at a certain time interval and regard the topology measures
as frozen. The m QoS-constraints Li, for i = 1, . . . ,m are represented by the constraint
vector �L. Since all participants receive the same multicast application emitted by the
source, the constraint vector �L is the confining vector for all multicast members of the
group.
A multicast sub-graph GM = (VM , EM) ⊆ (V,E) has p < N multicast destina-

tion nodes (multicast group members or participants) represented by the set D =
{d1, . . . , dp}. Each of these destination nodes is connected to the source node s, by the
links in EM ⊆ E. As will be exemplified below, GM is best regarded as a set of paths
from s to dj, j = 1, .., p, which use the links in EM .

Problem 34 Multiple Constrained Multicast (MCM): Given s and D, find GM such
that for each path P (s, dj) from s to dj ∈ D, j = 1, . . . , p:

wi(P (s, dj)) ≤ Li, for i = 1, . . . ,m

where �w(P) is the vector sum of the links that constitute P :

wi(P) =
X
e∈P

wi(e), for i = 1, . . . ,m

Note that if for a certain dj ∈ D no feasible path exists, dj should be removed from
D.
Define �w(GM) =

P
1≤i≤|EM | �w(ei ∈ EM) and l(GM) as the length (or vector norm)

of �w(GM). The length l(GM) can be any function f(�w(GM)) on the weight vector of
GM that returns a real number, provided that f(.) is a vector norm (see Section 4.1).

6.2. PROPERTIES OF MULTICAST QOS ROUTING 97

Throughout this chapter we consider l(GM) = maxi=1,...,m
³
wi(GM)

Li

´
, which has been

motivated in Section 4.1.

Problem 35 Multiple Parameter Steiner Tree (MPST): For s and D given, find GM

for which l(GM) is minimum.

Problem 36 Multiple Constrained Minimum Weight Multicast (MCMWM): For s and
D given, find GM such that for each path P (s, dj) from s to dj ∈ D, j = 1, . . . , p:

wi(P (s, dj)) ≤ Li, for i = 1, . . . ,m

and

l(M) is minimum

Problem 36 is a combination of problems 34 and 35. Section 6.4 will further in-
vestigate these three problems. Solving the first problem results in satisfying the QoS
constraints. The second problem minimizes the total resource consumption and the
third optimizes the resources subject to the QoS constraints. Clearly, the last of the
three problems is the most desirable objective for QoS multicast routing.

6.2 Properties of multicast QoS routing

In this section first, problems MCM, MPST and MCMWM are shown to be NP-
complete. Subsequently, the MCM and MPST problems are demonstrated to lead
to potentially non-compatible solutions.

Theorem 37 MCM, MPST and MCMWM are NP-complete.

Proof. MCMWM is a combination of MCM with MPST. Consequently, by proving
that MCM is NP-complete, we will also have proved that MCMWM is NP-complete.
Let us first consider MCM. For p = 1 this problem reduces to unicast QoS-routing,
which is proved to be NP-complete for m ≥ 2 additive parameters ([57], [171]). For
m = 1, MPST reduces to the minimum Steiner tree problem, which is known to be
NP-complete ([93]).
We focus on solving the MCMWM problem, which can be considered the hardest

of the three problems, since it incorporates two NP-complete problems.

Lemma 38 The solution to the MPST problem does not necessarily obey the constraints
for all multicast members, even if there exist feasible paths towards these members.

98 CHAPTER 6. MULTICAST QOS ROUTING

i

s d2

d1

10
10

5
6

3
4

1
2

Figure 6.1: Example topology.

Proof. It suffices to prove this lemma by providing an example. Consider the topology
in Figure 6.1. Here s is the source node, i is some intermediate node, and d1 and
d2 are the two destination nodes participating in the multicast session. The MPST
connecting s, d1, d2 is the tree s−i−d1−d2 with a total weight vector of (1, 2)+(3, 4)+
(5, 6) = (9, 12). If the constraints were (13, 13), then this would be the best solution
to the MCMWM problem, since all the QoS constraints are met with a minimum
consumption of resources. However, if the constraints are more stringent, say (11, 11)
then the path from s to d2 exceeds these constraints. In this case the multicast tree
[(s− i− d1), (s− d2)] obeys the requested constraints. This tree has a weight vector of
(1, 2) + (3, 4) + (10, 10) = (14, 16) and is the second shortest MPST.
We have proved that the MPST, although optimal in terms of resource utilization,

does not always satisfy the constraints. Since in the example topology of Figure 6.1
the second shortest MPST was the best solution, this may suggest that considering
k-shortest MPSTs will lead to the optimal solution for MCMWM. Again, this is not
always the case. In order to guarantee QoS, the concept of trees in multiple dimensions
cannot be maintained. Only for a single measure, the MCMWM solution is a tree. If
the solution to MCMWM would have always been a tree, then k-shortest MPST would
have given the exact solution.

Lemma 39 The solutions to the MCM and MCMWM problems are not necessarily
trees.

Proof. Again, this lemma is proved via an example. The MPST for the topology in
Figure 6.2 consists of the links (s, a), (a, c), (c, d1) and (c, d2) and has a total weight
(vector) of (1, 5)+(1, 6)+(1, 8)+(10, 2) = (13, 21). The path weight vector for the path
from s to d1 is (3, 19) and for s to d2 is (12, 13). The second shortest MPST consists of
links (s, b), (b, c), (c, d1), (c, d2) and has weight vector (7, 2) + (7, 3) + (1, 8) + (10, 2) =

6.2. PROPERTIES OF MULTICAST QOS ROUTING 99

 1
5

c

d1

d2

a

b

s

1
6

1
8

7
2

7
3

10
2

Figure 6.2: Example topology.

(25, 15). The path weight vector is (15, 13) between s and d1 and (24, 7) between s and
d2. In this example, no other non-dominated trees connecting s, d1, d2 exist, i.e. none
of the components of the weight vectors of the remaining (two) trees connecting s, d1,
d2 are smaller than those of the given weight vectors. Therefore, if the above-mentioned
trees do not satisfy the constraints, then no tree can satisfy those constraints. If the
constraints are (16, 16) then no tree can provide the requested QoS. The only way to
obey these constraints is by means of two paths: s− b− c− d1 and s− a− c− d2. In
that case the multicast sub-graph GM is not a tree.

Lemma 40 The solution to MPST is always a tree.

Proof. If the solution GM to MPST is not a tree, then it must contain a cycle as
depicted in Figure 6.3. The length of the solution GM equals l(GM) and according to
problem definition 35, l(GM) must be minimum, i.e.: l(GM) ≤ l(G0

M), ∀G0
M .

Without loss of generality, assume that GM only contains the cycle depicted in Figure
6.3. Further define G0

M = GM\{P2}, i.e. G0
M is a tree. Since all weights are positive:

l(GM) = l
³P

e∈EM\{P1,P2} �w(e) + �w(P1) + �w(P2)
´

≥ l
³P

e∈EM\{P1,P2} �w(e) + �w(P1)
´
= l(G0

M).

This leads to a contradiction, because according to problem definition 35, l(GM) ≤
l(G0

M). Therefore, the sub-graph GM (containing the cycle) cannot be a solution to the
MPST problem.
We will use SAMCRA (see Section 4.6) as a basis for our multicast QoS routing algo-

rithm. Provided a suitable length is chosen, SAMCRA applies to numerous constraint
and/or optimization problems. MAMCRA, the multicast version of SAMCRA, can
therefore also be used for different types of constrained-based (optimization) problems.

100 CHAPTER 6. MULTICAST QOS ROUTING

 P1

P2

a b

Figure 6.3: A cycle formed by the paths (“branches”) P1 and P2.

6.3 MAMCRA

This section presents the algorithm MAMCRA, the Multicast Adaptive Multiple Con-
straints Routing Algorithm. MAMCRA solves the MCM problem exactly and ap-
proximates problem MCMWM in the sense that is does not always find the multicast
sub-graph GM with minimum weight (= minimum resource consumption). Although
MAMCRAwas not designed to solve problemMPST, it may also be considered a heuris-
tic to this problem. The quality of MAMCRA, with respect to problem MCMWM, can
be improved at the expense of QoS. The use of MAMCRA in this respect can therefore
be considered vendor-specific.
MAMCRA operates as follows:

A First, the set S of shortest paths from s to all p multicast members is calculated via
the SAMCRA algorithm.

B Next, the multicast subgraph GM is optimized, i.e., l(GM) is reduced without vio-
lating the constraints

Step A in the basic MAMCRA operation is readily obtained since it only requires
a small modification to SAMCRA. SAMCRA’s stop condition is altered, so that it
only stops if all destinations (within the constraints) have been reached. Because p
destinations are present, also p different lower-bound vectors may exist per node. The
look-ahead concept must use themminimum components of these vectors and therefore
reduces in strength. For simplicity we have therefore chosen to omit the look-ahead
concept in this chapter. Since S(M)AMCRA operates in a Dijkstra-like manner, during
the computation of the set of shortest paths to the multicast members, also shortest

6.3. MAMCRA 101

paths to other destinations may be found. One may choose to also include these paths
in the set S. Then, if one of these destinations decides to join the multicast session, a
compliant path is already present.
When removing the overlap of paths, the set S, which forms GM , may lead to a

tree, but this tree may not be optimal in terms of resource consumption. For instance,
consider the example topology of Figure 6.1, with the constraints (13, 13). The set
S consists of the paths s − i − d1 and s − d2, which form a tree. The tree s − i −
d1 − d2, however, also obeys the constraints and is more efficient in terms of resource
consumption.
Step A is easily completed and provides us with a solution to MCM. Merely the over-

lap in the set S needs to be removed, so that duplicate packets are only generated when
necessary. The elimination of overlap (including the check on min/max constraints)
will be addressed below and in Section 6.4.
Step B requires some more effort. Some additional terminology is needed. We

define the concatenation of two paths P and Q by PQ, i.e. PQ is the path generated
by appending path Q to path P . Note that �w(PQ) = �w(P) + �w(Q).
The symbol ≤drefers to non-dominance, i.e. �w(P) ≤d �w(Q) means that path Q is

dominated by path P .
Consider two paths P1(s, d1) and P2(s, d2) that form a cycle, i.e. both paths have

two nodes in common. The first node in common is the source node and the other is
node x ∈ V \{s, d1, d2}. If the two paths have more than two nodes in common, we
have a concatenation of cycles with x the (common) node that is most hops away from
s.

Property 41 If �w(P2(s, d2)) − �w(P2(s, x)) + �w(P1(s, x)) ≤d
�L, then P2(s, d2) may be

rerouted to P1(s, x)P2(x, d2) without violating the constraints.

Proof. Let Pold = P2(s, d2) and Pnew = P1(s, x)P2(x, d2), with �w(Pold) ≤d
�L

If

�w(Pold)− �w(P2(s, x)) + �w(P1(s, x)) ≤d
�L

and the fact that

�w(Pold)− �w(P2(s, x)) = �w(P2(x, d2))

then

�w(P2(x, d2)) + �w(P1(s, x)) = �w(Pnew) ≤d
�L

Property 41 shows that removing cycles, optimizes the total weight vector, since:
�w(P1(s, d1)) + �w(P2(x, d2)) ≤d �w(P1(s, d1)) + �w(P2(s, d2))

102 CHAPTER 6. MULTICAST QOS ROUTING

For example consider Figure 6.2, where P1(s, d1) = s − b − c − d1 and P2(s, d2) =
s − a − c − d2. The total weight vector of these two paths is (27, 26). Assuming that
property 41 is obeyed, rerouting P2(s, d2) to P1(s, x)P2(x, d2) leads to a reduction of
the total weight vector to (25, 15).

Property 42 Given a path P (s, t) from s to t within the constraints that uses the
sub-path P (s, a), then P (s, a) also lies within the constraints (but is not necessarily the
shortest path from s to intermediate node a).

Property 42 follows from the basic property of a non-linear length in multiple dimen-
sions, namely that sub-paths of shortest paths in multiple dimensions are not necessarily
shortest paths.
Part A of MAMCRA’s meta-code consisted of a small modification of the SAMCRA

algorithm. Based on properties 41 and 42 we can now present part B more detailed:

1. If S 6= ∅ : add the path with most members (dj) to GM . (If there are more
maximum member paths available, choose the one with smallest length).

2. Else return GM .

3. If the newly added path forms a cycle in GM , try to optimize GM by means of
property 41.

4. Check if the new path does not violate the min/max constraints.

5. Remove from S all paths to nodes that are already visited by GM (property 42).

6. Go to 1.

s x1 x2 xi

Figure 6.4: Concatenation of cycles.

In part B of MAMCRA, by sequentially adding and optimizing paths, the set S of
shortest paths found in part A is lowered in order to obtain a multicast sub-graph GM

that uses as few links from S as possible. In step 1, if the set S is not empty, this
means that at least one member is not part of GM yet. If there are multiple paths
in S left, the one that traverses most members is chosen. In case there are multiple

6.3. MAMCRA 103

paths with the largest number of members, the path with smallest length is chosen. The
selected path is added to GM . In step 2, the newly added path may form multiple cycles
(< N) as depicted in Figure 6.4. In that case, MAMCRA first tries to optimize for all
cycles, by considering them as being one large cycle1 s → xi → s, where i equals the
number of cycles. If this is not possible, the procedure is repeated without examining
the last cycle, i.e. s→ xi−1 → s. When a cycle cannot be removed/optimized without
violating the constraints, this means that some overlap may be introduced that cannot
be removed, i.e. GM is not a tree and therefore some link(s) may see duplicate packets.
When considering a min/max constraint on bandwidth, this means that the link has to
be able to provide more bandwidth than the bandwidth consumption of the source, i.e.
the capacity of the link must be equal or larger than r times the bandwidth constraint,
where r equals the number of replicated packets on the link. Therefore, if a tree cannot
be formed, an additional check on the min/max constraints is required. This check is
made in step 3. This procedure is repeated until S is empty, which means that GM

contains all feasible members.
The worst-case complexity of MAMCRA is O(kN log(kN)+k2mM) for part A and

O(Np2) for part B.
An example of the operation of MAMCRA will further illustrate these steps.

b

s

1
5

d2

d1

e c

a 1
6

 1

1

1
8

7
2

7
3

9
1

Figure 6.5: Example topology.

The steps taken by MAMCRA in part A, given the topology of Figure 6.5, are put in
Table 6.1. During initialization, the source node is set to (0, 0). In the next step s scans
its neighbors and finds paths to a and b, with path vectors respectively (1, 5) and (7, 2).
We also keep track of the previous node. If we use the length function (4.3), vector (1, 5)
is the smallest entry and therefore a is extracted next and the scanning procedure is

1Since the weight vector of a concatenation of cycles equals the sum of the individual weight vectors
of those cycles, this assumption is justified, with only a slight abuse of the definition of a cycle.

104 CHAPTER 6. MULTICAST QOS ROUTING

s a b c e d1 d2
0 (0, 0)
1 s(1, 5) s(7, 2)
2 a(2, 11)
3 b(14, 5)
4 c(3, 12)
5 e(4, 20) e(12, 13)
6 d2
7 c(15, 6)
8 e(16, 14) e(24, 7)
9 d1

Table 6.1: Activity table of MAMCRA when executed on the topology in Figure 6.5.

repeated. This process of extracting and scanning is continued until both destinations
have been extracted once (i.e., a shortest path has been found). By back-tracing the
paths from d1, d2 to s we receive the set S = {(s− b− c− e− d1), (s− a− c− e− d2)}.
So far, the constraints have not yet been taken into account. (This is an exception,

used solely to simplify this example and because we choose the constraints identical
this does not alter the true operation. Normally, part A also includes the constraints).
Now we optimize S (part B) to gain GM , using two scenarios. First given the

constraints (20, 20):

1. We add (s− a− c− e− d2) to GM , because this path is shortest in length where
all paths have the same amount of members (only one).

2. No cycle was formed, so we add (s− b− c− e− d1) to GM .

3. (s− b− c− e− d1) creates a cycle (s− a− c− b− s) in GM . When property 41 is
applied, we see that �w(s− b− c− e−d1)− �w(s− b− c)+ �w(s−a− c) = (16, 14)−
(14, 5) + (2, 11) = (4, 20) ≤d (20, 20). We therefore reroute (s− b− c− e− d1) to
(s− a− c− e− d1).

The result is GM = {(s− a− c− e− d1), (s− a− c− e− d2)}, which can be written
as a tree GM = {(s− a− c− e), (e− d1), (e− d2)} if we remove the overlap.
If the constraints are (16, 16), we cannot optimize S and therefore S = GM =

{(s− a− c− e− d2), (s− b− c− e− d1)}.
Part B constructs the multicast sub-graph by sequentially adding paths. This ap-

proach allows MAMCRA to add new members to an existing “tree.” Part A first cal-
culates the paths to the new members, after which part B sequentially and efficiently

6.4. DISCUSSION OF MULTICAST QOS ROUTING 105

adds them to the existing sub-graph. However, re-computing the entire multicast sub-
graph is hardly more intensive and may therefore be preferred. The choice of how to
add/remove members is part of the QoS multicast protocol.

6.4 Discussion of multicast QoS routing

6.4.1 Tuning MAMCRA

MAMCRA gives an efficient, but not always optimal, solution to MCMWM. It is pos-
sible to further optimize MAMCRA by considering not only the shortest paths to dj
(j = 1, . . . , p), but by storing all krequested-shortest paths (within the constraints) from
s to dj in S. The cost of optimizing MAMCRA in this way lies in complexity (running
time). Each node now has a queue-size krequested ≤ k ≤ kmax. Although this approach
does not alter the worst-case complexity of part A (after all, MAMCRA already works
with k-shortest paths, the only difference now is that we examine at least krequested
shortest paths instead of as few as possible), it will have an effect on the running time,
which will increase proportional to k2. The worst-case complexity of part B becomes
O(kNp2). However, the larger we choose k, the higher the probability of finding the
exact solution to MCMWM. Therefore k is considered to be a tuning parameter. Note
that since part B is heuristic, this approach will never be able to guarantee that the
exact solution to MCMWM is always found. As mentioned previously, we have cho-
sen in this chapter to solve the MCMWM problem with MAMCRA. If other problems
are considered more relevant, MAMCRA should be adapted accordingly to solve such
problems. For instance, if the problem is to find a tree that guarantees QoS to all (or if
this is not possible, to a subset) of the multicast members, then part B of MAMCRA
should always remove cycles.

6.4.2 QoS negotiation

Guaranteeing QoS and optimizing resource utilization can be two conflicting interests.
Depending on the wishes of the client (multicast member), a trade-off can be made
between QoS and resource utilization. This trade-off will be based on monetary cost,
since guaranteeing a high level of QoS will inflict a large consumption of resources, which
has to be paid for. It is not likely that all members are willing to pay the same price. It
would therefore be beneficial if some sort of negotiation between QoS and price could
take place. For instance, MAMCRA (in step A) computes the set of shortest paths
based on the maximum allowable constraints (�Lmax). In the optimization phase, the
different wishes (�Ldj ≤d

�Lmax) of the members can be taken into account. For instance,
if a certain level of QoS (within the �Lmax constraints) has a high price and another
slightly worse level of QoS (also within the �Lmax constraints) has a lower price, the

106 CHAPTER 6. MULTICAST QOS ROUTING

client may negotiate his requested level of QoS. MAMCRA only examines the solutions
within the constraints and hence we can apply any length-function, provided it obeys
the criteria for length (see Section 4.1). Because price is often considered the most
important parameter to minimize, we can take l(P) = wi(P), where wi corresponds to
the price measure (see Section 4.1).

6.4.3 QoS multicast protocol

In the first scenario of our example (Figure 6.5), both paths use s − a − c − e and
a packet needs only to be sent once over this sub-path, after which it is duplicated
at node e and sent to d1 and d2. In the second scenario the paths have an overlap
on c − e. Since the packets at the source are duplicated and forwarded to a and b,
duplicate packets arrive at node c. These duplicate packets have traveled different
paths towards c and have different weights. A packet may arrive later at c than its
duplicate counterpart, but its price/loss/jitter may be less. Since the paths from c to
the destinations also have different weights, both packets must be kept. Only allowing
one packet on link c − e would result in a violation of the constraints at one of the
destinations. As argued earlier, in case of overlap, we should check if the min/max
constraints are still guaranteed or perhaps renegotiate the constraints. The task of
efficiently forwarding/replicating packets is part of the multicast protocol in use and not
of MAMCRA. Several traditional multicast protocols exist, like DVMRP [168], MOSPF
[119] and PIM [46]. These protocols were designed for best-effort traffic. The protocols
in [23], [47] and [28] are better suited for delivering QoS. However, these and other
protocols only consider multicast trees. MAMCRA, if allowing non-trees, therefore
either requires a new or modified multicast protocol. This protocol has to cope with
different dynamics, e.g. network dynamics or the joining/leaving of multicast members.
It must ensure stability of the multicast “tree,” but it must also (efficiently) guarantee
QoS, which may be conflicting targets. Since providing QoS is the goal, also some type
of resource reservation is desirable.
It has been a goal of this chapter to address the difficulties in providing guaran-

teed multicast QoS. We have seen that the constraints, imposed by guaranteed QoS,
introduce numerous difficulties mainly related to the possible overlap (caused by the
absence of a tree) and hence an objective of a network provider should be to always
strive towards a multicast tree.

6.4.4 QoS multicast in an active network

Inspired by Connectionless Multicast (CLM, e.g. [150]) we touch upon DiffServ multi-
cast and its exact active counterpart. In CLM, the packet header carries the IP addresses
of all the multicast members. Each router determines the next hop for each destination

6.5. PERFORMANCE EVALUATION OF MAMCRA 107

and constructs a new header for every distinct hop. The new header only contains des-
tinations for which the next hop is on the shortest path. In conformance with unicast
DiffServ, we can extend CLM, such that each packet belongs to a certain Class of Ser-
vice (CoS) and each router has a routing table for each CoS. We have proved in [163]
that hop-by-hop destination-based QoS routing can only be guaranteed in an active
network. If we store the history of an active packet in its header, then for each packet
arriving at a router, MAMCRA is used to compute the best forwarding/replication
strategy. The best use for such an active strategy is in highly dynamic (for example
wireless) environments, since we do not need (to recalculate) routing tables. However,
we do need to have an accurate view of the network.

6.5 Performance evaluation of MAMCRA

Finally, this section will present a small performance evaluation of MAMCRA. At the
time that MAMCRA was proposed [101] it was the only multicast QoS algorithm that
could handle an arbitrary number (m) of constraints. Later Tsai and Chen [159] also
proposed two multicast QoS algorithms (M_MCOP and M_QDMR) for m ≥ 2 and
compared them against MAMCRA. However, they considered different objectives as
MAMCRA leading to biased simulations and erroneous conclusions. Together with
Tsai we have repeated the simulations in a correct and fair manner.
We have simulated on the class of Waxman graphs (400 iterations) with N = 101

nodes. We have simulated with m = 4 QoS measures and one unconstrained monetary
cost. The link weights of all (in total five) QoS measures were independent uniformly
distributed in the range [1, 141]. The source s and the p destination nodes were ran-
domly assigned. The four constraints were uniformly chosen with the assurance that for
each path from the source to any of the p destinations a feasible path existed. Besides
the algorithms M_MCOP, M_QDMR proposed by Tsai and Chen [159], we have sim-
ulated with two different versions of MAMCRA, namely MAMCRA as defined in this
chapter with the non-linear length (4.3) and MAMCRA-cost with a semi-linear length,
which only optimizes on the cost-measure, provided that the four constraints are met.
The success rate is defined as the number of times that the constraints were met for
all p destinations. Figure 6.6 gives the success rate as a function of p. MAMCRA
always obtains a success rate of 100% if feasible paths exist to all destinations. The
performance of M_MCOP and M_QDMR on the other hand decreases with the num-
ber of destinations. Moreover, if the constraints get stricter (not shown), the difference
between MAMCRA and M_MCOP, M_QDMR increases. Figures 6.7 and 6.8 rep-
resent the cost of the multicast subgraphs in terms of the cost measure and the link
overhead, respectively. Figure 6.7 gives the cost ratio, which is defined as the cost of
the multicast subgraph (c(GM) =

P
e∈GM

c(e)) divided by the combined cost of the
p unicast shortest paths computed via the Dijkstra algorithm. We have included in

108 CHAPTER 6. MULTICAST QOS ROUTING

p

0 20 40 60 80 100 120

Su
cc

es
s

ra
te

 (%
)

75

80

85

90

95

100

105

M_MCOP
M_QDMR
MAMCRA, MAMCRA-cost

Figure 6.6: The success rate as a function of the number of destinations p.

the plot a theoretical law for the efficiency of multicast [165]. This law holds for the
class of random graphs and can be considered a good indicator of the efficiency that
can be obtained with multicast in the one-dimensional (unconstrained) case. Figure
6.7 shows that MAMCRA-cost performs best and therefore indicates that the choice of
the length function is important and should be carefully tailored to the optimization
problem under consideration.

Contrary to M_MCOP and M_QDMR, MAMCRA does not necessarily return a
tree. To evaluate how many “extra” links the graph GM contains, Figure 6.8 shows the
link overhead defined as GM (M)

GM (N)−1 , where GM(M) is the total number of links in the GM

and GM(N) is the total number of nodes in GM . We can see that the link overhead
remains small, suggesting that MAMCRA provides efficient solutions.

6.6. CONCLUSIONS 109

p

0 20 40 60 80 100 120

E
ffi

ci
en

cy
 (%

)

0

20

40

60

80

100

120

140

160

180

200

M_MCOP
M_QDMR
MAMCRA-cost
MAMCRA
Law

Figure 6.7: The cost-efficiency of multicast as a function of the number of destinations
p.

6.6 Conclusions

This chapter has shown that a multicast tree may not always guarantee the requested
QoS constraints, while multiple unicast QoS sessions can. This property increases the
complexity of constrained multicast routing (besides the proven NP-completeness). A
trade-off between efficient use of resources and QoS has to be made, which resulted in
the proposed algorithm MAMCRA. MAMCRA computes the set S of shortest paths
from source s to all the destination nodes, and then reduces this set to an efficient set
of multicast routes, without compromising the requested level of QoS. Simulations with
MAMCRA indicate that it often returns trees or sub-graphs that closely resemble a
tree. It was shown that it is desirable to always construct (or strive for) a multicast
tree, either by fine-tuning MAMCRA or by renegotiating the constraints.

110 CHAPTER 6. MULTICAST QOS ROUTING

p

0 20 40 60 80 100 120

Li
nk

 o
ve

rh
ea

d

1.00

1.02

1.04

1.06

1.08

1.10

MAMCRA
MAMCRA-cost

Figure 6.8: The link overhead as a function of the number of destinations p.

Chapter 7

Link-disjoint QoS routing

The problem of finding disjoint paths in a network has been given much attention in the
literature due to its theoretical as well as practical significance to many applications,
such as layout design of integrated circuits, survivable design of telecommunication
networks and restorable/reliable routing. Paths between a given pair of source and
destination nodes in a network are called link disjoint if they have no common (i.e.,
overlapping) links, and node disjoint if, besides the source and destination nodes, they
have no common nodes. With the development of optical networks and the deployment
of MPLS or GMPLS [10] networks, the problem of finding disjoint paths is receiving
renewed interest as fast restoration after a network failure is crucial in such kind of
networks. In robust communication networks, a connection usually consists of two link-
or node-disjoint paths: one active path and one backup path. A service flow will be
redirected to the backup path if the active path fails. Load balancing, another impor-
tant aspect for communication networks to avoid network congestion and to optimize
network throughput, also requires disjoint paths to distribute flows. Robustness and
load balancing are, among others, both aspects of Quality of Service (QoS) routing.
In this chapter the focus lies on finding QoS-aware link-disjoint paths. In general

a link-disjoint paths algorithm can be extended to a node-disjoint algorithm with the
concept of node splitting, i.e. replacing one node with two nodes that are linked together
via a link with zero-valued weights [155].

7.1 Problem definition

In the context of finding link-disjoint paths, a path P between a source s and destination
t is considered to be composed out of an ordered set of links. If a path P1 is link-disjoint
with a path P2, there is no common link element in the link sets representing each path,
and P1 ∩ P2 = ∅, else P1 ∩ P2 6= ∅.
Form = 1, when no constraint is required (see the LPP problem defined below), the

111

112 CHAPTER 7. LINK-DISJOINT QOS ROUTING

linear length of a path is computed as l(P) =
P

(u,v)∈P wi(u, v). For m > 1, the non-

linear length (4.3) is used: l(P) = max1≤i≤m
h
wi(P)
Li

i
, where wi(P) =

P
(u,v)∈P wi(u, v).

If a path P1 is link-disjoint with a path P2, then l(P1∪P2) = l(P1)+ l(P2) form = 1,
but for m > 1, l(P1 ∪ P2) ≤ l(P1) + l(P2). The goal is to find two link-disjoint paths
that both obey multiple constraints. The total length of two paths is defined as

l(P1) + l(P2) (7.1)

for m ≥ 1.

Problem 43 Link-disjoint Path Pair (LPP) Problem. Given a directed graph G =
(V,E) with one weight per link (m = 1), and a source-destination pair (s, t). Find a
set of two paths P1 and P2, such that P1 ∩ P2 = ∅ and the total length l(P1) + l(P2) is
minimized.

The LPP problem can be solved in polynomial time [19], [154], [155].

Problem 44 Multi-Constrained Link-disjoint Path Pair (MCLPP) Problem. Given a
directed graph G = (V,E) with m > 1 weights per link, a constraint vector �L and a
source-destination pair (s, t). Find a pair of link-disjoint paths P1 and P2, such that
P1 ∩ P2 = ∅ and both paths obey the constraint vector �L.

Theorem 45 The MCLPP problem is NP-complete.

i i+1

S
0

S-ai
ai

Figure 7.1: The assignment of link weights between nodes i and i + 1 in the chain
topology.

Proof. Given a chain topology with n + 1 nodes and 2n links, each with a two-
component weight vector as depicted in Figure 7.1 and a set of numbers ai ∈ A, 0 ≤
ai ≤ S, for i = 1, ..., n, where S =

Pn
i=1 ai. The constraints are chosen as follows:

7.2. RELATED WORK 113

L1 = nS − S
2
and L2 =

S
2
.

To solve the MCLPP problem, we need to find two paths P and P 0 from node 1 to
node n+ 1 that obey the constraints. Since, for all link weight vectors, the sum of the
components equals S, we have that w1(P) + w2(P) = nS and w1(P

0) + w2(P
0) = nS.

Accordingly, a solution satisfying the constraints is only found if w1(P and P 0) = nS− S
2

and w2(P and P 0) = S
2
. The problem has now become an instance of the well-known

NP-complete partition problem [57] and can only be solved by finding the set A0 ⊆ A,
for which

P
ai∈A0 ai =

S
2
. A feasible path P exists if the set A0 exists. A feasible path

P consists of the lower link if ai ∈ A0 and the upper link if ai /∈ A0. The path P 0 then
follows the remaining links.
In this chapter we focus on solving the MCLPP problem. Related work on finding

disjoint paths in one dimension between a source and a destination will be reviewed in
Section 7.2 and the simple link-disjoint algorithm LBA will be explained in Section 7.3.
In Section 7.4 an extension of LBA to multiple dimensions is discussed and shown to be
difficult. Therefore, a heuristic algorithm DIMCRA for solving the MCLPP problem is
proposed in Section 7.5. Section 7.6 presents the conclusions.

7.2 Related work

7.2.1 Link-disjoint paths in one dimension

An intuitive method to determine two shortest link-disjoint paths between a pair of
source and destination nodes consists of two steps. The first step retrieves the shortest
path between a given pair of nodes in a graph. The second step is to prune all the links
of that path from the graph and to find the shortest path in the reduced graph. We will
refer to this method as the Remove-Find (RF) method. Although the RF method is
direct and simple, it has at least two disadvantages: (a) provided that two link-disjoint
paths exist, there is no guarantee that they will be found and (b) the second link-disjoint
path may have a significantly larger length than the first shortest path.
To surmount the disadvantages of the RF method, other methods have been devised

to find a pair of shortest link-disjoint paths with minimal total length [19], [24], [29],
[123], [151], [154], [155], [174]. In [154], Suurballe proposed an algorithm, referred to as
Suurballe’s algorithm, to find K node-disjoint paths with minimal total length using
path augmentation. The path augmentation method was originally used to increase
the size of a matching with an augmenting path [39] and to find a maximum flow or a
minimum cost flow in a network [2], [128]. The problem to find link/node disjoint paths
can be viewed as a special case of the minimum cost flow problem as demonstrated in
[19], [154], [155]. The basic idea of Suurballe’s algorithm is to construct a solution set
of two disjoint paths based on the shortest path and a shortest augmenting path. K
disjoint paths can be obtained by augmenting the K − 1 optimal disjoint paths with

114 CHAPTER 7. LINK-DISJOINT QOS ROUTING

this algorithm. In 1984, Suurballe and Tarjan [155] improved Suurballe’s algorithm,
such that pairs of link-disjoint paths from one source node to n destination nodes could
be efficiently obtained in a single Dijkstra-like computation. This algorithm is referred
to as the S-T algorithm. To find n pairs of disjoint paths, the S-T algorithm requires
O(M log(1+M/n) n) time and Suurballe’s algorithm O(n2 logn), where n is the number
of destination nodes and M is the number of links. Kar et al. [92] and Kodialam
and Lakshman [94], [95] incorporated the S-T algorithm into their algorithms to find
a pair of link-disjoint paths serving as active and backup paths for routing bandwidth
guaranteed connections. Liang [108] extended the S-T algorithm to find two link-disjoint
paths between a pair of nodes, while optimizing both network load and routing costs.
In 1994, Bhandari [19] proposed an algorithm to find a pair of span-disjoint1 paths

between two nodes in optical-fiber networks. The disjoint paths algorithm used by
Bhandari is a simplified version of Suurballe’s algorithm [154] that requires a special
link weight transformation to facilitate the use of Dijkstra’s algorithm. Shaikh [148]
made an extension to Bhandari’s algorithm [19] to solve the span-disjoint paths problem
in more complicated structured optical networks.
Li et al., [107] (and Sen et al., [146]) proved that the LPP problem will be NP-

complete if the total length of the two disjoint paths is defined as max(l(P1), l(P2)),
instead of l(P1) + l(P2). Ho and Mouftah [78] proposed another objective function
α · l(P1)+ l(P2), where P1 and P2 are the active path and the backup path, respectively.
The parameter α can be set large for a shared protection scheme (1 : p or q : p) and
could be as small as unity for a dedicated protection scheme (1 : 1).
Heuristic algorithms based onmatrix calculation [157] or recursive matrix-calculation

[124] to solve theK-shortest link-disjoint paths problem with a bounded hop count have
been proposed as well. Even some algorithms were proposed for finding K-best paths,
i.e. K disjoint or maximally disjoint paths with smallest total length between a pair of
nodes in a trellis graph [24], [174]. An optimal algorithm for findingK-best paths, with-
out hop count limitation, between a pair of nodes is given by Lee and Wu in [103], where
they transfer the K-best paths problem into a maximum network flow and minimum
cost network flow algorithm via some modifications to the original graph. Distributed
algorithms for the link/node-disjoint paths algorithms can be found in [29], [123], [151].

7.2.2 Disjoint paths in multiple dimensions

To the best of our knowledge we [68] were the first to consider the MCLPP problem.
Recently some papers on disjoint paths in QoS routing have emerged. However, they
only considered bandwidth and/or delay as their QoS measures [15], [95], [83], [65],
[110]. The maximally disjoint shortest and widest paths (MADSWIP) algorithm from

1A span is the set of all transmission links between two nodes that share the same facilities structure
(e.g., cable, duct, trench). In the case that a physical cut would take place, all transmission links would
fail.

7.3. PATH AUGMENTATION FOR SOLVING LPP 115

Taft-Plotkin, et al. [156], involves a modified version of the S-T algorithm to find a
pair of disjoint paths. MADSWIP can produce a pair of widest or shortest maximally
link-disjoint paths from a source node to all other nodes. Moreover, it tries to find two
paths simultaneously to satisfy the maximal link-disjointness to each other. However
the only QoS measures used by MADSWIP are bandwidth and delay. After our work
[68], some new papers emerged that look at multiple QoS measures, e.g. the paper of
Orda and Sprintson [127].

7.3 Path augmentation for solving LPP

This section shall present a simplified variant of Bhandari’s Algorithm [19], referred to
as LBA (Link-disjoint version of Bhandari’s Algorithm), which can exactly solve the
LPP problem. First, the basic steps and the fundamental concepts of LBA will be
explained. Subsequently, the optimality of LBA is proved and LBA is shown to be
loop-free.

7.3.1 The steps of LBA

Bhandari’s algorithm [19] has been designed to find a pair of span-disjoint paths in
an optical network. We have modified Bhandari’s algorithm into a link-disjoint path
pair algorithm LBA by omitting the node-splitting operation that ensures the node-
disjointness and the graph transformations that ensure span-disjointness.
Before explaining the operation of LBA, first some notations are introduced. If we

reverse the direction and the sign of the link weights of each link on the path P1 between
s and t, i.e. w(v, u) = −w(u, v), ∀(u, v) ∈ P1, then we will have a path directed from t to
s, denoted by −P1, which consists of the reversed P1 links. We define2 l(−P1) = −l(P1).
A set consisting of these P1 links whose reversed links also appear on P2 and vice versa,
is denoted as P1∩̃P2 = {(u, v) and (v, u)|(u, v) ∈ P1 and (v, u) ∈ P2}. In all the figures
of this chapter, bold lines represent links on the shortest path(s) in a graph or its
corresponding modified graph, dashed lines represent reversed links that do not exist
in the original graph and bold dashed lines represent such reversed links that appear
on the shortest path.
Given a directed graphG = (V,E) and a source-destination pair (s, t), LBA executes

the following steps:

1. Find the shortest3 path P1 from node s to node t.

2With the definition of length in (4.3), we have l(−P1) = −l(P1) only for m = 1.
3If there exist multiple equi-length shortest paths in the original graph or in the modified graph,

either one of them can be chosen. Choosing different shortest paths may lead to different solution sets.
However, these solution sets will have the same minimum total length.

116 CHAPTER 7. LINK-DISJOINT QOS ROUTING

2. Replace P1 with −P1, a modified graph G0 = (V,E0) is created.

3. Find a shortest path P2 from node s to node t in the modified graph G0; if P2
does not exist, then stop.

4. Take the union of P1 and P2, remove from the union the set of links consisting of
those P1 links whose reversed links appear on P2, and vice versa; then group the
remaining links into two paths P 0

1 and P 02, i.e. P
0
1 ∪ P 0

2 = (P1 ∪ P2) \ (P1∩̃P2) .

(a) Step 1

1

5

2

6 5

4

4

1

3

c

d

f

e

ba

−1

5

−2

6 5

4

4
−1

3

c

d

f

e

ba

(b) Step 2

3

−1

5

−2

6 5

4

4

−1 c

d

f

e

ba

(c) Step 3 (d) Step 4

−1

3

1

5

2

6 5

4

4

1 c

d

f

e

ba

Figure 7.2: Example of the operation of LBA.

The steps of LBA are best explained through the example in Figure 7.2. The
problem is to find two link-disjoint paths between a and b. In Step 1, the shortest path
from a to b is found as P1 = a− c− d− b, with length 4. In Step 2, a modified graph
G0 = (V,E0) is created by reversing the direction and the sign of the weights of each

7.3. PATH AUGMENTATION FOR SOLVING LPP 117

link on P1. For instance, link (c, d) with weight 1 is replaced by link (d, c) with weight
—1. In Step 3, the shortest path P2 = a− d− c− b in the modified graph has length 6.
In Step 4, P1∩̃P2 = {(c, d), (d, c)} is removed from the union P1 ∪ P2. The solution set
of disjoint paths {P 0

1, P
0
2} = {a− c− b, a− d− b} is obtained. The total length of these

paths equals 5 + 5 = 10, which is exactly the minimal total length of two link-disjoint
paths in this graph.

(a) Step 1

1

5

2

6 5

4

4

1

3

c

d

f

e

ba
3

5

6 5

4

4

c

d

f

e

ba

(b) Step 2

Figure 7.3: Example 1 of the operation of RF.

(a) Step 1

1

2

4

1

3

c

d ba

3

4

c

d ba

(b) Step 2

Figure 7.4: Example 2 of the operation of RF.

For comparison, in Figure 7.3, the RF method is applied on the same topology with
the same requirements. In Step 1, the shortest path a−c−d−b is retrieved. In Step 2,
a modified graph is created by removing all the links on a− c−d− b. The shortest path
in the modified graph is a−e−b with length 11. Thus the set {a−c−d−b, a−e−b} has
a total length of 4 + 11 = 15, which is longer than 10 as found with LBA. This example

118 CHAPTER 7. LINK-DISJOINT QOS ROUTING

illustrates that the RF method cannot guarantee to find the optimal solution. More
importantly, in the graph shown in Figure 7.4(a), although there exist two link-disjoint
paths between a and b, RF cannot find the second path in Step 2 as shown in Figure
7.4(b). LBA, on the other hand, still returns the optimal set in this case.

7.3.2 LBA is based on the shortest path

The goal of this subsection is to clarify why the optimal solution set of LBA, as well
as other path augmentation algorithms [19], [110], [123], is based on the shortest path.
Although the theory presented here can be derived from the theory of min-cost flows
[51], [128], it is instructive to give an overview.
We will first show that the optimal set for the LPP problem is based on the shortest

path. The next is to show that the optimal set of two link-disjoint paths has the smallest
difference in length from the shortest path, among all the possible sets of link-disjoint
paths. Finally, the logical difference set (defined below) is demonstrated to compose a
path.
Given a directed graph G = (V,E) and a pair of source-destination nodes (s, t), the

relation between a set of two link-disjoint paths {Pd1, Pd2} and the shortest path P1
belongs to one of the following types:

1. P1 itself equals Pd1 or Pd2, i.e. P1 = Pd1 or P1 = Pd2.

2. P1 overlaps with both paths Pd1 and Pd2, i.e. P1 ∩ Pd1 6= ∅, P1 6= Pd1 and
P1 ∩ Pd2 6= ∅, P1 6= Pd2.

3. P1 only overlaps with one path in the set {Pd1, Pd2}, but not with the other, i.e.
P1 ∩ Pd1 6= ∅, P1 6= Pd1 and P1 ∩ Pd2 = ∅ (or P1 ∩ Pd2 6= ∅, P1 6= Pd2 and
P1 ∩ Pd1 = ∅).

4. P1 is link-disjoint with both paths in {Pd1, Pd2}, i.e. P1 ∩ (Pd1 ∪ Pd2) = ∅.

Lemma 46 Given a directed graph G = (V,E) and a source-destination pair (s, t), if
the optimal set {P 0

1, P
0
2} of LPP exists, P 0

1 ∪ P 0
2 must contain either the first shortest

path P1 itself or some P1 links on each of its two paths.

Proof. If P 0
1 ∪ P 02 is of type 4, then each path in {P 0

1, P
0
2} is link-disjoint with P1. As

P1 is the shortest path, both {P1, P 0
1} and {P1, P 0

2} have a total length that is shorter
than the total length of {P 01, P 0

2}. Hence, the optimal set {P 0
1, P

0
2} cannot be of type 4

and must contain some or all P1 links.
If P 0

1 ∪ P 0
2 is of type 3, only one path in P 0

1 ∪ P 0
2 contains some P1 links. Without loss

of generality, suppose P 0
1 contains some P1 links, and the other path P 0

2 is link-disjoint
with P1, then {P1, P 0

2} is a set which is shorter than {P 0
1, P

0
2}. Hence the optimal set

{P 01, P 0
2} cannot be of type 3.

Therefore, if the optimal set exists, it must be either of type 1 or 2.

7.3. PATH AUGMENTATION FOR SOLVING LPP 119

Lemma 47 The optimal set has the smallest difference in length

Y = l(P 0
1) + l(P 0

2)− l(P1) ≥ 0 (7.2)

with the shortest path P1, among all the possible sets of link-disjoint path pairs.

Proof. In the set P 0
1 ∪ P 0

2 ∪ (−P1), the P1 links contained in the set P 01 ∪ P 02 will
form loops with the −P1 links. For example, if a P1 link (u, v) is contained in the
set P 0

1 ∪ P 0
2, then it will create a loop with the link (v, u) on −P1 between the nodes

u and v. The length of this loop is zero because w(v, u) = −w(u, v). Let us denote
Ol = (P

0
1 ∪ P 0

2) ∩̃(−P1), which means that the set Ol consists of each P1 link in the union
of P2∪P1 and its corresponding −P1 link. We define the logical difference set4 between
P 0
1∪P 02 and P1 as (P 0

1∪P 02)−P1 = P 0
1∪P 0

2∪(−P1)\Ol. In fact, l(Ol) = 0 because the set
Ol consists of loops with zero length, each consisting of a pair of opposite P1 and −P1
links. With l(−P1) = −l(P1), we have l((P 0

1∪P 02)−P1) = l((P 0
1∪P 0

2)∪ (−P1))− l(Ol) =
l(P 0

1) + l(P 02) + l(−P1) = l(P 0
1) + l(P 0

2)− l(P1), which is exactly Y in (7.2).
Lemma 48 shows that the logical difference set forms the shortest path in the mod-

ified graph, where P1 is replaced with −P1.

Lemma 48 Given a directed graph G = (V,E) and the source-destination pair (s, t)
and let P1 be the shortest path between s and t in G. G0 = (V,E0) is defined as the
graph G = (V,E), for which the path P1 is replaced with −P1. The logical difference set
P 0
1∪P 0

2−P1, between the optimal set of two link-disjoint paths {P 0
1, P

0
2} and the shortest

path P1, forms the shortest path P2 from node s to node t in G0.

Proof. We will first prove that P2 = P 01 ∪ P 0
2 − P1 is a complete path from s to t in

G0 = (V,E0), then we will prove that P2 is the shortest path in G0 = (V,E0).
Part A. From Lemma 46, the optimal set of two link-disjoint paths P 0

1∪P 0
2 must contain

either the first shortest path P1 itself or some P1 links on each of its two paths.
If (P 0

1 ∪ P 0
2) ⊃ P1, without loss of generality suppose P 0

1 = P1, then Ol = P1 ∪ (−P1).
With the definition of logical difference set, P2 = ((P 0

1 ∪ P 0
2) ∪ (−P1)\Ol = (P1 ∪ P 0

2 ∪
(−P1))\(P1 ∪ (−P1)) = P 0

2. Hence, P2 must be a complete path from s to t.
If P 0

1 ∪ P 0
2 contains some P1 links on each of its two paths, and given that −P1 is the

path from t to s in G0 = (V,E0), and neither P 01 nor P
0
2 contains any −P1 links, then the

union P 0
1 ∪P 0

2 ∪ (−P1) contains two cycles: one cycle consists of P 0
1 and −P1, the other

4The logical difference set P2−P1 can also be computed as P2−P1 = {(u, v)|(u, v) ∈ P2\(P2 ∩ P1)}∪
{(v, u)|(u, v) ∈ P1\(P2 ∩P1)}, which means that if a link (u, v) of P2 does not appear on P1, then this
link belongs to the difference set P2 − P1, and if a link (u, v) of P1 does not appear on P2, then its
direction reversed link (v, u) belongs to the difference set P2−P1, with a link weight w(v, u) = −w(u, v).
In set theory, the difference operation is defined as P2−P1 = P2\(P1∩P2) and the symmetric difference
operation is defined as P2 − P1 = (P2 ∪ P1)\(P1 ∩ P2). The concept of logical difference set in this
chapter resembles the symmetric difference set, but it is not the same.

120 CHAPTER 7. LINK-DISJOINT QOS ROUTING

consists of P 0
2 and −P1. When the set Ol is removed from the union set, the remaining

links compose the logical difference set P2. Hence, P2 must be a complete path from s
to t.
Part B. Assume that the shortest path in G0 = (V,E0) is P3 6= P2, then we must have
l(P3) < l(P2). As l(P2) = l(P 0

1) + l(P 0
2)− l(P1), we have l(P3) + l(P1) < l(P 0

1) + l(P 0
2),

which contradicts the assumption that {P 0
1, P

0
2} is the optimal set.

7.3.3 LBA is loop-free

Many routing algorithms assume non-negative link weights to avoid negative-length
cycles. However, negative link weights introduced to a graph in LBA will not cause
negative cycles.

(a) The shortest path P1(s,t)

(b) A loop containing some –P1 link
ui

.…...…..
vi+1 vn t s v vi

.…...…..
vi+1 vn t s v vi

ui

Figure 7.5: A loop containing a negative link.

Theorem 49 Given a directed graph G = (V,E) and source-destination pair (s, t) and
let P1 be the shortest path between s and t in G. The modified graph G0 = (V,E0) is
defined as the graph G = (V,E) for which P1 is replaced with −P1. A cycle containing
some negative weight(s) in G0 will not have a negative length.

Proof. Assume sv1...vivi+1...vnt is the shortest path P1 from node s to node t in G =
(V,E), as shown in Figure 7.5(a). The corresponding path −P1 in G0 = (V,E0) (Figure
7.5(b)) has a link (vi+1, vi), which appears on loop (i.e., cycle) Pl = uivi+1viui. Suppose

7.4. EXTENDING LBA TO MULTIPLE DIMENSIONS 121

the loop Pl has a negative length l(Pl) = w(ui, vi+1)+w(vi+1, vi)+w(vi, ui) < 0. Because
w(vi+1, vi) = −w(vi, vi+1), we must have w(vi, ui) + w(ui, vi+1) < w(vi, vi+1). Hence,
the sub-path sv1...viuivi+1 is shorter than the sub-path sv1...vivi+1. This contradicts
the assumption that sv1...vivi+1 ...vnt is the shortest path.

7.3.4 Optimality of LBA

Theorem 50 Given a directed graph G = (V,E) and source-destination pair (s, t), the
algorithm LBA returns the optimal set for the LPP problem.

Proof. Let P1 be the shortest path in the graph G = (V,E) found in Step 1 of LBA
and P2 be the shortest path in the modified graph G0 = (V,E0) found in Step 3 of LBA.
{P 01, P 0

2} is the solution set generated by LBA. The proof consists of three parts.
Part A (Proof of Link-disjointness). By construction of the solution set, there must
hold that P 0

1 ∩ P 0
2 = ∅.

Part B (Proof of Minimal Total Length). Suppose the optimal set of link-disjoint paths
is {P ∗1 , P ∗2 }, instead of {P 0

1, P
0
2}. According to Lemma 48, the logical difference set of

{P ∗1 , P ∗2 } with P1 is the shortest path in the modified graph G0. This contradicts that
P2 is the shortest path in the modified graph G0.
Part C (Proof of Loop-freeness). On Theorem 49, LBA is loop-free.
Thus the solution set returned by LBA must be the optimal set.

7.4 Extending LBA to multiple dimensions

The extension of LBA to multiple dimensions using SAMCRA (see Section 4.6) is
called MLBA (Multi-constrained LBA). The basic steps of MLBA are presented and
the problems appearing in multiple dimensions are addressed.

7.4.1 Operations of MLBA

The basic steps of MLBA are the same as those for LBA, except that the shortest path
routing algorithm is replaced with SAMCRA. We will illustrate the operation of MLBA
with the example topology shown in Figure 7.6(a). For the sake of simplicity, each link
has been assigned a two-dimensional weight vector, but it is possible to use any m-
dimensional weight vector (m ≥ 1). The problem is to find two link-disjoint paths from
source node a to destination node b that both obey the constraints vector �L = (20, 20),
with the minimum total length, according to (4.3). The shortest multi-constrained path
from node a to node b is the path a − c − d − b. Its path weight vector equals (4, 5).
The optimal set of two shortest link-disjoint paths (according to (7.1)) in this topology
is {a− c− b, a− d− b}, with path vectors (5, 6) and (5, 5) respectively and minimum
total length 0.3 + 0.25 = 0.55.

122 CHAPTER 7. LINK-DISJOINT QOS ROUTING

4,51,1

4,5

c

d

f

e

ba

1,2

5,7

2,2

6,35,6

3,3

(a) Step 1

−1, −2
4,5

−1, −1
4,5

c

d

f

e

ba

5,7

−2, −2

6,35,6

3,3

(b) Step 2

−1, −2

4,5
−1, −1

4,5

c

d

f

e

ba

5,7

−2, −2

6,35,6

3,3

(c) Step 3

4,51,1

4,5
c

d

f

e

ba

1,2

5,7

2,2

6,35,6

3,3

−1, −2

(d) Step 4

Figure 7.6: Example of the operation of MLBA.

The execution of MLBA on this topology follows: in Step 1, the shortest path
P1 = a− c − d − b is found. In Step 2, the original graph is modified by replacing all
the P1 links with −P1 links. In this case, each link weight vector component of a −P1
link is set negative. For instance, the link (c, d) with weight vector (1, 1) is replaced
with the link (d, c) with weight vector (−1,−1). In Step 3, the shortest path in the
modified graph, found with SAMCRA, is P2 = a− d− c− b, with path weight vector
(3, 3) + (−1,−1) + (4, 5) = (6, 6). In Step 4, the set Ol, consisting of a pair of opposite
P1 and P2 links (c, d) and (d, c), is removed from the union of P1 and P2. Then the
optimal solution set {a− c− b, a− d− b} is returned.

7.4. EXTENDING LBA TO MULTIPLE DIMENSIONS 123

7.4.2 Problems in multiple dimensions

Loops caused by negative cycles

For m = 1, SAMCRA acts just like Dijkstra’s algorithm, therefore MLBA reduces to
LBA and negative cycles cannot occur. For m > 1, theorem 49 may not hold for all
m measures. Some of the components of the loop weight vector may become negative,
causing MLBA to pass this loop multiple times, as clarified through Figure 7.7.

 5,4

 1,3
2,2

5,8
2,5

4,6
2,1

6,4

2,1

2,7

3,2

1,3
x1,

s

b

e
d

a

c

f

g

−5, −4

−1, −3

2,2

5,8
2,5

4,6
2,1

6,4

−2, −1

2,7

3,2

1,3
x1,

s

b

e
d

a

c

f

g

Figure 7.7: The non-dominance concept may fail to remove a loop when m > 1.

Suppose that the shortest path P1 is s−a−d−f , depicted with bold lines in Figure
7.7(a). The link weight vector (x1, x2) of link (c, d) must be chosen in such a way that
the path s− a− c− d− f is longer than s− a− d− f , i.e.

max

·
w1(s, a) + w1(a, c) + x1 + w1(d, f)
w2(s, a) + w2(a, c) + x2 + w2(d, f)

¸
> max

·
w1(s, a) + w1(a, d) + w1(d, f)
w2(s, a) + w2(a, d) + w2(d, f)

¸
Numerically,

max

·
x1
x2

¸
> max

·
w1(a, d)− w1(a, c)
w2(a, d)− w2(a, c)

¸
=

·
5− 2
4− 1

¸
=

·
3
3

¸
(7.3)

After Step 2 of MLBA is completed, there appears a loop Pl = d− a− c− d shown
with double lines in Figure 7.7(b), containing the link (d, a) with negative link weights
(−5,−4).

124 CHAPTER 7. LINK-DISJOINT QOS ROUTING

If equation (7.3) holds and each component of vector (x1, x2) is greater than 3, then
the sub-path s− d− a− c− d will be dominated by the direct link (s, d) with weight
vector (5, 8) and will be removed by the non-dominance check in SAMCRA. However,
if equation (7.3) holds, but one component of (x1, x2) is not greater than 3 say x1 < 3
and x2 > 3, then a negative cycle for measure 1 appears and

·
w1(Pl) = w1(d, a) + w1(a, c) + w1(c, d) = −5 + 2 + x1 < 0
w2(Pl) = w2(d, a) + w2(a, c) + w2(c, d) = −4 + 1 + x2 > 0

¸

where (w1(Pl), w2(Pl)) is the path vector of the loop Pl. In this case, the sub-path
s− d− a− c− d is not dominated by the link (s, d), although l(Pl) > 0. Hence, loops
may occur in MLBA that continue until one of the constraints is violated. Checking
paths to assure that they are loop-free could be a viable solution to this problem.

As mentioned in Section 7.2, in Suurballe’s algorithm [154] and the S-T algorithm
[155], a transformation of link weights w0(u, v) = w(u, v) + d[u] − d[v] is applied to
each link, where d[u] is the distance from source node s to node u on the shortest path
tree. This transformation is made to guarantee that the links on the shortest path tree
have zero-valued link weights and those links not on the tree have link weights greater
than zero in the modified graph. However, an artifact of a non-linear length is that
subsections of shortest paths are not necessarily shortest paths [38], [163]. As a result,
for m > 1, Suurballe’s transformation cannot ensure non-negative cycles and hence
loops may emerge.

Total length of the solutions produced with MLBA

Assume for the moment that the constraints are large enough such that all paths are
feasible. If m = 1, it has been proved in Section 7.3 that the solution set {P 0

1, P
0
2}

produced with MLBA has minimum total length. With the total length defined in
(7.1), Lemma 46 still holds for m > 1. The optimal set of two link-disjoint multi-
constrained paths with minimum total length either contains the first shortest path P1
itself or some P1 links on each of its two paths. Also, the optimal set {P 0

1, P
0
2} still obeys

Property 47. Unfortunately, the logical difference set (P 0
1 ∪ P 0

2)− P1 is not necessarily
the shortest path P2 in the modified graph, since l((P 0

1∪P 0
2)−P1) = l(P 0

1)+l(P
0
2)−l(P1)

does not necessarily hold for m > 1. Hence, Lemma 48 may not hold for m > 1 and
the solution set constructed based on P1 and P2 is not necessarily the optimal set with
minimum total length. This problem does not occur when using the semi-linear length
function (4.4). However, regardless of the length function, the solution set for m > 1
may violate the constraints or a feasible solution may not be acquired.

7.5. DIMCRA 125

7.5 DIMCRA

The previous section established that it is not straightforward to extend LBA to multiple
dimensions. Due to the problems existing in MLBA, we propose a heuristic algorithm
DIMCRA (link-DIsjoint Multiple Constraints Routing Algorithm) for theMCLPP prob-
lem.

7.5.1 Operations of DIMCRA

Given a directed graph G = (V,E), a constraint vector �L and a source-destination pair
(s, t), DIMCRA carries out the following steps:

1. Find with SAMCRA the shortest path P1 obeying �L; if P1 does not exist, then
stop.

2. Reverse the direction of all the links on the shortest path P1, and set the value
of their link weights zero, wi(v, u) = 0, ∀(u, v) ∈ P1 and i = 1, ...,m: a modified
graph G0 is created.

3. Find with SAMCRA the shortest path P2 constrained by 2�L in the modified graph
G0; if P2 does not exist, then stop.

4. Make the union of P1 and P2, remove from the union the P1 links whose reversed
links appear on P2, and vice versa. Then group the remaining links into a set of
two paths {P 0

1, P
0
2}, i.e. P 0

1 ∪ P 0
2 = (P1 ∪ P2) \(P1∩̃P2).

5. Check the length of each path in the set {P 0
1, P

0
2}. If the path P 0

i (i = 1, 2)
violates the constraints, then update the modified graph G0 by removing the link
set P 0

i\(P 0
i ∩P1) from it, and go to Step 3. Otherwise stop and return the current

solution set {P 0
1, P

0
2}.

Compared to MLBA, DIMCRA uses a different transformation to create the modi-
fied graph. In Step 2 of DIMCRA, the shortest path links are still reversed in direction
but the corresponding direction—reversed links are assigned zero-valued link weight vec-
tors, instead of negative ones. In this way negative cycles cannot occur. In MLBA, P2
is required to obey the constraints, which may cause some feasible sets to be ignored by
MLBA. In fact, when �w(P2) > �L, if P2 contains no reversed P1 link(s), then {P 0

1, P
0
2}

is actually {P1, P2} and cannot be a feasible set. But, if P2 contains some reversed P1
link(s), it is possible that {P 0

1, P
0
2} is a feasible set, for instance, l(P1) = 0.6, l(P 0

1) =

0.8, l(P 0
2) = 0.9, and l(P2) = 1.1. However, if �w(P2) > 2�L, then it is not possible to

find a feasible solution, because �w(P 0
1 + P 02) = �w(P2 + P1 − P1r) > �w(P2) ≥ 2�L, where

P1r denotes the set of P1 links whose reversed links appear on P2, and P1r must be a

126 CHAPTER 7. LINK-DISJOINT QOS ROUTING

proper subset of P1. Therefore, in Step 3 of DIMCRA, the constraints check on path
P2 in SAMCRA is performed with 2�L as the constraints vector, otherwise a feasible
solution set may not be found. We have also added an extra step, Step 5 of DIMCRA,
to check that the constraints are obeyed. With only the condition �w(P 0

1 + P 0
2) ≤ 2�L,

DIMCRA cannot ensure both paths to be within the constraints, i.e. �w(P 01) ≤ �L and
�w(P 0

2) ≤ �L. Hence, Step 5 of DIMCRA checks both paths in the solution set returned
at Step 4. If each of them obeys the constraints, DIMCRA will return the solution set
and stop. On the other hand, if either of them does not obey the constraints, DIMCRA
is redirected to Step 3 to continue the search for a feasible set. In Step 3, if no P2 exists,
DIMCRA will stop with no solution. We will elucidate the operation of DIMCRA with
the following examples.

Example 1: Consider the example graph in Figure 7.8(a). The problem is to find
two link-disjoint paths between a and b, each within the constraints �L = (20, 20) and
preferably with minimum total length. In Step 1, the shortest path P1 = a− c− d− b
is found. In Step 2, each P1 link is reversed and is assigned zero weights. In Step 3, the
shortest path in the modified graph G0 is found as P2 = a− d− c− b, with path vector
(3, 3)+ (0, 0)+ (4, 5) = (7, 8), as shown with bold lines in Figure 7.8(c). In Step 4, only
for the P1 link (c, d), its reversed link (d, c) appears on P2, and vice versa. Thus these
two links are removed from the union of P1 and P2 and the remaining links are grouped
into a set of two paths {P 0

1, P
0
2} = {a− c− b, a− d− b}, shown with bold lines. In Step

5, both paths pass the constraints check and DIMCRA stops. In this case, the optimal
set of {a− c− b, a− d− b} is returned by DIMCRA. The solution set that would have
been returned by RF is not optimal.

Example 2: Consider the graph in Figure 7.9(a), which is the same as in the
previous example except that the link (e, b) is assigned a different vector (2, 1). The
constraints remain the same. In this example the optimal set of two link-disjoint multi-
constrained paths is still the set {a−d− b, a− c− b} with path vectors (5, 5) and (5, 6),
respectively, and the minimum total length 5/20+ 6/20 = 0.55. In Step 3, the shortest
path in the modified graph is P2 = a − e− b with path vector (7, 7), shown in Figure
7.9(c). In Step 4, the solution set {P 0

1, P
0
2} is constructed as {a−c−d−b, a−e−b}, exactly

P1 and P2 themselves. The total length of {a− c−d− b, a−e− b} is 5/20+7/20 = 0.6.
In this example, DIMCRA failed to return the optimal set, but DIMCRA’s solution set
is close to the optimal one and both paths obey the constraints.

Example 3: Consider again example 2, but with different constraints �L = (6, 6).
Running DIMCRA, Step 1 to Step 4 obtain the same results as in example 2. But
in Step 5, the longer path P 0

2 = a − e − b with path vector (7, 7) does not obey the
constraints. This means that the current solution set is not feasible. The links that only
appear on P 0

2 = a−e−b, i.e. link (a, e) and (e, b), are removed from the modified graph
shown in Figure 7.9(b). The updated modified graph is shown in Figure 7.10(a) and
DIMCRA is redirected to Step 3. In Step 3, a shortest path in the updated modified

7.5. DIMCRA 127

0,0 4,5

4,5

c

d

f

e

ba

5,7

6,35,6

3,3

(c) Step 3

0,0

0,0

4,51,1

4,5
c

d

f

e

b

1,2

5,7

2,2

6,35,6

3,3

(d) Step 4

0,0

a

0,0

0,0

0,0
4,5

4,5
c

d

f

e

b

5,7

6,35,6

3,3

(b) Step 2

a

4,51,1

4,5

c

d

f

e

b

1,2

5,7

2,2

6,35,6

3,3

(a) Step 1

a

Figure 7.8: Example 1 of the operation of DIMCRA.

graph is found as P2 = a− d− c− b, depicted in Figure 7.10(b). In Step 4, the solution
set becomes {a− c− b, a− d− b}, as shown in Figure 7.10(c). At last, in Step 5, each
path in the solution set obeys the constraints. The set {a− c− b, a− d− b} is returned
and DIMCRA stops. RF would have failed to return a solution.

With the constraints check on each path in the solution set, Step 5 guarantees that
DIMCRA returns a feasible set of link-disjoint multi-constrained paths, as illustrated
in the above examples.

However it may occur, as illustrated in Figure 7.11, that DIMCRA cannot return a
feasible set, even if there exists one. The RF method also fails to return a feasible set
in such cases.

128 CHAPTER 7. LINK-DISJOINT QOS ROUTING

0,0 4,5

4,5

c

d

f

e

ba

5,7

2,15,6

3,3

(c) Step 3

0,0

0,0

1,2
4,51,1

4,5
c

d

f

e

b

5,7

2,2

2,15,6

3,3

(d) Step 4

a

0,0

0,0

0,0
4,5

4,5
c

d

f

e

b

5,7

2,15,6

3,3

(b) Step 2

a

4,51,1

4,5

c

d

f

e

b

1,2

5,7

2,2

2,15,6

3,3

(a) Step 1

Figure 7.9: Example 2 of the operation of DIMCRA.

7.5.2 Properties of DIMCRA

By reversing the shortest path P1, finding a shortest path P2 in the modified graph
and constructing the solution set based on these two shortest paths P1 and P2, the
disjointedness of the two paths in the solution set is guaranteed. Setting the weights
of the direction-reversed P1 links to zero guarantees loop-freeness. For, if no negative
link weights are used in a graph, negative cycles cannot occur and loops can be avoided
by the non-dominance check in SAMCRA. Compared to the operation of negating
direction-reversed P1 link weights, assigning the weights zero still encourages the choice
of the reversed P1 links on a path, but with less intensity.
DIMCRA does not always find the set of feasible link-disjoint paths. Hence, it may

be possible to further optimize DIMCRA, such that it can guarantee to always find
a set of feasible link-disjoint paths, if they exist. However, DIMCRA in its current
state performs better than the RF method (as was indicated in the examples). Both

7.6. CONCLUSIONS 129

0,0

0,0

0,0
4,5

4,5

c

d

f

e

b

5,7

3,3

(a) Step 5

a

0,0 4,5

4,5
c

d

f

e

ba

5,7

3,3

(b) Step 3

0,0

0,0

4,51,1

4,5

c

d

f

e

b

1,2

5,7

2,2

2,15,6

3,3

(c) Step 4

0,0

Figure 7.10: Example 3 of the operation of DIMCRA.

methods return the same solution when {P 0
1, P

0
2} = {P1, P2} and P1 ∩ P2 = ∅. In all

other cases DIMCRA either returns a better solution than RF or RF does not find a
solution where DIMCRA does. Since, to our knowledge, currently no other algorithms
for solving MCLPP exist, the performance of DIMCRA has not been evaluated and
compared. We have only indicated its superiority over the RF method.

7.6 Conclusions

The link-disjoint paths problem occurs in network design, where aspects as survivability,
load balancing, and efficient resource utilization are strived for. This problem has
barely been investigated in the context of QoS routing, where a path is characterized
by multiple measures. A simple algorithm for solving the one-dimensional problem

130 CHAPTER 7. LINK-DISJOINT QOS ROUTING

(a) Step 1

1,2

c

d

e

b

1,2 2,1

5,1

3,1

6,1
a

(b) Step 2

0,0

c

d

e

b

0,0 0,0

5,1

0,0

6,1
a

(c) Step 3

0,0

c

d

e

b

0,0 0,0

5,1

0,0

6,1
a

(d) Step 4

1,2

c

d

e

b

1,2 2,1

5,1

3,1

6,1
a

(e) Step 5

0,0

c

d

e

b

0,0 0,00,0

Figure 7.11: Example of the operation of DIMCRA with constraints (10,10).

was presented in this chapter. The problems surrounding the extension of this simple
algorithm to multiple dimensions were discussed. A heuristic algorithm DIMCRA was
proposed to find link-disjoint multi-constrained paths between a pair of source and
destination nodes. If DIMCRA returns a link-disjoint pair of paths, then they always
obey the constraints. However, DIMCRA’s solution is not necessarily optimal in terms
of minimizing the total length of the returned paths or guaranteeing to always find a
feasible set. Its performance however is better than the simple Remove-Find method.

Chapter 8

The complexity of exact MCP
algorithms

In the previous chapters, the concepts of QoS routing were presented and QoS algo-
rithms for unicast, multicast, and link-disjoint QoS routing were proposed. QoS routing
embodies an NP-complete problem. This chapter will look into the complexity of uni-
cast QoS routing to see whether exact algorithms for it will provide a feasible solution
in practice.
In particular, the complexity of exactly solving the MCP problem is explored. The

MCP problem and the notation used were presented in Chapter 1.
This chapter is organized as follows. Section 8.1 presents an overview of related

work. Section 8.2 analyzes the worst-case NP complexity of the MCP problem. The
proof that the MCP problem is NP-complete strongly depends on the size of the link
weights and the level of correlation between those link weights. Section 8.3 evaluates,
mathematically and simulative, the impact of correlation on the complexity of solving
the MCP problem. Section 8.4 discusses the impact of the constraint values on the com-
plexity and introduces the concept of phase transitions in the MCP problem. Finally,
Section 8.5 epitomizes the conclusions.

8.1 Related work

Garey and Johnson [57] were the first to list the MCP problem with m = 2 as being
NP-complete, but they did not provide a proof. Wang and Crowcroft have provided this
proof for m ≥ 2 in [171] and [170]. Their proof basically consisted of reducing the MCP
problem for m = 2 to an instance of the partition problem, a well-known NP-complete
problem [57]. The effect of this proof has been tremendous, because it connotes to many
that the MCP problem is intractable, in which case heuristics should be used. Many
simulations performed in [37], [38], [100], [163], [166] suggest that exact QoS routing

131

132 CHAPTER 8. THE COMPLEXITY OF EXACT MCP ALGORITHMS

may not be intractable in practice. There are certain NP-complete problems, such as
partition, which are considered by many practitioners to be tractable in practice. The
reason for this is that, although no algorithms for solving them in time bounded by
a polynomial in the input length (e.g., N,M) are known, there exist algorithms that
solve those problems in time bounded by a polynomial in the input length and the
magnitude of the largest number (e.g., largest QoS weight or constraint), in the given
problem instance [56]. Such algorithms are called pseudo-polynomial time algorithms.
NP-complete problems for which no exact pseudo-polynomial time algorithm exists, are
called NP-complete in the strong sense. In the case of the partition problem, the NP-
completeness strongly depends on the fact that arbitrarily large numbers are allowed.
If any upper bound was imposed on these numbers in advance, even a bound which is a
polynomial function of the input length, there would exist a polynomial time algorithm
for solving this (restricted) problem [56].
David Pisinger [134] has evaluated Knapsack problems, which are NP-complete

problems (proved via reduction to the partition problem) and found that in practice
these problems are tractable. For many more NP-complete problems, typical cases are
“easy” to solve. A study of the phenomenon that typical cases are “easy,” was per-
formed by Cheeseman et al. [26], who introduced the concept of phase transitions in
NP-complete problems. According to Cheeseman et al., NP-complete problems which
are very under-constrained are soluble and it is usually easy to find one of the many
solutions. NP-complete problems which are very over-constrained are insoluble. In
the phase transition in between, as illustrated in Figure 8.1, problems are “critically
constrained” and it is typically very hard to determine if they are soluble or insoluble
[58]. For a more formal discussion of phase transitions we refer to [41]. Cheeseman et
al. have conjectured that all NP-complete problems have at least one order parameter
and that the hard to solve problems are around a critical value of this order parameter.
Although this conjecture does not hold for all NP-complete problems, there seems to
be a connection between complexity and phase transitions. The lack of a phase transi-
tion seems to have significant computational implications [82]: such problems are either
computationally tractable, or well-predicted by a single, trivial algorithm. Note that
the existence of a phase transition may also occur in problems that are not NP-complete
(e.g., see [44]). Monasson et al. [116], have reported an analytic solution and experi-
mental investigation of the phase transition in K-satisfiability (the first problem shown
to be NP-complete). Gent and Walsh [58] have shown that phase transitions occur in
the partition problem.
Levin [106] advocated a different study of NP-complete problems by introducing the

concept of average-case complexity. He indicated that some NP-complete problems are
“easy on average,” while other (average case NP-complete) problems may not be.
There exists also some work in the literature revealing important properties of the

MCP problem. Three of those properties strengthen our belief that in practice exact
QoS routing is tractable. First of all, the MCP problem is not strong NP-complete.

8.2. WORST-CASE COMPLEXITY ANALYSIS 133

100%

Over-
constrained

Critically
constrained

Under-
constrained

%
 so

lv
ab

le

Phase
transition

100%

Over-
constrained

Critically
constrained

Under-
constrained

%
 so

lv
ab

le

Phase
transition

Figure 8.1: The solubility of an NP-complete problem around a phase transition.

Secondly, if all, but one, measures take bounded integer values, then the MCP problem
is solvable in polynomial time [27]. Finally, if some specific dependencies exist between
the QoS measures, exact QoS routing can be performed in polynomial time [114]. The
goal of this chapter is to provide more evidences that suggest the tractability of exact
QoS routing, in practice.

8.2 Worst-case complexity analysis

In this section, the worst-case complexity of the MCP problem will be analyzed. First,
for perspicuity, we will provide a more condensed version of the proof that the MCP
problem is NP-complete [171], [170], and refer to it as the NP-proof.

Theorem 51 The MCP problem for m ≥ 2 is NP-complete.

Proof. First, the theorem is proved for m = 2. Given a chain topology with n + 1
nodes and 2n links, each with a two-component weight vector �w as depicted in Figure
8.2 and a set of numbers ai ∈ A, 0 ≤ ai ≤ S, for i = 1, ..., n, where S =

Pn
i=1 ai.

The constraints are chosen as follows: L1 = nS − S
2
and L2 =

S
2
. To solve the MCP

problem, we need to find a path from node 1 to node n+1, that obeys the constraints.

134 CHAPTER 8. THE COMPLEXITY OF EXACT MCP ALGORITHMS

i i+1

S
0

S-ai
ai

Figure 8.2: The assignment of link weights to the links between nodes i and i+ 1, in a
chain topology.

Since, for all link weight vectors, the sum of the components equals S, we have that
w1(P) + w2(P) = nS. Accordingly, a solution satisfying the constraints is only found
if w1(P) = nS − S

2
and w2(P) =

S
2
. The problem has now become an instance of the

well-known NP-complete partition problem [57] and can only be solved by finding the
set A0 ⊆ A, for which

P
ai∈A0 ai =

S
2
. A feasible path exists if the set A0 exists, in which

case it is retrieved by choosing the lower link if ai ∈ A0 and the upper link if ai /∈ A0.
This proves that the MCP problem with m = 2 is NP-complete. The proof that

MCP for m > 2 is NP-complete inductively follows. Assume that the MCP problem
with m measures is NP-complete. If we extend the number of measures with 1 to m+1
and choose Lm+1 =

P
(u,v)∈E wm+1(u, v), then all paths between source and destination

obey this constraint. The MCP problem with m+1 measures is then only solved if the
MCP problem with m measures is solved. This concludes the proof.

If the constraints are chosen such that only one feasible path exists, then the MCP
problem is equal to the MCOP problem and hence the MCOP problem is also NP-
complete.

Corollary 52 The MCP problem is not NP-complete in the strong sense.

Proof. The MCP problem is not strong NP-complete, because there exist pseudo-
polynomial algorithms that exactly solve this problem (see [85], [111]).
The proof that a problem is NP-complete or not is entirely based on a worst-case

argument. A problem is called polynomially solvable if it can be solved by an algorithm
that terminates after a number of steps (instructions) that is bounded by a polynomial
in the input length. A problem is called NP-complete if there is even one instance that
is not polynomially solvable (unless P = NP). It may occur that, in some instances,
the running time required to solve the MCP problem is polynomial. We call those

8.2. WORST-CASE COMPLEXITY ANALYSIS 135

polynomially solvable instances “tractable” and we will use the term “intractable” when
instances require a running time that cannot be bounded by a polynomial function in
the input length (i.e., they are not polynomially solvable).
We desire to distinguish the instances of the MCP problem that are tractable and

those that are intractable. If we look at the graph on which the MCP problem should
be solved, we could delineate the class of polynomially solvable graphs, i.e. the class
of graphs in which the number of paths between two nodes increases as a polynomial
function of N (e.g., tree-, circle-, and star-topologies). This class of graphs is most likely
very small and therefore most graphs potentially can lead to intractability. Fortunately,
the underlying topology alone is not sufficient to lead to intractability: a specific link
weight structure is mandatory. For instance, if all link weights are assigned the value 1,
then the MCP problem is polynomially solvable, regardless of the underlying topology.
We will proceed by defining a link weight structure that leads to intractability in the
chain topology. We will use the chain topology as depicted in Figure 8.3 and ascertain
that all paths from source s to destination t are non-dominated (see Section 4.3).
In general, there are two important properties that can reduce the search space,

when solving the MCP problem, without loosing exactness, namely non-dominance
and the constraints themselves. If a sub-path P , from source node s to node i, exceeds
one or more constraints, it can never become a feasible path1, because the path weight
vector from i to destination node t consists of non-negative weights. Similar, if for
two paths P1, P2 from s to i holds that P1 dominates P2, then all weights of P1 are
smaller than (or equal to) those of P2 and hence P2 can be eliminated from the search
space [38]. In Section 4.3, the maximum number of non-dominated paths that obey
the constraints was shown to be upper bounded by

m
i=1 Li

maxj(Lj)
, where the constraints Li

are expressed as an integer number of the smallest granularity. This value provides a
worst-case estimate of the size of our search space.
According to Levin [106], some NP-complete problems are “easy on average,” while

other (average-case NP-complete) problems may not be. The average-case complexity
therefore also gives some indication whether an NP-complete problem could be tractable
in practice. In [166] we have shown that if the path weights are independently distrib-
uted in the solution space, then the MCP problem can be solved in polynomial time on
average.
Without loss of generality, assume that the link weights in Figure 8.3 are chosen

such that ai > ci and bi < di, for i = 1, ..., N (ci > ai and di < bi would also have been
possible). It can be verified that if ai ≥ ci and bi ≥ di or ci ≥ ai and di ≥ bi were
allowed, this would lead to dominance. Under this assumption, the following property
holds.

1This also holds for the lower bound estimation of the end-to-end path weight vector �w(P) + �b,
where �b denotes a lower-bounds vector consisting of the m one-dimensional shortest path weights from
i to t.

136 CHAPTER 8. THE COMPLEXITY OF EXACT MCP ALGORITHMS

i i+1

ci
di

ai
bi

Figure 8.3: A chain topology with two QoS weights per link and N nodes in total.

Property 53 If, in the chain topology in Figure 8.3, there holds that(
ai − ci >

Pi−1
j=0 (aj − cj)

bi − di <
Pi−1

j=0 (bj − dj)
(8.1)

for i = 1, ..., N − 1, where a0 = b0 = c0 = d0 = 0, then all 2N−1 paths from node 1 to
node N are non-dominated.

Proof. A proof by induction.

i = 1 : There are two paths from node 1 to node 2, namely P1(1 → 2) =

µ
a1
b1

¶
and

P2(1 → 2) =

µ
c1
d1

¶
. According to formula (8.1): a1 > c1 and b1 < d1, which shows

that both paths from node 1 to node 2 are non-dominated.
The inductive step is to assume the correctness of formula (8.1) for a certain i. It
remains to prove that it also holds for i+ 1:
There are 2i−1 paths from node 1 to i. From i there are two possible links to i+1,
resulting in a total of 2i paths from node 1 to node i+1. 2i−1 paths will follow the
upper link from i to i+1, while the remaining 2i−1 paths will follow the lower link.
Since all paths at i are non-dominated (inductive assumption), the paths following the
upper link are also non-dominated, because the same vector is added to each of the
path vectors. The same property applies to the paths that follow the lower link. It
remains to show that if (8.1) holds, then the paths following the upper link and the
paths following the lower link do not dominate each other.
If (8.1) is obeyed, then all paths following the upper link possess a first path weight
that is larger than the first weights of the paths following the lower link. Similar, the
paths following the lower link have a second weight, which is larger than the second
weights of the paths following the upper link. Hence the paths following different links
are non-dominated.

8.2. WORST-CASE COMPLEXITY ANALYSIS 137

The partition problem is NP-complete, because the values involved in an instance
of the partition problem may be arbitrarily large (or have an infinite granularity). The
same phenomenon is observed in formula (8.1), where the difference between ai and ci
(and correspondingly di and bi) grows exponentially:

ai+1 − ci+1 >
iX

j=0

(aj − cj) = (ai − ci) +
i−1X
j=0

(aj − cj)

> 2
i−1X
j=0

(aj − cj) > ... > 2i−1(a1 − c1)

If ai in the NP-proof are not chosen according to formula (8.1), but if they take bounded
integer values, then the problem becomes polynomially solvable.
A second important phenomenon observed from formula (8.1) is that the link weights

display a perfect negative correlation. If the link weights would have had a positive
correlation, then if ai > ci most likely also bi > di, leading to dominance.

Corollary 54 Property 53 is a sufficient but also necessary condition for all paths in
the chain topology to be non-dominated.

Proof. We need to show that if formula (8.1) does not hold, then at least one path from
node 1 to node i + 1 is dominated. If (8.1) does not hold, either one of the following
formulas holds. (Pi−1

j=0 cj + ai ≤
Pi−1

j=0 aj + ciPi−1
j=0 dj + bi ≥

Pi−1
j=0 bj + di

(8.2)

or (Pi−1
j=0 cj + ai >

Pi−1
j=0 aj + ciPi−1

j=0 dj + bi ≥
Pi−1

j=0 bj + di
(8.3)

or (Pi−1
j=0 cj + ai ≤

Pi−1
j=0 aj + ciPi−1

j=0 dj + bi <
Pi−1

j=0 bj + di
(8.4)

These formulas have been written in a slightly different from (8.1) to illustrate that
they correspond to two paths, namely the path that followed all the lower links up to
node i and took the upper link from node i to node i+1 and the path that took all the
upper links towards node i and the lower link from node i to node i+1. Formula (8.2),
without the equalities, is exactly the same as (8.1), but a is called c and b is called d.
If the equality sign applies, then the path that followed all the lower links up to node i
and took the upper link from node i to node i+1 is the same as the path that took all
the upper links towards node i and the lower link from node i to node i+1. According
to our definition of non-dominance (see Section 4.3), only one of these two paths is

138 CHAPTER 8. THE COMPLEXITY OF EXACT MCP ALGORITHMS

non-dominated. When formula (8.3) applies, the path that followed all the lower links
up to node i and took the upper link from node i to node i + 1 is dominated by (or
dominates in the case of formula (8.4)) the path that took all the upper links towards
node i and the lower link from node i to node i+ 1.
Property 53 and corollary 54 seem very restrictive, because they are solely based

on the chain topology and all paths must be non-dominated. If only a subset of all
paths (that increases non-polynomially in N) were non-dominated, then the problem
would still be intractable. However, if only such a subset of all paths would be non-
dominated, then property 53 must hold for that subset. Otherwise, all link weights
would be bounded and the problem would be polynomially solvable.
Also the chain topology can be put into perspective. Links in the chain topology

can be seen as sub-paths.

Corollary 55 If there are more than two links (all with two weights) between two nodes
in the chain topology, formula (8.1) should hold for all possible pairs of links, in order
for all paths from node 1 to node N to be non-dominated.

In practice, it is not likely links/sub-paths obey formula (8.1). If formula (8.1) is
not obeyed, corollary 55 suggests that when there are many sub-paths to a node, the
probability that all these paths are non-dominated decreases and consequently also the
search space decreases.
At the beginning of this section we have mentioned that there are two important

properties to reduce the search space, namely non-dominance and the values of the
constraints. If the constraint-values are chosen very large, then it will be easy to find a
path that obeys these constraints. On the other hand, if the constraint values are very
strict, there may not be a path available that can obey these constraints. For the chain
topology, besides formula (8.1), the constraints must lie in the range:(PN−1

j=0 cj ≤ L1 ≤
PN−1

j=0 ajPN−1
j=0 dj ≥ L2 ≥

PN−1
j=0 bj

to lead to NP-completeness (i.e., then the MCP problem reduces to the partition prob-
lem as illustrated in the NP-proof). Since ci < ai, the shortest path for measure 1 from
node 1 to node N , equals

PN−1
j=0 cj. If L1 <

PN−1
j=0 cj, then no feasible path exists. If

L1 >
PN−1

j=0 aj, then all possible (loop-free) paths can obey this constraint. The same
reasoning applies to L2 and is further motivated in Section 8.4. In this section, the
chain topology was used to create an intractable instance of the MCP problem. This
instance provided some hints on the underlying causes of intractability. Section 8.3 will
further evaluate the impact of correlation on the complexity of QoS routing.

8.3. THE IMPACT OF LINK CORRELATION ON COMPLEXITY 139

a

b

c

x1
f(x1)

x2
f(x2)

x3
f(x3)

Figure 8.4: An example topology.

8.3 The impact of link correlation on complexity

Section 8.2 hinted at a connection between link correlation and complexity. This section
will expatiate on the impact of link correlation on the complexity of QoS routing, by
giving some properties and presenting simulation results. Specifically, intra-link corre-
lation is treated, where the m measures on a link are correlated. Inter-link correlation
refers to correlation over different links.

8.3.1 Theory

Ma and Steenkiste [114] have shown that when specific dependencies (correlation) exist
between QoS measures due to Weighted Fair Queueing scheduling, QoS routing can be
performed in polynomial time. However, it is a misconception that if all QoS measures
are a function of a common measure, then by just minimizing this common measure, we
will have minimized all measures. We will illustrate that this is not always the case and
provide some conditions when this statement holds. We will denote by f(.) a convex
function, by ϕ(.) a concave function, by ψ(.) a linear function and by g(.) a monotone
increasing function.
Consider Figure 8.4. If f(x) is a convex function, then the shortest path based on x

is not necessarily the shortest path for f(x). For example, suppose that f(x) = ex and
x1 = 2, x2 = 2, x3 = 3. Then, the shortest path from a to c is a− c for x, but a− b− c
for f(x).
Likewise, if ϕ(x) is a concave function, then the shortest path based on x is not

necessarily the shortest path for ϕ(x), e.g. ϕ(x) = log(x) and x1 = 1.2, x2 = 1.2,
x3 = 2.2. In that case, the shortest path from a to c is a − c for x, but a − b − c for
ϕ(x).
If a linear function ψ(x) = ax + b is used, then the shortest path based on x will

also be the shortest path for ψ(x) if a > 0 and b = 0. If b 6= 0, then the shortest path

140 CHAPTER 8. THE COMPLEXITY OF EXACT MCP ALGORITHMS

based on x may differ from the shortest path based on ψ(x).
In the rest of this subsection we consider graphs, for which all link weights are a

function of a common link weight. Each link i has a weight vector �w =

 f1(xi)
...

fm(xi)

,
where xi is the common link parameter (links may have different xi and different fj).
In the sequel, this graph is referred to as Gw. We also introduce the graph Gx, which
is identical in structure to Gw, but for which the links only have weight xi.
Let Px be the shortest path from source s to destination t in Gx, then

w(Px) =
X
i∈Px

xi ≤ w(P) =
X
i∈P

xi

where P is any other path (6= Px) from s to t in Gx. Let ϕ(x) be a concave function,
then

ϕ(
1

h

hX
i=1

xi) ≥ 1
h

hX
i=1

ϕ(xi)

where h is the hop count of a path P .

Property 56 If the weight vector of a link, �w =

 ϕ1(xi)
...

ϕm(xi)

 with ϕj(xi) concave

functions, is a function of a single parameter xi and if P is the shortest path from s to
t in Gx with length X =

Ph
i=1 xi and hop count h, then P in Gw satisfies the constraint

vector �L if

X ≤ hϕ−1j

µ
Lj

h

¶
, 1 ≤ j ≤ m (8.5)

Proof. The constraints are obeyed if
P

i∈P ϕj(xi) ≤ Lj. Since ϕj are concave functions:

hX
i=1

ϕj(xi) ≤ hϕj

Ã
1

h

hX
i=1

xi

!
≤ Lj

or,

ϕj

Ã
1

h

hX
i=1

xi

!
≤ Lj

h

8.3. THE IMPACT OF LINK CORRELATION ON COMPLEXITY 141

Hence,

X =
hX
i=1

xi ≤ hϕ−1j

µ
Lj

h

¶

Note that although P is the shortest path in Gx, this does not mean that P is
also the shortest path in Gw (there may be another path P 0 for which

P
i∈P 0 ϕ(xi) <P

i∈P ϕ(xi)). Equation (8.5) is a sufficient, but not a necessary condition, because there
may be a path that does not obey (8.5) but still satisfies the constraints.

Property 57 If the weight vector of a link, �w =

 f1(xi)
...

fm(xi)

 with fj(x) convex func-

tions, is a function of a single parameter xi and if P is the shortest path from s to t in
Gx with length X =

Ph
i=1 xi and hop count h, then P (and therefore all paths) violates

the constraints in Gw if

X > hf−1j

µ
Lj

h

¶
(8.6)

for at least one j.

Proof. On the convexity,

hfj

Ã
1

h

hX
i=1

xi

!
= hfj

µ
X

h

¶
≤

hX
i=1

fj(xi)

The j-th constraint is violated if
Ph

i=1 fj(xi) > Lj, which is the case if hfj
¡
X
h

¢
> Lj,

which is equivalent to (8.6).

Property 58 If the weight vector of a link �w =

 g1(xi)
...

gm(xi)

 with gj(xi) monotone

increasing and P is the shortest minimum-hop path from s to t in Gx and xi ≤ x0i,
where x0i is the i-th ordered common link weight of an other path P

0 from s to t in Gx,
then P is also the shortest path in Gw.

Proof. The property is a corollary from Theorem 107 from [70]: suppose that the
sets (a) and (a0) are arranged in descending order of magnitude. Then a necessary and
sufficient condition that g (a01) + ...+ g (a0n) ≤ g (a1) + ...+ g (an) should be true for all
continuous and increasing g is that a0v ≤ av (v = 1, 2, ..., n).

142 CHAPTER 8. THE COMPLEXITY OF EXACT MCP ALGORITHMS

8.3.2 Simulation results

In this section we will evaluate the complexity of QoS routing through simulations. The
simulation results will be based on several classes of graphs, namely the class of random
graphs, the class of two-dimensional lattices, the class of power-law graphs and the chain
topology. The class of random graphs is of the type Gp(N) [21], where p is the expected
link-density (p = 0.2). We only consider square two-dimensional lattices. For the class
of Internet-like power-law graphs [48], we have chosen the power α = 2.4 in the nodal
degree distribution Pr[d = k] ∼ k−α. The chain topologies were of a triangular shape
(like depicted in Figure 8.4). We have simulated with three different distributions for
the m = 2 link weights, namely the uniform, exponential and Gaussian distributions.
However, only the simulation results for correlated uniformly distributed link weights
∈ [0, 1] with correlation coefficient2 ρ [120] are presented, because they led to a higher
complexity than the exponential and Gaussian distributions. All simulations consisted
of generating 105 different graphs and in each graph a path has been computed via the
SAMCRA algorithm (see Section 4.6). SAMCRA does not only exactly solve the MCP
problem, but also exactly solves the MCOP problem by finding the optimal path within
the constraints. Since the MCOP problem is more difficult than the MCP problem, the
simulation results presented here should be interpreted as an upper bound. We have
simulated a worst-case scenario by choosing the constraints so large that all paths can
satisfy the constraints. Therefore, SAMCRA must search in the largest search space
possible (all non-dominated paths between the source and destination), for the optimal
path. If SAMCRA was only solving the MCP problem, choosing such large constraints
would make the MCP problem “easy,” because then any path is a solution to the MCP
problem. During all simulations, we kept track of the minimum queue-size (kmin) needed
to find a feasible path. This queue-size can grow as a factorial in the worst-case and
presents our measure for complexity in QoS routing. If TAMCRA, the polynomial-time
predecessor of SAMCRA, had used this particular kmin under the same conditions, it
would have found the same optimal path as SAMCRA did. If a smaller queue-size had
been used, TAMCRA would not have been able to find the optimal path.
As illustrated in Figures 8.5-8.7, the results for the class of random graphs, do not

display any intractability. We can see that a positive correlation leads to a slightly
higher E[kmin] than with a negative correlation. This peculiar phenomenon has only
been observed in the class of random graphs, with correlated uniformly distributed link
weights. An explanation can be found by looking at Figure 8.8. Figure 8.8 shows that a
positive correlation between the link weights may induce a higher expected hop count.
When the link weights become more positively correlated, the weights become similar,
and the problem approaches the m = 1 case. Since, the expected hop count of the
m-dimensional shortest paths approach the minimum hop count if m grows to infinity

2We have verified that the correlation coefficient ρ0 of the generated random variables equals the
desired ρ.

8.3. THE IMPACT OF LINK CORRELATION ON COMPLEXITY 143

Figure 8.5: Expected queue-size for the class Gp(N), with m = 2 uniformly distributed
correlated link weights, as a function of the number of nodes N and the correlation
coefficient ρ.

144 CHAPTER 8. THE COMPLEXITY OF EXACT MCP ALGORITHMS

Figure 8.6: Variance in queue-size for the classGp(N), withm = 2 uniformly distributed
correlated link weights, as a function of the number of nodes N and the correlation
coefficient ρ.

8.3. THE IMPACT OF LINK CORRELATION ON COMPLEXITY 145

Figure 8.7: The maximum observed queue-size in the classGp(N), withm = 2 uniformly
distributed correlated link weights, as a function of the number of nodes N and the
correlation coefficient ρ.

146 CHAPTER 8. THE COMPLEXITY OF EXACT MCP ALGORITHMS

Figure 8.8: The expected hopcount for the class Gp(N), with uniformly distributed
correlated link weights, as a function of the number of nodes N and the correlation
coefficient ρ.

[163], the m = 1 case is expected to have the largest hop count. A negative correlation
between the link weights also leads to shorter paths, in terms of hop count. A low
hop count is possible because there are sufficiently many paths in Gp(N), which can be
viewed as a thinning of a complete graph provided p > lnN

N
. For negative correlated

link weights, a small link weight component is likely accompanied with a large one. For
perfect negatively correlated link weight components (ρ = −1), SAMCRA’s shortest
length path (4.3) compensates outliers in the link weight components, such that (one or
two) links with weight components close to 1

2
are selected, which leads to the observed

minimum-hop paths.

In general, the more hops that are traversed to find the shortest path, the more (sub)-
paths must be evaluated and the more complex the computation becomes. We believe

8.3. THE IMPACT OF LINK CORRELATION ON COMPLEXITY 147

that one of the measures for the “computational complexity” of a class of topologies is
the expected (minimum) hop count of an arbitrary path in that topology. The expected
hop count (for m = 1) scales as O(logN) in a random graph, while as O(

√
N) in a two-

dimensional lattice and O(N) in the chain topology. Besides the expected hop count
in a graph, also the number of paths between a source and destination can provide a
measure for the “computational hardness” of a class of topologies. The class of random
graphs with p = 0.2 and N increasing, has an increasing number of paths and an
increasing average nodal degree, giving the graph a small diameter (i.e., the source
and destination are directly linked or a few hops apart). This can be interpreted from
Figure 8.8. Figure 8.9 gives the expected queue-size for three different classes of graphs,
namely the random graphs (p = 0.2), the two-dimensional lattices and the Internet-like
power-law graphs (with power α = 2.4). For all three classes of graphs, the source and

N

200 400 600 800

E
[k

]

0

10

20

30

Random
Power
Lattice1
Lattice2

Figure 8.9: The expected queue-size for different topology classes as a function of the
number of nodesN , withm = 2 independent (ρ = 0) uniformly distributed link weights.

destination nodes were chosen randomly. Only for the class of two-dimensional lattices
“Lattice2,” the source and destination nodes were chosen in opposite corners, to attain
the largest minimum hop count. In the class of random graphs Gp(N), although the

148 CHAPTER 8. THE COMPLEXITY OF EXACT MCP ALGORITHMS

number of paths is large, the expected hop count is small, leading to a small complexity.
For the extreme regular class Lattice2, the number of paths and the expected hop
count is large, which leads to a large complexity. The class of power-law graphs may
be considered, in terms of randomness, to lie between the random graphs and the two-
dimensional lattices. The power-law graphs with α = 2.4 have a moderate expected hop
count and a small number of paths and lie, in terms of complexity, closer to the class
of random graphs than to the class of two-dimensional lattices. We have also simulated
with different link weight distributions, namely Gaussian and exponentially distributed
correlated link weights. When using exponentially distributed correlated link weights,
the first weight has a higher probability of being small, than with a uniform distribution.
With a uniform distribution, each value for the first weight is equiprobable. Therefore,
with exponentially (and also Gaussian) distributed correlated link weights, there is a
higher probability that the link weight vectors are similar. For uniformly distributed
link weights there is a larger variability, leading to a somewhat worse performance than
in the exponential (or Gaussian) case. However, in all cases the expected queue-size in
the class of random graphs was close to one, leading to a complexity similar to that of
Dijkstra’s algorithm. These simulation results therefore suggest that, irrespective of the
link weight structure, QoS routing in the class of random graphs (and according to [162]
also Waxman graphs) is possible in polynomial time. In contrast, the regularity and
large expected hop count in the class of two-dimensional lattices, may provide ground
for worst-case behavior. Indeed, we can observe a tendency towards exponential growth
in Figure 8.10 and true exponential growth in Figure 8.11.
Because the chain topology was used in the proof that the MCP problem is NP-

complete, we have also evaluated the performance of SAMCRA in chain topologies.
The results are plotted in Figures 8.12 and 8.13.
Our simulation results3 indicate that in the class of two-dimensional lattices and

chain topologies, there is hardly any worst-case behavior for the entire range of cor-
relation coefficient ρ, except for extreme negative values. Recall that the NP-proof is
based on an extreme negative link correlation. We doubt that in practice link weights
will display such a negative correlation, suggesting that exact QoS routing in practice,
irrespective of the underlying topology, is possible in polynomial time.

8.3.3 Inter-link correlation

Inter-link correlation refers to the correlation amongst weights over multiple links. Be-
cause a graph has M links, M weights have to be correlated to each other. Even for
Gaussian random variables this is a complex task, so only this Gaussian distribution is
investigated.
The Gaussian random variable X is defined for all x by the probability density

3Recall that the simulation results reflect the complexity of the much more difficult MCOP problem.

8.3. THE IMPACT OF LINK CORRELATION ON COMPLEXITY 149

Figure 8.10: The expected queue-size in the class of two-dimensional lattices as a func-
tion of the number of nodes N and correlation coefficient ρ. The m = 2 link weights
were uniformly distributed and the source and destination nodes were chosen in opposite
corners.

function

fX(x) =
1

σ
√
2π
exp

·
−(x− µ)2

2σ2

¸
where µ gives the average and σ2 the variance (often the notation N(µ, σ2) is used).

M random variables X = X1,X2, ...,XM are called jointly Gaussian if their joint
probability density function equals

fX1,X2,...,XM
(x1, x2, ..., xM) =

1

|C|1/2p(2π)M exp

·
− [x− E[X]]

T [x− E[X]]
2C

¸

where [x − E[X]] =
 x1 − E[X1]

:
xM − E[XM]

 and C is an M × M covariance matrix with

elements Cij = E[(Xi − E[Xi])(Xj − E[Xj])]. The covariance matrix (or correlation

150 CHAPTER 8. THE COMPLEXITY OF EXACT MCP ALGORITHMS

Figure 8.11: The expected queue-size in the class of two-dimensional lattices as a func-
tion of the number of nodes N, with correlation coefficient ρ = −1. The m = 2 link
weights were uniformly distributed and the source and destination nodes were chosen
in opposite corners.

8.3. THE IMPACT OF LINK CORRELATION ON COMPLEXITY 151

Figure 8.12: The expected queue-size in the chain topology, with m = 2 correlated
uniformly distributed link weights forN = 50, as a function of the correlation coefficient
ρ.

152 CHAPTER 8. THE COMPLEXITY OF EXACT MCP ALGORITHMS

Figure 8.13: The expected queue-size in the chain topology, with m = 2 correlated
(ρ = −1) uniformly distributed link weights as a function of the number of nodes N .

8.4. THE IMPACT OF CONSTRAINTS ON COMPLEXITY 153

matrix if divided by the variances) specifies the correlation among theM variables. For
C to be a valid covariance matrix it has to be a positive definite symmetric matrix, i.e.
a real-valued, symmetric matrix with positive eigenvalues. Hence, it must be possible
to express C in the form C = ΓΛΓT , where Λ is a diagonal matrix that consists of the
eigenvalues of C and Γ is an orthogonal matrix with the eigenvectors of C as columns.
It is possible to generate a vector Y = AX of jointly Gaussian random variables with

covariance CY = AAT = (ΓΛ1/2)(Λ1/2Γ)T and X a vector of zero-mean, unit-variance
uncorrelated Gaussian random variables.
By means of simulations we have investigated whether inter-link correlation alone

(i.e., with intra-link correlation ρintra = 0) can lead to worst-case scenarios. The diffi-
culty in such simulations is to find a valid and “hard” covariance matrix. In [87] we have
utilized several approaches, where we generated various types of (regular and random)
covariance matrices and checked if they were indeed positive definite via Cholesky de-
composition. In cases where Cholesky decomposition failed, the nearest positive definite
covariance matrix was returned. The specific classes of matrices that were used can be
found in [87]. Another approach was to directly generate valid covariance matrices via
the random generation of Γ and Λ in C = ΓΛΓT . Our last approach consisted of man-
ually correlating links to each other. All simulations were conducted on square lattices
and the results can be found in [87]. However, in all simulations for which ρintra = 0, the
inter-link correlation as induced by the covariance matrices did not cause exponential
running times. This suggests that inter-link correlation alone cannot establish a worst-
case scenario. Unfortunately this claim cannot be substantiated without examining all
possible types of covariance matrices. Since this is impossible, we have tried to vary
our choice of covariance matrices as much as possible.

8.4 The impact of constraints on complexity

In this section we analyze the influence of the constraints on the complexity of the MCP
problem. For this purpose, we will initiate an evaluation of a phase transition [26], [74]
in the MCP problem.

8.4.1 Theory

Property 59 Let Ps−t;i denote the one-dimensional shortest path from source s to des-
tination t for which wi(Ps−t;i) ≤ wi(P

∗), ∀P ∗. Then, the MCP and MCOP problems
are not NP-complete when

Li < wi(Ps−t;i) (8.7)

for at least one constraint.

Proof. Ps−t;i is the path with the shortest i-th weight wi(Ps−t;i). Therefore, wi(Ps−t;i)
is a lower bound on the i-th weight wi(Ps−t) that any path Ps−t between s and t can

154 CHAPTER 8. THE COMPLEXITY OF EXACT MCP ALGORITHMS

attain. Thus, if for any constraint i holds that Li < wi(Ps−t;i), then no path Ps−t can
obey Li. Since Ps−t;i can be found in polynomial time (e.g., via the Dijkstra algorithm),
the MCP problem is solvable (it is verified that no solution exists) in polynomial time
if any constraint obeys (8.7).

Property 60 Let Ps−t;i denote the one-dimensional shortest path from source s to des-
tination t for which wi(Ps−t;i) ≤ wi(P

∗), ∀P ∗. Then, the MCP problem is not NP-
complete when

Li ≥ max
j=1,...,m

(wi (Ps−t;j)) (8.8)

for at least m− 1 constraints.
Proof. If Li ≥ maxj=1,...,m (wi (Ps−t;j)) for allm constraints, then allm one-dimensional
shortest paths Ps−t;i (for i = 1, ...,m) obey the constraints. Hence any path Ps−t;i can
be chosen as a feasible path.
If Li ≥ maxj=1,...,m (wi (Ps−t;j)) for m − 1 constraints (say i = 1, ...,m − 1) and

Li < maxj=1,...,m (wi (Ps−t;j)) for one constraint (i = m), then if Lm ≥ wm(Ps−t;m) path
Ps−t;m obeys all m constraints. If Lm < wm(Ps−t;m), then according to property 59 no
feasible path exists. Since the paths Ps−t;i can be found in polynomial time (e.g., via
the Dijkstra algorithm), the MCP problem is solvable in polynomial time if at least
m− 1 constraints obey (8.8).
For m = 2, properties 59 and 60 constitute a closed NP-complete range

Li < wi(Ps−t;i) < max
j=1,...,m

(wi (Ps−t;j)) (8.9)

The MCP problem with m = 2 is only NP-complete if both constraints lie in the NP-
complete range (8.9). When the link weights are positively correlated, the NP-complete
range (8.9) will be smaller than when the link weights are negatively correlated. This
is illustrated in Figure 8.14 for m = 2. At the cost of increased (polynomial-time) com-
plexity, a further reduction of the NP-complete range can be gained by using property4

61.

Property 61 Let Ps−t denote the path from source s to destination t for which
Pm

i=1 αiwi(Ps−t)
≤ Pm

i=1 αiwi(P
∗
s−t), ∀P ∗s−t. Then, if

mX
i=1

αiLi <
mX
i=1

αiwi(Ps−t)

where αi ≥ 0 with an inequality for at least one i, then there is no feasible path present
that can solve the MCP or MCOP problem.

4We have not programmed property 61 into our simulations.

8.4. THE IMPACT OF CONSTRAINTS ON COMPLEXITY 155

0
0

w2(Ps-d;1)
w2(Ps-d;2)

w1(Ps-d;1) w1(Ps-d;2) w1

w2

(a)
0

0

w2(Ps-d;1)
w2(Ps-d;2)

w1(Ps-d;1) w1(Ps-d;2) w1

w2

(a)

0
0

w2(Ps-d;1)

w2(Ps-d;2)

w1(Ps-d;1) w1(Ps-d;2) w1

w2

(b)
0

0

w2(Ps-d;1)

w2(Ps-d;2)

w1(Ps-d;1) w1(Ps-d;2) w1

w2

(b)

0
0

w2(Ps-d;1)
w2(Ps-d;2)

w1(Ps-d;1) w1(Ps-d;2) w1

w2

(a)
0

0

w2(Ps-d;1)
w2(Ps-d;2)

w1(Ps-d;1) w1(Ps-d;2) w1

w2

(a)

0
0

w2(Ps-d;1)

w2(Ps-d;2)

w1(Ps-d;1) w1(Ps-d;2) w1

w2

(b)
0

0

w2(Ps-d;1)

w2(Ps-d;2)

w1(Ps-d;1) w1(Ps-d;2) w1

w2

(b)

Figure 8.14: The constraints range (bold rectangle) for (a) positive correlation and (b)
negative correlation. The dots in the figure denote paths in the two-dimensional space
(m = 2).

156 CHAPTER 8. THE COMPLEXITY OF EXACT MCP ALGORITHMS

Proof. A proof by contradiction. Assume that Ps−t denotes the path from source s to
destination t for which

Pm
i=1 αiwi(Ps−t) ≤

Pm
i=1 αiwi(P

∗
s−t), ∀P ∗s−t and that

Pm
i=1 αiLi <Pm

i=1 αiwi(Ps−t). If a path P ∗s−t would exist that obeys the constraints, then
Pm

i=1 αiwi(P
∗
s−t)

≤Pm
i=1 αiLi, for i = 1, ...,m and thus

Pm
i=1 αiwi(P

∗
s−t) ≤

Pm
i=1 αiLi <

Pm
i=1 αiwi(Ps−t),

which contradicts the assumption that
Pm

i=1 αiwi(Ps−t) ≤
Pm

i=1 αiwi(P
∗
s−t), ∀P ∗s−t.

Since the path Ps−t can be found in polynomial time (e.g., via the Jaffe algorithm
[85]), the MCP problem is solvable in polynomial time if

Pm
i=1 αiLi <

Pm
i=1 αiwi(Ps−t).

The work presented in Section 8.1 suggests that there is a connection between worst-
case complexity and phase transitions. Using the terminology of Gent and Walsh [58],
if problems are very under-constrained, then it is usually easy to find one of the many
solutions. When problems are very over-constrained, it is usually easy to determine
that they are insoluble. In the phase transition in between, problems are “critically
constrained” and it is typically very hard to determine if they are soluble or insoluble.
Applied to the MCP problem, a phase transition appears based on the values of the
constraints. If one of the constraints obeys (8.7), the probability of finding a path
obeying the constraints is zero. Moreover, it can be verified in polynomial time, that
there exists no path in the graph that obeys the constraints (property 59). On the other
hand, if the values of the constraints are very large (under-constrained), such that all
constraints follow (8.8), then a path satisfying these large constraints can be found in
polynomial time. A phase transition is therefore expected to occur if the constraints do
not obey (8.7) and (8.8). For small values of Li = wi (Ps−t,i) + � (with � > 0) the MCP
problem may still be insoluble, however the effort (complexity) needed to verify that
indeed no feasible path is present in the graph has increased. In contrast to the case
where the constraints Li < wi (Ps−t,i), only computing the m Dijkstra shortest paths is
not sufficient to determine that the problem is insoluble. The SAMCRA algorithm (or
another exact MCP routing algorithm) must be invoked and will eventually observe that
no path can obey the constraints. The larger the constraints become, the longer it will
take to determine that no feasible path exists. Hence, increasing the constraints until
a feasible path emerges, augments the complexity of its solution. On the other hand,
when decreasing the constraints starting from the upper boundary (8.8), first many
paths will obey the constraints Li = maxj(wi (Ps−t,j))− � leading to a high probability
that a feasible path will be found fast. If the values of the constraints decrease, the
probability of finding a feasible path fast will also decrease. It is therefore expected
that a phase transition occurs if there are only a few (if any) feasible paths present. In
this case MCP ≈ MCOP. The steepness of the phase transition depends on the range
between (8.7) and (8.8), which is heavily influenced by the correlation coefficient ρ as
illustrated in Figure 8.14 (and by the computations in Appendix A.1). As discussed
in Section 8.3, the correlation coefficient also impacts the level of complexity, which
decreases if ρ increases.

8.4. THE IMPACT OF CONSTRAINTS ON COMPLEXITY 157

8.4.2 Simulation results

To be able to observe a phase transition, we must choose an intractable configuration.
The simulation results in the previous section suggest that the graphs should contain
many paths, have a large expected hop count and the link weights should have a negative
correlation. All these properties are present in the class of two-dimensional lattices with
correlation ρ = −1. The remainder of this chapter confines to this class of lattices and
tries to distinguish a phase transition via simulations and an approximate analysis. For
our simulations, we have chosen to use a single two-dimensional lattice with N = 49
nodes and correlated uniformly distributed link weights in the range [0,1]. A worst-case
scenario is obtained if the source node is positioned in the upper left corner and the
destination node in the lower right corner, causing the largest minimum hop count.
For each constraint L1 and L2, 100 different values were chosen in the NP-complete
range (8.9), as discussed above, leading to a total of 104 iterations, all in the same
lattice. Because we are examining the MCP problem, we have chosen to simulate with
HAMCRA [102] instead of SAMCRA [167]. Figure 8.15 displays the maximum queue-
size5 k used by HAMCRA. The corresponding contour plot is given in Figure 8.16.
Different constraints can lead to different m-dimensional shortest paths. For in-

stance, if L1 is small (e.g., 5.0 in Figure 8.15) and L2 is large (e.g., 7.0 in Figure 8.15),
then a path P obeying these constraints must also have a small weight w1(P) ≤ L1
and the second weight may be large as long as w2(P) ≤ L2. Since L1 is slightly larger
than the weight w1(Ps−t;1) of the shortest Dijkstra path for measure 1, the path P may
closely approximate Ps−t;1, which may be easy to find as indicated by small k values in
Figure 8.15. Similarly, if L1 is large (e.g., 9.0 in Figure 8.15) and L2 is small (e.g., 3.0
in Figure 8.15), then a path P obeying these constraints may closely approximate the
Dijkstra shortest path for measure 2 (Ps−t;2), which may also be easy to find (as verified
in Figure 8.15). Figure 8.15 reveals that the complexity is largest when L1 = 6.94 and
L2 = 5.06. These values are situated near the center of the rectangle (Figure 8.14)
spanned by the NP-complete range (8.9) at L∗1 = 7.09 and L∗2 = 4.91. These obser-
vations seem to connote that the complexity is largest when the constraints closely
approximate the weights of the m-dimensional shortest path P , which equal

√
N − 1

on average (see Equation (A.10)). For two-dimensional lattices of N = 49 nodes, the
highest complexity is therefore expected at L1 = L2 = 6. The deviation in our case is
caused by only examining one single lattice, instead of the many required for statistical
results.
The sharp edge/line in Figure 8.16, constituted by the different shortest paths, can

be attributed to the extreme negative correlation (ρ = −1) as explained in Figure 8.14b
and Appendix A.1. Since the link weights are chosen in the range [0,1], there holds

5k is different from the previously used kmin, since k denotes the maximum queue-size used, whereas
kmin is the queue-size that TAMCRA would have needed to attain the exact solution. k is used here,
because kmin = 0 if there is no path present.

158 CHAPTER 8. THE COMPLEXITY OF EXACT MCP ALGORITHMS

10

20

30

40

5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0

3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0

k

L1

L 2

Figure 8.15: The queue-size in a two-dimensional lattice, with correlated uniformly
distributed link weights, N = 49, ρ = −1, and 104 different constraint vectors.

8.4. THE IMPACT OF CONSTRAINTS ON COMPLEXITY 159

L1

5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0

L 2

2.75

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

5.00

5.25

5.50

5.75

6.00

6.25

6.50

6.75

7.00

5
10
15
20
25
30
35
40

Figure 8.16: Contour plot of the queue-size in a two-dimensional lattice, with correlated
uniformly distributed link weights, N = 49, ρ = −1 and 104 different constraint vectors.

160 CHAPTER 8. THE COMPLEXITY OF EXACT MCP ALGORITHMS

that for ρ = −1, w1(u, v) = 1− w2(u, v), ∀(u, v) ∈ E. Hence, the path weights of any
path P obey w1(P) = h−w2(P), where wi(P) =

P
(u,v)∈P wi(u, v) and h equals the hop

count of path P . If we again look at Figure 8.16, we may observe that the linear line,
once continued, intersects both axes L1 and L2 at 12, which is precisely the minimum
hop count of the two-dimensional lattice with 49 nodes. Moreover, since w1(P) =
h− w2(P), according to property 61, when L1 + L2 < h, then no feasible path exists.
This means that for the class of two-dimensional lattices with correlated (ρ = −1)
uniformly distributed link weights, the constraints must obey L1+L2 ≥ h, for a feasible
path to be possible. This condition for the constraints can be checked in polynomial
time and it is therefore possible to obtain a much steeper phase transition than observed
in Figures 8.15 and 8.16. Finally, we have also simulated with independent uniformly
distributed link weights (ρ = 0) in the range [0,1]. As discussed in Section 8.3, the
complexity of solving the MCP and MCOP problems under independent link weights
is smaller than with negatively correlated link weights. To observe a phase transition,
we had to simulate with a lattice larger than N = 49. Figure 8.17 gives the contour
plot for N = 400 and ρ = 0. The complexity is largest for L1 = 12.58 and L2 = 15.11.
It would be desirable to obtain an estimation of the size of the constraints that

make the MCP problem critically constrained. Such an estimation would allow us to
predict the location of the phase transition and hence give us an indication of the “crit-
ically constrained” region. The next subsection will provide an approximate analysis
of the weights of the m-dimensional shortest path, because as seen above, choosing the
constraints close to these weights may lead to a non-polynomial running time.

8.4.3 Estimation of the shortest path length in a lattice

This subsection discusses the approximate computation of the length of them-dimensional
shortest path between two corner points in a rectangular two-dimensional (2d) lattice
with z1 links vertically and z2 links horizontally. The link weights are independent
uniformly distributed in the range (0, 1]. The approximate analysis of the formulas
presented in this subsection and some of the notation that is used, can be found in
Appendix A.1. The asymptotic average weight of a h = z1+ z2 hop path in one dimen-
sion for a square lattice is given by (A.4) as E [W1] ' h

2e
≈

√
N
e
. This estimate agrees

reasonably well with simulations in the range N ∈ [100, 1600], which accurately follow
E [Wsim] ≈ 0.6N0.48.
The extension to m dimensions, with independent link weight components (ρ = 0),

for the average length Wm = Leqlh is the approximation (A.8),

E [Wm] ' h

e2
1
m

The scaling 2−
1
m as a function of m has been observed in simulations, even for N =

49. This approximate analysis (A.7) shows that there is no shortest path obeying the

8.4. THE IMPACT OF CONSTRAINTS ON COMPLEXITY 161

L1

10 11 12 13 14 15 16 17 18 19

L 2

11

12

13

14

15

16

17

18

19

20

21

22
5
10
15
20
25

Figure 8.17: Contour plot of the queue-size in a two-dimensional lattice, with uniformly
distributed link weights, N = 400, ρ = 0 and 104 different constraint vectors.

162 CHAPTER 8. THE COMPLEXITY OF EXACT MCP ALGORITHMS

constraints if the length, as defined in (A.6), lh(P) > 1. This event has probability

Pr [lh > 1] ≈ exp
Ã
− h!

z1!z2!

Ã
Lh
eq

h!

!m!

Clearly, if the lattice (i.e., z1, z2 and h = z1 + z2) is fixed and the constraints decrease
(increase), all (no) paths violate the constraints. The fact that there exists a path within
the constraints depends on the product of the constraints or equivalent constraint Leq.

If Lheq
h!

> 1 or Leq > (h!)
1
h ≈ h

e
(for large h), nearly all paths obey the constraints. If

Lheq
h!

< 1 or Leq < (h!)
1
h ≈ h

e
, for a large number m of constraints, no path obeys the

constraints. Hence, for large m and large h, there seems to be a critical value of the

equivalent constraint Leq > (h!)
1
h ≈ h

e
for which E [lh] =

¡
z1!z2!
h!

¢ 1
mh < 1 and specifically

for the square lattice E [lh] ≈ 2−
1
m . Below that value the shortest path behavior is

clearly different than above that value, which points to a phase transition.
The result (A.9) in two dimensions (m = 2) with perfectly negative correlation (ρ =

−1) even points to a more confining situation, as was readily observed by comparing
Figures 8.16 and 8.17. Since E [Leqlh] ≈ h

2
(see (A.10)) and any random variable Leqlh ≥

h
2
, the average weight of the shortest path lies very close to the boundary h

2
.

In summary, we have estimated the average length or weights of the shortest path for
large values of h or, equivalently, the number of nodes N in the 2d-lattice. As common
for extremal distributions, the variance is small, which implies a fast transition from 0 to
1 of Pr [Leqlh ≤ y] around the average. The knowledge of the shortest path is important
to set the constraints: if the constraints are close to E [Leqlh], the problem is critically
constrained and more computations are needed to determine whether there exists a
path obeying the constraints or not. For constraints larger or smaller than E [Leqlh],
the problem is either under- or over-constrained and the verdict that there exist a path
within the constraints is usually simple to draw with high probability. In the analysis
presented in the Appendix, we have assumed that a possible overlap of h-hop paths
is sufficiently weak to allow the application of the limit laws for independent random
variables. Only relatively few paths will share a large number of links. We have used
a heuristic argument to validate this assumption and have observed a good agreement
with our simulation results. The second assumption is that the shortest path in the
2d-lattice has h hops or that Pr [hops > h] is negligibly small. This approximation is
reasonable since simulations show that Pr [hops = h+ 2k] is rapidly decaying in k with
decay rate dependent on the size of the graph. The larger the graph, the slower the
decay rate. However, for increasingm, simulations show that the shortest path tends to
have h hops. Also for very negative correlation coefficients, the probability that shortest
paths have h hops increases. Finally, although computed for uniformly distributed link
weights, the same results hold for any distribution whose h-fold convolved distribution
also behaves as xh

h!
for small x. Any distribution in the same sphere of minimal attraction

8.5. CONCLUSIONS 163

(such as exponentially distributed link weights with mean 1) yields the same results.

8.5 Conclusions

In this chapter an evaluation of the complexity of Quality of Service (QoS) routing was
presented. Finding a path based on multiple QoS constraints is proven to be an NP-
complete problem. However, this Multi-Constrained Path (MCP) selection problem is
not NP-complete in the strong sense, meaning that a pseudo-polynomial algorithm can
exactly solve the problem. The NP-completeness of the MCP problem hinges on at
least four factors, namely (1) the underlying topology, (2) link weights that can grow
arbitrarily large or have an infinite granularity, (3) a very negative correlation among
the link weights and (4) the values of the constraints. If the values of the constraints
are very large then it is easy to find a path within the constraints. On the contrary,
if the values of the constraints are very small, then it is easy to verify that there is no
path within the constraints. This indicates that there will be a phase transition if the
constraints are around the weights of the m-dimensional shortest path in the network.
In this case, it is expected to be difficult to establish whether a feasible path exists.
If the four above mentioned conditions are all necessary to induce intractability, they
will allow network and service providers to properly dimension their network and to
avoid intractable scenarios. Moreover, if the theory of phase transition holds for the
MCP problem, then QoS requirements close to the m-dimensional shortest path will, if
admitted, provide the highest possible level of QoS, but also the highest computational
cost. Such information is invaluable for pricing and billing mechanisms and admission
control algorithms. Finally, a proper understanding and use of the four conditions, will
allow for efficient QoS routing at controlled computational costs.

164 CHAPTER 8. THE COMPLEXITY OF EXACT MCP ALGORITHMS

Chapter 9

QoS dynamics

In this chapter a first step is made to understand the dynamics of QoS routing. QoS
routing dynamics refer to the highly fluctuating QoS measures like available band-
width. The influence of rapidly varying QoS measures on QoS routing is not yet well
understood, but such an understanding is highly important for QoS routing. Therefore,
although not the focus of this thesis, for completeness some attention is given to dy-
namic QoS routing. Our approach is twofold: first the stability of QoS-compliant paths
is investigated, with the goal to obtain some feeling on “significant changes” in the
link weights, i.e. how much must link weights change before the shortest QoS path is
not shortest anymore. This information is invaluable in devising protocols that update
the link state information in a network. Secondly, a performance evaluation of QoS
algorithms in a dynamic network is conducted.

9.1 Introduction to QoS stability

To date, the Internet still lacks a (widely) working QoS architecture. Assuming the
Internet infrastructure has enough resources to be able to provide QoS, then there are
basically two problems that still hamper the introduction of QoS in the Internet. The
first problem concerns the computation of QoS-compliant paths (the multi-constrained
path (MCP) selection problem, see Chapter 1)), which is an NP-complete problem.
This problem was studied in-depth in the previous chapters and we have conjectured
that in practice the multi-constrained path selection problem is expected to be feasible.
A second problem is that of accurately and efficiently maintaining, distributing and
updating the dynamic QoS link weights. Since the number of packets are stochastically
varying in a network, it is conceivable that there is a characteristic time scale for network
dynamics. Monitoring any change along the Internet is simply not possible and even
not desirable, because not all changes are important. Further, there is a topology range
of interest: not all details of the entire global Internet are needed to determine a path

165

166 CHAPTER 9. QOS DYNAMICS

P from source s to destination t. A subnetwork encompassing s and t seems sufficient.
When looking at the time-scale in a network topology as illustrated in Figure 9.1, we
distinguish between changes that occur (1) infrequently and (2) frequently. The first
kind reflects topology changes due to failures and the joining/leaving of nodes. In the
current Internet, only this kind of topology changes is considered. Its dynamics are
relatively well understood. The key point is that the time between two “first kind”
topology changes is long compared to the time needed to flood this information across
the whole network. Thus, the topology databases on which routing relies, converge
rapidly (with respect to the frequency of updates) to the new situation. The transient
period where the databases are not synchronized (which may cause routing loops and
malfunctioning), is generally small.
The second type of rapidly varying changes are typically related to the consumption

of resources or to the traffic flowing through the network. The link weight coupling to
state information seriously complicates the dynamics of flooding, because the flooding
convergence time T can be longer than the change rate ∆ of some measure (such as
available bandwidth).

A
B C D

E
F G

H
 I

J
K

Slow variations on time scale: failures, joins/leaves of nodes

Rapid variations on time scale:
metrics coupled to state of resources

∆

T

t1 t2

BW

time

Figure 9.1: Network topology changes on different time scales. BW stands for band-
width.

Figure 9.1 illustrates how the bandwidth BW on a link may change as a function
of time. In contrast to the first kind changes where T << ∆, in the second kind

9.2. RELATED WORK 167

changes, T can be of the same order as ∆. Apart from this, the second type changes
necessitate the definition of a significant change that will trigger the process of flooding.
In the first kind, every change was significant enough to start the flooding. The second
kind significant change may be influenced by the flooding convergence time T and is,
generally, strongly related to the traffic load in (a part of) the network. An optimal
update strategy for the second type changes is highly desirable in future multi-media
networks that are characterized by the broad variability in traffic profiles and QoS
requirements.
Another fundamental issue is the extent of the largest subnet of the global network

that is still important for the routing computation. In fact, the scope of the network
consists of building a hierarchical structure (similar to PNNI) that includes the relevant
region (subnet) in detail and makes abstraction (by information condensation) of the
rest of the network. In this respect, the properties of a network topology (class of
graphs) are very important. The Internet is shown to possess a power-law like degree
distribution [48], while Ad-Hoc networks may vary from lattice structures to random
graphs [76]. Since paths strongly depend on both link weight structure and graph
properties, the network dynamics will dependent on these factors, even to the extent
that some control strategies successful in a certain class of graphs may not work properly
in other graphs.

9.2 Related work

We have made a distinction between (1) network changes that occur infrequently (topo-
logical changes) and (2) network changes that occur frequently (changes in the QoS link
weights/resources). There is a wide variety of literature available that covers either the
first or second kind of network changes.
The current Internet only considers the first type of infrequent topology changes and

consequently the study of these changes dates back to the early days of the ARPANET.
One of the topics studied is that of end-to-end Internet path stability. Paxson [130]
provided us with one of the key papers in this area. He defined two types of stability,
namely “prevalence,” meaning the likelihood that a particular route is encountered and
“persistence,” the likelihood that a route remains unchanged over a long period of time.
Based on measurements he found that Internet paths are heavily dominated by a single
prevalent route, but the time over which routes persist show wide variation, ranging
from seconds to days.
In the context of QoS routing, the second type of frequent changes in the network

resources become a decisive factor and many problems emerge: (a) how to predict the
traffic load, (b) when to update the network with new information, (c) how to update
the network and (d) how to cope with inaccurate network state information. Below we
briefly review the literature related to these problems.

168 CHAPTER 9. QOS DYNAMICS

9.2.1 Traffic prediction

Anjali et al. [5] proposed an algorithm to estimate the available bandwidth of a link in
MPLS networks. They used a linear prediction model that is solved through Wiener-
Hopf equations. Sang and Li [144] assessed the predictability of traffic by considering
how far into the future a traffic rate process can be predicted with bounded error
and what the minimum prediction error is over a specified prediction time interval.
They used two models, namely the auto-regressive moving average and the Markov-
modulated Poisson process and concluded that the applicability of traffic prediction
is limited by the deteriorating prediction accuracy with increasing prediction interval.
Jain and Dovrolis [86] targeted the end-to-end available bandwidth and stated that the
variability of the available bandwidth increases significantly as the utilization of the “low
capacity” link increases, which makes a lightly loaded network have a more predictable
and smooth throughput. You and Chandra [178] and Basu et al. [14] analyzed Internet
data measured at a campus and modeled this data using auto-regressive processes.
Papagiannaki et al. [129] studied the evolution of IP backbone traffic at the larger
time scale of hours and introduced a methodology to predict when and where link
additions/upgrades have to take place in an IP backbone. They used mathematical tools
to process historical information and extracted trends in traffic evolution at different
time scales.

9.2.2 Network update triggering

QoS routing requires frequent distribution of link state information to provide routing
tables with an as accurate view of the network as possible. However, frequently updating
the network, through the dissemination of link state advertisements (LSA), can cause a
significant overhead. Different link state update policies have therefore been proposed,
which are reviewed in [105], [147], [6]. The link state update policies can be classified as
either periodic based (LSA at fixed intervals) or trigger-based (LSA at a certain event)
and may use either a hold-down timer or the moving-average principle [105] to reduce
the number of LSA.

9.2.3 Network update distribution

The current Internet disseminates its network state through the entire network by using
broadcast (flooding). In broadcast every router duplicates the network state information
onto all of its outgoing links. This method may be too costly for QoS routing, where the
frequency of updates is expected to be high. To reduce the overhead in broadcasting,
Garcia and Spohn [55] proposed the adaptive link state protocol (ALP). A router in
ALP disseminates link state updates incrementally to its neighbors for only those links
along paths (trees) used to reach destinations. Huang andMcKinley [79] also proposed a

9.3. STABILITY OF A PATH 169

tree-based protocol (T-LSR) that only constructs a single tree, shared by every router,
for the dissemination of LSA and combined it with broadcast to make the protocol
robust against node/link failures.

9.2.4 Inaccurate network state

The dynamics of QoS link weights, prohibits us to always obtain an accurate and up-
to-date view of the network resources. The level of accuracy in state information is
dependent on the choice of update strategy and can seriously impact the effectiveness
(in terms of blocking) of path selection algorithms. A discussion of routing under
inaccurate state information can be found in [61].
Another way of routing that avoids inaccurate state information is routing with only

local information (that is up-to-date). Nelakuditi et al. [121] have done much work in
this area. Unfortunately, the absence of global information may lead to non-optimal
routing.

9.3 Stability of a path

In this section, the stability of a path in a dynamic environment is examined in a
mathematical and simulative way. The simulations consisted of generating 104 graphs
(from a particular class of graphs) with links weights according to a specific distribution.
We have only assigned one weight we per link e ∈ E. This graph is considered to be a
snapshot in time of our dynamically changing network. In this graph, first the shortest
path P between a source s and a destination t was computed. Next, all the link weights1

in the graph were perturbed by adding “link weight noise” ewe;α with strength α, such
that the resulting link weights equal we + ewe;α, ∀e ∈ E. This new graph represents
a snapshot of the network at a later point in time and the noise therefore represents
the impact of the arrival/departure of flows over time on the resources. The level of
noise is related to the period of time and the size and arrival rate of the flows. We
recomputed the shortest path P 0 between s and t in the perturbed graph and compared
this path with the previously retrieved path P . The two most relevant parameters that
were stored are the difference in path structure, i.e. how many links are different ∆l,
and the difference in path length ∆w. Three classes of graphs were used, namely the
class of random graphs Gp(N) [21], with link density p independent of N , the class
of square two-dimensional lattices and the class of Internet-like power-law graphs [48],
with power τ = 2.4 in the nodal degree distribution Pr[d = k] ∼ k−τ . However, only
the results for the class of random graphs have been plotted. The results for the lattices

1By altering only the link weights of the links on the shortest path, we would have evaluated the
influence of using a single path in the network. This study is not presented here, but is also a topic of
research.

170 CHAPTER 9. QOS DYNAMICS

and power-law graphs can be found in [9]. The source s and destination node t were
chosen randomly, except for the lattices, where they were positioned in opposite corners
to achieve the largest minimum hop count. We have considered four ways of assigning
the link weights:

1. we = 1 and ewe;α = N(0, α), ∀e ∈ E: All link weights are initially set to 1 and
hence P is shortest in hop count. In the second scenario we added Gaussian noise,
with mean 0 and variance α.

2. we = U(0, 1) and ewe;α = N(0, α), ∀e ∈ E: Initially all link weights were assigned
a value chosen from a uniform distribution in the range (0, 1]. In the second
scenario we added Gaussian noise, with mean 0 and variance α.

3. we = 1 and ewe;α = αU(−0.5, 0.5), ∀e ∈ E: All link weights were initially set
to 1. In the second scenario we added uniformly distributed noise in the range
α[−0.5, 0.5].

4. we = U(0, 1) and ewe;α = αU(−0.5, 0.5), ∀e ∈ E: Initially all link weights were
assigned a value chosen from a uniform distribution in the range (0, 1]. In the
second scenario we added uniformly distributed noise in the range α[−0.5, 0.5].

By varying α (α > 0, corresponding to the level of noise/perturbation), we are able
to evaluate the perturbation threshold that causes P and P 0 to differ. This threshold
gives an indication of the size of the link state update thresholds that should be used.
In all scenarios, especially when α gets large, it may happen that a link weight becomes
negative. Negative or zero link weights are not considered realistic link weights and
therefore we assume all link weights to be positive. Negative or zero link weights have
been truncated at a very small value (ε = 10−5) near zero to assure positive link weights.
The results for the four link weight scenarios were similar in behavior. This chapter

only presents the results forwe = U(0, 1) and ewe;α = αU(−0.5, 0.5). We will first present
a mathematical analysis of the path length for we = U(0, 1) and ewe;α = αU(−0.5, 0.5),
∀e ∈ E, after which the simulation results follow.

9.3.1 Mathematical analysis

In this section we provide some upper bounds on the difference in path weights ∆w =
w(P 0)−w(P), between the perturbed path P 0 and the unperturbed path P in any class
of graphs. For an approximate calculus of the shortest path weight in the perturbed
graphs, consult Appendix A.2.

9.3. STABILITY OF A PATH 171

By construction,

w(P) = min
P⊂{Pst}

"X
e∈P

we

#

w(P 0;α) = min
P 0⊂{Pst}

"X
e0∈P 0

(we0 + ewe0;α)

#

where we are the unperturbed link weights and where ewe;α is the perturbation with
strength α ≥ 0. Clearly, w(P 0; 0) = w(P) and the maximum possible perturbed weight
is bounded by

w(P 0;α) ≤ w(P) +
α

2
hP

where hP is the hop count of the shortest non-perturbed path. The other extreme, in
case of truncation, is w(P 0;α) = 0 which occurs if there is a path from s to t with all
link weights zero. Hence, denoting ∆w = w(P 0;α)− w(P),

−w(P) ≤ ∆w ≤ α

2
hP

The relevant range for α is limited to we0 + ewe0;α ≥ 0. The probability that a
perturbed link weight is smaller than zero is found from (A.17), with l = 1 and z = 0
as

Pr [we0 + ewe0;α ≤ 0] =
½

α
8
, α ≤ 2

1
2
− 1

2α
, α > 2

(9.1)

If we consider the binomial distribution with Pr[X = 1] = r = Pr[we0+ ewe0;α ≤ 0] and
Pr[X = 0] = 1− r, then the probability that k out of the total M links are truncated
equals

Pr[X = k] =

µ
M

k

¶
rk(1− r)M−k (9.2)

and E[X] =Mr, var[X] =Mr(1− r).
Roughly, the probability to have a zero weight path is bounded from below by,

Pr [w(P 0;α) = 0] ≥
Y
e∈P 0

Pr [we0 + ewe0;α ≤ 0]

≈
(¡

α
8

¢E[h]
, α ≤ 2¡

1
2
− 1

2α

¢E[h]
, α > 2

which is only significant for large α and a small expected hop count E[h].

172 CHAPTER 9. QOS DYNAMICS

9.3.2 Simulations for ∆w

We will first present our results for the difference in path weights∆w = w(P 0;α)−w(P)
for the class of random graphs Gp(N) with N = 1000 and link density p = 0.2 and
p = 0.01. For each simulation 104 connected graphs were created. The link weights
were assigned according to we = U(0, 1) and ewe;α = αU(−0.5, 0.5).

The random graph

Figure 9.2 presents E[∆w] as a function of the perturbation strength α.

α

0.01 0.1 1 10

E
[∆

w
]

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

p=0.2
p=0.01

Figure 9.2: The expected difference in length (E[∆w] = E[w(P 0) − w(P)]) between P
and P 0 for the class of random graphs (N = 1000), as a function of the perturbation
strength α.

For the class of random graphs with p = 0.2, E[∆w] decreases already for very
small values of α, although this decrease is only small. For large α, E[∆w] saturates
at E[∆w] ≈ −E[w(P)]. For the class of random graphs with p = 0.01, E[∆w] starts
decreasing at larger α than with p = 0.2 and the decrease is steeper. However, E[∆w]

9.3. STABILITY OF A PATH 173

again saturates at E[∆w] ≈ −E[w(P)]. This implies that E[w(P 0;α)] ≈ 0 for large α,
irrespective of p, as was expected from our mathematical analysis.
In Gp(N), a typical length is E[w(P)] ∼ lnN

Np
. The ratio of the two link densities

considered here (p = 0.2 and p = 0.01), 0.2
0.01

= 20, almost precisely equals the ratio in
E[∆w] at saturation, which equals E[∆w,p=0.01]

E[∆w,p=0.2]
= −0.730

−0.037 = 19.5.
The expected hop count of the shortest path P in Gp(N), with p fixed and uniformly

(or exponentially) distributed link weights, scales as O(logN) and the number of paths
between source and destination is expected to be large, for N large. According to (9.2),
if α is high, there is a high probability that several links have weights truncated at
0. Especially for Gp(N), when p is fixed, this results in a high probability that the
shortest path only consists of such zero-weight links. This behavior is verified in Figure
9.2. If the link density p is small, then the number of (truncated) links is smaller and
the expected hop count larger. Hence a stronger perturbation is required before the
saturation state E[∆w] ≈ −E[w(P)] ≈ − lnN

NP
is reached.

The more interesting and realistic case is for α small. Our analysis indicates that if
α is small, the probability that a link is truncated (Pr [we0 + ewe0;α ≤ 0] = α

8
, α ≤ 2) is

also small. In this case only a dense graph is likely to have a zero-weight path between
source and destination. When examining Figure 9.2, we indeed see a decrease for small
α in graphs with a high link density p, and zero difference for small p.

The square two-dimensional lattice

For the class of two-dimensional lattices, the minimum hop count equals hmin = 2
√
N−

2. Due to the relatively high expected hop count not all high link weights may be
circumvented, which may result in a linear increase with α (i.e., no saturation).

The power-law graph

For the class of power-law graphs, the hop count of the shortest path is expected to
scale as O(logN), but most likely it is larger than the expected hop count in Gp(N),
which also scales as O(logN). Contrary to the class of random graphs, the number
of paths in the power-law graphs between a source and destination node is believed to
be relatively small. In this case, there is less choice to circumvent the links with high
weights, which is manifested for large α where E[∆w] increases linearly with α.
The linear increase will be smaller for τ = 2.0 than for τ = 2.4, because a smaller τ

leads to denser graphs and hence more possibilities to circumvent high link weights.
For the class of power-law graphs we have also simulated with link weights with a

fixed granularity. We chose a granularity of 10, meaning that the link weights could only
take one out of 10 values uniformly distributed in the range [0,1]. For these simulations,
the paths P and P 0 remained the same (E[∆w] = 0 and var[∆w] = 0) up to higher
values of α, which confirms that choosing a larger granularity improves stability.

174 CHAPTER 9. QOS DYNAMICS

9.3.3 Simulations for ∆l

To better evaluate the difference between P and P 0, we have also stored the number of
different links ∆l. More formally, ∆l is the sum of the non-overlapping edges of P and
P 0, and therefore (between the same source and destination nodes) ∆l cannot be 1 or
2. Figures 9.3 and 9.4 display the results for ∆l in the class of random graphs. The
results for the lattices and power-law graphs can be found in [9]. The simulations were
done with α = 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, but to avoid an overload of
curves, only four values of α have been plotted.

The random graph

k

0 20 40 60 80

P
r[∆

l =
 k

]

0.0001

0.001

0.01

0.1

1

0.01
0.05
0.5
5.0

Figure 9.3: Probability that the number of different links ∆l equals k in the class of
random graphs G0.2(1000) for different values of α.

In Figures 9.3 and 9.4, for G0.2(1000), a small perturbation α can already trigger a
large ∆l. An interesting observation is that E[∆l] and var[∆l] increase up to α = 0.05,
after which they decrease and stabilize for α > 0.1. Note that α = 0.1 is precisely the
value at which E[∆w], for p = 0.2 in Figure 9.2, stabilized. Figure 9.4 also plots the

9.3. STABILITY OF A PATH 175

α

0.01 0.1 1

E
[∆

l],
 v

ar
[∆

l],
 E

[h
],

va
r[h

]

0

20

40

60

80

100

E[∆l]
var[∆l]
E[h]
var[h]

Figure 9.4: The expected difference in links E[∆l] as a function of α in the class of
random graphs G0.2(1000).

expected hop count E[h] of the shortest path in the perturbed graph and its variance
var[h]. E[h] and var[h] are similar in shape to E[∆l] and var[∆l]. This is expected
since the shortest path in the unperturbed graph is independent of α. In Figure 9.4,
E[h] decreases after α = 0.05 and stabilizes for α > 0.1. The expected hop count
for α = 5 equals 1.8, which corresponds to the expected hop count of the shortest
path in the random graph Gp(N) with constant link weights (E[hmin] ' 2 − p and
var[hmin] ' p(1− p), [164]). If the number of truncated links in the perturbed random
graph Gp(N) with a constant (i.e., truncated) link weight ε scales as O(N b), b ≥ 1,
then the shortest path in that graph behaves as if all links were constant. In that
case, the average number of truncated links per node > 1. We can consider such
a graph to be “superconducting.” According to (9.2), the number of truncated links
equals M

¡
α
8

¢
, where M = pN(N−1)

2
for Gp(N) and which scales as O(αN2) for α large

enough. We therefore expect that E[hmin] ' 2 − p and var[hmin] ' p(1 − p), which
is verified in the simulations. Moreover, if we sum the expected hop counts of the

176 CHAPTER 9. QOS DYNAMICS

unperturbed path P (E[hmin] ' lnN) and the perturbed path P 0 (E[hmin] ' 2− p), we
find ln(1000)+2−0.2 = 8.7, which coincides with the peaks at saturation (for α > 0.1)
in Figure 9.3. Only if α . 16

pN
our scaling rule does not apply and we may consider the

graph to be in “normal” regime. The phase transition from normal to superconducting
is observed in Figure 9.4.

The square two-dimensional lattice

Due to the regular structure of the two-dimensional lattices, ∆l can never be odd. The
two-dimensional lattices are more stable than the random graphs. There is a higher
probability that the paths P and P 0 are identical. Compared to the random graphs,
the tail of ∆l in the two-dimensional lattices is longer, due to the higher expected hop
count.

The power-law graph

For the realistic regime of small values of α, the paths in the power-law graphs can
be considered stable, but for high α there is a long tail and an irregular “distribution”
function. These irregularities in the distribution suggest regularity or combinatorial
confinement (in part of) the topology. The long tail suggests that sometimes the hop
count of the shortest path in a power-law graph can be very large.

9.4 Conclusions on QoS stability

Network dynamics can be categorized as either slowly or frequently changing. The slow
changes relate to changes in nodes or links and have been studied in the past. The
frequent changes relate to changes in the link weights. Sections 9.1-9.3 have provided
a preliminary evaluation of the stability of paths in a dynamically changing network.
To our knowledge, this approach has never been considered in the literature and it may
provide new insight into the dimensioning/tuning of future QoS architectures.
We have provided a mathematical analysis of the difference in length between the

shortest path in an unperturbed graph and the shortest path in a perturbed graph.
Subsequently, we have simulated the difference between these two paths. Those sim-
ulations revealed that up to a perturbation of roughly 10%, the weights of the two
paths remained close to each other, while the number of different links could vary sub-
stantially, depending on the class of graphs. In practice, the link weights will have a
finite granularity instead of the real values used in this section. A larger granularity
will improve the stability of paths and consequently the predictability of network state.
The results for the difference in links ∆l displayed more volatility, as a function of the
perturbation strength α, than the difference in weights ∆w. We believe that the latter
parameter is a more important measure to set a threshold for updating the network

9.5. INTRODUCTION TO DYNAMIC QOS ALGORITHMS 177

state. However, the work presented here is still ongoing and therefore more simula-
tions have to be run to substantiate our results. Future work will also focus on better
understanding the influence of link weight granularity on path stability, on exploring
the “slack” in a network and on multi-constrained routing in a dynamic environment.
This study, once fully understood, will provide a foundation upon which efficient and
accurate link state update protocols can be build. In the remainder of this chapter we
assume that we have such an up-to-date knowledge of the state of the QoS weights.
Given this knowledge, we will evaluate how QoS algorithms perform in a dynamically
changing network.

9.5 Introduction to dynamic QoS algorithms

The goal of the remaining sections in this chapter is to evaluate the performance
of SAMCRA and other algorithms in a dynamic environment. Several algorithms
[96, 109, 179, 167, 38] have been proposed to find the shortest path subject to mul-
tiple constraints. The performance of these QoS routing algorithms has not yet been
evaluated in a dynamic scenario. Since the paths chosen for past requests may have
an influence on the admittance of future requests, the choices made by the routing al-
gorithm have an impact on the network throughput and the number of admitted calls.
Maximizing throughput and the number of admitted calls and optimizing network re-
source usage are goals of traffic engineering algorithms. Although proposed to work in
a dynamic network, most of them disregard QoS constraints.
Ideally, one should have a routing algorithm that aims at maximizing throughput (or

minimizing blocking), while satisfying the users’ QoS constraints. To account for these
objectives, SAMCRA is equipped with a special path length definition that guarantees
the QoS constraints and accounts for the traffic engineering objectives. For clarity, this
variant SAMCRA-B is named.
We have conducted many simulations to evaluate the performance of several algo-

rithms. The performance measures are the call blocking rate, the bandwidth blocking
rate, the throughput, and the time they required to compute a path.

9.6 Problem statement

First the problem under consideration is formally defined. The available bandwidth on
each link e ∈ E is denoted by R(e). In addition to bandwidth, each link is characterized
by a vector of m additive QoS link weights (wi(e), i = 1, ...,m, e ∈ E).
A flow request is characterized by a quadruple (s, t, B, �L), where s is the source node,

t is the destination node, B is the requested bandwidth and �L is a vector representing the
m other additive QoS constraints. When a flow request arrives, the routing algorithm

178 CHAPTER 9. QOS DYNAMICS

computes a path for the flow. If enough resources are available on this path, the flow
can be admitted. A path P is said to be feasible, i.e. a flow can be admitted, if:½

mine∈P R(e) ≥ BP
e∈P wi(e) ≤ Li i = 1, ...,m

The problem under consideration is to find the most efficient way to allocate flows,
with the goal to optimize network utilization.

9.7 Traffic engineering algorithms

9.7.1 Overview

Most recently proposed traffic engineering algorithms are inspired by the work of Kar,
Kodialam and Lakshman [91]. They presented a routing algorithm MIRA, based on
the concept of “minimum interference.” The amount of interference on a particular
source-destination pair (s, t), caused by allocating a flow between some other source-
destination pair, is defined as the decrease in “maxflow” [2] between s and t. Maxflow
is an upper bound on the total amount of bandwidth that can be routed between a
source-destination pair. The minimum interference path between a particular source-
destination pair is the path that maximizes the minimum maxflow between all other
source-destination pairs. The problem of finding this path is NP-hard. Therefore, Kar
et al. proposed to determine appropriate link weights, prune links with insufficient
available bandwidth and compute the shortest path in the pruned topology. MIRA
considers only the QoS measure bandwidth. Wang et al. [169] proposed a different
definition for the link weights in MIRA. We denote this variant of MIRA as “New
MIRA.”
Banerjee and Sidhu [11] proposed two algorithms: one (TE-B) takes into account

only bandwidth, while the other (TE-DB) considers also delay. The authors introduced
three objectives for traffic engineering: (1) reducing the blocking of requests, (2) min-
imizing network cost, and (3) distributing network load. This formulation has three
objective functions (plus the delay constraint in the case of TE-DB) and is proven to
be NP-complete [11]. Banerjee and Sidhu presented another formulation in which the
first two objective functions are transformed into constraints. Both TE-B and TE-DB
make use of TAMCRA (see Chapter 5), to find a candidate set of k paths satisfying the
set of constraints. TE-B and TE-DB are computationally more expensive than MIRA,
since they require a couple of shortest path computations and a TAMCRA execution,
in addition to the maxflow computations.
Iliadis and Bauer [81] introduced a new class of minimum-interference routing algo-

rithms, called SMIRA (Simple Minimum-Interference Routing Algorithms). These al-
gorithms evaluate the interference on a source-destination pair by means of a k-shortest-
path-like computation, instead of a maxflow computation. The set of k paths between a

9.8. SAMCRA-B 179

source-destination pair (s, t) is determined by first computing the widest-shortest path
[64] between s and t using static link costs. Then, the bottleneck bandwidth of this
path is determined and all the links along the path that have a residual capacity equal
to the bottleneck bandwidth are pruned. The second path is found by computing the
widest-shortest path in the pruned topology. This procedure is repeated until either
k paths are found or no more paths are available. Iliadis and Bauer [81] proposed
two SMIRA algorithms, MI-BLA (Minimum-Interference Bottleneck-Link-Avoidance)
and MI-PA (Minimum-Interference Path Avoidance). In the simulations in [81], MI-PA
achieves a better performance than MI-BLA.

9.7.2 Limitations

The algorithms described above all have some drawbacks. The first drawback is their
complexity. A maxflow computation requires a time-complexity of O(N2

√
M) and it

must be executed for each source-destination pair. Consequently, the time complexity
increases prohibitively as the network grows.
Another important disadvantage is that the algorithms, with the exception of TE-

DB, do not explicitly take into account QoS constraints. Some of the authors claim
that such constraints can be converted into an effective bandwidth constraint. However,
the theory of effective bandwidth is complex and not generally applicable. Therefore,
in order to actually satisfy the additive QoS constraints, it is necessary to explicitly
take them into account. This is partly by TE-DB, and fully by SAMCRA and its new
variant SAMCRA-B, described in the following section.

9.8 SAMCRA-B

For each link, the QoS link weights are constant upper bounds, such that the QoS
values perceived by packets crossing the link do not exceed these QoS weights. This
assures that the additive QoS constraints of admitted flows remain satisfied even after
new flows join. Only bandwidth is considered to be an adaptive measure that changes
with the joining and leaving of nodes. In order to obtain an algorithm capable of guar-
anteeing QoS constraints and optimizing network throughput, SAMCRA (see Section
4.6) has been equipped with a new path length function to improve its behavior in a
dynamic network. As discussed in Section 4.1, SAMCRA can be used with any path
length function. Length function (4.3) is a function of the (constant) QoS link weights
(wi(e), i = 1, ...,m) and of the QoS constraints (Li, i = 1, ...,m).
Instead of (4.3), we propose a different function for the length of a path P in

180 CHAPTER 9. QOS DYNAMICS

SAMCRA:

l(P) =
X
e∈P

w0(e), if �w(P) ≤ �L (9.3)

= ∞, else

where w0(e) is a link weight that depends on dynamic information. We have assigned
w0(e) =

1
R(e)

, where R(e) represents the available bandwidth on link e. We are going to
use SAMCRA with the two different length functions (4.3) and (9.3). The latter variant
is named SAMCRA-B. SAMCRA-B selects the shortest path according to (9.3) among
those satisfying the QoS constraints. The constraints make length (9.3) non-linear.
Note that SAMCRA-B has an additional measure w0 as compared to SAMCRA.

9.9 Performance evaluation

In this section, the performance of several algorithms is evaluated. The algorithms under
consideration are: Dijkstra with weights 1

R(e)
(labeled as “SP-Inv”), widest-shortest path

[64] (labeled as “WidShort”), NewMIRA, MI-PA, TE-DB, SAMCRA and SAMCRA-B.
The objective was to compare the traffic engineering algorithms (New MIRA, TE-DB,
MI-PA) to SAMCRA and to evaluate the gain that is possibly achieved by using the
new path length function of SAMCRA-B.
The experiments were carried out using various topologies varying from 18 nodes

(see Figure 9.5) to 100 nodes. All simulations on the different types of graphs displayed
similar results (i.e., ranking among the algorithms) as for the topology in Figure 9.5.
Therefore only the results for this topology are presented. In Figure 9.5, the dark shaded
nodes represent the edge routers, the entry and exit points for the network traffic, while
the other nodes represent core routers, which carry transit traffic only. The topology
consists of 18 nodes (7 edge nodes) and 31 links. The capacity of the light links is 1550
units and that of the dark links is 6220 units. All links are symmetric, with respect
to both capacity and QoS link weights. In our simulations, we considered two additive
QoS constraints (m = 2) and refer to them as delay and packet loss. Figure 9.5 shows
for each link a two-component vector of QoS link weights (wi(e), i = 1, 2).
The flow-level simulator NetSim++ [105] (developed at TU Delft) has been used to

analyze and compare the performance of the different routing algorithms in a dynamic
scenario. NetSim++ makes use of several random variables, which specify the charac-
teristics of the flows that load the network. Throughout all simulations, the source and
destination nodes were chosen uniformly among the set of edge nodes.
Several scenarios have been studied. Each scenario consisted of some tests and

each test was iterated 20 times. For each of these 20 iterations, the algorithms under
evaluation faced the same scenario and the same set of flow requests. Each iteration

9.9. PERFORMANCE EVALUATION 181

Figure 9.5: Simulation network topology.

involved the generation of 120000 flows. The first 20000 were not considered, as they
represent a warm-up period needed to load the network.
Each iteration stored the call blocking rate (CBR) and the bandwidth blocking rate

(BBR) of each algorithm. These performance measures are defined as follows:

CBR =
number of rejected flows
total number of flows

, BBR =

P
rejected flows requested BWP
all the flows requested BW

After the processing of each new flow request, the throughput was computed as the sum
of the bandwidth requested by the flows crossing the network at that moment. Finally,
for each test we measured the average processor time used by each algorithm to select
a path. The simulations were run under Linux on a Pentium III 866MHz processor.
In the following subsections the three investigated scenarios and their results are

discussed. The first is intended to compare all the implemented algorithms, while

182 CHAPTER 9. QOS DYNAMICS

the other two only compare the algorithms which explicitly take into account QoS
constraints. For the first scenario, the additive QoS constraints are chosen very large,
such that no algorithms will reject any request due to a violation of the delay or packet
loss constraint.

9.9.1 Scenario 1: influence of bandwidth constraint

The purpose of this set of simulations is to study the behavior of the implemented
algorithms under different bandwidth constraints, while keeping the load offered to the
network constant. The product of mean number of flow arrivals per time unit, mean
requested bandwidth and mean flow duration equals the average load per time unit.
Scenario 1 comprises two tests, which differ in the distribution of the bandwidth

requirement. The bandwidth requirement is uniformly distributed between 1 and 10
units for test 1a, which is very small compared to the link capacities (1550 or 6220 units).
The bandwidth requirement for test 1b is taken from a uniform distribution U(1,10)
with probability 0.7 and from a uniform distribution U(80,100) with probability 0.3.
The results for tests 1a and 1b are summarized in Table 9.1. Table 9.1 shows the

proportional increase between the minimummean CBR (BBR) µmin and the mean CBR
(BBR) µ of each of the other algorithms:

∆(test) =
µ− µmin

µmin

× 100 (9.4)

In the case of test 1a, the minimum call blocking rate was achieved by SAMCRA-B and
SP-Inv. Since the additive QoS constraints are chosen sufficiently large, SAMCRA-B
reduces to SP-Inv. The small difference in behavior can be explained by considering that
the two algorithms may choose a different path when multiple equal-length paths are
present. The call blocking rate achieved by NewMIRAwas higher (about 14%) than the
minimum, while the CBR of WidShort, TE-DB and SAMCRA was far greater (above
45%). The highest call blocking rate was achieved by MI-PA. The same conclusions
can be drawn, when analyzing the performance in terms of bandwidth blocking rate.
However, the BBR of New MIRA is closer to the minimum achieved by SAMCRA-B
and SP-Inv. This suggests that New MIRA accepts less flows than SAMCRA-B and
SP-Inv, but accepts those with greater bandwidth requirements. Also the BBR of TE-
DB, which makes use of the maxflow concept to define link weights, is now similar to
that of WidShort. The maximum throughput was reached by SAMCRA-B and SP-Inv,
which were closely followed by New MIRA. The time required by WidShort, SAMCRA
and SP-Inv is of the same order of magnitude, while SAMCRA-B requires a time double
to that of SAMCRA. The difference in path computation time between SAMCRA-B
and SAMCRA is due to the additional QoS measure (bandwidth) in SAMCRA-B. Also
the difference in length function is likely to be of influence. The time required by New
MIRA, TE-DB and MI-PA is two orders of magnitude bigger than that of SAMCRA.

9.9. PERFORMANCE EVALUATION 183

Table 9.1: Scenario 1: proportional increase
∆CBR(1a) ∆BBR(1a) ∆CBR(1b) ∆BBR(1b)

WidShort 46.08 43.49 6.06 6.45
New MIRA 14.28 6.62 min min
TE-DB 53.2 45.12 6.62 6.03
MI-PA 105.9 100.67 34.27 34.75
SAMCRA 66.2 62.36 10.92 11.26
SAMCRA-B min min 0.37 0.95
SP-Inv 0.07 0.13 0.06 0.75

MI-PA is slightly faster than New MIRA and TE-DB, as expected since it does not
require maxflow computations.
Test 1b differs from test 1a in the characterization of the bandwidth requirement.

Table 9.1 reveals that there is a very small difference between the call blocking rate
of New MIRA (the minimum) and those of SAMCRA-B (0.37% greater) and SP-Inv
(0.06% greater). Moreover, the CBR of TE-DB, WidShort and SAMCRA is now closer
to the minimumCBR (less than 11% greater). MI-PA again achieved poor performance.
The same was observed for the bandwidth blocking rate and throughput. We observed
that the CBR of all the algorithms is greater with respect to test 1a (this is especially
true for the algorithms achieving the minimum), even though the load offered to the
network was the same. This means that the algorithms are able to accept more calls
when the bandwidth requirements are small. This can be explained by considering
that small requests fit the residual bandwidth of links better than large requests. The
algorithms required almost the same time to compute a path as for test 1a.
Finally, from the results obtained in different topologies, we saw a similar classifi-

cation among the algorithms, which seems independent of the topology size. However,
more simulations are needed to substantiate this observation.

9.9.2 Scenario 2: influence of one QoS constraint

In the last two scenarios, we have only compared the algorithms that explicitly take into
account QoS constraints. SAMCRA, SAMCRA-B and TE-DB fall into this category.
In addition, we have included SP-Inv, which behaves like SAMCRA-B when the QoS
constraints are sufficiently large. In scenario 2, four tests were simulated, which differed
only in the delay constraint. The topology and the parameters of the other random
variables did not change throughout these tests and were equal to those used for test
1a.
Table 9.2 shows the difference Γ (scaled by 100) between the mean CBR (BBR) of

SAMCRA-B and that of each of the other algorithms. The delay constraint becomes
more stringent going from test 2a to test 2d. Table 9.2 affirms that SAMCRA-B achieved

184 CHAPTER 9. QOS DYNAMICS

Table 9.2: Scenario 2: Gap between SAMCRA-B and the other algorithms
SAMCRA TE-DB SP-Inv

Test ΓCBR ΓBBR ΓCBR ΓBBR ΓCBR ΓBBR
2a 1.35 1.78 1.17 1.41 1.08 0.62
2b 2.24 2.69 2.29 2.64 8.42 7.81
2c 3.61 4.34 3.67 4.28 12.84 12.63
2d 3.46 4.19 3.55 4.12 14.48 14.48

the minimum CBR in all the tests. When the constraints become very strict, only a
few (if any) feasible paths are available. In this case, all the algorithms are likely to
make the same choice. Furthermore, the CBR of SAMCRA is initially greater than
that of TE-DB, but eventually it becomes smaller. This suggests that SAMCRA, due
to its exactness, is less sensitive to the tightening of QoS constraints than TE-DB.
Finally, Table 9.2 shows that the performance of SP-Inv (in terms of both CBR and
BBR) rapidly degrades as the delay constraint becomes more stringent. The path
computation times were similar to those measured for test 1a.

9.9.3 Scenario 3: influence of both QoS constraints

In the last scenario we have decreased both constraints. The minimum CBR (BBR)
was again achieved by SAMCRA-B. The gap between the average CBRs (BBRs) of
SAMCRA-B and TE-DB and the gap between the average CBRs (BBRs) of SAMCRA-
B and SAMCRA continuously increase with decreasing constraints. This means that
SAMCRA-B is less sensitive to the tightening of QoS constraints. We came to the
same conclusions from the results of scenario 2. Again, the performance of SP-Inv (in
terms of both CBR and BBR) rapidly degraded as the QoS constraints become more
stringent.

9.10 Conclusions on dynamic QoS algorithms

Dynamic QoS algorithms should aim to guarantee QoS constraints, while making ef-
ficient use of the network’s resources. Moreover, these objectives should be met in a
network with dynamically changing link weights. A new length function for SAMCRA
was used to target these objectives and this variant was named SAMCRA-B. To analyze
the extent to which several QoS and traffic engineering algorithms meet the objectives of
an optimal dynamic algorithm, a simulative study has been conducted. The simulations
were done on different networks, under the assumption that the bandwidth on a link
could dynamically change and that the link weights referring to delay and packet loss
remained constant. The performance indicators were: call blocking rate, bandwidth

9.10. CONCLUSIONS ON DYNAMIC QOS ALGORITHMS 185

blocking rate, throughput, and path computation time. Several scenarios have been
analyzed, either under loose QoS constraints or by tightening the QoS constraints. For
the first type of loosely-constrained scenarios SAMCRA-B and SP-Inv displayed the
best performance. The algorithms based on the maxflow concept (New MIRA and TE-
DB) performed better in terms of bandwidth blocking rate and throughput, than in
terms of call blocking rate. Nonetheless, in every test the bandwidth blocking rate of
SAMCRA-B was either the minimum or very close to the minimum. The simulations
also revealed that the path length function of SAMCRA-B (based on the current band-
width availability) allows a considerable advantage over SAMCRA with a static length
function.
In the last type of tightly-constrained scenarios SAMCRA-B performed the best.

Moreover, the gap between SAMCRA-B and the other algorithms (SAMCRA and TE-
DB) increased as the QoS constraints became more stringent.
In all the tests, the average path computation time of SAMCRA and SAMCRA-

B was two orders of magnitude smaller than New MIRA and TE-DB. From these
scenarios, we can conclude that SAMCRA-B achieves the best performance at a low
computational cost. However, all the simulations were based on a dozen topologies and
therefore only indicate a potential for SAMCRA with a properly chosen path length
function. Further simulations are needed to confirm our claim.

186 CHAPTER 9. QOS DYNAMICS

Chapter 10

Conclusions

The continuously demand for using multimedia applications over the Internet has
spurred research on how to satisfy the quality of service (QoS) requirements of these
applications, e.g., requirements regarding bandwidth, delay, jitter, packet loss, and re-
liability. One of the key issues in providing QoS guarantees is

how to determine paths that satisfy QoS constraints.

Solving this problem is known as QoS routing or constraint-based routing and is the
main topic of this thesis.
Routing in general involves two entities, namely the routing protocol and the routing

algorithm. The routing protocol manages the dynamics of the routing process: it
captures the state of the network and its available network resources and distributes
this information throughout the network. The routing algorithm uses this information
to compute paths that optimize a criterion and/or obey constraints. In QoS routing,
the goal is to find paths that obey multiple user-desired QoS constraints, also referred
to as the multi-constrained path (MCP) problem. Paths that obey the constraints are
called feasible paths. The multiple constraints make the MCP problem difficult. To
facilitate exact QoS routing, we used four concepts: (1) a non-linear length function, (2)
a k-shortest paths approach, (3) the concept of non-dominance and (4) the look-ahead
concept. The non-linear length function is necessary, because

multiple constraints make the MCP problem non-linear.

If QoS routing is performed via a linear length function, then exactness cannot be
guaranteed. Motivated by the constraints surface, we have proposed the non-linear
length function l(P) = maxi=1,...,m

³
wi(P)
Li

´
. A problem of a non-linear length function

is that subsections of shortest paths are not necessarily shortest themselves. In this
case, examining only shortest sub-paths at a node may lead to an end-to-end path that
is not the shortest one. Therefore,

187

188 CHAPTER 10. CONCLUSIONS

multiple paths at a node may have to be examined.

This is accomplished by a k-shortest paths approach, where not only examine the
shortest paths are examined, but also the second shortest up to the k-th shortest path.
In the worst case, this k-shortest paths approach could evaluate all possible paths and
therefore it requires efficient search-space-reducing techniques.

One technique to reduce the search space is the concept of
non-dominance, which excludes paths P 0 for which a path
P is already known that has weights wi(P) ≤ wi(P

0), for
i = 1, ...,m.

Another concept to reduce the search space is that of look-
ahead.

Look-ahead computes lower-bound vectors to assist in determining whether a path
can become feasible or not. Based on the above-mentioned four concepts, we proposed
the exact algorithm SAMCRA. Naturally, besides the four concepts, others may exist,
e.g., a preprocessing of the graph that prunes links that cannot be on the shortest path,
or a bi-directional search. Based on such new concepts SAMCRA could evolve over time
and keep the leading position it occupies today. SAMCRA is not the only algorithm
that has been proposed to solve the MCP problem, although it is one of the few exact
algorithms.
Many researchers have investigated the constraint-based path selection problem and

proposed various algorithms, mostly heuristics. This wealth of algorithms grew so large
that they complicated a good perception of the possibilities. Moreover, based on very
limited simulations, each claimed superiority over the others. To gain more insight in
these algorithms, this thesis has provided a large-scale and fair performance evaluation
of the lion’s share of QoS algorithms. The simulations were conducted using particular
distributions, different types of correlation and different classes of graphs. To obtain
confident results, we used simulation runs that consist of 104 iterations. In general, the
simulation results indicated that

better performance is obtained with SAMCRA-like algo-
rithms that use a k-shortest path algorithm with a non-
linear length function that eliminate paths via the non-
dominance and look-ahead concepts.

for the problems considered (RSP, MCP, MCOP). The performance and complexity
of these algorithms can easily be adjusted by controlling the value of k. When k is
not restricted, the SAMCRA-like algorithms lead to exact solutions. In the class of
Waxman or random graphs, with uniformly distributed link weights, simulation results

189

suggest that the execution times of such exact algorithms increase linearly with the
number of nodes. Therefore,

in “easy” cases, the execution time of exact algorithms is
comparable to those of heuristics, and the success rate of
heuristics approaches that of exact algorithms.

In contrast,

in “hard” cases, the success rate of heuristics drops to zero,
while the execution time of exact algorithms grows expo-
nentially.

This was observed for the class of lattices with negatively correlated link weights. In
our simulations, the polynomial-time �-approximation schemes displayed an extensive
execution time and therefore seem unsuitable for practical purposes. More research is
necessary to indicate whether these algorithms might be a good alternative for exact
algorithms in large and hard topologies.
QoS routing does not only find a feasible path between a source and a destination,

it also relates to efficiency and security. We have proposed an algorithm to find an
efficient multicast graph in a network that obeys a set of QoS-constraints and have
shown that

a multicast tree may not always guarantee the requested
QoS-constraints, not even if multiple unicast QoS sessions
will.

This property increases the complexity of constrained multicast routing, since we
have to maintain a set of paths/trees and we need to check if no min/max constraints
are violated (mere topology filtering may be insufficient). In multicast QoS routing, a
trade-off has to be made between efficient use of resources and QoS, which resulted in
the proposed algorithm MAMCRA. MAMCRA computes the set S of shortest paths
from source s to all other nodes, and then reduces this set to an efficient set of multicast
routes, without compromising the requested level of QoS. Simulations with MAMCRA
indicate that it often returns trees or sub-graphs that closely resemble a tree. It was
shown that

it is desirable to always construct (to strive to construct)
a multicast tree

either by fine-tuning MAMCRA or by renegotiating the constraints.
For secure and reliable QoS routing, a single feasible path between source and des-

tination may be too vulnerable. It is better to simultaneously identify a back-up path

190 CHAPTER 10. CONCLUSIONS

that can be used when the primary path fails. To avoid that both primary and back-
up paths fail, they should be link-disjoint. This leads to the problem of finding two
link-disjoint paths that both obey multiple constraints. In one dimension this problem
is easily solved, but the extension to multiple dimensions is less trivial. Again, the
complicating factor is that subsections of shortest (feasible) paths are not necessarily
shortest themselves. A heuristic algorithm DIMCRA is proposed to find link-disjoint
multi-constrained paths between a pair of source and destination nodes. If DIMCRA
returns a link-disjoint pair of paths, they will always obey the constraints. However,
DIMCRA’s solution is not necessarily optimal in the sense that it minimizes the total
length of the returned paths or guarantees that it always finds a feasible set. Its per-
formance, however, is better than (the intuitive method of) simply finding a feasible
path, removing it from the graph and then computing the backup path. Some open
issues remain, namely: how to make DIMCRA exact whilst still efficient, how to al-
low maximally disjoint paths or bridges, and evaluating the performance of other new
link-disjoint QoS algorithms appear.
After this extensive algorithmic study, we investigated the complexity of exact QoS

routing. Finding a path based on multiple QoS constraints was proven to be an NP-
complete problem. However,

the Multi-Constrained Path (MCP) selection problem is
not NP-complete in the strong sense,

meaning that a pseudo-polynomial algorithm can exactly solve the problem.

The NP-completeness of the MCP problem hinges on at
least four factors that must hold simultaneously, namely
(1) the underlying topology, (2) link weights that can grow
arbitrarily large or have an infinite granularity, (3) a very
negative correlation among the link weights, and (4) the
values of the constraints.

If the values of the constraints are very large, then it will be easy to find a path
within the constraints. In contrast, if the values of the constraints are very small, then
it will be easy to verify that there is no path within the constraints. This indicates that

the complexity of QoS routing has a phase transition as a
function of the value of the constraints.

There will be a phase transition if the constraints are around the weights of the
m-dimensional shortest path in the network. In this case, it will probably be difficult
to establish whether a feasible path exists. If the four above-mentioned conditions
are all necessary to induce intractability, they will allow network and service providers

191

to properly dimension their network and to avoid intractable scenarios. Moreover, if
the theory of phase transition holds for the MCP problem, then we know that QoS
requirements close to the m-dimensional shortest path will, if admitted, provide the
highest possible level of QoS, but will also involve the highest computational cost. Such
information is invaluable for pricing and billing mechanisms and admission control
algorithms. Finally, a proper understanding and use of the four conditions will allow
for efficient QoS routing at controlled computational costs.
This thesis has identified and discussed the theory and key concepts of QoS al-

gorithms and their complexity. As such the main goal of this thesis has been met.
However, the theory of QoS routing reaches beyond QoS algorithms and also involves
the dynamics of QoS routing. A key question here is “how can we get an accurate
view of the state of the network, or keep it up to date, without introducing too much
complexity?” Therefore, for completeness, the last chapter of this thesis discusses the
main research questions in dynamic QoS routing and presents some pioneering work in
this direction. We have provided a preliminary evaluation of the stability of paths in a
dynamically changing network.

Network dynamics can be categorized as either slowly or
frequently changing.

Slow changes relate to changes in nodes or links and have been studied in the
past. Frequent changes relate to changes in the link weights. We have focussed on
the influence that dynamic link weights have on path stability. We have provided
a mathematical analysis of the difference in length between the shortest path in an
unperturbed graph and the shortest path in a perturbed one. Subsequently, we have
simulated the difference between these two paths. In practice, the link weights will have
a finite granularity instead of the real values used for the simulations. We expect that

a larger granularity will improve the stability of paths and
consequently the predictability of network state.

Our results for the difference in links ∆l displayed more volatility as a function
of the perturbation strength α, than the difference in weights ∆w. We believe that
the latter parameter is a more important measure to set a threshold for updating the
network state.
Finally, we have evaluated several algorithms for dynamically routing flows that have

a bandwidth requirement and a number of constraints on additive QoS measures. We
have carried out some simulation studies in order to compare SAMCRA with previous
proposals, using call and bandwidth blocking rates, throughput and path computation
time as performance indicators. Several scenarios have been analyzed, and two versions
of SAMCRA were used: SAMCRA and SAMCRA-B, where SAMCRA-B incorporates

192 CHAPTER 10. CONCLUSIONS

the available bandwidth into its length function. In every test the call/bandwidth
blocking rate of SAMCRA-B was the minimum or very close to the minimum. The
simulations also revealed that the path length function of SAMCRA-B performed much
better than SAMCRA with a static length function.
In all the tests, the average path computation time of SAMCRA and SAMCRA-B

were among the shortest. From these scenarios, we can conclude that SAMCRA-B
performs best and has a low computational cost. The results indicate that SAMCRA,
with a properly chosen path length function, is not only an exact and fast QoS routing
algorithm, but that it also serves as an effective traffic engineering algorithm that
optimizes network throughput. However, more simulations are needed to confirm this
claim.

Appendix A

Approximate analysis

A.1 Approximate analysis of QoS complexity

We present an approximate analysis of the length of the m-dimensional shortest path
in a two-dimensional lattice.

A.1.1 Analysis for a single link weight (m = 1)

Consider a rectangular 2d-lattice with size z1 and z2 and with independent and iden-
tical, uniformly distributed link weights on (0, 1]. The shortest-hop path between two
diagonal corner points consists of h = z1 + z2 hops. The weight Wh of such an h hop
path is the sum of h independent uniform random variables uj and Wh =

Ph
j=1 uj has

distribution,

F (x) = Pr [Wh ≤ x] =
1

h!

hX
j=0

µ
h

j

¶
(−1)j(x− j)h1j≤x (A.1)

In particular, Pr [Wh ≤ h] = 1 and for small x < 1 holds that F (x) = xh

h!
. We assume

that the number l =
¡
z1+z2
z1

¢
= h!

z1!z2!
of those h-hop paths is large. Although these paths

can possibly overlap, we ignore this dependence for the moment and assume that the
minimum weight among all h-hop paths is well approximated by the limit law for the
minimum of a set of independent random variables Xk with identical distribution F .
In particular, if liml→∞ l (F (xl)) = ζ,

lim
l→∞

Pr

·
min
1≤k≤l

Xk > xl

¸
= e−ζ (A.2)

The limit sequence must obey l (F (xl)) → ζ for sufficiently large l, which implies that

F (xl) must be small or, equivalently, xl must be small. Hence, l
xhl
h!
= ζ or xl =

¡
h!ζ
l

¢ 1
h .

193

194 APPENDIX A. APPROXIMATE ANALYSIS

The limit law (A.2) for the minimum weight W = min1≤k≤lWh,k of the shortest-hop
path between two corner points in a rectangular 2d-lattice is

lim
l→∞

Pr

"
min
1≤k≤l

Wh,k >

µ
h!x

l

¶ 1
h

#
= e−x

In other words, the random variable lWh

h!
tends to an exponential random variable with

mean 1 for large l = h!
z1!z2!

or

Pr [W ≤ y] ≈ 1− exp
µ
− yh

z1!z2!

¶
The mean shortest weight of an h hop path equals

E [W] =
Z ∞

0

(1− FW (x)) dx ≈
Z ∞

0

exp

µ
− xh

z1!z2!

¶
dx

= Γ

µ
1 +

1

h

¶
(z1!z2!)

1
h (A.3)

For a square 2d-lattice where z1 = z2 =
h
2
,

E [W] = Γ

µ
1 +

1

h

¶µµ
h

2

¶
!

¶ 2
h

Using Stirling’s formula [1, 6.1.38] for the factorial h! =
√
2πhh+

1
2 e−h+

θ
12h , where 0 <

θ < 1, we finally arrive for large h at

E [W] '
µ
h

2e

¶³√
πhe

θ
6h

´ 2
h ≈ h

2e
(A.4)

We now provide a heuristic argument why, for large h, the neglect of the dependence
between h-hop paths is justified. Denote by Γh the set of all h-hop paths in the 2d-lattice
between corner points, with the number of those paths |Γh| =

¡
h
z1

¢
. A particular path of

the set Γh is denoted by γh. We denote the weight of γ by w(γ). Let wN be the (random)
weight of the shortest path between two diagonal corner points in the 2d-lattice with
independent uniformly distributed link weights. The event {hN = h,wN ≤ z} implies
that there is an h-hop path γh with weight w(γh) ≤ z and, therefore,

Pr[hN = h,wN ≤ z] ≤ Pr[∪γ∈Γh{w(γ) ≤ z}]
≤

X
all γ

Pr[γ ∈ Γh, w(γ) ≤ z] (A.5)

A.1. APPROXIMATE ANALYSIS OF QOS COMPLEXITY 195

where the second inequality follows from Boole’s inequality (Pr[∪Aj] ≤
P
Pr[Aj]).

Using the independence of the link and the link weights,

Pr[hN = h,wN ≤ z] ≤
X
all γ

Pr[γ ∈ Γh] Pr[w(γ) ≤ z]

= E [|Γh|] Pr[w(γh) ≤ z]

or since Pr[w(γh) ≤ z] = Pr [Wh ≤ z], given by (A.1),

Pr[hN = h,wN ≤ z] ≤
µ
h

z1

¶
F (z)

From this rigorous inequality we infer the heuristic argument Pr[hN = h,wN ≤ z] '¡
h
z1

¢
F (z). For a typical value of z, the probabilities should sum to 1, yielding,

1 =
∞X
j=0

Pr[hN = h+ 2j, wN ≤ z] ' F (z)

µ
h

z1

¶

where the assumption is that
P∞

j=1 Pr[hN = h + 2j, wN ≤ z] << Pr[hN = h,wN ≤ z].
Hence, a typical value for the weight of the shortest path is the solution of F (z) = 1

(hz1)
.

For small z, we have F (z) = zh

h!
such that

z ∼ (z1!z2!)
1
h

which agrees with E [W] in (A.3).

A.1.2 Analysis for multiple link weights (m > 1)

Consider a 2d-lattice where each link is specified by a link weight vector �w = (w1, w2,
. . . ,wm). We confine to the case where all link weight components are independent and
uniformly distributed. Using the non-linear length of SAMCRA, the length of an h-hop
path is computed as

lh(P) = max
1≤j≤m

·
Wh,j

Lj

¸
(A.6)

where each weight per component j is Wh,j =
Ph

n=1 un,j, with distribution F given in
(A.1). Since all link weight components are independent,

Pr [lh(P) ≤ x] =
mY
j=1

F (Ljx)

196 APPENDIX A. APPROXIMATE ANALYSIS

For small x,
mY
j=1

F (Ljx) ≈
mY
j=1

(Ljx)
h

h!
=
³
xh

h!

´m mY
j=1

Lh
j . We define an equivalent constraint

Leq =

Ã
mY
j=1

Lj

! 1
m

. Neglecting the dependence of h-hop paths, due to possible overlap as

above, and applying the limit law for the minimum length with liml→∞ l

Ã
mY
j=1

F (Ljxl)

!
=

ζ results in

lim
l→∞

Pr

min
1≤k≤l

lh,k(P) >

Ã
x(h!)m

l (Leq)
mh

! 1
mh

 = e−x

For large l = h!
z1!z2!

, we obtain the approximate distribution of the minimum length,
lh = liml→∞min1≤k≤l lh,k(P), of an h-hop path,

Pr [lh ≤ y] = 1− exp
Ã
− h!

z1!z2!

Ã
(Leqy)

h

h!

!m!
(A.7)

The average length of the shortest h-hop path is, with (h!)
1
h ≈ h

e
(2πh)

1
2h ≈ h

e
,

E [lh] =
Z ∞

0

Pr [lh > y] dy

= Γ

µ
1 +

1

mh

¶
(h!)

1
h

¡
z1!z2!
h!

¢ 1
mh

Leq

≈ h

eLeq

µ
z1!z2!

h!

¶ 1
mh

Since all link weight components are independent and equal in distribution, we can
interpret E [Leqlh] as the weight of the shortest path in m dimensions. For a square
lattice, using [1, 6.1.49]

¡
2z
z

¢ ≈ 22z√
πz
, the formula

E [Leqlh] ≈ h

e2
1
m

(A.8)

shows that the weight of the shortest path very slowly increases with m as 2−
1
m and

that for any dimension m, h
e2
≤ E [Leqlh] ≤ h

e
.

The variance equals

var [lh] =

Z ∞

0

(y − E [lh])2dPr [lh ≤ y]

=
(h!)

2
h

¡
z1!z2!
h!

¢ 2
mh

(Leq)
2

µ
Γ

µ
1 +

2

mh

¶
− Γ2

µ
1 +

1

mh

¶¶

A.1. APPROXIMATE ANALYSIS OF QOS COMPLEXITY 197

For large h,

Γ

µ
1 +

2

mh

¶
− Γ2

µ
1 +

1

mh

¶
=

π2

6

1

(mh)2
+O

µ
1

(mh)3

¶
Hence,

var [lh] ≈ π2

6

(E [lh(P)])2

(mh)2
→ π2

6

1

em2Leq

which is rather small and independent of h, as is common for extremal distributions.

A.1.3 Perfect negative correlation (m = 2)

In case ofm = 2 and perfect negative correlation, the first path weight isWh,1 =
Ph

j=1 uj

and the second is Wh,2 = h−Ph
j=0 uj = h−Wh,1. Then,

lh(P) = max

·
Wh,1

L1
,
Wh,2

L2

¸
= max

·
Wh,1

L1
,
h−Wh,1

L2

¸
If L1 = L2 = Leq, then Leqlh(P) ≥ h

2
and if Wh,1 ≤ x ≤ h

2
, then Leqlh(P) ≥ h− x, else

h
2
≤ Leqlh(P) ≤ x. Thus, Pr

£
h
2
≤ Leqlh(P) ≤ z

¤
equals

Pr

·
h

2
≤Wh,1 ≤ z

¸
+Pr

·
h− z ≤Wh,1 ≤ h

2

¸
= F (z)− F

µ
h

2

¶
+ F

µ
h

2

¶
− F (h− z)

= F (z)− F (h− z)

Assuming as before independence of paths, then for the minimum length path holds,

Pr

·
h

2
≤ min

1≤k≤l
Leqlh,k(P) ≤ z

¸
= 1−

Y
l

Pr [Leqlh(P) > z]

With Pr[Leqlh] = Pr
£
h
2
≤ min1≤k≤l Leqlh,k(P) ≤ zl

¤
,

1− Pr [Leqlh] = exp [l log (1− [F (zl)− F (h− zl)])]

= exp [−l [F (zl)− F (h− zh)]]

× (1 + o [hF (zl)− F (h− zl)])

198 APPENDIX A. APPROXIMATE ANALYSIS

If liml→∞ l [F (zl)− F (h− zl)] = ξ, then 1 − Pr £h
2
≤ Leqlh ≤ zl

¤
= e−ξ. It remains to

find zl in terms of ξ. We rewrite zl = h
2
+ xl. For small xl and with f(x) = dF (x)

dx
,

ξ = l

·
F

µ
h

2
+ xl

¶
− F

µ
h

2
− xl

¶¸
= l

·
F

µ
h

2

¶
+ f

µ
h

2

¶
xl+

−F
µ
h

2

¶
+ f

µ
h

2

¶
xl +O

¡
x3l
¢¸

= 2lf

µ
h

2

¶
xl + o

¡
x3l
¢

such that, with the Gaussian approximation for f
¡
h
2

¢ ' 1√
πh
6

, and l = h!
z1!z2!

xh =
ξ

2lf
¡
h
2

¢ = ξ(z1!z2!)

2h!

r
πh

6

Finally,

Pr

·
h

2
≤ Leqlh ≤ h

2
+ y

¸
= 1− exp

−2 h!

z1!z2!
q

πh
6

y

 (A.9)

from which

E [Leqlh] =
h

2
+

Z ∞

0

exp

−2 h!

z1!z2!
q

πh
6

y

 dy

=
h

2
+
(z1!z2!)

2h!

r
πh

6
(A.10)

Hence, for large h, the average E [Leqlh] rapidly tends to h
2
, as has been verified through

simulations.

A.2 Approximate analysis of path stability

We provide an approximate calculus of the length of the shortest path in a class of graphs
with link weight distribution we+ ewe;α, where we = U(0, 1) and ewe;α = αU(−0.5, 0.5),
∀e ∈ E. We base our calculus on the mathematical framework provided in [164] and
use the same notation: we fix the source node s and destination node t and denote by
Γl the set of all paths in G = (V,E) from s to t with l links or hops. A particular path

A.2. APPROXIMATE ANALYSIS OF PATH STABILITY 199

of the set Γl is denoted by γl. The weight of γ is denoted by w(γ). hN denotes the
number of hops and wN the weight of the shortest path between s and t with i.i.d. link
weights. The event X = {hN ≤ k;wN ≤ z} implies that there is a path γl ∈ Γl, l ≤ k,
with weight w(γl) ≤ z and therefore [164]:

Pr [X] ≤
kX
l=1

Pr [∪γ∈Γlw(γ) ≤ z]

≤
kX
l=1

E [|Γl|] Pr [w(γ) ≤ z] (A.11)

where E [|Γl|] refers to the average number of paths from s to t with l hops. If we let k
equal the maximum hop count N − 1, we can rewrite (A.11) as

Pr [wN ≤ z] ≤
N−1X
l=1

E [|Γl|]F l∗
w (z) (A.12)

where the distribution function F l∗
w (z) is the probability that a sum of l independent

random variables, each with cdf Fw, is at most z and is given by the l-fold convolution:

F l∗
w (z) =

Z z

0

F (l−1)∗
w (z − y)fw(y) dy, l ≥ 2

and where F 1∗
w = Fw. From the rigorous inequality (A.11) we also infer the heuristic

statement
Pr[hN = k,wN ≤ z] ' E [|Γk|]F k∗

w (z) (A.13)

For a typical value of z, the probabilities in (A.13) should sum to 1, yielding

1 '
N−1X
k=1

E [|Γk|]F k∗
w (z) (A.14)

and this equation determines the typical value z = E [wN]. Substitution of this result
in (A.13) shows that the hop count probability should satisfy

Pr [hN = k] ' E [|Γk|]F k∗
w (E[wN]) (A.15)

where the event {wN ≤ z} is deleted because we substitute the typical value of z, so
that Pr[wN ≤ z] is close to 1.
If Fx(z) = z10≤z≤1 corresponding to U(0, 1), then using (x+ y)n =

Pn
j=0

¡
n
j

¢
xn−jyj

and the inverse Laplace transform 1
2πi

R c+i∞
c−i∞

esa

sn+1
ds = an

n!
1Re(a)>0, we find

F l∗
x (z) =

bzcX
j=0

(−1)j
j!(l − j)!

(z − j)l, 0 ≤ z ≤ l (A.16)

200 APPENDIX A. APPROXIMATE ANALYSIS

while the perturbed situation corresponding to Fw(z) = U(0, 1) + αU(−0.5, 0.5) is

F l∗
w (z) =

1

αl

lX
j=0

l!(−1)j
j!(l − j)!

lX
k=0

l!(−1)k
k!(l − k)!

·(z − j + αl
2
− αk)2l

(2l)!
1z−j+αl

2
−αk>0 (A.17)

Since the link weights are independent and also we and ewe;α are independent, the
expected weight of a path P in the perturbed graph equals E[w(P)] =

Pl
i=1 E[we +ewe;α] =

l
2
and the variance var[w(P)] =

Pl
i=1 var[we + ewe;α] =

l(1+α2)
12

. By the central
limit theorem, provided l is large enough, we can approximate the distribution (A.17)
with the Gaussian distribution Φ

¡
z−µ
σ

¢
, with µ = E[w(P)] = l

2
and σ =

p
var[w(P)] =q

l(1+α2)
12

.
In (QoS) routing it is uncommon that link weights become negative and therefore the

negative weights are truncated at 0 (in the simulations we used a small value ε = 10−5).
In this case, we want to know Pr[w ≤ z|w ≥ 0] = Pr[w≤z∩w≥0]

Pr[w≥0] = Pr[w≤z]−Pr[w≤0]
Pr[w≥0] =

F l∗
w (z)−F l∗

w (0)
1−F l∗

w (0)
.

First consider

Pr[w ≤ z|w ≥ 0] = F l∗
w (z)− F l∗

w (0)

1− F l∗
w (0)

=
1

1− F l∗
w (0)

Z z

0

f (l∗)w (u)du

The Taylor expansion around z = 0 is

Pr[w ≤ z|w ≥ 0] = 1

1− F l∗
w (0)

∞X
k=1

dk−1

dxk−1
f (l∗)w (x)

¯̄̄̄
x=0

zk

k!

If f (l∗)w (0) > 0, the approach is as follows. First, Pr[w ≤ z|w ≥ 0] = f
(l∗)
w (0)

1−F l∗
w (0)

z +O (z2).
To be able to solve the confining equation (A.14) for a typical value z ≈ E [wN], we
need to know E [|Γl|]. For the class of random graphs Gp(N) holds that E [|Γl|] =
(N−2)!
(N−l−1)!p

l ∼ N l−1pl [162], for large N . The weight of a shortest path for random graphs
can then be solved from,

1 ' z

N

N−1X
l=1

f
(l∗)
w (0)

1− F l∗
w (0)

(Np)l

such that

z ≈ E [wN] ∼ NPN−1
l=1

f
(l∗)
w (0)

1−F l∗
w (0)

(Np)l
≈ 0

A.2. APPROXIMATE ANALYSIS OF PATH STABILITY 201

This regime corresponds to saturation (α large).

If dk−1
dxk−1f

(l∗)
w (x)

¯̄̄
x=0

> 0 for some k > 1, then Pr[w ≤ z|w ≥ 0] = βlz
k and a similar

approach as above can be followed, unless k = l, in which case we have

1 ' 1

N

N−1X
l=1

βl
1− F l∗

w (0)
(zNp)l

and the evaluation of the sum is crucial to find z. In that case, βl
1−F l∗

w (0)
= O

¡
1
l!

¢
(at

least) for the sum to converge. This region corresponds to small α such that Pr[w ≤
z|w ≥ 0] ∼ zl

l!
nearly independent of α. This region then will be close to z ∼ ln(N)

Np
,

which corresponds to the shortest path weight in the unperturbed random graph.

202 APPENDIX A. APPROXIMATE ANALYSIS

Appendix B

Abbreviations

ATM Asynchronous Transfer Mode
BBR Bandwidth Blocking Rate
BDS Bi-Directional Search
BFS Breadth-First Search
BW Bandwidth
CBR Call Blocking Rate
CLM ConnectionLess Multicast
CR-LDP Constraint-based Routing Label Distribution Protocol
DiffServ Differentiated Services
DIMCRA link-DIsjoint Multiple Constraints Routing Algorithm
DVMRP Distance Vector Multicast Routing Protocol
FIFO First In First Out
FPTAS Fully Polynomial Time Approximation Scheme
FttH Fiber to the Home
GMPLS Generalized MPLS
HAMCRA Hybrid Auguring Multiple Constraints Routing Algorithm
HCMB Hop-Constrained Maximum Bandwidth
IntServ Integrated Services
IP Internet Protocol
LBA Link-disjoint Bhandari Algorithm
LIFO Last In First Out
LP Linear Programming
LPP Link-disjoint Path Pair
LSA link state Advertisment
LSU link state Update
MAMCRA Multicast Adaptive Multiple Constraints Routing Algorithm
MCLPP Multi-Constrained Link-disjoint Path Pair

203

204 APPENDIX B. ABBREVIATIONS

MCM Multiple Constrained Multicast
MCMWM Multiple Constrained Minimum Weight Multicast
MCOP Multi-Constrained Optimal Path
MCP Multi-Constrained Path
MLBA Multi-constrained LBA
MOSPF Multicast OSPF
MPLS MultiProtocol Label Switching
MPST Multiple Parameter Steiner Tree
NP Nondeterministic Polynomial
OSPF Open Shortest Path First
PIM Protocol Independent Multicast
PNNI Private Network-to-Network Interface
QoS Quality of Service
RF Remove-Find
RIP Routing Information Protocol
RSP Restricted Shortest Path
RSVP Resource reSerVation Protocol
SAMCRA Self-Adaptive Multiple Constraints Routing Algorithm
SDH Synchronous Digital Hierarchy
SONET Synchronous Optical NETwork
SP Shortest Path
TAMCRA Tunable Accuracy Multiple Constraints Routing Algorithm
TCP Transmission Control Protocol
TSpec Traffic Specification
URT Uniform Recursive Tree
WDM Wavelength Division Multiplexing
WFQ Weighted Fair Queueing

Bibliography

[1] M. Abramowitz and I.A. Stegun. Handbook of Mathematical Functions. Dover
Publications, Inc, New York, 1968.

[2] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: Theory, Algorithms,
and Applications. Prentice Hall Inc., 1993.

[3] R. Albert and A.L. Barabasi. Statistical mechanics of complex networks. Reviews
of modern physics, 74, January 2002.

[4] L.H. Andrew and A.A.N. Kusuma. Generalized analysis of a QoS-aware routing
algorithm. Proc. of IEEE Globecom’98, Piscatawav, N.J. USA, 1:1—6, 1998.

[5] T. Anjali, C. Scoglio, J.C. de Oliveira, L.C. Chen, I.F. Akyildiz, J.A. Smith,
G. Uhl, and A. Sciuto. A new path selection algorithm for MPLS networks based
on available bandwidth estimation. Proc. of QofIS/ICQT 2002, LNCS 2511,
Zurich, Switzerland, pages 205—214, October 16-18 2002.

[6] G. Apostolopoulos, R. Guerin, S. Kamat, and S.K. Tripathi. Quality of service
based routing: A performance perspective. Proc. of the ACM Sigcomm’98 Con-
ference, Vancouver, Britsh Columbia, Canada, August/September 1998.

[7] G. Apostolopoulos, D. Williams, S. Kamat, R. Guerin, A. Orda, and T. Przy-
gienda. QoS routing mechanisms and OSPF extensions. IETF RFC 2676, August
1999.

[8] T. Asano. An O(NloglogN) time algorithm for constructing a graph of maximum
connectivity with prescribed degrees. Journal of Computer and System Sciences,
(51):507—510, 1995.

[9] E. Astiz. Stability of paths in a dynamic QoS Environment. MSc thesis, Delft
University of Technology (mentor F.A. Kuipers), April 2003.

[10] A. Banerjee, J. Drake, J.P. Lang, B. Turner, K. Kompella, and Y. Rekhter. Gen-
eralized multiprotocol label switching: An overview of routing and management
enhancements. IEEE Communications Magazine, pages 114—150, January 2001.

205

206 BIBLIOGRAPHY

[11] G. Banerjee and D. Sidhu. Comparative analysis of path computation techniques
for MPLS traffic engineering. Computer Networks, 40:149—165, 2002.

[12] A.L. Barabasi and R. Albert. Emergence of scaling in random networks. Science,
(286):509—512, 1999.

[13] O. Barndorff-Nielsen and M. Sobel. On the distribution of the number of admissi-
ble points in a vector random sample. Theory of Probability and its Applications,
11(2), 1966.

[14] S. Basu, A. Mukherjee, and S. Klivansky. Time series models for internet traffic.
Proc. of IEEE INFOCOM’96, pages 611—620, 1996.

[15] Y. Bejerano, Y. Breitbart, A. Orda, R. Rastogi, and A. Sprintson. Algorithms
for computing QoS paths with restoration. Proc. of IEEE INFOCOM’03, San
Francisco, USA, April 1-3 2003.

[16] R. Bellman. Dynamic Programming. Princeton University Press, Princeton, New
Jersey, 1957.

[17] R. Bellman. On a routing problem. Quarterly of Applied Mathematics, (16):87—90,
1958.

[18] J.L. Bentley, H.T. Kung, M. Schkolnick, and C.D. Thompson. On the aver-
age number of maxima in a set of vectors and applications. Journal of ACM,
25(4):536—543, 1978.

[19] R. Bhandari. Optimal diverse routing in telecommunication fiber networks. Proc.
of IEEE INFOCOM’94, Toronto, Ontario, Canada, 3:1498—1508, June 1994.

[20] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An architec-
ture for differentiated services. IETF RFC 2475, December 1998.

[21] B. Bollobás. Random Graphs. Cambridge University Press, second edition, 2001.

[22] R. Braden, D. Clark, and S. Shenker. Integrated services in the internet architec-
ture: an overview. IETF RFC 1633, June 1994.

[23] K. Carlberg and J. Crowcroft. Building shared trees using a one-to-many joining
mechanism. Computer Communications, pages 5—11, 1997.

[24] D.A. Castanon. Efficient algorithms for finding the k best paths through a trellis.
IEEE Transactions on Aerospace and Electronic Systems, 26(2):405—410, March
1990.

BIBLIOGRAPHY 207

[25] I. Castineyra, N. Chiapp, and M. Steenstrup. The nimrod routing architecture.
IETF RFC 1992, August 1996.

[26] P. Cheeseman, B. Kanefsky, and W.M. Taylor. Where the really hard problems
are. Proc. of IJCAI-91, San Mateo, CA, pages 331—337, 1991.

[27] S. Chen and K. Nahrstedt. On finding multi-constrained paths. Proc. of ICC’98,
New York, pages 874—879, 1998.

[28] S. Chen, K. Nahrstedt, and Y. Shavitt. A QoS-aware multicast routing protocol.
Proc. of IEEE INFOCOM’2000, Tel-Aviv, Israel, March 2000.

[29] C. Cheng, S.P.R. Kumar, and J.J. Garcia-Luna-Aceves. A distributed algorithm
for finding k disjoint paths of minimal total length. Proc. of 28th Annual Aller-
ton Conference on Communication, Control, and Computing, Urbana, Illinois,
October 1990.

[30] B.V. Cherkassky, A.V. Goldberg, and T. Radizik. Shortest paths algorithms: the-
ory and experimental evaluation. Mathematical Programming, Series A, (73):129—
174, 1996.

[31] B.V. Cherkassky, A.V. Goldberg, and C. Silverstein. Buckets, heaps, lists and
monotone priority queues. Siam Journal on Computing, (28):1326—1346, 1999.

[32] E.I. Chong, S. Maddila, and S. Morley. On finding single-source single-destination
k shortest paths. Journal of Computing and Information, special issue ICCI’95,
pages 40—47, July 1995.

[33] S.A. Cook. The complexity of theorem-proving procedures. Proc. of third annual
ACM symposium on Theory of Computing (STOC), Shaker Height, Ohio, 1971.

[34] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. An Introduction to Algorithms.
MIT Press, Boston, 2000.

[35] G.B. Dantzig. On the shortest route through a network. Mgmt. Sci., 6:187—190,
1960.

[36] G.B. Dantzig. Linear Programming and Extensions. Princeton University Press,
Princeton, New Jersey, 1963.

[37] H. De Neve and P. Van Mieghem. A multiple quality of service routing algorithm
for PNNI. Proc. of IEEE ATM workshop, Fairfax, USA, pages 324—328, May
26-29 1998.

208 BIBLIOGRAPHY

[38] H. De Neve and P. Van Mieghem. TAMCRA: a tunable accuracy multiple con-
straints routing algorithm. Computer Communications, 23:667—679, 2000.

[39] R. Diestel. Graph Theory. Graduate Texts in Mathematics. Springer-Verlag, New
York, 1997.

[40] E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, (1):269—271, 1959.

[41] P.E. Dunne, A. Gibbons, and M. Zito. Complexity-theoretic models of phase
transition in search problems. Theoretic Computer Science, (249):243—263, 2000.

[42] D. Eppstein. Finding the k shortest paths. SIAM Journal on Computing,
28(2):652—673, 1998.

[43] P. Erdös and A. Rényi. On random graphs I. Publ. Math. Debrecen., 6:290—297,
1959.

[44] P. Erdös and A. Rényi. On the evolution of random graphs. Magyar Tud. Akad.
Mat. Kutato Int. Kozl., 5:17—61, 1960.

[45] F. Ergun, R. Sinha, and L. Zhang. QoS routing with performance-dependent
costs. Proc. of IEEE INFOCOM’2000, Tel-Aviv, Israel, March 2000.

[46] D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering, M. Handley, V. Jacob-
son, C. Liu, P. Sharma, and L. Wei. Protocol independent multicast-sparse mode
(pim-sm): Protocol specification. IETF RFC 2362, June 1998.

[47] M. Faloutsos, A. Benerjea, and R. Pankaj. QoSMIC: Quality of service sensitive
multicast internet protocol. Proc. of SIGCOMM’98, September 1998.

[48] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of
the internet topology. Proc. of ACM SIGCOMM’99, Cambridge, Massachusetts,
pages 251—262, 1999.

[49] R.W. Floyd. Algorithm 97 (shortest path). Communications of the ACM, (5):345,
1962.

[50] S. Floyd and V. Paxson. Difficulties in simulating the internet. IEEE/ACM
Transactions on Networking, 9(4):392—403, August 2001.

[51] L.R. Ford and D.R. Fulkerson. Flows in Networks. Princeton University Press,
Princeton, New Jersey, 1962.

[52] B. Fortz and M. Thorup. Internet traffic engineering by optimizing OSPF weights.
Proc. of IEEE INFOCOM 2000, Tel-Aviv, Israel, March 2000.

BIBLIOGRAPHY 209

[53] M.L. Fredman and R.E. Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. J. Assoc. Comput. Mach., (34):596—615, 1987.

[54] G. Gallo and S. Pallottino. Shortest paths algorithms. Annals of Operations
Research, (13):3—79, 1988.

[55] J.J. Garcia-Luna-Aceves andM. Spohn. Scalable link-state internet routing. Proc.
of IEEE International Conference on Network Protocols (ICNP), Austin, Texas,
USA, October 14-16 1998.

[56] M.R. Garey and D.S. Johnson. Strong NP-completeness results: Motivation,
examples and implications. Journal of the ACM, 25(3):499—508, July 1978.

[57] M.R. Garey and D.S. Johnson. Computers and Intractability: A guide to the
Theory of NP-Completeness. ISBN 0-7167-1044-7. W.H. Freeman and Company,
San Francisco, 1979.

[58] I.P. Gent and T. Walsh. Analysis of heuristics for number partitioning. Compu-
tational Intelligence, 14(3):430—452, 1998.

[59] A. Goel, K.G. Ramakrishnan, D. Kataria, and D. Logothesis. Efficient computa-
tion of delay-sensitive routes from one source to all destinations. Proc. of IEEE
INFOCOM’01, Anchorage, Alaska, 2:854—858, April 2001.

[60] G.H. Golub and C.F. Van Loan. Matrix Computations. North Oxford Academic,
Oxford, 1st edition, 1983.

[61] R. Guerin and A. Orda. QoS routing in networks with inaccurate information:
Theory and algorithms. IEEE/ACM Transactions on Networking, 7(3):350—364,
June 1999.

[62] R. Guerin and A. Orda. Networks with advance reservations: the routing per-
spective. Proc. of IEEE INFOCOM’2000, Tel-Aviv, Israel, March 2000.

[63] R. Guerin and A. Orda. Computing shortest paths for any number of hops.
IEEE/ACM Transactions on Networking, 10(5):613—620, October 2002.

[64] R. Guerin, D. Williams, and A. Orda. QoS routing mechanisms and OSPF ex-
tensions. Proc. of IEEE Globecom, 1997.

[65] K.P. Gummadi, M.J. Pradeep, and C.S.R. Murthy. An efficient primary-
segmented backup scheme for dependable real-time communication in multihop
networks. IEEE/ACM Transactions on Networking, 11(1):81—94, February 2003.

210 BIBLIOGRAPHY

[66] L. Guo and I. Matta. Search space reduction in QoS routing. Proc. of ICDCS’99,
Austin, Texas, USA, June 1999.

[67] L. Guo and I. Matta. Search space reduction in QoS routing. Computer Networks,
41:73—88, 2003.

[68] Y. Guo, F.A. Kuipers, and P. VanMieghem. A link-disjoint paths algorithm for re-
liable QoS routing. International Journal of Communication Systems, 16(9):779—
798, November 2003.

[69] F. Harary. Graph Theory. Addison-Wesly Publishing Company, Reading, Massa-
chusetts, 1969.

[70] G.H. Hardy, J.E. Littlewood, and G. Polya. Inequalities. Cambridge University
Press, 2nd edition, 1973.

[71] P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heuristic deter-
mination of minimum cost paths. IEEE Transactions on Systems Science and
Cybernetics, 2(2):100—107, 1968.

[72] P.E. Hart, N.J. Nilsson, and B. Raphael. Correction to a formal basis for the
heuristic determination of minimum cost paths. SIGART Newsletter, (37):28—29,
1972.

[73] R. Hassin. Approximation schemes for the restricted shortest path problem.Math-
ematics of Operations Research, 17(1):36—42, February 1992.

[74] B. Hayes. Can’t get no satisfaction. American Scientist, 85(2):108—112, March-
April 1997.

[75] C. Hedrick. Routing information protocol. IETF RFC 1058, June 1988.

[76] R. Hekmat and P. Van Mieghem. Degree distribution and hopcount in wireless
ad-hoc networks. Proc. of IEEE ICON-03, Sydney, Australia, Sept. 28 - Oct. 3
2003.

[77] M.I. Henig. The shortest path problem with two objective functions. European
Journal of Operational Research, 25:281—291, 1985.

[78] P-H Ho and H.T. Mouftah. Issues on diverse routing for WDM mesh networks
with survivability. Proc. of tenth International Conference on Computer Commu-
nications and Networks, pages 61—66, 1997.

[79] Y. Huang and P.K. McKinley. Tree-based link-state routing in the presence of
routing information corruption. Computer Communications, 26:691—699, 2003.

BIBLIOGRAPHY 211

[80] F.K. Hwang, D.S. Richards, and P. Winter. The Steiner Tree Problem. North-
Holland, Amsterdam, 1992.

[81] I. Iliadis and D. Bauer. A new class of online minimum-interference routing
algorithms. Proc. of Networking’02, LNCS 2345:957—971, 2002.

[82] G. Istrate. Computational complexity and phase transitions. Proc. of the 15th
anual Conference on Computational Complexity - Florence, Italy, pages 104—114,
July 4-7 2000.

[83] G.F. Italiana, R. Rastogi, and B. Yener. Restoration algorithms for virtual band-
width guaranteed tunnels with restoration. Proc. of IEEE INFOCOM’02, 2002.

[84] A. Iwata, R. Izmailov, D. Lee, B. Sengupta, G. Ramamurthy, and H. Suzuki.
ATM routing algorithms with multiple QoS requirements for multimedia inter-
networking. IEICE Trans. Commun., E79-B(8):999—1007, Aug. 1996.

[85] J.M. Jaffe. Algorithms for finding paths with multiple constraints. Networks,
14:95—116, 1984.

[86] M. Jain and C. Dovrolis. End-to-end available bandwidth: Measurement method-
ology, dynamics, and relation with TCP throughput. Proc. of SIGCOMM-02,
Pittsburgh, Pennsylvania, USA, August 19-23 2002.

[87] A. Jamakovic. Influence of Path Correlation on the Complexity of QoS Routing.
MSc thesis, Delft University of Technology (mentor F.A. Kuipers), January 2004.

[88] D.B. Johnson. A note on dijkstra’s shortest path algorithm. Journal of the ACM,
20(3):385—388, 1973.

[89] L.R. Ford (Jr). Network flow theory. The RAND Corporation, Santa Monica,
California, page 293, August 14 1956.

[90] A. Juttner, B. Szviatovszki, I. Mecs, and Z. Rajko. Lagrange relaxation based
method for the QoS routing problem. Proc. of IEEE INFOCOM’01, Anchorage,
Alaska, 2:859—868, April 2001.

[91] K. Kar, M. Kodialam, and T.V. Lakshman. Minimum interference routing of
bandwidth guaranteed tunnels with MPLS traffic engineering applications. IEEE
Journal on Selected Areas in Communications, 18(12):2566—2579, December 2000.

[92] K. Kar, M. Kodialam, and T.V. Lakshman. Routing restorable bandwidth guar-
anteed connections using maximum 2-route flows. Proc. of IEEE INFOCOM’02,
2002.

212 BIBLIOGRAPHY

[93] R. Karp. Reducability among combinatorial problems. Complexity of Computer
Communications, R. Miller and J. Thatcher (eds.), Plenum Press, New York,
pages 85—103, 1972.

[94] M. Kodialam and T.V. Lakshman. Dynamic routing of bandwidth guaranteed
tunnels with restoration. Proc. of IEEE INFOCOM 2000, Tel-Aviv, Israel, pages
902—911, 2000.

[95] M. Kodialam and T.V. Lakshman. Restorable dynamic quality of service routing.
IEEE Communications Magazine, pages 72—81, June 2002.

[96] T. Korkmaz and M. Krunz. Multi-constrained optimal path selection. Proc. of
IEEE INFOCOM’01, Anchorage, Alaska, pages 834—843, April 2001.

[97] T. Korkmaz and M. Krunz. A randomized algorithm for finding a path subject
to multiple QoS requirements. Computer Networks, 36:251—268, 2001.

[98] T. Korkmaz and M. Krunz. Routing multimedia traffic with QoS guarantees.
IEEE Transactions on Multimedia, 5(3):429—443, September 2003.

[99] F.A. Kuipers, T. Korkmaz, M. Krunz, and P. Van Mieghem. Performance evalu-
ation of constraint-based path selection algorithms. IEEE Network, to appear.

[100] F.A. Kuipers and P. Van Mieghem. QoS routing: Average complexity and hop-
count in m dimensions. Proc. of QofIS 2001, Quality of future Internet Services:
second COST 263 international workshop, Coimbra, Portugal, pages 110—126,
September 24-26 2001.

[101] F.A. Kuipers and P. Van Mieghem. MAMCRA: a constrained-based multicast
routing algorithm. Computer Communications, 25(8):801—810, May 2002.

[102] F.A. Kuipers and P. Van Mieghem. Bi-directional search in QoS routing. Proc. Of
the fourth COST 263 International Workshop on Quality of Future Internet Ser-
vices, QofIS2003, edited by G. Karlsson and M.I. Smirnov in Springer LNCS2811,
KTH, Stockholm, Sweden, pages 102—111, October 1-3 2003.

[103] S.W. Lee and C.S. Wu. A k-best path algorithm for highly reliable communication
networks. IEICE Trans. on Commun., E82-B(4):580—585, April 1999.

[104] W.C. Lee, M.G. Hluchyi, and P.A. Humblet. Routing subject to quality of service
constraints in integrated communications networks. IEEE Network, pages 46—55,
July/Aug. 1995.

BIBLIOGRAPHY 213

[105] B. Lekovic and P. Van Mieghem. Link state update policies for quality of service
routing. Proc. of IEEE Eight Symposium on Communications and Vehicular
Technology in the Benelux (SCVT2001), Delft, The Netherlands, pages 123—128,
October 18 2001.

[106] L.A. Levin. Average case complete problems. SIAM J. Comput, 15(1):285—286,
1986.

[107] C-L Li, S.T. McCornick, and D. Simchi-Levi. The complexity of finding two
disjoint paths with minmax objective function. Discrete Applied Mathematics,
26(1):105—115, January 1990.

[108] W. Liang. Robust routing in wide-areaWDMnetworks. Proc. of 15th Int. Parallel
and Distributed Processing Symposium, San Francisco, April 2001.

[109] G. Liu and K.G. Ramakrishnan. A*prune: An algorithm for finding K shortest
paths subject to multiple constraints. Proc. of IEEE INFOCOM’01, Anchorage,
Alaska, April 2001.

[110] C-C Lo and B-W Chuang. A novel approach of backup path reservation for
survivable high-speed networks. IEEE Communications Magazine, March 2003.

[111] D.H. Lorenz. A simple efficient approximation scheme for the restricted shortest
path problem. Operations Research Letter, 28(5):213—219, June 2001.

[112] D.H. Lorenz, A. Orda, D. Raz, and Y. Shavit. Efficient QoS partition and routing
of unicast and multicast. Proc. of IWQoS 2000, pages 75—83, June 2000.

[113] Q. Ma and P. Steenkiste. On path selection for traffic with bandwidth guaran-
tees. Proc. of the IEEE International Conference on Network Protocols (ICNP97),
Atlanta, Georgia, pages 191—202, October 1997.

[114] Q. Ma and P. Steenkiste. Quality-of-service routing for traffic with performance
guarantees. Proc. of IFIP fifth International Workshop on Quality of Service,
New York, pages 115—126, May 1997.

[115] G. Malkin. RIP version 2. IETF RFC 2453, November 1998.

[116] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Troyansky. Deter-
mining computational complexity from characteristic phase transitions. Nature,
400:133—137, July 8 1999.

[117] E.F. Moore. The shortest path through a maze. Proceeding of an international
Symposium on the Theory of Switching, April 2-5, 1957, Part II, [The Annals of
the Computation Laboratory of Harvard University, volume XXX] H. Aihen (ed),
Havard University Press, Cambridge, Massachusetts, pages 285—292, 1959.

214 BIBLIOGRAPHY

[118] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

[119] J. Moy. Multicast extensions to OSPF. IETF RFC 1584, March 1994.

[120] E.F. Mykytka and C.Y. Cheng. Generating correlated random variates based on
an analogy between correlation and force. Proc. of the 1994 Winter Simulation
Conference, pages 1413—1416, 1994.

[121] S. Nelakuditi, Z-L Zhang, R.P. Tsang, and D.H.C. Du. Adaptive proportional
routing: a localized QoS routing approach. IEEE/ACM Transactions on Net-
working, 10(6):790—804, 2002.

[122] T. Nicholson. Finding the shortest route between two points in a network. The
computer journal, 9:275—280, 1966.

[123] R.G. Ogier, V. Rutenburg, and N. Shacham. Distributed algorithms for comput-
ing shortest pairs of disjoint paths. IEEE Transactions on Information Theory,
39(2):443—445, March 1993.

[124] E. Oki and N. Yamanaka. A recursive matrix calculation method for disjoint path
search with hop link number constraints. IEICE Trans. Commun., E78-B(5):769—
774, May 1995.

[125] A. Orda. Routing with end-to-end QoS guarantees in broadband networks.
IEEE/ACM Transactions on Networking, 7(3):365—374, June 1999.

[126] A. Orda and A. Sprintson. QoS routing: the precomputation perspective. Proc.
of IEEE INFOCOM’2000, Tel-Aviv, Israel, pages 128—136, March 2000.

[127] A. Orda and A. Sprintson. Efficient algorithms for computing disjoint QoS paths.
Proceedings of IEEE INFOCOM, Hong Kong, March 2004.

[128] C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization - Algorithms
and Complexity. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1982.

[129] K. Papagiannaki, N. Taft, Z-L Zhang, and C. Diot. Long-term forecasting of inter-
net backbone traffic: Observations and initial models. Proc. of IEEE INFOCOM
2003, San Francisco, USA, March 30 - April 3 2003.

[130] V. Paxson. End-to-end routing behavior in the internet. IEEE/ACM Transactions
on Networking, 5(5):601—615, October 1997.

[131] J. Pearl. Heuristics - Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley Publishing Company, Reading, Massacchusetts, 1984.

BIBLIOGRAPHY 215

[132] M. Peyravian and R. Onvural. Algorithm for efficient generation of link-state
updates in ATM. Computer Networks and ISDN Systems, 29:237—247, 1997.

[133] C.A. Phillips. The network inhibition problem. Proc. of the 25th Annual ACM
Symposium on the Theory of Computing (STOC), pages 776—785, May 1993.

[134] D. Pisinger. Algorithms for knapsack problems. Ph.D. thesis, Dept. Of Computer
Science, University of Copenhagen, Denmark, February 1995.

[135] I. Pohl. Bi-directional search. Machine Intelligence 6, eds. B. Meltzer and D.
Michie, American Elsevier, New York, pages 127—140, 1971.

[136] A. Puri and S. Tripakis. Algorithms for routing with multiple constraints. Proc.
of AIPS’02, Toulouse, France, April 23 2002.

[137] S.S. Rao. Optimization - Theory and Algorithms. Wiley Eastern Limited, New
Delhi, 2nd edition, 1984.

[138] D.S. Reeves and H.F. Salama. A distributed algorithm for delay-constrained
unicast routing. IEEE/ACM Transactions on Networking, 8(2):239—250, April
2000.

[139] C. Roos, T. Terlaky, and J.-Ph. Vial. Theory and Algorithms for Linear Op-
timization: An Interior Point Approach. John Wiley & Sons, Chichester, UK,
1997.

[140] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol label switching archi-
tecture. IETF RFC 3031, January 2001.

[141] G.N. Rouskas and I. Daldine. Multicast routing with end-to-end delay and de-
lay variation constraints. IEEE Journal on Selected Areas in Communications,
15(3):346—356, April 1997.

[142] H.L. Royden. Real Analysis. Macmillan Publishing Company, New York, 3rd
edition, 1988.

[143] H.F. Salama, D.S. Reeves, and Y. Viniotis. Evaluation of multicast routing al-
gorithms for real-time communication on high-speed networks. IEEE Journal on
Selected Areas in Communications, 15(3):332—345, April 1997.

[144] A. Sang and S-Q Li. A predictability analysis of network traffic. Computer
Networks, 39:329—345, 2002.

[145] A. Schrijver. Combinatorial Optimization-Polyhedra and Efficiency, volume 1-3.
Springer-Verlag, Berlin, 2003.

216 BIBLIOGRAPHY

[146] A. Sen, B.H. Shen, S. Bandyopadhyay, and J.M. Capone. Survivability of light-
ware networks - path lengths in WDM protection scheme. Journal of High Speed
Networks, 10(4):303—315, 2001.

[147] A. Shaikh, J. Rexford, and K.G. Shin. Evaluating the impact of stale link state on
quality-of-service routing. IEEE/ACM Transactions on Networking, 9(2), April
2001.

[148] S.Z. Shaikh. Span-disjoint paths for physical diversity in networks. Proc. of IEEE
Symposium on Computers and Communications, pages 127—133, 1995.

[149] S. Shenker, C. Partridge, and R. Guerin. Specifications of guaranteed quality of
service. IETF RFC 2212, September 1997.

[150] M-K Shin, Y-J Kim, K-S Park, and S-H Kim. Explicit multicast extension
(xcast+) for efficient multicast delivery. ETRI Journal, 23(4), December 2001.

[151] D. Sidhu, R. Nair, and S. Abdallah. Finding disjoints paths in networks. ACM
SIGCOMM Computer communication Review, Proc. of the conference on Com-
munications architecture & protocols, 21(4), August 1991.

[152] R. Solomonoff and A. Rapoport. Connectivity of random nets. Bull. Math.
Biophys., (13):107—117, 1951.

[153] W.R. Stevens. TCP/IP Illustrated, volume 1, The Protocols. Addison-Wesley,
Reading, Massachusetts, 1994.

[154] J.W. Suurballe. Disjoint paths in a network. Networks, 4:125—145, 1974.

[155] J.W. Suurballe and R.E. Tarjan. A quick method for finding shortest pairs of
disjoint paths. Networks, 14:325—333, 1984.

[156] N. Taft-Plotkin, B. Bellur, and R. Ogier. Quality-of-service routing using maxi-
mally disjoint paths. The Seventh International Workshop on Quality of Service
(IWQoS99), London, England, pages 119—128, May/June 1999.

[157] Y. Tanaka, F. Rue-xue, and M. Akiyama. Design method of highly reliable com-
munication networks by use of matrix calculation. IEICE Trans., J70-B(5):551—
556, 1987.

[158] The ATM Forum. Private Network-Network Interface. af-pnni-0055.000, pnni 1.0
edition, March 1996.

[159] K-C Tsai and C. Chen. Two algorithms for multi-constrained optimal multicast
routing. International Journal of Communication Systems, 16:951—973, 2003.

BIBLIOGRAPHY 217

[160] A.M. Turing. On computable numbers, with application to the entscheidung-
sproblem. Proc. of the London Mathematical Society, 2(42):230—265, 1937.

[161] P. Van Mieghem. A lower bound for the end-to-end delay in networks: application
to voice over IP. Proc. of IEEE Globecom’98, Sydney (Australia), pages 2508—
2513, November 8-12 1998.

[162] P. Van Mieghem. Paths in the simple random graph and the waxman graph.
Probability in the Engineering and Informational Sciences (PEIS), 15:535—555,
2001.

[163] P. Van Mieghem, H. De Neve, and F.A. Kuipers. Hop-by-hop quality of service
routing. Computer Networks, 37(3-4):407—423, November 2001.

[164] P. Van Mieghem, G. Hooghiemstra, and R. van der Hofstad. A scaling law for the
hopcount in internet. Technical Report 2000125, Delft University of Technology,
http://www.nas.ewi.tudelft.nl/people/piet/telconference.html, 2000.

[165] P. Van Mieghem, G. Hooghiemstra, and R. van der Hofstad. On the efficiency of
multicast. IEEE/ACM Transactions on Networking, 9(6):719—732, 2001.

[166] P. Van Mieghem and F.A. Kuipers. On the complexity of QoS routing. Computer
Communications, 26(4):376—387, March 2003.

[167] P. Van Mieghem and F.A. Kuipers. Concepts of exact quality of service algo-
rithms. IEEE/ACM Transactions on Networking, to appear, 2004.

[168] D. Waitzman, C. Partridge, and S. Deering. Distance vector multicast routing
protocol. IETF RFC 1075, November 1988.

[169] B. Wang, X. Su, and C. Chen. A new bandwidth guaranteed routing algorithm
for MPLS traffic engineering. Proc. of IEEE International Conference on Com-
munications, ICC’02, 2002.

[170] Z. Wang. On the complexity of quality of service routing. Information Processing
Letters, 69:111—114, 1999.

[171] Z. Wang and J. Crowcroft. Quality of service routing for supporting multimedia
applications. IEEE Journal on Selected Areas in Communications, 14(7):1228—
1234, September 1996.

[172] A. Warburton. Approximation of pareto optima in multi-objective, shortest path
problems. Operations Research, 1:70—79, 1987.

[173] S. Warshall. A theorem on matrices. Journal of the ACM, 9(1):11—12, 1962.

218 BIBLIOGRAPHY

[174] J.K. Wolf, A.M. Viterbi, and G.S. Dixon. Finding the best set of k paths through
a trellis with application to multitarget tracking. IEEE Transactions on Aerospace
and Electronic Systems, 25(2):287—296, March 1989.

[175] J. Wroclawski. Specification of the controlled-load network element service. IETF
RFC 2211, September 1997.

[176] X. Xiao and L.M. Ni. Internet QoS: A big picture. IEEE Network, 13(2):8—18,
March-April 1999.

[177] G. Xue, A. Sen, and R. Banka. Routing with many additive QoS constraints.
Proc. of ICC 2003, Anchorage, Alaska, USA, pages 223—227, May 11-15 2003.

[178] C. You and K. Chandra. Time series models for internet data traffic. Proc. of
24th conference on local computer networks, pages 164—171, October 1999.

[179] X. Yuan and X. Liu. Heuristic algorithms for multi-constrained quality of service
routing. Proc. of IEEE INFOCOM’01, Anchorage, Alaska, April 2001.

[180] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala. RSVP: A new
resource reservation protocol. IEEE Network, 7(5):8—18, September 1993.

Samenvatting (Summary in Dutch)

Titel: Routeren in het Internet met kwaliteitsgaranties: Theorie, Complexiteit en Al-
goritmes
(Quality of Service Routing in the Internet: Theory, Complexity and Algorithms)

Dagelijks vinden enorm veel data pakketjes hun weg over het Internet naar hun
bestemming. Het Internet bestaat uit vele netwerkelementen die als taak hebben om
deze pakketjes het correcte pad naar hun bestemming te wijzen. Het vinden en volgen
van het pad naar de bestemming wordt ‘routeren’ genoemd. Het proces van routeren is
niet feilloos, waardoor er pakketjes verloren kunnen gaan. Het huidige Internet kan geen
garanties geven aan de pakketjes die het transporteert. Zo kunnen er geen garanties
worden gegeven omtrent de vertraging die de pakketjes ondervinden of over de variantie
in de vertraging, de verlieskans van pakketjes en de beschikbare bandbreedte van het
te volgen pad. Tegenwoordig zijn er echter vele nieuwe multimedia applicaties, welke
zonder dergelijke garanties niet goed kunnen functioneren. Bijvoorbeeld, om een gesprek
over het Internet te kunnen voeren, moet de vertraging begrensd worden. Het vinden
van paden die verschillende garanties kunnen geven, leidt tot een nieuwe vorm van
routeren: ‘Quality of Service (QoS)’, oftewel kwaliteit van de dienstverlening, routeren
genoemd.
De beoogde doelen van deze thesis zijn:
1) het analyseren van de algoritmische concepten die aan QoS routeren ten grondslag

liggen,
2) het onderzoeken van de complexiteit van QoS routeren,
3) het bespreken van de dynamica in QoS routeren.
De eerste drie hoofdstukken geven een formele definitie van de problemen die in

ogenschouw worden genomen. Ze leggen de gebruikte notatie vast en geven het achter-
grondmateriaal dat noodzakelijk is om de thesis volledig te kunnen begrijpen. de vol-
gende twee definities (Hoofdstuk 2) zijn onderdeel van dit achtergrondmateriaal:
Algoritme: Een algoritme voert een berekening uit volgens een duidelijk omlijnde

procedure met als invoer een waarde of een set van waarden en als uitkomst ook een
waarde of set van waarden. Een algoritme is dus een sequentie van tussenberekeningen
die de invoer transformeren tot een uitkomst.

219

220 SAMENVATTING (SUMMARY IN DUTCH)

Complexiteit: Complexiteit verwijst naar het intrinsiek minimum aantal hulpbron-
nen die aangewend moeten worden voor het oplossen van een probleem of het uitvoeren
van een algoritme.
De theorie van NP-complexiteit wordt ook uitgelegd. QoS routeren is bewezen

NP-compleet te zijn, hetgeen betekent dat exacte algoritmes in het ergste geval een
complexiteit nodig hebben die niet kan worden begrensd door een polynomiale functie.
Om QoS algoritmes volledig te kunnen begrijpen, is het nodig om bekend te zijn

met de simpele (één-dimensionale) kortste pad algoritmes. Hoofdstuk 3 levert deze
kennis door breadth-first search, depth-first search, het Bellman-Ford algoritme, het
Dijkstra algoritme, bi-directional search, het A* algoritme en mathematisch program-
meren te bespreken. Een belangrijke eigenschap van dergelijke kortste pad algoritmes
is dat subpaden van kortste paden in één dimensie ook zelf kortste paden zijn. Na
de introducerende hoofdstukken komen we (in Hoofdstuk 4) tot de kern van de thesis,
namelijk de concepten die aan QoS routeren ten grondslag liggen. QoS routeren op
basis van meerdere eisen zorgt ervoor dat subpaden van kortste paden in meerdere di-
mensies niet noodzakelijkerwijs zelf ook kortste paden zijn. Het kan daarom nodig zijn
om gedurende de berekening van QoS paden verscheidene subpaden in acht te nemen.
Dit heeft duidelijk consequenties voor de zoekruimte, die nu exponentieel in omvang kan
toenemen. Om deze zoekruimte in te perken zijn er twee technieken, non-dominance
(niet-gedomineerd) en look-ahead (vooruit kijken), in het SAMCRA algoritme verw-
erkt. SAMCRA is een exact QoS algoritme dat door ons ontwikkeld is. Naast SAM-
CRA bestaan er nog veel meer QoS algoritmes, waarvan het merendeel een heuristiek
is. Hoofdstuk 5 bespreekt deze algoritmes en levert de eerste grootschalige evaluatie
naar hun prestaties. Op basis van deze studie wordt geconcludeerd dat het SAMCRA
algoritme (of de algoritmes die hierop lijken) het best presteert.
Hoofdstukken 6 en 7 wijken enigszins af van de rode draad van de thesis. Ze be-

spreken een aanvulling op QoS routeren. Allereerst wordt multicast QoS routeren be-
handeld. Multicast routeren is bedoeld voor de communicatie tussen één zender en
meerdere ontvangers. Bij multicast routeren worden pakketjes alleen op de noodzake-
lijke punten vermenigvuldigd, wat ervoor zorgt dat er minder pakketjes worden verzon-
den dan als er tussen elk zender-ontvanger paar afzonderlijk een communicatie sessie
wordt opgezet. Multicast QoS routeren berust ook op dit principe, maar de winst in effi-
ciëntie kan minder groot zijn dan in één dimensie. We hebben het algoritme MAMCRA
ontwikkeld voor multicast QoS routeren.
In Hoofdstuk 7 is QoS routeren middels gescheiden verbindingen het onderwerp.

Het probleem is om twee paden te vinden die geen enkele verbinding (communicatielijn)
gemeen hebben. Het vinden van deze twee paden is belangrijk voor een betrouwbare
communicatie. Als bijvoorbeeld het eerste pad zou komen te vervallen, dan kan on-
middellijk worden overgeschakeld naar het tweede pad. De twee paden zouden tevens
gebruikt kunnen worden om de netwerkbelasting te verdelen. Net als in Hoofdstuk
6 (multicast QoS routeren) bespreken we de problemen rond QoS routeren middels

221

gescheiden verbindingen en hebben we een algoritme DIMCRA voor het probleem on-
twikkeld.
Hoofdstukken 4 t/m 7 hebben uitvoerig bijgedragen aan het eerste doel van deze

thesis, namelijk het analyseren van de concepten die aan QoS routeren ten grondslag
liggen. Het tweede doel is het onderzoeken van de complexiteit van QoS routeren, welke
wordt behandeld in Hoofdstuk 8. Hoofdstuk 8 beargumenteert dat de complexiteit van
QoS routeren behapbaar is in de praktijk en dat moeilijke scenario’s alleen voorkomen
als het netwerk aan vier condities voldoet ten aanzien van: (1) de onderliggende topolo-
gie, (2) de grootte van de QoS gewichten, (3) de (negatieve) correlatie tussen de QoS
gewichten en (4) de waarden van de QoS eisen.
Het derde en laatste doel van de thesis is het bespreken van de dynamische aspecten

in QoS routeren. Hoofdstuk 9 bespreekt de dynamica van QoS routeren en komt met
enkele nieuwe resultaten op dit gebied. De belangrijkste onderzoeksvragen worden
duidelijk gekenschetst en komen in essentie allemaal neer op de vraag hoe we het netwerk
geïnformeerd kunnen houden over de staat van zijn QoS gewichten. Het werk en de
simulaties die worden gepresenteerd geven enig inzicht in de stabiliteit van paden en in
de prestatie van SAMCRA in een dynamisch netwerk. Wederom blijkt SAMCRA de
andere algoritmes te overtreffen. De conclusies van Hoofdstuk 9 moeten echter worden
gezien als indicatoren. Meer simulaties zijn nodig om de conclusies te bevestigen.

Auteur: Fernando A. Kuipers

222 SAMENVATTING (SUMMARY IN DUTCH)

Acknowledgements

I would like to thank everybody who has positively contributed to, or supported, my
work. Their impact on my life has helped to form me into who I am today and accord-
ingly has enriched my thesis.
In particular, I am very grateful to my supervisor and mentor Prof. Piet Van

Mieghem. Under his watchful eye and thanks to his expert guidance I was able to
complete both myM.Sc. thesis and Ph.D. thesis. His involvement, support, enthusiasm,
cleaver insights, and our discussions have been invaluable. I feel privileged an honoured
to have worked under his guidance.
I would also like to thank the members of my Ph.D.-committee: Prof. Ignas

Niemegeers, Prof. Nico Baken, Prof. Cees Roos, Prof. Jordi Domingo-Pascual, Prof.
Giorgio Ventre and dr. Hans De Neve, for reading my manuscript. The knowledge they
combine is huge and I feel blessed to have been able to sample from this great pool of
wisdom.
As a tree flourishes in fertile soil, similarly, a Ph.D. thesis benefits from a healthy

work environment. In the NAS (and WMC) group I found such an environment. I have
enjoyed the contact with my colleagues and friends from these groups.
During my Ph.D. I had the opportunity to work with many people. I am obliged

to all of them. My gratitude especially extends to Turgay Korkmaz, Marwan Krunz,
Yuchun Guo and Stefano Avallone, because the joint work with them has been partly
incorporated in this thesis. Also the work of the nine students that I have guided, is
equally appreciated. From those students, the theses of Sergi Calvet Ceballos, Selma
Begtasevic, Eguzki Astiz Lezaun and Almerima Jamakovic contain many simulation
results relevant to the contents of this thesis.
Finally, I would like to thank my family. Malcolm X once said “Education is our

passport to the future, for tomorrow belongs only to the people who prepare for it
today.” I am indebted to my parents, for they have provided me the means to obtain
my passport. I feel confident now to take on my travel into the future.

Thank you, Bedankt, Obrigado!

223

224 ACKNOWLEDGEMENTS

Curriculum Vitae

Personal details
Title(s), name Ir Fernando Antonio Kuipers
Male/female male
Date and place of birth May 16, 1977, The Hague
Nationality Dutch and Brazilian

Brief summary of research over the period 2000-2004
Fernando A. Kuipers received the M.Sc. degree in Electrical Engineering at Delft

University of Technology in June, 2000. The M.Sc. thesis was entitled “Hop-by-hop
destination based routing with Quality of Service constraints.” He has been enrolled
for three months at Alcatel CRC in Antwerp, Belgium to gain “industrial experience.”
There he worked on balancing the load in a network by means of a genetic algorithm. He
was also a member of the DIOC (interdisciplinary research center, now speerpunt) on
the Design and Management of Infrastructures, headed by Prof. Margot Weijnen, where
he participated in the Telecommunications project. His Ph.D. work mainly focused on
the algorithmic aspects, theory and complexity of Quality of Service (QoS) routing.
During his Ph.D. he supervised 9 students.

International activities
Program committee member of The First International Workshop on QoS Rout-

ing (WQoSR), October 1, 2004 (co-located with the Fifth International Workshop on
Quality of Future Internet Services (QoFIS’04)).

Other academic activities

• Reviewer for many journals and conferences, among which: IEEE/ACM Trans-
actions on Networking, IEEE Communications Magazine, Computer Networks,
Computer Communications, IEEE INFOCOM and Qofis.

• Lecturer of a class on QoS Routing, and of a Masterclass (organized by Prof. N.
Baken) on the topic QoS Routing. Coordinator of the home-work exercises for a
class on Performance Evaluation.

225

226 CURRICULUM VITAE

• Attended four IETF Masterclasses on: “Challenge and response: towards tomor-
row’s Internet” by Brian Carpenter, “Internet Architectural Philosophy and the
new business reality” by Scott Bradner, “Security” by Jeff Schiller, “IPv6” by
Steve Deering.

• Participated in the COST 279 Second European Summer School on “Routing and
Multi-Layer Traffic Engineering in Next Generation IP Networks” at Darmstadt,
Germany, September 8-12, 2003.

• Followed the EIDMA minicourse on “Approximation Schemes for NP-hard Geo-
metric Problems,” by Prof. Sanjeev Arora at the Euler Institute for Discrete
Mathematics and its Applications (EIDMA), Technical University of Eindhoven,
The Netherlands, September 1-5, 2003.

• Attended the ATHENS (Advanced Technological Higher Education Network Socrates)
course in Paris, titled “Discovering the datacommunication networks of the infor-
mation society of the future,” November 12-21, 1999.

Nominations, scholarships and prizes

• Nominated for best paper award at INFOCOM 2003, San Francisco, April 2003.

• Nominated for the Runner-Up award 2001. This is an award for upcoming talent
in the telecommunications, media and Internet sector, organized by Telecombrief
at the 7th Telecongres in the Netherlands, January 15, 2002.

Publications
Books, or contributions to books:

• F.A. Kuipers, Hop-by-hop routing with QoS constraints, M.Sc. thesis in Electrical
Engineering at Delft University of Technology, June 2000.

• P. Van Mieghem (ed.), F.A. Kuipers, T. Korkmaz, M. Krunz, M. Curado, E. Mon-
teiro, X. Masip-Bruin, J. Solé-Pareta, and S. Sánchez-López, Quality of Service
Routing, Chapter 3 in Quality of Future Internet Services, EU-COST 263 Final
Report, edited by Smirnov et al. in Springer LNCS 2856, pp. 80-117, 2003.

International journals:

• P. Van Mieghem, H. De Neve and F.A. Kuipers, “Hop-by-hop Quality of Service
Routing,” Computer Networks, vol. 37/3-4, pp. 407-423, November 2001.

227

• F.A. Kuipers and P. Van Mieghem, “MAMCRA: a constrained-based multicast
routing algorithm,” Computer Communications, vol. 25/8, pp. 801-810, May
2002.

• F.A. Kuipers, T. Korkmaz, M. Krunz and P. Van Mieghem, “An Overview of
Constraint-Based Path Selection Algorithms for QoS Routing,” IEEE Communi-
cations Magazine, vol. 40, no. 12, December 2002.

• P. Van Mieghem and F.A. Kuipers, “On the Complexity of QoS Routing,” Com-
puter Communications, special issue on QofIS’01, vol. 26, no. 4, pp. 376-387,
March 2003.

• Y. Guo, F.A. Kuipers and P. Van Mieghem, “A Link-Disjoint Paths Algorithm
for Reliable QoS Routing,” International Journal of Communication Systems, vol.
16, no. 9, pp. 779-798, November 2003.

• P. Van Mieghem and F.A. Kuipers, “Concepts of Exact Quality of Service Algo-
rithms,” to appear in IEEE/ACM Transaction on Networking.

• F.A. Kuipers, T. Korkmaz, M. Krunz and P. Van Mieghem, “Performance Evalua-
tion of Constraint-Based Path Selection Algorithms,” to appear in IEEE Network.

Refereed conference proceedings:

• F.A. Kuipers and P. Van Mieghem, “QoS Routing: Average Complexity and hop
count in m dimensions,” Proc. of Second COST 263 International Workshop,
QofIS’01, Coimbra, Portugal, pp. 110-126, September 24-26, 2001.

• M. Janic, F.A. Kuipers, X. Zhou and P. Van Mieghem, “Implications for QoS
Provisioning based on Traceroute Measurements,” Proc. of 3rd International
Workshop on Quality of Future Internet Services, QofIS’02, Zurich, Switzerland,
October 16-18, 2002.

• F.A. Kuipers and P. Van Mieghem, “The Impact of Correlated Link Weights on
QoS Routing,” Proc. of IEEE INFOCOM 2003, San Francisco, USA, March 30 -
April 3, 2003 (nominated for best paper award).

• F.A. Kuipers and P. Van Mieghem, “Bi-directional Search in QoS Routing,” Proc.
of the fourth COST 263 International Workshop on Quality of Future Internet Ser-
vices, QofIS’03, edited by G. Karlsson and M. I. Smirnov in Springer LNCS2811,
KTH, Stockholm, Sweden, pp. 102-111, October 1-3, 2003.

	Quality of Service Routing in the Internet Theory, Complexity and Algorithms
	Contents
	Summary
	Chapter 1 Introduction
	1.1 Routing in the Internet
	1.2 Quality of service
	1.3 Notation
	1.4 Problem statement
	1.5 Outline

	Chapter 2 Graphs, algorithms and complexity
	2.1 Graph theory
	2.1.1 Graph definitions
	2.1.2 Graph representation

	2.2 Classes of graphs
	2.2.1 Random graph
	2.2.2 Waxman graph
	2.2.3 Power-law graph
	2.2.4 Lattice

	2.3 Algorithmic complexity
	2.4 NP-completeness

	Chapter 3 Shortest path algorithms
	3.1 Elementary graph algorithms
	3.1.1 Breadth-first search
	3.1.2 Depth-first search

	3.2 Classical shortest path algorithms
	3.2.1 Bellman-Ford algorithm
	3.2.2 Dijkstra algorithm
	3.2.3 Bi-directional search

	3.3 Best-first search
	3.3.1 A* algorithm
	3.4 Mathematical programming
	3.4.1 Linear programming
	3.4.2 Dynamic programming (Floyd-Warshall algorithm)

	Chapter 4 Concepts of exact MCP algorithms
	4.1 Definition of the path length l(P
	4.1.1 Di.erent (non-linear) length functions
	4.1.2 Visualization of the search space

	4.2 The k-shortest path algorithm
	4.3 Dominated paths
	4.3.1 Definition of non-dominance
	4.3.2 An attainable bound for kmax

	4.4 Look-ahead
	4.4.1 The look-ahead concept
	4.4.2 Complexity of look-ahead
	4.4.3 Other look-ahead applications

	4.5 Bi-directional search in multiple dimensions
	4.6 The SAMCRA algorithm
	4.6.1 Meta-code SAMCRA
	4.6.2 Complexity of SAMCRA
	4.6.3 Example of the operation of SAMCRA

	4.7 Conclusions

	Chapter 5 Overview of QoS algorithms
	5.1 Heuristics
	5.1.1 Ja.e’s algorithm
	5.1.2 Iwata’s algorithm
	5.1.3 TAMCRA
	5.1.4 Chen’s algorithm
	5.1.5 Randomized algorithm
	5.1.6 H_MCOP
	5.1.7 Limited path heuristic

	5.2 -approximation
	5.2.1 Puri’s algorithm
	5.2.2 Xue’s algorithm

	5.3 Exact algorithms
	5.3.1 SAMCRA
	5.3.2 HAMCRA
	5.3.3 A*Prune

	5.4 Special (non-MCP) QoS algorithms
	5.5 Performance evaluation
	5.5.1 Simulation set-
	5.5.2 Simulation results
	5.5.3 Simulation conclusions

	5.6 Conclusions

	Chapter 6 Multicast QoS routing
	6.1 Problem definition
	6.2 Properties of multicast QoS routing
	6.3 MAMCRA
	6.4 Discussion of multicast QoS routing
	6.4.1 Tuning MAMCRA
	6.4.2 QoS negotiation
	6.4.3 QoS multicast protocol
	6.4.4 QoS multicast in an active network

	6.5 Performance evaluation of MAMCRA
	6.6 Conclusions

	Chapter 7 Link-disjoint QoS routing
	7.1 Problem definition
	7.2 Related work
	7.2.1 Link-disjoint paths in one dimension
	7.2.2 Disjoint paths in multiple dimensions

	7.3 Path augmentation for solving LPP
	7.3.1 The steps of LBA
	7.3.2 LBA is based on the shortest path
	7.3.3 LBA is loop-free

	7.3.4 Optimality of LBA
	7.4 Extending LBA to multiple dimensions
	7.4.1 Operations of MLBA
	7.4.2 Problems in multiple dimensions

	7.5 DIMCRA
	7.5.1 Operations of DIMCRA
	7.5.2 Properties of DIMCRA

	7.6 Conclusions

	Chapter 8 The complexity of exact MCP algorithms
	8.1 Related work
	8.2 Worst-case complexity analysis
	8.3 The impact of link correlation on complexity
	8.3.1 Theory
	8.3.2 Simulation results
	8.3.3 Inter-link correlation

	8.4 The impact of constraints on complexity
	8.4.1 Theory
	8.4.2 Simulation results
	8.4.3 Estimation of the shortest path length in a lattice

	8.5 Conclusions

	Chapter 9 QoS dynamics
	9.1 Introduction to QoS stability
	9.2 Related work
	9.2.1 Traffic prediction
	9.2.2 Network update triggering
	9.2.3 Network update distribution
	9.2.4 Inaccurate network state

	9.3 Stability of a path
	9.3.1 Mathematical analysis
	9.3.2 Simulations for .w
	9.3.3 Simulations for .l

	9.4 Conclusions on QoS stability
	9.5 Introduction to dynamic QoS algorithms
	9.6 Problem statement
	9.7 Traffic engineering algorithms
	9.7.1 Overview
	9.7.2 Limitations

	9.8 SAMCRA-B
	9.9 Performance evaluation
	9.9.1 Scenario 1: influence of bandwidth constraint
	9.9.2 Scenario 2: influence of one QoS constraint
	9.9.3 Scenario 3: influence of both QoS constraints

	9.10 Conclusions on dynamic QoS algorithms

	Chapter 10 Conclusions
	Appendix A Approximate analysis
	A.1 Approximate analysis of QoS complexity
	A.1.1 Analysis for a single link weight (m = 1)
	A.1.2 Analysis for multiple link weights (m > 1)
	A.1.3 Perfect negative correlation (m = 2)

	A.2 Approximate analysis of path stability

	Appendix B Abbreviations
	Bibliography
	Samenvatting (Summary in Dutch)
	Acknowledgements
	Curriculum Vitae

