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Summary

Since the liberalization of the energy markets, the storage of energy is decoupled from the production
and sales. In Western-Europe the storage of natural gas becomes more and more important because
production fields get depleted and governments force companies to slow down their production because
of tremors in the ground. Natural gas needs to be imported from countries that are far away, like for
example Russia. To provide in security of supply and to ensure there is enough natural gas when the
demand is high, it is important to store natural gas nearby.

To determine the value of a gas storage facility in a reliable way we need an efficient market. For an
efficient market is needed that the financial instruments, like futures contracts and options on natural
gas, are liquidly traded on the exchange. If this condition is met, we are able to determine the value of
storage according to market prices.

The COS method was already presented as an efficient method for pricing a broad spectrum of financial
derivatives and can be used in combination with all processes for the underlying for which a characteristic
function is known. For processes whose characteristic function is not available, the adjoint expansion
method can be used to obtain an approximation of the characteristic function. In this work the COS
method will be presented as an efficient method for determining the value of gas storage contracts which
is competitive with existing valuation methods for natural gas storage contracts.
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Chapter 1

Introduction

1.1 Natural Gas and the need for storage

The content of sections 1.1 and 1.2 is based on the content in [16] and [7]. Natural gas is, as the name
already suggests, a naturally occurring mixture of hydrocarbons, primarily consisting of methane. It is
formed during the decomposition of organic materials in deep layers of the earth in very many years.
Natural gas is an important source of energy. Despite the fact that natural gas produces carbon dioxide
when it is burnt and it is a greenhouse gas in itself, natural gas is seen as the least polluting among the
fossil fuels. Natural gas becomes liquid at temperatures around -162 ◦C (depending on pressure and its
composition) and then it is known as Liquefied Natural Gas (LNG). When liquefying natural gas, its
volume decreases with around 600 times, which makes storage and transport more efficient.

In The Netherlands and North-Western Europe, the production of natural gas decreases, because natural
gas reservoirs become more and more depleted. In The Netherlands the main production fields had to
slow down their production due to tremors in the earth and all the consequences for the local residents.
To become not too dependent on the supply from other countries and to ensure security of supply, it is
important to store natural gas nearby. So gas storage facilities provide flexibility in the delivery of gas
when demand is bigger than production. Also the transition to renewable energies as solar and wind
energy plays a role in the need for gas storage. The supply of renewable energies is heavily dependent on
weather conditions. If the supply of these energies cannot meet the demand of energy, natural gas can
still offer a solution to this problem. A third reason to store natural gas is because its price is known to
be seasonal dependent. It is often profitable to buy and store natural gas when the price is low (summer)
and to withdraw from the storage and possibly sell if the price is high (winter).

There are multiple ways to store large amounts of natural gas, among these are depleted gas and oil
fields, empty salt caverns and empty aquifers. A gas storage facility always has three main operating
characteristics: working gas volume, withdrawal rate and injection rate. The working gas volume is the
part of the capacity that can be used to store gas, The withdrawal rate is the rate at which gas can be
withdrawn from the storage and the injection rate is the rate at which gas can be injected into the storage.

Since the liberalization of the energy markets in the beginning of the 21st century, the production, storage
and sales of energy are decoupled. So since then the storage of natural gas became a service on its own
and there was a particular need to price this service.

An example of a commercial gas storage facility is Gas Storage Bergermeer (GSB), located near Alkmaar
in the Netherlands, that started its service in 2014. At this storage facility the gas is stored in an empty gas
field and it is the biggest gas storage facility of Europe. This facility makes use of the depleted Bergermeer
gas reservoir and has a working capacity of 45.6 TWh. It is an open-access gas storage, which means
that users do not need to purchase entry or exit capacity. Storage is sold in so called Standard Bundled
Units (SBU). A standard bundled unit at GSB consists of 1,000 kWh storage capacity, 0.427 kW injection
capacity and 0.579 kW withdrawal capacity. Capacity for future storage years is sold in periodic auctions.
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1.1.1 The natural gas market

Gas storage facilities are usually connected to virtual markets where the gas can be traded (in this way
gas in the transport network can be easily transferred between parties). One of the biggest virtual market
places in Europe for example is the Dutch Title Transfer Facility (TTF). GSB is connected to the TTF
where it delivers its service. The gas can be traded over the counter (OTC) or on an exchange. OTC
transactions can be customized to the preferences of the two trading parties, where the products on the
exchanges are standardized and the counter party is not necessarily known. Two exchanges that are
designated for the Dutch gas market are ICE ENDEX and ECC. ICE ENDEX organizes the capacity
auctions of SBU’s for GSB. On these exchanges they offer different standardized products. One can think
of futures contracts and options. ICE ENDEX is also the place where the secondary trading of storage
contracts takes place. Here the customers can trade SBU’s, unbundled capacity (injection/withdrawal
capacity or storage space) and gas in storage.

Storage services are important for a properly working gas market in the sense that they provide in the
need for individual traders to store the commodity they trade.

1.2 Determining the value of gas storage

Since the liberalization of the Energy markets in Europe the storage service is decoupled from the
production, sales and transportation services. Therefore it became more important to have a good
estimation of the value of gas storage. In determining the value of gas storage we distinguish two types
of value: the value of the gas storage facility and the value of gas storage services.

The costs of a gas storage facility are made up of operating costs (costs to inject and withdraw),
maintenance costs, initial investments (a big part of this is the cushion gas, which needs to be in the
storage to have enough pressure for operating) and costs for the location. The profit that the owner of a
gas storage facility makes usually consists of the revenues from selling storage service contracts.

The question is: what is a client willing to pay for these storage contracts? Of course if the client is an
energy company that really needs to have gas in storage to provide in security of supply, he is willing to
pay more than if the client is just a trader of gas and wants to make profit by buying low and selling high.
But, if the gas market is liquid, the value of these storage contracts primarily depends on the market
prices for gas, since all players can buy and sell gas at any moment on the market.

In determining the value of a gas storage facility, we do only consider storage that is used to trade in
the market. For a company of course a storage facility can have additional value, for example it provides
security of supply.
In the sequel if we write about the value of a gas storage facility, we actually mean the value of the service
to make use of a certain amount of working capacity, with corresponding withdrawal and injection rates,
that can be created by trading gas on the gas spot market. (Of course if this is done for the full capacity
of the storage facility, this can be used in the valuation of the physical gas storage facility).

The value of a gas storage facility heavily depends on the trading strategy that is followed. We roughly
distinguish two different approaches: The intrinsic and the extrinsic approach. Below we will explain
their differences. We always assume that the trading is asset-backed, which means that the gas that is
bought can be injected in the storage facility and the gas that is sold can be withdrawn from the gas
storage facility.

1.2.1 Intrinsic approach

The intrinsic value of a gas storage facility is the value based on the forward curves. We can distinguish
two types of intrinsic value.

2



The first one is the tradable intrinsic value. The tradable intrinsic value is the value that can be locked
in today based on the current forward curves. Capturing the tradable intrinsic value is a static strategy,
which comes down to buy gas in cheap periods and sell gas in expensive periods. This strategy is risk-less
because all traded volumes and prices are known beforehand.

The second one is the rolling intrinsic value. The strategy resulting in the rolling intrinsic value is a
dynamic strategy. The initial intrinsic trading strategy is changed (for example daily or weekly, also
depending on transaction costs) if forward curves change. The advantage is that it cannot perform worse
than the initial intrinsic trading strategy, because the strategy is changed only when more profit can
be made. Changing the trading strategy is also called a roll. In determining the rolling intrinsic value,
forward curves need to be simulated.

1.2.2 Extrinsic approach

The extrinsic approach is based on the real options approach and exploits the volatility of the gas spot
price. When we follow a trading strategy based on this approach, usually gas is injected if the gas spot
price drops and gas is withdrawn if the gas spot price rises. The extrinsic approach valuates the storage
contract taking into account future optionality. The extrinsic value of a storage contract is the expected
value that can be created by following the optimal trading strategy. In determining the extrinsic value
the spot price needs to be simulated and it is essential that this process is realistic for the real spot price
process of gas

By trading according to the strategy following from the extrinsic approach, it is not certain at all that
the owner of the gas storage contract can collect the calculated extrinsic value. The money he actually
makes can be more or less, depending on the actual development of the gas spot price. Because the gas
spot price is quite volatile, there can be a high variance in realized value with the extrinsic approach. To
reduce this variance, it is wise to combine this approach with an additional hedging strategy.

1.2.3 Existing valuation methods for gas storage facilities

We distinguish roughly two types of methods in the valuation of a gas storage facility. The first type are
the simulation based methods. Among these methods is the forest of trees method, which is suitable to
one factor models. Another simulation based method is based on the algorithm presented by Longstaff
and Schwartz, which they introduced in their famous paper [18]. Boogert and de Jong are well known
for applying this method in the context of natural gas storage valuation. Their simulation based method
is for example very well suited to handle multi-factor models.

The second type are the partial integro differential equation (PIDE) methods . In [5], the authors derived
the Hamilton-Jacobi-Bellman (HJB) equation for the stochastic control problem that characterizes the
valuation of a gas storage facility. Subsequently they solve this HJB equation with a semi-Lagrangian
method. Also in [28] the authors solve a PIDE to value a natural gas storage facility and determine
optimal operating strategies.

1.3 Hedging

Holding a position in a certain stock exposes the holder to a certain amount of risk, because the spot
price movement of the stock is uncertain. If the stock price drops, the holder of the stock will lose money.
To limit or eliminate the risk of losing money, the holder can decide to additionally trade in a derivative
on this stock, to keep the same level of wealth. A classical example is to use an option to offset the
price movements of a stock. This method to reduce the risk is often called delta hedging, where delta
represents the change of the value of the option in relation to the stock price movement. Here we will
give a classical example (Based on the derivations of the Black-Scholes equation as done in [27] and [3])
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on how to set up a hedging portfolio.

We assume stock price S follows a geometric Brownian motion

dSt = µSt dt+ σSt dW
P
t , (1.1)

where W P
t is a Wiener process under the market measure P. We also assume the existence of a riskless

bank account B, paying the risk-free rate r

dBt = rBt dt. (1.2)

Now we construct a hedging portfolio, which we assume to be riskless, consisting of an option v(t, St)
that is written on the underlying S and ∆ units of S

Πt = v(t, St) + ∆St. (1.3)

By Itô’s lemma, the price of the option follows an Itô process with the same Wiener Process W P
t

dv(t, St) =

(
∂v(t, St)

∂t
+ µSt

∂v(t, St)

∂St
+

1

2
σ2S2

t

∂2v(t, St)

∂S2
t

)
dt+ σSt

∂v(t, St)

∂St
dW P

t . (1.4)

We assume that the portfolio is self-financing, so no money is injected or removed from the portfolio.
The change in value of the portfolio is only due to changes in the value of S and the option written on
it, which amounts to

dΠt = dv(t, St) + ∆dSt, (1.5)

dΠt =

(
∂v

∂t
+ µSt

∂v(t, St)

∂St
+

1

2
σ2S2

t

∂2v(t, St)

∂S2
t

+ ∆µSt

)
dt+

(
σSt

∂v(t, St)

∂St
+ ∆σSt

)
dW P

t . (1.6)

Because we assumed the portfolio to be riskless and the only risk involved is in the Brownian motion
part, we hedge this risk by setting

∆ = −∂v(t, St)

St
(1.7)

Because the no-arbitrage principle, the portfolio should pay the same risk-free rate r as the bank account

dΠt = rΠt dt = r(v(t, St) + ∆St). (1.8)

If we now equate (1.6) and (1.8), we end up with the famous Black-Scholes option pricing PDE

∂v

∂t
+

1

2
σ2S2

t

∂2v(t, St)

∂S2
t

+ rSt
∂v(t, St)

∂St
− rv(t, St) = 0. (1.9)

Although we are not especially interested in this Black-Scholes option pricing PDE, it follows from the
delta hedging argument and (in combination with the final condition v(T, ST ) = h(ST ), where h is the
payoff function of the option) it tells us what the option price should be at any time t before the options
expiration date. Delta actually tells us how many units of stock we have to buy/sell to compensate the
change in our option value due to the stock price movement.

A so-called perfect hedge does not exist. If you want to hedge a position continuously, you have to
re-balance that position continuously, which is unfeasible. Re-balancing also brings costs with it, therefore
sometimes it is better to keep a position instead of hedging it. In practice hedges are set in longer time
intervals (daily, weekly or even monthly). Another necessary condition is that the contracts that can be
used as a hedge must be liquidly traded on the exchange. A trader can possibly use derivatives on a
similar stock that behaves almost the same as the stock in his/her portfolio.
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1.3.1 Hedging a gas storage facility

Holding a certain amount of commodity, in our case gas, also exposes the trader to a certain amount of
risk because the spot price movement of gas is also uncertain.
As stated earlier, when a storage manager follows the extrinsic approach and follows the resulting optimal
strategy, on average the storage manager will realize the calculated value. But because in the extrinsic
approach we make use of the gas spot price, for which the volatility is relatively high compared to forward
prices, there is a high amount of risk involved. In order to reduce this risk, the spot trading strategy
can be combined with a hedging strategy. In the commodity world they often use futures or forward
contracts or options on these contracts to (partly) hedge away these price risks. The mean reason to use
these instruments is that they are (strongly) correlated to the gas spot price. The idea of futures and
forward contracts is the same, for the difference please see the blog: Futures and Forward contracts on
commodities on page 5. Because futures contracts are the most liquid instruments, in the sequel we will
write about futures contracts.

On the commodities exchange one can trade not only natural gas futures contracts but also natural gas
option contracts. These natural gas option contracts are options on the natural gas futures contracts. At
the expiration date such a gas options contract automatically turns into the corresponding gas futures
contract if the price of this contract is better than the spot price. Since a gas option gives the holder the
right but not the obligation to buy or sell gas at a predetermined price, hedging with gas options is more
flexible than hedging with gas futures. For now we only consider the case of hedging with gas futures
contracts, so the gas storage trader ends up with a portfolio consisting of gas in storage + additional
futures contracts. The main idea is that the hedging volume of the futures contracts neutralizes the
movement in the portfolio value due to gas spot price movements.

A last thing to keep in mind is the type of settlement of these futures contracts. We distinguish physical
settlement and cash settlement. When a futures contract is physically settled, the buyer has to take off
the amount of gas and the seller has to deliver the amount of gas. In cash settled futures contracts, the
difference between the spot price and the price in the contract is paid or received and there is no physical
transfer of gas. So for hedging purposes, cash settled futures contracts are preferred, because physically
settled futures contracts need additional constraints such that they are asset-backed.

Futures and Forward contracts on commodities
Futures contracts are agreements between two parties to buy or sell a certain amount of the
underlying commodity at a fixed price at a pre-determined date in the future. A futures contract
is settled on its expiration date. We distinguish cash settlement and physical settlement. If a
futures contract is financially settled, the seller of the commodity does not deliver the commodity
but receives or pays the difference between the spot price of the commodity and the cash position
of the transaction agreed upon. If a futures contract is physically settled, the seller of the
commodity has to deliver the commodity physically (and in return the buyer has to take off the
commodity).

Futures contracts are highly standardized instruments traded on an exchange. The exchange
takes the role as counterparty for both sides. Trading futures contracts also obliges both
counterparties to deposit on a margin account and this margin is updated daily mark-to-market
to the corresponding contract by interim transactions. Therefore there is almost no counterparty
risk (the risk that the counterparty for what reason does not fulfill its obligations) in trading
futures contracts.

Forward contracts are the same as futures contracts in the sense that they are agreements
between two parties to buy or sell a certain amount of the underlying commodity at a fixed
price at a pre-determined date in the future. The difference is that forward contracts are traded
over-the-counter (OTC) and therefore customizable. The advantage of these contracts is that they
can be constructed in such a way that they fulfill the special needs of both parties. The drawback
of forward contracts is that holders are exposed to counterparty risk.
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We also want to mention here that the (rolling) intrinsic strategy is a hedging strategy in itself, because
it limits the risk the trader is exposed to.
In [6] four different hedging strategies that can be combined with the spot trading strategy are distinguished.
These are the static intrinsic and static delta hedge, which are set in place only at the beginning of the
storage year, and the dynamic intrinsic and dynamic delta hedge, which are rebalanced every month. The
static intrinsic hedge is actually just applying the intrinsic strategy, where the dynamic intrinsic hedge
is actually just applying the rolling intrinsic strategy. These (rolling) intrinsic strategies can be seen as
a hedging strategy in itself, because these strategies also limit the risk the trader is exposed to.

What the authors in [6] very well in their backtest results in the Appendix is that the expected gas
storage value of the intrinsic approach (which is a certain value, as explained in the section about the
intrinsic approach) is lower than the expected gas storage value of the rolling intrinsic approach which in
turn is lower than the expected gas storage value of the extrinsic approach. When concentrating on the
realized value with the spot trading strategy without hedge, it can be seen that the realized gas storage
value is much lower than the expected spot trading strategy. However, combined with the delta hedging
strategy, it can be seen that the realized gas storage value is very close to the expected gas storage value.
Their conclusion is therefore that the spot trading strategy, combined with dynamic delta hedging results
in the highest realized gas storage value.

In [13] they describe this form of delta hedging a little bit more technically. Let F (tm, Ti) denote the
value of a futures contract at time tm with expiration date Ti, for i = 1 . . . I, where F (tm, T1) is the
prompt futures contract and F (tm, TI) is the futures contract that expires last in future. Note that if
tm ≥ Ti, F (tm, Ti) = 0, because the futures contract stops trading after its expiration date.

The delta hedging strategy now comes down to add to the trading strategy that is based on the gas
spot price at time tm, a strategy of trading ∆(tm, Ti) of futures contracts. In total the hedging strategy
consists of trading the following futures contracts:

M∑
m=0

I∑
i=1

∆(tm, Ti)(F (tm+1, Ti)− F (tm, Ti)). (1.10)

Note that ∆(tm, Ti) = 0, for tm ≥ Ti, also because the futures contract stops trading after its expiration
date.

Because the price process of a futures contract is a martingale under the risk-neutral measure Q, we have

EQ[F (tm+1, Ti)|Ftm ] = F (tm, Ti). (1.11)

Now using the tower property for martingales, the expectation of this additional futures trading strategy
at initial date t0 under the risk-neutral measure is given by

EQ

[
M∑
m=0

I∑
i=1

∆(tm, Ti)(F (tm+1, Ti)− F (tm, Ti))

∣∣∣∣∣Ft0

]
= 0. (1.12)

For the total expectation of our portfolio Π we need the expectation of the spot trading strategy in
equation (4.5), which is introduced in Section 4.2. The total expectation of our portfolio Π at initial date
t0 under the optimal decisions ∆ν∗ is given by

EQ[Πt0 |Ft0 ] = sup
∆ν∗

EQ

[
M∑
m=1

e−rtmh(S(tm),∆ν(tm)) + e−rtM+1q(tM+1, S(tM+1), ν(tM+1))

∣∣∣∣∣Ft0

]
(1.13)

= + EQ

[
M∑
m=1

I∑
i=1

∆(tm, Ti)(F (tm+1, Ti)− F (tm, Ti))

∣∣∣∣∣Ft0

]
(1.14)

= sup
∆ν∗

EQ

[
M∑
m=1

e−rtmh(S(tm),∆ν(tm)) + e−rtM+1q(tM+1, S(tM+1), ν(tM+1))

∣∣∣∣∣Ft0

]
. (1.15)
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So the expectation of our hedge portfolio is the same as the expectation of the gas spot trading strategy
without hedge, but if we choose the ∆(tm, Ti) in a smart way, it is very likely that the variance of the
realized value with our hedge portfolio will decrease.

The question remains: how to choose this delta? A heuristic strategy that is widely employed is mentioned
in [6]. There they let the hedge volumes depend on the expected future injections and withdrawals. They
buy the volume of expected cumulative injections and withdrawals between the expiry of two subsequent
futures contracts beforehand by trading in the last of these two futures contracts.

This hedging strategy comes down to the ∆1 strategy mentioned in [13].

∆1(tm, Ti) = EQ

 ∑
tm≤tj<Ti

∆ν∗(tj)

∣∣∣∣∣∣Ftm

 if i = 1, (1.16)

= EQ

 ∑
Ti−1≤tj<Ti

∆ν∗(tj)

∣∣∣∣∣∣Ftm

 if i > 1, (1.17)

(1.18)

where ∆ν∗(tj) denotes the optimal injection or withdrawal at time tj that follows directly out of the
extrinsic approach.

1.4 Modelling the natural gas spot price process

There are three main characteristics that are typical when looking at historical time series of the spot
price process for natural gas, these are mean-reversion, seasonality and the occurrence of spikes or
jumps. Because modeling the spot price process is not the scope of this work, we use spot price models
that can capture these characteristics but we do not say anything about how well these models can
mimic the real spot price process. We consider roughly speaking three different spot price models: A
mean-reverting model with constant mean, a mean-reverting model with a time-dependent mean (to
capture the seasonality) and a mean-reverting model with time-dependent mean and jumps.

1.4.1 A mean-reverting model with constant mean

In the first model by Schwartz [26], the spot price is driven by the following SDE:

dS(t) = κ(µ− log(S(t)))S(t) dt+ σS(t) dW (t), (1.19)

where κ is the rate of mean-reversion, µ is the long term mean of the process and σ is the volatility.
Substituting X(t) = log(S(t)) and applying Itô’s lemma yields

dX(t) =

(
κ(µ−X(t))− 1

2
σ2

)
dt+ σ dW (t) (1.20)

= κ(θ −X(t)) dt+ σ dW (t), (1.21)

where θ = µ − σ2

2κ . This last expression can be recognized as an Ornstein-Uhlenbeck process whose
characteristics are given in Appendix C.4.

Because in Section 5.3 we will do an experiment with a European option where the process of the
underlying asset is modelled according to this model, we also derive here the dynamics of the log(S(t)/K)
process. Instead of substituting X(t) = log(S(t)) in the step from (1.19) to (1.20) we substitute X(t) =
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log(S(t)/K). Now applying Itô’s lemma yields

dX(t) =

(
κ(µ−X(t)− log(K))− 1

2
σ2

)
dt+ σ dW (t) (1.22)

= κ(θ −X(t)) dt+ σ dW (t), (1.23)

where θ = µ − log(K) − σ2

2κ . So the strike price K appears in the parameter θ that is inserted into the
Ornstein-Uhlenbeck process.

1.4.2 A mean-reverting model with seasonality

The following model is based on the previous model stemming from the paper presented by Lucia and
Schwartz [19]. This model is used for example by Boogert and de Jong [2] in their Monte Carlo valuation
of gas storage contracts. Lucia and Schwartz use a model where the log-spot price follows a zero
mean-reverting process plus a deterministic function f(t) which represents the seasonality component:

log(S(t)) = f(t) + Y (t), (1.24)

where the dynamics of Y (t) are given by

dY (t) = −κY (t) dt+ σ dW (t), (1.25)

where κ is the speed of mean reversion and σ is the volatility (Lucia and Schwartz use a time-dependent
volatility σ(t), but for simplicity we assume the volatility to be constant).

To get to the dynamics for S(t), we can rewrite Equation (1.24) by taking exponents on both sides as

S(t) = F (t)eY (t), (1.26)

where F (t) := ef(t). Now applying Itô’s lemma yields

dS(t) = κ(µ(t)− log(S(t)))S(t) dt+ σS(t) dW (t), (1.27)

with the time-dependent mean reverting level µ(t) given by

µ(t) =
1

κ

(
f ′(t) +

σ2

2

)
+ f(t). (1.28)

Substituting X(t) = log(S(t)) and applying Itô’s lemma once more yields

dX(t) =

(
κ(µ(t)−X(t))− 1

2
σ2

)
dt+ σ dW (t) (1.29)

= κ(θ(t)−X(t)) dt+ σ dW (t), (1.30)

where θ(t) = µ(t) − σ2

2κ = 1
κf
′(t) + f(t). This last expression can be recognized as the mean reverting

Hull-White model.

In the paper [31], the authors provide the characteristic function for this process, which reads

φ(ω;x; τ) = eiωxe
−κτ+A(ω,τ), (1.31)

with

A(ω, τ) = iω

∫ τ

0

(f ′ (T − s) + κf (T − s)) e−κs ds+
1

4κ
ω2σ2

(
e−2κτ − 1

)
. (1.32)
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1.4.3 A mean-reverting model with seasonality and jumps

Cartea and Figueroa extended in their paper [4] the model of Lucia and Schwartz to account for jumps.
Their starting point is again Equation (1.24), but they extended the dynamics for Y (t) with a term that
accounts for the jumps:

dY (t) = −κY (t) dt+ σ dW (t) + log(J(t)) dXP(t), (1.33)

where XP(t) is a Poisson process with intensity λ and J(t) is an i.i.d. process which represents the jump
size. W (t), J(t) and XP(t) are assumed to be mutually independent processes.

The Poisson process
For a Poisson process with intensity λ, it follows that

dXP(t) =

{
1 with probability λ dt

0 with probability 1− λ dt,
(1.34)

for a sufficiently small time interval dt.

In their paper Cartea and Figueroa assume that the process J(t) is log-normal, i.e. log(J(t)) ∼ N (µJ , σ
2
J).

This model can be easily adapted when considering other processes for the jump size, like the model by
Kou in [17].

Now applying a variant of Itô’s lemma for stochastic processes containing both a Brownian motion and
a Poisson process results in the following dynamics for S(t):

dS(t) = κ(µ(t)− log(S(t)))S(t) dt+ σS(t) dW (t) + S(t)(J(t)− 1) dXP(t), (1.35)

with the time-dependent mean reverting level µ(t) given by

µ(t) =
1

κ

(
f ′(t) +

σ2

2

)
+ f(t). (1.36)

Substituting X(t) = log(S(t)) and applying the same variant of Itô’s lemma once more yields

dX(t) =

(
κ(µ(t)−X(t))− 1

2
σ2

)
dt+ σ dW (t) + log(J(t)) dXP(t) (1.37)

= κ(θ(t)−X(t)) dt+ σ dW (t) + log(J(t)) dXP(t), (1.38)

where θ(t) = µ(t)− σ2

2κ = 1
κf
′(t) + f(t).

The characteristic function for this process is given by:

φ(ω;x; τ) = eiωxe
−κτ+A(ω,τ)+B(ω,τ), (1.39)

with A(ω, τ) as in (1.32) and

B(ω, τ) = λτ
(
eiωµJ−

1
2ω

2σ2
J − 1

)
, (1.40)

as the part induced by the jump process.

1.5 Risk neutral measure

In financial models, where things are uncertain, we are always dealing with a probability space (Ω,F ,P).
In this triplet, Ω denotes the sample space and is the set of all possible states of the world. F is
a σ-algebra on Ω, representing all possible events. Finally, P is a probability measure that assigns a
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probability to every event in F . The measure P is called the real world measure (also physical measure
or market measure).

The risk-neutral measure (or equivalent martingale measure), usually denoted with Q, is the measure
under which the discounted price process of an asset is a martingale.

EQ
[
e−rTS(T )|Ft

]
= S(t) (1.41)

Ft ⊂ F is the filtration on (Ω,F ) up to time t.

The fundamental theorem of asset pricing states that in a complete market there exists a unique risk-neutral
probability measure that is equivalent to the real-world probability measure (denoted with P) if and only
if there are no arbitrage opportunities.
In this work all valuation is done under the risk neutral measure. For the GBM and Merton model we
correct the drift such that the asset price process is a martingale under the risk-neutral measure. For
the models of the Ornstein-Uhlenbeck type, we assume that the parameters are already corrected for the
market price of risk.

1.5.1 Parameter estimation

In estimating the model parameters, also called calibrating the model, it is essential to know under what
measure this is done. If calibration is done on historical market data, we are working under the real-world
measure P and the process is fitted to historical market data. It is important to note that calibration
under the risk neutral measure Q will lead to different model parameters.

The estimation of model parameters is not in the scope of this thesis. But we want to use some realistic
parameters in our experiments in Chapter 5. For the models that were introduced in previous section we
use the empirical study in the paper [1] to choose some realistic parameters. Despite the fact that this
study is done for electricity prices, we assume similar behaviour for natural gas spot prices. For a general
explanation on how to estimate the model parameters we additionally refer to the paper [4].

1.6 Structure of this thesis

In Chapter 2 we start with the recap of the COS method for the valuation of European and Bermudan
options. In Chapter 3 we extend the COS method to options with multiple exercise rights at discrete
exercise dates. This will help us to ultimately employ the COS method for the valuation of gas storage
contracts in Chapter 4. In Chapter 3 we will also introduce the method of Longstaff and Schwartz for the
valuation of Bermudan options and options with multiple exercise rights. This simulation based method
will be used to compare our results with the results that are obtained with the COS method. In Chapter
4 we introduce the natural gas storage contracts after which we describe the existing valuation method for
these contracts that is used by Boogert and de Jong. In the same chapter we will derive the COS method
for the valuation of natural gas storage contracts. Finally in Chapter 5 we report about some numerical
experiments with the described methods that we have done during this research and in Chapter 7 we
conclude.

10



Chapter 2

COS method for European and
Bermudan Options

The COS method is a numerical integration method based on Fourier cosine expansions. It is an efficient
method to recover a probability density function from its characteristic function. Before introducing the
COS method, we start with recalling the definitions of European and Bermudan options, both of which
are financial derivatives: their price depends on the price of its underlying asset S. Let S(t) denote the
price of the asset S at time t. The holder of an option has the right, but not the obligation, to buy (call)
or sell (put) the underlying asset at a predetermined strike price K at a predetermined time, which we
call the exercise or expiration date.

2.1 European option

For European options it is only allowed to exercise at the expiration date T . Therefore, the value v of a
European option can be computed with the risk-neutral valuation formula, which states that the value
of an option at time t0 can be expressed as the discounted expected value of the option at time T :

v(t0, S(t0)) = e−r∆tEQ[v(T, S(T ))|Ft0 ]. (2.1)

Here r is the risk-neutral interest rate, ∆t = T − t0 and EQ means that the expectation is taken with
respect to the risk-neutral measure.

At time T , the value of the option is just the payoff of the option. The payoff function g for the vanilla
options (which we will use in this throughout this report) is given by

g(t, S(t)) =

{
max{S(t)−K, 0}, for a call,

max{K − S(t), 0}, for a put.
(2.2)

2.2 Bermudan option

A Bermudan option is an option that can be exercised once at a set of predefined exercise dates
before expiry. Let M denote the number of exercise dates before expiry and assume these dates are
equally spaced, so that tm−1 − tm = ∆t for m = 1 . . .M . The resulting set of dates is given by:
0 = t0 < t1 < . . . < tM = T (see also Figure 2.1), where exercise is possible on all dates except the starting
date t0.

t1 t2 . . . . . . . . . . . . tM−2 tM−10 = t0 tM = T

Figure 2.1: Time lattice for a natural gas storage contract
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The price of a Bermudan option can be found via backward reasoning. At the expiry date tM , if the
option is not exercised on any exercise date before maturity, the value of the option is simply equal to
the payoff: v(tM , S(tM )) = g(tM , S(tM )). On exercise date tM−1, we have to decide on the following:

− If we exercise the option we receive the payoff g(tM−1, S(tM−1)).

− If we do not exercise the option we do not receive the payoff. the option however can still represent
a value if we can exercise it profitably at tM . This value is called the continuation value at tM−1

and is denoted by c(tM−1, S(tM−1)).

The decision we should take at time tM−1 is the decision which results in the highest value of the option
at time tM−1. The value of the option at time tM−1 is given by:

v(tM−1, S(tM−1)) = max{g(tM−1, S(tM−1)), c(tM−1, S(tM−1))}.

The continuation value c(tM−1, S(tM−1)) can be computed with the risk-neutral valuation formula:

c(tM−1, S(tM−1)) = e−r∆tEQ[v(tM , S(tM ))|FtM−1
], (2.3)

where FtM−1
denotes the filtration representing the information up to and including time tM−1. It should

be noticed that in this first step c(tM−1, S(tM−1)) just equals the price of a European option at time
tM−1 with expiration date tM .

Now applying this reasoning backwards in time we get that for a general time point tm−1 the option
value is given by:

v(tm−1, S(tm−1)) = max{c(tm−1, S(tm−1)), g(tm−1, S(tm−1))}, for m = M, . . . , 2.

For m = M, . . . , 1, the continuation values c(tm−1, S(tm−1)) can be computed by successive application
of the risk-neutral valuation formula

c(tm−1, S(tm−1)) = e−r∆tEQ[v(tm, S(tm))|Ftm−1
]. (2.4)

Now we have all the ingredients to calculate the continuation values backwards in time. Since the option
can not be exercised at t0, the option value at t0 equals the continuation value at t0. Summarizing, we
have the following dynamic programming problem which can also be found in [9]:

The dynamic programming formulation
v(tM , S(tM )) = g(tM , S(tM ))

c(tm−1, S(tm−1)) = e−r∆tEQ[v(tm, S(tm))|Ftm−1
], for m = M, . . . , 1

v(tm−1, S(tm−1)) =

{
max{c(tm−1, S(tm−1)), g(tm−1, S(tm−1))} for m = M, . . . , 2

c(tm−1, S(tm−1)) for m = 1.

(2.5)

2.3 Fourier cosine series expansion

For a function supported on the interval [0, π], its Fourier cosine series expansion is defined as

f(θ) =
1

2
A0 +

∞∑
k=1

Ak · cos(kθ), (2.6)

with

Ak =
2

π

∫ π

0

f(θ) cos(kθ) dθ. (2.7)
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For ease of notation we define

f(θ) :=

∞∑′

k=0

Ak · cos(kθ), (2.8)

where
∑′

indicates that the first term in the summation is multiplied by 1
2 .

For a function supported on the interval [a, b] ∈ R, its Fourier cosine series expansion can be obtained by
using the following change of variables:

θ :=
x− a
b− a

π. (2.9)

It then reads

f(x) =

∞∑′

k=0

Ak · cos

(
kπ
x− a
b− a

)
, (2.10)

with

Ak =
2

b− a

∫ b

a

f(x) cos

(
kπ
x− a
b− a

)
dx. (2.11)

2.4 Fourier Pairs

For calculating the expectation given in (2.4), we need the transition probability distribution Γ(t0, x;T, y).
This is nothing more than the probability distribution of the underlying process y at time T , given that
the value of the process is x at time t0. For certain processes the analytical expression for this transition
probability function is unknown, but the characteristic function can be derived analytically.

The COS method exploits the availability of the characteristic function which is given by the Fourier
transform of its probability density function in the second spatial variable:

Γ̂(t0, x;T, ω) =

∫ ∞
−∞

eiyωΓ(t0, x;T, y) dy. (2.12)

If we consider an underlying processes with stationary increments, the transition probability density
function depends only on the current state x and τ := T − t0. In the remaining of this section for ease
of notation we omit the dependence on τ and define:

Γ̂(t0, x;T, ω) =: φ(x;ω) and Γ(t0, x;T, y) =: f(y|x), (2.13)

which is the same notation as used in [10] and [11].

In the subsequent derivation of the COS method for European options we will use the so-called Fourier
pair

φ(x;ω) =

∫ ∞
−∞

eiyωf(y|x) dy. (2.14)

Since the probability distribution of the density function f(y|x) has almost no mass in the tails, we can
approximate the integral by integrating from a to b such that we get the approximation

φ̃(x;ω) :=

∫ b

a

eiyωf(y|x) dy. (2.15)
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2.5 The characteristic function

In general, characteristic functions can be written in the form

φ(ω;x; τ) = eiuxβϕ(ω; τ), (2.16)

where ϕ(ω; τ) does not depend on x. For processes with independent increments β = 1. Since the
exponential Lévy processes do have independent increments, their characteristic functions can be written
in the form

φ(ω;x; τ) = eiuxϕ(ω; τ), (2.17)

where φ(ω, τ) := φ(ω; 0, τ).

For all processes for which β = 1 the COS method offers some nice properties. One of these properties is
that European option prices for many strike prices can be computed simultaneously, which we will show
in Paragraph 2.6.2. For the valuation of Bermudan options, the FFT-based algorithm can be used to
efficiently calculate the continuation value coefficients in O(N log2N) operations as the authors showed
in the paper [11].

If β 6= 1 this FFT-based algorithm cannot be used. For example for the Ornstein-Uhlenbeck process
β = e−κτ . Under the Ornstein-Uhlenbeck process the computation of the continuation value coefficients
can only be done in O(N2) operations.

In the paper [29], the authors proposed an approximation of the characteristic function of the Ornstein-Uhlenbeck
process such that it can be written in the form of Equation (2.17). They rewrite the characteristic function
of the Ornstein-Uhlenbeck process (C.15) as

φou(ω;x, τ) = eiωxeA(ω,τ)−iωx(1−e−κτ) =: eiωxψ(ω;x, τ). (2.18)

Subsequently they approximate ψ(ω;x, τ) with ψ(ω;E[x|F0], τ), such that it is in the form of Equation
(2.17). In combination with this approximated characteristic function the FFT-based algorithm can be
used to efficiently calculate the continuation value coefficients in an efficient way.

In Paragraph 2.8.1 we introduce the so-called adjoint expansion method to approximate the characteristic
function of the Ornstein-Uhlenbeck process in a different way. With this approximation the characteristic
function can be written in the form

eiωx
n∑
k=0

(x− x̄)kgn,k(t, T, ω), (2.19)

where the coefficients gn,k do not depend on x. In [3] the authors showed that if the characteristic function
can be written in this form, then also the FFT-based algorithm can be used to calculate the continuation
value coefficients.

2.6 COS method for European options

Recalling formula (2.1) for the valuation of European options and defining x to be the state of the asset
price process at time t0 and y the state of the asset price process at time T we have

v(t0, x) = e−r∆tEQ[v(T, y)|Ft0 ] = e−r∆t
∫ ∞
−∞

v(T, y)f(y|x) dy. (2.20)

Using the same truncation range as for the integral in (2.15), we can also approximate the integral in
(2.20) by integrating from a to b so that we get the following approximation for the option value

v(t0, x) ≈ e−r∆t
∫ b

a

v(T, y)f(y|x) dy. (2.21)
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Now we replace f(y|x) by its Fourier cosine series expansion (see (2.10) and (2.11)) such that we get

v(t0, x) ≈ e−r∆t
∫ b

a

v(T, y)

∞∑′

k=0

Ak(x) · cos

(
kπ
y − a
b− a

)
dy, (2.22)

with

Ak(x) =
2

b− a

∫ b

a

f(y|x) cos

(
kπ
y − a
b− a

)
dy. (2.23)

Interchanging integration and summation gives

v(t0, x) ≈ e−r∆t
∞∑′

k=0

Ak(x) ·
∫ b

a

v(T, y) cos

(
kπ
y − a
b− a

)
dy. (2.24)

Now letting Vk be the Fourier cosine series coefficients of the value of the option at maturity in y

Vk :=
2

b− a

∫ b

a

v(y, T ) cos

(
kπ
y − a
b− a

)
dy, (2.25)

and inserting in (2.24) gives

v(t0, x) ≈ b− a
2

e−r∆t
∞∑′

k=0

Ak(x) · Vk. (2.26)

Since the Fourier cosine series coefficients decay rapidly when k goes to infinity, we can truncate the series
summation to N terms to further approximate the value of the option:

v(t0, x) ≈ b− a
2

e−r∆t
N−1∑′

k=0

Ak(x) · Vk. (2.27)

By Euler’s formula we have that the cosine is the real part of the complex exponential function, thus we
can rewrite the coefficients from (2.23) as

Ak(x) =
2

b− a
<

{∫ b

a

f(y|x) exp

(
ikπ

y − a
b− a

)
dy

}
(2.28)

=
2

b− a
<

{∫ b

a

f(y|x) exp

(
ikπy

b− a

)
dy · exp

(
−ikπa
b− a

)}
(2.29)

=
2

b− a
<

{
φ̃

(
x;

kπ

b− a

)
· exp

(
−ikπa
b− a

)}
(2.30)

where <{·} denotes taking the real part of the argument and in the last step we used (2.15)

Inserting this in (2.27) leads to

v(t0, x) ≈ e−r∆t
N−1∑
k=0

<
{
φ̃

(
kπ

b− a
;x

)
e−ikπ

a
b−a

}
Vk, (2.31)

The last approximation uses the original characteristic function φ instead of the approximated one φ1.
Ultimately the COS formula for pricing European options for general underlying processes is given by

v(t0, x) ≈ e−r∆t
N−1∑
k=0

<
{
φ

(
kπ

b− a
;x

)
e−ikπ

a
b−a

}
Vk, (2.32)
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2.6.1 The coefficients Vk for vanilla options

Recalling that the value of a vanilla option at maturity is given by the payoff at maturity, we have

Vk =
2

b− a

∫ b

a

v(T, y) cos

(
kπ
y − a
b− a

)
dy (2.33)

=
2

b− a

∫ b

a

g(T, y) cos

(
kπ
y − a
b− a

)
dy (2.34)

(2.35)

The payoff function for vanilla options is given in (2.2). We assume that the characteristic function of
the log(S(t)/K) price process is available and therefore we need to represent the payoff also as a function
of log(S(t)/K) instead of S(t). The state variables x and y of the log(S(t)/K) price process are defined
as follows:

x := log(S(0)/K), and y := log(S(T )/K). (2.36)

The payoff function represented as a function of log(S(t)/K) is given by

g(T, y) ≡

max{Key −K, 0}, for a call,

max{K −Key, 0}, for a put.
(2.37)

The coefficients Vk become

Vk =


2
b−a

∫ b
0
K (ey − 1) cos

(
kπ y−ab−a

)
dy, for a call

2
b−a

∫ 0

a
K (1− ey) cos

(
kπ y−ab−a

)
dy, for a put

(2.38)

When we now use Result 3.1 from [10] which defines,

χk(c, d) : =

∫ d

c

ey cos

(
kπ
y − a
b− a

)
dy (2.39)

=
1

1 +
(
kπ
b−a

)2

[
cos

(
kπ
d− a
b− a

)
ed − cos

(
kπ
c− a
b− a

)
ec

= +
kπ

b− a
sin

(
kπ
d− a
b− a

)
ed − kπ

b− a
sin

(
kπ
c− a
b− a

)
ec
]
, (2.40)

and,

ψk(c, d) : =

∫ d

c

cos

(
kπ
y − a
b− a

)
dy (2.41)

=


[
sin
(
kπ d−ab−a

)
− sin

(
kπ c−ab−a

)]
b−a
kπ , k 6= 0,

(d− c), k = 0,

(2.42)

the coefficients Vk for the vanilla options are given by,

V callk =
2

b− a
K (χk(0, b)− ψk(0, b)) , (2.43)

and,

V putk =
2

b− a
K (−χk(a, 0) + ψk(a, 0)) . (2.44)
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2.6.2 Multiple strike prices

For the special case of processes for which the characteristic function can be written in the form of
(2.16), including the exponential Lévy processes, the valuation formula can handle multiple strike prices
simultaneously. The valuation formula for multiple strikes is given by,

v(x, t0) ≈ Ke−r∆t · <

{
N−1∑
k=0

ϕ

(
kπ

b− a

)
Uk · e−ikπ

βx−a
b−a

}
. (2.45)

where ϕ
(
kπ
b−a

)
:= φ

(
kπ
b−a ; 0

)
and,

Uk =

{
2
b−a (χk(0, b)− ψk(0, b)) for a call,

2
b−a (−χk(a, 0) + ψk(a, 0)) for a put.

(2.46)

Here K is a vector of strike prices Ki and therefore x is also a vector, with elements log(S0/Ki). For a
full derivation we refer to the paper [10].

2.7 COS method for Bermudan options

This section contains the contents of the paper [11]. Here we briefly repeat the most important results.
For an extensive derivation of the concepts and an error analysis we refer to the aforementioned paper.

The COS method for Bermudan options uses the same idea as the COS method for European options, but
now the COS method is used to approximate the continuation values c(tm−1, S(tm−1)) in the dynamic
programming formulation of (2.5). Defining x to be the state of the asset price process at time tm−1 and
y the state of the asset price process at time tm we have

c(tm−1, x) = e−r∆tEQ[v(tm, y)|Ftm−1 ], for m = M, . . . , 1 (2.47)

Recalling that for the European options we had

v(t0, x) = e−r∆tEQ[v(T, y)|Ft0 ], (2.48)

we can immediately use the COS formula for pricing European options in (2.32), with the only remark
that the coefficients Vk, defined by

Vk(tm) :=
2

b− a

∫ b

a

v(tm, y) cos

(
kπ
y − a
b− a

)
dy, (2.49)

depend on tm.

Therefore the COS formula for the approximation of the continuation value ĉ(x, tm−1) for general
underlying processes is given by

ĉ(tm−1, x) := e−r∆t
N−1∑
k=0

<
{
φ

(
kπ

b− a
;x

)
e−ikπ

a
b−a

}
Vk(tm). (2.50)

Since from the dynamic programming formulation in (2.5) it follows that the option value at t0 is equal
to the continuation value at t0, an approximation of the option value at t0 is given by

v(t0, x) ≈ ĉ(t0, x) = e−r∆t
N−1∑
k=0

<
{
φ

(
kπ

b− a
;x

)
e−ikπ

a
b−a

}
Vk(t1). (2.51)

So if we can recover the coefficients Vk(t1), we can approximate the option value at t0. The authors of
the paper [11] showed that the Fourier-cosine series coefficients Vk(tm), k = 0, . . . N −1, can be recovered
from the coefficients Vj(tm+1), j = 0, . . . N − 1.
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2.7.1 Recovering the coefficients Vk(tm)

We first define

Gk(x1, x2) :=
2

b− a

∫ x2

x1

g(tm, y) cos

(
kπ
y − a
b− a

)
dy (2.52)

to be the Fourier cosine series coefficients of the payoff function and

Ck(x1, x2, tm) :=
2

b− a

∫ x2

x1

c(tm, y) cos

(
kπ
y − a
b− a

)
dy (2.53)

to be the Fourier cosine series coefficients of the continuation value function.

The coefficients Vk(tm) can be recovered in a backward manner. At time tM the option value equals
the payoff and the coefficients depend just on the payoff function. (actually they are the same as the
coefficients derived in Paragraph 2.6.1)

Vk(tM ) =

{
Gk(0, b), for a call,

Gk(a, 0), for a put,
(2.54)

At all time points tm, where m < M , the option value v(tm, y) equals the maximum of the continuation
value and the payoff:

v(tm, y) = max{c(tm, y), g(tm, y)}. (2.55)

If there is a point x∗m where the continuation value equals the payoff such that c(tm, x
∗
m) = g(tm, x

∗
m), we

call this point the early exercise point at time tm. For now we assume that there exists an x∗m ∈ [a, b].

For a put option it holds that on the interval [a, x∗m] the continuation value is less or equal than the
payoff: c(tm, y) ≤ g(tm, y). On the interval [x∗m, b] the continuation value is greater or equal than the
payoff: c(tm, y) ≥ g(tm, y). Therefore we can split the integral in definition (2.49) of the option value
coefficients at time tm into two parts:

Vk(tm) =
2

b− a

∫ b

a

v(tm, y) cos

(
kπ
y − a
b− a

)
dy (2.56)

=
2

b− a

∫ b

a

max{g(tm, y), c(tm, y)} cos

(
kπ
x− a
b− a

)
dy (2.57)

=
2

b− a

∫ x∗
m

a

g(tm, y) cos

(
kπ
y − a
b− a

)
dy +

2

b− a

∫ b

x∗
m

c(tm, y) cos

(
kπ
y − a
b− a

)
dy (2.58)

= Gk(a, x∗m) + Ck(x∗m, b, tm) (2.59)

The same can be done for a call option if there is an early exercise point. Then on the interval [a, x∗m]
we have c(tm, y) ≥ g(tm, y) and on the interval [x∗m, b] we have c(tm, y) ≥ g(tm, y). Then the coefficients
Vk(tm) are given by: Vk(tm) = Ck(a, x∗m, tm) +Gk(x∗m, b).

So for m = M − 1, . . . , 1 we have

Vk(tm) =

{
Ck(a, x∗m, tm) +Gk(x∗m, b), for a call,

Gk(a, x∗m) + Ck(x∗m, b, tm), for a put,
(2.60)

In total, M−1 early exercise points need to be determined, one for every exercise date t1, . . . , tM−1. Since
the derivatives of ĉ(tm, y) and g(tm, y) can be derived easily, Newton’s method can be used to determine
these early exercise points at each time step.

To visually support the idea of splitting the integral in the definition of Vk(tm), in Figure 2.2 we show
the contributions of Gk(a, x∗m) and Ck(x∗m, b, tm) at time tM−1 for a certain put option. Figure 2.3 shows
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in addition the 2 subsequent early exercise points.

Now it remains to determine the payoff coefficients Gk(x1, x2) and the continuation value coefficients
Ck(x1, x2, tm).

Using the payoff function from (2.37) and the analytical expressions from (2.39) and (2.41) the coefficients
Gk(x1, x2) can be determined analytically and for a put with x2 ≤ 0 and a call with x1 ≥ 0 we get

Gk(x1, x2) =


2
b−aK(χk(x1, x2)− ψk(x1, x2)) for a call,

2
b−aK(−χk(x1, x2) + ψk(x1, x2)) for a put.

(2.61)

Since in (2.60) we need to determine Gk(x∗m, b) for a call and Gk(a, x∗m) for a put and for a call x∗m ≤ 0
and for a put x∗m ≥ 0, we can use the analytical expressions in (2.61).

For the coefficients Ck(x1, x2, tm) we make use of the COS formula in (2.50). This approximation of the
continuation value is inserted into (2.53) such that we get

Ĉk(x1, x2, tM−1) =
2

b− a

∫ x2

x1

ĉ(tM−1, y) cos

(
kπ
y − a
b− a

)
dy (2.62)

=
2

b− a

∫ x2

x1

e−r∆t
N−1∑
j=0

<
{
φ

(
jπ

b− a
; y

)
e−ijπ

a
b−a

}
Vj(tM−1) · cos

(
kπ
y − a
b− a

)
dy.

(2.63)

Assuming that the characteristic function can be written in the form as introduced in (2.16), we can
interchange summation and integration and take ϕ( jπ

b−a ) out of the integral.

Ĉk(x1, x2, tM−1) = e−r∆t
N−1∑
j=0

<
{
ϕ

(
jπ

b− a

)
Vj(tM−1) · 2

b− a

∫ x2

x1

e−ijπ
βy−a
b−a cos

(
kπ
y − a
b− a

)
dy

}
.

(2.64)

Now we define

Mk,j(x1, x2) :=
2

b− a

∫ x2

x1

e−ijπ
βy−a
b−a cos

(
kπ
y − a
b− a

)
dy, (2.65)

such that we can write

Ĉk(x1, x2, tM−1) = e−r∆t
N−1∑
j=0

<
{
ϕ

(
jπ

b− a

)
Vj(tM−1) · Mk,j(x1, x2)

}
. (2.66)

now in turn can be recovered efficiently with an algorithm that makes use of the fast Fourier transform.
This algorithm is not explained in detail here, but we refer to [11] and [3], where this efficient algorithm
is explained in detail. For the remaining of this work, if we refer to the FFT-based algorithm, it is this
algorithm we refer to.
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Figure 2.2: The contribution of Gk(a, x∗M−1) (in red) and Ck(x∗M−1, b, tM−1) (in blue) to the integral of the option value

coefficients Vk(tM−1). The point x∗M−1 is also shown, this is the point where the payoff function g(x, tM−1) equals the

approximated continuation value function ĉ(tM−1, x). The figure is zoomed in on x∗M−1, for the specific problem the

integration range is [a, b] = [−2.02, 1.98].

Figure 2.3: For tM−1,tM−2 and tM−3 the early exercise points are shown. This figure shows the evolution of the
approximated continuation value function back in time. The figure is zoomed in on x∗M−1, for the specific problem the

integration range is [a, b] = [−2.02, 1.98].
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2.8 An approximation method for the characteristic function:
Adjoint expansion

In this section we follow the so-called adjoint expansion method, introduced in the paper [22]. This method
can be used to approximate the characteristic function of local Lévy models for which a characteristic
function is unknown. Here we propose this method to approximate the characteristic function of the
Ornstein-Uhlenbeck process, such that it can be written in the form

eiωx
n∑
k=0

(x− x̄)kgn,k(t, T, ω), (2.67)

where the coefficients gn,k do not depend on x. In [3] the authors showed that if the characteristic
function can be written in this form, then the FFT algorithm can be used to calculate the continuation
values. We will follow approximately the same notation and we apply the method to our specific problem.

Suppose the dynamics for the log-price process Xt = log(St) are given by

dXt = µ(t,Xt) dt+ σ(t,Xt) dWt. (2.68)

The price of a European option with payoff h(ST ) is given by

v(t,Xt) = E[φ(XT )|Ft], (2.69)

where φ(x) = h(ex). Now by the Feynman-Kac formula, v can be expressed as the solution to the
following Cauchy problem {

Lu(t, x) = 0, t ∈ [0, T ), x ∈ R
u(T, x) = φ(x), x ∈ R,

(2.70)

where L is the integro-differential operator

Lu(t, x) = ∂tu(t, x) + µ(t, x)∂xu(t, x) +
σ2(t, x)

2
∂xxu(t, x). (2.71)

The expectation in (2.69) can be written as an integral with respect to the transition distribution of y at
time T given x at time t < T , which we shall denote here as Γ(t, x;T, y)

v(t, x) =

∫ ∞
−∞

φ(y)Γ(t, x;T, y) dy. (2.72)

Now the corresponding characteristic function of the log-price process is given by the Fourier transform
of this transition distribution (in the sequel we denote taking the Fourier transform on a function with a
hat)

Γ̂(t, x;T, y) =

∫ ∞
−∞

eiωyΓ(t, x;T, y) dy. (2.73)

2.8.1 Adjoint expansion for the Ornstein-Uhlenbeck process

Because for the Ornstein-Uhlenbeck process we have µ(t, x) = κ(θ − x) and σ(t, x) = σ is a constant, we
Taylor expand the coefficients µ(t, x) around some point x̄ up to first order with

µ0 = κ(θ − x̄), (2.74)

µ1 = −κ. (2.75)

We use this to approximate the integro-differential operator L and the first order approximation of L in
(2.71) is given by

L1 = L0 + (x− x̄)µ1∂x, (2.76)
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where

L0 = ∂t + µ0∂x +
1

2
σ2∂xx. (2.77)

For the process under consideration higher order approximations are not possible because the higher
order derivatives of µ(t, x) with respect to x are equal to 0.

Now it comes down to solve two Cauchy problems{
L0G

0(t, x;T, y) = 0, t ∈ [0, T ), x ∈ R
G0(T, x;T, y) = δy(x).

(2.78)

and {
L0G

1(t, x;T, y) = −(L1 − L0)G0(t, x;T, y), t ∈ [0, T ), x ∈ R
G1(t, x;T, y) = 0, x ∈ R.

(2.79)

Since L1 − L0 = (x− x̄)µ1∂x, this results in{
L0u

1(t, x) = −(x− x̄)µ1∂xu
0(t, x), t ∈ [0, T ], x ∈ R

u1(T, x) = 0, x ∈ R.
(2.80)

Now the first order approximation of Γ(t, x;T, y) is defined as

Γ(1)(t, x;T, y); = G0(t, x;T, y) +G1(t, x;T, y) (2.81)

and correspondingly

Γ̂(1)(t, x;T, y) = Ĝ0(t, x;T, y) + Ĝ1(t, x;T, y) (2.82)

Now, because the operator L acts on x and the characteristic function is a Fourier transform with respect
to y, we need to use the adjoint operator L̃ of L, which acts on y. For our problem, the adjoint operators
L̃0 and L̃1 are given by:

L̃0 = −∂T − µ0∂y +
1

2
σ2∂yy, (2.83)

and

L̃1 − L̃0 = −(y − x̄)µ1∂y. (2.84)

L can be seen as the Kolmogorov forward operator, while L̃ can be seen as the Kolmogorov backward
operator. The adjoint (dual) Cauchy problems are formulated as follows:{

L̃0G
0(t, x;T, y) = 0, T > t, y ∈ R

G0(t, x; t, y) = δx(y).
(2.85)

and {
L̃0G

1(t, x;T, y) = −(L̃1 − L̃0)G0(t, x;T, y), T > t, y ∈ R
G1(t, x; t, y) = 0, y ∈ R.

(2.86)

To obtain the characteristic function these dual Cauchy problems can be solved directly in Fourier space,
by taking the Fourier transform with respect to y. For (2.85) this results in the ordinary differential
equation {

∂T Ĝ
0(t, x;T, ω) = ψ(ω)G0(t, x;T, ω) T > t

Ĝ0(t, x; t, ω) = eiωx,
(2.87)
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where

ψ(ω) = µ0iω −
1

2
σ2ω2 = iκ(θ − x̄)ω − 1

2
σ2ω2. (2.88)

which can be easily solved and has solution

Ĝ0(t, x, T, ω) = eiωx+(T−t)ψ(ω). (2.89)

For (2.86) this results in the ordinary differential equation{
∂T Ĝ

1(t, x;T, ω) = ψ(ω)Ĝ0(t, x;T, ω) + µ1iω(i∂ω + x̄)Ĝ0(t, x;T, ω), T > t

Ĝ1(t, x; t, ω) = 0,
(2.90)

for which the solution is given by

Ĝ1(t, x;T, ω) = −
∫ T

t

eψ(ω)(T−s)µ1iω(i∂ω + x̄)Ĝ0(t, x; s, ω) ds, (2.91)

= −
∫ T

t

eψ(ω)(T−s)µ1iω(i∂ω + x̄)eiωx+(s−t)ψ(ω) ds. (2.92)

Now using

∂ω(eiωx+(s−t)ψ(ω)) = eiωx+(s−t)ψ(ω)(ix+ (s− t)ψ′(ω)), (2.93)

and inserting this into the integral for Ĝ1(t, x;T, ω) results in

Ĝ1(t, x;T, ω) = eiωx+(T−t)ψ(ω)µ1

∫ T

t

(ω(ix+ (s− t)ψ′(ω))− iωx̄) ds, (2.94)

= eiωx+(T−t)ψ(ω)µ1

(ω
2

(T − t)2ψ′(ω) + iω(T − t)(x− x̄)
)
. (2.95)

Now, recalling (2.82), the first-order approximation of the characteristic function is ultimately given by

Γ̂(t, x;T, ω) ≈ Γ̂(1)(t, x;T, ω) = G0(t, x;T, y) +G1(t, x;T, y), (2.96)

= eiωx+(T−t)ψ(ω) + eiωx+(T−t)ψ(ω)µ1

(ω
2

(T − t)2ψ′(ω) + iω(T − t)(x− x̄)
)

(2.97)

= eiωx+(T−t)ψ(ω)
(

1 + µ1

(ω
2

(T − t)2ψ′(ω) + iω(T − t)(x− x̄)
))

(2.98)

For this specific case if we write the first order approximation in the form suggested in [3], we end up
with the following:

Γ̂(1)(t, x;T, ω) := eiωx+(T−t)ψ(ω)(F̂ 0(t, x;T, ω) + F̂ 1(t, x;T, ω)), (2.99)

with

F̂ 0(ω;x, τ) = g
(0)
0 (T − t, ω), (2.100)

F̂ 1(ω;x, τ) = g
(1)
0 (T − t, ω) + g

(1)
1 (T − t, ω)(x− x̄), (2.101)

and

g
(0)
0 (s, ω) = 1, (2.102)

g
(1)
0 (s, ω) = µ1s

2ω

2
ψ′(ω), (2.103)

g
(1)
1 (s, ω) = µ1siω. (2.104)

(2.105)

Because we chose to expand the coefficients around x̄ = x, the formula for our specific case simplifies to

Γ̂(1)(t, x;T, ω) = eiωx+(T−t)ψ(ω)
(

1 + µ1(T − t)2ω

2
ψ′(ω)

)
, (2.106)

= eiωx+(T−t)(µ0iω− 1
2σ

2ω2)
(

1− κ(T − t)2ω

2

(
µ0i− σ2ω

))
, (2.107)

= eiωx+(T−t)(κ(θ−x̄)iω− 1
2σ

2ω2)
(

1− κ(T − t)2ω

2

(
κ(θ − x̄)i− σ2ω

))
. (2.108)
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2.9 Interval of integration [a, b]

We define the domain of integration as follows

[a, b] :=

[
ξ1 − L

√
ξ2 +

√
ξ4, ξ1 + L

√
ξ2 +

√
ξ4

]
, with L = 10, (2.109)

as proposed in [9]. Here ξn denotes the n-th cumulant of the process that is defined by the characteristic
function φ(ω;x;T ). The cumulants can be computed with

ξn :=
1

in
∂n(log(φ(ω;x;T ))

∂ωn

∣∣∣∣
ω=0

. (2.110)

Taking parameter L = 10 seems an appropriate choice for all the experiments in this work. For a more
extensive analysis of the choice of this parameter L and the influence on the error propagation in the
case of a Bermudan option we refer to the paper [11].

In theory a larger domain of integration should result in more accurate approximations of the option
values. But when the domain of integration becomes larger, in general more terms need to be taken into
the cosine series summation to reach the same level of accuracy.
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Chapter 3

Extended COS method and Least
Squares Monte Carlo

3.1 Options with multiple early exercise rights

In this section we will extend the framework for valuing a Bermudan option, which can be exercised once
before its expiration date, to options that can be exercised multiple times before their expiration date.
Since an option gives the holder the right to buy or sell the underlying asset at the strike price K, we
call the number of times that an option can be exercised the number of rights, which we denote by R. So
for a Bermudan option we have R = 1. It is only possible to exercise the option once at a single exercise
date. We cannot have more rights than exercise dates, so we have R ≤ M . We define R := {1, . . . , R}
to be the set of all possible numbers of rights left, which we will also call levels of rights left. The time
lattice is the same as for the Bermudan option, see Figure 2.1, so the exercise dates are at discrete time
points.

In the paper [29], the authors already considered the valuation of swing options with the COS method.
They modelled the valuation of swing options with a continuous time model. In their model swing actions
could be exercised at any time before expiry and a recovery time between subsequent swing actions is
included. This method however is more complex than our setting, since we only consider discrete exercise
points.

In the framework of options with multiple early exercise rights, the notation has to be extended. To
denote the value of an option with j rights left, we introduce the superscript j. So vj(tm, S(tm)) denotes
the value of the option with j rights left at time tm when the spot price is S(tm). The most important
thing that we need to describe is the connection between the number of rights left. To illustrate this: if
we have 3 rights left and decide to exercise 1 right, we end up at the level of 2 rights left.

We introduce a simple example to get an idea how to handle multiple early exercise rights with the COS
method. Suppose we have an option with only three exercise dates, 0 = t0 < t1 < t2 < t3 = T and
the number of rights R = 2. A schematic representation of this example is given in Figure 3.1. For this
schematic representation the following notation is defined: POm := g(tm, S(tm)), CV jm := cj(tm, S(tm))
and V jm := vj(tm, S(tm)), where g is the payoff, cj the continuation value for the level of j rights left and
vj the option value for the level of j rights left, all as functions of tm and S(tm).
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Figure 3.1: Schematic overview of the recursive scheme that is used in the example problem. The green nodes denote the
initialization for each level of rights left.

In Section 2.7 the COS method for the level of one right left (Bermudan option) was already introduced
and the continuation value c1(t2, S(t2)) can be computed with the risk-neutral valuation formula

c1(t2, S(t2)) = e−r∆tEQ[v1(t3, S(t3))|Ft2 ] (3.1)

= e−r∆tEQ[g(t3, S(t3))|Ft2 ]. (3.2)

For the level of two rights left we can do almost the same, but the difference is that the first continuation
value is only calculated at time tM−1. The continuation value c2(t1, S(t1)) can be computed with the
risk-neutral valuation formula

c2(t1, S(t1)) = e−r∆tEQ[v2(t2, S(t2))|Ft1 ]. (3.3)

The value of the option with two rights left one time step before maturity, v2(t2, S(t2)), is equal to the
payoff at time t2 plus the expected payoff at time t3 discounted to time t2. This is because there are
still two rights left and there are only two remaining exercise dates. Now we use (3.2) to see that the
expected payoff at time t3 discounted to time t2 is equal to the continuation value of the option at time
t2 with one right less. Putting that into equation (3.3) we get

c2(t1, S(t1)) = e−r∆tEQ[g(t2, S(t2)) + c1(t2, S(t2))|Ft1 ] (3.4)

= e−r∆tEQ[g(t2, S(t2))|Ft1 ] + e−r∆tEQ[c1(t2, S(t2))|Ft1 ] (3.5)

= e−r∆tEQ[g(t2, S(t2))|Ft1 ] + e−r∆tEQ[e−r∆tEQ[g(t3, S(t3))|Ft2 ]|Ft1 ] (3.6)

= e−r∆tEQ[g(t2, S(t2))|Ft1 ] + e−r2∆tEQ[g(t3, S(t3))|Ft1 ], (3.7)

where the first equality follows from the linearity of the expectation function, the second equality follows
from (3.2) and the last equality follows from the tower rule. It can be seen that the first continuation
value for the level of two rights left that is approximated at t1 is built up out of the two expected future
payoffs discounted to t1.

By applying this tower rule repetitively, the value of the option with j rights left at time tM−j+1 can be
expressed as the payoff at time tM−j+1 plus the continuation value of the option with one right less at
time tM−j+1

vj(tM−j+1, S(tM−j+1)) = g(tM−j+1, S(tM−j+1)) + cj−1(tM−j+1, S(tM−j+1)) ∀j ∈ R (3.8)

where we define the continuation value for the option with zero rights left as c0(tm, S(tm)) = 0 for all m.
We call this the initialization for every level of rights left.

On the exercise dates before the initialization tm−1, m = M − j + 1, . . . , 2 for every level of j rights left
we have to decide on the following

− If we exercise the option we receive the payoff g(tm−1, S(tm−1)) and continue with the option with
one right less cj−1(tm−1, S(tm−1)).
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− If we do not exercise the option we do not receive the payoff and continue with the option with the
same number of rights left cj(tm−1, S(tm−1)).

The decision we should take at time tm−1 is the decision which results in the highest value of the option
at time tm−1. The value of the option with j rights left at time tm−1 is given by:

vj(tm−1, S(tm−1)) = max{cj(tm−1, S(tm−1)), cj−1(tm−1, S(tm−1)) + g(tm−1, S(tm−1))}.

The continuation values cj(tm−1, S(tm−1)) can be computed with the risk-neutral valuation formula

cj(tm−1, S(tm−1)) = e−r∆tEQ[vj(tm, S(tm))|FtM−1
], ∀j ∈ R. (3.9)

Now we have all the ingredients to calculate the continuation values backwards in time. Since the option
can not be exercised at t0, the option value at t0 equals the continuation value at t0. Summarizing, we
have the following dynamic programming problem:

The dynamic programming formulation

c0(tm, S(tm)) = 0 ∀m
vj(tM−j+1, S(tM−j+1)) = g(tM−j+1, S(tM−j+1)) + cj−1(tM−j+1, S(tM−j+1)) ∀j ∈ R
cj(tm−1, S(tm−1)) = e−r∆tEQ[vj(tm, S(tm))|Ftm−1

] ∀j ∈ R, for m = M, . . . , 1

vj(tm−1, S(tm−1)) = max{cj(tm−1, S(tm−1)), cj−1(tm−1, S(tm−1)) + g(tm−1, S(tm−1))},
∀j ∈ R, for m = M − j + 1, . . . , 2

vj(t0, S(t0)) = cj(t0, S(t0)) ∀j ∈ R.
(3.10)

3.1.1 Recovering the coefficients V j
k (tm)

To approximate the continuation values for the option with j rights left, we can use COS formula (2.50)
directly with as only difference the dependence on the level of rights left:

ĉj(tm−1, x) = e−r∆t
N−1∑
k=0

<
{
φ

(
kπ

b− a
;x

)
e−ikπ

a
b−a

}
V jk (tm), ∀j ∈ R. (3.11)

From the dynamic programming formulation in (3.10) it follows that for an option with R exercise rights

vR(t0, x) ≈ ĉR(t0, x) = e−r∆t
N−1∑
k=0

<
{
φ

(
kπ

b− a
;x

)
e−ikπ

a
b−a

}
V Rk (t1). (3.12)

So if we can recover the coefficients V Rk (t1), we can approximate the option value for an option with R
exercise rights at t0.

Below we describe how to recover the option value coefficients at time tm for j rights left which are
defined as

V jk (tm) :=
2

b− a

∫ b

a

vj(tm, y) cos

(
kπ
y − a
b− a

)
dy. (3.13)

The initialization for the level of one right left is exactly the same as the initialization for the Bermudan
option in Paragraph 2.7.1 and thus

V 1
k (tM ) =

{
Gk(0, b), for a call,

Gk(a, 0), for a put.
(3.14)
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The novelty occurs in the initialization for the level of two rights left. The initialization for the level of
two rights left is at time tM−1. The option value coefficients are given by

V 2
k (tM−1) =

2

b− a

∫ b

a

v2(tM−1, y) cos

(
kπ
y − a
b− a

)
dy (3.15)

=
2

b− a

∫ b

a

(g(tM−1, y) + c1(tM−1, y)) cos

(
kπ
y − a
b− a

)
dy (3.16)

=
2

b− a

∫ b

a

g(tM−1, y) cos

(
kπ
y − a
b− a

)
dy +

2

b− a

∫ b

a

c1(tM−1, y) cos

(
kπ
y − a
b− a

)
dy (3.17)

= Gk(a, b) + C1
k(a, b, tM−1). (3.18)

Here we note that for the vanilla options

Gk(a, b) =

{
Gk(0, b), for a call,

Gk(a, 0), for a put.
(3.19)

Generalizing this derivation to the level of j rights left, the initialization for the level of j rights left is at
time tM−j+1 and is given by

V jk (tM−j+1) = Gk(a, b) + Cj−1
k (a, b, tM−j+1). (3.20)

From the dynamic programming formulation (3.10) it follows that for all j ∈ R and m = M − j, . . . , 1

vj(tm, y) = max{cj(tm, y), cj−1(tm, y) + g(tm, y)}. (3.21)

As we did for the Bermudan option, we assume that there exists a point x∗jm for which cj(tm, x
∗j
m ) =

cj−1(tm, x
∗j
m ) + g(tm, x

∗j
m ). This point is called the early exercise point at time tm for the level of j rights

left.

For a put option it holds that cj(tm, y) ≤ cj−1(tm, y) + g(tm, y) on the interval [a, x∗jm ]. On the interval
[x∗jm , b] it holds that cj(tm, y) ≥ cj−1(tm, y) + g(tm, y). Therefore we can split the integral in definition
(3.13) of the option value coefficients at time tm into two parts:

V jk (tm) =
2

b− a

∫ b

a

vj(tm, y) cos

(
kπ
y − a
b− a

)
dy (3.22)

=
2

b− a

∫ b

a

max{cj(tm, y), g(tm, y) + cj−1(tm, y)} cos

(
kπ
y − a
b− a

)
dy (3.23)

=
2

b− a

∫ b

x∗j
m

cj(tm, y) cos

(
kπ
y − a
b− a

)
dy +

2

b− a

∫ x∗j
m

a

(
g(tm, y) + cj−1(tm, y)

)
cos

(
kπ
y − a
b− a

)
dy

(3.24)

= Cjk(x∗jm , b, tm) +Gk(a, x∗jm ) + Cj−1
k (a, x∗jm , tm), (3.25)
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Figure 3.2: Integral of the option value coefficients V 2
k (tM−1). The coefficients are the coefficients of the payoff function

g(x, tM−1) plus the coefficients of the (estimated) continuation value function ĉ1(x, tM−1). Also the estimated continuation
value function ĉ2(x, tM−2) is shown, which is approximated with the coefficients V 2

k (tM−1). The figure is zoomed in on
x∗1M−1, for the specific problem the integration range is [a, b] = [−2.02, 1.98].

Figure 3.3: The contribution of Gk(a, x∗
2

M−2) + C1
k(a, x∗

2

M−2, tM−2) (in green) and C2
k(x∗M−2, b, tM−2) (in purple) to the

integral of the option value coefficients V 2
k (tM−2). The points x∗1M−1 and x∗2M−2 are also shown. x∗

2

M−2 is the point where

g(x, tM−2) + ĉ1(x, tM−2) = ĉ2(x, tM−2). The figure is zoomed in on x∗1M−1, for the specific problem the integration range

is [a, b] = [−2.02, 1.98].
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3.2 Least Squares Monte Carlo

As described in Section 2.2, the price of a Bermudan option can be found by solving the dynamic
programming problem of (2.5). A good estimation of the continuation values is key in the valuation
of Bermudan options and options with multiple early exercise rights. In Section 2.7 the COS method
was introduced for estimating these continuation values. Another approach to estimate the continuation
values is for example the Stochastich Grid Bundling Method (SGBM), which was introduced by the
authors of [15]. Another popular method to estimate the continuation values of early exercise options
is the method introduced by Longstaff and Schwartz [18]. This method makes use of a least squares
regression to approximate the continuation values directly as a function of the spot price. Because this
method is very intuitive we compare the results obtained with the COS method to the results obtained
with this method. In the remainder of this work we write Least Squares Monte Carlo method, or LSMC,
when referring to the method from Longstaff and Schwartz. In the subsequent sections we will first
introduce the method for Bermudan options. After that, the method will be extended to price options
with multiple early exercise rights. This extension was presented first by Dörr in [8]. Finally the method
will be used to value gas storage contracts. Guideline here will be the paper by Boogert and De Jong [2]
in which they used the LSMC method for the valuation of gas storage contracts.

As Longstaff and Schwartz mention in their paper, the key insight is that the continuation values can be
estimated by using the, what they refer to as the, cross-sectional information in the simulated trajectories.
To approximate the continuation values at time tm, they regress the sum of realized future cash flows
discounted to time tm on basis functions of the spot price at time tm.

The great advantage of the LSMC method is that it can be used in combination with a wide variety of
models for the underlying spot price process. Once the trajectories of the spot price process are simulated,
the algorithm can easily be applied. Before explaining the idea of the algorithm, we assume that the
trajectories for the spot price are already simulated and the number of simulated trajectories is denoted
by N .

3.2.1 LSMC for Bermudan options

In this section the attempt is to describe the LSMC method for Bermudan options in a clear way. We
strongly recommend the illustrative example in the original paper by Longstaff and Schwartz [18] to
support the readers understanding.

Before introducing the algorithm, for notational convenience we define POim := g(tm, S
i(tm)) and

CV im := c(tm, S
i(tm)), where g is the payoff function and c the continuation value as function of tm

and Si(tm). We also define CF im to be the cash flow of trajectory i at time tm.

As with the COS method, the algorithm is constructed in a backward manner. For every simulated
trajectory of the spot price process the exercise strategy is determined individually. The option value at
time t0 for an individual trajectory must be seen as the total value of all future cash flows discounted
to t0 when the optimal exercise strategy is applied on a single realization of the spot price process. The
ultimate option value is obtained by taking the average of these option values for all trajectories. The
algorithm consists at every iteration of two stages:

• determining the function for estimating the continuation values as a function of the spot price,

• updating the exercise strategy and corresponding cash flows for the single trajectories.

In the subsequent part we will show how the information across the trajectories is used to approximate
the continuation values and how the exercise strategies are updated for the single trajectories. The single
trajectories of the spot price process are denoted by Si, i = 1, . . . , N .

The algorithm starts with determining the cash flows at the final exercise date tM . Since the option
expires at this final exercise date, it is clear that the continuation value of the option is zero. So at tM
the value of the option depends only on the direct payoff. The cash flows for all trajectories are given by
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CF im = max{0, POiM}. In the case of a negative payoff, the option is not exercised at all and the cash
flow is zero. The exercise rule at tM is straightforward: for every trajectory Si, exercise the option if it
is in the money.

In the next iteration the exercise date prior to the final exercise date is considered. At tM−1 there are
two choices: to exercise the option or to not exercise the option. Of course a necessary condition for
exercising the option is that it is in the money. But if it is in the money, should the holder exercise the
option and collect a profit or should the holder wait until tM and maybe even collect a bigger profit?
This is where the continuation value comes into play. Recall the formula for the continuation value in
the dynamic programming formulation (2.5):

c(tm−1, S(tm−1)) = e−r∆tEQ[v(tm, S(tm))|Ftm−1 ]. (3.26)

Assuming that the above expectation function is unknown, the main idea is to approximate the continuation
value at time tM−1 directly as a function of the spot price at time tM−1.

In order to find a function that approximates the continuation value as a function of the spot price, a
regression of the cash flows CF iM , i = 1, . . . , N , discounted to time tM−1 is done on a finite set of P basis
functions of the spot price values Si(tM−1), i = 1, . . . , N at time tM−1.

In this setting, the approximation of the continuation value for trajectory Si is given by

CV iM−1 ≈
P∑
p=1

apBp(S
i(tM−1)), for all i, (3.27)

where Bp, p = 1, . . . , P denote the basis functions as a function of Si(tM−1).

The goal is to find the coefficients ap, p = 1, . . . , P that fit the cross-sectional data best in a least squares
sense. Finding these coefficients comes down to regress Y on X, where Y is a vector of length N such
that Y i = e−r∆tCF iM and X is a vector of length N such that Xi = Si(tM−1).

For example, if the regression is done on a standard polynomial of degree 3 and if the coefficients ap, p =
1, . . . 4 are determined, the approximation of the continuation value for trajectory Si at time tM−1 is
given by:

CV iM−1 ≈ a1 + a2S
i(tM−1) + a3S

i(tM−1)2 + a4S
i(tM−1)3. (3.28)

Once the continuation values at time tM−1 can be approximated for all trajectories Si, the exercise
strategy for the single trajectories can be updated. For time tM−1 the exercise rule is to exercise the
option if and only if POiM−1 > CV iM−1. If the option is exercised, the cash flow at time tM−1 becomes
CF iM−1 = POiM−1. Now it is important to notice that if for trajectory Si the option is exercised at time
tM−1, the cash flow for trajectory Si at time tM is set to zero, because the option may be exercised only
once.

This strategy is the generalized to all time steps prior to time tM−1. For approximating the continuation
values at times tm, m = M − 2 . . . 1, the regression is carried out on the sum of all future cash flows
discounted to time tm and the vector Y is given by

Y i = DCF im :=
∑
k>m

e−r(k−m)∆tCF ik, (3.29)

where DCF im denote the sum of all future cash flows for trajectory Si discounted to time tm.

The exercise rule for trajectory Si at time tm becomes to exercise the option if and only if POim > CV im.
If the option is exercised, the cash flow at time tm becomes CF im = POim. Also here it is important to
notice that if for trajectory Si the option is exercised at time tm, the cash flows for trajectory Si at all
times tk, where k > m, are set to zero, because the option may be exercised only once.
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Ultimately, when the exercise strategy is determined and the cash flows for every trajectory are known
for all time steps tm, m = 1 . . .M , in order to determine the option value one has to discount the cash
flows for every trajectory to time t0 and average over all trajectories. The LSMC approximation of the
option value is given by

v(t0, S(t0)) ≈ 1

N

N∑
i=1

DCF i0. (3.30)

For a pseudocode we refer to Algorithm 1 in Appendix A.1.

As explained, the LSMC method sums up the discounted future cash flows at every time step. Instead
of discounting all future cash flows at every time step, it is also possible to keep track of all these future
cash flows, which saves memory and computational time. This can be achieved by defining DCF im as the
maximum of the direct payoff and the continuation value at time tm+1, discounted to time tm

DCF im := e−r∆t max{POim+1, CV
i
m+1}, (3.31)

where we used that the discounted future cash flows are already ‘contained’ in this continuation value. For
a pseudocode that exploits this fact please see algorithm 2 in appendix A.1. We will call this algorithm
the vectorized algorithm. In figure 3.4 an illustrative scheme of this variant of the LSMC method for a
Bermudan option is given.

POiM

POiM−1

CV iM−1
{max

POiM−2

CV iM−2
{max

POiM−3

CV iM−3

. . .

e−r∆t

regress

e−r∆t

regress

e−r∆t

regress

Figure 3.4: Schematic overview of the recursive scheme that is used in the LSMC algorithm for a single trajectory. From
right to left we go back in time. The continuation value and payoff at time tm are denoted by CV im and POim respectively.

A pseudocode for the vectorized algorithm that is used to generate the results for the numerical experiments
in Chapter 5 can be found in appendix A.1.

Remark: To increase the efficiency of the algorithm, Longstaff and Schwartz mention that in determining
the continuation values at time tm only trajectories that are in the money at time tm (POim > 0) should
be used in the regression. This is because the continuation values are estimated better in the region
where exercise is relevant and it also decreases the computational time needed for the regression.

3.2.2 LSMC for options with multiple early exercise rights

The idea of the LSMC method for options with multiple exercise rights is the same as the LSMC method
for Bermudan options. Nevertheless, the method is a bit more involved, because it has to take care of the
number of exercise rights left. For the extension of the LSMC algorithm for a Bermudan option to the
algorithm for multiple exercise rights, we follow the extension of Dörr in [8] and the thesis of Olofsson [21].
In this section we do not contain specific examples of the method, but the authors strongly recommend
the examples presented in these two theses for a better understanding.

The difference with the LSMC method for Bermudan options is that in the LSMC algorithm for options
with multiple early exercise rights a regression is done to estimate the continuation values for every
number of rights left. Therefore an extra dimension is added, which we call the dimension or level of
exercise rights left. The algorithm has to update the cash flows for every level of exercise rights left up
to R. In the remainder of this section we do only consider options where the number of rights R > 1,
since the case R = 1 is just a Bermudan option, which we already covered in Paragraph 3.2.1. We use
the same notation as in that section, but now the superscript i, j is used instead of i, where j denotes
the level of rights left.
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Key is in the interconnection between the levels of exercise rights left. When exercising the option at a
certain level of exercise rights left, the value of the option consists of the direct payoff plus the continuation
value of the option with one exercise right less. Where in the algorithm for a Bermudan option in case
of an exercise all future cash flows were set to zero, here the future cash flows are replaced by the future
cash flows of the option with one exercise right less.

For every level of exercise rights left it is needed to approximate the continuation values. Not every
iteration the continuation values need to be approximated for every level of exercise rights left. In the
first iteration the continuation values for the level of one exercise right left at time tM−1 are approximated.
At all levels with more exercise rights left we do not need to approximate the continuation values at time
tM−1 since the exercise rule is to exercise if the option is in the money. This is due to the fact that when
we are at time tM−1 ans still have more than one exercise right left, it is always optimal to exercise if
the option is in the money. In the second iteration the continuation values for the levels of one and two
exercise rights left at time tM−2 are approximated. This causes that the first continuation value for the
level of one right left (Bermudan option) that is approximated is the continuation value at time tM−1.
For the level of two rights left, the first continuation value that is approximated is at time tM−2. In
general, for the level of j rights left the first continuation value that is approximated is at time tM−j .

Here we show how the algorithm works for the case R = 2. For every level of exercise rights left
an initialization is done. For the level of one exercise right left the initialization is the same as for a
Bermudan option and the first approximation of the continuation value is done at time tM−1. For the
level of two exercise rights left the initialization is to always exercise at t = tM and t = tM−1 if the option
is in the money. Not exercising a right makes no sense since the option expires at tM . The cash flows
for all trajectories are given by CF i,2M−1 = max{0, POiM−1} and CF i,2M = max{0, POiM}. For the level of
two exercise rights left the first approximation of the continuation value is done at time tM−2. In order
to find this approximation of the continuation value CV i,2M−2 as a function of the spot price SiM−2 at time

tM−2, the two future cash flows CF i,2M−1 and CF i,2M are discounted to tM−2 and summed. Then the vector
Y where is regressed on is given by

Y i = DCF i,2M−2 = e−r∆tCF i,2M−1 + e−r2∆tCF i,2M . (3.32)

Once the continuation values at time tM−2 can be approximated for all trajectories Si, the exercise
strategy for the single trajectories can be updated. The exercise rule at tM−2 with two rights left is not
as straightforward as for the Bermudan option because if we decide to exercise, the number of rights
left will decrease by 1. Therefore the exercise rule at tM−2 will be: exercise the option if and only if
POiM−2 + CV i,1M−2 > CV i,2M−2. If the option is exercised, the cash flow for trajectory Si at time tM−2

becomes CF i,2M−2 = POiM−2. Now it is important to notice that if for trajectory Si the option is exercised

at time tM−2, the exercise strategy and thus the cash flows for trajectory Si at times tM−1 and tM are
replaced by the cash flows for trajectory Si for the level of one exercise right left. This step is very
important and prevents that the option is exercised more than there are exercise rights. Recall that in
the case for a Bermudan option these future cash flows were set to zero.

Generalizing to the level of j = 1 . . . R rights left, the initialization is to always exercise the option at
t = tM . . . tM−j+1 if the option is in the money. For the level of j rights left, the first approximation of
the continuation value is done at time tM−j . For j rights left the vector Y where is regressed on is given
by

Y i = DCF i,jm :=
∑
k>m

e−r(k−m)∆tCF i,jk . (3.33)

Comparing this expression with (3.29), it can be seen that in the method for multiple exercise rights
the approximation of the continuation values is actually the same as for a Bermudan option. The only
difference is that continuation values are approximated for every level of rights left.
Once the continuation values at time tm can be approximated for all trajectories Si and all levels of
rights left, the exercise strategy for the single trajectories can be updated. The exercise rule at tm will
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be: exercise the option if and only if POiM−2 + CV i,j−1
M−2 > CV i,jM−2. If the option is exercised, the cash

flow at time tm becomes CF i,jm = POim.
Now it is important to notice that if for trajectory Si and the level of j exercise rights left the option
is exercised at time tm, the exercise strategy and thus the cash flows for trajectory Si and the level of j
exercise rights left at all times tk, k > m are replaced by the cash flows at these times for trajectory Si

for the level of j − 1 exercise right left.

For a schematic overview of the recursive scheme for multiple early exercise opportunities see Figure 3.5.
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Figure 3.5: Schematic overview of the recursive scheme that is used in the LSMC algorithm for an option with multiple
early exercise rights for a single trajectory. From right to left we go back in time and from bottom to top the number of
rights left decreases. CV i,jm denotes the continuation value at time tm with j rights left and POim denotes the payoff at
time tm. In the shaded area we recognize the scheme for a Bermudan option.

Because in the valuation we need the continuation values for every number of rights left up to R, we get
the option values for r rights left, where 1 < r < R, for free.

In all the tests in Chapter 5 we use as basis functions for the LSMC method the standard polynomials
up to degree three. The experiments showed that this is good enough to approximate the continuation
values. Also in [18] and [2] the authors mention that this is sufficient in the valuation.
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Chapter 4

Natural gas storage contracts

Throughout this section we will primarily follow the paper of Boogert and de Jong [2] in defining a natural
gas storage contract and the way to value it with a trading strategy based on the natural gas spot price.

4.1 Relation to options with multiple early exercise rights

The holder of an option with multiple early exercise rights has to decide when to exercise his rights. So
at every exercise date he has to decide if he exercises a right or not. The holder of a gas storage contract
has to decide which action he takes at every date before the settlement of the contract. For a natural gas
storage contract the actions that can be taken are withdrawing, injecting or doing nothing. A natural
gas storage contract therefore can be seen as an option with as many exercise rights as exercise dates
(R = M), with the difference that the payoff function depends on the action taken. Passing the request
to inject or withdraw to the natural gas storage facility is also called a nomination.

The gas that the owner of the contract decides to inject or withdraw is traded on the market. Gas that
is injected must be bought on the market, while gas that is withdrawn has to be sold on the market.
Therefore a natural gas storage contract can have both positive (withdrawing) and negative (injecting)
payoffs. Accepting a negative cash flow could be profitable if the resulting expected future cash flows
are higher. This is an essential difference with options, since in general for options it holds that the cash
flows are positive.

The last difference of natural gas storage contracts with options are the operational constraints and
physical limitations of the natural gas storage facility. The volume in storage is limited by the capacity
of the gas storage facility, and often there has to be a minimum amount of gas in storage (at least it can
not be negative). Also the rates of injection and withdrawal are limited.

4.2 Defining a natural gas storage contract

The time lattice for a natural gas storage contract does not differ much from the time lattice for a
Bermudan option. The only difference is that an extra date is included, the settlement date of the
contract. So, when dealing with natural gas storage contracts we have the following set of equally spaced
dates: 0 = t0 < t1 < . . . < tM−1 < tM = T < tM+1, where tm−1−tm = ∆t for m = 1 . . .M+1, where t0 is
the start date and tM+1 is the settlement date of the contract. At all the intermediate dates the contract
holder can submit a nomination. So every date where a nomination can be submitted (nomination date)
corresponds to an exercise date of a Bermudan option.
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t0 t1 t2 . . . . . . . . . tM−2 tM−1 tM tM+1

0 T

Figure 4.1: Time lattice for a natural gas storage contract.

The action that is nominated at time tm is denoted by ∆ν(tm). This nomination corresponds to a
volume change which is in place at the beginning of the next nomination date. So the volume change
∆ν(tm) = ν(tm+1) − ν(tm), where a positive volume change corresponds to an injection and a negative
volume change corresponds to a withdrawal. Since the contract holder cannot take an action at times t0
and tM+1, we have ∆ν(t0) = 0 and ∆ν(tM+1) = 0 by the definition of the contract.

At the settlement date tM+1 a penalty function q(tM+1, S(tM+1), ν(tM+1)) is introduced which may
depend on the volume of natural gas in storage and the natural gas spot price. This penalty function
ensures that the volume of gas in storage at the settlement date equals the required volume of gas in
storage at this date.

In contrast to the payoff function of an option, the payoff function of a natural gas storage contract
depends not only on the gas spot price at time tm, but also on the action that is taken. The payoff
function is defined by

g(tm, S(tm),∆ν(tm)) :=


−c(S(tm))∆ν(tm) ∆ν(tm) > 0

0 ∆ν(tm) = 0

−p(S(tm))∆ν(tm) ∆ν(tm) < 0,

(4.1)

where c represent the cost of injection as a function of the natural gas spot price and p represent the
profit of withdrawal as a function of the natural gas spot price. In the remainder of this work we will use
c(S(tm)) = p(S(tm)) = S(tm). Boogert and de Jong showed in their work [2] how to include transaction
costs and bid-ask spreads in these cost and profit functions.

The physical limitation of the natural gas storage facility impose that for all times tm, the volume of
natural gas in storage ν(tm) should satisfy

νmin ≤ ν(tm) ≤ νmax, (4.2)

where νmin is the minimum volume of natural gas in storage and νmax is the maximum volume of
natural gas in storage. The operational constraints of the natural gas storage facility are represented by
a limitation on the volume change per nomination date. For m = 1 . . .M the volume change ∆ν(tm) is
assumed to satisfy

imin ≤ ∆ν(tm) ≤ imax, (4.3)

where imin < 0 is the maximum withdrawal rate and imax > 0 is the maximal injection rate. Often in
practice imin and imax are functions of time tm and volume ν(tm). This is because when there is more
natural gas in storage it is easier to withdraw because the pressure is higher. In this work for simplicity
we assume that imin and imax are constants.

The set of allowed actions at time tm is limited. For example it is not possible to inject into a full storage
and it is not possible to withdraw from an empty storage. We define D(tm, ν(tm)) to be the set of all
allowed actions that can be taken at time tm given the volume ν(tm)

D(tm, ν(tm)) := {∆ν|νmin ≤ ν(tm) + ∆ν ≤ νmax and imin ≤ ∆ν ≤ imax}. (4.4)

36



We finally obtain the following pricing problem

v(t0, S(t0)) := sup
∆ν∗

EQ

[
M∑
m=1

e−rtmg(tm, S(tm),∆ν(tm)) + e−rtM+1q(tM+1, S(tM+1), ν(tM+1))

]
, (4.5)

where ∆ν∗ := {∆ν∗(t1), . . . ,∆ν∗(tM )} denotes the optimal strategy that is taken.

For the remaining of this work we assume that we are given the contract details in Table 4.1 when we
deal with gas storage contracts.

Start date t0

Settlement date tM+1

Nomination ∆t

Minimum volume νmin

Maximum volume νmax

Start volume ν(t0)

End volume ν(tM+1)

Maximum withdrawal rate imin < 0

Maximum injection rate imax > 0

Table 4.1: Characteristics of a natural gas storage contract

4.3 The dynamic programming formulation

As we did for the Bermudan option and the option with multiple early exercise rights, we can also set
up a dynamic programming formulation for the natural gas storage contract. To this end the storage
volume is discretized into Nν − 1 units of length δ := (νmax − νmin)/(Nν − 1). The resulting set of all
Nν possible volume levels is denoted by V. We assume that at every time step the set of possible volume
levels is the same. Furthermore we assume that the nomination ∆ν(tm) is a multiple of δ.

νmax

νmin

} δ

Figure 4.2: Discretization of the volume of the natural gas storage when Nν = 5

On the one hand when valuing a natural gas storage contract it is not needed to keep track of the number
of rights left because every nomination date the holder of the contract has the right to do an action.
On the other hand, the dynamic program will be solved backwards in time and it is not known which
volume levels will be visited in advance. Therefore, at every nomination date before the settlement date
of the contract, the contract values for all possible volume levels ν ∈ V need to be calculated. Since
these volume levels are not necessarily integer valued we take the dependence of the volume level on the
contract value into the brackets of v (instead of using a superscript which we did for options with multiple
early exercise rights). Let v(tm, S(tm), ν(tm)) denote the value of the storage contract at time tm when
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the natural gas spot price is S(tm) and the storage is at volume level ν(tm).

At the settlement date tM+1, for every volume level v ∈ V the value of the natural gas storage contract
equals the value of the penalty function: v(tM+1, S(tM+1), ν) = q(tM+1, S(tM+1), ν).

For all time steps before the settlement date we need continuation values. The continuation value of a
natural gas storage contract at time tm does not only depend on the current volume level ν(tm), but
also on the nomination ∆ν(tm) ∈ D(tm, ν(tm)). Let c(tm, S(tm), ν(tm),∆ν(tm)) denote the continuation
value at time tm when the natural gas spot price is S(tm), the storage is at volume level ν(tm) and the
nomination is ∆ν(tm). Note that if at time tm the volume in storage is ν(tm) and ∆ν(tm) is nominated
to be injected or withdrawn, the volume in storage at time tm+1 is ν(tm+1) = ν(tm) + ∆ν(tm). This idea
allows to reduce the dimension of the continuation value from four to three. The continuation values at
time tm can be written as a function of the sum of the volume level at time tm and the nomination at
time tm:

c(tm, S(tm), ν(tm) + ∆ν(tm)) = c(tm, S(tm), ν(tm+1)). (4.6)

So at time tm it suffices to compute continuation values just for all the volume levels ν ∈ V.

To clarify this idea, we introduce the following example. Starting from certain volume levels and taking
different actions can result in the same continuation value of the contract. For example:

c(tm, S(tm), 2,−1) = c(tm, S(tm), 1, 0) = c(tm, S(tm), 0, 1). (4.7)

For these three continuation values it holds that

c(tm, S(tm), ν(tm+1)) = c(tm, S(tm), 1). (4.8)

See also Figure 4.4 which shows the connection between the volume levels, actions and continuation values
for this specific example.

On all nomination dates tm−1, m = M + 1, . . . , 2 we have to decide what action to take. The action
we should take at time tm−1 is the action which results in the highest value of the natural gas storage
contract at time tm−1. The contract value at time tm−1 is given by:

v(tm−1, S(tm−1), ν(tm−1)) = max
∆ν∈D(tm−1,ν(tm−1))

{g(tm−1, S(tm−1),∆ν) + c(tm−1, S(tm−1), ν(tm−1) + ∆ν)} .

(4.9)

The continuation values c(tm−1, S(tm−1), ν(tm)) can be computed by successive application of the risk-neutral
valuation formula

c(tm−1, S(tm−1), ν) = e−r∆tEQ[v(tm, S(tm), ν)|Ftm−1
] ∀ν ∈ V. (4.10)

Now we have all the ingredients to calculate the continuation and contract values backwards in time.
Ultimately, since the contract holder cannot take an action at t0, the contract value at t0 equals the
continuation value at t0. Summarizing we are left with the following dynamic programming problem:

The dynamic programming formulation

v(tM+1, S(tM+1), ν) = q(tM+1, S(tM+1), ν) ∀ν ∈ V
c(tm−1, S(tm−1), ν) = e−r∆tEQ

[
v(tm, S(tm), ν)|Ftm−1

]
∀ν ∈ V, for m = M + 1, . . . , 1

v(tm−1, S(tm−1), ν) = max
∆ν∈D(tm−1,ν)

{g(tm−1, S(tm−1),∆ν) + c(tm−1, S(tm−1), ν + ∆ν)}

∀ν ∈ V, for m = M + 1, . . . , 2

v(t0, S(t0), ν) = c(t0, S(t0), ν) ∀ν ∈ V

(4.11)
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4.4 LSMC method for a natural gas storage contract

In the LSMC algorithm for natural gas storage contracts, a regression is done for every allowed volume
level for every time step. To give some intuition for the LSMC algorithm, we first introduce the recursive
scheme for the following example where the allowed volume levels and actions are given by,

Example 1 :=


V = {0, 1, 2},
D(tm, 0) = {0, 1}, ∀m,
D(tm, 1) = {−1, 0, 1}, ∀m,
D(tm, 2) = {−1, 0}, ∀m.

(4.12)

Before introducing the algorithm, for notational convenience we define POim := g(tm, S
i(tm),∆ν(tm))

and CV i,νm := c(tm, S
i(tm), ν(tm+1)), where g is the payoff function and c the continuation value as

function of tm, Si(tm) and ν(tm+1). We also define CF i,νm to be the cash flow of trajectory i at time tm
for volume level ν(tm). For Example 1 the payoff is defined as,

POim :=


Si(tm), if ∆ν(tm) = −1,

0, if ∆ν(tm) = 0,

−Si(tm), if ∆ν(tm) = 1.

(4.13)

A difference with the Bermudan option is that at the settlement date of the gas storage contract a
penalty function is included. The initialization of the LSMC algorithm at time tM+1 is done by assigning
a (possible negative) cash flow to every trajectory for every volume level which is defined by the penalty
function.To ensure an empty storage tank at the settlement date of the contract, we use the following
penalty function:

q(tM+1, S(tM+1), ν(tM+1)) = −1000 · ν(tM+1). (4.14)

The initialization for this penalty function is schematically shown in Figure 4.3.

CF i,0M+1 = 0

CF i,1M+1 = −1000

CF i,2M+1 = −2000

ν = 0

ν = 1

ν = 2

e−r∆t ×

e−r∆t ×

e−r∆t ×

CV i,0M

CV i,1M

CV i,2M

regress

regress

regress

Figure 4.3: First iteration of the LSMC algorithm for the example problem in (4.12) with penalty function (4.14). The
continuation values at time tM are approximated based on a regression.

For the time steps tm, where m = 1 . . .M − 1, the scheme is also somewhat different from the Bermudan
option. We have now to deal with different volume levels, and each action leads to a specific continuation
value and payoff, as can be seen in Figure 4.4.
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CV i,0m

CV i,1m

CV i,2m

ν = 0

ν = 1

ν = 2

CV i,0m + 0

CV i,1m − Si(tm)

CV i,0m + Si(tm)

CV i,1m + 0

CV i,2m − Si(tm)

CV i,1m + Si(tm)

CV i,2m + 0

e−r∆t max{

e−r∆t max{

e−r∆t max{

CV i,0m−1

CV i,1m−1

CV i,2m−1

∆ν(tm) = 0

∆ν(tm) = 1

∆ν
(tm

) = −
1

∆ν(tm) = 0

∆ν(tm) = 1

∆ν
(tm

) = −
1

∆ν(tm) = 0

regress

regress

regress

Figure 4.4: Schematic overview of the continuation value propagation for the problem with 3 allowed volume levels for an
arbitrary time step tm−1, where m = 2 . . .M . The main difference with the scheme for the Bermudan option is that the
direct payoff depends on the action that is taken.

For the explanation how to obtain these continuation values with the LSMC method we refer to Chapter
A.1. The procedure for the regression is exactly the same.

4.5 COS method for natural gas storage contracts

As far as the authors know, the valuation of gas storage contracts with the COS method is not done
before. In this section the goal is to use the COS method for the valuation of natural gas storage contracts.
Similar as for the Bermudan option and the option with multiple early exercise rights, the backbone is
the dynamic programming formulation of the problem. The dynamic programming formulation (4.11)
for the valuation of natural gas storage contracts can be found op page 38.

We copy the idea to discretize the volume of the storage. For every volume level ν ∈ V the continuation
values need to be approximated with the COS method. The penalty function is treated as a payoff at
time tM+1.

In the valuation of options with the COS method we used the characteristic function of the log(S(t)/K)
price process. This was beneficial in determining the integration range for the payoff function. For the
valuation of natural gas storage contracts however the payoff function is a direct function of the natural
gas spot price and there is no strike price involved. Therefore in the natural gas storage contracts setting
we will work with the log(S(t)) price process.

4.5.1 Recovering the coefficients Vk(tm, ν)

In this section we describe how to recover the option value coefficients at time tm for volume level ν which
are defined as

Vk(tm, ν) :=
2

b− a

∫ b

a

v(tm, y, ν) cos

(
kπ
y − a
b− a

)
dy. (4.15)
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For all volume levels ν ∈ V the Fourier cosine series coefficients of the contract value at the settlement
date tM+1 are given by

Vk(tM+1, ν) =
2

b− a

∫ b

a

q(tM+1, y, ν) cos

(
kπ
y − a
b− a

)
dy, ∀ν ∈ V, (4.16)

where q(tM+1, y, ν) is the penalty function.

From the dynamic programming formulation (4.11) it follows that for all ν ∈ V and m = M, . . . , 1

v(tm, y, ν) = max
∆ν∈D(tm,ν)

{g(tm, y,∆ν) + c(tm, y, ν + ∆ν)} . (4.17)

In the valuation of Bermudan options and options with multiple early exercise rights, the maximum in
the dynamic programming formulation is taken over two functions. Here it was easy to determine an
early exercise point and the integral of the Fourier cosine series coefficients for the option value could be
splitted up into two parts. In the valuation of natural gas storage contracts, at time tm the maximum
in the dynamic programming formulation has to be taken over all possible ∆ν ∈ D(tm, ν). Therefore in
general it is difficult to say how many early decision points there are and how to determine them.

Instead of this we use a discrete Fourier cosine transform to approximate the integral of (4.15). The idea
for this is taken from Appendix C in [25]. To this end the domain of integration is descretized into NI
grid-points and we define an equidistant y-grid

yn := a+

(
n+

1

2

)
b− a
NI

and ∆y :=
b− a
NI

. (4.18)

Vk(tm, ν) =
2

b− a

∫ b

a

v(tm, y, ν) cos

(
kπ
y − a
b− a

)
dy (4.19)

≈
NI−1∑
n=0

2

b− a
v(tm, yn, ν) cos

(
kπ
yn − a
b− a

)
∆y (4.20)

=

NI−1∑
n=0

v(tm, yn, ν) cos

(
kπ

2n+ 1

2NI

)
2

NI
. (4.21)

The appearing DCT (DCT-II in the book [23]) can be easily calculated by the function dct of MATLAB.
The numerical integration error is second order in NI as shown in Appendix B.

4.5.2 Determining the contract value

Now for m = M + 1, . . . , 2 and for all volume levels we can approximate the continuation values with the
COS method:

ĉ(tm−1, x, ν) = e−r∆t
N−1∑
k=0

<
{
φ

(
kπ

b− a
;x

)
e−ikπ

a
b−a

}
Vk(tm, ν), ∀ν ∈ V. (4.22)

For m = M, . . . , 1 and we can recover the cosine series coefficients of the contract value as follows:

Vk(ν, tm) =
2

b− a

∫ b

a

v(y, ν, tm) cos

(
kπ
y − a
b− a

)
dy, ∀ν ∈ V,

=
2

b− a

∫ b

a

max
∆ν∈D(tm,ν)

{c(tm, y, ν + ∆ν, tm) + g(tm, y,∆ν)} cos

(
kπ
y − a
b− a

)
dy, ∀ν ∈ V.

(4.23)
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With both (4.22) and (4.23) we can recover the coefficients Vk(ν, t1) for all volume levels ν ∈ V. Finally
we can calculate the contract values at t0 with

v̂(t0, x, ν) = ĉ(t0, x, ν) ≈ e−r∆t
N−1∑
k=0

<
{
φ

(
kπ

b− a
;x

)
e−ikπ

a
b−a

}
Vk(t1, ν), ∀ν ∈ V, (4.24)

where we are especially interested in the contract value v̂(t0, x, ν(0)), since the start volume ν(0) is
imposed.

4.5.3 COS method for a process with a seasonality function

When valuing natural gas storage contracts with the COS method where the natural gas spot price is
modeled by the stochastic process introduced in Paragraph 1.4.2, we are dealing with a characteristic
function that differs at every time step. Formula (1.32) actually holds only for a European option, where
τ := T − t0.

When valuing Bermudan options or natural gas storage contracts, the characteristic function of the

underlying process, given by Γ̂
(
tm−1, x; tm,

kπ
b−a

)
(Returning to the notation of the characteristic function

in (2.12)), depends on tm and not on T . Therefore at every time step the characteristic function of the
underlying process needs to be recalculated. The formula for the approximation of the continuation
values can be written as

ĉ(x, ν, tm−1) = e−r∆t
N−1∑
k=0

<
{

Γ̂

(
tm−1, x; tm,

kπ

b− a

)
e−ikπ

a
b−a

}
Vk(tm, ν), ∀ν ∈ V, (4.25)

where the characteristic function of the underlying process is defined by

Γ̂ (tm−1, x; tm, ω) := eiωxe
−κτ+A(ω,τ), (4.26)

with

A(ω, τ) = iω

∫ τ

0

(f ′ (tm − s) + κf (tm − s)) e−κs ds+
1

4κ
ω2σ2

(
e−2κτ − 1

)
(4.27)

and τ := tm − tm−1.

We work this out for the following seasonality function,

f(t) = log(15)− 1

10
cos(2πt), (4.28)

which we will also use in our numerical tests in Section 5.4. The derivative of (4.28) is given by,

f ′(t) =
1

5
sin(2πt). (4.29)

Recalling the formula for A(ω, τ) in (4.27), the integral∫ τ

0

(f ′ (tm − s) + κf (tm − s)) e−κs ds, (4.30)

for this specific seasonality function is given by,∫ τ

0

(
1

5
sin(2π(tm − s)) + κ

(
log(15)− 1

10
cos(2π(tm − s))

))
e−κs ds. (4.31)
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We define

I1 :=

∫ τ

0

1

5
sin(2π(tm − s))e−κs ds (4.32)

=
πe−κτ (κ (eκτ sin(2πtm) + sin(2π(τ − tm)))− 2πeκτ cos(2πtm) + 2π cos(2π(τ − tm)))

5 (κ2 + 4π2)
, (4.33)

I2 :=

∫ τ

0

κ log(15)e−κs ds = log(15)
(
1− e−κτ

)
, (4.34)

I3 :=

∫ τ

0

−κ 1

10
cos(2π(tm − s))e−κs ds (4.35)

= −κe
−κτ (2π (eκτ sin(2πtm) + sin(2π(τ − tm))) + κeκτ cos(2πT )− κ cos(2π(τ − tm)))

10 (κ2 + 4π2)
. (4.36)

We define the characteristic function for this specific seasonality function as,

Γ̂(tm−1, x; tm, ω) := eiωxe
−κτ+A(ω,τ), (4.37)

with

A(ω, τ) = iω(I1 + I2 + I3) +
1

4κ
ω2σ2

(
e−2κτ − 1

)
. (4.38)

and τ := tm − tm−1.

The integrals I1, I2 and I3 have been verified with the help of Wolfram Mathematicar 10.

4.5.4 Variation of the amount of gas in storage with the COS method

With the LSMC method for natural gas storage contracts we could calculate the optimal amount of natural
gas in storage for every single trajectory by just following the optimal strategy for that trajectory. The
optimal strategy follows directly out of the recursive algorithm. The average amount of natural gas in
storage is obtained by taking the averagre of the optimal volumes for every trajectory.

If we want to determine an optimal strategy with the COS method, we still have to simulate some
trajectories of the natural gas spot price process. If we subsequently insert the natural gas spot price
into the estimated continuation value function ĉ(tm, x, ν), where x denotes the log-spot price, we can
calculate the continuation values for all volume levels ν ∈ V and determine the optimal decision. Taking
this decision, we end up at volume level ν(tm+1) and we repeat this procedure.
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Chapter 5

Numerical results

All the experiments in this section are carried out on a computer with an Intel(R) Core(TM) i7-4700MQ
CPU with clock rate 2.40GHz. Implementation of the code is done in MATLAB R2018a.

For all plain Monte Carlo and LSMC simulations we make use of antithetic variates to reduce the variance.
For an explanation of this variance reduction technique we refer to Chapter three of the book [27].

All the 95% confidence intervals (c.i.) are constructed by repeating the experiment 10 times. How to
construct these intervals for given sample mean and sample variance, see for example the book [12]. The
reported CPU times are obtained by taking the average time over 10 runs.

5.1 Testing the COS and LSMC methods

To test and compare the COS method and the (Least Squares) Monte Carlo simulations for European
and Bermudan options, we used two test scenarios. In the first test scenario, the underlying is driven by
a GBM with parameters the same as in Table 1 in the paper [11]. For the second test scenario we chose
a Merton jump-diffusion process with the same parameters as for the GBM model, supplemented with
the parameters for the jump process. The parameters that are used for both test scenarios can be found
in Table 5.1. The results for the test under the GBM model are presented in Table 5.2 and for the test
under the Merton model the results are presented in Table 5.3. For the COS method we used N = 128
and for the (LS)MC method we used N = 1 · 106.

Test No. Model S0 K T r σ Other Parameters

1 GBM 100 110 1 0.1 0.2 -

2 Merton 100 110 1 0.1 0.2 λ = 0.1, µ̄ = 0, σ̄ = 0.5

Table 5.1: Parameters for test scenarios 1 and 2.

Option Style Analytic Time COS Time (LS)MC 95% c.i. Time

European Put 7.7152 0.1ms 7.715168113 0.05ms 7.7131-7.7189 0.07s

European Call 8.1831 0.1ms 8.183052129 0.05ms 8.1808-8.1890 0.07s

Bermudan Put - - 10.480 1.3ms 10.476-10.482 1.8s

Bermudan Call - - 8.1831 0.7ms 8.1756-8.1883 1.2s

Table 5.2: Calculated option prices and CPU times for Test No. 1.
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Option Style COS Time (LS)MC 95% c.i. Time

European Put 9.1526 0.06ms 9.1504-9.1625 0.7s

European Call 9.6204 0.06ms 9.6017-9.6319 0.7s

Bermudan Put 11.288 1.4ms 11.2680-11.2761 2.8s

Bermudan Call 9.6204 0.8ms 9.6022-9.62898 2.1s

Table 5.3: Calculated option prices and CPU times for Test No. 2.

As expected, we observe from Tables 5.2 and 5.3 that the option prices under the Merton model are higher
than the option prices under GBM. By setting λ or σJ to zero, experiments showed that the option prices
were the same as their value under GBM, which is what we expect.

It can be seen that the option prices that were calculated by means of the COS method fall within the
confidence intervals that were constructed by means of the (LS)MC simulations, with one exception. The
confidence interval obtained with the LSMC method for a Bermudan put under the Merton process seems
a little bit shifted downwards. We blame this to the small jump parameter λ = 0.1, which make that
many simulated trajectories are needed to get close to the real option value. An experiment with λ = 1
showed indeed that the value obtained with COS is again in the confidence interval obtained with the
LSMC method.

Also the expectation that the option prices under the Merton model are higher than the option prices
under GBM are reflected in Tables 5.2 and 5.3. By setting the jump intensity λ or the jump standard
deviation to zero, experiments showed that the option prices are the same as their counterpart under
GBM, which is what we expect.

5.2 A put option with multiple exercise rights

In the following experiment we compare the value of a put option with multiple exercise rights obtained
with the COS method to the value obtained with the extended LSMC method. We base the experiment
on the one introduced in paper [14] in order to compare the obtained values to their results.

We assume that the underlying stock price is driven by a GBM process with S(0) = 35 and parameters
r = 0.0488 and σ = 0.25. At every exercise date the strike price is K = 40 and the payoff is the payoff
of a put. Time to maturity is T = 0.5 and we assume M = 12 exercise dates.

Now for the number of exercise rights R = 1, . . . , 6, the option value is calculated. The results are
presented in Table 5.4.

LSMC 95% c.i. COS

R N = 1000 N = 10000 N = 100000 N = 128

1 5.3674-5.4034 5.3763-5.4093 5.3759-5.3843 5.3816

2 10.664-10.723 10.692-10.734 10.689-10.699 10.696

3 15.898-15.987 15.927-15.993 15.930-15.944 15.941

4 21.063-21.174 21.103-21.173 21.100-21.118 21.116

5 26.148-26.279 26.200-26.287 26.205-26.225 26.219

6 31.153-31.303 31.227-31.311 31.231-31.254 31.247

CPU time (sec.) 0.03 0.08 0.60 0.02

Table 5.4: Option values calculated by means of the extended LSMC method and the COS method. The values obtained
by the COS method are in all the confidence intervals that were constructed with the LSMC method.
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The corresponding option values that were obtained for the same experiment which are presented in
Table 3.1 in the paper [14] are contained in all our confidence intervals. Moreover, these values are very
close to the values we found with the COS method. This suggests that both the extended LSMC method
as the COS method for options with multiple exercise rights work well.

5.3 Test with the approximated characteristic function for the
OU model

For this experiment we will use the approximation of the characteristic function for the Ornstein-Uhlenbeck
process that we derived in Paragraph 2.8.1. We will use the COS method to calculate the value of
a European put option with strike K = 22 where the underlying price process is modelled by the
mean-reverting model with constant mean from Paragraph 1.4.1. As before we choose S(0) = 15 and
µ = log(20). The errors vOU − vapp are shown in Figure 5.1 for different values of κ and σ, where vOU
denotes the option value obtained with the original characteristic function for the OU model and vapp
denotes the option value obtained with the approximated characteristic function for the OU process. For
κ = 1 and σ = 0.1 the absolute errors for different values of T are shown in Table 5.5.

(a) κ = 1 and σ = 0.1 (b) κ = 1 and σ = 0.5

(c) κ = 4 and σ = 0.1 (d) κ = 1 and σ = 0.5

Figure 5.1: Error vOU −vapp for different maturities T . Each subplot shows the approximation error for different parameter
choices.
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T Absolute error

0.04 9.56 · 10−5

0.08 5.63 · 10−4

0.12 1.71 · 10−3

0.16 3.86 · 10−3

0.20 7.33 · 10−3

Table 5.5: Absolute error |vOU − vapp| with parameters κ = 1 and σ = 0.1 for different small values of T .

In general for short maturities the value of the option obtained with the approximated characteristic
function is close to the value obtained with the original characteristic function. For small parameter
values of κ the approximation is better than for bigger parameter values of κ. Also for smaller parameter
values of κ the approximation holds for longer times to maturity T .

5.4 Tests with natural gas storage contracts

In this section we perform several tests on the valuation of gas storage contracts with the COS and LSMC
method. We consider tests under the three different models for the gas spot price which were introduced
in Section 1.4. The three different tests are defined below.

Gas Test 1
In the first test we model the natural gas spot price process according to the mean-reverting model
with constant mean from Paragraph 1.4.1. The parameters are set as follows: S(0) = 15, κ = 1 and
µ = log(20). We compare the results for σ = 0.1 (low volatility) and σ = 0.5 (high volatility). For each
choice of σ, six simulated spot price trajectories are shown in Figures 5.2 and 5.3.

Figure 5.2: Six simulations of the spot price process that is used in Gas Test 1 with parameters κ = 1, σ = 0.1 and
µ = log(20). It can be observed that the price slowly reverts to the mean.
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Figure 5.3: Six simulations of the spot price process that is used in Gas Test 1 with parameters κ = 1, σ = 0.5 and
µ = log(20). It can be observed that the price is more volatile than the process in Figure 5.2 and therefore reverts faster to
the mean.

Gas Test 2
In the second test we use the mean-reverting model with seasonality from Paragraph 1.4.2 to model the
natural gas spot price process. Also in this test we use κ = 1 and for the function f we choose the function
in (4.28). Again, we compare the results for σ = 0.1 (low volatility) and σ = 0.5 (high volatility). For
each choice of σ, six simulated spot price trajectories are shown in Figures 5.4 and 5.5.

Figure 5.4: Six simulations of the spot price process that is used in Gas Test 2 with parameters κ = 1 and σ = 0.1. It can
be observed that the price mimics the seasonality function very well.
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Figure 5.5: Six simulations of the spot price process that is used in Gas Test 2 with parameters κ = 1 and σ = 0.5. It can
be observed that the price is more volatile than the process in Figure 5.4.

Gas Test 3
In the third test we model the natural gas spot price process according to the mean-reverting model with
seasonality and jumps from Paragraph 1.4.3. As in Gas Test 2, we use the seasonality function (4.28).
We set the jump parameters λ = 5, µJ = 0 and σJ = 1, which is close to the parameters estimated for
this model in the paper [1]. To ensure a fast mean-reversion of the jumps we set κ = 80 and compensate
for this in the so-called base process by setting σ high. We compare between σ = 0.5 (low volatility) and
σ = 3 (high volatility). The idea for these high values for κ and σ also stems from the paper [1]. For
each choice of σ, six simulated spot price trajectories are shown in Figures 5.6 and 5.7. In Figure 5.8 it
can be seen that when we chose parameter κ too low, the jumps did not revert to the mean fast enough
which did not result in the typical spikes.

Figure 5.6: Six simulations of the spot price process that is used in Gas Test 3 with parameters κ = 80, σ = 0.5, λ = 5, µJ = 0
and σJ = 1. It can be observed that this parameter choice results in a spiky behaviour of the spot price.
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Figure 5.7: Six simulations of the spot price process that is used in Gas Test 3 with parameters κ = 80, σ = 0.5, λ = 5, µJ = 0
and σJ = 1. Besides the spiky behaviour of the spot price we now also observe that the spot price is more volatile.

Figure 5.8: Six simulations of the spot price process that is used in Gas Test 3 with parameters κ = 1, σ = 0.5, λ = 5, µJ = 0
and σJ = 1. It can be observed that with this parameter choice the jumps do revert to the mean slowly.

In all the three tests we distinguish between slow storage (imax = 1 and imin = −1) and fast storage
(imax = 4 and imin = −6). For all the three tests the contract details are given in Table 5.6

Start date t0 0

Last trading date T 1

Nomination ∆t 1/240

Minimum volume νmin 0

Maximum volume νmax 100

Start volume ν(0) 0

End volume ν(tM+1) 0

Maximum withdrawal imin -1 (slow), -6 (fast)

Maximum injection imax 1 (slow), 4 (fast)

Table 5.6: Contract details for the experiments.
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5.4.1 Contract values with the LSMC and COS method

The contract values that were obtained with the LSMC and COS method are presented in Tables 5.7-5.9.
For Gas Test 3 we used L = 1, instead of L = 10 for the COS method. The relative high values for λ and
σJ make that the integration range [a, b] based on the cumulants is very wide. By setting L = 1 we make
it artificially shorter. We take N = 256 terms in the Fourier cosine expansion to improve the accuracy.

LSMC 95% c.i. COS

σ Slow/Fast N = 50 Time N = 500 Time N = 5000 Time N = 128 Time

0.1 Slow 172.97-173.85 9.2s 171.24-171.58 38.4s 171.32-171.45 302s 171.38 14.9s

0.1 Fast 288.52-292.03 10.3s 270.68-271.16 40.8s 268.74-268.88 322s 268.59 14.5s

0.5 Slow 238.69-255.32 9.3s 186.73-190.97 36.2s 179.24-181.25 299s 179.54 14.4s

0.5 Fast 561.64-599.12 9.6s 340.28-346.12 40.1s 302.69-305.33 314s 301.78 14.2s

Table 5.7: Contract values and CPU times with the LSMC and COS method for Gas Test 1.

LSMC 95% c.i. COS

σ Slow/Fast N = 50 Time N = 500 Time N = 5000 Time N = 128 Time

0.1 Slow 152.19-153.26 9.2s 151.47-151.74 43.1s 151.47-151.53 285s 151.50 14.7s

0.1 Fast 299.26-301.31 9.6s 292.47-292.72 45.0s 291.99-292.13 306s 292.08 14.7s

0.5 Slow 229.26-243.58 9.3s 199.16-203.10 40.0s 196.73-198.34 300s 197.79 14.5s

0.5 Fast 542.69-582.90 9.8s 388.74-394.18 42.3s 370.15-372.77 330s 370.30 14.9s

Table 5.8: Contract values and CPU times with the LSMC and COS method for Gas Test 2.

LSMC 95% c.i. COS

σ Slow/Fast N = 50 Time N = 500 Time N = 5000 Time N = 256 Time

0.5 Slow 362.82-392.07 9.3s 360.73-368.59 36.8s 360.34-362.73 279s 361.29 23.3s

0.5 Fast 1436.1-1608.5 9.6s 1501.3-1558.8 40.0s 1499.0-1510.2 320s 1504.7 24.0s

3 Slow 762.48-805.83 9.3s 768.06-775.72 35.9s 768.97-772.06 295s 770.97 23.0s

3 Fast 3644.0-3795.3 9.6s 3605.6-3648.8 40.8s 3611.3-3629.9 322s 3615.5 24.4s

Table 5.9: Contract values and CPU times with the LSMC and COS method for Gas Test 3. We used L = 1 instead of
L = 10 in the valuation with the COS method.

When simulating more trajectories in the LSMC method, the confidence intervals move to the value
obtained with the COS method. We need to take at least N = 5000 in the LSMC method to get close to
the value obtained with the COS method. However, the COS method is many times faster. In [2], the
authors report about simulation times of 40s for the case N = 5000 in the LSMC method. Even if we
could get close to these computation times with our simulations, the COS method is faster.

5.4.2 Average volume of gas in storage with LSMC

In this section the average volume of gas in storage, obtained with the LSMC method for natural gas
storage contracts is shown for the three tests that we defined before. It gives an idea what volumes should
be maintained to make maximal profit of the fluctuations in the natural gas spot price. We provided
error bars with one standard error of uncertainty. The wider these error bars, the more profit can be
made from a volatile natural gas spot price. Each figure is accompanied with a short explanation.
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Figure 5.9: Average volume of gas in storage for Gas Test 1 for a slow storage with σ = 0.1. The strategy is to fill up the
storage at the beginning and wait until the last moment to empty the storage. For this specific simulation the value of the
contract is v(0, S(0)) = 171

Figure 5.10: Average volume of gas in storage for Gas Test 1 for a slow storage with σ = 0.5. The strategy is to start with
filling up the storage at the beginning, but then keep some space to take profit from the high volatility. For this specific
simulation the value of the contract is v(0, S(0)) = 194
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Figure 5.11: Average volume of gas in storage for Gas Test 1 for a fast storage with σ = 0.1. The strategy is to start with
filling up the storage at the beginning and wait until the last moment to empty the storage. For this specific simulation the
value of the contract is v(0, S(0)) = 270

Figure 5.12: Average volume of gas in storage for Gas Test 1 for a fast storage with σ = 0.5. The strategy is to start with
filling up the storage at the beginning, but then keep some space to take profit from the high volatility. For this specific
simulation the value of the contract is v(0, S(0)) = 342
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Figure 5.13: Average volume of gas in storage for Gas Test 2 for a slow storage with σ = 0.1. The strategy is to fill up
the storage at the beginning and empty the storage when the price drops according to the seasonality function. For this
specific simulation the value of the contract is v(0, S(0)) = 152

Figure 5.14: Average volume of gas in storage for Gas Test 2 for a slow storage with σ = 0.5. The strategy is to start with
filling up the storage at the beginning and empty the storage when the price drops according to the seasonality function.
Observe that more space is reserved than in Figure 5.13 to take profit of the higher volatility. For this specific simulation
the value of the contract is v(0, S(0)) = 200

55



Figure 5.15: Average volume of gas in storage for Gas Test 2 for a fast storage with σ = 0.1. The strategy is to fill up the
storage at the beginning and empty the storage when the price drops according to the seasonality function. For this specific
simulation the value of the contract is v(0, S(0)) = 293

Figure 5.16: Average volume of gas in storage for Gas Test 2 for a fast storage with σ = 0.5. The strategy is to start with
filling up the storage at the beginning and empty the storage when the price drops according to the seasonality function.
Observe that more space is reserved than in Figure 5.15 to take profit of the higher volatility. For this specific simulation
the value of the contract is v(0, S(0)) = 385
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5.4.3 An experiment with few nomination dates

Start date t0 0

Last trading date T 1

Nomination ∆t 1/M

Minimum volume νmin 0

Maximum volume νmax 10

Start volume ν(0) 0

End volume ν(tM+1) 0

Maximum withdrawal imin -1

Maximum injection imax 1

Table 5.10: Storage contract for test.

For the following test we discretized the volume of the tank onto a smaller grid and compared both
methods for small values of M . The contract details are in Table 5.10.

M LSMC (Mean) LSMC (Std. error) COS

1 0 0 0

2 1.1827 0.0018 1.1824

3 1.7030 0.0011 1.7031

4 2.6465 0.0016 2.6456

5 3.2462 0.0018 3.2462

6 4.1155 0.0016 4.1140

Table 5.11: Results for LSMC and COS for the test scenario.

For M = 1, both methods give a contract value of 0. Intuitively this is correct since there is only one date
(t1) on which the storage manager can take an action. If he decides to buy, the storage facility will not
be empty at the settlement date which results in a penalty. Therefore the storage manager is implicitly
forced to do nothing and the contract has no value. For M ≥ 2, there are two dates on which the storage
manager can take an action. So now he can buy at t1 and sell at t2. The profit he is expected to make
in this way results in a positive contract value.

It is also noteworthy to see that the increments in contract value from M = 2 to M = 3 and from M = 4
to M = 5 are smaller than the increments from M = 1 to M = 2 and from M = 3 to M = 4. This can
be explained by the flexibility in choices that the storage manager has. If M = 3 the storage manager
can buy and sell 1 unit and not 2, because then he is not able to end up with an empty storage facility
again. The increase in value from M = 2 to M = 3 can be explained by the fact that he is more flexible
in choosing the date he buys and sells 1 unit of gas. The additional increase in value from M = 3 to
M = 4 can be explained by the fact that he is now even able to buy and sell 2 units of gas. This effect
diminishes when M becomes larger and larger.
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Chapter 6

Conclusions and Outlook

6.1 Conclusions

In this work we introduced the COS method in determining the value of natural gas storage contracts.
As long as the characteristic function of the process which models the natural gas spot price is available,
the COS method can be applied. The COS method is at least competitive with existing simulation based
valuation methods for natural gas storage contracts in computational time and accuracy.

In anticipation to the derivation of the COS method for the valuation of natural gas storage contracts,
we constructed an efficient method for the valuation of options with multiple exercise rights at discrete
exercise dates. This efficient computation is driven by the FFT-based algorithm and can only be used
if the characteristic function can be written in a special form. For this special case the COS method
outperforms the extended LSMC method for options with multiple early exercise rights.

In Section 2.8 we showed how the adjoint expansion method can be used to approximate a characteristic
function for processes of the underlying for which the characteristic function is not available. Examples
of this are models with a local volatility or state dependent jump measures. We showed that the adjoint
expansion method could also be used to approximate the characteristic function of the Ornstein-Uhlenbeck
model, especially for short times to maturity. The approximation that is obtained with this method can
be used in combination with the FFT-based algorithm because of its special form.

6.2 Outlook

In the valuation of natural gas storage contracts with the COS method we approximated the integral
that defines the Fourier cosine coefficients of the contract value by using the discrete Fourier cosine
transform. This numerical integration is very time consuming in the valuation procedure. It may be
beneficial to determine in some way the early decision points such that the FFT-based algorithm can be
used to approximate the Fourier cosine coefficients of the continuation value in an efficient way. Because
in general there can be made many decisions at a certain time point, it can be a challenge to characterize
these decision points, if they exist at all, and to derive the value of the contract in a correct way.

For processes for which the tails of the probability density function are long, we suggest to further
investigate the choice of parameter L that is used in determining the truncation range [a, b] for the COS
method. A smart choice for L can ensure that less terms are needed in the Fourier cosine expansion,
which makes the computation of the contract value faster.
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Appendix A

Algorithms

In this appendix we present the LSMC algorithm for the valuation of a Bermudan option and the extended
LSMC algorithm for the valuation of an option with multiple exercise rights. In Table A.1 we explain
the notation that is used in the pseudocode. Do not confuse DCF i and DCF i,j with DCF im, defined in
(3.29), and DCF i,jm , defined in (3.32) respectively. DCF i and DCF i,j are the vector and matrix that
are updated at every iteration of the algorithm and they contain implicitly all the discounted future cash
flows under the optimal strategy.

Two built-in functions in Matlab are used to do the regression: polyfit is a built-in function to do a
regression onto the standard polynomials and polyval is a built-in function that analyses the function
with the coefficients that were obtained with polyfit.

CF im The cash flow at time tm for trajectory i

CF i,jm The cash flow at time tm for trajectory i for the level of j rights left

POim The payoff of the option at time tm for trajectory i

Sim The spot price at time tm for trajectory i

CV im The continuation value at time tm for trajectory i

CV i,jm The continuation value at time tm for trajectory i for the level of j rights left

V i Approximation of the option price at time t0 for trajectory i

V i,j Approximation of the option price at time t0 for trajectory i for the level of j rights left

DCF i Discounted future cash flows for trajectory i under the optimal strategy

DCF i,j Discounted future cash flows for trajectory i for the level of j rights left under the optimal strategy

v(t0, S(t0)) The value of the option at time t0

vj(t0, S(t0)) The value of the option at time t0 for the level of j rights left

Table A.1: Explained notation for the pseudocode in Algorithms 1-4.
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A.1 LSMC algorithm

Algorithm 1 LSMC algorithm (based on the algorithm presented by Olofsson in [21])

CF iM = POiM for i = 1, . . . , N
for t = M − 1, . . . , 1 do
Xi = Sit for all i where POit > 0
Y i =

∑
k>t e

−r(k−t)∆tCF it for all i where POit > 0
p = polyfit(X,Y, 3)
CV it = polyval(p,Xi

t) for all i where POit > 0
for i = 1, . . . , N do
if CV it < POit then
CF it = POit
CF im = 0 for all m > t

end if
end for

end for
V i =

∑M
t=1 e

−rt∆tCF it
v(t0, S(t0)) = 1

N

∑N
i=1 V

i

Algorithm 2 LSMC algorithm, vectorized

CF i = POiM for i = 1, . . . , N
for t = M − 1, . . . , 1 do
DCF i = e−r∆tCF i

Xi = Sit for all i where POit > 0
Y i = DCF i for all i where POit > 0
p = polyfit(X,Y, 3)
CV i = polyval(p,Xi

t) for all i where POit > 0
for i = 1, . . . , N do
if CV i < POit then
CF i = POit

else
CF i = DCF i

end if
end for

end for
V i = e−r∆tDCF i

v(t0, S(t0)) = 1
N

∑N
i=1 V

i
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A.2 Extended LSMC algorithm

Algorithm 3 LSMC algorithm for an option with multiple exercise rights (based on the algorithm
presented by Olofsson in [21])

for j = 1, . . . , R do
for t = M, . . . ,M − (R− 1) do
CF i,jt = POit for i = 1, . . . , N

end for
end for
for t = M − 1, . . . , 1 do
Xi = Sit for all i where POit > 0
for j = 1, . . . ,min(M − t, R) do
Y i,j =

∑
k>t e

−r(k−t)∆tCF i,jk
end for
for j = 1, . . . ,min(M − t, R) do
pj = polyfit(X,Y j , 3)
CV i,jt = polyval(pj , Xi

t) for all i where POit > 0
end for
if min(M − t, R) > 1 then
for j = min(M − t, R), . . . , 2 do
for i = 1, . . . , N do

if POit + CV i,j−1
t > CV i,jt then

CF i,jt = POit
CF i,jm = CF i,j−1

m for all m > t
end if

end for
end for

end if
if POit > CV i,1t then
CF i,1t = POit
CF i,1k = 0 for all k > t

end if
end for
for j = 1, . . . , R do
V i,j =

∑M
t=1 e

−rt∆tCF i,jt
vj(t0, S(t0)) = 1

N

∑N
i=1 V

i,j

end for
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Algorithm 4 Extended LSMC algorithm, vectorized

for j = 1, . . . , R do
CF i,j =

∑j
k=1 e

−r(k−1)∆tPOiM−j+k for i = 1, . . . , N
end for
for t = M − 1, . . . , 1 do
Xi = Sit for all i where POit > 0
for j = 1, . . . ,min(M − t, R) do
DCF i,j = e−r∆tCF i,j

Y i,j = DCF i,j for all i where POit > 0
pj = polyfit(X,Y j , 3)
CV i,j = polyval(pj , Xi

t) for all i where POit > 0
end for
if min(M − t, R) > 1 then

for j = min(M − t, R), . . . , 2 do
for i = 1, . . . , N do

if POit + CV i,j−1 > CV i,j then
CF i,j = POit +DCF i,j−1

else
CF i,j = DCF i,j

end if
end for

end for
end if
for i = 1, . . . , N do
if POit > CV i,1 then
CF i,1 = POit

else
CF i,1 = DCF i,1

end if
end for

end for
for j = 1, . . . , R do
V i,j = e−r∆tDCF i,j

vj(t0, S(t0)) = 1
N

∑N
i=1 V

i,j

end for
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Appendix B

Comparison of two numerical
integration techniques

In this appendix, we compare the approximation of the Fourier cosine coefficients

Vk =
2

b− a

∫ b

a

f(x) cos

(
kπ
x− a
b− a

)
dx (B.1)

for two different methods. For f(x) we take the smooth function f(x) = ex The first method is with
the trapezoidal rule, where the second method is with the discrete Fourier cosine transform. To test the
speed of convergence, we choose the interval of integration with a = 0 and b = 3. We compare the results
for both methods for the coefficient V1 for which the analytic solution is given by

V1 = −18(1 + e3)

3(9 + π2)
. (B.2)

Speed of convergence of the trapezoidal rule

We use the function trapz from MATLAB to approximate the coefficients V1.

For N = 2i, where i = 1 . . . 12, we approximated the value of V1 with the trapezoidal rule. In Table B.1
the error for different values of N is shown and we observe a second order convergence.

N Error(N) Error(N)/Error(2N)

2 12.3809331143 10.1970629287

4 1.2141665890 5.6041416319

8 0.2166552291 4.6167423370

16 0.0469281613 4.2760927780

32 0.0109745424 4.1311909581

64 0.0026565081 4.0640091184

128 0.0006536669 4.0316226204

256 0.0001621349 4.0157175829

512 0.0000403751 4.0078355755

1024 0.0000100740 4.0039120115

2048 0.0000025160 4.0019545691

4096 0.0000006287 -

Table B.1: Numerical integration error for the coefficient V1 with the trapezoidal rule. The numerical integration error
decreases when the integration grid becomes more fine. We clearly observe a second order convergence.
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Speed of convergence of the discrete Fourier transform

We use the function dct from MATLAB to approximate all N coefficients Vk at once. We need to
multiply all coefficients by

√
2/N and V0 by

√
2, because MATLAB uses a normalization.

For N = 2i, where i = 1 . . . 12, we approximated the value of V1 by using the discrete Fourier cosine
transform. In Table B.2 the error for different values of N is shown and we observe a second order
convergence.

N Error(N) Error(N)/Error(2N)

2 1.4927065284 4.3709053837

4 0.3415096867 4.1079445168

8 0.0831339580 4.0278830219

16 0.0206396158 4.0070257813

32 0.0051508567 4.0017598677

64 0.0012871479 4.0004401806

128 0.0003217516 4.0001100585

256 0.0000804357 4.0000275155

512 0.0000201088 4.0000068792

1024 0.0000050272 4.0000017236

2048 0.0000012568 4.0000004382

4096 0.0000003142 -

Table B.2: Numerical integration error for the coefficient V1 with the discrete Fourier cosine transform. The numerical
integration error decreases when the integration grid becomes more fine. We clearly observe a second order convergence.

Comparison

As shown above, the speed of convergence is the same for both techniques. However, a drawback when
using the trapezoidal rule is that we have to use it once for every single coefficient Vk, k = 0 . . . N − 1.

Also the values of cos
(
kπ x−ab−a

)
need to be calculated. An advantage when using the trapezoidal rule is

that the numerical integration grid can be chosen arbitrarily fine.

When using the discrete Fourier cosine transform, the advantage is that all coefficients Vk, k = 0 . . . N−1
are approximated at once. A condition for this is that the number of grid points for the discrete Fourier
cosine transform equals the number of coefficients that need to be approximated.

In Table B.3 we show the CPU times for the approximation of V1 with both methods. The last column
multiplies the computational time for V1 with N , to give an indication of the time to compute N
coefficients. The CPU time for the discrete Fourier cosine transform is already the time to compute
N coefficients since all coefficients Vk can be approximated at once with this technique.

Therefore already for small N , the discrete cosine transform seems to outperform the trapezoidal rule in
the computation of the Fourier cosine coefficients Vk
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N All Vk with DCT V1 with trapezoidal ×N
2 0.16 0.008 0.016

4 0.18 0.010 0.040

8 0.18 0.010 0.080

16 0.18 0.010 0.160

32 0.18 0.011 0.35

64 0.18 0.011 0.70

128 0.18 0.011 1.4

256 0.18 0.012 3.1

512 0.19 0.013 6.7

1024 0.19 0.016 16

2048 0.21 0.022 45

4096 0.23 0.038 1.5 · 102

Table B.3: CPU times (in msec.)
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Appendix C

Models for the dynamics of the
underlying

In this appendix we recall the characteristics for the models that are mentioned in this report.

C.1 Geometric Brownian Motion

The simplest model for modelling the spot price is the GBM model. In the GBM model, the spot price
is driven by the following stochastic differential equation (SDE):

dS(t) = µS(t) dt+ σS(t) dW (t). (C.1)

Substituting X(t) = log(S(t)) and applying Itô’s lemma yields

dX(t) =

(
µ− 1

2
σ2

)
dt+ σ dW (t). (C.2)

This can be rewritten in the following integral equation:

X(t) = X(0) +

∫ t

0

(
µ− 1

2
σ2

)
ds+

∫ t

0

σ dW (s) (C.3)

= X(0) +

(
µ− 1

2
σ2

)
t+ σ dW (t). (C.4)

Now transforming back to S(t) by taking the exponential on both sides gives the following solution of
the SDE:

S(t) = S(0) · exp

((
µ− 1

2
σ2

)
t+ σ dW (t)

)
. (C.5)

In [24] the authors showed that a drawback of GBM is that it cannot capture seasonality and mean-reversion.
Therefore GBM is not a realistic process that can be used for the valuation of a gas storage facility.
Because it is an easy model to understand and implement, we will use it in our valuation methods for
options with (multiple) early exercise rights.

When valuing under the risk neutral measure, the risk-neutral valuation is carried out by taking the drift
term µ = r, where r is the risk-free rate.

The characteristic function of the GBM process is given by

φ(ω;x; τ) = eiωxϕGBM (ω; τ), (C.6)

with

ϕGBM (ω; τ) = eiωµτ−
1
2σ

2ω2τ . (C.7)
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C.2 Merton jump-diffusion

The Merton jump-diffusion process is nothing more than the GBM process with a jump process added
to it. The model was first proposed by Merton [20].

The jump magnitude J in Merton’s jump-diffusion model is normally distributed with mean µJ and
variance σ2

J .

When valuing under the risk neutral measure, the risk-neutral valuation is carried out by taking the drift
term µ = r − 1

2σ
2 − λ(exp(µJ + 1

2σ
2
J)− 1), where r is the risk-free rate.

The characteristic function of Merton’s jump-diffusion model is given by

φ(ω;x; τ) = eiωxϕMerton(ω; τ), (C.8)

with

ϕMerton(ω; τ) = exp

(
iωµτ − 1

2
σ2ω2τ + λτ

(
eiωµJ−

1
2ω

2σ2
J − 1

))
. (C.9)

C.3 Kou jump-diffusion

Kou proposed the model in his paper [17].

The jump magnitude J in Kou’s jump-diffusion model is asymmetric double exponentially distributed,
which means that the probability density function of J is given by

fJ(x) =

{
p · η1e

−η1x if x ≥ 0

q · η2e
η2x if x < 0.

(C.10)

When valuing under the risk neutral measure, the risk-neutral valuation is carried out by taking the drift

term µ = r − 1
2σ

2 − λ
(
p η1
η1−1 + q η2

η2+1 − 1
)

, where r is the risk-free rate.

The characteristic function of Kou’s jump-diffusion model is given by

φ(ω;x; τ) = eiωxϕKou(ω; τ), (C.11)

with

ϕKou(ω; τ) = exp

(
iωµτ − 1

2
σ2ω2τ + λτ

(
p

η1

η1 − iω
+ q

η2

η2 + iω
− 1

))
. (C.12)

C.4 Ornstein-Uhlenbeck mean-reverting process

In this model, the spot price is driven by the following SDE:

dS(t) = κ(µ− S(t)) dt+ σ dW (t). (C.13)

The solution of this SDE is given by:

S(t) = S(0)e−κt + µ(1− e−κt) + σe−κt
∫ t

0

eκs dW (s) (C.14)

In the paper [31] the authors provide the characteristic function for the Ornstein-Uhlenbeck process,
which is given by

φ(ω;x; τ) = eiωxe
−κτ+A(ω,τ), (C.15)

with

A(ω, τ) =
1

4κ

(
e−2κτ − e−κτ

) (
ω2σ2 + ωeκτ

(
ωσ2 − 4iκµ

))
. (C.16)
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Appendix D

Variations with the COS method

The log-price process

If we use the log(S(t)) process where

x := log(S(0)) and y := log(S(T )), (D.1)

instead of the log(S(t)/K) process, where

x := log(S(0)/K) and y := log(S(T )/K), (D.2)

the payoff function for vanilla options is given by

g(y, T ) =

max{ey −K, 0} for a call,

max{K − ey, 0} for a put.
(D.3)

Now we calculate the coefficients Vk for a European option. Because for a call the payoff is zero when
ey ≤ K, or equivalently y ≥ ln(K), we have to integrate from ln(K) to b and obtain

V callk =
2

b− a

∫ b

log(K)

(ey −K) cos

(
kπ
y − a
b− a

)
dy =

2

b− a
(χk(log(K), b)−Kψk(log(K), b)). (D.4)

For a put the payoff is zero when ey ≥ K, or equivalently y ≥ ln(K), so we have to integrate from a to
ln(K) and obtain

V putk =
2

b− a

∫ log(K)

a

(K − ey) cos

(
kπ
y − a
b− a

)
dy =

2

b− a
(−χk(a, log(K)) +Kψk(a, log(K))). (D.5)

χk and ψk are given by (2.39) and (2.41) respectively. The occurrence of K in the formulas for χk and
ψk hampers the efficient computation for many strikes simultaneously.

The put-call parity

As mentioned in the paper [10], the COS method is more sensative to the choice of the truncation range
[a, b] when it is used for the valuation of call options than for the valuation of put options. The reason
for this is that the payoff function for a call option is unbounded. Therefore the suggestion is to use the
put-call parity in (D.6) when pricing call options with the COS method.

vcall(x, t) = vput(x, t) + Ste
−q(T−t) −Ke−r(T−t) (D.6)

The valuation of Bermudan call options does suffer even more from this effect, because in the recursive
algorithm the error is propagated. When valuing Bermudan call options, the problem gets even worse,
since in the backward procedure the error is propagated. In [30], the author presents how the put-call
parity can be used in the COS method for a Bermudan call option.
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