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ABSTRACT Diabetic retinopathy (DR) is a leading cause of permanent vision loss worldwide. It refers
to irreversible retinal damage caused due to elevated glucose levels and blood pressure. Regular screening
for DR can facilitate its early detection and timely treatment. Neural network-based DR classifiers can be
leveraged to achieve such screening in a convenient and automated manner. However, these classifiers suffer
from reliability issue where they exhibit strong performance during development but degraded performance
after deployment. Moreover, they do not provide supplementary information about the prediction outcome,
which severely limits their widespread adoption. Furthermore, energy-efficient deployment of these
classifiers on edge devices remains unaddressed, which is crucial to enhance their global accessibility.
In this paper, we present a reliable and energy-efficient hardware for DR detection, suitable for deployment
on edge devices. We first develop a DR classification model using custom training data that incorporates
diverse image quality and image sources along with improved class balance. This enables our model to
effectively handle both on-field variations in retinal images and minority DR classes, enhancing its post-
deployment reliability. We then propose a pseudo-binary classification scheme to further improve the model
performance and provide supplementary information about themodel prediction. Additionally, we present an
energy-efficient hardware design for our model using memristor-based computation-in-memory, to facilitate
its deployment on edge devices. Our proposed approach achieves reliable DR classification with three orders
of magnitude reduction in energy consumption over state-of-the-art hardware platforms.

INDEX TERMS Diabetic retinopathy, neural networks, computation-in-memory, resistive random access
memory, RRAM, memristor, edge computing, reliability.

I. INTRODUCTION
Diabetic retinopathy (DR) refers to a condition where
elevated glucose levels and blood pressure lead to irreversible
retinal damage. It is a leading cause of permanent vision
impairment across the globe, and the number of affected
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people is expected to reach 70 million by 2045 [1]. Moreover,
every diabetic person is susceptible to the development of
DR [2]. As the vision loss caused by DR is irreversible,
detecting it at an early stage is crucial for timely treatment
to prevent further retinal damage. Regular screening for DR
is essential for such early detection. Recent advancements
in artificial intelligence have paved the way for developing
automated systems to provide fast, efficient, and convenient
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DR screening. These systems employ neural network-based
DR classifiers to categorize retinal images into distinct
screening classes, capitalizing on the inherent proficiency of
neural networks in classification tasks.

The publicly available DR datasets exhibit inherent image
inconsistencies to pose a tougher classification challenge
than private ones, resulting in more robust and adaptive
models. Moreover, their wider accessibility is valuable for
driving further innovation in automated DR classification.
Hence, we focus on DR classification literature based
on publicly available datasets. Such works are suscepti-
ble to reliability issues, where the model performs well
during development but exhibits poor performance upon
deployment. This can arise due to several factors such as
small training data size [2], [3], [4], [5], [6], [7], [8],
absence of external test data [9], [10], [11], [12], [13], and
lack of diversity in training data [14], [15]. Furthermore,
the inherent class imbalance in public datasets can bias
the model performance towards majority classes. This can
hinder the identification of minority DR classes (indicating
retinal damage), further aggravating the reliability concern.
Additionally, supplementary information about model pre-
diction is crucial for widespread adoption of automated DR
classification [13], [16]. For instance, when a DR model
assists human specialists in double reading [17], supple-
mentary information bolsters specialist’s confidence when
human diagnosis matches the model prediction, and helps
resolve conflicts when these two differ. However, none of the
aforementioned works provide supplementary information
about model prediction. Lastly, deploying automated DR
classification on portable edge devices can address the global
scarcity of DR screening facilities [18], [19]. This requires
energy-efficient hardware design of DR classifiers to achieve
uninterrupted operation despite limited energy resources,
enabling large-scale screening programs even in remote
regions. However, the aforementioned literature only focuses
on software model development while neglecting hardware
design considerations. Hence, there exists a pressing need for
hardware solution that facilitates reliable and energy-efficient
DR screening at the edge.

In this paper, we present a reliable and energy-efficient
DR screening hardware targeting deployment on edge
devices. We first develop a reliable DR classification model
via training on a newly created custom dataset. This
dataset encompasses image quality inconsistencies, diverse
image sources, and reduced class imbalance. This enables
our trained model to effectively handle real-world retinal
images and perform well on minority classes, ensuring
post-deployment reliability. Furthermore, we introduce a
pseudo-binary classification scheme that internally uses
multiclass classification to achieve binary screening. This
enhances our model’s classification performance and also
provides supplementary information to aid its wider adoption.
We then present energy-efficient hardware design of our
model based on computation-in-memory (CIM) paradigm.
It uses emerging memory devices known as memristors,

FIGURE 1. Retinal image annotated with the four most common lesions:
microaneurysms, hemorrhages, hard exudates, and soft exudates [20].

to perform computations directly within the memory. This
eliminates the data transfer bottleneck and provides superior
energy efficiency suitable for edge device deployment. The
key contributions of this paper are:
• We develop a reliable DR classification model by
using inconsistent quality images collected from diverse
sources and addressing the class imbalance problem.

• We propose a pseudo-binary classification scheme to
improve the classification performance and provide a
more informative classification output.

• We present an energy-efficient hardware design for our
DR classification model using memristor-based CIM to
facilitate its deployment on edge devices.

Simulation results show that we achieve reliable DR classifi-
cationwhile consuming three orders ofmagnitude less energy
compared to the state-of-the-art hardware platforms.

The rest of the paper is structured as follows: Section II
presents the basics of diabetic retinopathy and memristor-
based computation-in-memory, while Section III provides a
review of related existing literature. The proposed methodol-
ogy is described in Section IV, followed by simulation setup
details in Section V and simulation results in Section VI.
Finally, Section VII concludes the paper.

II. BACKGROUND
A. DIABETIC RETINOPATHY (DR)
1) BASICS
Diabetic retinopathy is an irreversible condition arising from
elevated glucose levels and hypertension. It damages blood
vessels in the retina and can potentially cause permanent
vision impairment. As per International standards [21], there
are five severity levels (classes) of DR as follows:
• No DR (DR-0)
• Mild non-proliferative (DR-1)
• Moderate non-proliferative (DR-2)
• Severe non-proliferative (DR-3)
• Proliferative (DR-4)

These classes are distinguished from each other based on cer-
tain features present in the retina, known as lesions. Figure 1
depicts the four most common lesions: microaneurysms,
hemorrhages, hard exudates, and soft exudates. They can be
described as follows [2], [20]:

47470 VOLUME 12, 2024



S. Diware et al.: Reliable and Energy-Efficient DR Screening Using Memristor

TABLE 1. Lesion-based diagnosis of DR classes.

• Microaneurysms (MA): These are the earliest visible
signs of retinal damage. They manifest as tiny red dots
arising due to capillary dilation.

• Hemorrhages (HM): These are red spots with irregular
margins and/or uneven density. They are bigger thanMA
and occur due to leakage of weak capillaries.

• Hard exudates (HE): These are yellow-white deposits in
outer layers of retina caused by leakage of plasma.

• Soft exudates (SE): These are greyish oval or
round-shaped patches arising due to the swelling of the
nerve fiber. They are also called cotton wool spots.

• Neovascularization (NV): It refers to the abnormal
growth of new blood vessels on the inner surface of the
retina. Such blood vessels often bleed into the vitreous
cavity and lead to obscured vision.

Table 1 shows how various DR classes are diagnosed based
on the composition of these lesions.

2) DETECTION
Conventional DR detection typically begins with pre-capture
medical procedures on patients to enlarge their pupils and
facilitate better coverage of the retinal area during image
capture. Skilled operators then employ specialized fundus
cameras and meticulously adjust settings such as focus,
exposure, alignment, etc., to capture high-quality retinal
images. Subsequently, the severity of DR is evaluated through
visual inspection of various lesions within the captured
retinal image. The advancements in artificial intelligence
have opened avenues to employ automated systems to
achieve DR identification from retinal images. They leverage
neural networks, which inherently excel at extracting crucial
lesion information from retinal images and autonomously
categorize them into distinct DR classes. Thus, neural
network-based DR classification systems offer an effective
and efficient approach to DR detection.

B. MEMRISTOR-BASED COMPUTATION-IN-MEMORY
(CIM) FOR NEURAL NETWORKS
1) CIM PARADIGM
Traditionally, neural networks are implemented on hardware
platforms like CPUs [22], GPUs [23], and specialized ASICs
like TPUs [24], which adhere to the von-Neumann archi-
tecture and employ CMOS technology. The von Neumann
architecture involves separated memory and computation

FIGURE 2. Mapping of neural network layers to CIM architecture.

FIGURE 3. Memristor device technology.

units, leading to numerous data transfers for executing
vector-matrixmultiplication (VMM) in neural networks. This
results in high energy consumption as VMM operations con-
stitute a large portion of neural network computations [25].
Furthermore, CMOS technology suffers from challenges
such as excessive sub-threshold leakage and scalability
issues [26]. Computation-in-Memory (CIM) paradigm lever-
ages emerging memory technologies, such as resistive ran-
dom access memories (RRAMs), also calledmemristors [27],
[28], [29], to address these limitations. It performs computa-
tions directly within thememory, eliminating the data transfer
bottleneck. Furthermore, memristors are non-volatile, offer
high scalability, and are compact in size. Hence, CIM
emerges as a highly promising alternative to conventional
hardware for neural network implementation [30], [31], [32].

2) CIM ARCHITECTURE
The mapping of VMM operation between two layers
of a neural network onto CIM hardware is illustrated
in Figure 2. It employs a mesh-like structure of mem-
ristors known as the crossbar. The crossbar carries out
computations in the analog domain and communicates with
other digital system components through data converters like
digital-to-analog converters (DACs) and analog-to-digital
converters (ADCs). Weights are translated into memristor
conductances (G’s) within the crossbar, while inputs are
applied as voltages (V ’s) using DACs. The resulting current
through each conductance is equivalent to the element-
wise multiplication of the voltage and conductance. The
accumulation of currents within each column yields the
accumulation of element-wise products as currents (I ’s).
Thus, CIM executes a multiply-and-accumulate operation in
the analog domain for each column. The collective multiply-
and-accumulate operations across all the columns constitute
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TABLE 2. Summary of the related works on neural network-based DR classification.

a VMM operation. Subsequently, ADCs convert the column
currents into digital outputs, and the digitized VMM result is
transmitted to other parts of the system for further processing.

3) MEMRISTOR DEVICE TECHNOLOGY
Memristor device comprises of an oxide material sandwiched
between two metal electrodes [33], as shown in Figure 3.
It possesses two distinct states: a high-resistance state (HRS)
and a low-resistance state (LRS), which serve as data storage
equivalent to 0 and 1. The transition from HRS to LRS
is referred to as ‘‘SET’’, while the reverse process of
transitioning from LRS to HRS is termed ‘‘RESET’’. In the
SET process, applying a set voltage (VSET) to a memristor
in HRS creates a conductive path known as a filament.
This enhances the oxide layer’s conductivity, leading to a
change in state from HRS to LRS. Conversely, applying a
reset voltage (VRESET) to a memristor in LRS results in the
rupture of the conductive filament. This reduces the oxide
layer’s conductivity and changes the state from LRS to HRS.
To read data from a memristor, its resistance state is detected
by applying a very low voltage, denoted as VREAD (where
VREAD ≪ |VSET| and VREAD ≪ |VRESET|), and measuring
the resulting output current. Moreover, a single memristor
can exhibit multiple conductance states by controlling the
extent of filament creation or rupture, known as multi-level
cell (MLC) operation [34], [35].

III. RELATED WORK
The publicly available DR datasets play a pivotal role in
the advancement of neural network-based DR classification.
They contain real-world image inconsistencies arising from
varying equipment quality, operator expertise etc. This makes
their classification more challenging than private datasets

obtained under controlled conditions, leading to robust and
adaptive models. Additionally, the widespread accessibility
of these datasets to research community can accelerate
the development of innovative solutions. Hence, we focus
on DR classification literature based on publicly available
datasets. Such works suffer from several challenges like
model reliability issue, lack of supplementary information
and scarcity of DR screening facilities. These challenges are
discussed in detail next, with a summary provided in Table 2.

Model reliability issue refers to the situation where the
model performs well during development phase but struggles
after deployment. Existing works that are susceptible to
reliability issue can be organized into three categories. The
first category involves works using small datasets for model
development. This hinders model’s generalization ability
leading to reliability concern. Datasets like APTOS [36],
Messidor-2 [37], [38], [39], HRF [40], small-scale merger of
EyePACS with Messidor-2 [41], and FGADR [2] are small-
sized. Several studies exemplify this issue. For instance,
Feng et al. [3] present a cascaded convolutional and graph
neural networks using APTOS and Messidor-2 datasets.
Khan et al. [4] perform transfer learning using HRF and
APTOS datasets. Wong et al. [5] propose transfer learning
with optimized feature weights on APTOS dataset and
small-scale merger of EyePACS and Messidor-2 datasets.
Islam et al. [6] evaluate supervised contrastive learning on
APTOS and Messidor-2 datasets. Mohammadi et al. [7] use
Messidor-2 dataset to explore automated machine learning
platforms. Zhou et al. [2] introduce FGADR dataset and its
benchmarking. Sikder et al. [8] present decision tree-based
ensemble learning using APTOS dataset.

The second category involves works that use large training
datasets like EyePACS [42] or DDR [13] but do not use an
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FIGURE 4. Overview of the conventional and proposed approaches for neural network-based DR screening.

external test data. External test data with a different origin is
necessary to expose the model to truly unseen characteristics,
mimicking real-world deployment. The internal test data is
not enough as it shares common origin and characteristics
with training/validation data. As a result, generalization
ability of the model is not properly assessed leading to
reliability issue. Many works suffer from this challenge.
Poranki et al. [9] use EyePACS dataset to develop hybrid
learning model combining graph learning and deep learning.
Sadeghzadeh et al. [10] propose a hybrid of convolutional
and transformer network evaluated on EyePACS dataset.
Sait [11] train MobileNet V3-based network on EyePACS
dataset. Alyoubi et al. [12] use DDR dataset for convo-
lutional neural network-based classification. Li et al. [13]
present DDR dataset and its benchmarking.

The third category includes works that incorporate both
large training dataset and external test dataset but lack
diversity in training data. This affects the reliability by
hindering the model’s adaptability to post-deployment data.
For instance, Korot et al. [14] use EyePACS datasets for
model development and IDRiD dataset [43] for external
validation. However, relying on a single training dataset
restricts the data diversity. Similarly, Ludwig et al. [15] use
EyePACS and APTOS datasets for model development
while employing Messidor-2 dataset for external validation.
However, a significantly larger number of EyePACS images
compared to APTOS ones dominate the training data,
thus restricting its diversity. Moreover, the inherent class
imbalance in all public datasets can lead to the model
excelling at handling majority classes while struggling with
minority DR classes. This can aggravate the reliability issue
by reducing model’s effectiveness in identifying instances of
retinal damage.

Double reading is a process where two specialists (readers)
independently analyze the same recording (e.g. retinal image)
and exchange their insights to provide a unified diagno-
sis [44], [45]. A neural network model can streamline double
reading-based DR screening by replacing one of the human

specialists [17]. However, the remaining human specialist has
no insight into the rationale behind model’s diagnosis due
to lack of supplementary information. This black-box nature
of model predictions hinders collaborative reasoning and
building trust with the specialist, reducing effectiveness of its
assistance [16]. Moreover, supplementary information is also
crucial for instilling confidence in patients [13]. Despite such
importance, none of the aforementioned works incorporate
supplementary information in their output.

There exists a global scarcity of DR screening facilities
due shortage of specialists, inadequatemedical infrastructure,
and economic constraints [18]. Deploying automated DR
classification on portable edge devices offers a promising
solution to this challenge. These devices can integrate
portable imaging technology [19] with a dedicated DR
classification chip. This chip must exhibit energy-efficiency
to ensure prolonged operation, even with limited battery
resources and unstable power grids. Sharing such edge device
among multiple regions with similar healthcare resource
limitations can significantly expand the screening outreach
and serve a larger population over time. Hence, there exists
a pressing need for a hardware solution that can facilitate
reliable and energy-efficient DR screening at the edge.

IV. PROPOSED METHODOLOGY
A. OVERVIEW
An overview of both conventional and proposed approaches
for developing neural network-based DR screening solutions
is shown in Figure 4. They both involve two phases: 1) pre-
deployment phase, where the model is trained and hardware
is designed for the trained model, and 2) post-deployment
phase, where the hardware performs inference using on-
field images. Models developed using conventional approach
are susceptible to reliability issue, where they perform well
during development but fail after deployment. This is a
consequence of model’s poor generalization ability arising
from small-sized, non-diverse and imbalanced training data,
coupled with absence of external test data. Moreover, they
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FIGURE 5. Sample images across various public datasets (EyePACS [42], DDR [13] and APTOS [36]) that are merged for use in this work.

TABLE 3. Overview of the original public datasets and newly proposed datasets. Imbalance is the ratio of the sizes of the largest and smallest class.

do not provide supplementary information about the model
prediction. This severely limits their widespread adoption
by both specialists and patients. Additionally, there has
been almost no effort directed towards energy efficient
hardware design for DR classification models targeting edge
device deployment, which is critical to improve their global
accessibility.

Our proposed approach overcomes all of these challenges.
Wefirst create a large, diverse and balanced custom dataset by
combining data from multiple sources and taking measures
to reduce class imbalance. We then train our DR classifi-
cation model with this dataset and also assess the model
reliability with external test data. Moreover, we propose
a pseudo-binary classification scheme that improves the
model performance and also provides supplementary infor-
mation to facilitate its widespread adoption. Furthermore,
we present energy-efficient hardware design for our model
using memristor-based CIM, to facilitate its deployment on
edge devices for improved accessibility. Thus, we provide a
solution that offers reliable DR classification, supplementary
information and energy efficient edge deployment. We will
now delve into the details of our approach in the next
subsections.

B. MODEL DEVELOPMENT
1) DATASET CREATION
The DR classification models often encounter inconsistent
quality retinal images post-deployment. This arises due to
various factors such as improper exposure, misalignment,

incomplete retinal coverage etc. Furthermore, the distribution
of post-deployment data can diverge substantially from the
data used during model development. Hence, the model must
be trained using data that encompasses these inconsistencies
and reflects diversity of post-deployment data to ensure
reliability. We build such a comprehensive training dataset by
leveraging the following publicly available datasets, whose
samples are shown in Figure 5:
• EyePACS dataset [42]: It is provided by EyePACS
Inc. for DR detection competition sponsored by Cal-
ifornia Healthcare Foundation in 2015. It contains
88,702 images collected from different parts of the USA.

• DDR dataset [13]: It contains 13,673 images collected
across 147 hospitals in China from 2016 to 2018.
The dataset actually has 12,522 usable images as
1,151 images are deemed ungradable.

• APTOS dataset [36]: It is a part of DR detection com-
petition organized by Asia Pacific Tele-Ophthalmology
Society in 2019. It contains 3662 retinal images
provided by Aravind Eye Hospital in India.

After acquiring these datasets, we filter out corrupt images
and merge them in varying proportions to create three merged
datasets. We then undersample the majority classes in each
merged dataset to limit class imbalance to 10× or less. This
is because 10× or less imbalance suffices for neural networks
perform well on minority classes [46], and achieving perfect
class balance is impractical due to huge number of healthy
retina images. As a result, we end up with three new
proposed datasets: Small (S), Medium (M), and Large (L).
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FIGURE 6. Pseudo-binary classification concept.

The classwise distributions of the original and new datasets is
shown in Table 3. It can be seen that the newM and L datasets
exhibit better class balance than original EyePACS and DDR
datasets. Moreover, merging enhances the data diversity in
M and L datasets compared to EyePACS and DDR datasets.
As a result, models developed using M and L datasets can
potentially exhibit better reliability in handling both on-field
image inconsistencies and minority DR classes. Furthermore,
the three datasets can be used to obtain crucial insights into
how dataset size influences classification performance.

2) PSEUDO-BINARY CLASSIFICATION
The recommended management guidelines for various DR
classes are as follows [47]:

• Annual screening for DR-0 or DR-1.
• A follow-up every six months for DR-2.
• Referral to an ophthalmologist for DR-3 or DR-4.

Thus, the recommended DR management approach shifts
from annual screening to more frequent monitoring as the
severity reaches DR-2. Consequently, grouping the five DR
classes into the following two categories suffices for screen-
ing [15]: non-referable DR (consisting of DR-0 and DR-1)
and referable DR (consisting of DR-2, DR-3, and DR-4).
Thus, DR screening becomes a binary classification task
involving referable DR and non-referable DR as its two
classes.

A straightforward approach to binary screening involves
relabeling the five original classes into these two broad
categories and developing a binary classification model.
However, this leads to a hard decision between the two
categories which is more susceptible to misclassifications.
It also weakens the interpretability by hindering the deriva-
tion of supplementary information. To alleviate this problem,
we introduce an approach called pseudo-binary classification.
It internally employs a multiclass DR classifier and uses addi-
tional decision-making logic to ultimately produce a binary
classification outcome, as shown in Figure 6. It capitalizes on
cumulative probabilities within non-referable (0) and refer-
able (1) categories instead of hinging on a single maximum
probability for decision-making, reducing susceptibility to
misclassifications. Moreover, it presents the outcome as a
tuple containing prediction, confidence level, and referable
DR probability, providing better interpretability.

Algorithm 1 Pseudo-Binary Classification
Algorithm
input : Confidence threshold Cth, retinal image I
output: Prediction tuple P

1 softmax← multiclass_inference(I );
2 non_ref_score← softmax(DR-0) + softmax(DR-1);
3 ref_score← softmax(DR-2) + softmax(DR-3) +

softmax(DR-4);
4 1← ref_score - non_ref_score;
5 if 1 > 0 then
6 prediction← 1;
7 if 1 > Cth then
8 confidence← H;
9 else
10 confidence← L;

11 else
12 prediction← 0;
13 if |1| > Cth then
14 confidence← H;
15 else
16 confidence← L;

17 P← (prediction, confidence, ref_score);
18 return P;

TABLE 4. Interpretation of various prediction tuples of pseudo-binary
classification. Here, S indicates the probability of referable DR in all cases.

Algorithm 1 describes the pseudo-binary classification
process. It begins with multiclass classification to obtain
prediction probabilities for the five original DR classes.
Subsequently, it calculates a score for the non-referable
(0) class by adding the probabilities of DR-0 and DR-1.
Similarly, a score for the referable (1) class is computed
by adding the probabilities of DR-2, DR-3, and DR-4. The
broad class (referable 0 or non-referable 1) with the higher
score is selected as the prediction value. Furthermore, if the
scores differ by more than a predefined confidence threshold,
we indicate high confidence (‘H’); otherwise low confidence
(‘L’). Additionally, the referable class score indicates the
probability of referable DR. For example, consider a scenario
with confidence threshold 0.25 and softmax probabilities as
[0.20 (DR-0), 0.33 (DR-1), 0.4 (DR-2), 0.03 (DR-3), 0.04
(DR-4)]. This leads to a pseudo-binary prediction tuple as
(0, L, 47%), indicating that the patient has non-referable
DR (class 0), detected with low confidence (L) and a 47%
likelihood of referable DR. Thus, the patient appears to be
developing DR-1 and is recommended to have a checkup in
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FIGURE 7. CIM hardware architecture for DR model implementation.

the near future. The interpretation of various output tuples of
pseudo-binary classification is summarized in Table 4.

C. MEMRISTOR-BASED ENERGY-EFFICIENT
HARDWARE DESIGN
1) PRUNING AND QUANTIZATION
Before mapping our trained pseudo-binary DR classifica-
tion model to CIM hardware, we perform pruning and
quantization to reduce its hardware resource requirements.
Pruning refers to selectively removing a user-defined portion
of low-magnitude weights from each layer. The reduction
in hardware resource requirements due to pruning often
comes at the cost of accuracy degradation. To counter this,
we adopt pruning followed by retraining to recover lost
accuracy. An essential consideration for such post-pruning
retraining is the selection of hyperparameters, particularly the
learning rate. An excessively low learning rate can hinder
the network’s adaptability to recover the pruning-induced
accuracy loss. Hence, we dynamically adjust the learning
rate within a narrow range centered around its original
value during the retraining process. This iterative cycle
continues until we achieve the desired level of pruning while
preserving the network’s original accuracy. We then quantize
the weights of the pruned model to further reduce hardware
resource requirements. However, an aggressive quantization
can lead to high quantization error and degraded classification
performance. Hence, we adopt a design space exploration
approach to minimize bit-sizes for weights while ensuring
minimal impact on classification performance.

2) MAPPING TO CIM ARCHITECTURE
We map our pruned and quantized pseudo-binary DR
classification model to the memristor-based CIM architecture
described in [50]. The fundamental building block of
this architecture is depicted in Figure 7. It divides the
full-precision neural network weights and inputs into smaller
slices. This is because memristors have limited bit capacity

FIGURE 8. Modified inception-V3 (IV3) and densenet-121 (DN121) neural
network architectures used to develop our DR classification model.
Inception and reduction layers of IV3 are described in [48], while the
dense blocks and transition layers of DN121 are covered in [49].

and high-resolution data converters (DACs and ADCs)
consume significant energy and area. We transform 2-bit
slices of the weights into conductance values, which are then
mapped onto distinct columns within the memristor crossbar.
We also convert 1-bit slices of the inputs into voltages that are
applied to the crossbar at different timesteps. For instance,
with 1-bit DACs for 32-bit digital inputs, the DACs are
fed with 1-bit at a time across 32 timesteps. The DACs
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TABLE 5. Training-validation-test split for the three newly proposed datasets: Small (S), Medium (M) and Large (L).

convert the bits at each timestep into voltages, generating
a current in each column of the crossbar. These currents
are captured by sample and hold circuits (S&H) and then
converted into digital outputs by ADCs. To account for the
slicing of weights across crossbar columns, a shift and add
operation is performed across the columns for the ADC
outputs. Furthermore, an additional round of shift and add
operations is performed to merge such partial outputs from
various timesteps to produce the final full-precision digital
output.

V. SIMULATION SETUP
A. SIMULATION PLATFORM
We use TensorFlow [51] framework for developing our
DR classification model. Inception-v3 (IV3) [48] and
DenseNet121 (DN121) [49] neural network architectures are
selected for exploration, as they have demonstrated remark-
able performance on complex image datasets [52]. We adapt
these architectures for DR classification by introducing three
new fully-connected layers (IV3: 2048 × 128, 128 × 128,
128 × 5 and DN121: 1024 × 128, 128 × 128, and 128 × 5)
and few dropout layers (probability 0.5), as depicted
in Figure 8. We train these networks with each of our
new S/M/L datasets, following the train-validation-test split
shown in Table 5. Employing transfer learning, we only train
the newly added fully connected layers while freezing the
pre-trained weights from the ImageNet dataset for all the
other layers. During this training phase, we perform grid
search followed by manual fine-tuning to establish optimal
values for the hyperparameters. The post-training model per-
formance is evaluated with the corresponding S/M/L test set.

To evaluate the reliability of the trainedmodels, we employ
publicly accessible Messidor-2 dataset [37], [38], [39] as
an external training set. It contains 1748 images where
1058 images are provided by the Messidor program part-
ners [37] and the remaining are collected at Brest University
Hospital in France between 2009 and 2010. The labels for
Messidor-2 dataset are sourced from [53], following the
study in [54]. This labeling process has deemed four images
ungradable, leaving 1744 usable images with classwise
distribution as follows - DR-0: 1017, DR-1: 270, DR-2: 347,
DR-3: 75, and DR-4: 35. As Messidor-2 embodies a data
characteristics distinct from S/M/L train-validation-test sets,
model performance on Messidor-2 serves as an indicator of
its reliability.

To map the trained reliable model onto the memristor-
based CIM hardware, we employ the architecture described

TABLE 6. Simulation platform details.

FIGURE 9. F1-score calculation from confusion matrix representation.

in Section IV-C2. We leverage power consumption and
latency data as presented in [50] to assess CIM energy
consumption. This energy consumption is then compared
against three conventional state-of-the-art hardware plat-
forms: CPU (Intel Core i7-9750H [55]), GPU (NVIDIA
GeForce GTX 1650 [56]), and mTPU (Google Edge TPU
on Coral development board [57]). CPU and GPU represent
general-purpose conventional hardware, while the mTPU
embodies AI-optimized conventional hardware. To quantify
energy consumption across these conventional hardware
platforms, we first measure their latency and power consump-
tion, and then calculate energy consumption as a product
of these two values. The latency for both CPU and GPU
is obtained via TensorFlow profiler [58], while that for
mTPU is measured using Python datetime package [59].
The power consumption of the CPU is recorded using
s-tui [60], while nvidia-smi [61] is used to record GPU
power consumption. We use mTPU’s datasheet to obtain its
power consumption [62]. All of these details are summarized
in Table 6.
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FIGURE 10. Reliability assessment of IV3 and DN121 models in terms of accuracy.

FIGURE 11. Reliability assessment of IV3 and DN121 models in terms of F1-score.

B. PERFORMANCE METRICS
The key performance metrics for the evaluation of the
proposed DR classification include accuracy, F1-score, and
energy consumption. These are described in detail as follows:
• Accuracy: It is defined as the ratio of the number of
correctly classified retinal images to the total number of
input retinal images, expressed as a percentage.

• F1-score: While accuracy is a valuable indicator of
overall classification performance, there is a need for
metrics that delve deeper into the model’s behavior. The
F1-score is one such metric that reflects the model’s
ability to make correct predictions while keeping false
alarms to a minimum. It can be calculated using a table
called the confusion matrix with true labels as column
headers and predicted labels as shown in Figure 9.

• Energy consumption: Deployment of automated DR
screening on portable edge devices can significantly
improve its global accessibility, even in remote areas.
To achieve this, such devices must be able to operate

with limited and interrupted energy availability. Hence,
energy consumed by a DR classification hardware is an
important performance metric.

C. EXPERIMENTS PERFORMED
1) MODEL RELIABILITY ASSESSMENT
This experiment assesses the reliability of modified DN121
and modified IV3 models using Messidor-2 as external
test set. The model with better reliability is selected for
deployment and also compared with other works from
literature.

2) MEMRISTOR-BASED CIM DESIGN OF RELIABLE MODEL
This experiment presents CIM-based hardware design of the
selected reliable model (out of modifiedDN121 andmodified
IV3 models). The model is subjected to pruning and quanti-
zation to reduce the hardware resource requirement, followed
by energy consumption assessment on CIM hardware and
comparison with state-of-the-art hardware platforms.
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TABLE 7. Comparison with other works using Messidor-2 as external
testing dataset. ‘N/A’ indicates values not available from the paper.

VI. SIMULATION RESULTS
A. MODEL RELIABILITY ASSESSMENT
The reliability assessment of our modified IV3 and DN121
networks is shown in Figures 10 and 11. We train these
networks across our three new datasets (S, M, and L in
Table 3) by employing the pseudo-binary classification
approach. This yields six distinct models: IV3-S (IV3 net-
work trained on S dataset), IV3-M (IV3 network trained onM
dataset), IV3-L (IV3 network trained on L dataset), DN121-S
(DN121 network trained on S dataset), DN121-M (DN121
network trained on M dataset), and DN121-L (DN121
network trained on L dataset). The development phase
performance of these models is assessed as their accuracy
and F1-score on the corresponding S/M/L test set. To emulate
post-deployment scenarios, we evaluate their accuracy and
F1-score on Messidor-2 as an external test dataset. A reliable
neural network model should exhibit consistent accuracy
and F1-score, both during the development phase (on S/M/L
test sets) and in post-deployment situations (on Messidor-2
dataset). This criterion forms the basis to assess the reliability
of these six models in Figures 10 and 11.
Models developed using S dataset (IV3-S and DN121-S)

show commendable performance on S/M/L test sets but
struggle on Messidor-2, indicating low reliability. The other
models trained with M and L datasets exhibit a marked
improvement in reliability, consistently maintaining robust
performance on both S/M/L test sets and Messidor-2 data.
Also, model reliability improves as we transition from the
M to the L dataset. This can be observed as IV3-L and
DN121-L models outperform their M dataset counterparts
IV3-M and DN121-M. This also highlights the pivotal role
of large datasets in ensuring model reliability. As DN121-L
exhibits better reliability than IV3-L in terms of both accuracy
and F1-score, it becomes our final choice.

We now compare the reliability of our DN121-L model
with other works from the literature. While several works [3],
[6], [7], [9] have conducted evaluations on Messidor-2
dataset, they incorporate it within the training data rather
than exclusively reserving it for testing. Consequently, a fair
comparison with such studies is not possible. Additionally,
works like [14] use datasets other than Messidor-2 for
external testing and cannot be directly compared with our
work. Therefore, we compare our approachwith [15] and [63]
which use Messidor-2 dataset only for external testing.
As shown in Table 7, DN121-L achieves competitive accu-
racy and F1-score despite testing on 65% more Messidor-2
images compared to [15] and [63], validating its reliability.

FIGURE 12. Impact of pruning percentages on accuracy of DN121-L
model.

FIGURE 13. Impact of quantization on accuracy of DN121-L-P50 model.

We will discuss CIM hardware design for this reliable
DN121-L model next.

B. MEMRISTOR-BASED CIM DESIGN OF RELIABLE MODEL
In this subsection, we first optimize the reliable DN121-L
model for hardware design through pruning and quantization,
and then assess its energy consumption on CIM hardware.
We will now delve into the details of these steps.

1) PRUNING AND QUANTIZATION
Figure 12 shows the impact of pruning on DN121-L model.
The pruning percentage indicates the fraction of model
parameters with lowmagnitudes that undergo removal during
the pruning process. Following the removal of the specified
fraction of parameters, we conduct retraining for a few epochs
to recover the accuracy loss incurred during pruning. Observ-
ing the classification performance across various pruning
percentages, it becomes evident that the 50% pruned version
of DN121-L exhibits the best classification performance.
We select this version, denote it as DN121-L-P50 and subject
it to weight quantization. Figure 13 shows that we can use
4-bit weights with almost no accuracy loss. Hence, we select
the 4-bit quantized version of DN2121-L-P50 and denote it
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FIGURE 14. Energy per image inference for various hardware platforms.

as CIM-DN121. We will analyze its energy consumption on
CIM hardware next.

2) ENERGY EFFICIENCY ASSESSMENT
The energy consumption for CIM-DN121 model, along with
that of DN121 on state-of-the-art conventional hardware
platforms like CPU, GPU, and edge TPU (mTPU) is depicted
in Figure 14. It quantifies the energy required for executing
inference on a single retinal image. The mTPU turns out
to be the least energy-efficient despite being designed
for AI applications. This is because mTPU’s efficiency is
limited by other resources on Coral dev board which handle
tasks such as code context management and input/output
data processing. For a large neural network model like
DN121, these resources become the bottleneck, leading to
significantly longer execution latency and increased energy
consumption compared to CPUs or GPUs. Therefore, mTPU
dev board may not be the best choice for energy-efficient
execution of large neural network models. On the other
hand, CIM-DN121 demonstrates 5441× reduction in energy
consumption compared to CPU. Furthermore, it consumes
1144× and 9686× less energy compared to GPU and
mTPU respectively. This highlights the tremendous potential
of memristor-based CIM for developing energy-efficient
hardware for DR screening.

VII. CONCLUSION
This paper has presented a reliable and energy-efficient
hardware design for DR screening.We have achieved reliable
classification by training the model with diverse and incon-
sistent quality data, while addressing class imbalance issue.
We have then proposed a pseudo-binary classification tech-
nique to further improve the model performance and provide
supplementary information. Furthermore, we have explored
energy-efficient hardware design for our reliable DR model
targeting deployment on edge devices for enhanced health-
care accessibility. Our final DR screening solution, based
on DenseNet121 model, provides reliable classification with
three orders of magnitude less energy consumption compared

to the state-of-the-art hardware platforms. Thus, this work
has laid the groundwork for reliable and accessible healthcare
through the intersection of technology and medical science.
In the future, extending this work for multiclass classification
has a significant potential to increase the utility of AI-based
DR diagnostic. Also, use of a larger and diverse external test
data can provide better assessment of model reliability.
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