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Summary

With Multidisciplinary Design Analysis and Optimization (MDAO), a fully automated aircraft design analysis
is setup and optimization algorithms are used to obtain better designs by balancing the synergy between
components. Despites its benefits, MDAO is not yet as widely adapted in industry as one would expect. There
are still some technical and non-technical barriers hampering its full implementation.

In the EU project AGILE, a new methodology and framework were developed to make the MDAO ap-
proach more accessible to industry. AGILE provides both the blueprint, as well as the tools and processes,
necessary for efficient project management and for easy MDAO system formulation and execution in large
heterogeneous teams of experts. One of the key components in this framework is the KADMOS package.
KADMOS is used to formulate large, heterogeneous MDAO systems and their execution process before they
are implemented as executable workflows.

A key step in the formulation of MDAO systems is the execution process formulation. The execution
process consists of the sequencing and decomposition of the disciplines within the MDAO system. Sequenc-
ing denotes the determination of the execution order, while decomposition refers to the distribution of the
disciplines over various partitions. As the partitions have no data dependencies, they can be executed simul-
taneously, which potentially results in a better use of computational resources (e.g. multiple cores).

A proper sequencing and decomposition can significantly reduce the convergence time of MDAO sys-
tems. Before this thesis, sequencing could only be performed manually in KADMOS and the decomposition
of the disciplines was not possible at all. Therefore, this thesis focuses on how the setup of the execution pro-
cess can be fully automated to optimize the workflow and to make better use of the available computational
resources.

To achieve this goal, four sequencing algorithms have been developed and implemented in KADMOS.
The algorithms primarily minimize the number of feedback connections, while also keeping the execution
time of the sequence to a minimum. One algorithm is the branch-and-bound algorithm, which systemat-
ically searches the solution space until the global optimum is found. This algorithm provides high-quality
execution orders, but can only be applied to small problems due to poor performance scalability. Therefore,
three swap algorithms have been implemented as well. Swap algorithms iteratively try to improve a given
solution by swapping one or multiple nodes. These algorithms have a lower accuracy but are significantly
faster than the branch-and-bound algorithm and therefore more suitable for large MDAO systems.

In addition to the sequencing algorithms, an algorithm to support the decomposition of MDAO systems
and the formulation of multiple partitions was added to KADMOS as well: MDK (Metis-based Decomposition
of KADMOS graphs). MDK automatically decomposes MDAO systems while account for both the number of
variables that need to be converged as well as the execution time of the partitions.

The algorithms were verified and validated on thousands of MDAO systems using a scalable mathemat-
ical test case. The verification and validation showed that high-quality partitions and execution orders are
obtained in short time periods.

Furthermore, the influence of the decomposition of the disciplines on the total execution time was in-
vestigated by solving hundreds of MDAO systems using different solution strategies. The results show that
the execution time of MDAO systems can be reduced by using a proper decomposition. Furthermore, the
results show that the best solution strategy depends on both the properties of the MDAO problem as well as
the number of available computational resources.

The algorithms were not only tested on a theoretical problem, but also on a more realistic aircraft design
problem. A novel implementation of the Initiator toolbox was created to test the algorithms on the con-
ceptual design of a conventional aircraft. The results show an improved flexibility of the Initiator. Thanks
to KADMOS, the implementation of new modules is straightforward and different analysis or optimization
strategies are easily applied. Thanks to the decomposition and sequencing algorithms, the execution order
of the modules is automatically determined and multiple partitions can be created to make better use of the
available computational resources.

This thesis has made a significant step towards the full automation of the execution process formulation
in MDAO systems. Several algorithms have been successfully implemented. The automation of the execution
process has created the opportunity to perform large benchmarking studies of MDAO systems. Finally, the
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new implementation of the Initiator toolbox has improved both the flexibility as well as the transparency of
the toolbox.

Future works involves the optimization of the execution process for the given computational environment
and the inclusion of the sensitivities between the input and output of the different disciplinary analyses.
However, the current results already showed a significant decrease in the setup and execution time of MDAO
systems and therefore, this thesis has made a direct contribution in reducing some of the barriers that still
exist for using MDAO today.
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1
Introduction

Sustainability and environmental requirements are increasingly important in aircraft design. Aircraft must
become more efficient and sustainable. One design method that contributes to obtaining better aircraft de-
signs is Multidisciplinary Design Analysis and Optimization (MDAO). MDAO uses optimization techniques
to solve aircraft design problems while taking into account different disciplinary analysis.

Using MDAO in aircraft design offers a lot of benefits. Instead of optimizing each discipline individually,
MDAO uses the synergy between components to optimize the entire system. Solving the full problem leads to
better design results than optimizing each component individually [3]. Furthermore, once an MDAO system
is in place, part of the design process has been automated. This creates the opportunity for engineers to
focus more on the results and design improvements instead of doing repetitive tasks. By using MDAO, the
generation and evaluation of a design go faster and more design iterations can be performed [17].

Because of the benefits, a lot of research and development has been carried out in the field of MDAO
over the past few decades [11, 36, 47]. Starting from the first generation in which the entire analysis and
optimization process is executed on a local domain and operated by a single small team, MDAO is now evolv-
ing towards the third generation in which the design process is distributed over multiple organizations and
countries, operated by various large and heterogeneous teams of experts [7].

These developments improve MDAO but also give rise to some challenges. MDAO has several technical
and non-technical barriers, which keeps it from being widely used in industry [2]. The setup of an MDAO
system can be challenging. For example, due to the increasing size of the design problems an the lack of
standards, data management can be difficult [2]. A lack of transparency gives the users a black-box feeling
towards the full MDAO systems. Therefore, they have less trust in the results, as it is more difficult to under-
stand how they were obtained [2, 44]. Furthermore, the setup time of MDAO systems is generally long, as it
can be difficult to make all the connections between the disciplines [17]. Collaboration between the different
stakeholders and teams of experts can be difficult [2]. Finally, once the MDAO problem has been formu-
lated and implemented, it usually lacks the agility to easily change the problem formulation or optimization
strategy [44].

In the EU project AGILE (Aircraft 3rd Generation MDO for Innovative Collaboration of Heterogeneous
Teams of Experts) [8], a new methodology and framework were developed, called the AGILE Paradigm, to
make the MDAO approach more accessible to industry and to remove some of these barriers. The main ob-
jective is to reduce the aircraft development costs and time to market by developing processes and techniques
for efficient collaboration and by reducing the setup and convergence time for MDAO problems. The project
advances the state of the art in solving complex and large design problems, ultimately leading to greener and
more cost-effective aircraft solutions. Besides the formulation of the methodology, a software framework is
developed to apply the methodology: the AGILE Development Framework (ADF).

One of the software packages that is being developed within the ADF is KADMOS. KADMOS (Knowledge-
and graph-based Agile Design for Multidisciplinary Optimization System) [51] is used to formulate large, het-
erogeneous MDAO systems and their execution process before they are automatically implemented as exe-
cutable workflows.

The MDAO system formulation process in KADMOS starts with a repository in which all available dis-
ciplinary tools are present. Each tool is a stand-alone module which only uses an input file as input and
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produces an output file as output. These input and output files use a standard data schema, such that KAD-
MOS can easily analyze these files and can generate the input and output connections between the different
disciplinary tools. KADMOS then formulates the MDAO problem by only selecting those tools that are nec-
essary to solve the design problem. In the last step, KADMOS wraps the solution strategy around the MDAO
problem, such that the full MDAO system formulation is obtained. The MDAO system formulation is then
passed to a different software package which translates the formulation into an executable workflow. The
MDAO system is now ready to be executed and results can be obtained.

One of the key steps in the problem formulation of MDAO systems is the execution process formula-
tion. The execution process consists of the sequencing and decomposition of the MDAO system. During
the sequencing process, the execution order of the disciplinary tools is determined, while the decomposition
process divides the tools in multiple partitions which can be executed simultaneously.

The execution process has a major influence on the total convergence time of MDAO systems. A good
execution order will reduce the number of feedback variables and thus the number of iterations that are nec-
essary to obtain a consistent solution. Dividing the disciplinary analyses over multiple partitions will reduce
the total convergence time due to the parallel execution of the partitions. Furthermore, a good partitioning
will make better use of the available computational resources.

Before this thesis, the execution order could only be set manually in KADMOS and decomposition was not
possible at all. The disciplinary analyses could only be executed either all in sequence or all in parallel. This
leads to sub-optimal processes and an inefficient use of the available computational resources. Furthermore,
manually setting the execution order is time-consuming for large MDAO systems and the best order is not
always obvious.

Therefore, this thesis focuses on the development of new algorithms to automate the execution process
formulation in KADMOS and to add the possibility to decompose the MDAO systems into multiple partitions.
More specifically, the thesis tries to find an answer on the following research question:

How can the setup of the execution process of large coupled MDAO systems be fully automated to reduce
the formulation time and to optimize the workflow?

The goal is to enable the easy setup of the execution process of complex workflows. Therefore, the re-
search will focus on how the automated process formulation can be achieved and what the benefits of the
automated process formulation are. To achieve this goal, several subgoals are formulated:

1. Develop an algorithm to automate the sequencing process
2. Develop an algorithm to automate the decomposition process
3. Verify and validate the working of the new algorithms
4. Test the full MDAO system formulation and execution process on a theoretical mathematical problem
5. Test the full MDAO system formulation and execution process on a more realistic aerospace related

design case

The research question and goal can be summarized in the following research objective:

The research objective is to investigate how the setup of the execution process of large coupled MDAO
systems can be fully automated to reduce the formulation time and to optimize the workflow by imple-
menting algorithms for the automatic sequencing and decomposition of MDAO systems in KADMOS and
testing them both on a simple mathematical test case as well as a more realistic aerospace related design
case.

Having the automated execution process formulation in KADMOS will create the opportunity to adapt
the solution strategy to the available computational resources. Therefore, the computational resources will
be used more efficiently and the total execution time will be reduced. Furthermore, the setup time will reduce
as KADMOS will take care of both the sequencing and decomposition as well as their implementation into
the executable workflow. This ultimately contributes to the high-level goals of KADMOS and AGILE to reduce
the setup and convergence time of MDAO systems and to make it more accessible to the industry.

The thesis is divided into three parts: State of the Art, Algorithms and Test Cases. The first part focuses
on the state of the art of both KADMOS and the sequencing and decomposition problem. The part starts
with a short overview of the MDAO development process in Chapter 2. This chapter gives a short overview
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of the AGILE project and introduces the automated MDAO formulation process which is supported by KAD-
MOS. The chapter introduces the sequencing and decompostion problem and explains its interaction with
the MDAO solution strategy. Sequencing and decomposition has been performed before. Therefore, a short
overview of the different algorithms that can be used for the sequencing and decomposition problem is given
in Chapter 3.

The second part of the thesis focuses on the different algorithms that have been developed to automate
the execution process formulation in KADMOS to achieve research goals 1 and 2. Several sequencing algo-
rithms have been developed, which all vary in accuracy and speed. Therefore, the different algorithms are
suitable for different MDAO systems. Furthermore, one decomposition algorithm is developed to automate
the decomposition process in KADMOS. The implementation of the different algorithms is explained in de-
tail in Chapter 4. The algorithms are verified and validated on thousands of MDAO systems using a scalable
mathematical problem in Chapter 5.

The last part, Test Cases, focuses on research goals 5 and 6. The full MDAO system formulation including
the automated execution process is tested on a simple mathematical test case in Chapter 6. Hundreds of
MDAO systems are formulated and executed to examine the effect of the decomposition and solution strategy
on the total execution time. In the final chapter, the automated execution process is tested on a more realistic
design case. The conceptual design of a conventional aircraft is performed using a novel implementation of
the Initiator toolbox in KADMOS. This chapter shows the easiness with which the MDAO system can now be
rearranged and reformulated thanks to the fully automated process formulation.





I
State of the Art
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MDAO Development Process

The sequencing and decomposition process is part of the bigger MDAO Development Process in AGILE.
Therefore, a short overview of the AGILE Paradigm is given in Section 2.1. Part of the AGILE Paradigm is
the MDAO system formulation, which is fully supported by the software package KADMOS. An overview of
how KADMOS formulates the MDAO system based on a repository of tools is given in Section 2.2. Several
solution strategies or coordination strategies can be used to solve the formulated MDAO problem. These so-
lution strategies are shortly explained in Section 2.3. Finally, the sequencing and decomposition problem is
explained in more detail in Section 2.4. This section also explains the interactions between the coordination
and decomposition of an MDAO system.

2.1. AGILE
An overview of the Agile Paradigm [8] is shown in Figure 2.1. The Agile Paradigm indicates how the develop-
ment process can be structured in multiple layers and defines the role of each stakeholder and their interac-
tions. The top of Figure 2.1 shows the expected impact of the AGILE Paradigm on the design and optimiza-
tion process and its goal to significantly reduce the setup time for MDAO systems and the convergence time
needed to obtain an optimal solution. The AGILE Paradigm consists of the Knowledge Architecture and Col-
laborative Architecture, shown at the bottom of Figure 2.1. The Knowledge Architecture is shown at the left.
The Knowledge Architecture provides a blueprint, together with the necessary tools and processes, for effi-
cient project management and for easy MDAO problem formulation and execution in large heterogeneous
teams of experts. However, working and collaborating in large heterogeneous teams can be a difficult and
challenging task, as stakeholders can be working in different companies, in different countries and on differ-
ent servers. Therefore, the Collaborative Architecture provides methods and software tools for efficient and
safe collaboration between the various participant while respecting their different security requirements and
intellectual property. Each of the architectures will be shortly discussed below.

2.1.1. Knowledge Architecture
The Knowledge Architecture [49] support the project management and MDAO system formulation and ex-
ecution. The architecture consists of four layers as shown on the left side in Figure 2.1: the Development
Process Layer, the Automated Design Layer, the Design Competence Layer and the Data & Schemas Layer.

The Development Process Layer formulates the business process and supports the project management
at the highest level. All activities that need to be executed, both manually or automated, are combined in
this layer. The development process starts from the requirements and design case definition, through the
problem setup and execution and finishes with the design solution. The goal is to have an optimal design at
the end of this process.

In the Automated Design Layer, a specific design analysis or optimization, as specified in the Develop-
ment Process Layer, is constructed and executed. Different design competences are collected and executed
according to an architecture specified by the Development Process Layer. The blue arrows between the Au-
tomated Design Layer and Development Process Layer indicates the interface between the two layers. In the
downward direction, the Development Process Layer controls the settings of the Automated Design, while in
the upward direction, the formalization of the design process is brought into the Development Process Layer.

7
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Figure 2.1: Overview of the AGILE Paradigm with on the left side the Knowledge Architecture and on the right side the Collaborative
Architecture [49]

The third layer is the Design Competence Layer. This layer includes all the available design competences
provided as services. A design competence is a specific capability needed for the design and optimization
process, such as a simulation tool or optimization service. Each design team can develop their competence
the way they prefer, using their choice of software. However, it should be wrapped around a central data
schema, such that the different competences can be easily connected in the other layers. Again, there is an
interface between Automated Design Layer and the Design Competence Layer. The design competences are
called by the Automated Design Layer, while the information about the design competences should be made
available to the Automated Design Layer.

Figure 2.2: Number of interfaces between
tools with and without central data
schema [51]

The last layer is the Data & Schemas Layer which provides the
standard schemas to be used in all other layers. Two standard
schemas are defined in this layer. The first schema is the central data
schema which is used in the Design Competence Layer. In the ADF,
the Common Parametric Aircraft Configuration Schema (CPACS) is
used as central data schema. CPACS is an XML schema data defi-
nition for the description of aircraft and its properties. The second
data schema is a workflow schema to describe the workflows in the
Automated Design and Development Process Layer. The Common
MDO Workflow Schema (CMDOWS) is used for this in the ADF. CM-
DOWS [50] is an XML schema and stores the MDO workflow in a neutral format such that it can be used by
the different applications. The usage of standard data schemas reduces the number of interfaces between
different tools and applications to a minimum, as shown in Figure 2.2. The central data schemas make the
integration and exchangeability of the different tools and applications in the design process easier and thus
increases the scalability and agility of the design process.

Using the structured approach of the Knowledge architecture supports the design process and will lead to
a reduction in setup time, easier inspection and debugging, and easy manipulation of MDAO problems [52].
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2.1.2. Collaborative Architecture
The Collaborative Architecture [9] provides the methods and software tools for efficient and safe collaboration
between the various participants respecting their different security requirements and intellectual properties.
The Collaborative Architecture is a service-oriented architecture. This means that the design competences
are offered as services to the users.

In a product development process, the MDO integrator is responsible for the deployment and manage-
ment of the design and optimization process. He requests the execution of several services based on a work-
flow as can be seen on the left-hand side of Figure 2.3. Some of the services can be located on the integrator’s
server, but they can also be located on the servers of other organizations. When the execution of a service
located on a different server is needed, a request for the service is made and the input file for the service is
uploaded to a central data server. The specialist is notified of the request. Only when the specialist accepts,
the input file is downloaded and the service is executed on the specialist’s server. After execution, the output
file is uploaded again to the central data server. The output file is downloaded by the integrator and the pro-
cess as defined in the workflow can continue. The input and output files uses a standard data schema, which
makes communication between different tools easy and straightforward.

Figure 2.3: Overview of the Service Oriented Architecture in the Collaborative Architecture [9]

Using the service-oriented architecture, a lot of different services located on different servers can be cou-
pled together in a straightforward fashion and large complex problems are easily executed. Furthermore,
services are easily reused when the problem formulation changes or new design problems are formulated.

2.2. KADMOS
As mentioned in the previous section, the Development Process Layer of the Knowledge Architecture collects
all the activities that need to be executed in the design process. More specifically, the Development Process
Layer consists of five steps [49]:

I. Define design case and requirements
II. Specify complete and consistent data model and competences

III. Formulate design optimization problem and solution strategy
IV. Implement and verify collaborative workflow
V. Execute collaborative workflow and select design solution

KADMOS [51] is one of the software applications developed within the Knowledge Architecture. KADMOS
supports step III in the Development Process Layer and provides a complete formulation of the MDAO system
before it is translate into an executable workflow. The software package automates the problem formulation,
starting from a repository of tools, to the definition of the problem, until the wrapping of the solution strategy,
by making use of graphs and graph manipulation techniques.
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A graph is an ordered pair G = (V ,E) with vertices or nodes V and edges E . An edge represents a connec-
tion between two nodes. Two nodes are neighbors in case an edge {u, v} ∈ E exists. Graphs can be directed
or undirected. In directed graphs, or digraphs, the direction of the edge is specified and {u, v} is an ordered
pair in which u is the start and v the end of the edge. In undirected graphs, the edges indicate connections
between the nodes but the start and end points of the edges are not defined. Within a graph, each edge and
node can have one or multiple weights assigned to it. Each weight indicates a specific property of the edge
or node. For example, when applied to MDAO, the weight of an edge could stand for the number of variables
that are passed between two nodes, while a node weight could stand for the execution time of the node.

KADMOS uses two types of digraphs, which can be seen in Figure 2.4. Figure 2.4a shows a data graph,
which contains two types of nodes: function and variable nodes. The function nodes represent the executable
tools while the variable nodes represent the data that is communicated between the tools. Furthermore, the
directed edges indicate the input and output relations between the tools and the variables. The second type,
the process graph, is shown in Figure 2.4b. The process graph only contains function nodes and no variable
nodes. The edges indicate the execution order of the disciplinary tools.

(a) Data graph (b) Process graph

Figure 2.4: Examples of KADMOS graphs [51]
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Figure 2.5: Example of an XDSM diagram generated
using KADMOS

Combined the two graphs can be visualized using an eX-
tended Design Structure Matrix (XDSM) [33]. An example of
an XDSM can be seen in Figure 2.5. The executable tools are
placed on the diagonal and the variables off-diagonal. Further-
more, the input for each discipline is placed in the correspond-
ing column and the output in the corresponding row. The thick
grey lines indicate the data flows, while the thin black lines in-
dicate the process flows. Finally, the number inside the diago-
nal block indicates the order of the process. In case two blocks
have the same number, they can be executed in parallel.

As mentioned earlier, KADMOS provides a complete MDAO
system formulation before it is translated into an executable
workflow. A top-level overview of the MDAO development process in KADMOS is visualized in the top part
of Figure 2.6. The input is a repository or database containing all the available executable tools, as defined
in step II of the Development Process Layer. For each tool an input and output file are formulated according
to a standard XML data schema. As explained in the previous section, CPACS is used as standard XML data
schema within the ADF. However, it is not necessary to use CPACS. The schema can vary per database, but all
the tools in one database must be using the same one. The tools are stand-alone modules, which means that
they do not depend on or interact with each other.

Once the database is created, it is loaded into KADMOS using a CMDOWS file. KADMOS evaluates the
input and output files to make the connections in the initial graph: the Repository Connectivity Graph (RCG).
The RCG (visualized using an XDSM in step 1 in Figure 2.6) is a data graph which simply visualizes the
database. It represents all the available tools and shows the input and output connections between these
tools.

From the RCG, the Fundamental Problem Graph (FPG) is formulated in the second step. The FPG repre-
sent the actual problem that needs to be solved. Different steps are taken to formulate the FPG. These steps
are shown in detail in the bottom part of Figure 2.6. The FPG is the smallest graph possible to define the de-
sign problem. This means that only those tools are included which are actually needed to solve the problem.



2.2. KADMOS 11

0:
 R

ep
o

si
to

ry
3:

 M
D

G
/

M
P

G
1:

 R
C

G
4:

 E
xe

cu
ta

b
le

 
W

or
kf

lo
w

2A
: N

o
d

e 
Se

le
ct

io
n

2D
: 

Se
q

ue
n

ci
n

g
2B

: P
ro

b
le

m
 

ro
le

s
2C

: 
D

e
co

m
p

o
si

ti
o

n

2E
: R

es
o

lv
e

P
ro

b
le

m
at

ic
V

ar
ia

b
le

s

2:
 F

PG

F
ig

u
re

2.
6:

O
ve

rv
ie

w
o

ft
h

e
fu

ll
M

D
A

O
d

ev
el

o
p

m
en

tp
ro

ce
ss

,g
o

in
g

fr
o

m
a

re
p

o
si

to
ry

o
ft

o
o

ls
to

a
co

m
p

le
te

M
D

A
O

sy
st

em
fo

rm
u

la
ti

o
n
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Therefore, the redundant tools are removed in the first step of formulating the FPG (2A).
Each variable node gets a problem role assigned in the next step. The possible problem roles are: objec-

tive, constraint, design or state variable. These problem roles are needed to impose the solution strategy in
step 3. Furthermore, the function nodes are divided into pre-coupling, coupled and post-coupling functions.
An example of the three function node types is shown in Figure 2.7. Coupled functions, visualized in green,
are the disciplines which have circular dependencies. The pre-coupling and post-coupling functions do not
have circular dependencies. The pre-coupling functions, shown in blue, are the disciplines which only sup-
ply (and not receive) input to the coupled functions. The post-coupled functions, indicated in red, are the
disciplines which only require outputs from the coupled functions.

Figure 2.7: Example showing the three different function roles [51]

Once the problem roles are assigned, the execution process of the disciplines is formulated, starting with
the decomposition process in step 2C. As explained in the Introduction, decomposition means that the dis-
ciplines are divided into several partitions. Decomposition is an important step in the problem formulation
as it can reduce the convergence time of MDAO systems significantly. The reason for this is that the par-
titions have no data dependencies and therefore they can be executed in parallel. Furthermore, better use
of the available computational resources can be made. Before this thesis, step 2C was completely missing
in the formulation of the FPG. KADMOS did not support the creation of partitions in the MDAO problem
formulation. During this thesis, the support for creating multiple parallel partitions has been developed.
Furthermore, as will be explained in Chapter 4, a decomposition algorithm was developed to automatically
determine the distribution of the disciplines over the various partitions.

The next step in the execution process formulation is the determination of the execution order of the dis-
ciplines during the sequencing process in step 2D. Just as for the decomposition, a proper execution order is
important to reduce the convergence time of MDAO systems. A good execution order minimizes the num-
ber of feedback variables and therefore minimizes the number of iterations necessary to obtain a consistent
solution. The sequencing process could only be performed manually in KADMOS. This is a time-consuming
process for large MDAO systems. Furthermore, the best sequence is not always obvious. Therefore, multi-
ple algorithms were implemented in KADMOS to automatize the determination of the execution order. The
different algorithms will be explained in Chapter 4.

Figure 2.8: Example of splitting problem-
atic variables in the FPG [51]

In the last step of formulating the FPG, step 2E, the validity of each
node is checked, because the nodes in the FPG must comply with strict
conditions on their connectivity. The graph is manipulated to resolve
issues when necessary. Variables that do not apply to the conditions are
called problematic variables. Problematic variables are resolved by the
removal of nodes and edges or by splitting nodes and creating several
node instances. Two examples of problematic variables and their so-
lution are visualized in Figure 2.8. The first issue is a collision, where
multiple disciplines share the same output variable. The second issue
is a circular coupling, where a discipline has the same variable both as
input and output. Both issues are resolved by splitting the variable and
creating two instances. A full list with the different types of problematic
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variables can be found in Van Gent et al. [52]
The last step in the MDAO system formulation is the wrapping of the solution strategy around the formu-

lated problem in step 3. A solution strategy is necessary as the feedback connections in the MDAO system
need to be converged by iterating over the MDAO problem until a consistent solution is obtained. The so-
lution strategy that is used to obtain a consistent and optimal solution is called the MDAO architecture or
coordination architecture. Examples of different MDAO architectures are Multidisciplinary Feasible or Indi-
vidual Discipline Feasible. An explanation of these architectures and their differences will be given in Section
2.3. According to the selected architecture, MDAO architectural elements (e.g. optimizers, convergers, DOE-
blocks, etc.) are added and two graphs are formed: the MDAO Data Graph (MDG) and the MDAO Process
Graph (MPG). The MDG shows the data flows between the different tools and architectural elements, while
the MPG presents the execution order of the optimization problem. Together, these two graphs contain all
information to formulate a complete XDSM, as shown in the third step of Figure 2.6.

Once the MDG and MPG are created, the process in KADMOS is finished. The resulting problem formula-
tion (saved in a CMDOWS file) is then communicated to a workflow software, which automatically translate
the CMDOWS file into an executable model as shown in step 4 of Figure 2.6. Two examples of a workflow
software are RCE1 and OpenMDAO [20]. RCE translates the CMDOWS file through a native plugin, while
OpenLEGO [10] is used to translate the file into an OpenMDAO model. Translating the MDAO system formu-
lation into an executable workflow corresponds with step IV in the Development Process Layer of the Knowl-
edge Architecture. Once the executable workflow has been set up, it is executed in step V and the results are
obtained.

2.3. MDAO Architectures
As explained in the previous section, an MDAO architecture or coordination architecture is responsible for
managing the data in an optimization problem and finding an optimal and consistent solution. The most
general form of a coordination architecture as described in Martins and Lambe [36] is shown in equation 2.1
and in XDSM form in figure 2.9. All other architectures can be derived from this general form.

minimize f0(x,y)+
N∑

i=1
fi (x0,xi ,yi )

with respect to x, ŷ,y, ȳ

subject to c0(x,y) ≥ 0

ci (x0,xi ,yi ) ≥ 0 for i = 1, ..., N

cc
i = ŷi −yi = 0 for i = 1, ..., N

Ri (x0,xi , ŷ j 6=i , ȳi ,yi ) = 0 for i = 1, ..., N
(2.1)

Figure 2.9: XDSM for the All-At-Once architecture [36]

In this formulation, x are the design variables. The optimizer must find the values of x for which the ob-
jective function f is minimized. A subscript i means that the variable or function only applies to discipline i .
The subscript 0 means that the variable or function is shared by multiple disciplines. ȳ are the state variables.
State variables are the output or response from the disciplines and give information about the state of the
system. y are the coupling variables. These variables are the variables that are the output of one discipline
and used as input for another discipline. ŷ are copies of the coupling variables. Coupling variable copies
allow two coupled disciplines to run in parallel. As the system has to be consistent coupling constraints cc

are added to ensure that the copies of the coupling variables are equal to the original coupling variables. R
are the residuals of the disciplines. If R = 0, then ȳ is the solution of the discipline with respect to x. Finally, c
are the design constraints.

The architecture described in equation 2.1 can be referred to as the All-At-Once (AAO) architecture be-
cause the optimizer must find the optimal value for all variables (design, state, coupling and coupling variable
copies) such that the objective function is minimized. Furthermore, the optimizer is responsible for meeting
all constraints (residual, equality and design constraints).

As stated before, all other architectures can be derived from the AAO. The architectures can be divided
into two categories: monolithic and distributed architectures. The monolithic architectures solve a single
optimization problem. The distributed architectures partition the problem into several subproblems, opti-

1http://rcenvironment.de/, accessed: January 11th 2019

http://rcenvironment.de/
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mizing both the subproblems and the overall problem. A full explanation of the distributed architectures is
out of the scope for this thesis, as only monolithic architectures are considered. However, a full overview of
the distributed architectures and their explanation can be found in Martins and Lambe [36].

By eliminating different parts of the AAO architecture, three monolithic architectures can be obtained: Si-
multaneous Analysis and Design (SAND), Individual Discipline Feasible (IDF) and Multidisciplinary Feasible
(MDF) [33]. Regarding the monolithic architectures, only the MDF and IDF are available in KADMOS and
used in this thesis. Therefore a short explanation of these two architectures, together with their main benefits
and disadvantages is given below.

2.3.1. Individual Discipline Feasible
The IDF architecture is obtained by eliminating the discipline residuals R from equation 2.1. The architecture
is described in equation 2.2 [36] and shown in Figure 2.10. In the IDF architecture, a discipline coordinator
is added to each discipline, such that the disciplines themselves are responsible for driving the residuals to
zero. The optimizer gives the design variables, x, and coupling variable copies, ŷ, as input and the disciplines
calculate the corresponding coupling y and state variables ȳ.

minimize f0(x,y(x, ŷ))

with respect to x, ŷ

subject to c0(x,y(x, ŷ)) ≥ 0

ci (x0,xi ,yi (x0,xi , ŷ j 6=i )) ≥ 0 for i = 1, ..., N

cc
i = ŷi −yi (x0,xi , ŷ j 6=i ) = 0 for i = 1, ..., N

(2.2)
Figure 2.10: XDSM for the IDF architecture [36]

A benefit of the IDF architecture is that all the disciplines can be run in parallel. The main disadvan-
tage is that no feasible system solution is obtained when the optimization is terminated prematurely as the
optimizer is responsible for finding both an optimal and consistent solution. [36]

2.3.2. Multidisciplinary Feasible
When both the discipline residuals R and the coupling variable copies ŷ are eliminated the Multidisciplinary
Feasible (MDF) architecture is obtained, see equation 2.3 [36] and figure 2.11. In this architecture, each dis-
cipline has a discipline coordinator to drive the residuals to zero. A system coordinator is added to ensure
system consistency. The optimizer communicates the design variables x to the disciplines. The system co-
ordinator performs iterations with the disciplines to obtain a feasible set of coupling variables y and state
variables ȳ. After a consistent set of y and ȳ is found, the corresponding values of the objective function and
design constraints are communicated back to the optimizer.

minimize f0(x,y(x,y))

with respect to x

subject to c0(x,y(x,y)) ≥ 0

ci (x0,xi ,yi (x0,xi ,y j 6=i )) ≥ 0 for i = 1, ..., N
(2.3)

Figure 2.11: XDSM for the MDF architecture [36]

As both discipline and system feasibility are ensured for each optimizer iteration, a feasible solution is
obtained when the optimization is terminated prematurely. However, it is not guaranteed that the design
constraints are satisfied. As the optimizer is only responsible for finding the optimal values of x, it needs
to perform less iterations to find the optimal solution. One iteration will take more time though as each
discipline has to be executed multiple times per iteration. [36]
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Whether or not the disciplines can be executed in parallel depends on the strategy that is chosen to obtain
a converged MDA (Multidisciplinary Analysis). In case the Gauss-Seidel iteration is chosen, all disciplines are
run sequentially. In case the Jacobi iteration is chosen, the disciplines can be run in parallel.

2.4. Sequencing, Decomposition and Coordination Interactions
As mentioned in Section 2.2, the decomposition and sequencing of the MDAO system is an important part
of formulating the FPG. The execution order of the disciplines is determined during the sequencing process.
The execution order has a significant influence on the computational time needed to obtain a solution, as
the order will determine the number of feedback connections in the MDAO system. As discussed in the pre-
vious section, feedback connections need to be converged by a converger or optimizer, which iterates over
the MDAO system until a consistent solution is obtained. The complexity of the coordination process is de-
termined by the number of couplings that need to be converged. When the number of feedback connections
increases, the coordination complexity increases and thus the number of iterations will increase. This leads
to an increase in execution time. Therefore, in general, the objective of the sequencing process is to mini-
mize the number of feedback connections. This will minimize the number of iterations and thus reduces the
execution time to solve the MDAO system.

However, the execution time of an MDAO system is not only determined by the number of iterations. The
total execution time is the product of the number of iterations and the execution time of one iteration:

ttot = ni ter · ti ter (2.4)

In which ni ter is the number of iterations, ti ter the execution time of one iteration and ttot the total com-
putational time needed to obtain the solution. ni ter can be reduced by minimizing the number of feedback
connections, while ti ter can be reduced by decomposing the problem. As explained in Section 2.2, the de-
composition process divides the disciplinary tools into several partitions. As the partitions have no data de-
pendencies, they can be executed simultaneously. Therefore, the execution time of one iteration is reduced.

As discussed by Allison et al. [1] and Jung et al. [26], the decomposition and coordination process of an
MDAO system are closely related. Increasing the number of partitions will decrease the execution time per
iteration, but it will increase the coordination complexity as more connections need to be converged. This
will cause an increase in the number of iterations. Therefore, a trade-off must be made between the number
of partitions and the coordination complexity, such that the total execution time is minimized. This is an
important concept that will determine the quality of the partitions in the decomposition algorithm discussed
in Section 4.2. A small example explaining this concept is visualized in Figure 2.12.

1, 5 → 2:

CONV
2: y3 1c 3: y2 1c

2:

D1
3: y1 1 4: y1 1

5: y3 1
3:

D3
4: y3 1

5: y2 1
4:

D2

(a) Gauss-Seidel convergence
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2: y2 1c

y1 1c
2: y3 1c

y1 1c

3: y1 1
2:

D1

3: y3 1
2:

D3

3: y2 1
2:
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(b) Jacobi convergence

1, 4 → 2:

CONV
2: y3 1c 3: y3 1c

2: y2 1c

y1 1c

4: y1 1
2:

D1
3: y1 1

4: y2 1
3:

D2

4: y3 1
2:

D3

(c) Convergence using two partitions.
Partition 1 (D1, D2) is indicated in
green and partition 2 (D3) in blue.

Figure 2.12: Different convergence schemas showing the interaction between the decomposition and coordination process

Figure 2.12a shows an MDA which is solved using a Gauss-Seidel convergence. This can be regarded as
one partition in which all the disciplines are executed sequentially. If the disciplines have an execution time
of 5, 6 and 10 seconds for disciplines 1, 2, and 3 respectively, the total computational time per iteration is 21
seconds. Figure 2.12b shows an MDAO which is solved using a Jacobi convergence. This can be seen as three
partitions which are executed in parallel. The computational time per iteration will be 10 seconds. However,
it can be expected that more iterations are needed to find a converged solution than for the Gauss-Seidel
convergence. Lastly, two partitions are formed in Figure 2.12c. Disciplines 1 and 2 form the first partition,
while discipline 3 forms the second partition. The computational time per iteration will be 11 seconds. This
is only slightly more than for the Jacobi convergence. However, as discipline 2 uses the direct output from
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discipline 1, it is possible that fewer iterations are needed to find the converged solution and that the total
execution time is less.

This example clearly shows the importance of having a proper decomposition and sequencing. Too many
partitions or feedback connections lead to a high computational complexity and therefore a high number of
iterations. On the other hand, having too few partitions can lead to an inefficient use of the available compu-
tational resources and thus a longer execution time per iteration. Both situations will lead to a longer execu-
tion time than necessary. Therefore, it is important to take this concept into account during the formulation
of the sequencing and decomposition algorithms in Chapter 4.

Sequencing and decomposition of MDAO systems have been performed before [35, 43]. Therefore, an
overview of the different algorithms that can be used for both the sequencing and decomposition problem
will be given in the next chapter.
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Both the decomposition and sequencing problem, step 2C and 2D of Figure 2.6, are a combinatorial op-
timization problem. This means that the problem has a finite set of solutions. However, due to the large
number of possible solutions, it is almost always impossible to try every combination in order to find the
best one. Therefore, different algorithms exist for finding either the exact or an approximation of the best
solution. This chapter will give an overview of the different algorithms that can be applied to the sequencing
and decomposition problem together with their main advantages and disadvantages. Some of the algorithms
that are discussed in this chapter, formed the start point for the algorithms that were developed in KADMOS,
which will be discussed the next chapter.

The algorithms can be divided into four categories: exact algorithms, iterative improvement methods,
metaheuristics and graph partitioning algorithms. The exact algorithms, described in Section 3.1, are char-
acterized by the fact that they are guaranteed to find the global optimum of the optimization problem. How-
ever, these algorithms have a bad scalability as their runtime increases fast with increasing problem size.
Therefore, the iterative improvement methods, explained in Section 3.2, approximate the optimal solution
by iteratively improving the solution. These methods have a high probability of getting stuck in a local opti-
mum. The metaheuristics from Section 3.3 contain methods to get out of the local optima. They therefore
have an increased chance of finding the global optimum. The last type of algorithms, the graph partitioning
algorithms presented in Section 3.4, use graph theory as the basis for their algorithms. The advantages and
disadvantages of each algorithm are summarized and compared in Section 3.5. Finally, a short discussion on
how the sensitivity information can be used to improve the sequencing and decomposition solutions is given
in Section 3.6.

3.1. Exact Algorithms
Although it is generally impossible to try every decomposition and sequencing combination for large prob-
lems, there are some algorithms that are guaranteed to find the global optimum by searching through the
solution space in a systematic manner. These algorithms are often a variation on the branch-and-bound
algorithm [4].

Branch-and-bound algorithms search the solution space in a systematic manner by representing all pos-
sible solutions in a tree structure. Each node, also called a branch, represents a subproblem or a part of the
solution space. Every iteration, the algorithm searches through the branches and decides which branch is
best to explore next. This decision is made by calculating a bound for each branch. In case of a minimization
problem, the branch with the lowest bound is most promising to explore. The algorithm can either continue
until the entire solution space is explored, but can also terminate when it is guaranteed that the global opti-
mum has been found. A branch is guaranteed a global optimum if it has the lowest bound of all branches and
represents a full solution. [38]

Variations of the branch-and-bound algorithm differ in the subspace definition, branch evaluation and
search strategies. They have been applied various times on the decomposition problem. For example, Hager
et al. [21] used the branch-and-bound algorithm to find an optimal graph decomposition and Kusiak and
Wang [32] used a variation of the algorithm for decomposition in MDAO problems.

The computational cost of the branch-and-bound algorithm is O(Mbd ), in which M is the time needed
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to explore a subproblem, b the number of children that can be derived from a branch, and d the three-depth
[38]. Therefore, it can be concluded that the computational cost depends heavily on the algorithm formula-
tion and the quality of the generated tree. Furthermore, the algorithms have a bad scalability as the runtime
increases significantly with increasing b and d and thus problem size.

3.2. Iterative Improvement Methods
Iterative improvement methods, also called local search methods, try to improve a given solution x by search-
ing the neighborhood for a better solution y [55]. The solution is only accepted if:

f (y) < f (x) y ∈ N (x) (3.1)

In which f is the objective function that must be minimized and N (x) the neighborhood of x. The neigh-
borhood of x is defined as all the solutions that can be obtained by one permutation of x. The algorithm
terminates when no improvement can be found and the following condition is met:

f (x) ≤ f (y) ∀y ∈ N (x) (3.2)

Different strategies can be used for moving to a better solution y . For example, the node swapping algo-
rithms, described in section 3.2.1, move to the first improved solution they find, while the Kernighan-Lin and
Fiduccia-Mattheyses algorithms, described in Sections 3.2.2 and 3.2.3 respectively, search the entire neigh-
borhood before moving to the best solution.

The iterative improvement methods are based on trial-and-error. Therefore, they have a high probability
of getting trapped in a local optimum. Once they are trapped, no techniques are present to escape the local
optimum, so the algorithm is terminated. This in contrary to the metaheuristics as described in Section 3.3.
To further improve the solution, the algorithm can be run multiple times with different starting points to
obtain different local optima. The best optimum will then be chosen as the final solution. However, running
the algorithm multiple times leads to an increased computational cost.

3.2.1. Node-Swapping Algorithms
The simplest method of the iterative improvement methods that can be applied to both sequencing as well
as decomposition is the node swapping algorithms [34]. Swap algorithms are commonly used to solve the
Traveling Salesman Problem [6, 23, 34, 41]. In the Traveling Salesman Problem, one tries to find the shortest
route between a given number of cities, while each city may only be visited once. When a swap algorithm is
used to solve this problem, the edges between the cities are swapped to reduce the total traveling distance.

The performance and accuracy of the swap algorithms depend on the number of edges that are swapped.
Increasing the number of swapped edges per iteration will increase the number of possibilities with which
they can be reconnected and thus the computational complexity increases. However, as the neighborhood of
x is also larger, better solutions will be obtained, so the accuracy improves. The computational complexity of
the algorithm is in the order of O(nk ), in which n is the number of edges and k the number of edges swapped
per iteration [41].

Even though the swap algorithms are generally applied to the Travelings Salesman Problem, they can eas-
ily be adapted to be used for the sequencing and decomposition in MDAO problems. Instead of swapping the
edges, the nodes can be swapped to improve the sequence or decomposition. For example, Lu and Martins
[35] improved the sequence by searching for a better position for each node. The algorithm did not continue
until a local optimum was found, instead the algorithm terminated when a maximum number of iterations
was reached. This algorithm can be seen as a variation on the single swap algorithm.

3.2.2. Kernighan-Lin Algorithm
The Kernighan-Lin Algorithm [30] is a variation of the node swapping algorithm. It is used for decomposi-
tion into two partitions. The mathematical representation of the decomposition problem is defined in the
following equation [4]:

V1 ∪ ...∪Vk =G

Vi ∩V j =; ∀i 6= j
(3.3)
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In the first line, V1 ∪ ...∪Vk =G represents the k partitions in which graph G is decomposed. The second
line indicates that a node cannot be part of more than one partition. Edges between the partitions are called
cut edges and defined as:

Ei j = {{u, v} ∈ E : u ∈Vi , v ∈V j , i 6= j } (3.4)

The Kernighan-Lin algorithm has the objective to minimize the total cut edge edge weight. The algorithm
is based on the idea that every node in a partition has an inner and outer cost. The inner cost of a node is the
sum of the edge weights with neighbors in the same partition. The outer cost of a node is the sum of the cut
edge weights the node has with neighbors in the other partition.

The Kernighan-Lin algorithm applied to a small example case can be seen in Figure 3.1. In this example,
the best partitioning is obtained when the edge between nodes 3 and 6 is cut. The algorithm starts with a
random initial partition. The inner and outer cost for each node is calculated. For each node pair P = {{u, v} :
u ∈ Vi , v ∈ V j , i 6= j }, the gain of switching these two nodes is calculated. A positive gain indicates a decrease
in total cut edge weight, while a negative gain indicates an increase. The node pair with the highest gain is
switched and fixed. In this case, nodes 3 and 5 are switched. Switching these nodes reduces the number of cut
edges from nine to six. Therefore, the gain is three. The nodes are switched and fixed, such that they cannot
be switched again. In the second step, the new inner and outer cost for each node is calculated as well as the
new gain for each node pair. Again, the node pair with the highest gain is selected, switched and fixed. In
the example, nodes 6 and 2 are switched, obtaining a gain of five. The steps are repeated until all the nodes
are switched and fixed and the original partition is obtained again. The partition with the lowest cut edge
found so far, in this case the middle one, is chosen and the algorithm starts again with this partition as the
next starting point. The algorithm terminates when no improved partitioning can be found. As there is no
partition that will have a total cut edge weight lower than one, the algorithm will terminate after the second
iteration.

Figure 3.1: Kernighan-Lin Algorithm applied to a small example case [27]

In general, the KL algorithm performs better than the two-node swapping algorithm for only a slight in-
crease in computational cost. Because the algorithm searches the entire neighborhood of x and allows neg-
ative gains, this algorithm can escape from the local optimum in which the two-node swapping algorithm
will get trapped [16]. However, as it searches only the neighborhood of x, the KL algorithm will get stuck in
another local optimum. The computational cost of the KL algorithm is O(n2l og (n)) [4].

Karypis and Kumar [29] adapted the algorithm to decrease its computational cost. In their Boundary-
Kernighan-Lin (BKL) algorithm, only boundary nodes are swapped. A boundary node is a node that has one
or more connections with other partitions. Non-boundary nodes only have connections with other nodes
within the partition. Therefore, they do not have to be considered by the algorithm.

3.2.3. Fiduccia-Mattheyses Algorithm
An important improvement of the KL algorithm is the Fiduccia-Mattheyses (FM) algorithm [16]. This algo-
rithm uses the same principles as the KL algorithm. The difference is that instead of switching two nodes,
only one node is moved at each step. To maintain balance between the partitions, the node with the highest
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gain from the partition with the highest load must be moved. After the node has been moved, it is fixed such
that it cannot be moved again during this iteration. After all the nodes are moved, or in case there is no free
node in the partition with the highest load, the iteration is ended and the best partition found so far is the
starting point for the next iteration.

The main benefit of the FM algorithm is the improved computational cost of nearly linear time: O(n) [16].
This is a significant improvement compared to the KL algorithm. The quality of the solution is comparable to
the KL algorithm as it searches the entire neighborhood and accepts negative gains just like the KL algorithm.

3.3. Metaheuristics
As mentioned in the previous section, the main disadvantage of the iterative improvement methods is that
they get trapped in a local minimum and do not have any methods to get out of it. Metaheuristics is a class of
methods that either use local information (the neighborhood, N (x)) but have active methods to get out of a
local optimum or use global information to prevent getting trapped. An example of the first category is Tabu
search, explained in Section 3.3.1. Examples of the latter are simulated annealing and genetic algorithms,
described in Sections 3.3.2 and 3.3.3, respectively.

3.3.1. Tabu Search
Tabu search [19] is inspired by the human memory. It combines local search algorithms with a short-term
memory list of previously visited solutions. It starts by searching the entire neighborhood N (x) of the current
solution in order to find the best neighbor. When the solution is a local optimum, the algorithm moves to the
best neighbor even though this is a worse solution. To prevent the algorithm of going back to the previously
visited optimum, the solution is placed in a tabu list. Solutions in the tabu list may not be visited again. This
way the algorithm can climb out of local optima. No obvious stopping criteria exist for the algorithm, so it is
terminated when the solution has not improved for the last n iterations, the value of the objective function is
below a certain threshold or when a maximum number of iterations is reached.

Because storing all visited solution would require a lot of memory, the permutation used to climb out of
the optimum can be placed in the tabu list instead. For the sequencing problem this could mean that two
swapped nodes cannot be swapped back [19] and for the decomposition problem it could mean that a node is
fixed in a certain partition [4]. Only a maximum number of tabus can be memorized, so after a certain amount
of time, tabus are forgotten and the permutation is again allowed. When using permutations as tabus, not
only previously visited solutions but also other solutions can be tabu even though they may contain a better
solution. Therefore aspiration criteria are used to allow certain tabus to be overwritten. For example, if a
neighbor is found that has a better objective value than the best solution found so far, it has not been visited
for sure and the algorithm will move to that solution, whether the required permutation is allowed or not.

The benefit of the tabu search is that it is easily implemented and has the potential of finding an optimum
solution. The computational time will be more than for a local search method, but less than for the other
metaheuristic algorithms, which are explained hereafter [14]. The quality of the obtained solution depends
on the formulation of the tabu and the number of tabus in the tabu list. A tabu definition can be strict or
loose. Strict means that a lot of solutions are prohibited due to one tabu, while a loose tabu means only a few
solutions are prohibited. A tabu definition that is too strict or a list that is too long can prevent the solution
from going into promising solution areas. If the tabu definition is too loose or the list of tabus is too short,
circularity can occur in which the algorithm keeps returning to previously visited solutions. [19]

3.3.2. Simulated Annealing
Simulated Annealing [58] is inspired by metallurgy and based on a physical analogy of cooling crystal struc-
tures. It starts by evaluating an initial solution and setting an initial temperature. Then another solution in
the neighborhood of the current solution is picked randomly. Note that in contrary to the other algorithms,
the neighborhood in this algorithm is not limited to the solutions obtained with one permutation, but to a
predefined maximum number of permutations. In case the new solution is better, it is always accepted. In
case the new solution is worse it depends on the current temperature what the probability of acceptance
is. The higher the temperature, the higher the probability of accepting worse solutions. After several itera-
tions with the same temperature, the temperature is decreased according to a cooling scheme. The algorithm
terminates as soon as the temperature is cooled down until a final temperature of choice.

The algorithm uses the benefits of both global and local search. When the algorithm has a high tempera-
ture, it can be compared with a global random search. Therefore, it can easily escape local optima to search
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for better regions. When the temperature is cooled down, the algorithm behaves like a local search algorithm
to find the optima in the best region it has identified. [58]

The benefit of simulated annealing is that it can escape local optima by regularly accepting worse so-
lutions. Furthermore, it is straightforward and easy to implement. The main disadvantage is that both the
quality of the solution and the computational time needed to obtain the solution are strongly dependent on
the settings used for the initial temperature, iterations per temperature, cooling scheme and stopping crite-
ria. [48] For example, the initial temperature must be high enough such that the algorithm can escape from
local optima. However, a higher initial temperature means also that more iterations need to be performed
before the temperature has cooled down.

3.3.3. Genetic Algorithm
Genetic algorithms are derived from the principles of DNA and evolution theory. Using chromosomes, cross-
overs and mutations, different solutions are generated and evaluated on their fitness, in which better solu-
tions have a higher fitness. Based on the survival of the fittest principle, solutions with a higher fitness have a
higher probability of producing offspring. [31]

Genetic algorithms are commonly used in MDO for the decomposition and sequencing problem. Rogers
[43] used a genetic algorithm for tool sequencing in his design tool DEMAID in order to minimize the number
of feedback loops. McCulley and Bloebaum [37] extended the objective function to minimize not only the
number of feedback loops but also the number of crossovers. A crossover is an intersection of two feedback
loops in the DSM, without exchanging information at the intersection. This can be seen in figure 3.2 in which
the DSM on the left-hand side contains crossovers and the DSM on the right-hand side has the crossovers
eliminated. Park et al. [40] further improved the objective function by not only determining the optimal
sequence of the tools but also dividing them over a fixed number of partitions. Finally, Jung et al. [26] included
the number of partitions in the objective function to obtain the optimal number of partitions by allowing
chromosomes to have a variable length.

Figure 3.2: Example of a DSM with crossovers on the left side and without crossovers on the right side [37]

Genetic algorithms optimize the solution for all variables (e.g. number of partitions, tool sequence, etc.)
at once. Furthermore, they use global information to obtain an improved solution and therefore the chance
of obtaining a local optimum is reduced. Finding the global optimum is not guaranteed [31]. Its downside is
that these algorithms generally have a high computational cost and are more complex to implement.

3.4. Graph Partitioning
Graph partitioning methods are algorithms that use the specific characteristics of a graph to find a good
decomposition. Three different classes of graph partitioning methods will be described, namely the graph
growing and bubble framework algorithms in Section 3.4.1, spectral partitioning in Section 3.4.2 and multi-
level graph partitioning algorithms in Section 3.4.3.

3.4.1. Graph Growing and Bubble Framework
Graph growing algorithms [4, 29] are used to decompose graphs into two partitions. The algorithm starts a
partition at a random node and adds nodes to this partition according to a breadth-first search. When half
of the total node weight is assigned to the partition, the algorithm terminates. The remaining nodes form
the second partition. The benefit of this algorithm is that it is simple and easy to implement. The main
disadvantage is that the quality of the obtained solution depends on the chosen start node. In order to obtain
a good solution, multiple runs of the algorithm are needed. The solutions can also be improved by combining
it with an iterative improvement method from section 3.2. [4]

Figure 3.3 gives an example of this algorithm. In this example, all nodes have a weight of 1. Node 2 is
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randomly chosen as the start point. The algorithm first adds all nodes to the partition which are connected
to node 2, before moving to the next node in this case node 8. After node 9 is added to the partition, the
algorithm terminates. The resulting partitions are: V1 = {1,2,3,8,9} and V2 = {4,5,6,7}.

Figure 3.3: Graph partitioning using the graph growing algorithm

A variation of this method is the greedy graph growing algorithm [29]. Instead of using the breadth-first
search, nodes are added to the partition based on their gains as defined in the KL algorithm. The node with
the highest gain (= largest decrease or smallest increase in cut edge weight) is the preferred node to be added
to the partition. Karypis and Kumar [29] found that the quality of the partitions found by this algorithm is less
dependent on the starting node than for the graph growing algorithm. Therefore, less reruns are needed and
the algorithm is faster. Furthermore, the obtained solutions are of better quality.

In case more than two partitions are needed, the bubble framework can be used [4]. The bubble frame-
work is similar to the graph growing algorithm. For k partitions, it starts with k nodes and let the partitions
grow according to k breadth-first searches, see figure 3.4. The obtained partitions are iteratively improved by
selecting a new starting point in each partition and repeating the process.

Figure 3.4: Graph partitioning using the bubble framework [4]

3.4.2. Spectral Partitioning
Spectral partitioning [54] uses algebraic graph theory to find a graph decomposition. Only undirected infor-
mation is used, so digraphs must be transformed to their undirected variant first. From this undirected graph,
the Laplacian is calculated according to equation 3.5.

L = D −W (3.5)

In which L is the Laplacian matrix, D is a diagonal matrix with the degrees of each node and W is the
weighted adjacency matrix. An adjacency matrix represents the connections between different nodes in ma-
trix form. The adjacency matrix is a square matrix of size n x n in which n is the number of nodes in the graph.
The entry ai j of the adjacency matrix equals 1 if an edge exists from node i to node j , and 0 of no edge exists
[13]. In case of a weighted adjacency matrix, the ones are replaced by the edge weights. From the Laplacian
the eigenvalues are calculated and sorted such that:

Lv =λv

λ1 ≤λ2 ≤ ... ≤λn
(3.6)
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The eigenvector v2 corresponding to the second smallest eigenvalue λ2, also called the Fiedler vector,
is used to determine the partition. All nodes with a value in v2 lower than the median of v2 form the first
partition, while the other nodes form the second partition. [54]

To decompose the graph in more than two partitions, two methods can be used. The first is recursive
spectral partitioning. After the graph is decomposed in two partitions, the algorithm repeats itself on the two
partitions, obtaining four partitions. The number of partitions obtained with this method will always be 2n .
The benefit of this method is that it is easy to implement. The disadvantage is that it leads to a high computa-
tional cost. The second method is the k-way spectral partitioning method. This method uses k eigenvectors
to decompose the graph into k partitions. It is computationally less expensive than the recursive spectral
partitioning and results in better partitions. The main challenge in this algorithm is the determination of the
eigenvalues and eigenvectors to be used. [25]

In general, spectral partitioning leads to a good quality of partitions, because it uses global information
of the entire graph, instead of local information like the iterative improvement methods. The disadvantage is
that it has a high computational cost because of the eigenvalue calculations. [29, 53]

3.4.3. Multilevel Graph Partitioning
Multilevel graph partitioning [24, 29] uses different sizes (or levels) of a graph to obtain a decomposition,
as shown in Figure 3.5. A multilevel graph partitioning algorithm consists of three phases: the coarsening
phase, initial partitioning phase and uncoarsening phase. During the coarsening phase, the size of the graph
is reduced in several steps. The smallest graph is then partitioned in the initial partitioning phase and the
result is projected back on the bigger graphs during the uncoarsening phase.

Figure 3.5: Overview of the different steps in multilevel graph partitioning [29]

Coarsening Phase
The first step is to reduce the size of the graph. In each coarsening step, multiple nodes are merged into
multinodes, using maximal matchings [29]. A matching is a set of edges without having nodes in common. A
maximal matching means that there is no edge in the graph that can be added to the matching. An example
of a maximal matching is shown on the left-hand side of Figure 3.6. The edges that are part of the matching
are indicated in green. No other edge can be added to this matching and therefore it is maximal. Note that a
maximal matching is not unique and there could be multiple equally valid solutions. Coarsening of the graph
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is done by collapsing the nodes of the matching edges into multinodes. This is shown on the right-hand side
of Figure 3.6 in which the three edges are collapsed and three multinodes are created.

Figure 3.6: Maximal matching to coarsen a graph. The green edges indicate the matching set

There are several strategies to find a maximal matching. With random matching, a random node u is
chosen as the start point. If this node has a neighbor v that is not matched yet, the edge {u, v} becomes part of
the matching. This is repeated until no edges can be found that can be added to the matching. In heavy edge
matching [29] a random node u is also chosen as the start point. However, from all unmatched neighbors of
u, the one with the highest edge weight is chosen to be part of the matching. The idea behind this is that the
smallest graph will only have low edge weights and therefore the cut edge weight after partitioning will be low
as well.

Initial Partitioning Phase
The smallest graph obtained during the coarsening phase is partitioned in the initial partitioning phase. This
can be done using one of the partition techniques described in the other sections. Karypis and Kumar [29]
suggested to use a spectral bipartition, the KL algorithm or a (greedy) graph growing algorithm. Hendrickson
and Leland [24] used a spectral partitioning scheme followed by a KL algorithm.

Uncoarsening Phase
During the uncoarsening phase, the graph is uncoarsened by unmerging the multinodes to their original
nodes. This is done using the reversed steps of the coarsening phase, as shown in Figure 3.5. Each time a
graph is refined, the partitioning from the coarser graph is projected onto the finer graph. As the finer graph
has more degrees of freedom than the coarser graph, an algorithm can be sued to further improve the parti-
tioning. Algorithms commonly used for the partition improvements are the KL algorithm [24, 29, 56], the FM
algorithm [24] or the BKL algorithm [29].

Even though multilevel graph partitioning consists of three phases, they are generally fast [29] as the decom-
position of a small graph is easier and faster than the decomposition of a large graph. During the uncoars-
ening phase, the improvement algorithm starts already with a good estimation of the partitions. Therefore,
only a few iterations are needed to find the local optimum. The disadvantage is that they are more difficult to
implement. This difficulty can be avoided by using one of the available software packages, like for example
Metis [28].

3.5. Algorithm Comparison
As can be concluded from the previous sections, different algorithms can be used to solve the decomposition
and sequencing problem. Table 3.1 gives a summary of the advantages and disadvantages of each category
as mentioned in the different sections. Table 3.2 gives a comparison of the characteristics of the different
algorithms.

The exact algorithms are the only algorithms that are guaranteed to find the global optimum. However,
due to their bad scalability, they will probably take to much time to find the optimum solution and are there-
fore only suitable for small MDAO systems only.

The iterative improvements methods are simple, fast and easy to implement algorithms and therefore
suitable for larger MDAO systems. They do not find the global optimum, but will still give reasonable results.
Therefore, these algorithms are most suitable to be implemented in KADMOS.
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Table 3.1: Sequencing and decomposition methods and their main advantages and disadvantages

Method Advantages Disadvantages

Exact Algorithms - Global optimum guaranteed - Bad scalability
Iterative Improvement - Easy to implement - Sub-optimal solution
Methods - Computationally less expensive
Metaheuristics - Contains strategies to overcome - High computational cost

local optima
Graph Partitioning - Same data representation - More difficult to implement

as used in KADMOS

Table 3.2: Overview of the characteristics of the decomposition and sequencing algorithms

Supports:
Decom- Sequen- Type of Computational

Algorithm position cing Optimum Time Order

Branch-and-Bound Global High O(Mbd )
Node Swapping Local Low O(nk )
Kernighan-Lin Algorithm × Local Low O(n2l og (n))
Fiduccia-Mattheyses Algorithm × Local Low O(n)
Tabu Search Local Medium -
Simulated Annealing Local High -
Genetic Algorithms Local High -
Graph Growing and Bubble × Local Low -
Framework -
Spectral Partitioning × Local High -
Multilevel Graph Partitioning × Local Low -

The metaheuristics will escape from the local optima in which the iterative improvement methods get
stuck and will therefore return better solutions. However, the metaheurstics have in general a high computa-
tional time. Therefore, they are less suitable for KADMOS.

The main benefit of the graph partitioning algorithms is that they use the same data representation as
KADMOS, namely graphs. Therefore, they would provide good quality of partitions. However, they are also
more difficult to implement. This can be overcome by using a an already available software package.

In conclusion, several algorithms can be used to decompose and sequence the FPG in step 2C and 2D of
Figure 2.6. A selection of algorithms were chosen which formed the basis for the algorithms in KADMOS. The
algorithms were further developed to meet the specific requirements for sequencing and decomposition of
KADMOS graphs as will be explained in the next chapter.

The next section will give a short explanation of how the sequencing and decomposition solutions can
be improved using sensitivity analysis. Sensitivity information is not available in KADMOS and therefore not
used in the algorithms in KADMOS. However, due to their impact on the decomposition and sequencing
solutions it is still shortly explained below.

3.6. Sensitivity Analysis
Sensitivity analysis can support both the sequencing and decomposition process and can be used in combi-
nation with all the different algorithms discussed in the previous sections. Using sensitivity information will
improve the quality of the obtained solutions as an improved objective function can be formulated, as will be
explained below.

Shaja and Sudhakar [45] used the sensitivities to make a prediction of the number of iterations that are
needed to obtain a converged solution. Combined with the computational time of each tool, a prediction
can be made of the total computational time of a given solution. Using the total computational time as the
objective function for the sequencing will most likely give better solutions than using the number of feedback
loops. For example, a sequence with two feedback loops with low sensitivity can have a lower total computa-
tional time than a sequence with one feedback with a high sensitivity. Indeed, Shaja and Sudhakar [45] used
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this concept to evaluate the computational time of several sequences and selecting the most promising one.
Sensitivities also provide useful information in the decomposition process. Qiu et al. [42] and Hajikolaei

et al [22] collected nodes with strong sensitivities in the same partition, while placing nodes with low sensitiv-
ities in different partitions. This way the dependency between different partitions is minimized. So, by using
sensitivities as edge weights in the graph, better partitions can be found than using the amount of data trans-
fer as edge weight. Furthermore, the partitions can be better balanced as the number of iterations within the
partition can be estimated and therefore a better prediction of the total computational time for each partition
is obtained.

In conclusion, the decomposition and sequencing problem can greatly benefit from sensitivity analysis.
However, determining the sensitivities between all inputs and outputs in large systems is a difficult task [5].
Furthermore, all the disciplinary tools have to be executed at least twice to determine the sensitivities. De-
pending on the tools that are used, this can take a lot of time. Therefore, the sensitivities are not taken into
account in the sequencing and decomposition algorithms that were developed for KADMOS, which will be
discussed in the next chapter.
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4
Methodology

One of the subgoals of this thesis is to develop algorithms for the automatic sequencing and decomposition
of MDAO systems. The literature survey in the previous chapter showed that various methods exist for the
sequencing and decomposition problem. However, not all of these methods are equally suitable to be applied
in KADMOS. One of the goals of the AGILE project is to make MDAO more accessible to industry. Therefore,
an important requirement for the sequencing and decomposition algorithms is not only accuracy but also
user-friendliness. This means that the different algorithms must provide good quality of partitions and exe-
cution orders in a short time frame. Furthermore, the algorithms must be easy to use and therefore have a
minimal number of settings.

In order to meet these requirements, multiple sequencing algorithms were developed in KADMOS, as will
be explained in Section 4.1. These algorithms differ in accuracy and speed and are therefore suitable for dif-
ferent types of MDAO systems. Furthermore, one decomposition algorithm was developed and implemented
in KADMOS as discussed in Section 4.2. The different algorithms are verified and validated in Chapter 5.

4.1. Sequencing Algorithms
The objective of the sequencing algorithms is to find the best execution order of the disciplinary tools. In
this work, the best execution order is defined as the order which has the minimum number of feedback con-
nections. As explained in Section 2.4, minimizing the number of feedback connections will minimize the
coordination complexity and thus the number of iterations that are necessary to obtain a converged solu-
tion. The number of feedback connections is defined as the total number of feedback couplings and not the
number of unique feedback variables. This means that if two different feedback couplings contain the same
variable, this is counted as two feedback connections. The reasoning behind this that for example one output
variable giving feedback to five different disciplines will have a bigger impact on the convergence rate than
two output variables giving feedback to one disciplines. Therefore, the latter is regarded as a better execution
order.

In addition to the feedback connections, the execution time of the sequence needs to be taken into ac-
count as well. In case two different orders have the same number of feedback connections, the order with
the lowest execution time is preferred. The calculation of the execution time of a sequence is based on the
assumption that the tools are executed as soon as all their input values are available. This means that in one
sequence, multiple tools can be executed in parallel if they have no data dependencies. In practice, the max-
imum amount of parallel executions depends on the number of available CPUs, as will be shown in Section
6.5. Unless stated otherwise, it is assumed that there is no limit on the number of available CPUs as the maxi-
mum problem size considered during the research is fifty disciplinary tools. Running fifty tools in parallel on
a single computer is not possible. However, running fifty tools in parallel on a cluster is no problem at all.

As mentioned above, multiple sequencing algorithms have been developed to sequence the disciplines in
KADMOS. One algorithm belongs the exact algorithms (see Section 3.1) and will be explained in Section 4.1.1.
The other algorithms belong to the iterative improvement methods (see Section 3.2) and will be discussed in
Section 4.1.2. Each algorithm will be explained using a small example case which is shown in Figure 4.1. The
example case consists of four disciplines. Each discipline has one output variable and an execution time of
one second.

29
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Figure 4.1: Example problem used to explain the sequencing algorithms. Each discipline has an execution time of one second

4.1.1. Exact algorithm
The exact algorithm that has been developed for KADMOS is a new implementation of the branch-and-
bound algorithm. As explained in Section 3.1, a branch-and-bound algorithm searches the solution space
in a systematic manner by repeatedly dividing the solution space into smaller subspaces using a tree struc-
ture. Each iteration, the algorithm searches through the subspaces or branches and decides which branch is
most promising to explore next by calculating a bound. In case of a minimization problem, the branch with
the lowest bound is most promising. The algorithm terminates when the global optimum has been found.
[38]

The new implementation of the branch-and-bound algorithm was developed in KADMOS such that it
could be applied to the sequencing problem. In this implementation, the solution space is divided into sub-
spaces by repeatedly fixing one node in the sequence. As explained in the previous section, the objective is
to minimize the number of feedback connections, while also minimizing the execution time of the sequence.
Therefore, the bound of each branch is defined as the minimum number of feedback connections that are
guaranteed to occur in the solution subspace as well as the execution time of the sequence that is fixed so
far. The best branch is the branch which has the lowest number of feedback connections. In case multiple
branches have the same number of feedback connections, the branch with the lowest execution time is ex-
plored first. When multiple nodes have the same bound for both the number of feedback connections and
the execution time, a depth-first search is used. This means that the branch with the highest number of fixed
nodes is explored first.

In Figure 4.2, the branch-and-bound algorithm is visualized for the small example problem from Figure
4.1. The entire tree is visualized in gray and the steps taken by the branch-and-bound algorithm are shown
in black. Note that the full tree represents all possible solutions. In the first step, the solution space is divided
into four branches by fixing the first node in the sequence. For each branch, the bound is calculated by
determining the number of feedback connections and the execution time. For example, discipline A receives
input from disciplines B and C. Therefore, independent of the remaining sequencing, at least two feedback
connections will exist when discipline A is placed first. The execution time of discipline A is one second, so
the bound is (2, 1). After calculating the bounds, it is found that branch 4 is the most promising, because
this branch has the lowest bound for the number of feedback connections. Therefore, branch 4 is explored
further by fixing the second node in the sequence. The bounds are again calculated and the most promising
branch (1, 2, 3, 5, 6 or 7) is selected for further exploration. In this case, branch 6 has the lowest bound for the
number of feedback connections and therefore, this branch is further explored.

The algorithm continues to explore the tree until the global optimum has been obtained. Note that branch
7 is explored before branch 9, because the execution time of branch 7 is lower. Furthermore, branch 14 is
explored before branch 3, because branch 14 has more fixed nodes. Finally, note that the algorithm did not
terminate when branch 22 was found, even though this is a full solution. The reason for this is that both
branch 11 and 21 have a lower bound. Therefore, it is not guaranteed that branch 22 is a global optimum.
Once branches 11 and 21 have been explored, it can be concluded that three optimum solutions are found
(branches 22, 23 and 24). These three solutions are guaranteed global optima as all the other branches have
the same or a higher bound. As all three solutions are equally valid, the algorithm randomly picks one out of
the three and returns this one as the final solution. In this case, branch 22 is chosen and the final solution
is [D, C, B, A] as shown in Figure 4.3. The solution has one feedback connection and node C and D can be
executed in parallel. Therefore, the execution time of this sequence is three seconds.
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Figure 4.2: Overview of the steps taken by the branch-and-bound algorithm when minimizing the number of feedback connections,
while also considering the execution time of the sequence. The entire solution space is visualized in grey, while the steps
taken by the branch-and-bound algorithm are shown in black.

Figure 4.3: Final solution obtained by the branch-and-bound algorithm

4.1.2. Iterative Improvement Methods
Besides the branch-and-bound algorithm, three algorithms are implemented which are variations on the
iterative improvement methods. As explained in Section 3.2, iterative improvements methods try to improve
a given solution x by searching the neighborhood for a better solution y . The neighborhood of x (N (x)) is
defined as all the solutions that can be obtained by one permutation of x. The algorithm terminates when no
improvement can be found. [55]

Three different variations of the iterative improvement methods have been implemented: the single-
swap, two-swap and hybrid-swap. These algorithms are variations on the node-swapping algorithms ex-
plained in Section 3.2.1. In Section 3.2.1, the algorithms were applied to the Travelings Salesman Problem.
Here, they are adapted such that they can be applied to the sequencing problem. The three algorithms differ
in the permutations of x that are allowed. Each of them will be shortly discussed below.

Single-swap
In the single-swap algorithm, a permutation consists of moving one node to a different place in the execution
order. The algorithm systematically tries to find an improved position for each node. It starts at the back to
find a better position for the last node. If no better position can be found, it continues to find an improved
position for the second last node. Each time a better execution order is found, the algorithm starts again by
finding a new position for the last node in the sequence.

An example is shown in Figure 4.4. In the first step, the last node (D) is moved to the first position. The
new order is accepted as the number of feedback connections reduces from three to two. In the second step,
the last node (C) is again moved to the first position as the previous order was accepted. Moving C to the



32 4. Methodology

first position does not lead to an improved sequence as both the number of feedback connections (2) and
the execution time (2) remain the same. Therefore, this solution is discarded in step three and C is moved
to the second position in step 4. The algorithm continues, but cannot find a better position for node C.
Therefore, node B is moved. An improved sequence is found when node B is moved to the second position
as the number of feedback connections reduces from two to one. Note that the execution time increases
from two to four seconds. The sequence is still accepted as the main goal is to minimize the number of
feedback connections. The algorithm continues and the next sequence that is accepted is moving node C
to the third position. This reduces the execution time from four to three seconds, while not increase the
number of feedback connections. Again, the algorithms continues to find an improvement order. However,
as no improved sequence can be found, the algorithm terminates and solution [D, B, C, A] is returned. Note
that this is the same solution as the solution found by the branch-and-bound algorithm. However, in contrary
to the branch-and-bound algorithm, the result obtained from the single-swap algorithm is not guaranteed to
be a global optimum.

Figure 4.4: Overview of the steps taken by the single-swap algorithm when minimizing the number of feedback connections, while also
considering the execution time of the sequence

Two-swap
In the two-swap algorithm, N (x) consists of all the solutions that can be obtained by switching the positions
of two nodes. The algorithms starts by finding a new position for the last node by switching it with the first
node. If that sequence is not an improvement, the last node is swapped with the second node. If no improved
position for the last node can be found, the algorithm tries to find a better position for the second last node,
again by switching it with the first node. Each time an improvement is found, the algorithm starts from the
beginning by swapping the first and the last node.

An example of the two-swap algorithm is shown in Figure 4.5. The algorithms starts with switching the
first node (A) and the last node (B). The new sequence is an improvement as the number of feedback con-
nections reduces from three to one. Therefore, the new order is accepted and the algorithm starts again from
the beginning by switching the first and the last node. This leads to a worse sequence, so the solution is dis-
carded in step three and the first and third node are swapped in step four. The algorithm continues to swap
the nodes, however, as no improved solution can be found, the algorithm terminates and solution [D, B, C, A]
is returned.

Hybrid-swap
Per permutation, more nodes are swapped in the two-swap than in the single-swap algorithm. Therefore, it is
expected that the sequence of the two-swap will improve faster per accepted permutation than for the single-
swap. However, the neighborhood of the single-swap algorithm consists of a larger number of permutations
than the two-swap algorithm. So, it is also expected that the single-swap will be more accurate while the
two-swap algorithm will be faster. Therefore, the hybrid-swap algorithm was implemented.
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Figure 4.5: Overview of the steps taken by the two-swap algorithm when minimizing the number of feedback connections, while also
considering the execution time of the sequence

The hybrid-swap algorithm will first find a local optimum using the two-swap algorithm. This solution is
then taken as a start point for the single-swap algorithm. The single-swap algorithm has a larger neighbor-
hood, so it can further improve the solution. An example of a local optimum which can be improved using
the single-swap algorithm, but not with the two-swap algorithm is shown in Figure 4.6.

Figure 4.6: Example of a local optimum in the two-swap algorithm which is resolved by the single-swap algorithm

4.1.3. Full sequencing of MDAO systems
In section 2.2, the division of the disciplines into three categories was explained, step 2B in Figure 2.6. The
three categories were the pre-coupling, coupled and post-coupling disciplines as visualized in Figure 2.7. As
the pre- and post-couping disciplines have no circular dependencies, the number of feedback connections
for these nodes is zero. Therefore, it is faster to sequence these nodes using a topologically sort instead of
using the algorithms from the previous section.

A topologically sorted sequence is a sequence for which every directed edge {u, v} ∈ E , u comes before
v [46]. The topological sorting is performed using the topological sort function of the Python package Net-
workX1. The algorithm starts with finding all source nodes. A source node is a node which has only outgoing
edges and no incoming edges. As no circular couplings are present, at least one source node must be present.
The source nodes are placed at the beginning of the sequence and removed from the graph. By removing the
nodes, new source nodes are created. These new source nodes are again added to the sequence and removed
from the graph. This is repeated until all the nodes are sequenced. A more detailed explanation of the algo-
rithm can be found in [46]. As it is assumed that each node will be executed as soon as all its data is available,
the execution time of this sequence cannot be further improved.

4.1.4. Algorithm used for the Validation of Large Problems: Genetic Algorithm
The four algorithms described in Section 4.1.1 and 4.1.2 will be verified and validated in the next chapter using
a brute-force algorithm. However, the number of possibilities in the sequencing problem is n!, in which n is
the number of disciplines. Therefore, the execution time of the brute-force algorithm increases significantly
when the number of disciplines is increased and can only be used to verify and validate the sequencing of
small MDAO problems.

To verify and validate the larger MDAO problems, a Genetic Algorithm (GA) has been implemented. As
explained in Section 3.3.3, the GA contains methods to escape local optima, while the iterative improvement
methods do not. The results from the GA will be compared to the results obtained with the iterative improve-

1https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.dag.

topological_sort.html, accessed: January 12th 2019

 https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.dag.topological_sort.html
 https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.dag.topological_sort.html
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ment methods. Of course, the GA is not guaranteed to find the global optimum, however it will give a good
indication to see how the iterative improvement methods perform.

The GA is implemented using the Python package DEAP [18]. DEAP contains several predefined algo-
rithms for performing GAs. The user only needs to specify the basic settings, like the layout of the individuals,
cross-over method and mutation method. A full explanation of the DEAP package can be found in Fortin et
al. [18]. As a cross-over and mutation are not straightforward in a combinatorial optimization, the methods
used for both the cross-over and mutation are shortly explained below.

Each individual in the GA represents an execution order. A cross-over is performed using an ordered
crossover2 as shown in Figure 4.7a. In this case, two parent individuals are selected and randomly cut at two
places as shown in step 1. The nodes between the cuts are swapped to create new children in step 2. Each
node can only occur once in each individual. Therefore, the remaining nodes are wrapped around the fixed
part according to the node order from the parents starting from the second cut. For example, child I receives
nodes C, A and E from parent 2. Starting from the second cut, child I receives the remaining nodes from
parent 1. In this case G, F, B and D. These nodes are wrapped around the fixed part of child I.

An example of a mutation is shown in Figure 4.7b. In this case, a mutation is created by swapping several
random nodes.

(a) Cross-over (b) Mutation

Figure 4.7: Cross-over and mutation used in the Genetic Algorithm

4.2. Decomposition
One decomposition algorithm has been developed to automatically decompose the disciplines in KADMOS:
MDK (Metis-based Decomposition of KADMOS graphs). As explained in Section 2.4, decomposition means
that the disciplines are divided over several partitions, which can be executed in parallel. The connections
between the different partitions are called cut edges (see equation 3.4 in Section 3.2.2). In relation to the
coordination strategies from Section 2.3, these cut edges need to be removed and connected to a converger or
optimizer, such that the partitions can be executed in parallel. The converger or optimizer is then responsible
for converging these couplings and obtaining a consistent solution. Therefore, the cut edges (together with
the feedback connections in the partitions) form the coordination complexity of a given partitioning.

4.2.1. Partition Quality
The first step in the decomposition process is to determine the quality of a given partitioning. As explained
in Section 2.4, increasing the number of partitions will reduce the execution time of one iteration, but will
increase the number of iterations as the coordination complexity is increased. So, the quality of a given par-
titioning is determined both by the execution time as well as the number of cut edges and feedback connec-
tions. Therefore, the objective function, stated in equation 4.1, is a weighted average between the coordina-
tion complexity and the execution time of the decomposition.

f = RC B · nce +n f

nc
+ (RC B −1)

tdecomp∑nd
i=1 ti

(4.1)

In this equation, nce is the number of cut edges between the partitions. The number of feedback connec-
tions within the partitions is indicated with n f . nc is the total number of couplings between the disciplines
in the graph. tdecomp indicates the execution time of the decomposition when the partitions are executed in
parallel and

∑nd
i=1 ti is the sum of the execution time of each discipline in the graph. Lastly, RC B stands for the

Runtime-Coupling-Balance. The RCB is a factor between 0 and 1 that determines the weights in the weighted
average between the coordination complexity and the execution time of the decomposition.

2https://deap.readthedocs.io/en/master/api/tools.html#deap.tools.cxOrdered, accessed: January 20th 2019

https://deap.readthedocs.io/en/master/api/tools.html#deap.tools.cxOrdered
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4.2.2. Metis
Developing a fast and accurate decomposition algorithm can be challenging and is time-consuming. There-
fore, the MDK algorithm is based around the Metis package [28]. Metis is a ready-to-use software package
used for graph partitioning which is known to produce high-quality partitions in a short time frame [28].

Metis uses a multilevel graph partitioning to obtain a decomposition of a given graph. Multilevel graph
partitioning algorithms repeatedly reduce the size of a graph by merging several nodes. The smallest graph
is partitioned and the results are projected back to the bigger graphs. A detailed explanation of the multilevel
graph partitioning algorithms was given in Section 3.4.3.

In Metis, the coarsening of the graph is performed using a heavy-edge matching. As explained in Section
3.4.3, heavy-edge matching tries to include the highest edge weights in the maximal matching. Using this
method, the cut edge weight after partitioning the smallest graph will be low, as only the low edge weights are
present in this graph.

The initial partitioning of the smallest graph is performed using a KL-algorithm (see Section 3.2.2). Note
that the KL-algorithm decomposes a graph into two partitions only. If more partitions are needed, Metis uses
a recursive bisection. This means that the graph is initially decomposed in two partitions. The resulting par-
titions are then again decomposed in smaller partitions until the required number of partitions is obtained.
A more detailed explanation of the recursive bisection used in Metis can be found in Karypis and Kumar [29].
Finally, Metis uses a BKL algorithm (see Section 3.2.2) to refine the graphs in the uncoarsening phase.

Note that the graphs that Metis uses during the decomposition are slightly different than the graphs used
in KADMOS. An example is shown in Figure 4.8. Figure 4.8a shows a data graph as used in KADMOS (visual-
ized using an XDSM diagram), while Figure 4.8b shows the corresponding Metis graph.

D1 y1 1 y1 1

D2 y2 1

D3
y3 1
y3 2

D4

y4 1
y4 2
y4 3

y4 1

y5 1
y5 2 D5

y5 1
y5 1
y5 2
y5 3

D6

y6 1 y6 1 D7

(a) KADMOS data graph, visualized using an XDSM diagram (b) Metis graph

Figure 4.8: Example of the differences between a KADMOS data graph and Metis graph

The main difference is that the Metis graphs are undirected and have no variable nodes. This means that
both the feedforward and feedback connections between two nodes are represented by only one edge. The
number of variables that are passed between the two nodes is indicated using an edge weight. Furthermore,
one or more node weights can be assigned to the nodes in the Metis graphs. In this case, each node gets one
node weight which represents the execution time of the node.

4.2.3. Balance Factor
The default goal in Metis is to minimize the number of cut edges, while also balancing the total node weight
of the different partitions. However, the objective function that was defined in Section 4.2.1 stated that the
objective is a weighted average between the execution time and number of disconnected couplings. So, an
unbalanced solution might be a better solution if this reduces the number of cut edges significantly. There-
fore, a balance factor was calculated and passed on to Metis. The balance factor indicates how much Metis is
allowed to deviate from the target node weight for each partition. Using the balance factor, Metis will still try
to minimize the number of cut edges but it will return more unbalanced partitions if that favors the number
of cut edges. In Metis, the balance factor is defined as [28]:
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u = 1+ x

1000
= maxi

(
w[ j , i ]

t [ j , i ]

)
(4.2)

In which, u is the balance factor and x is the value that must be given to Metis. w[ j , i ] is the node weight
of a partition, while t [ j , i ] is the target weight of a partition. In this case, the target weight for each partition
is defined as the total node weight divided by the number of partitions. Note that x is the value that must be
given to Metis. Therefore, equation 4.2 is rewritten into:

x =
[

maxi

(
w[ j , i ]

t [ j , i ]

)
−1

]
·1000 (4.3)

The maximum node weight of a partition w[ j , i ] is calculated based on the RCB. If the RCB is zero, the
objective is a minimization of the execution time. This is generally achieved by perfectly balancing the node
weights. Therefore, the maximum node weight of a partition is, in this case, set to be equal to the target
weight. If the RCB is one, the objective is a minimization of the cut edges and number of feedback connec-
tions, so the best solution can be strongly unbalanced. Therefore, the maximum weight of a partition is set to
highest partition weight that can occur in the partitioning. When the RCB is set to a value between zero and
one, the maximum node weight of a partition is calculated using a linear interpolation:

w (RC B) = (wRC B=1 −wRC B=0) ·RC B +wRC B=0 (4.4)

4.2.4. Limitiations of Metis
The main benefit of using Metis is that it is fast and proven to give good quality partitions [28]. However, there
are three limitations when it is applied to the decomposition of the FPGs in KADMOS:

L1: Metis can only decompose undirected graphs
As mentioned in Section 4.2.2, the graphs used by Metis are undirected and the feedforward and feed-
back connections between two nodes are represent by only one edge. Therefore, Metis cannot distin-
guish between feedforward and feedback connections between two nodes.

L2: Metis cannot take the execution order within a partition into account
Even if the first issue could be resolved, Metis has no sequencing option for the nodes within a partition.
Therefore, the number of feedback connections are not included when the quality of the decomposi-
tion is assessed by Metis.

L3: Metis cannot take the parallel execution of disciplines within a partition into account
As explained in the previous section, Metis balances the execution time of the partitions. However, if
two disciplines in one partition have no data dependency, they can potentially be executed in parallel
depending on the execution order within the partition (see for example Figure 4.3 in Section 4.1.1).
Therefore, the actual execution time of a partition can be smaller than predicted by Metis.

The Metis package cannot be altered directly. Therefore, the MDK algorithm was developed around Metis
to overcome some of these limitations.

4.2.5. Full Decomposition Algorithm: MDK
An overview of the complete decomposition algorithm is shown in Figure 4.9. The algorithm will be explained
based on a small example shown in Table 4.1. The example consists of 7 disciplines. The disciplines differ
in their execution time. Nodes A, B, E and G have an execution time of three seconds. Nodes D and F have
an execution time of four seconds and node C five seconds. The goal is to decompose the problem into two
partitions.

The input of the decomposition algorithm is the RCB value and the MDAO architecture that will be applied
to the problem. Based on the MDAO architecture, different nodes are selected for the decomposition in
step 1. Only those nodes are selected which are present in the smallest iteration loop. For example, if the
MDF architecture is chosen, the nodes present in the converger loop will be decomposed. The nodes which
are present in the converger loop are the coupled functions (see Figure 2.7). In case the IDF architecture is
chosen, the nodes in the optimizer loop will be partitioned, which are the pre-coupling, coupled and post-
coupling nodes. The example in Table 4.1 consists of coupled nodes only. Therefore, all nodes will be used
for the decomposition, independent of the chosen architecture.
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Figure 4.9: Flowchart of the MDK algorithm

In the second step, the KADMOS data graph is trans-
lated to a Metis graph. As explained in Section 4.2.2, a
KADMOS graph is a digraph with both function as well
as variable nodes, while a Metis graph is undirected and
only contains function nodes. So, as can be seen in the
second row of Table 4.1, the variable nodes are removed
and replaced by edge weights. Furthermore, node weights
are added which represent the execution time of the disci-
plines. Also, the feedforward and feedback edges between
function node pairs are merged.

The balance factor from Section 4.2.3 is calculated us-
ing equations 4.3 and 4.4 in step three. Note that the value
of the balance factor depends on the value of the RCB,
which has been set as input. In this example, the RCB is
set to a value of 0.5. The total node weight in the Metis
graph is 25. Therefore the target weight for each partition
is 12.5. Furthermore, the most unbalanced case would be
if a node with node weight three is placed in one partition
and the other nodes in the second partition. Therefore,
the maximum node weight of a partition is 22. The calcu-
lation is shown in third row of Table 4.1. The value of x that
is given to Metis is in this case 380.

The next step is the partitioning of the graph using
Metis. As can be seen in the fourth row of Table 4.1, Metis
creates two partitions, with nodes B, F and C in partition 1
and nodes G, A, E, D in partition 2. This leads to a cut edge
weight of three and a total node weight of 12 for partition
1 and 13 for partition 2.

As this is the first iteration, the algorithm will continue
with step 6 as shown in Figure 4.9. The second limitation
of Metis was that it cannot take the execution order within
a partition into account (see Section 4.2.4). Therefore, the
sequencing algorithms from Section 4.1 are used to deter-
mine the execution order of the nodes in step 6. Sequenc-
ing is performed on the KADMOS graph and the result for
the example is shown in the sixth row of Table 4.1.

After the sequencing of the nodes, the decomposition
is complete and the objective value as defined in Section
4.2.1 can be calculated using equation 4.1 as shown in the
seventh row of Table 4.1. In this case, the sum of the ex-
ecution time of the nodes and total number of couplings is 25 and 17, respectively. The partition has 3 cut
edges, 3 feedback variables and an execution time of 12 seconds. Therefore, the objective value is 0.42. This
value is checked against the stopping criteria. The stopping criteria is satisfied when the maximum number
of iterations without an improvement is reached. As this is the first iteration, the stopping criteria is not yet
met, and the algorithm continues with step 8 as shown in Figure 4.9.

As explained in Section 4.2.4, the third limitation of Metis is that it cannot take the parallel execution
of the disciplines within a partition into account. Therefore, the execution time of a partition can be lower
than predicted by Metis. This is the case in the example shown in Table 4.1. In the first partition, nodes B
and C have no data dependencies. Therefore, they can be executed in parallel. In order for Metis to make a
better execution time estimation, these two nodes are merged in step 8. Node C has an execution time of five
seconds and node B an execution time of three seconds. Therefore, the combined node B/C will be given an
execution time of five seconds.

In the second iteration, the merged graph is again partitioned using Metis. As can be seen in the second
column of Table 4.1, the partitioning has changed compared to the previous partitioning due to the merged
node. Node G has moved from the second partition to the first partition. The resulting partitioning has still a
cut edge weight of three, but the execution time of partition 1 is now 11 seconds and 10 seconds for partition
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Table 4.1: Example of the MDK algorithm

Step Iteration 1, i=1 Iteration 2, i=2

1

A 1 1

B 1

C 2

D 3 1

2 E

1 3 F

1 1 G

2

3
x = 0.5 · [0+ ( 22

12.5 −1
) ·1000

]= 380 x = 0.5 · [0+ ( 18
10.5 −1

) ·1000
]= 357

4

5 Skipped if i=1

6

F 3 1

C 2

1 B

D 3 1

E 2

1 A 1

1 1 G

D 3 1

E 2

1 A 1

F 3 1

C 2

1 B

1 1 G

7
f = 0.5 · 6

17 +0.5 · 12
25 = 0.42 f = 0.5 · 6

17 +0.5 · 11
25 = 0.40

8
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2. Therefore, the total execution time of the decomposition has reduced from 12 to 11 seconds.
Before the graph is sequenced using the sequencing algorithms from the previous section, the merged

nodes are unmerged to their original nodes. This is done to increase the degree of freedom to obtain better
results for the sequencing process. The objective for the decomposition is again calculated and the stopping
criteria is checked. If the stopping criteria is satisfied, the algorithm terminates. If the stopping criteria is not
met, a new iteration loop is started.

In this chapter, the theoretical explanation of the sequencing and decomposition algorithms has been pre-
sented. In the next chapter, the algorithms are applied to a scalable mathematical problem to verify and
validate them and to test their performance.





5
Verification & Validation

After the sequencing and MDK algorithm have been implemented, they must be verified and validated. Fur-
thermore, it is important to know how they perform on different types of MDAO systems. Therefore their
solution quality and performance is tested in Sections 5.1 and 5.2 for the sequencing and MDK algorithms,
respectively.

To easily generate a lot of different MDAO systems, the Variable Complexity Problem (VCP) from Zhang et
al. [57] was implemented. The VCP is a scalable mathematical problem that allows for the quick generation
of different types of MDAO problems. In the mathematical problem, the following variables can be set:

• The number of disciplines
• The number of output variables per discipline
• The number of local and global design vari-

ables

• The number of local and global constraints
• The coupling density
• The execution time of each discipline

(a) Low coupling density (0.1) (b) High coupling density (0.45)

Figure 5.1: Difference between coupling density and coupling strength. Each dis-
cipline has three output variables

Note that the coupling density differs
from the coupling strength. The cou-
pling density is the percentage of con-
nections that are made between the out-
put variables and the disciplines with re-
spect to all possible connections. The
coupling strength is the number of vari-
ables that are passed between two disci-
plines. The difference is shown in Figure
5.1. An MDAO problem with a low cou-
pling density is shown in Figure 5.1a. The
problem has five disciplines. Each disci-
pline has three output variables, which
can be passed to the other four disci-
plines. Therefore the total number of
possible connections is 5 · 3 · 4 = 60. Only six couplings are present, so the coupling density for this prob-
lem is 6/60 = 0.1. Figure 5.1b shows a problem with a higher coupling density. In this case 27 couplings are
present, so the coupling density is 27/60 = 0.45. This figure also shows the difference between a higher and
lower coupling strength. Disciplines D1 and D2 have a lower coupling strength of 2, while disciplines D3 and
D4 have a higher coupling strength of 5.

Note that the VCP test cases are randomly generated based on the input variables. So, in order to make
conclusions about the accuracy and the performance of the algorithms, each test has to be repeated multiple
times to obtain a good average and to rule out coincidences. Therefore, in all the figures presented in this
chapter, each test was performed using 200 randomly generated test cases. The average result of the 200 test
cases and their 95% confidence interval is plotted in the results. The confidence interval is calculated using
the following equation [12]:
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(x̄n − 2zα/2snp
n

, x̄n + 2zα/2snp
n

) (5.1)

In this equation, x̄n is the average value, sn is the standard deviation, n the number of test cases (200) and
zα/2 the value for the confidence level. In this case, zα/2 was set to 1.96 to obtain a confidence interval of 95%.

In this chapter, the different MDAO systems are sequenced and decomposed, but not yet solved. The
execution of the VCP will be performed in Chapter 6. Therefore, the detailed explanation of the mathematical
equations will be explained in that chapter, as they are not relevant for the verification and validation of the
sequencing and decomposition algorithms.

5.1. Sequencing
The sequencing algorithms are verified, validated and tested by applying them to different types of MDAO
systems. As explained in Section 2.4, the objective is to minimize the number of feedback connections while
also taking the execution time of the sequence into account. The verification and validation of the sequencing
algorithms is explained in Section 5.1.1, while the performance is discussed in Section 5.1.2.

5.1.1. Verification & Validation
The quality of the generated solutions of the sequencing algorithms is assessed using a brute-force algorithm.
However, the brute-force algorithm is only suitable for small MDAO systems, due to its bad performance
scalability. Therefore, as explained in Section 4.1.4, a GA has been implemented to validate the sequencing
solutions for bigger test cases.

Figures 5.2 and 5.3 show the results for the cases with a relatively small amount of disciplines. The test
cases had a coupling density (ρc ) of 0.08, 5 coupling variables per discipline (ncv ) and no clusters. Figure 5.2a
shows the average number of feedback couplings, while figure 5.3a visualizes the average execution time of
the obtained sequences. Furthermore, Figure 5.2b shows the average difference in feedback couplings, while
Figure 5.3b depicts the average difference in execution time with respect to the exact solution.

The average difference in feedback couplings and execution time are calculated using equations 5.2 and
5.3, respectively.

∆n f =
∑ntc

i=1

(
n fappr ox −n fexact

)
ntc

(5.2)

∆t =
∑ntc

i=1

(
tappr ox − texact

)
ntc

(5.3)

In these equations,∆n f is the average difference in feedback couplings with respect to the exact solution.
n fappr ox is the number of feedback couplings when the solution is obtained using one of the swap algorithms,
the branch-and-bound algorithm or the GA. n fexact is the number of feedback couplings when the solution is
obtained using the brute-force algorithm. Furthermore ntc is the number of test cases. As explained above,
each test has been performed using 200 different test cases. ∆t is the average difference in execution time of
the sequences with respect to the exact solutions. tappr ox is the execution time when the solution is obtained
using the swap algorithms, branch-and-bound algorithm or the GA. Lastly, texact is the execution time when
the solution is obtained using the brute-force algorithm.

Figures 5.2 and 5.3 show that the branch-and-bound algorithm always find the same solution as the brute-
force algorithm. This is expected, as the branch-and-bound algorithm is an exact algorithm which is guaran-
teed to find the global optimum.

When comparing the three swap algorithms, it can be concluded that the two-swap algorithm is the least
accurate, while the hybrid-swap and single-swap have a similar accuracy. As explained in Section 4.1.2, the
single-swap has a larger neighborhood N (x) than the two-swap algorithm. Therefore, the single-swap can
explore more options than the two-swap algorithm. This results in a higher accuracy for the single-swap
algorithm when compared with the two-swap algorithm. Finally, it can be concluded that the hybrid-swap
has a similar accuracy as the single-swap algorithm. This indicates that the local optimum in which the two-
swap algorithm gets stuck, can indeed be resolved by refining the solution using the single-swap algorithm.

Finally, it can be concluded that, in these cases, the GA performs better than the swap algorithms. As ex-
plained in Section 3.3, the GA can escape the local optima in which the swap algorithms get stuck. Therefore,
the solution accuracy of the GA is higher than for the swap algorithms.
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(a) Average number of feedback couplings (b) Average difference in feedback couplings with respect to
the exact solution

Figure 5.2: Solution accuracy of the sequencing algorithms for a small amount of disciplines when comparing the number of feedback
couplings. ρc = 0.08, ncv = 5, ntc = 200, no clusters

(a) Average execution time (b) Average difference in execution time with respect to the
exact solution

Figure 5.3: Solution accuracy of the sequencing algorithms for a small amount of disciplines when comparing the execution time of the
obtained sequences. ρc = 0.08, ncv = 5, ntc = 200, no clusters

Figures 5.4 and 5.5 show the results when the number of disciplines is increased. The branch-and-bound
and brute-force algorithm are not shown. Due to their bad performance scalability, they are only suitable
for small MDAO systems. Figures 5.4a and 5.5a show the average number of feedback couplings and average
execution time of the obtained sequences, respectively. Figures 5.4b and 5.5b show the average difference in
number of feedback couplings and execution time. These values are again calculated using equations 5.2 and
5.3, except in this case the difference is not calculated with respect to the exact algorithm, but with respect to
the GA.

When comparing the different swap algorithms, it can be concluded that in these cases, the two-swap
algorithm has the lowest solution accuracy, while the single-swap algorithm has the highest solution accu-
racy. This difference is again due to the differences in the size of the neighborhood. Furthermore, it can be
concluded that the hybrid-swap performs only slightly worse than the single-swap algorithm. Finally, it can
be concluded that the GA performs better than the two-swap, but worse than the single and hybrid-swap.

Besides the influence of the number of disciplines, also the coupling density and number of coupling
variables per discipline were varied. The corresponding figure are shown in Appendix A. For these figures,
similar conclusions can be made. The branch-and-bound algorithm always finds the global optimum, while
the two-swap is the least accurate of the swap algorithms and the single-swap the most accurate.
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(a) Average number of feedback couplings (b) Average difference in feedback couplings with respect to
the GA

Figure 5.4: Solution accuracy of the sequencing algorithms for a large amount of disciplines when comparing the number of feedback
couplings. ρc = 0.08, ncv = 5, ntc = 200, no clusters

(a) Average execution time (b) Average difference in execution time with respect to the
GA

Figure 5.5: Solution accuracy of the sequencing algorithms for a large amount of disciplines when comparing the execution time of the
obtained sequences. ρc = 0.08, ncv = 5, ntc = 200, no clusters

5.1.2. Performance
Besides the solution accuracy, also the performance of the different algorithms was measured, this is visual-
ized in Figure 5.6. Figure 5.6a shows the evaluation time of the algorithms versus the number of disciplines.
However, the evaluation time depends heavily on the implementation details of the algorithm and the com-
putational resource that is used. Therefore, Figure 5.6b shows the number of function evaluations for each
algorithm.

These two figures clearly show the bad performance scalability of the exact algorithms. The number of
function evaluations and evaluation time increase fast when the number of disciplines is increased. Fur-
thermore, the figures show that the branch-and-bound algorithm is significantly faster than the brute-force
algorithm. The brute-force algorithm can only solve test cases up to nine disciplines in a reasonable time,
while the branch-and-bound algorithm can solve test cases up to thirteen disciplines.

The iterative improvement methods are significantly faster than the exact methods. As was explained in
the previous section, the two-swap algorithm had the worst accuracy. However, Figure 5.6 shows that this
algorithm is the fastest algorithm. Furthermore, the single-swap algorithm is the slowest algorithm from
the swap algorithms. The two-swap algorithm is faster, because more nodes are swapped per accepted per-
mutation. Therefore, the sequence will improve faster per accepted permutation than for the single-swap
algorithm. The hybrid-swap algorithm is faster than the single-swap algorithm. The hybrid-swap algorithm
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(a) Evaluation time (b) Number of function evaluations

Figure 5.6: Performance of the sequencing algorithms for a large amount of disciplines. ρc = 0.08, ncv = 5, ntc = 200, no clusters

benefits from the speed of the two-swap algorithm to quickly find a local optimum. This solution is then
refined using the slower single-swap algorithm.

From the performance plots, it can be concluded that the branch-and-bound algorithm and swap algo-
rithms differ in accuracy and speed. Therefore, a default algorithm can be used for different sizes of MDAO
systems in KADMOS. The branch-and-bound algorithm is most suitable for the small MDAO systems due to
its high accuracy, while the swap-algorithms are more suitable for the bigger MDAO systems due to their per-
formance. More specifically, the following rules have been implemented which KADMOS uses to determine
the most suitable algorithm for the given MDAO system:

• Branch-and-bound: <12 disciplines
• Single-swap: 12-35 disciplines
• Hybrid-swap: 35-45 disciplines
• Two-swap: >45 disciplines

Of course, the user can always choose a different algorithm if that is preferred.

5.2. Decomposition
Just as for the sequencing algorithms, the MDK algorithm is verified, validated and tested by applying it to
different types of MDAO systems. As defined in equation 4.1 in Section 4.2.1, the objective of the MDK al-
gorithm is a weighted average between the coordination complexity and the execution time of one iteration.
The relative importance between the coordination complexity and execution time is determined by the RCB.
The results in this section were obtained using an RCB of 0.5. This means that the coordination complexity
and execution time are equally important. The MDK algorithm is verified and validated in Section 5.2.1, while
its performance is discussed in Section 5.2.2.

5.2.1. Verification & Validation
The MDK algorithm is verified and validated using a brute-force algorithm. Figure 5.7 shows the influence of
the number of partitions on the solution accuracy of the MDK algorithm for test cases with eight disciplines
and Figure 5.8 shows the influence of the number of disciplines when the test case is decomposed in two
partitions. Figure 5.7a and Figure 5.8a show the average objective value, while Figure 5.7b and Figure 5.8b
show the average difference in execution time, the number of feedback couplings within the partitions, the
number of cut edges between the partitions and the total number of couplings that need to be converged with
respect to the exact solution. These values are again calculated using equations 5.2 and 5.3. Note that the
total number of couplings that need to be converged is the sum of the cut edges and the feedback couplings.
Besides the number of disciplines and the number of partitions, the coupling density and the number of
coupling variables per disciplines were also varied. The results for these cases can be found in Appendix A.

Figure 5.7 shows that the MDK algorithm obtains good partitions. The quality of the decomposition in-
creases as more partitions are generated. The reason for this is that when the number of requested partitions
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(a) Average objective value (b) Absolute differences with respect to the exact solution

Figure 5.7: Solution accuracy of the MDK algorithm when varying the number of partitions. nd = 8, ρc = 0.08, ncv = 5, ntc = 200, no
clusters

(a) Average objective value (b) Absolute differences with respect to the exact solution

Figure 5.8: Solution accuracy of the MDK algorithm when varying the number of disciplines. np = 2, ρc = 0.08, ncv = 5, ntc = 200, no
clusters

is increased, the number of possible solutions decreases. For example, when eight partitions are requested
for an MDAO problem with eight disciplines, only one partition is possible.

One exception is the decomposition in two partitions. The MDK algorithm obtains better solutions for
two partitions instead of three partitions. The reason for this is that Metis uses a KL-algorithm to partition
the graphs. The KL-algorithm was originally designed for the decomposition in two partitions [30]. When
more partitions are requested, Metis uses a recursive bisection. The recursive bisection is known to give less
optimal results than the simpler single bisection [28].

The same conclusions can be drawn from Figure 5.8. This figure shows that the solution accuracy de-
creases when the number of disciplines increases. This is again due to the increased number of possible
solutions.

Both figures show that the solutions obtained by the MDK algorithm have a lower number of cut edges
than the solutions obtained by the brute-force algorithm. This difference is due to the second limitation of
Metis as explained in Section 4.2.4, which stated that Metis cannot take the execution order within a partition
into account. Therefore, the number of feedback variables are not considered when Metis determines the
quality of a partitioning. It is possible that the best solution has a higher number of cut edges but less feedback
couplings and thus a lower number of total couplings that need to be converged. This solution will never be
found by Metis as Metis minimizes the number of cut edges only.

Furthermore, the two figures also show that the solutions obtained by the MDK algorithm have a higher
execution time than the solutions obtained by the brute-force algorithm. This difference can be linked to the
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third limitation of Metis, which states that Metis cannot take the parallel execution of disciplines within a par-
tition into account. This issue is partly resolved by merging parallel nodes in the MDK algorithm. The MDK
algorithm merges parallel nodes after Metis has made its first decomposition. Therefore, it is still possible
that a better decomposition can be obtained in which different nodes are executed in parallel.

An example explaining these two limitations of the MDK algorithm is shown in Figure 5.9. Figure 5.9a
shows the decomposition obtained by the MDK algorithm, while Figure 5.9b shows the decomposition ob-
tained by the brute-force algorithm. Disciplines D3 and D4 have an execution time of two seconds, D1, D2
and D5 three seconds, and D6, D7 and D8 five seconds. The solution obtained by the MDK algorithm has five
cut edges, five feedback couplings and an execution time of eighteen seconds. Therefore, the objective value
is 0.5 · 10

23 +0.5 · 18
28 = 0.54. The solution obtained by the brute-force method has ten cut edges, three feedback

couplings and an execution time of eleven seconds. Therefore, the objective value is 0.5 · 13
23 +0.5 · 11

28 = 0.48.
This example clearly shows that the best decomposition has a higher number of cut edges than the solution
obtained by the MDK algorithm. Furthermore, the MDK algorithm will never merge nodes D7 and D8, be-
cause they are part of different partitions. Also, nodes D4 and D5 are not merged due to node D7, which is
placed in between nodes D4 and D5. Therefore, the MDK algorithm cannot obtain the optimal solution from
Figure 5.9b.

D6 y6 2 y6 2 y6 3

D8 y8 2

D2 y2 3 y2 3 y2 5 y2 2

D4 y4 3 y4 4 y4 2

y7 2 D7 y7 1 y7 1

y5 5 y5 4 D5 y5 1 y5 3

D3 y3 5

y1 2 y1 3 y1 2 y1 1 D1

(a) MDK solution

D6 y6 2 y6 3 y6 2

D8 y8 2

D7 y7 2 y7 1 y7 1

y2 3 D2 y2 3 y2 5 y2 2

y4 3 D4 y4 4 y4 2

y5 5 y5 4 D5 y5 1 y5 3

D3 y3 5

y1 2 y1 2 y1 3 y1 1 D1

(b) Brute-force solution

Figure 5.9: Differences in decompositions obtained by the brute-force and MDK algorithm

5.2.2. Performance
Besides the solution accuracy, the evaluation time for both the MDK algorithm as well as the brute-force
method was measured. Figure 5.10 shows the evaluation time for the two algorithms when the number of
partitions ranges from 2 to 5 disciplines. This figure clearly shows the long evaluation time for the brute-force
method. On average, the evaluation of the decomposition of nine disciplines in two or three partitions took
more than four minutes to complete. On the other hand, the MDK algorithm finished in less than a second.

Furthermore, this figure clearly shows that the evaluation time decreases when the number of partitions
decreases. This is due to decrease in the number of possible solutions. An exception to this is the decomposi-
tion in two partitions using the MDK algorithm. A possible explanation could be that the KL-algorithm used
by Metis was originally designed for the decomposition into two parts.

In this chapter, the verification and validation of the different sequencing algorithms and the MDK algorithm
have been discussed. The results showed that high-quality partitions and execution orders are obtained in a
short time frame. The next chapter will discuss the influence of the obtained decompositions on the conver-
gence time of different types of MDAO systems.
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Figure 5.10: Performance plot of the decomposition algorithm. ρc = 0.08, ncv = 5, ntc = 200, no clusters
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6
Test Case 1: Variable Complexity Problem

Chapter 5 investigated how fast and accurate the sequencing and decomposition algorithms are. However,
the question arises what the benefits of decomposing the MDAO systems are and whether the convergence
time can actually be reduced. In the previous chapter, the Variable Complexity Problem was used to test the
sequencing and decomposition algorithms on different types of MDAO systems. This corresponds to step
2C and 2D in Figure 2.6. In this chapter, hundreds of VCP problems are generated and solved to test the full
process from Figure 2.6, including the new automated execution process formulation. Using a randomly gen-
erated scalable mathematical problem creates the opportunity to quickly generate a large amount of different
MDAO systems. It allows to easily change the different properties of the MDAO system and thus creating spe-
cific types of problems. Furthermore, as the different modules contain only simple mathematical equations,
the execution time to solve a complete optimization problem is relatively low.

The mathematical equations used in the VCP are explained in Section 6.1. The characteristics of the VCP,
like convergence and convexity, are also explored in this Section. As explained in Chapter 4, several software
packages are available to solve the final workflow. Therefore, a software comparison between OpenMDAO
and RCE is performed in Section 6.2 to determine which software package is most suitable to solve the math-
ematical equations. During the execution of the MDAO systems, each of the modules of the VCP will be
given a random execution time. It is not feasible, nor necessary, to run the optimization using this runtime.
Therefore, an estimation of the total execution time will be made based on the number of iterations. This
estimation is validated in Section 6.3. The architecture benchmarking is performed in Section 6.4. During
the benchmarking, the partitions are executed simultaneously. However, the number of possible parallel ex-
ecutions depends on the number of available CPUs. Therefore, the influence of the available computational
resources on the total execution time is discussed in Section 6.5.

6.1. Variable Complexity Problem
The optimization problem of the VCP [57] is defined as follows:

minimize f (x0,x,y)

with respect to x0,x

subject to c(x0,x,y) ≤ 0

(6.1)

In which f is the objective value that is minimized and c the constraint values which must be less than or
equal to zero. The global and local design variables are indicated with x0 and x, respectively. Lastly, y denotes
the coupling variables which are calculated using:

Bi i yi =−Ci x0 −Di xi −
N∑

j=1, j 6=i
Bi j y j (6.2)

In this equation, matrices B, C, and D represent the influence of the different types of variables on the
value of the coupling variables. The B matrix indicates the influence each coupling variable has on the other
coupling variables. The C and D matrices determine the influence of the global and local design variables on
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the coupling variables, respectively. The three matrices are randomly generated using integer values between
-5 and 5. The global constraint values are calculated using:

c0nc0
= xT

0 x0 +
N∑

i=1
xT

i xi +HT
nc0

x0 +
N∑

i=1
IT

nc0 i xi +
N∑

i=1
JT

nc0 i yi − snc0
≤ 0 (6.3)

The matrices H, I and J determine again the influence of the different variables on the constraint values.
H indicates the influence of the global design variables, I the influence of the local design variables and J the
influence of the coupling variables on the constraint values. These three matrices are also generated using
integer values between -5 and 5. Lastly, s is a random positive scaler between 1 and 5, which is added to the
constraint.

Finally, the objective value is calculated using:

f =
(nx0∑

i=1
x0i +

N∑
i=1

nxi∑
j=1

xi j +
N∑

i=1

nyi∑
j=1

yi j

)3

(6.4)

Note that the objective function is a cubic function with a saddlepoint in the origin. Therefore, the objec-
tive function is not convex. However, as it is monotonically increasing/decreasing, there will be one minimum
point bounded by either the constraints or the bounds on the design variables. Therefore, it is expected that
the optimizations performed in the next sections will either return this minimum point or the saddlepoint.
The lower bound of the design variables was set to -5, while the upper bound was set to 5.

The definition of the VCP as described above and in Chapter 5 is the definition of the VCP as described in
Zhang et al. [57]. However, two adaptations were made to the mathematical problem to make it more suitable
for the benchmarking performed in this research.

The first adaptation was made to the B matrix in equation 6.2 to meet the convergence criteria. In the pa-
per of Zhang et al. [57], the MDA of the MDF architectures were solved using root finding algorithms, namely
the Broyden, Excitingmixing and Krylov algorithms. However, during the benchmarking in this research only
fixed-point iterators were used to solve the MDAs. Using fixed-point iterators puts an extra requirement on
the mathematical problem to ensure convergence. As explained in Olver and Shakiban [39], convergence with
fixed-point iterators is guaranteed when the B matrix is strictly diagonally dominant. Diagonally dominant
means that each value on the diagonal is equal to or higher than the sum of its corresponding row. Strictly
diagonally dominant means that at least on value on the diagonal is higher than the sum of its corresponding
row. So, in order to meet this convergence requirement, the diagonal of the B matrix is calculated by summing
the values of the rows. A value of one is added to each diagonal entry to make the matrix strictly diagonally
dominant.

Figure 6.1: Example of an MDAO system with two per-
fect clusters

The second adaptation was the option to include clusters
in the VCP. A cluster is a group of nodes which have very high
coupling strengths with respect to each other and low or zero
coupling strengths with respect to the nodes outside the clus-
ter. An example of an MDAO system with two perfect clusters
is shown in Figure 6.1.

The total number of couplings in the VCP are determined
by the coupling density. Whether these couplings are placed
in the clusters or between the clusters is defined by the clus-
ter strength. The cluster strength determines the bias towards
adding couplings in the clusters. A value of one means that
all the couplings are placed within the clusters. If the cou-
pling density is high and the clusters are completely full, the
remaining couplings are placed in between the clusters. A clus-
ter strength of zero means that the couplings are uniformly dis-
tributed between the disciplines, with no bias at all towards the clusters. In other words, when the coupling
strength is zero, no clusters are present in the problem. When the coupling strength is increased, the chances
that a coupling is placed in the clusters is increased as well.

Now that it is possible to create clusters in the VCP, the influence of the decomposition on the total exe-
cution time can be investigated when clusters are present in the MDAO system.
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Figure 6.2: VCP problem that was used for the software
comparison between RCE and OpenMDAO

In order to investigate the influence of the decomposition on
the total execution time of MDAO systems, it is necessary that
the software package which solves the MDAO systems supports
the execution of the different partitions as well (step 4 in Figure
2.6). The decomposition as defined in KADMOS is saved in a
CMDOWS file. The support to interpret this CMDOWS file and
translate it into an executable workflow including the different
partitions has been implemented in both RCE as well as Open-
MDAO.

To determine which software package is more suitable to
solve the mathematical equations, a comparison has been
made between the two. The most suitable software package
is the package which has the lowest execution time to solve the
MDAO systems. Furthermore, in order to create the opportu-
nity to perform large benchmarking studies, it must be easy to
create an automatic link between KADMOS and the software
package. The comparison was made by solving a small VCP problem, which is shown in Figure 6.2. The prob-
lem has five disciplines, a coupling density of 0.23 and one global constraint. The disciplines do not get an
execution time, such that only the overhead of the software is compared.

Table 6.1 shows the comparison for the convergence of the mathematical problem using three different
architectures: a Gauss-Seidel convergence, a Jacobi convergence and a convergence with two partitions. The
convergence tolerance is set to 10−10 to increase the number of iterations and to emphasize the time differ-
ences. The start point is -0.5 for both the local as well as the global design variables. The different architec-
tures are all executed using one CPU.

Table 6.1: Performance comparison between RCE and OpenMDAO for three different MDA architectures

RCE OpenMDAO
Execution # function Objective Execution # function Objective

Architecture time [s] evaluations value time [s] evaluations value

MDA-GS 11 11 0.99878 0.39 11 0.99878
MDA-2P 11 12 0.99878 0.46 11 0.99878
MDA-J 21 22 0.99878 0.40 22 0.99878

The results show that RCE has clearly a bigger overhead than OpenMDAO. RCE performs roughly one iter-
ation per second, while OpenMDAO finishes the entire convergence in less than half a second. Both software
packages obtain the same design point in the same amount of iterations, except for the partitioned architec-
ture for which RCE performs one iteration more than OpenMDAO.

Table 6.2 shows the comparison for the optimization of the VCP problem using four different architec-
tures. Three architectures used the MDF architecture, while one used the IDF architecture. The converger
loop in the MDF architectures is solved using a Gauss-Seidel, Jacobi or partitioned convergence with two
partitions. The objective tolerance was set to 10−6 and the optimizations are again executed using one CPU.
Note that the optimization algorithms are different, due to the differences in optimization packages that are
available within the two software packages. RCE uses the DAKOTA package, while OpenMDAO uses the SciPy
package. The optimization algorithm used by RCE is the COBYLA algorithm, while OpenMDAO used the
SLSQP algorithm.

The results show that the execution time in RCE is significantly larger than the execution time in Open-
MDAO. RCE needed 6.5 to 41 minutes to solve the different optimization problems, while OpenMDAO was
always finished in less than three seconds. Furthermore, the results show that both software packages found
the same objective function for all four architectures. The number of iterations is similar for the two soft-
ware packages, except that the number of iterations performed by OpenMDAO using the IDF architecture is
significantly lower than the number of iterations performed by RCE.

Overall, it can be concluded that OpenMDAO is much faster than RCE. Therefore, it is chosen to use
OpenMDAO during the research. Another benefit of OpenMDAO is that KADMOS, OpenMDAO and Open-
LEGO (used to translate the CMDOWS files into an OpenMDAO model) are all written in Python. This makes
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Table 6.2: Performance comparison between RCE and OpenMDAO for four different MDO architectures

RCE OpenMDAO
Execution Objective Execution Objective

Architecture time [s] # iterations value time [s] # iterations value

MDF-GS 1379 176 0.50084 1.80 127 0.50084
MDF-2P 1051 162 0.50084 2.53 184 0.50084
MDF-J 2460 156 0.50084 2.60 117 0.50084
IDF 389 393 0.50084 2.62 125 0.50084

it easy to extend the process in Figure 2.6 with an automatic link between KADMOS and OpenMDAO.

6.3. Validation of the Runtime Estimation
During the benchmarking of the different architectures, each discipline was given a random execution time.
These execution times range from 1 to 1000 seconds and are implemented using a sleep function in Python.
However, running all the optimization problems in real time is both not feasible nor necessary. When the
sleep function is used, the optimization would be sleeping most time, while it can be predicted beforehand
how long the runtime of each module will be. Therefore, an estimation of the total execution time is made
based on the number of iterations and function evaluations.

This estimation has as disadvantage that the overhead of OpenMDAO is not taken into account. The
previous section already showed that the overhead of OpenMDAO is limited when one CPU is used. To val-
idate whether this is also a reasonable assumption when multiple CPUs are used, a small test case with four
disciplines was executed in real time using the sleep function. The results are shown in Table 6.3.

Table 6.3: Difference between the estimated and measured execution time for two different architectures

Estimated Measured
Architecture # CPUs [-] time [s] time [s] Difference [%]

MDF-GS 1 832 844 1.4
IDF 4 115 121 5.0

The results show that the overhead of OpenMDAO is limited. The difference is twelve seconds for the MDF
with Gauss-Seidel convergence and eight seconds for the IDF optimization. Therefore, it can be concluded
that the estimated time is close to the measured time and that the difference are small enough to use the
estimated time for the benchmarking performed in the next section.

6.4. Architecture Benchmarking
Before this thesis, the disciplines in the MDAO system could only be executed either in sequence or in parallel,
as was explained in Section 2.2. Due to the sequencing and decomposition algorithms it is now possible to
create more refined execution processes, as will be shown in this section. In order to examine the influence
of the architecture and execution process of the MDAO systems on the total execution time, several MDAO
architectures are imposed on the VCP to compare their performance. The architectures can be divided into
the following five categories. An example of each category is shown in Figures 6.3 and 6.4.

1. Multidisciplinary Feasible (MDF): The optimizer takes care of finding the optimal value of the design
variables, while a system converger is responsible for converging the coupling variables and obtaining
a consistent solution.

(a) Jacobi (J): All disciplines in the converger loop are executed in parallel.
(b) Gauss-Seidel (GS): All disciplines in the converger loop are executed in sequence.
(c) Partitioned (2P): The disciplines are divided into two partitions. Each partition is executed in

parallel, while the disciplines within one partition are run in sequence.

2. Individual Discipline Feasible (IDF): The optimizer is responsible for finding the optimal value of the
design variables as well as converging the coupling variables.

(a) Classic IDF : All disciplines in the optimizer loop are executed in parallel (except for the constraints
and objective functions)
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(b) Partitioned (2P): The disciplines in the optimizer loop are divided into two partitions. Each parti-
tion is executed in parallel, while the disciplines within one partition are run in sequence.
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Figure 6.3: Examples of the different MDF architectures used during the benchmarking

During the benchmarking, each mathematical problem is randomly generated. Therefore, 30 randomly
generated problems were formulated and solved for each test case. The average execution time of these 30
problems is shown in the results. Furthermore, a baseline test case was formulated with which the other test
cases are compared. The baseline test case consists of 10 disciplines, 5 coupling variables per discipline, a
coupling density of 0.08 and no clusters. Lastly, as explained in Section 4.1, it is assumed that there is no limit
on the number of available CPUs and thus no limit on the number of parallel executions.
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Figure 6.4: Examples of the different IDF architectures used during the benchmarking

6.4.1. Influence of the Decomposition
The results for the baseline test case are shown in Figure 6.5a. The x-axis shows the maximum execution time
that can be given to a discipline. For example, a value of 250 means that each discipline is given a random
execution time between 1 an 250 seconds.

The results show that in this case the IDF is the fastest architecture, while the MDF-GS is the slowest
architecture. When comparing the MDF architectures only, it can be seen that the decomposition into two
partitions already performs better than the Gauss-Seidel convergence, while the Jacobi is the fastest of the
three. This can be linked to the discussion from Section 2.4 on the trade-off between the execution time of
one iteration and the coordination complexity. Increasing the number of parallel executions will decrease
the execution time of one iteration, but will increase the number of iterations as the coordination complexity
is increased. The results in this figure clearly shows that, in this case, the reduction in execution time of
one iteration has a bigger impact on the total execution time than the increase in number of iterations. This
can also be concluded from the comparison of the two IDF architectures, as executing all the disciplines in
parallel has led to a lower total execution time than dividing the disciplines into two parallel partitions.

However, it is important to notice that this is not always the case. Figure 6.5b shows again the baseline
case, but this time one discipline is given a significantly longer execution time than the other disciplines. For
example, if the maximum discipline execution time (shown on the x-axis) is 250, each discipline is again given
a random execution time between 1 and 250 seconds. Except for one discipline, which is given an execution
time of 10 ·250 = 2500 seconds. This means that this discipline has a longer execution time than the sum of
all other disciplines, because the baseline test case consists of ten disciplines in total. This case is relevant as
this situation can for example happen when a CFD analysis is added in an aircraft design analysis.

In this case, the MDF-J and IDF architectures are not the fastest but the slowest architectures. Instead,
both the partitioned MDF and IDF architectures are the fastest architectures. Due to the long execution time
of one discipline, the execution time per iteration is the same for the IDF, MDF-J and partitioned architec-
tures. However, as the coordination complexities of the IDF and MDF-J architectures are higher than for the
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(a) Baseline case (b) Baseline case while one discipline gets a significantly
longer execution time than the other disciplines

Figure 6.5: Architecture benchmarking using the baseline test case while varying the execution time of the disciplines

partitioned architectures, the number of iterations is higher and thus the total execution time is also higher.
The two cases shown in Figure 6.5 clearly show that there is no ’one-size-fits-all’ solution exists when

solving MDAO problems. It also shows the importance of a good execution process formulation. A proper
decomposition and parallel execution can significantly reduce the total execution time.

6.4.2. Improving the Execution Process
The previous case showed that the shortest execution time of one iteration is equal to the longest execution
time of one discipline. So, in order to minimize the coordination complexity and thus the total execution
time, it can be beneficial to run other disciplines in sequence as long as it does not increase the execution
time of one iteration. An example is shown in Figure 6.6. Figure 6.6a shows the problem formulation when
all disciplines are executed in parallel. Disciplines 1 and 5 have an execution time of five seconds, while the
other disciplines have an execution time of two seconds. In this case, disciplines 6 and 2, and 4 and 3 can
be executed in sequence, as shown in Figure 6.6b. The execution time of one iteration is still five seconds.
However, the coordination complexity has reduced with two couplings.
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Figure 6.6: Improving the execution process by running some disciplines in sequence. Disciplines 1 and 5 have an execution time of five
seconds. Disciplines 2, 3, 4 and 6 have an execution time of two seconds.

Another possibility to improve the execution process is to improve of the execution time of one itera-
tion while not increasing the coordination complexity by running some disciplines in parallel. An example is
shown in Figure 6.7. Figure 6.7a shows an example in which all the disciplines are executed in sequence. In
this case, disciplines 6 and 4 have no data dependencies. Therefore they can be executed in parallel. Further-
more, there is no need for disciplines 1 and 2 to wait until discipline 4 is finished as they do not receive input
from discipline 4. So the process can be optimized as shown in Figure 6.7b. In this case, the execution time
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of one iteration has been reduced with two seconds, while the coordination complexity has not increased.

1, 8 → 2:

CONV
2: y4 1c 6: y2 1c

2:

D3
3: y3 1 7: y3 1

3:

D5
4: y5 1 5: y5 1

4:

D6
6: y6 1 7: y6 1

8: y4 1
5:

D4

6:

D1
7: y1 1

8: y2 1
7:

D2

(a) Original execution process

1, 7 → 2:

CONV
2: y4 1c 5: y2 1c

2:

D3
3: y3 1 6: y3 1

3:

D5
4: y5 1 4: y5 1

4:

D6
5: y6 1 6: y6 1

7: y4 1
4:

D4

5:

D1
6: y1 1

7: y2 1
6:

D2

(b) Improved execution process

Figure 6.7: Improving the execution process by running some disciplines in parallel. Disciplines 1 and 5 have an execution time of five
seconds. Disciplines 2, 3, 4 and 6 have an execution time of two seconds.

Both process optimizations have been applied to the MDF-GS, MDF-J and IDF architectures for the base-
line test case. The results are shown in Figure 6.8. Figure 6.8a shows the influence of the process optimization
for the MDF architectures, while Figure 6.8b shows the influence of the process optimization for the IDF ar-
chitectures. These two figures clearly show that the improvement process reduces the total execution time
needed to obtain the solution.

(a) MDF architectures (b) IDF architectures

Figure 6.8: Comparison of the total execution time between the original and improved execution process using the baseline test case

Due to the sequencing and decomposition algorithms in KADMOS, these improved processes are now
easily applied to for any MDAO system.

6.4.3. Addition of Subconvergers
Using the decomposition algorithm, partitions are easily made. This also creates the opportunity to add
subconvergers to the different partitions. An example is shown in Figure 6.9. A subconverger converges
the feedback couplings within the partition only. If couplings exists between the different partitions, these
couplings are converged by either a system-level optimizer (IDF) or a system-level converger (MDF).

Figure 6.10 shows the results when subconvergers are added to the partitioned architectures. The test
case is again the baseline test case. The results clearly show that adding subconvergers is not beneficial in
this case as the total execution time increases significantly. The reason for the increased execution time is
the extra iterations that need to be performed by the subconvergers. This increases the execution time of one
iteration performed by the system converger or optimizer. However, as the partitions are already converged,
less iterations need to be performed. The results show that, in this case, the decrease in number of itera-
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Figure 6.9: Example of a convergence with both a system convergers as well as two subconvergers

tions does not outweigh the increase in execution time of one iteration. Therefore, it is not beneficial to add
subconvergers to this test case.

Figure 6.10: Comparison of the total execution time for decomposed MDAO systems with and without subconvergers using the baseline
test case

6.4.4. Influence of the Coupling Density and the Presence of Clusters
The previous sections showed the influence of the execution process on the performance of the different
architectures. However, as mentioned in Section 6.4.1, the best architecture and execution process also de-
pends on the MDAO problem that is solved. Therefore, the influence of changing the MDAO problem on the
performance of the architectures is shown in this Section.

The results are shown in Figure 6.11 and 6.12 for the MDF and IDF architectures, respectively. Figures
6.11b and 6.12b show again the baseline test case. The coupling density is increased from 0.08 to 0.16 in
Figure 6.11a and 6.12a, and two perfect clusters are added in Figures 6.11c and 6.12c.

The results show that, in these cases, the MDF-J convergence is always the fastest and the MDF-GS is
always the slowest within the MDF architectures. When the coupling density is increased, the execution time
for the Gauss-Seidel and partitioned architectures increase as well, while the execution time for the MDF-
J and IDF remain more or less the same. Furthermore, the benefits of the improved execution process, as
described in Section 6.4.2, reduces for the MDF-GS, because less disciplines can be executed in parallel.

When perfect clusters are added to the problem, the benefits of the improved execution process increases
for the MDF-GS architecture and the execution time becomes similar to the partitioned architecture. The
reason for this is the fact that two perfect clusters have no data dependencies, therefore, they will automati-
cally be executed in parallel when the improved process is applied to the MDF-GS architecture. Furthermore,
it can be seen that this is the only case in which the execution time does not significantly increase when sub-
convergers are added to the partitioned MDF-architecture. The reason for this is that the different partitions
have no data dependencies and therefore, the system converger can be removed.
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(a) No clusters, high coupling density
(0.16)

(b) No clusters, low coupling density
(0.08)

(c) Two clusters, low coupling density
(0.08)

Figure 6.11: Architecture benchmarking using MDF.

(a) No clusters, high coupling density
(0.16)

(b) No clusters, low coupling density
(0.08)

(c) Two clusters, low coupling density
(0.08)

Figure 6.12: Architecture benchmarking using IDF.

6.5. Influence of the Available Resources
In the previous benchmarking results, it was assumed that enough processors were available to run the disci-
plines in parallel when necessary. However, this is not always the case. For example, when an MDO problem
is run on a single PC instead of a cluster, the amount of available CPUs is limited.

Figure 6.13 shows the influence of the number of available CPUs on the evaluation time for a small test
case of four disciplines. This figure clearly shows that the best architecture depends on the number of avail-
able CPUs. For example, the Gauss-Seidel architecture is the best MDF-architecture when only one CPU is
available. However, as the number of available CPUs is increased, the Gauss-Seidel architecture cannot ben-
efit from this. The Jacobi and distributed convergence can benefit and therefore, their evaluation time is
reduced. Eventually, they perform better than the Gauss-Seidel architecture.

Figure 6.13: Influence of the number of available CPUs on the execution time using different architectures

This figure clearly shows that the best solution strategy depends not only on the MDAO system, but also
on the number of available CPUs. Therefore, it is recommended to include the maximum number of available
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CPUs as an option in the sequencing and decomposition algorithms. This will create the opportunity to adapt
the solution strategy to the specific computational environment.

6.6. Limitations of the Variable Complexity Problem
During the benchmarking studies, the VCP problem has proven to be very useful in solving large amounts of
MDAO systems in a short time frame. In Section 6.1, it was explained how the B matrix was adapted to meet
the convergence criteria of the fixed-point iterators. However, this adaption to the VCP has also created some
limitations. For example, when the number of coupling variables per disciplines or number of disciplines
were increased significantly it was expected that the MDAO system would be harder to solve and thus the
number of iterations would increase. However, this effect was not clearly visible in the results. The reason for
this is that when the coupling variables per discipline or the number of disciplines was increased, the values
in the diagonal of the B matrix had to be increased as well to satisfy the convergence criteria. However, when
these values are increased, the influence of each variable on the outcome of the discipline is reduced, in other
words the sensitivity of each coupling decreases. Therefore, the number of iterations did not increase signifi-
cantly even though the complexity of the MDAO system was increased.

Overall, this chapter has shown the successful implementation of the decomposition in the full AGILE process
as defined in Figure 2.6. The results show that the decomposition can reduce the convergence time of MDAO
systems a lot. Especially the more refined process formulation for the Gauss-Seidel, Jacobi and IDF imple-
mentation proved to be very beneficial. Furthermore, this chapter has shown how the opportunity has been
created to easily perform large benchmarking studies using a large variety of MDAO systems and MDAO ar-
chitectures. The benchmarking has shown that there is no ’one-size-fits-all’ solution towards solving MDAO
systems. The best MDAO architecture and execution process depends heavily on the MDAO system and the
number of available resources.





7
Test Case 2: Initiator

The previous chapter showed that a good decomposition and sequencing is important to reduce the conver-
gence time of MDAO systems. This was shown on a scalable mathematical test case. However, a mathematical
test case differs from a more realistic design case. In order to show the benefits of the MDAO development
process from Figure 2.6 including the automated execution process, a novel implementation of the Initiator
toolbox was developed. The Initiator [15] is a software tool for the conceptual design and analysis of aircraft.
In this chapter, the full MDAO development process will be applied to the analysis and optimization of an
Airbus A320-200.

7.1. Implementation into the AGILE MDAO development process
As explained in Chapter 2, the MDAO development process consists of five steps. The first step in the devel-
opment process is the creation of the repository. Several developments and changes had to be made to the
Initiator in order to implement the software tool in the development process:

Creation of stand-alone modules
The first step was the creation of stand-alone modules. Figure 7.1 shows the UML-diagrams of the original
and new implementation of the Initiator. In the original implementation (Figure 7.1a), the execution process
of the different modules is controlled by the InitiatorController class. Each module in the Initiator is a sub-
class of the InitiatorController class. The Controller writes the module input, runs the modules, and collects
their output. It determines when a certain module has to be executed and checks whether the solution has
been converged. The resulting aircraft is stored in the Aircraft class, which is also a subclass of the Initia-
torController class. The aircraft object contains all properties and requirements for the aircraft. The aircraft
consists of several parts. Each of them are stored in a separate instance of the Part class, which is a subclass
of the Aircraft class.

Figure 7.1b shows the new implementation of the Initiator in which stand-alone modules have been cre-
ated. The main difference is that the modules are no longer a subclass of the InitiatorController class. The
Module class is now an independent class, which takes a Controller object as input. It uses the data in the
Controller object for the calculations and writes the results back to the object. Hence, the creation of the
stand-alone modules has changed the function of the InitiatorController class. It is now only used to store
data. As the execution process is formulatd by KADMOS and the different modules are executed by OpenM-
DAO, it has completely lost its coordination function. The Aircraft class and Part class did not change.

Creation of the general data schema
The second step involved the creation of a central data schema. As explained in Section 2.1.2, the MDAO
development process is based on a service oriented architecture for efficient collaboration. Therefore, each
module must use the same data schema such that the different modules can be easily combined into an
executable workflow. Within the AGILE Paradigm, CPACS is used as the standard data schema for the different
disciplinary analyses [8]. However, the Initiator has not been developed using CPACS. Hence, it would require
a lot of changes to the make the Initiator modules CPACS compatible. Therefore, it was chosen to develop a
new central data schema such that the changes to the modules are minimized.

63
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(a) Original implementation (b) New implementation

Figure 7.1: Difference between the original and new implementation of the Initiator toolbox

The central data schema must be interpretable by both KADMOS, OpenLEGO as well as the Initiator
modules. The data schema has a similar setup as the Controller object. This makes it easy to translate the
data schema into a Controller object and back. The layout of the data schema is shown in Figure 7.2. The
dataschema starts with an initiator element. This element is comparable to the InitiatorController class. They
both contain the different settings for the aircraft and Initiator modules. Furthermore, when an optimization
is performed, the values of the constraints are also stored in the InitiatorController class.

Figure 7.2: Data schema Initiator

As can be seen in the data schema, the initiator element has an aircraft element. This element corre-
sponds to the Aircraft class. It contains the missions, design requirements, performance and configuration
parameters, reference data, results. The results correspond to the output by the different modules. For ex-
ample, the mass breakdown gives an overview of the different masses for the different missions, while the
fuelGeometric contains all information on the fuel tank, fuel mass and fuel volume. Also the masses and CG
values for the different components are stored in the results element, as well as the wing loading and thrust
loading values. The aircraft element also contains a parts element, which correspond to the Part class of the
Initiator. The parts elements contain the geometry and properties of the different wings, fuselages, engines
and landing gear. Finally, the element scaledVariables contains the values that are used to scale the objective
function during the optimization of the aircraft. An example of an Initiator data file using the new schema
can be found in Appendix B.
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Creation of the input and output files
The next step concerns the creation of the input and output files. For each module, a list is made with the
variables that are needed to execute the module. The original XML reader present in the Initiator is slightly
adapted such that it can read the new data schema and can translate it into a InitiatorController object. The
data dependencies between the different modules are removed, such that the modules only use the input
from the InitiatorController object. Furthermore, the XML writer from the Initiator is also slightly adapted
such that it can translate the object back into the new data schema. Finally, for each module a list is created
which states which output variables are given by each module.

Creation of a Python wrapper
The last step is the creation of a Python wrapper. The Initiator modules are all written in Matlab, but Open-
LEGO and OpenMDAO are written in Python. Therefore, a Python wrapper is needed, such that the Initiator
modules can directly be executed by OpenMDAO. This was achieved by formulating an execute function,
which creates a Matlab engine in which the modules can be run. By providing each module with its own
Matlab engine, the different modules can be executed in parallel.

Module Selection
Several modules from the Initiator were included in the repository as listed below. The modules were chosen
such that an initial design of the A320-200 aircraft could be made.

• Database: collects reference aircraft and engines based on the given input. It stores the reference data
in a separate file, which will be used by the other disciplines to make a first estimation of certain pa-
rameters.

• Empirical OEM : makes a first estimation of the Operational Empty Mass (OEM), based on the reference
aircraft from the Database.

• Class 1 Weight Estimation: provides an initial estimation of the main masses, based on the OEM.
• Fuselage Configurator: configures the entire fuselage layout. It calculates both the outer geometry as

well as the cabin layout.
• Wing Thrust Loading: determines an initial design point, based on several constraint on the wingload-

ing and thrustloading.
• Geometry Estimation: calculates the geometry of the wing, engine and empennage.
• Class 2 Weight Estimation: calculates the masses and CG values of the different components.

These modules are loaded into KADMOS using a CMDOWS file. This corresponds to step 1 in Figure
2.6. KADMOS establishes the connections between the different modules and creates the RCG as shown in
Figure 7.3. The order of the modules in the RCG was determined using the branch-and-bound algorithm
from Chapter 4.

This figure shows how the transparency of the Initiator has already increased by only formulating the
repository and RCG. In the original implementation of the Initiator, one could only find the relations between
the different modules by digging through the code. Due to the creation of the stand-alone modules and the
usage of a central data schema, the input and output connections are now immediately clear.

7.2. Validation
Once the modules are collected and loaded into KADMOS, several problem formulations were made and
compared to the original implementation of the Initiator to validate the results (step 2, 3 and 4 in Figure 2.6).
The test case that was used, was the conceptual design of an Airbus A320-200. Three different architectures
were used: the Gauss-Seidel convergence, the Jacobi convergence, and the partitioned convergence with two
partitions. The resulting architectures are shown in Figure 7.4.

The partitioning was performed using an RCB value of 0.5. This means that the execution time and coor-
dination complexity are equally important. Each of the modules was given an execution time. The Database
and Empricial OEM got an execution time of four seconds, the Class 1 Weight Estimation three seconds, the
Wing Thrust Loading five seconds, both the Fuselage Configurator as well as the Geometry Estimation seven
seconds, and finally, the Class 2 Weight Estimation 12 seconds. Note that these values are an estimation. The
execution time of the disciplines fluctuated a lot. For example, at the beginning of the convergence, the Class
2 Weight Estimation started with execution times of around 20 seconds. However, when the solution was
almost converged, the execution time reduced to around seven seconds or even less.
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19 in. 22 in. 23 in. 51 in. 48 in. 72 in. 79 in.

1 out. Database Ref. aircraft data Ref. aircraft data Ref. aircraft data Ref. engine data
Ref. aircraft data
Ref. engine data
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Empirical-

OEM
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Estimation

MTOM
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W/S, T/W
CLmaxland
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geometry)

140 out. OEM MTOM

MTOM , MLM ,
FFmission,

FuelTankVolume-
Constraint

MTOM
Class2Weight-

Estimation

Figure 7.3: RCG of the KADMOSized Initiator

The final partitioning is shown in Figure 7.4b. The first partition consists of the Geometry Estimation
and the Class 2 Weight Estimation, with a total execution time of 19 seconds. The second partition consists
of the Class 1 Weight Estimation, Fuselage Configurator and Wing Thrust Loading with an execution time
of 10 seconds. Note that the Wing Thrust Loading and Fuselage Configurator can be executed in parallel as
well, therefore the execution time of this partition is 10 instead of 15 seconds. The first partition has a longer
execution time than the second partition. They would have been better balanced if the Geometry Estimation
was placed in the second partition. However, as the Geometry Estimation and Class 2 Weight Estimation
have a high coupling strength, the number of cut edges would increase too much. Therefore, the unbalanced
partitioning is preferred.

The results are shown in Table 7.1 and the convergence history of both the MTOM and OEM are shown in
Figure 7.5. The convergence tolerance was set to 10−4. Note that the original implementation of the Initiator
only converges the MTOM, while KADMOS/OpenMDAO converges all variables that are connected to the
converger.

Table 7.1: Convergence results of the conceptual design of the A320-200 using four different methods

Original Matlab
Range: 4000km Implementation Gauss-Seidel Two Partitions Jacobi

# iterations [-] 6 7 9 12
MTOM [t] 81.791 81.789 (-0.0024%) 81.793 (+0.0024%) 81.795 (+0.0049%)
OEM [t] 43.897 43.895 (-0.0046%) 43.898 (+0.0023%) 43.900 (+0.0068%)
Actual execution time [s] 313 620 735
Estimated execution time [s] 105 298 (1 CPU) / 214 (2 CPUs) 144 (5 CPUs)

258 (2 CPUs)

It can be concluded that the different architectures are all converging to the same point and that the dif-
ferences in MTOM and OEM are minimal. The number of iterations increases when more disciplines are
executed in parallel. However, due to the parallel execution of the disciplines, the execution time decreases.
This supports the earlier discussion in Section 2.4 on the interaction between the decomposition and coor-
dination process. Increasing the number of partitions will decrease the execution time of one iteration, but
increases the number of iterations as the coordination complexity is increased.

Note that the execution time in these results are an estimation. The different architectures were all exe-
cuted using 1 CPU. Based on the measured runtime, the total execution time was estimated when more CPUs
would have been used. The reason for this is that due to time limitations, there was no time to install the
software needed to combine the Initiator modules with the parallel execution in OpenMDAO.
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(a) Gauss-Seidel convergence
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(b) Convergence with two partitions
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(c) Jacobi convergence

Figure 7.4: Different convergence strategies used to validate the Initiator and the decomposition
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(a) MTOM (b) OEM

Figure 7.5: Convergence history of the MTOM and OEM for different architectures

Finally, it can be concluded that the execution time of the new implementation is significantly longer than
the original implementation. This is due to two reasons. First of all, in the new implementation, a separate
matlab engine was started for each module. Starting a matlab engine takes around 10-15 seconds. So, starting
seven engines takes 70-100 seconds. This could easily be resolved by using Python for the different modules
instead of Matlab. The second reason is the reading and writing of the input and output files. Each time a
module is called, the input file needs to be translated into an InitiatorController object and once the module
is finished, the object needs to be translated back into an output file. This increases the execution time of
the modules significantly. Furthermore, all the results from a module are now written to the output file. The
performance could be improved by only writing the necessary data to the output file.

However, even though the execution time increases, the new implementation of the Initiator also has
several benefits. One of them is the simplicity with which you can run an optimization and the easiness with
which you can add and remove modules from the design problem.

7.3. Optimization
The implementation of the Initiator into KADMOS creates several opportunities for analyses, that were dif-
ficult to achieve using the original implementation. For example, a hotstart, DOE or optimization are now
easy to perform. Furthermore, the agility of the Initiator has improved a lot, as it is now very easy to remove
or add new modules to the design case. To demonstrate this, several optimization studies were performed on
the A320-200 design.

Three design variables were chosen for the optimization, namely the wing loading, thrust loading and
aspect ratio. In order for the aspect ratio to have a proper influence on the design, an aerodynamics module
is needed. The aerodynamics module that was implemented calculates the drag polar using equation 7.1.

CD =CD0 +
C 2

L

πAe
(7.1)

The induced drag, CDi , is calculated using the Athena Vortex Lattice (AVL) software1, while the values for
the parasite and wave drag, CD0 , are held constant to a total value of 200 drag counts.

Thanks to KADMOS, the implementation of a new module is now very simple. The AVL module must use
the same data schema for its inputs and outputs as the rest of the modules. However, no connections have to
made with the other modules, as KADMOS automatically takes care of this. AVL has been implemented using
a Python wrapper2. This clearly shows that different modules, using different programming languages, can
now easily be combined as long as they use the same data schema.

Besides AVL, also a constraint and two objective modules were added to the repository. The constraint
module will replace the Wing Thrust Loading module during the optimization. The Wing Thrust Loading
assumed the design point by choosing a point on the wing and thrust loading diagram. In the constraint

1http://web.mit.edu/drela/Public/web/avl/, accessed 14th January 2019
2https://github.com/renoelmendorp/AVLWrapper, accessed 14th January 2019

http://web.mit.edu/drela/Public/web/avl/
https://github.com/renoelmendorp/AVLWrapper
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module, the current design point will be checked against the constraints in the wing and thrust loading di-
agram. Therefore, the best design point is no longer an assumption, but the result of the optimization. The
objective is either the minimization of the MTOM or the fuel mass. The new repository with both the Initiator
modules as well as the newly added modules is shown in Figure 7.6.

The resulting XDSM for the optimization for minimum MTOM is shown in Figure 7.7. As mentioned
before, the Wing Thrust Loading module has been removed and the AVL, constraint and objective modules
are added. In the first optimization case, the objective is the minimization of the MTOM, while varying the
range from 3000 to 5000km.

The results are shown in Figures 7.8 and 7.9. Figure 7.8 shows the history of the design variables for a range
of 3000, 4000 and 5000km, respectively. Figure 7.9a visualizes the optimized wing geometries and Figure 7.9b
shows the constraint history for a range of 4000km. Finally, Figure 7.10 shows the final wing thrust loading
diagram for a range of 4000km. The initial and final values for the objective values, constraints and design
variables are shown in Table 7.2. The history of the constraints and wing thrust loading diagram for a range
of 3000 and 5000km, can be found in Appendix C.

The results show that the wing loading and thrust loading are increasing with increasing range, while the
aspect ratio is decreasing. Due to decrease in aspect ratio, the L/Dmax decreases as well. Furthermore, the
MTOM and OEM increases with increasing range as more fuel mass is needed. The wing geometry shows an
an increase in surface area. This is due to the fact that the aspect ratio is decreasing, while the wing span
keeps constant. The wing span is constant, because the maximum wing span constraint is active in the final
design point. As can be seen in Figures 7.9b and 7.10 and Table 7.2, three constraints are active in the final
design point, namely the maximum wing span constraint, landing distance and take-off distance. Each of
these constraint put a bound on one of the design variables. In order to minimize the MTOM, the wing thrust
loading must be maximal. Therefore, the landing distance constraint is the active constraint for the wing
loading. Furthermore, the thrust loading must be minimal. The thrust loading is constraint by the take-off
distance. Finally, the aspect ratio must be maximal as this will maximize the L/Dmax and thus minimizes the
MTOM. As can be seen in Figure 7.10, the aspect ratio is bounded by the maximum wing span constraint.
Note that the MTOM in the final design point is higher than in the initial design point. The reason for this is
that the wing span constraint was violated at the initial point, but satisfied at the final design point.

Because the wing span constraint was active in the previous optimization case, an optimization was per-
formed without this constraint. Changing the optimization is now very simple in KADMOS. The problem
role of the wing span constraint must only be changed from constraint to quantity of interest. The results are
shown in Appendix C. The results show an significant increase in span, while the MTOM reduces with 730kg.

With the new implementation of the Initiator, it is not only very easy to add and remove constraints, but
also to change the objective function. Another optimization was performed by minimizing the fuel mass in-
stead of the MTOM. In this case, the optimization was reformulated in KADMOS by removing the Objective-
MTOM module and inserting the Objective-FM module. The results can again be found in Appendix C. The
results show a reduction in fuel mass of 350kg, while the MTOM increases with 100kg.

This chapter has shown a successful implementation of the Initiator toolbox into the MDAO development
process. A full automation of the process has been achieved, starting with a repository of stand-alone mod-
ules, through the MDAO problem formulation until the creation of the executable workflow. Even though the
computational time increased significantly with respect to the original toolbox, the new implementation has
shown a lot of benefits. First of all, the new implementation has increased the transparency of the Initiator.
Thanks to KADMOS, the input and output connections between the different modules can now clearly be vi-
sualized. Furthermore, the automated execution process formulation has made it possible to run the Initiator
on multiple CPUs. Next to that, the new implementation of the Initiator has shown an improved flexibility.
New modules can now easily be combined with the Initiator even when they are written in different pro-
gramming languages as long as they use the same central data schema. Thanks to the automated execution
process the new MDAO system is easily reformulated after the addition of the new modules. Finally, the full
MDAO development process has made it possible to run different types of analysis which were not possible
with the original Initiator. Hotstarts, DOEs and optimizations are now easily performed.
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Table 7.2: Initial and final values for the minimization of the MTOM for a range of 3000, 4000 and 5000km

Range: 3000 km Range: 4000 km Range: 5000 km
Start End Start End Start End Lower Upper
Value Value Value Value Value Value Bound Bound

Objective
MTOM [-] (scaled) 0.89705 0.89725 1.00565 1.01261 1.09106 1.10961 - -
MTOM [kg] (abs.) 73369 73385 82252 82821 89237 90754 - -

Design Variables
A [-] 9.50 9.11 9.50 8.43 9.50 8.02 6 13
W/S [N /m2] 5100 5072 5100 5289 5100 5516 2000 7000
T/W [-] 0.290 0.293 0.290 0.312 0.290 0.329 0 0.6

Quantities of
Interest
OEM [kg] 39860 39726 44084 43828 46335 46159 - -
L/Dmax 17.79 17.53 17.79 17.00 17.78 16.66 - -

Constraints
Balked Landing -0.5953 -0.5846 -0.65308 -0.7009 -0.7131 -0.8229 - 0
Climb AEO
Balked Landing -0.0997 -0.09336 -0.13956 -0.1756 -0.1809 -0.2613 - 0
Climb OEI
Cruise Speed -0.3079 -0.3043 -0.2974 -0.3667 -0.2863 -0.4209 - 0
En Route Climb -0.5328 -0.5119 -0.5328 -0.5411 -0.5327 -0.5741 - 0
Fuel Tank Volume -0.5230 -0.5277 -0.4539 -0.4297 -0.3870 -0.3262 - 0
Initial Climb -0.1729 -0.1529 -0.1729 -0.1675 -0.1729 -0.1876 - 0
Landing Distance 0.0074 3.140e-05 -0.0278 -0.0001 -0.0618 6.0835e-05 - 0
Max Cruise -0.2725 -0.2765 -0.2725 -0.2456 -0.2725 -0.2131 - 0
Lift Coefficient
Max Wing Span 0.0340 -0.0013 0.13832 -8.454e-05 0.2058 -0.0001 - 0
Second Segment -0.0460 -0.0311 -0.0460 -0.0498 -0.04602 -0.0714 - 0
Climb
Take-Off Distance -0.0076 7.425e-07 -0.0076 5.062e-05 -0.0076 6.1021e-08 - 0
Time To Climb -0.6524 -0.6604 -0.6522 -0.7598 -0.6519 -0.8427 - 0
Transition Climb -0.1171 -0.0961 -0.1171 -0.1066 -0.1171 -0.1235 - 0
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72 7. Test Case 2: Initiator

0, 13:

COOR
1: 19 in. 2: 22 in. 3: 3 in. 4: 4 in. 5: 22 in. 6: 51 in. 7: 71 in. 8: 80 in. 9: 7 in. 11: in. 11: 42 in.

1:

Database
2: 1 conn. 6: 1 conn. 7: 1 conn. 8: 2 conn. 11: 1 conn.

2:

Empirical-
OEM

5: 1 conn. 6: 2 conn. 8: 1 conn.

13: 3 out.
3, 12 → 4:

OPT
7: 3 conn. 8: 2 conn. 11: 3 conn.

4, 10 → 5:

CONV
5: 2 conn. 6: 2 conn.

5:

Class1Weight-
Estimation

6: 3 conn. 7: 3 conn. 8: 16 conn. 9: 1 conn. 11: 3 conn.

6:

Fuselage-
Configurator

7: 17 conn. 8: 47 conn.

13: 14 out. 10: 2 conn.
7:

Geometry-
Estimation

8: 80 conn. 9: 23 conn.

13: 5 out. 10: 1 conn.

8:

Class2Weight-
Estimation

9: 1 conn. 11: 1 conn. 11: 4 conn.

13: 1 out. 10: 1 conn.
9:

AVL
11: 4 conn.

13: 1 out. 12: 1 conn.
11:

Objective-MTOM

13: 13 out. 12: 13 conn.
11:

Constraints

Figure 7.7: XDSM of the optimization for minimum MTOM using the Initiator

(a) 3000 km (b) 4000 km (c) 5000 km

Figure 7.8: History of the design variables for the minimization of the MTOM

(a) Wing geometry (b) History of the constraints for a range of 4000 km

Figure 7.9: Wing geometry and history of the constraints for the minimization of the MTOM
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Figure 7.10: Wing thrust loading diagram for a range of 4000km when minimizing the MTOM

(a) 3000 km (b) 4000 km (c) 5000 km

Figure 7.11: History of the quantities of interest for the minimization of the MTOM





8
Conclusions & Recommendations

A proper sequencing and decomposition is a key prerequisite for obtaining MDAO systems that can be exe-
cuted efficiently. This thesis showed how the setup of the execution process of large coupled MDAO systems
can be fully automated to reduce the formulation time and to optimize workflow convergence. Based on the
results, several conclusions can be drawn:

• Successful development of four sequencing algorithms for the automatic determination of the execution
order of the disciplinary analysis
Before this thesis, sequencing could only be performed manually. By implementing four different se-
quencing algorithms, which all differ in speed and accuracy, high-quality execution orders are auto-
matically found for both small and large MDAO systems in a short time. The algorithms do not only
minimize the number of feedback connections, but also take the execution time of the sequence into
account to reduce the total convergence time of MDAO systems even further.

• Successful implementation of the new Metis-based Decomposition algorithm for KADMOS graphs: MDK
Besides the support of decomposition in KADMOS, also a new decomposition algorithm, based on the
Metis software package, has been implemented to automatically determine the best division of the
different disciplinary analyses over multiple partitions. The algorithm returns high-quality partitions
with excellent performance and scalability.

• Support of decomposition over the full AGILE process
Decomposition reduces the convergence time of MDAO systems by executing multiple partitions si-
multaneously. Initially, KADMOS did not support the formulation of partitions, as all disciplinary anal-
yses could only be executed either in parallel or in sequence. Therefore, the option has been created
to formulate partitions in the monolithic architectures of KADMOS. This option has been extended
through the full AGILE process. Both RCE and OpenMDAO can now interpret the partitions and exe-
cute them accordingly.

• Creation of the opportunity to perform large benchmarking studies using a large variety of MDAO sys-
tems and MDAO architectures
The automation of the execution process formulation and the implementation of scalable mathemati-
cal problem has created the opportunity to perform large benchmarking studies. Thousands of MDAO
systems are easily generated and executed. The benchmarking performed in this thesis showed that
there is no ’one-size-fits-all’ architecture for solving MDAO systems. The best architecture depends
both on the type of MDAO system and the available computational resources.

• Improved process formulation resulting in a significant convergence time reduction for the Gauss-Seidel,
Jacobi and IDF implementations
Due to the automated execution process formulation, the convergence time of the Gauss-Seidel, Jacobi
and IDF convergence are easily improved. The convergence time of the Gauss-Seidel convergence is
improved by executing the disciplines with no data dependencies in parallel. This reduces the exe-
cution time of one iteration, while not increasing the number of iterations. The convergence time of
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the Jacobi and IDF architecture is improved by executing some disciplines in sequence, while not in-
creasing the execution time of one iteration. This reduces the number of iterations and thus the total
execution time. These new processes can now easily be applied thanks to the sequencing and decom-
position algorithms.

• Improved flexibility of the Initiator
The implementation of the Initiator toolbox into KADMOS has resulted in an improved flexibility of the
toolbox. Different analysis and optimization cases can easily be performed due to the fully automated
process in KADMOS. Furthermore, new modules are easily added or removed, as including new mod-
ules merely requires one to comply the module to the central data schema. In addition, these modules
can be written in different languages as long as they use the same data schema. Thanks to the sequenc-
ing algorithms, the new tools are automatically added at the correct location in the execution order.

• Improved transparency of the Initiator
The new implementation of the Initiator also resulted in an improved transparency of the Initiator.
Thanks to KADMOS, the input and output connections between the modules are clearly visualized.
This increases the understanding of the design process and helps in the debugging process when new
modules are added or existing modules are updated.

The automated execution process has showed its benefits towards optimizing the workflow and reducing
the setup and convergence time of MDAO systems. However, the results can still be improved further, and
based on the work performed in this thesis, the following main recommendations were identified:

• Addition of the sensitivities in the sequencing and decomposition algorithms
The results showed that the sensitivities between the input and output of the different disciplinary anal-
yses have a big influence on the convergence time of MDAO systems. Therefore, it is recommended to
include sensitivities into the sequencing and decomposition algorithms. For example, strong couplings
(connections with high sensitivity values) could then be placed within the same partition, while the
weak couplings could be used as connections between partitions and/or as feedback in the execution
sequence. When the sensitivities are known, a better trade-off between the coordination complexity
and execution time of the sequence can be made.

• Include the maximum number of available CPUs as an option in the sequencing and decomposition
algorithms
The results showed that the best architecture depends on the number of available CPUs. It is therefore
recommended to add the maximum number of available CPUs as an option in the sequencing and
decomposition algorithms. This will create the opportunity to adapt the solution strategy to the specific
computational environment.

• More research into which architecture is best for which MDAO system
As mentioned above, the results showed that there is no ’one-size-fits-all’ solution towards solving
MDAO systems. The best architecture depends, amongst others, on the characteristics of the MDAO
system. Therefore, it is recommended to perform more research into which solution strategy is best for
which type of MDAO system. Using the best solution strategy in combination with a proper execution
process will further reduce the time necessary to perform MDAO.

• Improve the execution time of the Initiator
The new implementation of the Initiator showed a lot of benefits in terms of improved flexibility and
transparency. However, its main disadvantage is the significant increase in convergence time with re-
spect to the original implementation. Several measures can be taken to decrease the convergence time
of the new implementation. For example, translating the modules from Matlab to Python will eliminate
the need for Matlab engines. Furthermore, the output writer of the Initiator can be improved. At the
moment, all generated data is written to the output file. Writing only the required data and variables of
interest will reduce the execution tiem fo the individual modules significantly.

• Improve Initiator data schema
The final recommendation concerns the implemented data schema for the Initiator prototype. It will
be easier to add new modules when a more standard data schema is used. For example, if a standard
data schema like CPACS is used, the Initiator could easily be connected to external design and analysis
tools that also make use of this data schema.
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This thesis has made a significant step towards the full automation of the execution process formulation
in MDAO systems. The obtained solutions can be improved in future work by optimizing the execution pro-
cess for the given computational environment and the inclusion of sensitivities. However, the current results
already showed a significant decrease in the execution time of MDAO systems. Furthermore, thanks to the
automation, the formulation of MDAO systems is easier and the setup time has been reduced. Therefore, this
thesis has made a direct contribution in reducing some of the barriers that still exist for using MDAO today.





A
Verification & Validation Plots

A.1. Sequencing plots

(a) Average number of feedback couplings (b) Average difference in feedback couplings with respect to
the exact solution

Figure A.1: Solution accuracy of the sequencing algorithms for different coupling densities when comparing the number of feedback
couplings. ρc = 0.08, ncv = 5, ntc = 200, no clusters

(a) Average execution time (b) Average difference in execution time with respect to the
exact solution

Figure A.2: Solution accuracy of the sequencing algorithms for different coupling densities when comparing the execution time of the
obtained sequences. ρc = 0.08, ncv = 5, ntc = 200, no clusters
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80 A. Verification & Validation Plots

(a) Average number of feedback couplings (b) Average difference in feedback couplings with respect to
the exact solution

Figure A.3: Solution accuracy of the sequencing algorithms for different numbers of coupling variables per discipline when comparing
the number of feedback couplings. ρc = 0.08, ncv = 5, ntc = 200, no clusters

(a) Average execution time (b) Average difference in execution time with respect to the
exact solution

Figure A.4: Solution accuracy of the sequencing algorithms for different numbers of coupling variables per discipline when comparing
the execution time of the obtained sequences. ρc = 0.08, ncv = 5, ntc = 200, no clusters

A.2. Decomposition plots

(a) Average objective value (b) Absolute differences with respect to the exact solution

Figure A.5: Solution accuracy of the MDK algorithm when varying the coupling density. nd = 8, np = 2, ncv = 5, ntc = 200, RCB = 0.5, no
clusters



A.2. Decomposition plots 81

(a) Average objective value (b) Absolute differences with respect to the exact solution

Figure A.6: Solution accuracy of the MDK algorithm when varying the number of coupling variables per discipline. nd = 8, np = 2, ρc =
0.08, ntc = 200, RCB = 0.5, no clusters

(a) Average objective value (b) Absolute differences with respect to the exact solution

Figure A.7: Solution accuracy of the MDK algorithm when varying the RCB. nd = 8, np = 2, ρc = 0.08, ntc = 200, ncv = 5, no clusters





B
Initiator Data File

1 <?xml version= ’ 1 . 0 ’ encoding= ’UTF- 8 ’ ?>
2 <cpacs>
3 < t o o l s p e c i f i c >
4 <TUDinitiator>
5 < i n i t i a t o r >
6 < a i r c r a f t uID="A320 - 200">
7 <parts>
8 <Wing uID="MainWing">
9 <Type>MainWing</Type>

10 <Sections>
11 < A i r f o i l >
12 <AirfoilName>b737a</ AirfoilName>
13 <Chord>7.8 183432339057886</Chord>
14 <Position>
15 <x>11 . 9 000636337804444</x>
16 <y>0 . 0000000000000000</y>
17 <z>- 0.5957003281282690</z>
18 </ Position>
19 </ A i r f o i l >
20 < A i r f o i l >
21 <AirfoilName>b737b</ AirfoilName>
22 <Chord> 4 . 0817555449718910</Chord>
23 <Position>
24 <x>15.6366513227143429</x>
25 <y>7.3990874721923641</y>
26 <z>0 . 1819751023003570</z>
27 </ Position>
28 </ A i r f o i l >
29 < A i r f o i l >
30 <AirfoilName>b737d</ AirfoilName>
31 <Chord>1 .98 13859757195100</Chord>
32 <Position>
33 <x>21 . 8 114368139764601</x>
34 <y>19.6262267166906206</y>
35 <z>1.4670992220802870</z>
36 </ Position>
37 </ A i r f o i l >
38 </ Sections>
39 <Kink>0.3770000000000000</Kink>
40 <SectionPositions mapType=" vector ">0 . 0000000000000000 ; 0 .3770000000000000 ; 1 . 000000000000

0000</ SectionPositions>
41 <SparPositions mapType=" vector ">0 . 1000000000000000 ; 0 .65 00000000000000</ SparPositions>
42 <FuelTank>
43 <HasTank>1 . 0000000000000000</HasTank>
44 <SpanPosition mapType=" vector ">0 . 0000000000000000 ; 0 . 8 000000000000000</ SpanPosition>
45 <Volume>41.2962815385265003</Volume>
46 </FuelTank>
47 <Orientation>
48 <phi>0 . 0000000000000000</phi>
49 <psi>0 . 0000000000000000</ psi>
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50 <theta>0 . 0000000000000000</ theta>
51 </ Orientation>
52 <Position>
53 <x>11 . 9 000636337804444</x>
54 <y>0 . 0000000000000000</y>
55 <z>- 0.5957003281282690</z>
56 </ Position>
57 <Span>39.2524534333812412</Span>
58 <SweepsLE mapType=" vector ">26.7940749732813650 ;26.794 0749732813650</SweepsLE>
59 <Dihedrals mapType=" vector "> 6 . 0000000000000000 ; 6 . 0000000000000000</ Dihedrals>
60 <Symmetric>true</Symmetric>
61 <RootChord>7.8 183432339057886</RootChord>
62 <Tapers mapType=" vector ">0.5220742327185830 ; 0.4854249486254220</Tapers>
63 <TcRatios mapType=" vector ">0 . 1536505470988710 ; 0 . 1256873739180040 ; 0 . 1080099688107340</

TcRatios>
64 <Twists mapType=" vector ">0 . 0000000000000000 ; 0 . 0000000000000000 ; 0 . 0000000000000000</

Twists>
65 </Wing>
66 <Wing uID=" H o r i z o n t a l S t a b i l i s e r ">
67 <Type>HorizontalTail</Type>
68 <Sections>
69 < A i r f o i l >
70 <AirfoilName>N64A010</ AirfoilName>
71 <Chord> 4 . 0089558836986443</Chord>
72 <Position>
73 <x>31.2923081532591532</x>
74 <y>0 . 0000000000000000</y>
75 <z>1.2994030987654330</z>
76 </ Position>
77 </ A i r f o i l >
78 < A i r f o i l >
79 <AirfoilName>N64A010</ AirfoilName>
80 <Chord>1 . 3 149375298531549</Chord>
81 <Position>
82 <x>35. 1359475679787963</x>
83 <y>6.6548667669397501</y>
84 <z>1.9988577810996000</z>
85 </ Position>
86 </ A i r f o i l >
87 </ Sections>
88 <Tapers>0.3280000000000000</Tapers>
89 <SparPositions mapType=" vector ">0 . 1000000000000000 ; 0 .65 00000000000000</ SparPositions>
90 <FuelTank>
91 <HasTank>0 . 0000000000000000</HasTank>
92 </FuelTank>
93 <Orientation>
94 <phi>0 . 0000000000000000</phi>
95 <psi>0 . 0000000000000000</ psi>
96 <theta>0 . 0000000000000000</ theta>
97 </ Orientation>
98 <Position>
99 <x>31.2923081532591532</x>

100 <y>0 . 0000000000000000</y>
101 <z>1.2994030987654330</z>
102 </ Position>
103 <Span>1 3.3 097335338795002</Span>
104 <SectionPositions mapType=" vector ">0 . 0000000000000000 ; 1 . 0000000000000000</

SectionPositions>
105 <SweepsLE>30 . 0093639700751318</SweepsLE>
106 <Dihedrals> 6 . 0000000000000000</ Dihedrals>
107 <Symmetric>true</Symmetric>
108 <RootChord> 4 . 0089558836986443</RootChord>
109 <Twists mapType=" vector ">0 . 0000000000000000 ; 0 . 0000000000000000</ Twists>
110 <TcRatios mapType=" vector ">0 . 1000000000000000 ; 0 . 1000000000000000</ TcRatios>
111 <Area>35.4298013485752961</Area>
112 </Wing>
113 <Wing uID=" V e r t i c a l S t a b i l i s e r ">
114 <Type> V e r t i c a l T a i l </Type>
115 <Sections>
116 < A i r f o i l >
117 <AirfoilName>N64A010</ AirfoilName>
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118 </ A i r f o i l >
119 < A i r f o i l >
120 <AirfoilName>N64A010</ AirfoilName>
121 </ A i r f o i l >
122 </ Sections>
123 <Tapers>0.3290000000000000</Tapers>
124 <FuelTank>
125 <HasTank>0 . 0000000000000000</HasTank>
126 </FuelTank>
127 <Orientation>
128 <phi>90 . 0000000000000000</phi>
129 <psi>0 . 0000000000000000</ psi>
130 <theta>0 . 0000000000000000</ theta>
131 </ Orientation>
132 <Position>
133 <x>29. 0988960815052700</x>
134 <y>0 . 0000000000000000</y>
135 <z>1.2994030987654330</z>
136 </ Position>
137 <Span>6.4743182586675392</Span>
138 <SectionPositions mapType=" vector ">0 . 0000000000000000 ; 1 . 0000000000000000</

SectionPositions>
139 <SweepsLE>28. 1337787219454327</SweepsLE>
140 <Dihedrals>0 . 0000000000000000</ Dihedrals>
141 <RootChord> 6 . 0894641259100251</RootChord>
142 <Twists mapType=" vector ">0 . 0000000000000000 ; 0 . 0000000000000000</ Twists>
143 <TcRatios mapType=" vector ">0 . 1200000000000000 ; 0 . 1200000000000000</ TcRatios>
144 <Symmetric> f a l s e </Symmetric>
145 <Area>26. 1979980715724210</Area>
146 </Wing>
147 <Fuselage uID=" Fuselage ">
148 <Type>Conventional</Type>
149 <HeightMargin>0 . 3 000000000000000</HeightMargin>
150 <NoseShapeFactor>0 . 1500000000000000</NoseShapeFactor>
151 <TailShapeFactor>0 . 2 000000000000000</ TailShapeFactor>
152 <AftRatioWidth>0 . 1400000000000000</ AftRatioWidth>
153 <AftRatioHeight>0 . 1400000000000000</ AftRatioHeight>
154 <FloorOffset mapType=" vector ">0 . 0000000000000000 ; 0 . 0000000000000000</ FloorOffset>
155 <PaxDivision>1 . 0000000000000000</ PaxDivision>
156 <CabinHeight>1.9299999999999999</CabinHeight>
157 <Cabins>
158 <Cabin uID="Cabin1">
159 <ClassDistribution mapType=" vector ">0 . 0800000000000000 ; 0 . 0000000000000000 ; 0 . 0000000

000000000 ; 0 .92 00000000000000</ ClassDistribution>
160 <Classes>
161 <EC>
162 <seatingArr mapType=" vector "> 3 . 0000000000000000 ; 3 . 0000000000000000</ seatingArr>
163 <seatingDim mapType=" vector ">0 .46 00000000000000 ; 0 . 0480000000000000 ; 0 . 8 1

29999999999999;0 . 8 000000000000000 ; 0 . 3 000000000000000</seatingDim>
164 </EC>
165 <FC>
166 <seatingArr mapType=" vector "> 2 . 0000000000000000 ; 2 . 0000000000000000</ seatingArr>
167 <seatingDim mapType=" vector ">0 .57 00000000000000 ; 0 . 0780000000000000 ; 0 . 9 140000000

000000 ; 0 . 8 000000000000000 ; 0 . 3 000000000000000</seatingDim>
168 </FC>
169 </ Classes>
170 <Position>
171 <x> 4 . 1398070832253282</x>
172 <y>0 . 0000000000000000</y>
173 <z>0 . 0500000000000000</z>
174 </ Position>
175 <Orientation>
176 <phi>0 . 0000000000000000</phi>
177 <psi>0 . 0000000000000000</ psi>
178 <theta>0 . 0000000000000000</ theta>
179 </ Orientation>
180 <x mapType=" vector ">0 . 0000000000000000 ; 1 . 5 053843939001199;25.9678807947770

629;27.8496113871522084</x>
181 <w mapType=" vector ">3.6258430602194132;3.6539999999999999;3.6539999999999999;3.381

6688129564079</w>
182 <FloorArea>101.4850595368324946</ FloorArea>
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183 <PlotGL>
184 <GL>
185 <x mapType=" vector ">0 . 0000000000000000 ; 1.9249544855876921 ; 1.9249544855876921 ; 0 .

0000000000000000</x>
186 <y mapType=" vector ">- 1 . 8 129215301097070 ; -1 .8270000000000000 ; 1 .8270000000000000 ;

1 . 8 129215301097070</y>
187 </GL>
188 <GL>
189 <x mapType=" vector ">26. 0077544855876823;27.8496112006814549;27.849611200681

4549;26. 0077544855876823</x>
190 <y mapType=" vector ">- 1.8241146641303849; -1 .69 0834419971581 9 ; 1 .69 0834419971581 9 ;

1 .8241146641303849</y>
191 </GL>
192 </PlotGL>
193 </Cabin>
194 </Cabins>
195 <Length>37.6346098475029862</Length>
196 <Diameter>3.9710773257326659</Diameter>
197 <Height>3.9713355208551269</Height>
198 <Position>
199 <x>0 . 0000000000000000</x>
200 <y>0 . 0000000000000000</y>
201 <z>0 . 0000000000000000</z>
202 </ Position>
203 <Orientation>
204 <phi>0 . 0000000000000000</phi>
205 <psi>0 . 0000000000000000</ psi>
206 <theta>0 . 0000000000000000</ theta>
207 </ Orientation>
208 <Container>LD3- 45</ Container>
209 <NoseLength> 4 . 1398070832253300</NoseLength>
210 <TailLength>5.6451914771254490</ TailLength>
211 <MidHeight>0.7979222923099480</MidHeight>
212 <FuelTank>
213 <HasTank>0 . 0000000000000000</HasTank>
214 </FuelTank>
215 <CargoBays uID="BulkBay1">
216 <CargoType uID="LD3- 45">
217 <Type>ULD</Type>
218 <ULDType>LD3- 45</ULDType>
219 </CargoType>
220 <NumContainers> 5 . 0000000000000000</NumContainers>
221 </CargoBays>
222 <CargoBays uID="BulkBay2">
223 <CargoType uID="LD3- 45">
224 <Type>ULD</Type>
225 <ULDType>LD3- 45</ULDType>
226 </CargoType>
227 <NumContainers> 8 . 0000000000000000</NumContainers>
228 </CargoBays>
229 </ Fuselage>
230 <Engine uID="Engine1">
231 <Type>TurboFan</Type>
232 <Location>MainWing</ Location>
233 <BypassRatio>5.7 000000000000002</ BypassRatio>
234 <NacelleSection>
235 < A i r f o i l >
236 <AirfoilName>PARSEC1</ AirfoilName>
237 </ A i r f o i l >
238 </ NacelleSection>
239 <Position>
240 <x>12.9415537964743503</x>
241 <y>- 6.6729170836748111</y>
242 <z>- 1.3675854899731841</z>
243 </ Position>
244 <Orientation>
245 <phi>0 . 0000000000000000</phi>
246 <psi>0 . 0000000000000000</ psi>
247 <theta>0 . 0000000000000000</ theta>
248 </ Orientation>
249 <Length>3.6958360612265722</Length>



87

250 <NacelleLength>2.2563892962744929</ NacelleLength>
251 <NacelleDiameter>1.7332200104892050</ NacelleDiameter>
252 <CenterbodyDiameter>0.7841440054357790</CenterbodyDiameter>
253 <FanDiameter>1 . 3 159299607638240</FanDiameter>
254 </Engine>
255 <Engine uID="Engine2">
256 <Type>TurboFan</Type>
257 <Location>MainWing</ Location>
258 <BypassRatio>5.7 000000000000002</ BypassRatio>
259 <NacelleSection>
260 < A i r f o i l >
261 <AirfoilName>PARSEC1</ AirfoilName>
262 </ A i r f o i l >
263 </ NacelleSection>
264 <Position>
265 <x>12.9415537964743503</x>
266 <y>6.6729170836748111</y>
267 <z>- 1.3675854899731841</z>
268 </ Position>
269 <Orientation>
270 <phi>0 . 0000000000000000</phi>
271 <psi>0 . 0000000000000000</ psi>
272 <theta>0 . 0000000000000000</ theta>
273 </ Orientation>
274 <Length>3.6958360612265722</Length>
275 <NacelleLength>2.2563892962744929</ NacelleLength>
276 <NacelleDiameter>1.7332200104892050</ NacelleDiameter>
277 <CenterbodyDiameter>0.7841440054357790</CenterbodyDiameter>
278 <FanDiameter>1 . 3 159299607638240</FanDiameter>
279 </Engine>
280 </ parts>
281 <missions>
282 <mission uID="Mission1">
283 <Alt i tude>11280 . 0000000000000000</ Alt i tude>
284 <CruiseMach>0 .78 00000000000000</CruiseMach>
285 <DivRange>370 . 0000000000000000</DivRange>
286 <LoiterTime>30 . 0000000000000000</ LoiterTime>
287 <Pax>1 56. 0000000000000000</Pax>
288 <PayloadMass>20536.0000000000000000</PayloadMass>
289 <Range>391 7 . 0000000000000000</Range>
290 <CargoMass>80 56. 0000000000000000</CargoMass>
291 <CruiseSpeed>230 . 1542971421397965</CruiseSpeed>
292 </ mission>
293 <DefaultMissionuID>Mission1</ DefaultMissionuID>
294 </ missions>
295 <configurationParameters>
296 <CompositeStructures mapType=" vector ">0 . 0000000000000000 ; 0 . 0000000000000000 ; 1 . 00000000000

00000</ CompositeStructures>
297 <WingLocation>low</WingLocation>
298 <Freight>0 . 0000000000000000</ Freight>
299 <WingAspectRatio>9.5 000000000000000</WingAspectRatio>
300 < S u p e r c r i t i c a l A i r f o i l >1 . 1000000000000001</ S u p e r c r i t i c a l A i r f o i l >
301 <TEinboardSweep>0 . 0000000000000000</TEinboardSweep>
302 <TailType>standard</ TailType>
303 </ configurationParameters>
304 <performanceParameters>
305 <SFC>0 . 6 000000000000000</SFC>
306 <LDmax>1 8 . 0000000000000000</LDmax>
307 <CLmaxLanding>2.7999999999999998</CLmaxLanding>
308 <CruiseLD>15.5879999999999992</CruiseLD>
309 <CDmin>0 . 0000000000000000</CDmin>
310 <CLmin>0 . 0000000000000000</CLmin>
311 <CLmaxClean>1 . 6 000000000000001</CLmaxClean>
312 <CLmaxTakeOff>2.2 000000000000002</CLmaxTakeOff>
313 <DragPolarClean mapType=" vector ">0 . 0000000000000000 ; 0 . 0000000000000000 ; 0 . 0000000000000000

; 0 . 0000000000000000 ; 0 . 0000000000000000 ; 0 . 0000000000000000 ; 0 . 0000000000000000 ; 0 . 00000
00000000000 ; 0 . 0000000000000000 ; 0 . 0000000000000000 ; 0 . 0000000000000000 ; 0 . 0000000000000
000 ; 0 . 0000000000000000 ; 0 . 0000000000000000 ; 0 . 0000000000000000 ; 0 . 0000000000000000 ; 0 . 00
00000000000000 ; 0 . 0000000000000000 ; 0 . 0000000000000000 ; 0 . 0000000000000000 ; 0 . 0000000000
000000 ; 0 . 0000000000000000 ; 0 . 0000000000000000 ; 0 . 0000000000000000 ; 0 . 0000000000000000 ; 0
. 0000000000000000 ; 0 . 0000000000000000 ; 0 . 0000000000000000 ; 0 . 0000000000000000 ; 0 . 0000000
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000000000 ; 0 . 0000000000000000 ; 0 . 0000000000000000 ; 0 . 0000000000000000 ; 0 . 000000000000000
0 ; 0 . 0000000000000000 ; 0 . 0000000000000000 ; 0 . 0000000000000000 ; 0 . 0000000000000000 ; 0 . 0000
000000000000 ; 0 . 0000000000000000 ; 0 . 0000000000000000 ; 0 . 0000000000000000 ; 0 . 000000000000
0000 ; 0 . 0000000000000000 ; 0 . 0000000000000000 ; 0 . 0000000000000000 ; 0 . 0000000000000000 ; 0 . 0
000000000000000 ; 0 . 0000000000000000 ; 0 . 0000000000000000</ DragPolarClean>

314 <CDw>0 . 0020000000000000</CDw>
315 <CDf>0 . 0180000000000000</CDf>
316 </performanceParameters>
317 < r e s u l t s >
318 <MassBreakdown>
319 <OEM>45847.5342473829223309</OEM>
320 <HarmonicMission>
321 <MTOM>81789.2111000000004424</MTOM>
322 <ZFM>66383.5342473829223309</ZFM>
323 <PLM>20536.0000000000000000</PLM>
324 <FFTotal>0 . 2 091746296528110</ FFTotal>
325 <DLM>69372.2549167080287589</DLM>
326 <MLM>7180 5.9 107915131316986</MLM>
327 <FFMission>0 . 1735700756473650</FFMission>
328 <MTOM2>81789.2111000000004424</MTOM2>
329 <MLM2>7180 5.9 107915131316986</MLM2>
330 <FFMission2>0 . 1735700756473650</FFMission2>
331 </HarmonicMission>
332 <InputMissions uID="Mission1">
333 <PLM>20536.0000000000000000</PLM>
334 <FFTotal>0 . 2 091746296528110</ FFTotal>
335 <FFReserve>0 . 0438950346093460</FFReserve>
336 </ InputMissions>
337 <FerryMission>
338 <Extended>0 . 0000000000000000</Extended>
339 <RangeFactor>1 . 0000000000000000</RangeFactor>
340 </ FerryMission>
341 </MassBreakdown>
342 <WS_TW>
343 <WS>5080.7751831845444030</WS>
344 <TW>0.2871414604191640</TW>
345 </WS_TW>
346 <FuelGeometric>
347 <Vs mapType=" vector ">20.6481407692632501 ; 2 0.6481407692632501</Vs>
348 <TotalFV>41.2962815385265003</ TotalFV>
349 <TotalCG mapType=" vector ">16.3761238091188730 ; 0 . 0000000000000000 ; -0 . 0694242269696460</

TotalCG>
350 <TotalFM>33449.9880462064684252</TotalFM>
351 </FuelGeometric>
352 <MassCG>
353 <TotalCGHarmonic mapType=" vector ">17.4449534261684960 ; 0 . 0000000000000000 ; 0 . 027018721741

5320</TotalCGHarmonic>
354 </MassCG>
355 </ r e s u l t s >
356 <designRequirements>
357 <MaxPaxInitial>1 56. 0000000000000000</ MaxPaxInitial>
358 <CargoMass>80 56. 0000000000000000</CargoMass>
359 <Pax>1 56. 0000000000000000</Pax>
360 <CargoMass2>80 56. 0000000000000000</CargoMass2>
361 <Alt i tude>11280 . 0000000000000000</ Alt i tude>
362 <CruiseMach>0 .78 00000000000000</CruiseMach>
363 <CruiseSpeed>230 . 1542971421397965</CruiseSpeed>
364 <MaxPax>1 56. 0000000000000000</MaxPax>
365 <Range>391 7 . 0000000000000000</Range>
366 <DivRange>370 . 0000000000000000</DivRange>
367 <LoiterTime>30 . 0000000000000000</ LoiterTime>
368 <AirworthinessRegulations>FAR- 25</ AirworthinessRegulations>
369 <TakeOffDistance>1938.0000000000000000</ TakeOffDistance>
370 <LandingDistance>1480 . 0000000000000000</LandingDistance>
371 < A i r p o r t C l a s s i f i c a t i o n >FAA- I I I </ A i r p o r t C l a s s i f i c a t i o n >
372 <TimeToClimb mapType=" vector ">10 . 0000000000000000 ; 4 000 . 0000000000000000</TimeToClimb>
373 </designRequirements>
374 </ a i r c r a f t >
375 <programSettings>
376 <uGridScaling> 2 . 0000000000000000</ uGridScaling>
377 <vGridScaling> 2 . 0000000000000000</ vGridScaling>
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378 <PaxBoundary>20 . 0000000000000000</PaxBoundary>
379 <ShowMessages>1 . 0000000000000000</ShowMessages>
380 <UseArtif icialDB>0</ UseArtif icialDB>
381 <InsideOutMargin>0 . 0010000000000000</InsideOutMargin>
382 < A i r f o i l P o i n t s >121 . 0000000000000000</ A i r f o i l P o i n t s >
383 <DCtolerances mapType=" vector ">0 . 0010000000000000 ; 0 . 0010000000000000 ; 0 . 0010000000000000</

DCtolerances>
384 <plotWSmin>50 . 0000000000000000</plotWSmin>
385 <plotWSstep>25. 0000000000000000</plotWSstep>
386 <NumberReferenceAC>10 . 0000000000000000</NumberReferenceAC>
387 <ShowReferenceACNames>0 . 0000000000000000</ShowReferenceACNames>
388 </ programSettings>
389 <independentSettings>
390 <PaxMass>80 . 0000000000000000</PaxMass>
391 <LuggageMass>22. 0000000000000000</LuggageMass>
392 <CompositeCorrection mapType=" vector ">0 .85 00000000000000 ; 0 .75 00000000000000 ; 0 .75 00000000000

000</CompositeCorrection>
393 <FuelHg>4350 . 0000000000000000</FuelHg>
394 <FFStartUp>0 .99 00000000000000</FFStartUp>
395 <FFTaxi>0 .99 00000000000000</FFTaxi>
396 <FuelDensity>810 . 0000000000000000</ FuelDensity>
397 <PylonEstimationAirfoi l>N0012</ PylonEstimationAirfoi l>
398 <MaxLoadFactor>2.5 000000000000000</MaxLoadFactor>
399 <SafetyFactor>1 . 5 000000000000000</ SafetyFactor>
400 <DiveMachFactor>1 . 2 000000000000000</DiveMachFactor>
401 </ independentSettings>
402 <referenceData>
403 <AircraftData>aircraf tData . xml</ AircraftData>
404 <EngineData>engineData . xml</EngineData>
405 <Span>39.2524534333812412</Span>
406 <Area>1 62. 1847474252382142</Area>
407 <Chord>4.7776015610451017</Chord>
408 </ referenceData>
409 < a i r c r a f t S e t t i n g s >
410 <NoseDroop>0 . 1500000000000000</NoseDroop>
411 <UpSweep>0 . 3 000000000000000</UpSweep>
412 <average_lavatory_area>1 . 0000000000000000</ average_lavatory_area>
413 <galley_area_per_passenger mapType=" vector ">0 . 1100000000000000 ; 0 . 0900000000000000 ; 0 . 0600000

000000000 ; 0 . 0400000000000000</ galley_area_per_passenger>
414 <lavatory_per_passenger mapType=" vector ">0 . 0417000000000000 ; 0 . 0588000000000000 ; 0 . 0333000000

000000 ; 0 . 0167000000000000</ lavatory_per_passenger>
415 <aisle_widths mapType=" vector ">0.7650000000000000 ; 0 .57 00000000000000 ; 0 .53 00000000000000 ; 0 . 5

100000000000000</ aisle_widths>
416 <CargobayMargin>0 . 1000000000000000</CargobayMargin>
417 <FreightFraction>0 . 0000000000000000</ FreightFraction>
418 <FreightPackingEfficiency>0 . 5 000000000000000</ FreightPackingEfficiency>
419 <CargoDensity>423.1999999999999886</CargoDensity>
420 <ContainerCutoff>0 .65 00000000000000</ ContainerCutoff>
421 <BulkMargin>0 . 4 000000000000000</BulkMargin>
422 <WingBoxLength>0 . 0500000000000000</WingBoxLength>
423 <xFrontSparRoot>0 . 3 162000000000000</ xFrontSparRoot>
424 <FuselageFractions mapType=" vector ">0 . 1100000000000000 ; 0 .74 00000000000000 ; 0 . 150000000000000

0</ FuselageFractions>
425 <DesignMethod>inside - out</DesignMethod>
426 <HeadRoom>1.6499999999999999</HeadRoom>
427 <DesignToDivergenceMachIncrease>0 . 0150000000000000</DesignToDivergenceMachIncrease>
428 <MainWingXPosition>0 . 3 162000000000000</MainWingXPosition>
429 <LowWingPosition>-0 . 3 000000000000000</LowWingPosition>
430 <MinDistanceSpars>0 . 0500000000000000</MinDistanceSpars>
431 <MinAngleSpars> 8 . 0000000000000000</MinAngleSpars>
432 <HorizontalTailVolumeCoefficient>1 . 0000000000000000</ HorizontalTailVolumeCoefficient>
433 <HorizontalTailAspectRatio> 5 . 0000000000000000</ HorizontalTailAspectRatio>
434 <VerticalTailVolumeCoefficient>0 . 0900000000000000</ VerticalTailVolumeCoefficient>
435 <Vert icalTai lAspectRatio>1 . 6 000000000000001</ Vert icalTai lAspectRatio>
436 <VTTrailingEdgeOffset>0 . 0650000000000000</ VTTrailingEdgeOffset>
437 <HTTrailingEdgeOffset>0 . 0620000000000000</ HTTrailingEdgeOffset>
438 <TurboFanNacelleThicknessFraction>0 . 1200000000000000</ TurboFanNacelleThicknessFraction>
439 <SingleEngineSpanLocation>0 .34 00000000000000</ SingleEngineSpanLocation>
440 <EngineWingXOffset>0 .63 00000000000000</EngineWingXOffset>
441 <EngineWingZOffset>0 .85 00000000000000</EngineWingZOffset>
442 <TurboPropSection>N0012</TurboPropSection>
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443 <UseAuxiliarySparForFuelTank>1 . 0000000000000000</ UseAuxiliarySparForFuelTank>
444 <UsableFuelVolume>1 . 0000000000000000</UsableFuelVolume>
445 <C2WeightMethod>Torenbeek</C2WeightMethod>
446 <UseClass25>0 . 0000000000000000</UseClass25>
447 <EnableFWE>0 . 0000000000000000</EnableFWE>
448 <ElevatorChordCoeff>0 . 2 000000000000000</ ElevatorChordCoeff>
449 <NumberOfCrew> 7 . 0000000000000000</NumberOfCrew>
450 <FWEMaximumCabinDifferentialPressure>8.5999999999999996</

FWEMaximumCabinDifferentialPressure>
451 <MinNoseGearLoad>0 . 0600000000000000</MinNoseGearLoad>
452 <MaxNoseGearLoad>0 . 1500000000000000</MaxNoseGearLoad>
453 <MainGearStowage mapType=" vector ">0 .35 00000000000000 ; 0 . 5 000000000000000</MainGearStowage>
454 <NoseGearStowage mapType=" vector ">0 . 0500000000000000 ; 0 . 2 000000000000000</NoseGearStowage>
455 <ScrapeAngleLOF>1 2 . 0000000000000000</ScrapeAngleLOF>
456 <MainGearStowageWidth>1 . 0000000000000000</MainGearStowageWidth>
457 <FuelTankVolumeConstraint>8549.9504159228235949</FuelTankVolumeConstraint>
458 <MaxSpanConstraintActive>0 . 0000000000000000</ MaxSpanConstraintActive>
459 <SpanEfficiency>0 .85 00000000000000</ SpanEfficiency>
460 <SpanEfficiencyIncrement_LandingFlaps>0 . 1000000000000000</

SpanEfficiencyIncrement_LandingFlaps>
461 <SpanEfficiencyIncrement_TakeOffFlaps>0 . 0500000000000000</

SpanEfficiencyIncrement_TakeOffFlaps>
462 <CD0increment_LandingGear>0 . 0200000000000000</CD0increment_LandingGear>
463 <CD0increment_LandingFlaps>0 . 0650000000000000</CD0increment_LandingFlaps>
464 <CD0increment_TakeOffFlaps>0 . 0150000000000000</CD0increment_TakeOffFlaps>
465 <CD0increment_Compressibility>0 . 0005000000000000</CD0increment_Compressibility>
466 <CruiseReqMTOM>0 .85 00000000000000</CruiseReqMTOM>
467 <MaxContPowerSetting>0 .95 00000000000000</MaxContPowerSetting>
468 <MaxCLmaxLanding> 4 . 0000000000000000</MaxCLmaxLanding>
469 <DefaultAbsoluteCeilingTurboFan>13500 . 0000000000000000</ DefaultAbsoluteCeilingTurboFan>
470 </ a i r c r a f t S e t t i n g s >
471 </ i n i t i a t o r >
472 </ TUDinitiator>
473 </ t o o l s p e c i f i c >
474 </cpacs>
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Initiator Optimization Results

C.1. Min MTOM - Variation in Range

Figure C.1: Wing thrust loading diagram for a range of 3000km

Figure C.2: Wing thrust loading diagram for a range of 5000km
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(a) 3000km (b) 5000km

Figure C.3: History of the constraints for a range of 3000km and 5000km
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C.2. Min MTOM - No Wingspan Constraint

0, 13:

COOR
1: 19 in. 2: 22 in. 3: 3 in. 4: 4 in. 5: 22 in. 6: 51 in. 7: 71 in. 8: 80 in. 9: 7 in. 11: 1 input 11: 42 in.

1:

Database
2: 1 conn. 6: 1 conn. 7: 1 conn. 8: 2 conn. 11: 1 conn.

2:

Empirical-
OEM

5: 1 conn. 6: 2 conn. 8: 1 conn.

13: 3 out.
3, 12 → 4:

OPT
7: 3 conn. 8: 2 conn. 11: 3 conn.

4, 10 → 5:

CONV
5: 2 conn. 6: 2 conn.

5:

Class1Weight-
Estimation

6: 3 conn. 7: 3 conn. 8: 16 conn. 9: 1 conn. 11: 3 conn.

6:
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13: 1 out. 10: 1 conn.
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11:

Objective-MTOM

13: 13 out. 12: 12 conn.
11:

Constraints

Figure C.4: XDSM for the minimization of the MTOM with no wingspan constraint

(a) History of the design variables (b) History of the quantities of interest

Figure C.5: History of the design variables and quantities of interest for the minimization of the MTOM with no wingspan constraint
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(a) Wing geometry (b) History of the constraints

Figure C.6: Wing geometry and history of the constraint variables for the minimization of the MTOM with no wingspan constraint

Figure C.7: Wing thrust loading diagram for the minimization of the MTOM with no winspan constraint
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Table C.1: Initial and final values for the minimization of the MTOM with no wingspan constraint

Range: 4000 km
Start End Lower Upper
Value Value Bound Bound

Objective
MTOM [-] (scaled) 1.00565 0.99672 - -
MTOM [kg] (absolute) 82252 81521 - -

Design Variables
A [-] 9.50 11.89 6 13
W/S [N /m2] 5100 5130 2000 7000
T/W [-] 0.29 0.258 0 0.6

Quantities of Interest
OEM [kg] 44084 44617 - -
FM [kg] 17631 16368
L/Dmax 17.79 19.20 - -

Constraints
Balked Landing Climb AEO -0.65308 -0.59251 - 0
Balked Landing Climb OEI -0.13956 -0.092618 - 0
Cruise Speed -0.29737 -0.21746 - 0
En Route Climb -0.53276 -0.5382 - 0
Fuel Tank Volume -0.4539 -0.44642 - 0
Initial Climb -0.17294 -0.2004 - 0
Landing Distance -0.027793 -0.0091292 - 0
Max Cruise Lift Coefficient -0.27253 -0.26816 - 0
Second Segment Climb -0.046017 -0.05345 - 0
Take-Off Distance -0.0076323 4.8714e-05 - 0
Time To Climb -0.65222 -0.49953 - 0
Transition Climb -0.11707 -0.15401 - 0
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C.3. Min FM - No WingSpan Constraint

0, 13:

COOR
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13: 3 out.
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Figure C.8: XDSM for the minimization of the FM with no wingspan constraint

(a) History of the design variables (b) History of the quantities of interest

Figure C.9: History of the design variables and quantities of interest for the minimization of the FM with no wingspan constraint
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(a) Wing geometry (b) History of the constraints

Figure C.10: Wing geometry and history of the constraint variables for the minimization of the FM with no wingspan constraint

Figure C.11: Wing thrust loading diagram for the minimization of the FM with no winspan constraint
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Table C.2: Initial and final values for the minimization of the FM with no wingspan constraint

Range: 4000 km
Start End Lower Upper
Value Value Bound Bound

Objective
MTOM [-] (scaled) 1.01330 0.92042 - -
MTOM [kg] (absolute) 82252 81627 - -

Design Variables
A [-] 9.50 13.0 6 13
W/S [N /m2] 5100 5131 2000 7000
T/W [-] 0.290 0.25 0 0.6

Quantities of Interest
OEM [kg] 44084 45076 - -
FM [kg] 17631 16015
L/Dmax 17.79 19.70 - -

Constraints
Balked Landing Climb AEO -0.65308 -0.56795 - 0
Balked Landing Climb OEI -0.13956 -0.073823 - 0
Cruise Speed -0.29737 -0.184 - 0
En Route Climb -0.53276 -0.53772 - 0
Fuel Tank Volume -0.4539 -0.4471 - 0
Initial Climb -0.17294 -0.20957 - 0
Landing Distance -0.027793 -0.0047599 - 0
Max Cruise Lift Coefficient -0.27253 -0.26813 - 0
Second Segment Climb -0.046017 -0.05461 - 0
Take-Off Distance -0.0076323 -0.00010649 - 0
Time To Climb -0.65222 -0.44057 - 0
Transition Climb -0.11707 -0.16728 - 0
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