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Abstract
Mechanical ventilation is a vital supportive mea-
sure for patients with acute respiratory distress syn-
drome (ARDS) in the intensive care unit. An im-
portant setting in the ventilator is the positive end-
expiratory pressure (PEEP), which can reduce lung
stress but may also cause harmful side effects. This
research investigates the personalization of PEEP
settings based on patient characteristics using three
meta-learning algorithms (S-, T-, and X-learner) to
estimate the conditional average treatment effect.
Additionally, the hypothesis that the X-learner per-
forms particularly well under a significant imbal-
ance in patient numbers between treatment groups
is tested.
Results show that the X-learner slightly outper-
forms the S- and T-learners in terms of mean
squared error under various unbalanced conditions
in simulated data. However, the overall ability of
these meta-learners to identify patients benefiting
from high PEEP remains inconclusive. When us-
ing gradient boosted trees or random forest as base
models, cumulative gain curves on MIMIC-IV data
indicate potential overfitting. While the X-learner
performs somewhat better on this data, the low area
under the curve scores suggests a minimal distinc-
tion between high and low PEEP groups. Exter-
nal validation with data from a randomized control
confirms that the models do not effectively distin-
guish between treatment groups. These findings
suggest that further investigation with more com-
plex models and real-world data is needed to val-
idate the potential of meta-learning algorithms in
personalizing PEEP settings for ARDS patients.

1 Introduction
In the intensive care unit (ICU), mechanical ventilation is
a vital supportive measure for patients suffering from acute
respiratory distress syndrome (ARDS) [1]. An important set-
ting of the mechanical ventilator is the positive end-expiratory
pressure (PEEP). High PEEP has the potential to mitigate
lung stress and strain. However, these benefits may be
negated by adverse side effects. This complicates the decision
on how to set the PEEP in mechanical ventilation (high or
low). Instead of using the same PEEP regime for all patients,
some patients might benefit more from a certain PEEP regime
than others. Accurately estimating the individual treatment
effect of high versus low PEEP allows for the personalization
of treatment based on patient characteristics, optimizing treat-
ment effectiveness and improving patient survival outcomes.

Previous research regarding high versus low PEEP for ICU
patients with ARDS focused on deciding whether to use a
high or low PEEP regime in general. However, results were
inconclusive [2–5]. Rather than a one-size-fits-all solution,
it is hypothesized that some patient subgroups benefit more
from high PEEP treatment. Findings from an analysis by
Calfee et al. [6] showed the existence of two distinguishable

sub-phenotypes of ARDS patients. More importantly, their
findings have indicated that these two subgroups respond dif-
ferently to low versus high PEEP. Findings from a meta-
analysis by Briel et al. [7] comparing high versus low PEEP
for patients with acute lung injury or ARDS, suggested that
a high PEEP treatment was associated with a higher survival
rate among the subgroup of patients with ARDS. Addition-
ally, they showed that patients with less severe lung injury
may experience harmful effects from high PEEP.

Given the findings discussed above, the current study aims
to test the hypothesis that some patients benefit more from
high PEEP compared to others. We compare different ma-
chine learning algorithms to examine whether the PEEP treat-
ment can be personalized based on certain patient character-
istics. These algorithms include three meta-algorithms: the
S-learner, the T-learner, and the X-learner [8], with a primary
focus on the latter. The performance of these algorithms will
be compared in estimating the conditional average treatment
effect (CATE) on simulated data, the MIMIC-IV dataset [9],
and data from a randomized trial. The simulations aim to gen-
erate data that approximates real-life medical data to evaluate
the performance of the S-, T-, and X-learner in various set-
tings. The MIMIC-IV dataset provides data from an obser-
vational study on ICU patients with ARDS. The randomized
trial data will be used for external validation. Secondly, it is
hypothesized that the X-learner is particularly effective when
the number of patients in the control group and the treatment
group significantly differ [8]. This research additionally aims
to test this hypothesis. Therefore, the main research question
and sub-question are defined as follows:

Main Research Question:
How do the S-learner, T-learner, and X-learner perform in

estimating the CATE to predict which ICU patients suffering
from ARDS benefit from high PEEP compared to low PEEP
in mechanical ventilation, based on patient characteristics?

Sub-Question:
Does the X-learner perform particularly well in estimating

the CATE when the treatment assignment in the data is
significantly unbalanced?

Section 2 of this paper provides a formal description of
the problem and gives a definition and further explanation of
the MIMIC-IV dataset, causal inference, confounding, and
CATE. In section 3 we describe the conducted methodology,
explain how the meta-learners work, and provide the set of
confounders that were identified. Section 4 elaborates on the
experimental setup by describing the experiments that were
conducted and their results. In section 5 we discuss the mean-
ing of these results, and in section 6 we reflect on the ethical
aspects of this study. Finally, in section 7 we provide our con-
clusions and formulate recommendations for further research.

2 Problem Setup and Definitions
2.1 Problem description
The problem that is addressed in the current study is the het-
erogeneity of treatment effects in mechanical ventilation for
ICU patients with ARDS. This research aims to determine
whether the treatment strategy can be personalized based on



patient characteristics using the MIMIC-IV dataset by apply-
ing meta-learners to estimate the CATE and evaluate the im-
pact of high versus low PEEP on patient survival outcomes.

2.2 MIMIC-IV dataset
The MIMIC-IV dataset is a publicly available ICU database
[9], which includes observational data from a total of 3,941
patients suffering from ARDS. The treatment labels in the
dataset are based on the PEEP regimes (the FiO2/PEEP ta-
bles) defined in the randomized trial by Brower et al [10].
Patients were classified according to the FiO2/PEEP combi-
nations observed throughout their entire ICU stay. Specifi-
cally, 12% of the patients were labeled under a ‘high’ PEEP
regime, with the remaining 88% labeled under a ‘low’ PEEP
regime. There are several covariates available for each patient
in the database, including the PEEP regime, the 28-day mor-
tality, demographic data (e.g., age, sex, weight), and medical
data (e.g., heart rate, lung compliance).

2.3 Causal inference
To test our main hypothesis, we examine the difference in
28-day mortality (the outcome) from following a high PEEP
versus following a low PEEP (the treatment). The treatment
variable will be denoted by T , where T = 1 corresponds to
following a high PEEP regime, and T = 0 corresponds to
following a low PEEP regime. The outcome variable will be
denoted by Y , where Y = 1 signifies that the patient died
within 28 days, and Y = 0 signifies that the patient survived
beyond 28 days.

Causal inference is important in this research as it helps
to understand the cause-effect relationship between the treat-
ment and the outcome. Causal effects refer to the difference
in outcomes when comparing the result of giving treatment
versus not giving treatment [11]. The notations Yi(0) and
Yi(1) represent the potential outcomes for patient i under
treatment T = 0 and T = 1, respectively. T is said to have a
causal effect on patient i if Yi(0) ̸= Yi(1). There is no causal
effect when Yi(0) = Yi(1). The individual treatment effect
(ITE) is defined as the difference between potential outcomes,
representing the causal effect of treatment on the outcome for
patient i [11, 12]:

ITE = Yi(1)− Yi(0)

Depending on the treatment given, only Yi(0) or Yi(1) can
be observed, but not both [11]. This limitation is known as the
fundamental problem of causal inference [8]. The other po-
tential outcome remains unobserved and is considered miss-
ing data, making it challenging to exactly quantify the ITE.
Instead, we can make use of the average treatment effect
(ATE), which is defined as follows [8]:

ATE = E[Y (1)–Y (0)]

To estimate the effect of a treatment on a patient with cer-
tain patient characteristics x, the conditional ATE (CATE)
can be used. The CATE function is defined as follows [8]:

τ(x) = E[Y (1)–Y (0)|X = x]

2.4 Confounding
Due to the lack of randomization in observational studies, ex-
changeability cannot be assumed, as the treatment and con-
trol groups may not be comparable [11]. To address this
limitation, we employ a strategy that treats the dataset as if
the treatment assignment were randomized, conditioned on a
measured set of confounders L. Confounders are variables
that have an effect on both the treatment assignment and the
outcome. By accounting for these confounders, we can iden-
tify the direct effect of the treatment on the outcome. We can
consider the observational data as conditionally randomized
(experimental) data if the following identifiability conditions
hold [11, 13]:

• Consistency: The potential outcome under the treat-
ment received is equal to the observed outcome. That
is, Y (T ) = Y .

• Conditional exchangeability: The treatment assign-
ment is independent of the potential outcomes, given the
measured confounders L. Formally, Y (0), Y (1) ⊥⊥ T |
L.

• Positivity: For each combination of confounders L,
there must be a non-zero possibility of receiving each
treatment.

3 Methodology
To address both the main research question and the sub-
question, this research adopts an experimental approach. The
experiment involves applying the meta-learners to simulated
data, the MIMIC-IV dataset, and an RCT dataset for external
validation. In the subsequent sections, the meta-learners will
be described in detail, along with the confounders identified
in the MIMIC-IV dataset.

3.1 Meta-learners for CATE estimation
A meta-learner combines supervised learning or regression
estimators (base learners), thereby enabling flexibility in the
types of these base learners [8]. To verify the hypothesis re-
garding the X-learner, and to assess its performance in es-
timating the CATE, we compare the X-learner with the S-
and T-learner. These two learners are commonly used in
CATE-estimation problems [8], making them a straightfor-
ward choice in the comparison process.

S-learner
The S-learner uses a single machine-learning model M
(which can be any model) to estimate the combined response
function. This response function includes the treatment vari-
able in the feature vector and is defined as follows:

µ(x, t) = E[Y |X = x, T = t]

Using µ̂(x, t), predictions can be made under different treat-
ment assignments. The estimated CATE is then calculated as
the difference between the predicted outcome under T = 1
and T = 0:

τ̂(x) = µ̂(x, 1)− µ̂(x, 0)



T-learner
The T-learner uses two models M0 and M1 to estimate the
response functions µ0 (using the observations from the con-
trol group) and µ1 (using the observations from the treatment
group), respectively:

µ0(x) = E[Y |X = x, T = 0]

µ1(x) = E[Y |X = x, T = 1]
After training these models, the CATE estimation is calcu-
lated as follows:

τ̂(x) = µ̂1(x)− µ̂0(x)

X-learner
The X-learner can be described in three steps:

1. Similar to the T-learner, the first step is to estimate the
response functions µ0 and µ1 using any two machine
learning models M0 and M1:

µ0(x) = E[Y |X = x, T = 0]

µ1(x) = E[Y |X = x, T = 1]

2. Next, µ̂0 and µ̂1 are used to impute the treatment effect
for the control and treatment groups as follows:

τ̂0(x) = µ̂1(x)− Y for T = 0

τ̂1(x) = Y − µ̂0(x) for T = 1
Two more models Mτ0 and Mτ1 (the second-stage mod-
els) are fit to estimate these imputed treatment effects:

τ̂0(x) ∼ Mτ0

τ̂1(x) ∼ Mτ1

3. Finally, the second-stage models are combined with a
propensity score model e(x) to estimate the CATE as
follows:

τ̂(x) = ê(x)τ̂0(x) + (1− ê(x))τ̂1(x)

The propensity score e(x) indicates the probability of a unit
receiving treatment T = 1, based on its covariate values [14].
When there are very few treated units, M̂τ 0(X) will be less
accurate since the imputation is based on only a few samples.
The X-learner handles this by assigning a low weight to the
inaccurate model because ê(x) will generally be low in this
scenario. Conversely, M̂τ 1(X) will be more accurate since
its imputation is based on a large sample set, thus a higher
weight will generally be assigned to this model using 1−ê(x).

Base models
The performance of the S-, T-, and X-learners is highly de-
pendent on the base model(s) used [12]. Therefore, differ-
ent base models are used, including gradient boosted trees
(specifically, LGBM), linear regression (LR), random forest
(RF), and support vector regression (SVR). These models
were chosen for their different levels of flexibility and com-
plexity, providing a more thorough evaluation of the perfor-
mance of the meta-learners.

Additionally, for the propensity score within the X-learner,
different models are used. For simulated data, logistic regres-
sion (a commonly used model for the propensity score [12])
is used to focus on comparing different base models in esti-
mating the CATE for unbalanced and confounded data. For
the MIMIC-IV dataset, different models are evaluated for the
propensity score to determine the most suitable approach for
this specific dataset.

3.2 Set of confounders L
The used meta-learners can handle confounding, provided
that the exchangeability assumption holds [8]. Therefore, all
confounders present in the MIMIC-IV dataset must be cor-
rectly identified. We use feature selection together with liter-
ature reviews to derive this set of confounders. Using Scikit-
learn [15], multiple methods are applied, including correla-
tion analysis, univariate feature selection, recursive feature
elimination, and tree-based feature selection (these results
can be found in Appendix A). The combined results of this
feature selection are shown in Tables 1 and 2.

Using literature reviews enables the identification of vari-
ables previously defined as confounders in similar studies.
A meta-analysis comparing high versus low PEEP regimes
showed that patients with a PF-ratio below a certain value
benefit more from a high PEEP regime in terms of mortal-
ity [7]. This suggests that the PF-ratio influences the treat-
ment assignment and outcome. The PF-ratio denotes the
PaO2:FiO2 ratio [7]. Therefore, we consider the PF-ratio,
PaO2, and FiO2 potential confounders. The same research
hypothesized that patients with a higher body mass index
(weight/height) benefit less from a high PEEP regime. Tables
1 and 2 show that weight is very predictive of both the treat-
ment and outcome, but height is not. Therefore, only weight
will be included in L.

A randomized trial by Meade et al. [16] comparing high
versus low PEEP regimes states: “Protocols for reducing
PEEP levels in the setting of hypotension (mean arterial pres-
sure <60 mm Hg), high plateau airway pressures (<40 cm
H2O), or refractory barotrauma (see below) allowed us to
further modify PEEP levels according to individual patient
needs.” This indicates that the PEEP regime is modified based
on the plateau pressure. High plateau pressures indicate ei-
ther worse disease severity or insufficient expansion of the
lungs, and they independently contribute to a higher risk of
mortality [17]. Therefore, we consider plateau pressure to be
a confounder.

A Viewpoint article by Bugedo et al. [18] on driving pres-
sure in ARDS patients mentioned that driving pressure is
highly correlated with the survival outcome [18]. Besides,
they suggest that the driving pressure may be a valuable mea-
surement for setting the PEEP. Since driving pressure is hy-
pothesized to affect both treatment and outcome, we consider
it a confounder as well.

Additionally, age is very predictive of the outcome as
shown in Table 2. Since age is a well-known indicator of
mortality for critically ill patients, and therefore a big influ-
ence on the outcome, it is important to add it to set L. Simi-
larly, it is shown that both HCO3 and respiratory rate are very
predictive of the outcome variable. For the same reasoning,
it is added to L. Besides that, PEEP is very predictive of the
treatment assignment as shown in Table 1. However, since it
is not predictive of the outcome, PEEP will not be included
in L.

The other features will not be discussed as they are not
in the validation set or do not have a significant association
with either the treatment or the outcome according to our fea-
ture selection. Therefore, L contains the following features:
age, weight, PF-ratio, PaO2, driving pressure, FIO2, HCO3,



plateau pressure, and respiratory rate.

Table 1: Combined results of the feature selection on the treatment
variable.

Index Feature
1 PEEP
2 Plateau pressure
3 Weight
4 FiO2
5 Age
6 PF-ratio
7 Respiratory rate
8 Minute volume
9 PaCO2
10 PaO2

Table 2: Combined results of the feature selection on the outcome
variable.

Index Feature
1 Age
2 Urea
3 Weight
4 HCO3
5 Respiratory rate
6 PaO2
7 Creatinine
8 Bilirubin
9 PaCO2
10 Lung Compliance

4 Experimental Setup and Results
The experiment conducted in this research consists of three
parts: simulating data, analyzing the MIMIC-IV dataset, and
performing external validation. The following sections de-
scribe these experiments and the results that were obtained.

4.1 Simulations
When assessing the performance of the meta-learners on real-
world data, it is challenging to determine the accuracy of the
model due to the absence of ground truth values. Using simu-
lated MIMIC-like data allows us to compute the actual CATE,
as both potential outcomes are simulated. This enables us to
measure performance in terms of mean squared error (MSE)
by comparing the estimated CATE to the simulated actual
CATE.

Experiment
First, we generated MIMIC-like data using the simulation
framework by Künzel et al. [8]. For this simulation, we
needed to specify the dimension d (of the feature vector), the
response functions µ0(x) and µ1(x), and the propensity score
e(x). We combined simulations 1 and 6 to create a simulation
including unbalanced and confounded data. This was useful

since the real-world MIMIC data is also unbalanced and con-
founded.

• Feature vector: We first simulated a d-dimensional fea-
ture vector X using x ∼ Unif([0, 1]n×d) with d = 24.

• Potential outcomes: We created potential outcomes us-
ing:

Yi(0) = µ0(Xi) + εi(0)

Yi(1) = µ1(Xi) + εi(1),

where εi(1), εi(0) ∼ N (0, 1).

• Response functions: Simulation 6 shows that e(x),
µ0(x) and µ1(x) are based only on the confounding vari-
able x1 [8]. Since nine confounders were identified in
the MIMIC-IV data, nine variables from the simulated
feature vector X were selected randomly to serve as the
confounders. An extra variable was added to µ1 since
in real life the outcome can depend on more than only
the set of confounders. For each variable in the response
functions, an arbitrary weight βi was assigned as fol-
lows:

µ0(x) =β1x1 + β2x3 + β3x4 + β4x5 + β5x9

+ β6x15 + β7x16 + β8x20 + β9x21 − 1

µ1(x) = µ0(x) + β10x19

• Propensity score: The propensity score e(x) was cal-
culated using the logistic function applied to the linear
combination of confounders L with randomly chosen
coefficients. Additionally, it was important to adjust the
propensity score to reflect the desired fraction of treated
units. e(x) and eadjusted were defined as follows:

e(x) =
1

1 + e−LT β

eadjusted =

(
treated fraction

mean(e)

)
· e(x)

• Treatment assignment: We simulated the treatment as-
signment according to Ti ∼ Bern(e(Xi)), to obtain
(Xi, Ti, Yi), with Yi = Y (Ti). Finally, the actual CATE
was calculated using Yi(1)− Yi(0).

For the evaluation, we created simulations with propensity
scores of 1%, 5%, 10%, 20%, and 50%. For each simula-
tion, 4000 samples were generated and split into training and
testing data (70% training, 30% testing). We trained each
meta-learner on the training set and evaluated its performance
against the test set using the actual CATE. This process was
repeated 30 times (since the train and test set can differ for
each run) to gain the average MSE for different propensity
scores. For each of the underlying base models, we applied
hyperparameter tuning to gain the best results in terms of
MSE.



(a) Gradient boosted trees (b) Linear regression

(c) Random forest (d) Support vector regression

Figure 1: MSE of different simulations with varying propensity
scores.

Results
The results from the experiments are shown in Figure 1.
When using LGBM, the X-learner consistently has the low-
est MSE, except at 5%, where the S-learner performs slightly
better with a difference of 0.004 (which is negligible). For
linear regression, the X-learner starts with a ‘high’ MSE for
a treated sample fraction of 1%. From 5% onwards, the X-
learner aligns with the stable low MSE of the S-learner and T-
learner. The meta-learners perform similarly due to the linear
relationship assumed by linear regression, resulting in com-
parable performance. Random forest consistently shows that
the X-learner slightly outperforms the other learners. When
using support vector regression, the S-learner seems to per-
form slightly better.

4.2 MIMIC-IV analysis
To evaluate the performance of meta-learners on MIMIC-IV
data, we use Cumulative Gain Curves (CGC). These curves
provide insight into how effectively models identify who ben-
efit most from a treatment [12]. Initially, data is sorted by
predicted CATE values in descending order. At each per-
centile of the sorted data, the cumulative gain is computed by
measuring the cumulative treatment effect and the outcome
across increasing proportions of the population. In our con-
text, where outcome 1 represents undesirable outcomes (e.g.,
mortality) and outcome 0 represents favorable outcomes (e.g.,
survival), the cumulative gain at each percentile measures the
overall improvement in identifying patients who are predicted
to benefit from treatment compared to those who are not. The
resulting curve is then compared to a random curve gener-
ated by a random model. The further the CGC is above this
random curve, the better the model’s performance.

The performance of the propensity score model within the
X-learner will be evaluated in terms of accuracy and calibra-
tion. For the latter, we use the calibration curve and the Brier
score [15]. Calibration curves can be used to compare the

predicted probabilities of the propensity score model to the
actual probabilities. A perfectly calibrated model will have
points lying on the diagonal line on the plot. The Brier score
measures the accuracy of the probabilistic predictions, with
lower scores indicating higher accuracy.

Experiment
We started by pre-processing the MIMIC-IV dataset. The cat-
egorical feature ‘sex’ was converted to a numerical form (‘F’
to 0, ‘M’ to 1), as well as the ‘peep regime’ feature (‘low’ to
0, ‘high’ to 1). Additionally, the ‘mort 28’ feature was con-
verted from Boolean to numerical (False to 0, True to 1).

Since there were some missing values we had to apply im-
putation, we compared iterative imputation with k-means im-
putation (for k=2, k=6, k=12). For this, all samples in the
dataset were selected without any missing values. In the
resulting data frame, some values were randomly removed.
Next, the imputation methods were applied to this dataset.
The mean and standard deviation of the difference between
the original data values and the imputed data values were
calculated, these results can be found in Appendix B. From
this, we concluded that for most features iterative imputation
showed the best performance. Therefore, iterative imputation
was used for the missing values in the original MIMIC-IV
dataset.

After pre-processing the data, the MIMIC-IV data was split
into a 70% training set and a 30% test set. Then, the data was
normalized using the MinMaxScaler from Scikit-learn [15],
scaling each feature to a value between 0 and 1. Next, we ap-
plied the S-, T-, and X-learner on this data (using only feature
set L), to gain the predicted CATE for both the training and
testing data. We computed the cumulative gain curve and area
under the curve (AUC) for each meta-learner (using different
base models). This process was repeated 100 times to gain the
average cumulative gain curve and AUC. For each model, we
applied hyperparameter tuning to improve the performance.

We applied more of an iterative approach for the X-learner
by tuning the propensity score model and the second stage
model. For the propensity score model, we analyzed vari-
ous models, including logistic regression (LR), random for-
est classifier (RF), and decision tree classifier (DT). Again,
we split the MIMIC-IV data into 70% training and 30% test-
ing and normalized the data. Then, we trained the different
models on the training set after which we predicted the treat-
ment assignment probabilities for the test set. Next, we cal-
culated the accuracy in terms of AUC-ROC, precision, recall,
and F1-score using Scikit-learn [15]. Additionally, we calcu-
lated the calibration curve and the Brier score. This process
was repeated 50 times to gain the average result. For each
model, we applied hyperparameter tuning to improve the per-
formance.

Assuming stage 1 handled confounding for the X-learner,
we use a different set of features to fit the second-stage mod-
els. This is because some variables might significantly affect
the outcome, but they do not affect the treatment variable, so
they are not in L. The results of the previously mentioned fea-
ture selection on the outcome variable were used as features
in the second-stage models.



Results
Table 3 shows that for the propensity score, logistic regres-
sion outperforms the other models. The calibration curve for
using logistic regression on the MIMIC data, shown in Figure
2, suggests that the model is well-calibrated with a low Brier
score. Therefore, the propensity model predicts the treatment
probabilities quite accurately.

Table 3: Performance of different propensity score models in terms
of accuracy.

Metric LR RF DT
AUC-ROC 0.8272 0.7210 0.5278
Precision-score 0.4729 0.4374 0.1854
Recall-score 0.4296 0.1944 0.3265
F1-score 0.3894 0.2148 0.1908

Figure 2: Averaged calibration curve for the propensity score model
using logistic regression.

The results from applying the meta-learners to the MIMIC-
IV data are shown below (for the cumulative gain curves see
Appendix C). Tables 4 and 6 show that there is a large differ-
ence in the training and testing scores, which indicates that
LGBM and RF are overfitting on the training data. Addition-
ally, the curves of the testing set are very close to the random
curve as indicated by the low mean AUC scores. Therefore,
LGBM and RF may not be the best choices for CATE estima-
tion on the MIMIC-IV data.

For LR, the train and test curves are more similar to each
other. However, the AUC scores are very low for the train-
ing and testing curves and their standard deviations are quite
high (see Table 5). This may be because linear regression as-
sumes a linear relationship between the features and the out-
come variable, which might be too simple for the MIMIC-IV
data. SVR shows somewhat better performance, and the train
and test curves do not differ significantly, suggesting that the
model is not overfitting (see Table 7). The AUC is some-
what higher than for LR, suggesting better generalization and
performance, but this difference is not significant. Overall,
these results indicate the ability of the meta-learners to find
a subgroup of patients that benefit from high PEEP treatment

remains questionable. Notably, the AUC scores show that
the X-learner is slightly outperforming the S-, and T-learner
on the test set. This might be an indication of the X-learner
performing better under the unbalanced MIMIC-IV dataset.
However, due to the low mean AUC scores and the high stan-
dard deviations, this hypothesis cannot be verified.

Table 4: AUC scores using LGBM as base model(s).

Learner Mean SD
S-learner (test) 0.90 1.49
T-learner (test) 0.29 1.19
X-learner (test) 0.69 1.38

S-learner (train) 12.18 1.65
T-learner (train) 21.00 1.13
X-learner (train) 15.10 1.30

Table 5: AUC scores using LR as base model(s).

Learner Mean SD
S-learner (test) 0.36 1.23
T-learner (test) 0.85 1.31
X-learner (test) 0.92 1.32

S-learner (train) 0.20 0.79
T-learner (train) 2.78 0.98
X-learner (train) 2.33 0.69

Table 6: AUC scores using RF as base model(s).

Learner Mean SD
S-learner (test) 0.44 1.34
T-learner (test) 0.15 1.26
X-learner (test) 1.06 1.75

S-learner (train) 25.22 1.18
T-learner (train) 27.55 0.40
X-learner (train) 20.93 1.36

4.3 External validation
Experiment
For the external validation, the meta-learners were trained on
the entire MIMIC-IV dataset, using SVR as the base model.
The same preprocessing steps as for the MIMIC-IV data were
applied to the RCT dataset. Subsequently, the trained models
were applied to the RCT data to obtain the predicted CATE
values.

Results
The cumulative gain curves for the S-, T-, and X-learners on
the RCT dataset are shown in Figure 3. The curves are quite
close to the baseline, suggesting that the CATE predictions do
not significantly differ from those of a random model. This



Table 7: AUC scores using SVR as base model(s).

Learner Mean SD
S-learner (test) 2.90 1.66
T-learner (test) 2.81 1.79
X-learner (test) 2.98 1.46

S-learner (train) 4.34 1.02
T-learner (train) 4.47 0.92
X-learner (train) 4.17 0.78

indicates that the models are not effectively distinguishing be-
tween high PEEP and low PEEP groups. In contrast to the
MIMIC-IV data, where the cumulative gain curves ascend,
the curves for the RCT data are descending. From the cu-
mulative gain curves, it can be derived that for the RCT data,
we cannot find a subgroup of patients that benefit from high
versus low PEEP using the S-, T-, and X-learner trained on
the observational MIMIC-IV data. Additionally, none of the
meta-learners are outperforming each other on the RCT data.

Figure 3: Cumulative gain curve for the RCT dataset.

5 Discussion
From the simulation results, it was found that the X-learner
performed well in terms of MSE when using LGBM, LR, and
SVR, across various unbalanced conditions. These findings
verify the results of previous studies showing the effective-
ness of the X-learner under unbalanced treatment and con-
trol groups. Additionally, the overall high performance of the
meta-learners indicates their ability to accurately estimate the
CATE, even under confounding conditions.

Despite the use of different iterations of the experiment to
gain an averaged result, the conclusions were drawn from a
single simulation setup. In this setup, the response functions
were linear. In future research, it would be valuable to in-
vestigate the performance of non-linear response functions as
well. Besides that, the simulated data is only an approxima-
tion of the MIMIC-IV data. It cannot fully replicate the com-
plexity of the real-world MIMIC-IV dataset. Therefore, we

should not fully depend on the performance of the CATE es-
timators on the simulation data.

For the MIMIC-IV analysis, the performance of the meta-
learners on real-world observational data was examined.
When using LGBM and RF, the meta-learners were overfit-
ting on the training data. A possible explanation for this is
that LGBM and RF are quite complex models, which may
fit the training data too closely. This can result in the mod-
els capturing noise and not generalizing well to new, unseen
data. SVR performed best in terms of AUC and showed the
lowest difference between the training and testing curves.

For all base models, the meta-learners did not show signif-
icant performance on the MIMIC-IV dataset. The curves cor-
responding to the test set were close to the curve resembling
the random model. Therefore, the meta-learners were unable
to identify a subgroup of patients that may benefit from high
PEEP. This might be because the meta-learners were unable
to model the complex relationships underlying the MIMIC-
IV data, though other external factors could have influenced
the CATE estimates.

There is a possibility that some confounding variables were
overlooked, leading to hidden confounding factors. These un-
observed confounders might have influenced the CATE es-
timations, potentially introducing bias into the results. Ad-
ditionally, from the feature selection, it was shown that the
PEEP variable is highly influential in the prediction of the
treatment assignment. Including this variable in the propen-
sity score model of the X-learner significantly increased its
performance in terms of accuracy and calibration. However,
including PEEP in the propensity score model would par-
tially reveal the treatment assignment. Therefore, the propen-
sity score model did not include this variable, resulting in
the model performing somewhat worse but without any bias.
While the X-learner showed a slightly better performance
in terms of AUC compared to the S- and T-learners on the
MIMIC-IV dataset, the high standard deviations among the
AUC values indicate significant uncertainty in the results.
Therefore, it cannot be confidently concluded that the X-
learner performs well under unbalanced data.

For the external validation, the results show that the mod-
els trained on the MIMIC-IV data perform worse on the RCT
dataset. This may be because the meta-learners fail to cor-
rectly predict the CATE estimates and identify a subgroup of
patients that benefit from high PEEP. There may also be some
issues outside the models causing these results.

From the feature selection on the MIMIC-IV, it was shown
that there are several features highly influential on the out-
come variable but not present in the RCT dataset. These
features were excluded in training the models for the RCT
dataset, which may have caused the models to perform worse.
Additionally, the distribution of the data in the RCT dataset
and the MIMIC-IV dataset might differ significantly. This
may have caused the models to perform almost randomly on
the RCT-data, due to overfitting on the MIMIC-IV data. Be-
sides that, the treatment assignment in the RCT dataset was
balanced, with 49% of the patients treated. This means the
meta-learners were trained on unbalanced data and then ap-
plied to balanced data. As a result, the CATE estimates might
be biased towards underestimating the treatment effect for the



treated group in the MIMIC-IV data, potentially leading to in-
accurate results for the treatment effect in the RCT dataset.

6 Responsible Research
Several ethical aspects must be considered when conducting
research in the medical field to ensure responsible research
practices. A significant ethical concern is the potential for
bias and unfairness in treatment assignments. The CATE es-
timators are trained on the specific MIMIC-IV data, which
may include some bias. Depending entirely on these treat-
ment assignments and corresponding outcomes could lead to
unfairness for patients outside the MIMIC-IV dataset, as they
may not receive appropriate treatment based on these estima-
tors. Consequently, these estimators (trained on limited data)
might overfit to this dataset, which raises ethical concerns re-
garding fairness to other patients.

Additionally, the use of machine learning models in health-
care needs some additional responsibility to be used prop-
erly. Misuse or over-reliance on the recommendations with-
out any clinical oversight may lead to adverse patient out-
comes. Therefore, these types of models should only be used
to give a suggestion and then be confirmed by healthcare pro-
fessionals before being used in practice.

To facilitate the reproducibility of the methods used, all
code developed for this research is made publicly available
in a GitHub repository.1 This includes the implementation
of the S-, T-, and X-learners, the simulations, the MIMIC-IV
analysis, and the external validation steps. The code includes
detailed documentation to guide other researchers through the
experimental steps. Note that access to the MIMIC-IV dataset
and the RCT data is required to reproduce the experiments
involving these datasets.

7 Conclusions and Future Research
This paper aimed to answer the question whether the S-, T-,
and/or X-learner can be used to predict which ICU patients
suffering from ARDS benefit from high PEEP compared to
low PEEP in mechanical ventilation based on patient charac-
teristics. Additionally, we aimed to verify the hypothesis re-
garding the X-learner performing particularly well under un-
balanced data (in terms of treatment assignment). An exper-
imental approach was conducted by applying the S-, T-, and
X-learner (using different base models) to estimate the CATE
for simulated data, real-world MIMIC-IV data, and data from
a randomized control trial for external validation. Due to the
fundamental problem of causal inference, it was necessary to
identify the confounders present in the real-world dataset by
doing literature reviews and applying feature selection meth-
ods.

We generated simulation data, with confounding present
and different treatment assignment distributions ranging from
1% to 50%. The meta-learners had a high performance on this
simulation data in terms of MSE, using different base models
including gradient boosted trees (specifically, LGBM), linear

1https://github.com/JuulSchnitzler/
Estimating-CATE-using-the-meta-learners

regression (LR), random forest (RF), and support vector re-
gression (SVR). For the application of the meta-learners on
the MIMIC-IV data, the same base models were used. Based
on these results, it seems that LGBM and RF are overfitting
on the training data. Overall, the S-, T-, and X-learners were
not able to identify a subgroup of patients that benefit from
high PEEP compared to low PEEP, as indicated by the low
AUC scores in the cumulative gain curves and the high vari-
ability of these results. After training the meta-learners on the
entire MIMIC-IV dataset using SVR, they were applied to an
external RCT dataset. The cumulative gain curves showed
that all learners performed worse than the random baseline
model. This suggests that for the RCT data, the S-, T-, and
X-learners cannot identify a subgroup of patients that bene-
fit from high versus low PEEP. Additionally, the experiments
showed that the X-learner slightly outperformed the S-, and
T-learner under unbalanced data. However, due to the vari-
ability of the results and because of the small difference in
performance, the hypothesis regarding the X-learner cannot
be verified.

To further investigate the hypothesis that some patients
benefit more from high versus low PEEP using the S-, T-,
and X-learner, additional research is needed. Similarly, more
research is needed in the future to verify the hypothesis about
the X-learner performing particularly well under unbalanced
treatment assignment. It might be useful to examine a broader
range of base models (e.g., neural networks). Additionally, it
might be interesting to experiment with combining different
base models for the T-, and X-learner. For simulating data, it
is recommended to use varying, more complex response func-
tions. Besides that, future research could look into methods
to mitigate the impact of potentially hidden confounding vari-
ables to improve the reliability of the CATE estimates. For
the external validation, it might be useful to verify whether
the external data is distributed similarly to the training data.

https://github.com/JuulSchnitzler/Estimating-CATE-using-the-meta-learners
https://github.com/JuulSchnitzler/Estimating-CATE-using-the-meta-learners
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A Feature Selection

A.1 Treatment variable

Table 8: Top 10 features in terms of correlation with the treatment
variable.

Feature Correlation
PEEP 0.4991
Plateau pressure 0.3491
Weight 0.2794
FiO2 0.2349
Age 0.1801
PF-ratio 0.1755
Respiratory rate 0.1708
Minute volume 0.1703
PaCO2 0.1492
PaO2 0.1447

Table 9: Top 10 features in univariate feature selection on the treat-
ment variable.

Feature Scores
PEEP 1175.41
Plateau pressure 491.95
Weight 300.07
FiO2 207.03
Age 118.79
PF-ratio 112.56
Respiratory rate 106.45
Minute volume 105.83
PaCO2 80.63
PaO2 75.81

Table 10: Selected features from Recursive Feature Elimination
(RFE) on the treatment variable.

Selected features (optimal number = 8)
Age
Weight
Lung compliance
Map
Heart rate
PEEP
Respiratory rate
Diastolic blood pressure

Table 11: Top 10 features using tree-based feature selection on the
treatment variable.

Feature Importance
PEEP 0.1599
Weight 0.0658
Plateau pressure 0.0610
FiO2 0.0521
Age 0.0448
PF-ratio 0.0401
pH 0.0372
Minute volume 0.0371
Respiratory rate 0.0369
PaO2 0.0360

Table 12: Top 10 features in terms of correlation with the outcome
variable.

Feature Correlation
Age 0.1526
Urea 0.1284
Weight 0.0957
HCO3 0.0922
Respiratory rate 0.0805
PaO2 0.0647
Creatinine 0.0646
Bilirubin 0.0606
PaCO2 0.0589
Lung compliance 0.0587

Table 13: Top 10 features using univariate feature selection on the
outcome variable.

Feature Scores
Age 84.44
Urea 59.45
Weight 32.78
HCO3 30.37
Respiratory rate 23.12
PO2 14.91
Creatinine 14.85
Bilirubin 13.05
PaCO2 12.32
Lung compliance 12.27



Table 14: Selected features from Recursive Feature Elimination
(RFE) on outcome variable.

Selected features (optimal number = 10)
Age
Weight
PF-ratio
PaO2
Driving pressure
Lung compliance
Bilirubin
Urea
FiO2
Minute volume

Table 15: Top 10 features using tree-based feature selection on the
outcome variable.

Feature Importance
Age 0.0568
Urea 0.0506
Weight 0.0458
Bilirubin 0.0457
pH 0.0442
Heart rate 0.0437
HCO3 0.0431
Minute volume 0.0431
Creatinine 0.0430
Platelets 0.0425

B Imputation Methods

Figure 4: Mean absolute difference and standard deviation for dif-
ferent imputation methods.

Table 16: Best performance in mean absolute difference.

Method Count of Features
Iterative Imputation 24
KNN Imputation, k=2 0
KNN Imputation, k=6 0
KNN Imputation, k=12 3

Table 17: Best performance in standard deviation

Method Count of Features
Iterative Imputation 25
KNN Imputation, k=2 0
KNN Imputation, k=6 0
KNN Imputation, k=12 2

C MIMIC-IV Results

(a) S-learner

(b) T-learner

(c) X-learner

Figure 5: Average cumulative gain curves on training and testing set
using LGBM.



(a) S-learner

(b) T-learner

(c) X-learner

Figure 6: Average cumulative gain curves on training and testing set
using linear regression.

(a) S-learner

(b) T-learner

(c) X-learner

Figure 7: Average cumulative gain curves on training and testing set
using random forest.



(a) S-learner

(b) T-learner

(c) X-learner

Figure 8: Average cumulative gain curves on training and testing set
using support vector regression.
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