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Abstract

Safe exploration is regarded as a key priority area for rein-
forcement learning research. With separate reward and safety
signals, it is natural to cast it as constrained reinforcement
learning, where expected long-term costs of policies are con-
strained. However, it can be hazardous to set constraints
on the expected safety signal without considering the tail
of the distribution. For instance, in safety-critical domains,
worst-case analysis is required to avoid disastrous results.
We present a novel reinforcement learning algorithm called
Worst-Case Soft Actor Critic, which extends the Soft Ac-
tor Critic algorithm with a safety critic to achieve risk con-
trol. More specifically, a certain level of conditional Value-at-
Risk from the distribution is regarded as a safety measure to
judge the constraint satisfaction, which guides the change of
adaptive safety weights to achieve a trade-off between reward
and safety. As a result, we can optimize policies under the
premise that their worst-case performance satisfies the con-
straints. The empirical analysis shows that our algorithm at-
tains better risk control compared to expectation-based meth-
ods.

Introduction
In traditional reinforcement learning (RL) problems (Sut-
ton and Barto 2018), agents can explore environments to
learn optimal policies without safety concerns. However,
unsafe interactions with environments are unacceptable in
many safety-critical problems, for instance in robot naviga-
tion tasks. Even though RL agents can be trained in simu-
lators, there are many real-world problems without simula-
tors of sufficient fidelity. Constructing safe exploration algo-
rithms for dangerous environments is challenging because
we have to optimize policies under the premise of safety
(Pecka and Svoboda 2014). In general, safety is still an open
problem that hinders the wider application of RL (Garcı́a
and Fernández 2015).

Ray, Achiam, and Amodei (2019) propose to make con-
strained RL the main formalism of safe exploration, where
the reward function and cost function (related to safety) are
distinct. This framework tries to mitigate the problem of de-
signing a single reward function that needs to carefully se-
lect a trade-off between safety and performance, which is

Copyright © 2021, Association for the Advancement of Artificial
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problematic in most instances. In addition, it is generally
desirable to optimize the sample efficiency, i.e., to minimize
the number of samples required to learn safe optimal poli-
cies. Off-policy methods can reuse past experience to be
more sample efficient, and which safe exploration can bene-
fit from (Mnih et al. 2015). Thus off-policy methods are pre-
ferred over on-policy methods, which need new experiences
to evaluate a policy (Schulman et al. 2015, 2017; Achiam
et al. 2017).

In this paper, we focus on designing an off-policy al-
gorithm for safety-constrained RL. Soft actor critic (SAC;
Haarnoja et al. 2018a,b) is an off-policy method built on
the actor critic framework, which encourages agents to ex-
plore by including a policy’s entropy as a part of the reward.
SAC exhibits better sample efficiency and asymptotic per-
formance compared to prior on-policy and off-policy meth-
ods. SAC-Lagrangian (Ha et al. 2020) combines SAC with
Lagrangian methods to address safety-constrained RL with
local constraints, i.e., constraints are set for each timestep
instead of each episode. The empirical analysis of SAC-
Lagrangian shows that the optimal policy with constraint-
satisfying expected long-term costs can be learned with a
low number of constraint violations. However, the cost of
individual episodes might exceed the expected-cost bound
with a high probability. For safety-critical problems, it can
be hazardous to use the expected long-term costs as safety
evaluation. Instead, better alternatives for safety-constrained
RL are algorithms that compute policies based on varying
risk requirements, specialized to risk-neutral or risk-averse
behavior (Duan et al. 2020; Ma et al. 2020).

We propose the Worst-Case Soft Actor Critic (WCSAC)
algorithm that uses a separate safety critic to estimate the
distribution of accumulated cost to achieve risk control. We
focus on the upper tail of the cost distribution, represented
by the conditional Value-at-Risk (CVaR; Tyrrell Rockafellar
and Uryasev 2000). In this way, policies can be optimized
given different levels of CVaR, which determine the degree
of risk aversion from a safety perspective. In addition, we en-
dow safety and entropy with weights that are automatically
adapted according to the performance of current policies.
Experimental analysis shows that by setting the level of risk
control, the WCSAC algorithm attains stronger adaptability
(compared to expectation-based baselines) when facing RL
problems with higher safety requirements.
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Background
In this work, we solve safety-constrained RL problems. The
goal of the agent is to maximize the (discounted) sum of
rewards, while adhering to the cost limits provided.

Constrained Markov Decision Processes
We assume an environment modeled by a Constrained
Markov Decision Process (CMDP; Altman 1999; Borkar
2005). Similar to a Markov Decision Process (MDP; Put-
erman 1994), the CMDP is formally defined as a tuple
(S,A, p, r, c, d, γ): a (multi-dimensional, continuous and
bounded) state space S, a (multi-dimensional, continuous
and bounded) action spaceA, a probabilistic transition func-
tion p : S ×A× S → R that represents the transition prob-
abilities from a state by taking an action to the next state, a
reward function r : S × A → [rmin, rmax] that indicates
the instant reward after taking action a ∈ A in state s ∈ S,
a cost function c : S × A → [cmin, rmax] for evaluating
constraint satisfaction, a given safety threshold d (reverse-
discounted approximation of real-world threshold d), and a
discount factor γ ∈ [0.0, 1.0).

The agent interacts with the environment in discrete
timesteps. At each timestep t, it receives the current state
s ∈ S of the environment. Next, it performs an action a ∈ A,
receives a reward r(s, a) and a cost c(s, a). Then it pro-
ceeds to the next timestep. Upon reaching a terminal state,
the agent starts a new episode beginning in an arbitrary state
s0 ∼ p(s0) in a new instance of the environment. The goal
of the agent is to learn a policy that maximizes the expected
return for each episode such that the safety constraint viola-
tion costs remain below the given threshold:

max
π

E
(st,at)∼ρπ

[∑
t

γtr(st, at)

]

s.t. E
(st,at)∼ρπ

[∑
t

γtc(st, at)

]
≤ d,

(1)

where ρπ is the trajectory distribution induced by π. Thus
the expectation of long-term costs generated by the feasible
policies is less than or equal to d.

For example, c(st, at) can be the aggregate indicator cost
function for the environment, so c(st, at) = 1 if the agent
has taken an unsafe action in (st, at), otherwise c(st, at) =
0. In this case, we can set d � 1 to constrain the agent to
stay away from the circumstances that lead to harm, or we
can make d > 1 to allow the agent to have several unsafe in-
teractions with the environment. In safety-critical domains,
it is risky to build safety constraints in the expected long-
term costs. In order to avoid disastrous events, the constraint
in Equation 1 will be reformulated.

Maximum Entropy Reinforcement Learning
When the agent knows nothing about the environment, the
safety constraint cannot be strictly fulfilled during explo-
ration. During the early steps of learning, we still hope to
encourage exploration to learn more about the environment.
But the policy’s entropy must be carefully balanced with the

safety constraint, and the policy must be allowed to converge
to a relatively deterministic policy, which reduces risks in
terms of (safety-related) cost. SAC-based methods with en-
tropy constraints and adaptive entropy weights are candi-
dates to meet these conditions.

We focus on SAC-based methods to solve the safety-
constrained RL problems. Thus it is essential to further for-
mulate the problem as maximum entropy RL (Haarnoja et al.
2017) with safety constraints:

max
π

E
(st,at)∼ρπ

[∑
t

γtr(st, at)

]

s.t.

 E
(st,at)∼ρπ

[
∑
t γ

tc(st, at)] ≤ d

E
(st,at)∼ρπ

[− log(πt(at|st))] ≥ H0 ∀t ,
(2)

where H0 is the given entropy threshold to ensure H(πt) ≥
H0 at each timestep t, which enforces a minimum degree of
randomness. After maximum entropy RL is augmented with
safety constraints, the regular SAC without safety term is not
applicable anymore.

SAC-Lagrangian
Next, we describe the SAC-Lagrangian method for the max-
imum entropy RL with safety constraints (Ha et al. 2020). In
general, SAC-Lagrangian is a SAC-based method that has
two critics and uses adaptive safety weights to manage a
trade-off between reward and safety. For clarity of exposi-
tion, we use the reward critic to indicate the estimation of
long-term rewards (possibly with entropy) to promote re-
ward during learning, while the safety critic expresses the
estimation of long-term costs to encourage safety.

Constrained optimization problems can usually be solved
by the Lagrange-multiplier method (Bertsekas 1982). La-
grangian methods introduce a Lagrange-multiplier κ to the
constrained optimization:

min
κ≥0

max
π
L(π, κ)

.
= f(π)− κg(π), (3)

where f(π) = E
(st,at)∼ρπ

[∑
t

γtr(st, at)

]

and g(π) = E
(st,at)∼ρπ

[∑
t

γtc(st, at)

]
− d

in the case of Equation 1. So the adaptive penalty coeffi-
cients κ can be employed to enforce the constraint by gradi-
ent ascent on π and descent on κ.

Ha et al. (2020) developed SAC-Lagrangian for local con-
straints, which means that the safety cost is constrained at
each timestep. However, it can be easily generalized to the
constraint optimization with global constraints1.

In SAC-Lagrangian for global constraints, two separate
critics (Q functions) are trained, where one is a reward critic
Qr for the reward and the entropy, and the other one is safety
critic Qc for the safety term. In this paper, J is used to

1A similar approach has been used in the code available at https:
//github.com/openai/safety-starter-agents.
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represent loss functions. Similar to the formulation used by
Haarnoja et al. (2018b), we can get the actor loss:

Jπ(θ) = E
st∼D,at∼πθ

[β log πθ(at|st)−Qrπθ (st, at)

+ κQcπθ (st, at)], (4)
where entropy weight β (Lagrange multiplier) manages the
stochasticity of π and also determines the relative impor-
tance of the entropy term compared to reward and cost. D is
the replay buffer and θ indicates the parameters of the pol-
icy π. We learn the adaptive safety weight κ (Lagrangian
multiplier) by minimizing the loss Js(κ):

Js(κ) = E
st∼D,at∼πθ

[
κ(d−Qcπθ (st, at))

]
, (5)

so κ will be decreased if d ≥ Qcπθ , otherwise κ will be in-
creased to emphasize safety more.

Worst-Case Soft Actor Critic
SAC-Lagrangian maximizes the long-term return under the
premise that the average performance in safety satisfies the
constraint. In this way, RL agents are not aware of the po-
tential risks because of the randomness in long-term costs,
which is generated by the stochastic policy and the dynam-
ics of the environment. In expectation-based cases, if a safe
policy has higher returns and higher variance in safety costs,
it will be preferred over another safe policy with lower re-
turns and lower variance in safety costs. In safety-critical
domains, the optimal policies are expected to be more ro-
bust, i.e., to have a lower risk of hazardous events even for
stochastic or heavy-tailed long-term costs.

Vulnerable Reliance on Expected Costs
The unreliability of SAC-Lagrangian stems mainly from the
use of Qcπ as the safety critic (Mihatsch and Neuneier 2002;
Dabney et al. 2018).Qcπ(s, a) is the expectation of long-term
cumulative costs from starting point (s, a), denoted by

Cπ(s, a) =
∑
t

γtc(st, at)|s0 = s, a0 = a, π. (6)

Following policy π, the probability distribution of Cπ(s, a)
is modeled as pπ(C|s, a), such that:

Qcπ(s, a) = Epπ [C | s, a] .

Thus the realised cost is quite likely to exceed (possibly by
a large margin) the expected cost constraint, even if our de-
cisions satisfy Qcπ(st, at) < d at each timestep.

An example of such a case is a simple CMDP shown in
Figure 1. In each state, we can choose to move or not. If
we choose to move (take action m), we will get reward 1
and cost 1, otherwise both reward and cost will be 0. With
an episode length of two timesteps and d = 1.95 for each
episode, the approximately optimal policy computed by the
Lagrangian method will be around π(m|a) = 0.9, π(n|a) =
0.1, π(m|b) = 0.9, π(n|b) = 0.1, which means the corre-
sponding Qc(a,m) = 1.9, Qc(a, n) = 0.9, Qc(b,m) =
1.9, Qc(b, n) = 0.9 (at time t = 0) are within the safety
threshold. But the real costs generated by the policy will be
larger than the threshold with probability p = 0.81. Thus the
optimal policy is hardly thought to be acceptable for safety-
critical problems, even though it satisfies the constraint.

𝑏𝑎𝑟 = 0
𝑐 = 0

𝑟 = 0
𝑐 = 0

𝑟 = 1
𝑐 = 1

𝑟 = 1
𝑐 = 1

𝑛

𝑚

𝑚

𝑛

Figure 1: A CMDP example with d = 1.95 and T = 2. It
has state space {a, b} and action space {m,n}.

Distributional Safety Critic
To obtain risk-averse policies, we learn the distribution of
long-term costs, which helps the agent to be aware of the
safety-risk at each timestep. We propose the Worst-Case Soft
Actor Critic (WCSAC) algorithm, which replaces the safety
critic of SAC-Lagrangian with a distributional one to adjust
policies based on the given safety-risk requirement.

To get a safety measure, we must learn the distributional
safety critic first. Following policy π and the distribution
pπ(C|s, a) of long-term costs Cπ(s, a), the distributional
Bellman operator (Sobel 1982; Morimura et al. 2010; Tamar,
Di Castro, and Mannor 2016) T π is defined as:

T πC(s, a)
.
= c(s, a) + γC(s′, a′),

where s′ ∼ p(·|s, a), a′ ∼ π(·|s′). We approximate the
distribution Cπ(s, a) with a Gaussian distribution (Tang,
Zhang, and Salakhutdinov 2020), i.e.,

Cπ(s, a) ∼ N (Qcπ(s, a), V cπ (s, a)),

where the variance V cπ (s, a) = Epπ [C2|s, a]− (Qcπ(s, a))2.
To estimate Qcπ , we can use the standard Bellman function:

Qcπ(s, a) = c(s, a)

+ γ
∑
s′∈S

p(s′|s, a)
∑
a′∈A

π(a′|s′)Qcπ(s′, a′). (7)

The projection equation for estimating V cπ (s, a) is:

V cπ(s, a) = c(s, a)2 −Qcπ(s, a)2

+ 2γc(s, a)
∑
s′∈S

p(s′|s, a)
∑
a′∈A

π(a′|s′)Qcπ(s′, a′)

+ γ2
∑
s′∈S

p(s′|s, a)
∑
a′∈A

π(a′|s′)V cπ (s′, a′)

+ γ2
∑
s′∈S

p(s′|s, a)
∑
a′∈A

π(a′|s′)Qcπ(s′, a′)2.

(8)

We refer the reader to Tang, Zhang, and Salakhutdinov
(2020) for the proof of Equation 8.

Safety Critic Learning
In this paper, we use two neural networks parameterized by
µ and η, respectively, to estimate the safety critic, i.e.,

Qcµ(s, a)→ Q̂cπ(s, a) and V cη (s, a)→ V̂ cπ (s, a).
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𝑑𝑄𝑐

𝑑

𝐶𝑉𝑎𝑅𝛼

𝛼

Worst CaseAverage Case

𝑑 𝑄𝑐 𝑑 𝐶𝑉𝑎𝑅𝛼

𝛼

Worst CaseAverage Case

𝑝𝑐𝑛𝑡𝑙(𝛼)

𝑝𝑐𝑛𝑡𝑙(𝛼)

Figure 2: In the average case (left panel), the policies are
optimized to ensure Qc (blue line) is moved to the left side
of the fixed boundary d (red line). In the worst case (right
panel), we optimize policies to reshape the distribution of
long-term costs to ensure the CVaRα (blue line) measure
on the left side of the fixed boundary d (red line).

In order to learn the safety critic, the distance between
value distributions is measured by the p-Wasserstein dis-
tance (Bellemare, Dabney, and Munos 2017; Olkin and
Pukelsheim 1982):

Wp(u, v)
.
=

(∫ 1

0

|F−1u (s)− F−1v (s)|pds
)1/p

,

where u ∼ N (Q1, V1), v ∼ N (Q2, V2) and Fu, Fv are the
cumulative distribution functions (CDF). In this paper, we
use the simplified 2-Wasserstein distance (Tang, Zhang, and
Salakhutdinov 2020) to estimate the safety critic loss:

W2(u, v) = ‖Q1 −Q2‖22
+ trace(V1 + V2 − 2(V

1/2
2 V1V

1/2
2 )1/2).

The 2-Wasserstein distance can be computed as the Tem-
poral Difference (TD) error based on the projection equa-
tions (7) and (8) to update the safety critic, i.e., we will min-
imize the following values:

JC(µ) = E
(st,at)∼D

‖∆Q(st, at, µ)‖22, and

JV (η) = E
(st,at)∼D

trace(∆V (st, at, η)),

where JC(µ) is the loss function of Qcµ, and JV (η) is the
loss function of V cη . We can get

∆Q(st, at, µ) = Q
c

µ(st, at)−Qcµ(st, at),

where Q
c

µ(st, at) is the TD target from Equation 7, and

∆V (st, at, µ) = V
c

µ(st, at) + V cµ (st, at)

− 2(V cµ (st, at)
1/2V

c

µ(st, at)V
c
µ (st, at)

1/2)1/2,

where V
c

µ(st, at) is the TD target from Equation 8.

Safety Based on CVaR
In Figure 2, the x-axis depicts the long-term cost C (Equa-
tion 6). The y-axis depicts the density of its probability
distribution. The SAC-Lagrangian algorithm focuses on the
average performance in safety when optimizing policies.
Thus, π, Qcπ , and the shape of pπ(C|s, a) will be changed
during the training process until Qcπ (blue line) is shifted
to the left side of the boundary (red line). After that, there
is still a strong likelihood that the constraint value d is ex-
ceeded. For a policy π,Qcπ can only be used as the evaluation
of average performance in safety, however, in safety-critical
domains, the worst-case performance in safety is preferred
over the average performance. Therefore, we replace the ex-
pected value with the Conditional Value-at-Risk (CVaR;
Tyrrell Rockafellar and Uryasev 2000), a coherent risk mea-
sure, to judge the safety of a policy. In the right panel of
Figure 2, we set the constraint on CVaR. Thus we optimize
policies that will move the tail-end of pπ(C|s, a) (blue line)
to the left side of the boundary d (red line).
Definition 1 (Risk level in safety). A positive scalar α ∈
(0, 1] is used to define the risk level in safety for WCSAC.
A WCSAC with smaller α (α → 0) is expected to be more
pessimistic and risk-averse in safety. Conversely, a larger
value of α leads to less risk-averse behavior, with α = 1
corresponding to the risk-neutral case.

We focus on the α-percentile F−1C (1 − α), where FC is
the CDF of pπ(C|s, a), so we can get the CVaR:

CVaRα
.
= Epπ [C|C ≥ F−1C (1− α)].

The following definition gives us a new constraint to learn
risk-averse policies, which differs from the traditional con-
straint (1).
Definition 2 (Safety based on CVaR). Given the risk level α,
a policy π is safe if it satisfies

Epπ
[
C(st, at)|C(st, at) ≥ F−1C (1− α)

]
≤ d ∀t,

where (st, at) ∼ ρπ and s0 ∼ p(s0).
It is excessively expensive to compute the CVaR measure

directly by sampling for long horizons (Tamar, Glassner, and
Mannor 2015). In this paper, the CVaR measure is easier
to be computed from the distributional safety critic at each
timestep since the Gaussian distribution results in a closed-
form estimation for CVaR (Khokhlov 2016; Tang, Zhang,
and Salakhutdinov 2020).

Worst-case Actor
Built on the distributional safety critic, the expected long-
term costs can be replaced with a new safety metric to guide
safe exploration, i.e., CVaRα. At each iteration, Q̂cπ(s, a)

and V̂ cπ (s, a) can be estimated. Thus the new safety measure
for risk level α is computed by

Γπ(s, a, α)
.
= CVaRα

= Qcπ(s, a) + α−1φ(Φ−1(α))
√
V cπ (s, a),

(9)

where φ(·) and Φ(·) denote the PDF and the CDF of the
standard normal distribution (Khokhlov 2016). For a certain
risk level α, we optimize policy until Γπ satisfies

Γπ(st, at, α) ≤ d ∀t (10)
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Algorithm 1 Worst-Case Soft Actor Critic

1: Inputs: Initial parameters α, ψ, µ, η, θ, τ
2: Initialize: Target networks: 〈ψ, µ, η〉 ← 〈ψ, µ, η〉
3: Initialize: Replay buffer D ← ∅
4: for each iteration do
5: for each environment step do
6: at ∼ πθ(at|st)
7: st+1 ∼ p(st+1|st, at)
8: D ← D ∪ {(st, at, r(st, at), c(st, at), st+1)}
9: end for

10: for each gradient step do
11: Sample experience from replay buffer D
12: Compute Γπθ based on Equation 9
13: ψi ← ψi − λR∇̂ψiJR(ψi) for i ∈ {1, 2}
14: µ← µ− λC∇̂µJC(µ)

15: η ← η − λV ∇̂ηJV (η)

16: θ ← θ − λπ∇̂θJπ(θ)

17: β ← β − λβ∇̂βJe(β)

18: κ← κ− λκ∇̂κJs(κ)
19: # Update target networks weights
20: ψi ← τψi + (1− τ)ψi for i ∈ {1, 2}
21: µ← τµ+ (1− τ)µ
22: η ← τη + (1− τ)η

23: end for
24: end for
25: Output: Optimized parameters ψ, µ, η, θ, β, κ

according to Definition 2. Similar to Haarnoja et al. (2018b),
we should try to minimize the following KL divergence
(Kullback, Leibler et al. 1951) to update the policy:

min
π
DKL

(
π(·|st)

∣∣∣∣∣
∣∣∣∣∣exp ( 1

β (Qrπ(st, ·)− κΓπ(st, ·, α)))

Zπ(st)

)
,

where Zπ(st) is the partition function to normalize the dis-
tribution. The KL divergence can be rewritten as

DKL(πθ(·|st)|| exp (
1

β
Xπθ
α,κ(st, ·)− log(Zπθ (st))))

= E
st∼D
at∼πθ

[
− log(

πθ(at|st)
exp ( 1

βX
πθ
α,κ(st, at)− log(Zπθ (st)))

)

]

= E
st∼D
at∼πθ

[
log πθ(at|st)−

1

β
Xπθ
α,κ(st, at) + log(Zπθ (st))

]
,

where Xπ
α,κ(s, a) = Qrπ(s, a) − κΓπ(s, a, α). β and κ

are the adaptive entropy and safety weights, respectively.
Zπθ (st) has no influence on updating θ, thus it can be omit-
ted. The new actor loss is

Jπ(θ) = E
st∼D
at∼πθ

[
β log πθ(at|st)−Xπθ

α,κ(st, at)
]
.

Based on the new safety measure Γπ(s, a, α), the safety
weight κ can be learned by minimizing the loss Js(κ):

Js(κ) = E
st∼D
at∼πθ

[κ(d− Γπθ (st, at, α))] .

We update the reward critic Qrπθ (parameterized by ψ) and
entropy weight β in the same way as the SAC method.
For the loss function Je(β) to learn the adaptive entropy
weights, and the loss function JR(ψ) of the reward critic,
we refer the reader to Haarnoja et al. (2018b).

Complete Algorithm
Algorithm 1 presents our method. At each environment step,
the agent executes a new action sampled from the current
policy and then proceeds to the next state. The experience
will be stored in the replay buffer (lines 5-9). For the gradi-
ent descent steps, the method uses batches sampled from the
replay buffer to update all function parameters (lines 10-23).

In standard maximum entropy RL, the entropy of the pol-
icy is expected to be as large as possible. However, relatively
deterministic policies are preferred over stochastic policies
in safe exploration, even though it is essential to encourage
exploration during the early steps of learning. In SAC, the
entropy of the policy is constrained to ensure that the fi-
nal optimal policy is more robust (Haarnoja et al. 2018b).
Therefore, for safety-critical domains, it is preferred to set a
relatively low minimum requirement H0 for the entropy, or
omit this constraint altogether.

For the reward critic, to avoid overestimation and reduce
the positive bias during the policy improvement process, we
also learn two soft Q-functions independently, which are pa-
rameterized by ψ1 and ψ2. The minimum Q-function is used
in each gradient step. For the safety critic, we use two sepa-
rate neural networks to estimate the mean function and vari-
ance function respectively. The size of each network can be
smaller than using one network to estimate the mean func-
tion and variance together, so it does not add more parame-
ters to be trained. Besides, it is much easier to compare the
distributional safety critic of WCSAC to the regular safety
critic of SAC-Lagrangian, which can be seen as ablation of
WCSAC. We use four target networks to achieve stable up-
dating, a common technique used in DQN (Mnih et al. 2015)
and DDPG (Lillicrap et al. 2015). Specifically, the parame-
ters of target networks (including safety critic and reward
critic) are updated by moving averages (lines 20-22), where
hyperparameter τ ∈ [0, 1] is used to reduce fluctuations.

Empirical Analysis
We evaluate our method based on the Safety Gym bench-
mark (Ray, Achiam, and Amodei 2019). In these environ-
ments (see Figure 3) a point agent (one actuator for turning

Goal

Hazard

Agent

Boundary

Goal

Hazards

Agent

Boundary

StaticEnv DynamicEnv

Figure 3: Point navigation domains StaticEnv and Dynam-
icEnv. The environments differ in the number and size of
hazards, and generation of goal and hazards’ locations.
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Figure 4: Comparison of SAC, CPO, SAC-Lag, and WCSAC during training in StaticEnv (top row) and DynamicEnv (bottom
row). The lines are the average of all runs, and the shaded area is the standard deviation.

and another one for moving forward/backward) navigates in
a 2D map to reach the goal position while trying to avoid
hazardous areas. In StaticEnv (Figure 3 left), the agent gets
a reward r− 0.2 in each step, where r is the original reward
signal of Safety Gym (distance towards goal plus a constant
for being within range of goal), and the offset −0.2 incen-
tivizes the agent to reach the target in the smallest number of
time steps. DynamicEnv keeps the original reward signal. In
both environments, the initial state of the agent is randomly
initialized in each episode. The episodic locations of goal
and hazards are also arbitrarily generated in DynamicEnv
but fixed in StaticEnv. In each step, if the agent stays in the
hazardous area, it incurs a cost c = 1, otherwise c = 0. We
use a discount factor γ = 0.99.

We set d = 15 for the expected (real-world) cost limit,
which needs to be reverse-discounted in SAC-Lagrangian
(SAC-Lag) and WCSAC. All the agents are trained for 100
epochs, where the length of each epoch is 30000 envi-
ronment interaction steps and the maximal length of each
episode is 1000 environment interaction steps. Furthermore,
all experiments were run with three random seeds. Specif-
ically, we will compare SAC, CPO, SAC-Lag and WC-
SAC with different risk levels in safety, i.e., WCSAC-0.1
(α = 0.1: highly risk-averse), WCSAC-0.5 (α = 0.5) and
WCSAC-0.9 (α = 0.9: almost risk-neutral). Four CPUs
were used in parallel for training in all cases. The detailed
environment settings and all hyperparameters of the algo-
rithms are presented in the Appendix (Yang et al. 2021)2.
In our following experimental results, the shown return and
cumulative cost are undiscounted.

2The code is available at https://github.com/AlgTUDelft/
WCSAC

Results

During training, we use the following metrics: average
episodic return, average episodic cost, and cost rate (Ray,
Achiam, and Amodei 2019). The cost rate at each epoch is
computed by dividing the cumulative costs by the number
of environment interaction steps. Figure 4 shows the results.
We observe that all algorithms find policies that can reach
the goal at the end of the training (Figure 4(a)), but with dif-
ferent convergence rates. Compared to safe methods (SAC-
Lag, CPO, and WCSAC), SAC has better and stable perfor-
mance in average episodic return obviously, however it does
not satisfy the constraint. Regarding safety, Figures 4(b) and
4(c) show that all safe methods except for CPO converge to
constraint-satisfying policies, and WCSAC-0.9 performance
is close to SAC-Lag. Besides, WCSAC with a lower risk
level generates fewer constraint violations during training.

We execute a trajectory analysis in StaticEnv, see Fig-
ure 5. We only show the training process of SAC-Lag at dif-
ferent stages because other methods show similar behavior
during training. At the beginning of learning (Figure 5(a)),
it is possible that the agent cannot get out of the hazard, and
gets stuck before arriving at the goal area. In Figure 5(d),
the trajectories of random policy are highly chaotic. The fi-
nal policies from SAC-Lag, CPO, and WCSAC-0.9 perform
better than before, but still prefer to take a risk within the
budget to get a larger return (Figures 5(c), 5(f) and 5(g)).
Conversely, the agent from WCSAC-0.5 becomes more risk-
averse in Figure 5(h). The behavior of the SAC agent is pre-
sented in Figure 5(e), the agent chooses the shortest path
to reach the target directly since the safety constraint is not
considered. Finally, in Figure 5(i), we can see that the agent
from WCSAC-0.1 prefers to stay away from the hazardous
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(a) SAC-Lag0 (b) SAC-Lag1 (c) SAC-Lag2

(d) Random (e) SAC (f) CPO

(g) WCSAC-0.9 (h) WCSAC-0.5 (i) WCSAC-0.1

Figure 5: Trajectory analysis. (a)-(c) show the trajectories
generated by policies from SAC-Lag at the beginning, mid-
dle stage and end of training respectively. (d)-(i) show the
final trajectories from random policy, SAC, CPO, and WC-
SAC separately.

area given its risk level setting.
After training, we use 300 test runs (100 runs for each

random seed) to evaluate the final policies of these algo-
rithms. In Table 1, the results show that each WCSAC vari-
ation satisfies its corresponding CVaR bound (estimated by
the average costs of the worst 300α trajectories), while only
WCSAC-0.1 results in CVaR0.1 < 15. In Figure 6, we com-
pare the SAC-based methods. The whiskers of the boxplot
Figure 6(a) are set at the [1, 99] percentiles of the data. To
make the boundary d more clear, we set the y-axis view lim-
its (so the data of SAC-Lag is out of the chart). The op-
timal policies learned by SAC have poor performance in
safety without considering the constraint. The optimal poli-
cies from SAC-Lag can ensure that most of the trajectories
are safe, but some dangerous events happen, which is unde-
sirable for safety-critical problems. As to the proportion of
budget exceedance, WCSAC-0.9 has a similar average per-
formance to SAC-Lag, but the boxplot shows that extreme
cost events are much less likely to happen. Compared to
SAC-Lag and WCSAC-0.9, WCSAC with lower risk levels
has more stable performance in terms of safety. Although
the policies from WCSAC-0.1 and WCSAC-0.5 still gener-
ate some unsafe trajectories, the likelihood is much lower.

EC C0.9 C0.5 C0.1 ER
SAC 21.7 24.1 42.8 56.5 0.97
SAC-Lag 14.3 15.9 28.6 141.8 0.27
WCSAC-0.9 4.2 4.6 8.4 31.4 0.56
WCSAC-0.5 1.8 2.0 3.6 17.9 0.19
WCSAC-0.1 1.4 1.6 2.9 14.3 -0.43
CPO 16.3 18.1 32.5 58.3 0.84
Random Policy 49.1 54.5 98.1 431.6 -20.10

Table 1: Performance of the agents on the StaticEnv ac-
cording to multiple metrics: expected cost (EC), cost-CVaR-
0.9 (C0.9), cost-CVaR-0.5 (C0.5), cost-CVaR-0.1 (C0.1),
and expected return (ER). In bold we indicate the constraint
used by the agent.
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(a) Boxplot of safety evaluation after training
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(b) Proportion of budget exceedance

Figure 6: Evaluation after training (StaticEnv). The box-
plot (a) shows the statistical properties of long-term costs
generated by the SAC-based algorithms, and the dashed line
indicates the safety threshold. In (b), we use the proportion
of budget exceedance to analyse the safety of the SAC-based
algorithms.

Conclusion

In this paper, we propose the WCSAC algorithm to solve
safety-constrained RL problems. We augment SAC with a
separate distributional safety critic (parallel to the reward
critic) to make the algorithm more adaptive when facing
RL problems with higher safety requirements. In the exper-
iments, the agent has different performance in safety un-
der different risk levels. When α � 1, we can get more
risk-averse policies for a safety-critical domain. Hence, our
research is meaningful for the development of safe explo-
ration. In this paper, the distribution of long-term costs is ap-
proximated to be a Gaussian distribution. In the future, we
can further explore modeling the uncertainty of the safety
critic in different ways. Moreover, the focus of this paper
has been on safety, but a similar approach could be taken to
consider the variability of long-term rewards. It is then also
interesting to consider trade-offs between a distributional re-
ward critic and a distributional safety critic.
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