

Sub-phenotyping in critical care

A valuable strategy or methodologically fragile path?

Smit, Jim M.; Jonkman, Annemijn H.; Krijthe, Jesse H.

DOI

[10.1186/s40635-025-00769-1](https://doi.org/10.1186/s40635-025-00769-1)

Licence

CC BY

Publication date

2025

Document Version

Final published version

Published in

Intensive Care Medicine Experimental

Citation (APA)

Smit, J. M., Jonkman, A. H., & Krijthe, J. H. (2025). Sub-phenotyping in critical care: A valuable strategy or methodologically fragile path? *Intensive Care Medicine Experimental*, 13(1), Article 59.
<https://doi.org/10.1186/s40635-025-00769-1>

Important note

To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy

Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

EDITORIAL

Open Access

Sub-phenotyping in critical care: a valuable strategy or methodologically fragile path?

Jim M. Smit^{1,2,3*} , Annemijn H. Jonkman³ and Jesse H. Krijthe²

In her pioneering work, Calfee et al. [1] addressed the clinical and biological heterogeneity of acute respiratory distress syndrome (ARDS), a factor likely contributing to the poor track record of randomized trials (RCTs) in this patient population. Using latent class (or profile) analysis (LCA), a method for identifying unobserved subgroups from observed data, they identified two distinct ARDS sub-phenotypes (hypo- and hyperinflammatory), which showed association with clinical outcomes and, crucially, heterogeneity of treatment effect (HTE) [2], demonstrating different responses to higher vs. lower PEEP regimes.

Their study sparked a growing trend in critical care research: identifying sub-phenotypes via LCA or clustering methods, followed by examining HTE for specific interventions. Similarly, the recent work by Meza-Fuentes et al. [3] presented two ARDS sub-phenotypes, suggesting their potential for guiding individualized treatment. As sub-phenotyping has gained more traction in the ICU community than in other medical fields, we wonder: are we pioneering a valuable strategy for HTE analysis, or embarking on a methodologically fragile path?

Various alternative HTE analysis strategies exist. Traditional 'one-variable-at-a-time' subgroup analyses (e.g., comparing subgroups based on $\text{PaO}_2/\text{FiO}_2$ [4]) may suffer from limitations including low power and multiple comparisons. Furthermore, patients could belong to multiple

overlapping subgroups that may experience treatment effects of varying size and direction. Predictive HTE approaches [2] aim to overcome some of these limitations, using multivariable models that enable analysing HTE across multiple patient characteristics simultaneously. Kent et al. [2] distinguishes two main approaches: *risk modelling* and *effect modelling*. Risk models use patient covariates and outcomes, stratifying patients by predicted risk, independent of treatment assignment. It may detect clinically meaningful HTE due to the risk-magnification phenomenon: homogeneous relative effects across patients lead to larger absolute benefits in those at higher baseline risk. Effect models, by contrast, incorporate treatment assignments during training, modelling treatment-covariate interactions to estimate individualized treatment effects. This direct modelling of treatment effect is theoretically ideal for HTE detection, but also prone to overfitting. Sub-phenotyping takes a different approach to find HTE: here multivariable models are trained *only* on patient covariates, assigning individuals to sub-phenotypes (Fig. 1). Although excluding both patient outcomes and treatment assignments during model training may reduce overfitting risk, it cannot directly model treatment effects like effect modelling, nor can it directly leverage risk-magnification like risk modelling. Instead, this approach assumes that observing grouping of patients based on covariates alone is an indicator for treatment effect heterogeneity, which may be incorrect. Hence, sub-phenotyping may be 'underfit' for identifying HTE, as these models cannot learn how patient characteristics are associated to outcomes or treatment effects.

A recent position paper [5] reported strong consensus that certain ARDS sub-phenotypes may help enrich RCTs and guide personalized management, while calling

*Correspondence:

Jim M. Smit
jim.m.smit@outlook.com

¹ Data Science Group, Institute for Computing and Information Sciences, Radboud University, Nijmegen, The Netherlands

² Pattern Recognition & Bioinformatics Group, Delft University of Technology, Delft, The Netherlands

³ Department of Intensive Care, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands

	Visualization	Considerations	Model examples	ICU applications
Traditional subgroup analysis	<p>Choose variable(s) based on domain knowledge or availability</p> <p>HTE across subgroups based on 1 characteristic</p>	High false-positive risk in case of multiple testing Lower false-positive risk if kept to limited number of tests, defined a-priori, based on domain knowledge	No model	Evaluate HTE for lower vs higher PEEP regimes across $\text{PaO}_2/\text{FiO}_2$ subgroups (≤ 200 vs > 200 mmHg) in ARDS[4]
Sub-phenotyping	<p>Patient characteristics</p> <p>cluster/latent class (i.e., 'sub-phenotype') assignment for each patient</p>	Potentially underfit to predict HTE Less prone to overfitting HTE	<ul style="list-style-type: none"> Gaussian Mixture Model K-means clustering Hierarchical clustering 	Evaluate HTE for lower vs higher PEEP regimes across hypoinflammatory vs hyperinflammatory sub-phenotypes in ARDS [1]
Risk modelling	<p>Patient characteristics</p> <p>Patient outcome</p> <p>Predict outcome risk for each patient</p>	Can be suboptimal in presence of observed relative effect modifiers Less prone to overfitting HTE May detect clinically meaningful HTE on absolute scale through risk-magnification*	<ul style="list-style-type: none"> Logistic regression Random forest Neural network 	Evaluate HTE of corticosteroids vs placebo across predicted risk subgroups based on Pneumonia Severity Index (PSI) in CAP [7]
Effect modelling	<p>Patient characteristics</p> <p>Patient outcome</p> <p>Treatment assignments</p> <p>Predict treatment effect for each patient</p>	Prone to overfitting HTE Directly optimizes HTE	<ul style="list-style-type: none"> S-learner T-learner Tian method R-learner Causal forest 	Evaluate HTE of corticosteroids vs placebo across predicted effect subgroups based on newly trained effect model in CAP [7]

Fig. 1 Schematic overview of approaches for HTE analysis, including traditional one-variable-at-a-time subgroup analysis, and multivariable HTE approaches (i.e., sub-phenotyping, risk modelling and effect modelling), with modelling considerations, and examples of used methodologies and applications in the ICU literature. *risk- (or benefit-) magnification: homogeneous relative effects across patients lead to larger absolute benefits in those at higher baseline risk

for further validation. While we agree that further validation is crucial, we want to emphasize that it is the observed HTE across sub-phenotypes that requires validation. In the absence of sufficiently validated HTE, using sub-phenotypes for RCT enrichment (and particularly for personalizing treatment) lacks justification, as it may inadvertently exclude patients who could benefit. As more versions of sub-phenotyping models are developed, and HTE for various interventions is examined, the risk of false positives findings due to multiple testing increases, echoing the pitfalls of traditional subgroup analyses. For example, the HTE observed between hypo- and hyperinflammatory sub-phenotypes for high versus low PEEP in the ALVEOLI trial [1] was not replicated in the LOVS trial [6], suggesting that the finding which sparked the sub-phenotyping trend may have been a false positive. This underscores the critical need for rigorous validation of HTE findings, ideally across more than one independent RCT dataset, and, importantly, *after* pre-registration of both the model and evaluation protocol. [7]

In conclusion, subdividing heterogeneous ICU syndromes into sub-phenotypes seems compelling. However, if the aim is to further personalize treatment through

HTE detection, we must critically assess whether sub-phenotyping is the preferred approach, especially when risk and effect modelling are also feasible. Regardless of the approach, we concur with Meza-Fuentes et al. [3] that validation of HTE findings using independent data is crucial before informing clinical practice.

Availability of data and materials

Not applicable.

Received: 21 May 2025 Accepted: 27 May 2025

Published online: 05 June 2025

References

1. Calfee CS, Delucchi K, Parsons PE, Thompson BT, Ware LB, Matthay MA (2014) Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. *Lancet Respir Med* 2:611–620
2. Kent DM, Paulus JK, Van Klaveren D et al (2020) The predictive approaches to treatment effect heterogeneity (PATH) statement. *Ann Intern Med* 172:35–45
3. Meza-Fuentes G, Delgado I, Barbé M, Sánchez-Barraza I, Retamal MA, López R (2025) Machine learning-based identification of efficient and restrictive physiological subphenotypes in acute respiratory distress syndrome. *Intens Care Med Exp* 13:29

4. Briel M, Meade M, Mercat A (2010) Higher vs lower positive end-expiratory pressure in patients with acute lung injury. *JAMA J Am Med Assoc* 303:865–873
5. Nasa P, Bos LD, Estenssoro E et al (2025) Defining and subphenotyping ARDS: insights from an international Delphi expert panel. *Lancet Respir Med*. [https://doi.org/10.1016/S2213-2600\(25\)00115-8](https://doi.org/10.1016/S2213-2600(25)00115-8)
6. Smit JM, Krijthe JH, van Bommel J et al (2025) The heterogeneous effect of high PEEP strategies on survival in acute respiratory distress syndrome: preliminary results of a data-driven analysis of randomized trials. *MedRxiv* 318:1335
7. Smit JM, Van Der Zee PA, Stoof SCM et al (2025) Predicting benefit from adjuvant therapy with corticosteroids in community-acquired pneumonia: a data-driven analysis of randomised trials. *Lancet Respir Med* 13:221–233

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.