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strategy or methodologically fragile path?

Jim M. Smit"23*

In her pioneering work, Calfee et al. [1] addressed the
clinical and biological heterogeneity of acute respiratory
distress syndrome (ARDS), a factor likely contributing to
the poor track record of randomized trials (RCTs) in this
patient population. Using latent class (or profile) analysis
(LCA), a method for identifying unobserved subgroups
from observed data, they identified two distinct ARDS
sub-phenotypes (hypo- and hyperinflammatory), which
showed association with clinical outcomes and, crucially,
heterogeneity of treatment effect (HTE) [2], demonstrat-
ing different responses to higher vs. lower PEEP regimes.

Their study sparked a growing trend in critical care
research: identifying sub-phenotypes via LCA or clus-
tering methods, followed by examining HTE for specific
interventions. Similarly, the recent work by Meza-Fuentes
et al. [3] presented two ARDS sub-phenotypes, suggest-
ing their potential for guiding individualized treatment.
As sub-phenotyping has gained more traction in the ICU
community than in other medical fields, we wonder: are
we pioneering a valuable strategy for HTE analysis, or
embarking on a methodologically fragile path?

Various alternative HTE analysis strategies exist. Tra-
ditional ‘one-variable-at-a-time’ subgroup analyses (e.g.,
comparing subgroups based on PaO,/FiO, [4]) may suffer
from limitations including low power and multiple com-
parisons. Furthermore, patients could belong to multiple
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overlapping subgroups that may experience treatment
effects of varying size and direction. Predictive HTE
approaches [2] aim to overcome some of these limita-
tions, using multivariable models that enable analysing
HTE across multiple patient characteristics simultane-
ously. Kent et al. [2] distinguishes two main approaches:
risk modelling and effect modelling. Risk models use
patient covariates and outcomes, stratifying patients by
predicted risk, independent of treatment assignment. It
may detect clinically meaningful HTE due to the risk-
magnification phenomenon: homogeneous relative
effects across patients lead to larger absolute benefits in
those at higher baseline risk. Effect models, by contrast,
incorporate treatment assignments during training,
modelling treatment—covariate interactions to estimate
individualized treatment effects. This direct modelling
of treatment effect is theoretically ideal for HTE detec-
tion, but also prone to overfitting. Sub-phenotyping takes
a different approach to find HTE: here multivariable
models are trained only on patient covariates, assigning
individuals to sub-phenotypes (Fig. 1). Although exclud-
ing both patient outcomes and treatment assignments
during model training may reduce overfitting risk, it can-
not directly model treatment effects like effect modelling,
nor can it directly leverage risk-magnification like risk
modelling. Instead, this approach assumes that observ-
ing grouping of patients based on covariates alone is an
indicator for treatment effect heterogeneity, which may
be incorrect. Hence, sub-phenotyping may be ‘underfit’
for identifying HTE, as these models cannot learn how
patient characteristics are associated to outcomes or
treatment effects.

A recent position paper [5] reported strong consen-
sus that certain ARDS sub-phenotypes may help enrich
RCTs and guide personalized management, while calling
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Fig. 1 Schematic overview of approaches for HTE analysis, including traditional one-variable-at-a-time subgroup analysis, and multivariable HTE
approaches (i.e, sub-phenotyping, risk modelling and effect modelling), with modelling considerations, and examples of used methodologies
and applications in the ICU literature. *risk- (or benefit-) magnification: homogeneous relative effects across patients lead to larger absolute benefits

in those at higher baseline risk

for further validation. While we agree that further vali-
dation is crucial, we want to emphasize that it is the
observed HTE across sub-phenotypes that requires
validation. In the absence of sufficiently validated HTE,
using sub-phenotypes for RCT enrichment (and particu-
larly for personalizing treatment) lacks justification, as
it may inadvertently exclude patients who could benefit.
As more versions of sub-phenotyping models are devel-
oped, and HTE for various interventions is examined,
the risk of false positives findings due to multiple test-
ing increases, echoing the pitfalls of traditional subgroup
analyses. For example, the HTE observed between hypo-
and hyperinflammatory sub-phenotypes for high versus
low PEEP in the ALVEOLI trial [1] was not replicated
in the LOVS trial [6], suggesting that the finding which
sparked the sub-phenotyping trend may have been a false
positive. This underscores the critical need for rigorous
validation of HTE findings, ideally across more than one
independent RCT dataset, and, importantly, after pre-
registration of both the model and evaluation protocol.
(7]

In conclusion, subdividing heterogeneous ICU syn-
dromes into sub-phenotypes seems compelling. However,
if the aim is to further personalize treatment through

HTE detection, we must critically assess whether sub-
phenotyping is the preferred approach, especially when
risk and effect modelling are also feasible. Regardless of
the approach, we concur with Meza-Fuentes et al. [3] that
validation of HTE findings using independent data is cru-
cial before informing clinical practice.
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