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Abstract 

The multi-objective evolutionary algorithm based on decomposition (MOEA/D) has been 

recognized as a promising method for solving multi-objective optimization problems (MOPs), 

receiving a lot of attention from researchers in recent years. However, its performance in 

handling MOPs with complicated Pareto fronts (PFs) is still limited, especially for real-world 

applications whose PFs are often complex featuring, e.g., a long tail or a sharp peak. To deal 

with this problem, an improved MOEA/D (named  iMOEA/D) that mainly focuses on bi-

objective optimization problems (BOPs) is therefore proposed in this paper. To demonstrate 

the capabilities of iMOEA/D, it is applied to design optimization problems of truss structures. 

In iMOEA/D, the set of the weight vectors defined in MOEA/D is numbered and divided into 

two subsets: one set with odd-weight vectors and the other with even-weight vectors. Then, a 

two-phase search strategy based on the MOEA/D framework is proposed to optimize their 

corresponding populations. Furthermore, in order to enhance the total performance of 

iMOEA/D, some recent developments for MOEA/D, including an adaptive replacement 

strategy and a stopping criterion, are also incorporated. The reliability, efficiency and 

applicability of iMOEA/D are investigated through seven existing benchmark test functions 

with complex PFs and three optimal design problems of truss structures. The obtained results 

reveal that iMOEA/D generally outperforms  MOEA/D and NSGA-II in both benchmark test 

functions and real-world applications. 

 

Keywords: multi-objective evolutionary algorithm (MOEA), multi-objective evolutionary 

algorithm based on decomposition (MOEA/D), complicated Pareto fronts (PFs), structural 

optimization, truss structures. 

 

                                                           
*
 Corresponding author: V. Ho-Huu, Email: V.HoHuu@tudelft.nl 

mailto:V.HoHuu@tudelft.nl
mailto:S.Hartjes@tudelft.nl
mailto:h.g.visser@tudelft.nl
mailto:R.Curran@tudelft.nl
mailto:V.HoHuu@tudelft.nl


1. Introduction 

In many real-world engineering applications, for example, structural optimization (Cai & 

Aref, 2015; Vo-Duy et al., 2017) aircraft trajectory optimization (Hartjes & Visser, 2016; 

Hartjes, Visser, & Hebly, 2010; Visser & Hartjes, 2014), optimal design problems often have 

multiple conflicting objectives, and are known as multi-objective optimization problems 

(MPOs) (Kalyanmoy Deb, 2001). By solving these problems, a set of trade-off solutions 

between objectives can be found. From this set, decision makers can select the most suitable 

solutions, which may help them save much time and/or money. Solving real-world MOPs, 

however, is usually a challenging task for the decision makers because of the complexities of 

MOPs such as high nonlinearity, non-convexity and discontinuity (Grandhi, 1993). Therefore, 

the development of efficient optimization methods for coping with these problems becomes 

more important and attracts much attention from researchers (Trivedi et al., 2016).  

 Among different approaches, multi-objective evolutionary algorithms (MOEAs) have 

been recognized as well-suited methods for solving such MOPs since they are capable of 

approximating multiple non-dominated solutions in a single run (Kalyanmoy Deb, 2001; K. 

Li et al., 2015). One of the recent effective methods is the multi-objective evolutionary 

algorithm based on decomposition (MOEA/D) (Zhang & Li, 2007). In MOEA/D, an MOP is 

decomposed into a set of scalar optimization sub-problems, and these sub-problems are solved 

simultaneously in a collaborative manner. Owing to the diversity maintenance of sub-

problems and the information sharing between individuals dwelling in a neighborhood, 

MOEA/D may acquire well-distributed solutions over a Pareto front (PF). In a comparative 

study with the non-dominated sorting genetic algorithm (NSGA-II) (H. Li & Zhang, 2009), 

the obtained results showed that MOEA/D outperforms NSGA-II in terms of both the quality 

of solutions and convergence rate. In addition, the efficiency of MOEA/D is also proven 

through real-world applications such as wireless sensor networks (Konstantinidis & Yang, 

2012), route planning (Waldock & Corne, 2011), and economic emission dispatch (Zhu, 

Wang, & Qu, 2014). Nevertheless, recent research in (Jiang & Yang, 2016; Qi et al., 2013; 

Wang et al., 2017; Yang, Jiang, & Jiang, 2016) indicated that MOEA/D often only effectively 

handles MOPs with simple PFs, while it is not good at solving MOPs with complex PFs 

exhibiting features such as a long tail or a sharp peak.  

To enhance the capability of MOEA/D in solving MOPs with complicated PFs, some 

different approaches have been proposed in recent literature. Qi et al., 2013 proposed an 

improved MOEA/D with an adaptive weight adjustment. In this version, a new weight vector 

initialization method is introduced for generating the set of initial weight vectors, and an 



adaptive weight vector adjustment strategy is developed to detect the overcrowded solutions 

on a PF and create new candidates to replace them. Yang et al., 2016 investigated the impact 

of penalty factors in the penalty boundary intersection (PBI) on the spread of a PF, and then 

proposed a new variant of MOEA/D with two different penalty schemes. Jiang & Yang, 2016 

developed an improved MOEA/D with a new search strategy, namely MOEA/D-TPN, where 

the optimization procedure is divided into two phases. The solving process of an MOP is 

started with the first phase, and after this phase terminates, the crowded information of 

obtained solutions is evaluated to decide whether or not the second phase is continued. Wang 

et al., 2017 examined, for the first time, the influence of the ideal point and the nadir point in 

the Tchebycheff function on the distribution of optimal solutions over a PF and then 

developed a new improved MOEA/D, in which both these points are integrated into the 

Tchebycheff function to decompose an MOP into a number of scalar optimization sub-

problems. Through the evaluations on benchmark test functions in (Jiang & Yang, 2016; Qi et 

al., 2013; Wang et al., 2017; Yang et al., 2016), it was shown that most of these developed 

methods outperform MOEA/D and some other available methods. They, however, often 

require more computational procedures or have more control parameters than MOEA/D, 

which may lead to certain limitations for engineering designers in applying them to real-world 

applications. For example, the method in (Qi et al., 2013) has an extra algorithm for detecting 

and replacing overcrowded sub-problems during the optimization process, while the method 

in (Jiang & Yang, 2016) requires a pre-defined reasonable number of evaluations for the 

distribution of computational resources for both Phases.  

From the review of the above methods and motivated by the desire to solve complex real-

world problems, e.g. structural optimization problems, an improved MOEA/D (iMOEA/D) 

which only focuses on bi-objective optimization problems (BOPs) is proposed in this paper. 

The iMOEA/D algorithm is developed based on the studies in (Jiang & Yang, 2016; Wang et 

al., 2017), where the advantages of using the ideal point and the nadir point, and the benefits 

of solving an MOP based on two phases are exploited. In iMOEA/D, the solving process of a 

bi-objective optimization problem (BOP) is separated into two parts, and for each part the 

general framework of MOEA/D is applied. Firstly, the set of weight vectors of MOEA/D is 

numbered and divided into two subsets: one set with odd-weight vectors and the other with 

even-weight vectors. Then, a simple two-phase search strategy is developed to optimize the 

corresponding populations of each set. In the proposed search strategy, the optimization 

process of the two phases is almost the same except for the use of the Tchebycheff function 

type (Miettinen, 1999) in which either the ideal point or the nadir point is utilized. The search 



of iMOEA/D is started at the first phase with the set of odd-weight vectors. In this phase, the 

Tchebycheff function with the ideal point is utilized. After that, the second phase is continued 

with the set of even-weight  vectors, and the Tchebycheff function with the nadir point z
nad

 is 

used.  

Furthermore, to enhance the overall performance of the algorithm, some recent 

developments related to MOEA/D consisting of an adaptive replacement strategy (Wang et 

al., 2016) and a stopping criterion (Abdul Kadhar & Baskar, 2016) are also integrated into 

iMOEA/D. To estimate the performance of the proposed algorithm, seven existing benchmark 

test functions with complicated PFs are tested first, and then three structural optimization 

problems of truss structures are solved. The efficiency and reliability of iMOEA/D are also 

compared with those of MOEA/D, MOEA/D-TPN and NSGA-II.  

 The rest of the paper is structured as follows. Section 2 provides some basic backgrounds 

of an MOP and the Tchebycheff decomposition method. Section 3 presents a general 

framework of the MOEA/D algorithm, in which some recent developments are also included. 

The iMOEA/D algorithm is described in Section 4. Experimental studies are presented in 

Section 5, and some conclusions are drawn in Section 6. 

2. Backgrounds 

2.1. Basic definitions 

A multi-objective optimization problem (MOP) can be stated as follows: 

T

1min ( ) ( ( ),..., ( ))

s.t.

mF f f



x x x

x
 

(1) 

where 
T

1( ,..., ) n

nx x x R is the vector of design variables,   is the feasible search domain, 

( )jf x is the jth objective function, and m is the number of objective functions. 

In multi-objective optimization, some basic definitions in the context of minimization 

problems are given as follows: 

• Let x1, x2   be two solutions of an MOP, x1 is said to dominate x2 (denoted 1 2x x ), if 

and only if 1 2( ) ( ), {1,..., }j jf f j m  x x , and 1 2( ) ( )j jf fx x  for at least one index 

{1,..., }j m . 

• Let x
*
   be called Pareto optimal if there is no other solution in  which dominates x

*
. 



• The set of Pareto optimal solutions in  are called the Pareto set (PS), which is 

determined by * *{ | , }PS   x x x x . The corresponding objective vectors of the 

solutions in PS is called the Pareto front (PF) and defined as { ( ) | }PF F PS x x . 

• A point * * * T

1( ,..., )mz zz is called the ideal point if 
* min{ ( ) | , 1,..., }j jz f j m  x x . 

• A point nad nad nad T

1( ,..., )mz zz is called the nadir point if nad max{ ( ) | , 1,..., }.j jz f j m  x x  

2.2. Tchebycheff decomposition approach 

Over the past decades, many approaches have been proposed for decomposing an MOP 

into a set of scalar optimization sub-problems, and can be found in Refs. (Das & Dennis, 

1998; Messac, Ismail-Yahaya, & Mattson, 2003). Among these approaches, the weighted 

Tchebycheff approach is the most widely utilized because of its capability of handling multi-

objective optimization problems with non-convex Pareto fronts (Zhang & Li, 2007). A scalar 

optimization subproblem based on the weighted Tchebycheff approach with the ideal point is 

determined by 

 * *

1
min ( | , ) max ( )

s.t.

te

j j j
j m

g w f
 

 



x w z x z

x

 (2) 

where  
T

1 1
( ,..., ) ,( 0, 1, 1,..., )

m

m j jj
w w w w j m


   w  is the weight vector of the scalar 

optimization subproblem, and z
*
 is the ideal point.  

The Tchebycheff approach in Eq. (2) is often only suitable for MOPs with normalized 

objective functions. Thus, when the ranges of the objectives are on very different scales, the 

Tchebycheff function is defined as follows (Zhang & Li, 2007): 

*

*

nad *1

( )
min ( | , ) max

s.t.

j jte

j
j m

j j

f
g w

 

  
  

  



x z
x w z

z z

x

 (3) 

According to Jiang & Yang, 2016, the scalar optimization subproblem may also be 

formulated by using the nadir point as follows: 

 
  nad nad

1
max ( | , ) min ( )

s.t.

te

j j j
j m

g w f
 
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

x w z z x

x

 (4) 

Similarly, to deal with MOPs whose objectives are on very different scales, the sub-

problem in Eq. (4) is defined in the following form: 



 

nad

nad

nad *1

( )
max ( | , ) min

s.t.

j jte

j
j m

j

f
g w

 

   
       
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z x
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z z
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3. MOEA/D algorithm 

The multi-objective evolutionary algorithm based on decomposition (MOEA/D), was 

firstly developed by Zhang & Li, 2007, and has been recognized as one of the most popular 

multi-objective evolutionary algorithms to date (Trivedi et al., 2016). In MOEA/D, MOPs are 

decomposed into a number of scalar optimization sub-problems by applying decomposition 

approaches, and these sub-problems are optimized concurrently by mean of using 

evolutionary algorithms. By employing different decomposition methods and different 

evolutionary algorithms, various versions of MOEA/D have been developed in recent years 

such as MOEA/D-DE (H. Li & Zhang, 2009), MOEA/D-DRA (Zhang, Liu, & Li, 2009), 

MOEA/D-XBS (Zhang & Li, 2007), and MOEA/D-GR (Wang et al., 2016). Although 

different variants of MOEA/D are available in the literature, there is no single MOEA/D 

version that combines the many distinct advantages of the various versions. With the aim of 

developing an efficient version of MOEA/D for real-life problems, a MOEA/D version is 

therefore developed in this study which is a combination of MOEA/D-DE (H. Li & Zhang, 

2009) with a an adaptive replacement strategy (Wang et al., 2016), and a stopping condition 

criterion (Abdul Kadhar & Baskar, 2016). The general framework of MOEA/D is presented in 

Algorithm 1.  

Algorithm 1. Pseudo-code of MOEA/D algorithm 

Input:  

• A multi-objective optimization problem as Eq. (1);  

• A stopping criterion; 

• N: number of sub-problems; 

• 
T

1( ,..., ) , 1,...,i i i

mw w i N w : a set of N weight vectors; 

• Tm: size of mating neighborhood; 

• Trmax: maximum size of replacement neighborhood; 

• : the probability that mating parents are selected from the neighborhood; 

• MaxIter: maximum iteration; 

• FEs = 0: the number of function evaluations; 

Step 1. Initialization 
1.1. Find the Tm closest weight vectors to each weight vector based on the Euclidean distances of 

any two weight vectors. For each sub-problem i = 1,…, N set 
m1{ ,..., }i

Ti iB where 

1 m,..., Tii
w w are the closest weight vectors to i

w ; 



1.2. Create an initial population 
1{ ,..., }NP x x  by uniformly randomly sampling from . 

Evaluate the fitness value iFV  of each solution 
i

x , i.e. 1( ( ),..., ( ))i i i

mFV f f x x  and set 
1 1{ ( ),..., ( )}N NFV FVFV x x ;  

1.3. Initialize ideal point 
* * * T

1( ,..., )mz zz  by setting 
* min{ ( ) | , 1,..., }j jz f j m  x x and nadir 

point 
nad nad nad T

1( ,..., )mz zz  by setting 
nad max{ ( ) | , 1,..., }j jz f j m  x x ; 

1.4. Set FEs = FEs + N, and generation: gen = 1; 

Step 2. Update 

while (the stopping condition is not satisfied) 

 for i = 1,…, N; do 

 2.1. Selection of mating/update range 

   Set  
if

{1,..., } otherwise

i

m

rand

N

 
 


B
B  ,  

where rand is a uniformly distributed random number in [0,1]; 

2.2. Reproduction: randomly select three parent individuals r1, r2, r3 ( 1 2 3r r r i   ) from Bm 

and generate a solution y  by applying “DE/rand/1” operator, and then perform a 

mutation operator on y  to create a new solution y;  

2.3. Repair: if any element of y is out of , its value will be randomly regenerated inside ; 

2.4. Evaluate the fitness value of new solution y; 

2.5. Update of 
* nad,z z : for each j = 1,…, m if 

* ( )i

j jz f x  then set 
* ( )i

j jz f x , and if 

nad ( )i

j jz f x  then set 
nad ( )i

j jz f x ;  

2.6. Update of solution: use an adaptive replacement strategy in (Wang et al., 2016): 

2.6.1. Find the most suitable sub-problem k for the new solution y by 

1
arg min{ ( )}te

t
t N

k g
 

 y ; 

2.6.2. Define the maximum numbers of solutions which may be replaced by the new 

solution y in the neighborhood set of the sub-problem k by  

max

1 exp 20

r
r

MaxIter

T
T

gen


 
 
 
   
      

   

, where .    is the ceiling function,  is the control 

parameter in [0, 1);  

2.6.3. Set { }, 1,...,k

r rl l T B B  to be the set of solutions in the neighborhood set of the 

sub-problem k which can be replaced by the new solution y; 

2.6.4. For each solution l
x  in rB , replace l

x  by y if ( ) ( )te te lg gy x ; 

end for 

Set FEs = FEs + N, and gen = gen + 1; 

Step 3. Stopping condition 

      Use a stopping criterion in (Abdul Kadhar & Baskar, 2016). 

if (stopping criterion is satisfied or MaxIter is reached)  

Stop the algorithm; 

end if 

end while 

 

Output: 

            Pareto set 
1{ ,..., }NPS x x ; 

            Pareto front 1 1{ ( ),..., ( )}N NFV FVPF x x . 



In Step 2.2, each element 
ky  of solution 1( ,..., )T

ny yy is generated by using DE/rand/1 

operator (Storn & Price, 1997) as follows: 

31 2

1

( ) with probability ,

, with probability(1 )

rr r

k k k

k r

k

x F x x CR
y

x CR

  
 



 (6) 

where F and CR are two control parameters. The polynomial mutation operator used to create 

the new solution y is defined as follows: 

ub lb( ) with probability ,

with probability(1 )

k kk k m

k

k m

y x x p
y

y p

  
 


 (7) 

where   

1

1

1

1

(2 ) 1 if  < 0.5,

1 (2 2 ) otherwise

k

rand rand

rand











 

 

  

 (8) 

where rand is the uniformly distributed random number from [0, 1]. The distribution index  

and the mutation rate pm are two control parameters, and xlb and xub are the lower and upper 

bounds of the kth design variable, respectively. 

 In Step 3, the stopping criterion named maximum Tchebycheff objective error (MTOE) 

(Abdul Kadhar & Baskar, 2016) is utilized. The method uses the information of the 

Tchebycheff objectives of all sub-problems to set a stopping condition for the algorithm. 

Firstly, the maximum value of Tchebycheff objective error (TOE) is computed based on the 

absolute difference between the current and previous generation’s Tchebycheff objectives. 

Then, the maximum value in the set of TOE (MTOE) at the current generation is determined. 

1
max{ }gen i

i N
MTOE TOE

 
  (9) 

 Finally, a 2test  is applied for statistical evaluation of the variations in the MTOE values 

during previous g generations (Sharma & Rangaiah, 2013; Wagner & Trautmann, 2010). If 

the variation of MTOE is smaller than a pre-defined tolerance value (), then the search 

process of the algorithm is terminated.   

1 2

2

variance[ , ,..., ]( 1)
( )

MTOE MTOE MTOE g
Chi MTOE






  (10) 

2( ) test[ ( ),( 1)]p MTOE Chi MTOE g   (11) 

where 1,...,MTOE MTOE are the MTOE values of the previous g generations,  is the 

expected tolerance value for the standard deviation of MTOE, Chi(MTOE) is the test statistic, 

and p(MTOE) is the probability of which the 2test supports the hypothesis that the variance 



of MTOE is lower than the pre-defined tolerance . If the probability p is equal to or larger 

than 99%, the algorithm terminates its search process. The probability p is defined by 

referring to the lookup table of 2 distribution for (g  1) degrees of freedom, where g is the 

number of generations. For instance, if the number of generation g is set to be 10, to get a 

probability p of 99%, then Chi(MTOE) must be smaller than or equal to 2.088.  

4. iMOEA/D algorithm  

As pointed out by Wang et al., 2017, the use of the ideal point z
*
 and the nadir point z

nad
 

in the Tchebycheff function has a significant influence on the distribution of optimal solutions 

over a PF. Particularly, in the case of using z
*
 as the reference point, the optimal solutions of 

sub-problems for a convex PF and a concave PF are shown in Fig. 1a and b, respectively. 

From the figures, it is clear that the optimal solution density in the central part of the convex 

PF is much larger than those of the concave PF, while it is opposite on the boundaries of the 

PFs. In contrast with the use of z
*
, the distribution of optimal solutions on these PFs is in a 

contrary direction if z
nad

 is used as the reference point, which is depicted as in Fig. 1c and d, 

respectively.  
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Fig. 1. The distribution of optimal solutions on Pareto fronts by using z
*
 point and z

nad
 point. 

 

From the obtained results of the investigation in (Wang et al., 2017), it is evident that the 

idea of combining both the ideal point z
*
 and the nadir point z

nad
 in the Tchebycheff function 

can be an efficient way to handle MOPs with complicated PFs. To take this advantage, Jiang 

& Yang, 2016 have also developed a search strategy with two phases for MOEA/D, in which 

the Tchebycheff function with z
*
 is used in the first phase, and the Tchebycheff function with 

z
nad

 is employed in the second phase. The search of the algorithm is started with the first 

phase; and after this phase, the crowded information of obtained solutions is estimated. If the 

crowded information shows that there is a significant difference between the solutions at the 

boundary/extreme and the intermediate of the PF, the second phase will be continued which 

aims to supplement more solutions on the boundary/extreme regions of the PF; otherwise, the 

second phase is not applied, and the search of the algorithm is completed. Through 

benchmark test functions with complex PFs, the method has been demonstrated to be able to 

deal effectively with MOPs with complicated PFs. The method, however, also has two 

limitations which may be described as follows: 1) the algorithm uses a pre-defined number of 

evaluations to switch from Phase 1 to Phase 2. It is very difficult to set this in advance without 

any knowledge about a problem, while it has a significant influence on the performance of the 

algorithm (Jiang & Yang, 2016); and 2) the computational cost of solving an MOP will 

increase significantly compared with available versions of MOEA/D if Phase 2 of the 

algorithm is executed.   

 Motivated by solving complex real-world problems and in an effort to overcome the 

limitations of the algorithm in (Jiang & Yang, 2016), this paper attempts to develop a newly 

improved MOEA/D (iMOEA/D) and applies it to solving bi-objective optimization problems 

(BOPs) of truss structures. In iMOEA/D, firstly, in order to surmount the first limitation in 

z
nad

 

f
1
(x) 

f
2
(x) 

z
nad

 

f
1
(x) 

f
2
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(Jiang & Yang, 2016), the stopping criterion recently proposed in (Abdul Kadhar & Baskar, 

2016) is applied. This method will help automatically stop the algorithm if there is no 

considerable improvement on the optimal solutions instead of using the number of 

evaluations. The details of this approach have been presented in Section 3. Secondly, to 

improve the distribution of optimum solutions over a complex PF while the computational 

cost of the algorithm does not increase, a new two-phase search strategy is proposed. The idea 

behind this approach is depicted in Fig. 2, and it includes the following steps. First, the set of 

the weight vectors of MOEA/D is numbered and split into two subsets: one set with odd-

weight vectors and the other with even-weight vectors. Then, the optimization process is 

started with the set of odd-weight vectors in the first phase. In this phase, the general 

framework of MOEA/D as shown in Algorithm 1 is applied, in which the Tchebycheff 

function with the ideal point z
*
 as Eq.(2) is utilized. After this phase has been completed, the 

nadir point z
nad

 is determined from the obtained set of solutions, and the Tchebycheff function 

as Eq. (4) is employed for the second phase with the set of even-weight vectors.   

 
Fig. 2. The distribution of optimal solutions on a complex Pareto front acquired by iMOEA/D. 

As shown in Fig. 2, it can be observed that by dividing the set of weight vectors into two 

subsets and applying different types of the Tchebycheff function, the distribution of optimal 

points over a complicated PF obtained by the algorithm becomes better. Fig. 2 also shows that 

this approach can work efficiently for a simple PF. Moreover, the computational cost of the 

algorithm will not increase because the total population size is equal to the population size of 

MOEA/D. The framework of iMOEA/D is summarized in Algorithm 2. 
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Algorithm 2. Pseudo-code of iMOEA/D algorithm 

Input:  

• A multi-objective optimization problem Eq. (1);  

• A stopping criterion; 

• N: number of sub-problems; 

• 
odd T

1( ,..., ) , 1,3,...,i i

mw w i N w : a set of odd-weight vectors; 

• 
even T

1( ,..., ) , 2,4,..., 1i i

mw w i N  w : a set of even-weight  vectors; 

• Tm: size of mating neighborhood; 

• Trmax: maximum size of replacement neighborhood; 

• : the probability that mating parents are selected from the neighborhood; 

• MaxIter: maximum iteration; 

Phase 1: 

1.1. Apply Step 1 to Step 3 in Algorithm 1 for the set of odd-weight vectors 
odd T

1( ,..., ) , 1,3,...,i i

mw w i N w ; 

1.2. Obtain 1 1 1

1 1{ ,..., ..., }, { ( ),..., ( ),..., ( )}, 1,3,..,i N i i N NFV FV FV i N  PS x x x PF x x x ; 

Phase 2: 

2.1. Define 
nad nad nad T

1( ,..., )mz zz  with 
nad

1max{ ( ) | , 1,..., }, ( )j j jz f j m f   x x x PF ;  

2.2. Set the initial population 1P PS   and 1FV FV ; 

2.3. Apply Step 1 to Step 3 in Algorithm 1 for the set of even-weight  vectors 
even T

1( ,..., ) , 2,4,..., 1i i

mw w i N  w , where Steps 1.2, 1.3, 2.5 are ignored; Step 2.6.4 is 

changed by “for each current solution i
x  in rB , replace i

x  by y if ( ) ( )te te ig gy x ”; 

2.4. Obtain
2 1 2 2 1 1

2 2{ ,..., ..., }, { ( ),..., ( ),..., ( )}, 2,4,.., 1i N i i N NFV FV FV i N     PS x x x PF x x x ; 

Output: 

           Pareto set 1 2{ ; }PS PS PS ; 

           Pareto front 1 2{ ; }PF PF PF . 

 

In Algorithm 2, it should be noted that the set of odd-weight vectors in the first phase 

should include the weight vectors of (1,0)
T
 and (0,1)

T
. This setting aims to ensure that a nadir 

point z
nad

, which is obtained after finishing Phase 1, can fully cover the range of a Pareto 

front. 

With the new two-phase search strategy and the integration of some recent developments, 

iMOEA/D possesses some advantages as follows: 

1) It is able to handle BOPs with complicated Pareto fronts; 

2) It does not require extra computational procedures; and the algorithm structure is 

almost the same with MOEA/D except for using it for both phases, which is not too 

difficult for engineering designers to implement.    

3) The computational cost for solving BOPs can be reduced significantly, which is quite 

crucial for solving real engineering applications. 



These benefits are verified and evaluated in Section 5 through seven benchmark test 

functions and three practical applications of the optimal design of truss structures.  

5. Experimental study 

This section is divided into two parts. The first part is to examine the performance of the 

proposed method through benchmark test functions with complicated Pareto fronts. The 

second part is to evaluate the applicability of iMOEA/D for solving structural optimization 

problems. The performance of iMOEA/D is compared with MOEA/D in Algorithm 1, 

MOEA/D-TPN (Jiang & Yang, 2016), and NSGA-II (K Deb et al., 2002). To make a fair 

comparison regarding the computational cost of NSGA-II, a stopping criterion which is 

proposed for NSGA-II in (Roudenko & Schoenauer, 2004) is also utilized. All algorithms are 

implemented in Matlab 2016b on a Core i7, 8GB ram laptop.  

5.1. Benchmark test functions 

In order to evaluate the performance of iMOEA/D, a set of seven test instances as shown 

in Table 1 is used. In Table 1, F1-F3, F4-F6, and F7 are taken from (Wang et al., 2017), 

(Yang et al., 2016), and (Jiang & Yang, 2016), respectively. As mentioned in (Jiang & Yang, 

2016; Wang et al., 2017; Yang et al., 2016), the Pareto fronts of these problems are very 

complicated which are very difficult for MOEA/D to obtain a proper distribution of optimal 

solutions over the Pareto fronts.    

5.1.1. Performance metrics 

The performance of the algorithms is assessed by two widely-used performance metrics 

including the Hypervolume indicator (HV) (E. Zitzler & Thiele, 1999) and the inverted 

generational distance metric (IGD) (Eckart Zitzler et al., 2003). These indicators are defined 

as follows: 

o HV (E. Zitzler & Thiele, 1999): Let * * *

1( ,..., )mz zz be a reference point in the objective 

space which satisfies * max( )j jz f . Let P be an approximate set to the PF gained by an 

algorithm. The HV of P is the volume of the region dominated by P and bounded by z
*
 

and is computed by 

 * * *

1 1( , ) [ ( ), ] ...[ ( ), ]m mHV volume f z f z P z x x  (12) 

where  volume(.)  is the Lebesgue measure. In this study, z
* 

is set to (2.0, 2.0) for all test 

instances (Jiang & Yang, 2016). It is noted that the method with a larger HV metric is the 

better. 



o IGD (Eckart Zitzler et al., 2003): Let P
*
 be a set of uniformly distributed points over the 

PF in the objective space. Suppose P be an approximate set to the PF gained by an 

algorithm. The inverted generational distance from P
*
 to P is defined by 

*

*
( , )

( , )
d

IGD



p P

v P
P P

P
 

(13) 

where  d(v, P
*
) is the Euclidean distance between the member v of P and the nearest 

member of P
*
. In this paper, 500 representative points created from the true PF are used 

for all the benchmark test problems. It is noted that the method with a lower IGD metric 

is the better.  

5.1.2. Parameter settings 

For all test instances, the parameter settings are the same. The parameters of NSGA-II are 

set according to (Song, 2011). For MOEA/D, MOEA/D-TPN, and iMOEA/D, their 

parameters are set as follows: 

• Population size N: N = 100.  

• Reproduction operators: CR and F = [0.4, 0.6], δ = 0.9, and pm =1/n (n is the number of 

decision variables); 

• Neighborhood size: In MOEA/D, Tm and Trmax = 0.2N. In iMOEA/D and MOEA/D-TPN 

Tm and Trmax = 0.1N.  

• Stopping condition: In MOEA/D, MOEA/D-TPN and iMOEA/D,  =10
-6

, g = 10, and 

MaxIter = 1000. The algorithms terminated when their stopping conditions are satisfied 

or the maximum number of iterations (MaxIter) is reached.  

• Number of runs:  Each algorithm is independently run 30 times on each test instance. 

It should be noted that the above parameters are set either based on the literature or on the 

experience obtained by running simulations with different settings. More specifically, N,  

and g are derived from (Yang et al., 2016), and (Abdul Kadhar & Baskar, 2016) respectively, 

while the others are based on empirical results. 

 

 

 

 

 

 

 



Table 1. Benchmark test functions 

Instance Objective function Domain n  PF characteristic 

F1 

   

1

2

0.7

1 1

1

0.7

2 1

2

1 2

5

2 1

2
1 cos(0.5 )

2
10 10sin(0.5 )

0.9sin , 2,...,

where | is odd and 2 ,and | is even and 2

Pareto Front : (1 )

ii I

ii I

i i

f x g
I

f x g
I

i
g x i n

n

I i i i n I i i i n

f f











  

  

 
   

 

     

 





 

1[0, 1] [ 1, 1]n   30 Convex 

F2 

   

1

2

2

1 1

1

1 1

2

2

1

2

1 2

sin( )2

sin( )2
1 19 if 0.005

sin( )1 2
otherwise

19 19

0.9sin , 2,...,

where | is odd and 2 ,and | is even and 2

Pareto Fro

i
ii I

i
ii I

i
ii I

i i

g
f x g

I

g
x g x

I
f

gx
g

I

i
g x i n

n

I i i i n I i i i n





















  


   


 
   



 
   

 

     







5

2 1nt : (1 )f f 

 

1[0, 1] [ 1, 1]n   30 Piecewise, 

convex 

F3 
 

 

 

   

1

2

2

1 1

1

4

1 1

2

2

4

1

2

1 2

2 1 1

2
1

2
1 8 1 if 0.5

2
8(1 ) 1 otherwise

0.9sin , 2,...,

where | is odd and 2 ,and | is even and 2

Pareto Front : 0.5(1 1 )

i

i

i

g

i I

g

i I

g

i I

i i

f x e
I

x e x
I

f

x e
I

i
g x i n

n

I i i i n I i i i n

f f f















  


   


 
   


 
   

 

     

   







2

1cos (4 (1 ))f 

 

1[0, 1] [ 1, 1]n   30 Separable, convex, 

concave  

F4 
1 1

3

2 1

2

1 2

2: 1

3

2 1

(1 )

(1 )(1 )

2sin(0.5 )( 1 ( cos(2 )))

where sin(0.5 )

Pareto Front : (1 )

n

i ii

i n i

f g x

f g x

g x n y y

y x x

f f

 







 

  

   

 

 

   

[0, 1]n  30 Convex 

F5 2

1 1 1

2

2 1 1

2

1 2

2: 1

0.5 0.5 0.5 0.5

1 2 1 2

(1 )( 0.05sin(6 ))

(1 )(1 0.05sin(6 ))

2sin(0.5 )( 1 ( cos(2 )))

where sin(0.5 )

Pareto Front : 1 0.1sin(3 ( 1))

n

i ii

i n i

f g x x

f g x x

g x n y y

y x x

f f f f





 









  

   

   

 

    

  

[0, 1]n  30 Nonconvex 



F6 0.2

1 1 1

10

2 1 1

2

1 2

2: 1

5 0.1 5 0.1

1 2 1 2

(1 )( 0.05sin(6 ))

(1 )(1 0.05sin(6 ))

2sin(0.5 )( 1 ( cos(2 )))

where sin(0.5 )

Pareto Front : 1 0.1sin(3 ( 1))

n

i ii

i n i

f g x x

f g x x

g x n y y

y x x

f f f f





 









  

   

   

 

    

  

[0, 1]n  30 Nonconvex  

F7 
1 1

2

2 1 1 1

2

1 2

2: 1

2

2 1 1 1

(1 )(1 )

0.5(1 )( cos (4 ))

2sin(0.5 )( 1 ( cos(2 )))

where sin(0.5 )

Pareto Front : 0.5(1 1 cos (4 (1 )))

n

i ii

i n i

f g x

f g x x x

g x n y y

y x x

f f f f



 









  

  

   

 

    

  

[0, 1]n  30 Nonconvex, 

disconnected 

5.1.3. Evaluation of the new improvements  

In order to demonstrate the ability of iMOEA/D to solve BOPs with the two-phase search 

strategy and to establish its advantages compared to the method (denoted as MOEA/D-TPN) 

in (Jiang & Yang, 2016), the benchmark tests F5 and F6 are used for investigation.  

The performance of iMOEA/D in solving BOPs with complex PFs is evaluated by F5 and 

illustrated in Fig. 3. As shown in Fig. 3, the optimal solutions are densely populated in the 

central part of the PF and sparsely near the boundary of the PF in Phase 1 (Fig. 3a), and vice 

versa in Phase 2 (Fig. 3b). By combining the obtained results in both phases, the distribution 

of the solutions on the final PF has significantly improved as shown in Fig. 3c.  

 
a) 

 
b) 

 
c) 

Fig. 3. Illustration of the Pareto front obtained by iMOEA/D for F5 relative to Phases 1, 2 and their 

combination. 

As mentioned in Section 4, iMOEA/D is developed based on MOEA/D-TP (Jiang & 

Yang, 2016), where the two improvements are integrated: 1) the incorporation of two recently 

developed features (i.e. an adaptive replacement strategy and a stopping criterion), and 2) the 

division of the initial weight vectors into two subsets. For the first improvement, it is easy to 

recognize that the computational cost of MOEA/D-TPN will be significantly larger than that 



of iMOEA/D if this improvement is not integrated into MOEA/D-TPN. This is because 

MOEA/D-TPN uses a conventional replacement scheme which has been demonstrated to be 

more costly than the adaptive replacement strategy (Wang et al., 2016), and a maximum 

number of iterations which do not allow to stop the algorithm until this number is reached. 

Therefore, the remaining comparison between iMOEA/D and MOEA/D-TPN will focus on 

the second improvement. For this comparison, the first improvement is also incorporated into 

MOEA/D-TPN. In this version, however, the niche scheme introduced in (Jiang & Yang, 

2016) is not included because it is not employed in iMOEA/D. It should also be noted that the 

HV-metric values can be better if the obtained results have more Pareto solutions, which 

depend on the initial population size (N). Thus, if the same N is applied for both the methods, 

the HV-metric values of MOEA/D-TPN may be better than those of iMOEA/D. This is 

because MOEA/D-TPN will use the same N in both phases if the crowded information of 

obtained solutions in Phase 1 is satisfied, and Phase II is executed, while iMOEA/D always 

uses half of N for both phases. For this evaluation, therefore, two different sizes of N (N = 50, 

100) are investigated for MOEA/D-TPN, and only one size of N (N = 100) is used for 

iMOEA/D.  

The statistical results of F5 and F6 gained by iMOEA/D and MOEA/D-TPN are provided 

in Table 2. A comparison of results obtained by iMOEA/D and MOEA/D-TPN with N = 50 

indicates that iMOEA/D outperforms MOEA/D-TPN. Specifically, all the comparative 

quantities obtained by iMOEA/D are better than those of MOEA/D-TPN, except for the 

computational cost in F6. However, the reason for the reduction of the computation cost in F6 

is because the crowded information of obtained results in Phase 1 is unsatisfied, and Phase 2 

of MOEA/D-TPN is not executed. This explains why its HV-metric values of F6 is much 

worse than those of iMOEA/D. This is also reflected in Fig. 4a. Moreover, the diversity of 

weight vectors with N = 50 is often less than that with N = 100, which can lead to the 

reduction of the quality of solutions obtained by MOEA/D-TPN.  

In contrast to MOEA/D-TPN with N = 50, for the test F5, the HV-metric values obtained 

by MOEA/D-TPN with N = 100 are much better than those of iMOEA/D, which is as an 

obvious result of the increased number of Pareto solutions. Nevertheless, the computational 

cost is mostly doubled because of the double growth of the population when both phases are 

executed. Like the case of N = 50, for the test F6, MOEA/D-TPN with N = 100 also 

terminates at Phase 1. Thus, its HV-metric values are still worse than those of iMOEA/D. In 

addition, the computational cost in this case is still higher compared to those of iMOEA/D. 

Also, for the test F6, although the diversity of weight vectors is the same, the quality of IGD-



metric values of MOEA/D-TPN is still bigger than those of iMOEA/D. This may be due to 

the efficiency of using the nadir point z
nad

 in the second phase of iMOEA/D. 

Table 2. Comparison of statistical results of iMOEA/D and MOEA/D-TPN for F5 and F6. 

Metric Method  F5 F6 

HV 

MOEA/D-TPN 

(N = 50) 

Mean  3.8259 3.3190 

Worst 3.8259 3.3188 

Best 3.8260 3.3191 

Std.  0.0000 0.0001 

MOEA/D-TPN 

(N = 100) 

Mean  3.8271 3.3221 

Worst 3.8271 3.3219 

Best 3.8272 3.3223 

Std. 0.0000 0.0001 

iMOEA/D 

 

Mean  3.8261 3.3233 

Worst 3.8260 3.3232 

Best 3.8261 3.3233 

Std.  0.0000 0.0000 

IGD 

MOEA/D-TPN 

(N = 50) 

Mean  0.0010 0.0212 

Worst 0.0011 0.0221 

Best 0.0009 0.0207 

Std.  0.0001 0.0004 

MOEA/D-TPN 

(N = 100) 

Mean  0.0009 0.0216 

Worst 0.0010 0.0220 

Best 0.0009 0.0201 

Std. 0.0000 0.0004 

iMOEA/D 

 

Mean  0.0009 0.0118 

Worst 0.0010 0.0125 

Best 0.0008 0.0111 

Std.  0.0000 0.0004 

Computational 

cost 

MOEA/D-TPN 

(N = 50) 

FEs 22337 13667 

Time (min) 0.3382 0.1697 

MOEA/D-TPN 

(N = 100) 

FEs 39524 21512 

Time (min) 0.6755 0.2671 

iMOEA/D 
FEs 19067 19537 

Time (min) 0.2641 0.2426 

 

 
a) 

 
b)  

 
c) 

Fig. 4. Illustration of the Pareto fronts obtained by MOEA/D-TPN (N = 50,100) and iMOEA/D for F6. 

From the above evaluation results, it can be concluded that the incorporation of the two 

recent features (i.e. an adaptive replacement strategy and a stopping criterion), and the idea of 

using two different subsets of weight vectors are helpful and meaningful compared to 



MOEA/D-TPN. To further evaluate the performance of iMOEA/D, MOEA/D-TPN is also 

used to solve the remaining test instances together with NSGA-II and MOEA/D, and for a 

consistent comparison, the initial populations (N) of all the methods are set to be the same. 

5.1.4. Experimental results 

In this part, iMOEA/D is tested on all the remaining functions, and the obtained statistical 

results are presented in Table 3 in comparison with those gained by NSGA-II, MOEA/D and 

MOEA/D-TPN. By taking a close look at the HV-metric values in Table 3, it can be seen that 

MOEA/D-TPN is the best method, except for the F6 metrics. However, it should be noted that 

for F1-F5 and F7, both phases of MOEA/D-TPN are carried out with the same N. Thus, the 

obtained optimal solutions are mostly doubled, and as a result the HV-metric values are 

obviously much better. The HV-metric values for F6 are almost the same with those of 

MOEA/D and worse than those of iMOEA/D and NSGA-II, which is because only the first 

phase of MOEA/D-TPN is executed. The comparison between iMOEA/D, MOEA/D and 

NSGA-II indicates that iMOEA/D outperforms NSGA-II and MOEA/D on F1-F6, while 

NSGA-II and MOEA/D are better on F7. From the comparison of IGD-metric values, it can 

be seen that iMOEA/D performs slightly better than MOEA/D-TPN and both somewhat 

worse than MOEA/D, but all three methods are significantly better than NSGA-II. Regarding 

the computational cost (in terms of time in minute (min) and the number of function 

evaluations (FEs)), however, it can be observed that iMOEA/D is the best method with the 

smallest amount of FEs for all the tests. The total FEs of iMOEA/D for F1-F7 is 312,980 

which is almost 46% less than those of MOEA/D-TPN (579,357), nearly 25% less than those 

of MOEA/D (413,003), approximately 35% less than those of NSGA-II (477,163). By 

looking at the standard deviation (Std.), it is observed that for all the investigated benchmark 

tests the standard deviations of iMOEA/D, MOEA/D-TPN and MOEA/D are quite small, 

while those of NSGA-II are often larger. 

Based on the obtained statistical results, it can be concluded that iMOEA/D is more 

effective than NSGA-II and MOEA/D in terms of the distribution of optimal solutions over 

the PFs and the computational cost. Compared with MOEA/D-TPN, iMOEA/D performs 

worse with respect to  HV-metric values, but significantly better in terms of the computational 

cost and slightly better concerning IGD-metric values. From the results, it can also be 

recognized that iMOEA/D is a proper method that can balance effectively between the quality 

of solutions and the computational cost.     

 



Table 3. Statistical results for the benchmark tests. 

Metric Method  F1 F2 F3 F4 F5 F6 F7 

HV 

NSGA-II 

Mean  1.6317 3.9422 3.4820 3.8957 3.8250 3.3226 3.6787 

Worst 1.5441 3.9334 3.4739 3.8950 3.8245 3.3223 3.6783 

Best 1.6833 3.9446 3.4855 3.8962 3.8254 3.3230 3.6789 

Std.  0.0388 0.0027 0.0035 0.0003 0.0003 0.0002 0.0001 

MOEA/D 

Mean  1.6123 3.9462 3.4925 3.8949 3.8247 3.3221 3.6787 

Worst 1.6076 3.9458 3.4906 3.8948 3.8246 3.3221 3.6786 

Best 1.6199 3.9464 3.4933 3.8949 3.8249 3.3222 3.6787 

Std. 0.0029 0.0002 0.0007 0.0000 0.0001 0.0000 0.0000 

MOEA/D-TPN 

Mean  1.8055 3.9486 3.4958 3.8985 3.8271 3.3221 3.6798 

Worst 1.7919 3.9484 3.4937 3.8985 3.8271 3.3219 3.6798 

Best 1.8111 3.9488 3.4966 3.8986 3.8272 3.3223 3.6799 

Std. 0.0041 0.0001 0.0008 0.0000 0.0000 0.0001 0.0000 

iMOEA/D 

Mean  1.7793 3.9480 3.4926 3.8969 3.8261 3.3233 3.6784 

Worst 1.7720 3.9475 3.4901 3.8968 3.8260 3.3232 3.6783 

Best 1.7877 3.9481 3.4934 3.8970 3.8261 3.3233 3.6784 

Std.  0.0039 0.0001 0.0009 0.0000 0.0000 0.0000 0.0000 

IGD 

NSGA-II 

Mean  0.0308 0.0069 0.0105 0.0042 0.0012 0.0126 0.0007 

Worst 0.0446 0.0114 0.0157 0.0053 0.0014 0.0177 0.0009 

Best 0.0201 0.0041 0.0075 0.0027 0.0009 0.0034 0.0005 

Std. 0.0064 0.0023 0.0023 0.0005 0.0001 0.0037 0.0001 

MOEA/D 

Mean  0.0047 0.0011 0.0018 0.0011 0.0008 0.0217 0.0005 

Worst 0.0056 0.0016 0.0022 0.0012 0.0009 0.0222 0.0006 

Best 0.0041 0.0010 0.0015 0.0011 0.0007 0.0213 0.0004 

Std. 0.0004 0.0002 0.0002 0.0000 0.0000 0.0002 0.0000 

MOEA/D-TPN 

Mean  0.0065 0.0014 0.0016 0.0035 0.0009 0.0216 0.0006 

Worst 0.0077 0.0027 0.0020 0.0035 0.0010 0.0220 0.0006 

Best 0.0056 0.0010 0.0014 0.0034 0.0009 0.0201 0.0005 

Std. 0.0005 0.0004 0.0001 0.0000 0.0000 0.0004 0.0000 

iMOEA/D 

Mean  0.0065 0.0010 0.0020 0.0035 0.0009 0.0118 0.0005 

Worst 0.0073 0.0012 0.0033 0.0037 0.0010 0.0125 0.0006 

Best 0.0057 0.0010 0.0017 0.0034 0.0008 0.0111 0.0004 

Std. 0.0004 0.0001 0.0003 0.0001 0.0000 0.0004 0.0000 

Computat-

ional cost 

NSGA-II 
FEs  71417 88443 83253 44483 75247 57287 57033 

Time (min) 0.8427 1.2515 0.8603 0.4196 0.7851 0.8631 0.5931 

MOEA/D 
FEs  101000 101000 101000 32151 24997 27421 25434 

Time (min) 1.2167 1.2667 1.0667 0.3342 0.2887 0.3394 0.2728 

MOEA/D-TPN 
FEs  170191 88845 162596 42621 39524 21512 54068 

Time (min) 2.2804 1.1034 1.7003 0.6545 0.6755 0.2671 0.5831 

iMOEA/D 
FEs  82597 63950 82700 20557 19067 19537 24572 

Time (min) 1.1067 0.7942 0.8648 0.3157 0.2641 0.2426 0.2650 

Corresponding to the results given in Table 3, the PFs acquired by the methods are plotted 

in Fig. 5. From the figures, it can be seen that NSGA-II, MOEA/D-TPN and iMOEA/D have 

the ability to give a better distribution of solutions on complicated PFs compared to 

MOEA/D. However, when taking a closer look at the figures, it can be observed that the 

quality of the solutions on the PFs obtained by MOEA/D, MOEA/D-TPN and iMOEA/D is 

much better than those obtained by NSGA-II. Here, it is also recognized that MOEA/D-TPN 

has more optimal solutions on the PFs at F1-F5 and F7, while those of F6 are almost the same 



with those of MOEA/D. These illustrations again reflect the HV- and IGD-metric values 

provided in Table 3.  

F1 
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F3 

  

  
F4 
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Fig. 5. Pareto fronts obtained by NSGA-II, MOEA/D, MOEA/D-TPN and iMOEA/D for F1-F7. 

5.2. Structural optimization problems 

In this section, iMOEA/D is applied to deal with three optimal design problems of truss 

structures. Since the computational cost of MOEA/D-TPN has been demonstrated to be huge 

in the previous section, which is a large restriction for real-word engineering applications, 

only MOEA/D and NSGA-II are applied to solve these problems for comparison purposes. 

The problems include a 15-bar planar truss (Tang, Tong, & Gu, 2005), a 72-bar space truss 

(Wu & Chow, 1995), and a 160-bar space truss (Groenwold & Stander, 1997) as shown in 

Fig. 6, Fig. 7, and Fig. 8, respectively. These are structural optimization problems which are 



widely used to measure the applicability of single-objective optimization methods in the 

literature.  

 

Fig. 6. The 15-bar planar truss. 

 

 

 

 

Fig. 7. The 72-bar space truss. 
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Fig. 8. The 160-bar space truss. 

In this study, the above problems are reformulated as multi-objective design optimization 

problems. For all of the problem-cases considered, the aim of the objective functions is to 

minimize the overall weight of the structures and the maximum displacement at the truss 

nodes. The design variables and the constraints for each problem are described as follows: 

• The 15-bar planar truss: The design problem has 8 continuous design variables of node 

coordinates and 15 discrete design variables of cross-section areas. All members are 

subjected to the stress limitation of ±25 (ksi). The details of the input data for this 

problem can be found in (Ho-Huu et al., 2015; Rahami et al., 2008). 

• The 72-bar space truss: The structure has 72 members that are divided into 16 groups 

corresponding to 16 design variables. The design variables are discrete values and 

selected from an available set. This structure was designed for two separate loading 

conditions and subjected to design constraints which consist of the stress limitations of 

±25000 psi and a restriction for all nodal displacements of ±0.25 in. The input data for 

the problem is available in (Ho-Huu et al., 2016; Kaveh & Mahdavi, 2014). 



• The 160-bar space truss: The 160 bars of the truss are connected to 38 independent 

discrete design variables. The structure is designed for the eight independent load cases, 

and the design constraints are considered for compression members. The details for 

these input data are given in (Groenwold & Stander, 1997; Ho-Huu et al., 2016). 

In order to handle constraints and discrete design variables for the problems in this section, 

a constraint-handling technique recently proposed in (Jan & Khanum, 2013), and a rounding 

technique in (Kaveh & Mahdavi, 2014) are utilized, respectively. All three problems are run 

20 independent times with a population size of 80. Due to the exact solutions for these 

problems not being available, a set of all non-dominate solutions obtained by three methods 

after 20 independent runs is used as an approximate PF for evaluating the IGD metric. To 

validate the reliability of the used methods, some obtained solutions on PFs are also compared 

to those acquired by single-objective optimization methods in the literature. 

Table 4 provides the statistical results obtained by the methods. At first glance, it can be 

seen that the acquired results show the same trend for all the problems. Specifically, in a 

comparison of the HV-metric values, it is observed that iMOEA/D is the best method in all 

statistical indices including the worst, best and standard deviation (Std.) values, and NSGA-II 

is the second one. This implies that iMOEA/D shows a considerable improvement on the 

distribution of solutions over a PF compared with MOEA/D and NSGA-II. Nevertheless, this 

order is slightly changed in terms of the IGD-metric values, where the order rank is MOEA/D, 

iMOEA/D and NSGA-II for all the statistical indexes. This means that the quality of solutions 

gained by MOEA/D is often better than those of iMOEA/D and NSGA-II. However, the 

difference of IGD-metric values between MOEA/D and iMOEA/D is small, while it is quite 

large when comparing with those of NSGA-II.  

In terms of computational cost, again iMOEA/D is the best method with the lowest values 

of time and FEs, while MOEA/D is better than NSGA-II. The FEs of iMOEA/D is around 

half to three-quarters of those of NSGA-II, and around three-quarters of those of MOEA/D.  

From the above results, it can be concluded that with the new features on MOEA/D, 

iMOEA/D has a significant improvement on the performance of the algorithm, particularly in 

the distribution of solutions over PFs and the computational cost. 

Table 4. Statistical results for the structural optimization problems. 

Metric Method  15-bar truss 72-bar truss 160-bar truss 

HV 
NSGA-II 

Mean  1.3909 0.6413 5.2517 

Worst 1.3880 0.6405 5.2352 

Best 1.3929 0.6419 5.2623 

Std.  0.0012 0.0004 0.0066 

MOEA/D Mean  1.3901 0.6399 5.2434 



Worst 1.3875 0.6380 5.2109 

Best 1.3920 0.6411 5.2664 

Std. 0.0015 0.0009 0.0186 

iMOEA/D 

Mean  1.3981 0.6442 5.3039 

Worst 1.3970 0.6439 5.2914 

Best 1.3989 0.6445 5.3115 

Std.  0.0006 0.0002 0.0054 

IGD 

NSGA-II 

Mean  4.5106 14.4666 12.2144 

Worst 14.6534 20.6656 17.8192 

Best 1.8665 9.2638 8.3395 

Std. 3.1474 2.1842 3.0719 

MOEA/D 

Mean  0.3284 2.5892 1.2162 

Worst 0.6924 4.4179 2.0974 

Best 0.2259 1.3245 0.3566 

Std. 0.1097 0.9183 0.5282 

iMOEA/D 

Mean  1.2766 6.1325 5.1365 

Worst 2.1820 12.3974 10.1472 

Best 0.3817 2.5065 1.5691 

Std. 0.4866 2.4370 2.2344 

Computational 

cost 

NSGA-II 
FEs 80000 80000 80000 

Time (min) 1.6533 4.5233 65.5117 

MOEA/D 
FEs 68351 57371 72300 

Time (min) 1.1636 3.5033 38.1137 

iMOEA/D 
FEs 40035 40803 64397 

Time (min) 0.8434 2.2558 32.3817 

 

The PFs obtained by the methods for all considered problems are illustrated in Fig. 9, Fig. 

10, and Fig. 11, respectively. As shown in the figures, the design problems have complicated 

PFs with a long tail at both ends, and the distributions of solutions acquired by the methods 

are quite different. The PFs of NSGA-II are often wider than those of MOEA/D and 

iMOEA/D. Their solution quality, however, is not as good as those of MOEA/D and 

iMOEA/D. A comparison between MOEA/D and iMOEA/D shows that iMOEA/D always 

offers a better enhancement on the spread of solutions over the PFs.   



 

Fig. 9. Pareto fronts with the largest HV among 20 runs for the 15-bar planar truss. 

 

 

Fig. 10. Pareto fronts with the largest HV among 20 runs for the 72-bar space truss. 



 

Fig. 11. Pareto fronts with the largest HV among 20 runs for the 160-bar space truss. 

The comparison of the obtained solutions with those of single-objective optimization 

approaches in the literature is presented in Table 5, where the results of iMOEA/D, MOEA/D, 

and NSGA-II are extracted from the end of the second objective, i.e. maximum displacement 

as shown in Fig. 9, Fig. 10, and Fig. 11, respectively. From the table, the results indicate that 

the obtained solutions are reasonable and reliable. Although there is a difference between 

solutions, this can be due to the different purposes of the employed optimization methods. In 

fact, single-objective optimization methods only focus on one objective, while multi-objective 

optimizations methods concentrate on the trade-off between two objectives. This is shown by 

particular values of the objectives in the table. For example, in the 15-bar truss problem, the 

method in (Ho-Huu et al., 2015) gives a weight of 74.6818 (lb) with a corresponding 

maximum displacement of 4.2044 (in), whilst iMOEA/D gives a larger weight of 87.0909 

(lb), but with a smaller maximum displacement of 3.6568 (in). 

Table 5.  Comparison with single objective optimization designs. 

Problem Method Weight  Maximum displacement 

15-bar truss 

Tang et al., 2005 79.820     (lb)  4.2314  (in) 

Rahami et al., 2008 76.685     (lb)   4.1161  (in) 

Ho-Huu et al., 2015 74.681     (lb)  4.2044  (in) 

NSGA-II 82.159     (lb)  3.8358  (in) 

MOEA/D 84.163     (lb)      3.7259  (in) 

iMOEA/D 87.090     (lb)      3.6568  (in) 

72-bar truss 

Wu & Chow, 1995 427.203   (lb)  0.5996  (in) 

Kaveh et al., 2009 393.380   (lb)  0.2501  (in) 

Ho-Huu et al., 2016 389.334   (lb)  0.2496  (in) 

NSGA-II 401.830   (lb)  0.2452  (in) 

MOEA/D 409.254   (lb)     0.2437  (in) 

iMOEA/D 402.486   (lb)     0.2404  (in) 



160-bar truss 

Groenwold et al., 1997 1359.781 (kg)  5.6092  (cm) 

Capriles et al., 2007 1348.905 (kg)  5.6525  (cm) 

Ho-Huu et al., 2016 1336.634 (kg)  5.6814  (cm) 

NSGA-II 1412.365 (kg)  5.2638  (cm) 

MOEA/D 1336.794 (kg)  5.6814  (cm) 

iMOEA/D 1396.266 (kg)  5.3089  (cm) 

 

6. Conclusion 

In this work, a newly improved version of MOEA/D named iMOEA/D is developed for 

solving BOPs with complicated PFs. In iMOEA/D, the set of the weight vectors of MOEA/D 

is numbered and partitioned into two subsets: one set with odd-weight vectors and the other 

with even ones. Then, a two-phase search strategy based on the MOEA/D framework is 

developed to optimize their corresponding populations. In the first phase, the population of 

the set of odd-weight vectors is optimized by using the Tchebycheff function with the ideal 

point z
*
. After that, from the set of obtained solutions, the nadir point z

nad
 is determined, and 

the Tchebycheff function with this point is applied for the set of even-weight vectors in the 

second phase. Moreover, the performance of the iMOEA/D is also further improved by the 

integration of two recent developments consisting of an adaptive replacement strategy and a 

stopping criterion.  

The reliability, efficiency and the applicability of iMOEA/D are evaluated through the 

seven existing benchmark test functions with complicated PFs and three optimal design 

problems of truss structures. The obtained results from the benchmark test functions indicate 

that iMOEA/D is more competitive than MOEA/D, MOEA/D-TPN and NSGA-II. Although 

MOEA/D-TPN and NSGA-II provide PFs with better spread compared with iMOEA/D and 

MOEA/D, the computational cost of MOEA/D-TPN is significantly larger than that of 

iMOEA/D and MOEA/D, while the quality of optimal solutions of NSGA-II is not as good as 

that of iMOEA/D and MOEA/D. The obtained results from the practical applications show 

that iMOEA/D outperforms MOEA/D and NSGA-II, and is a good candidate for solving these 

kinds of problems.  

Although iMOEA/D has shown a considerable improvement in the performance of the 

algorithm, it is currently still limited to bi-objective optimization problems. For future work, 

therefore, the idea of the division of weight vectors into two subsets (i.e. even and odd set) 

should be investigated and extended for optimization problems with more than two objectives. 

However, to implement this, it should be noted that the distribution of the divided sets should 

be equal over the weight space, which calls for considerable research efforts in the future. 

Moreover, although iMOEA/D obtains significant achievements in terms of computational 



cost compared to the compared methods, its total number of function evaluations is still high. 

This will be a major restriction when it is extended and applied to different large problems in 

civil engineering like frames, composite beams and plates, and for various applications in 

aerospace engineering, such as the optimal design of departure/arrival routes of aircraft and 

runway allocations, where the computational cost for each function evaluation is quite large. 

Thus, in the future, approximate models like artificial neural network (ANN), adaptive neuro 

fuzzy inference system (ANFIS) (Ramasamy & Rajasekaran, 1996; Rodger, 2014a, 2014b) 

can also be developed and applied for approximating objective functions to assist iMOEA/D 

in solving large scale optimization problems in reality.   

Furthermore, although the multi-objective optimization problems of truss structures have 

been solved, suitable criteria for selecting a good candidate from PFs are still an open 

question. Therefore, studies which aim to help engineering designers to pick a reasonable 

solution from PFs will also be a potential research direction for researchers in the future.    
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Appendix 

The Matlab source codes of MOEA/D, iMOEA/D and application examples can be 

downloaded from the website: https://www.researchgate.net/profile/V_Ho-Huu. 
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