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Abstract—A return mapping algorithm has been developed for the Hoffman yield function of anisotropic
plasticity. The accuracy of the algorithm has been assessed by means of iso-error maps for trial stress
increments in the deviatoric and volumetric plane. A tangent operator that is consistent with the developed
integration algorithm has been formulated. The Hoffman model has been applied to a plate structure and

to two shell structures,

1. INTRODUCTION

To describe the failure behaviour of anisotropic
composites a fracture criterion is needed which is able
to describe the complex phenomena which govern
failure in this type of materials. Criteria such as those
of Tsai-Hill, Tsai-Wu and Hoffman are designed to
meet this requirement.

The geometry of the Hoffman failure surface,
which will be used in this investigation, is described
by a quadratic function of nine independent variables
which have to be determined from six uniaxial ten-
sion and compression tests and three shear tests.
When the criterion is represented graphically in the
principal stress space it is an elliptic paraboloid.
The intersections of the limit surface with planes
parallel to the deviatoric plane are ellipses, the shape
of which is determined by the quadratic part of the
function. The expansion of the function along its
space diagonal is determined by the terms that are
linear in the stress.

In this study the Hoffman criterion is used as a
yield criterion, This implies that the calculations are
not terminated after the yield surface is reached, but
that they are continued in an incremental fashion.
Within each loading step iterations are added to
ensure that total equilibrium is complied with. In
the present investigation a full Newton-Raphson
method has been used. The tangential operator
needed in this strategy has been derived by differenti-
ating the stress—strain relation for finite load incre-
ments. This leads to the so-called consistent tangent
matrix for anisotropic elastoplastic solids. Use of this
tangential relation warrants a quadratic convergence
of Newton’s method.

The fully implicit Euler backward method has
been applied to integrate the elasto-plastic relation.
Matthies (1] has provided an elegant decomposition
algorithm for use within the Euler backward scheme.

In this contribution a more simple algorithm is
proposed which leads to the same solution accuracy
and requires an equal number of iterations to return
the trial stress to the yield surface. The accuracy of
the integration algorithm is assessed by iso-error
maps for stress increments in both the deviatoric and
the volumetric plane [2-6].

2. THE HOFFMAN YIELD CRITERION

Basically the Hoffman criterion 7] is a modifi-
cation of the criterion proposed by Hill [8] through
inclusion of terms that are linear in the stress. In
this way the restriction of the Hill criterion, i.e. no
differences between the tensile and the compressive
yield strength can be described, is obviated. Hoffman
originally formulated his failure criterion by the
quadratic function

Cy (09— 053 ) + Gy (033 — 0 )P + Gy (0 — o)

+ C4ay, + Csoy + Coo33+ Cr0%

+ Cyod) + Goth =1, m
where the constants C,, { = 1,9, are nine independent
material parameters which can be uniquely deter-
mined from six uniaxial tension and compression
tests and three shear tests.

With the introduction of a yield function ¢(s) the
Hoffman yield criterion can be rewritten as
D(0) = 0ty (03 ~ 033 ) + 03 (033 — 0y )
+ 0)3(0y — 62)* + 010y + 0p0n

2
+ 033,093 + 30y 035 + 35503

+ 3003, — 62, 3]
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where yielding can only occur if ¢ =0. When &}
and &, denote the compressive and tensile yield
strengths in the axes of orthotropy, when &, are
the shear yield strengths and if ¢ is a normalised
yield strength, the material parameters o; can be
determined through the expressions
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The Hoffman vyield criterion contains several
other well-known yield functions as a special
case, When we Set oy = tlyy == 013 = Olgy = Olss = Olgp = |
and oy =0ty = tt33 =0 the Hoffman yield function
reduces to a von Mises yield function. In the principal
stress space this yield contour represents a cylinder
with the hydrostatic axis as the principal axis (or
space diagonal). For the case that the constants a,,,
Oy3, O3p, Ogg, Os5 and agg are not equal the Tsai-Hill
yield criterion results. In the principal stress space
this yield contour has the shape of an elliptic cylinder.
The principal axis of this cylinder again coincides
with the hydrostatic axis. The Tsai~Hill yield func-
tion is used for materials which have different
strengths in the axes of orthotropy, but for which the
tensile and compressive strength are equal in each
direction.

If we consider the case that o), =ty = 0y, = a4y =
ttss = tlgg = 1, while the parameters «,,, &y, and o, are
equal but nonzero, the failure surface is a cylindrical
paraboloid with its space diagonal coinciding with
the hydrostatic axis, The Hoffman yield function now
describes a quadratic Drucker—Prager criterion.
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Fig. 1. Cross sections of an anisotropic Hoffman yield
surface and the deviatoric plane.

In the most general case, i.e. we have neither
Olyy = Oy = lly) = Olgy = Ulgg = Olgg NIOT Oy = Upy =ty =0,
the Hoffman yield function represents an elliptic
paraboloid. In this case the space diagonal does not
concide with the hydrostatic axis, but is merely
parallel to it. The cross sections of this function with
the deviatoric plane are ellipses (Fig. 1), the centres
of which lie on the space diagonal.

In case of a plane-stress situation (o3 =05 =
o4y = 0) the Hoffman criterion reduces to

— 2 2 3
¢(O’) = Uy 0 + U3 07y + alz(au - 0'22)
oy 0+ 009y + 300 — 62 (3)

To derive the material constants for this stress situ-
ation an additional off-axis strength test is necessary
to supplement the two uniaxial tests and the shear
test, With G, the off-axis strength, the material par-
ameters are given by

G
Ogy = —5
44 30_%2
20"2+1 G2 ¢?
3 =03 -k = ek =
i 2\6Hd, dGhiy
E (o)) + o)
Gy
62
X =g 0
iy
0-'2
Oy = ——— U2
6oy

For use in finite element analysis eqn (2) is better
reformulated in matrix—vector notation, This results
in

=16"P,0 +0'p,— ¢* @)
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. . T
in which ¢’ = (0, 04, 033, 015, 03, 03)

(2005, +a3) — 201,
=20y 2o+ o)
P = — 203 = 263
0 0
0 0
L 0 0
and
i = (%), &y, @33, 0, 0, 0). (6)

3. FORMULATION OF PLASTICITY RELATIONS

For perfect plasticity, to which attention is
confined in this paper, the yield condition can be
written in a general form as

®(e) =0. @)
The time derivative of eqn (7) yields
T
&(0) = <é?{> &. (8)
Oa

The stress point must remain on the yield contour
and hence & =0 during yielding. According to
Drucker’s postulate an associative flow rule then
results in

0P

[y .
¢ laa’ )

where / is the time derivative of the plastic multiplier,
a measure of the plastic strain rate. Integrating eqn
(9) gives a relation for the incremental plastic strain
in a finite loading step

A1
Ae’ = J ZQ(B dt.
, do

It is recalled that Drucker’s postulate does not follow
from the fundamental laws of mechanics. It is simply
an assumption which must be confirmed by exper-
imental evidence.

(10)

4. INTEGRATION OF THE ELASTO-PLASTIC RELATION

In a finite loading step the total strain increment Ae
is assumed to consist of an elastic part Ae® and a
plastic part Ae”
Ae = Ae® + Ae’. (11)
Substituting the linear elastic stress—strain relation
Ae?=CAg in eqn (11) gives

—~Ae? =CAg ~ Ac (12)
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with Ae the stress increment at the end of the loading
step and C the elastic compliance matrix. For the
incremental plastic strain it is assumed that eqn (10)
can be integrated sufficiently accurately by a single-
point integration rule

oP

Ae? =AL =
¢ = (13)

with AA the finite plastic multiplier.
The derivative of @ (a) with respect to e is given by

&
6—=Pa,or + Py (14)
do

When eqn (13) is rewritten with the aid of eqns (12)
and (14) this results in

C Ao — Ae + AA(P, (0 + Aa) + p,) = (C + ALP)

X {0y + Ac) — (e*+ Ae — Adp,) =0, (15)
where g, is the stress at the beginning of the loading
step. The final stress at the end of the loading step has
to be solved from this relation and is written as

6,=0y+ Ao = (C -+ AAP,)"'(e* + Ae — Adp,). (16)

A graphical interpretation is given in Fig. 2.

Introducing eqn (16) in eqn (4) we arrive at the
yield condition as a function of the plastic multiplier
AA. Linearisation of the obtained relation in AA gives
ultimately

oo

ARV = Ao e |
(AP /d ALY |

17

d=constant

Fig. 2. Implicit Euler backward integration scheme,
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To solve this relation the derivative of ®(A4) with
respect to A4 has to be determined

7
where
B9y _ _(C+AIR,)(C+AIP,)!
FY
x Py(e° +Ae —Adp, ) +p]. (19)

Substituting eqns (19) and (14) in eqn (18) yields

90 (A1)

T OT(C + ALP,)"!

% [(C+ ALP,)'P,(e° + Ae — Adp,) +p,]. (20)

The matrices P, and C~' only commute for isotropic
material behaviour, Then, eqn (19) can be simplified
to

da,

r—— A — _l .
S = = (C+AIR) (g, +B.)

@1

Substituting eqns (21) and (14) in eqn (18) now
yields

0P (AL)
d Ad

= _(Paau + pm)T(C + A'{Pa)_l

x (P,0,+p,). (22)
In an alternative approach to determine the value
of the plastic multiplier A4 Matthies [1] has applied
a spectral decomposition to the matrices P, and C.
At the expense of determining the eigenvalues of
this matrix product, the matrix-vector operations in
eqn (20) then do not occur and the corresponding
expression in the eigenspace only involves scalar
operations, Conceptually the present algorithm is
more simple while giving the same accuracy and
requiring an equal number of iterations,

5, CONSISTENT TANGENT OPERATOR

In nonlinear finite element analysis the stress—
strain relation has to be determined within each
loading step. Two different methods can be distin-
guished to derive this tangent relation, the classical
or continuum tangent method and the consistent
tangent method [9, 10]. The latter method will be
described in the sequel.

The total strain at the end of iteration / is given
by

€' ="+ Ae™ + Aeh, (23)

J. C. J. ScHELLEKENS and R. DE BORST

where €” is the strain at the beginning of the loading
step. With the relations for the incremental elastic
and plastic strains

Aett = C(o'— o) (24)
and
) od
Ae? = A — (25)
oo
the stress—strain relation can be written as
. 0P
e'=e"-|—C(a’—a")+Al’a—. (26)
(]

Taking the time derivative of eqn (26) results in

X 0P .0
sl ! 1 2
é'=Ca'+ AL _6020 +,l—aa_.

@7
In the case of incremental stress and strain increments
the second term in the right-hand side of eqn (27)
vanishes. The result is the classical, continuum elasto-
plastic tangent stiffness matrix. When finite loading
increments are considered this term becomes an
important contribution to the elasto-plastic tangent
stiffness. We now introduce a matrix H

0%
H=C+Alin— (8)
il
so that egn (27) can be rewritten as
. . 0P
é=Hd +1—. (29)
oo

Premultiplication with H~! and 8% /ds, and invoking
the consistency condition (8) yields, after some mani-
pulations

é¢'=D¢'

e f) ™

da )\ 0o

= g1=

D=\H FI3 TH_, Fr3 ’
0o do

the so-called consistent tangent stiffness matrix. For

the Hoffman yield criterion the consistent tangent
matrix D becomes

(30)

with

€}y

D =(C+AAP,)

(C+ALP,)"'(P,a' +p,)
x (P,a' +p,)(C+ ALP,)"!

T (P,0'+p)(C+AAP)
x (P,0' +p,)

(32)
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P=0

6. ACCURACY ANALYSIS OF THE INTEGRATION
ALGORITHM

The accuracy of the integration algorithm for
elasto-plastic relations can be assessed by means
of so-called iso-error maps [2-6]. Since the Hoffman
yield criterion is dependent on the hydrostatic press-
ure we cannot suffice by considering the error in the
deviatoric plane as with von Mises and Tsai-Hill
plasticity, but we also have to consider errors in the
volumetric direction. At this point some explanation
is in order with respect to the definition of radial
and tangential trial stress increments both in the
deviatoric and in the volumetric plane and on the
location of the initial stress points (see Figs 3 and 4).
We define the deviatoric plane as o, + 0y + o33 =0.
If we consider anisotropic material properties the
cross-section of the yield surface and the deviatoric
plane is elliptically shaped. The initial stress points
are the intersections of the ellipse with its principal
axes, i.e. the points of smallest and strongest curva-
ture. The line connecting the initial stress point with

rAG,,

L(/0’1 +Gy+03=0 )

"

MLLD

——

D=0
Fig. 3. Initial stress points and stress increments in the deviatoric plane.

the centre of the ellipse is the normal vector of the
volumetric plane,

In the deviatoric plane the radial trial stress incre-
ment Ae,, is directed normal to the yield surface
whereas the direction of the tangential trial stress
increment Ag,, is along the yield surface. The same
holds for radial and tangential stress increments Ag,,
and Ae,, in the volumetric plane. For the radial and
tangential stress increments in the deviatoric plane
(Ao,; and Aec,) the unit magnitude is defined to be
equal to a stress increment which, starting from a
stress-free state, induces initial yielding in the corre-
sponding direction. For material 1, which represents
an isotropic Hoffman yield contour (Table 1), the
unit magnitude of the radial stress increment in the
volumetric plane Ae,, is defined in a similar fashion.
The unit magnitude of the radial stress increment
for materials 2, 3, and 4 (Table 1) is equal to Ae,,
of material 1. The unit magnitude of the tangential
stress increment Ae,, is equal to Ag,, for all four sets
of material constants.

Incrementing the trial stress in the deviatoric plane
results in a component of the final stress increment
not only in the deviatoric plane, but also in the
volumetric plane. Therefore we define 0, as the angle
between projections of the exact stress o, and numeri-
cally determined stress g, on the deviatoric plane and
6, as the angle between projections on the volumetric
plane. The angles are positive for the directions as
given in Figs 3 and 4. The error in the norm of @, is
defined as

_J(e.—0,) (6, —0,)

error =

x 100%. (33)

Fig. 4. Stress increments in the volumetric plane. \/] (CHD
Table 1. Material sets for error maps

& ay % Gy it by
Mat. | 1.0E4 {.0E3 1.0E4 1.0E3 1.0E4 1.0E3
Mat. 2 5.0E3 1.0E3 1.0E3 1.0E3 1.0E3 1.0E3
Mat. 3 1.0E4 1.0E3 1.0E3 1.0E3 1.0E3 1.0E3
Mat. 4 2.0E4 1.0E3 1.0E3 1.0E3 1.0E3 1.0E3

%y L] %33 %z %3 %33
Mat. 1 9.0E2 9.0E2 9.0E2 0.05 0.05 0.05
Mat. 2 8.0E2 0.0 0.0 0.1 0.1 0.90
Mat. 3 9.0E2 0.0 0.0 0.05 0.05 0.95
Mat. 4 9.5E2 0.0 0.0 0.025 0.025 0.975

CAS 37/6—N
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Note that the ‘exact’ stress is computed by sub-
dividing the applied stress increment into 1000
subincrements.

For the sets of material parameters from Table 1,
iso-error maps have been computed. The results
are given in Figs 5-8. Material 1 represents an
isotropic Hoffman yield function with the compres-
sive yield strength 10 times the tensile yield strength.
An anisotropic yield function governs the plastic
behaviour of materials 2, 3 and 4, for which the
compressive yield strength in one axis of orthotropy
is respectively five, 10 and 20 times the compres-

24 %

Fig. 5. Iso-error maps of material 1. (a) Errors in norms of
numerically determined stresses (stress increments in the
deviatoric plane); (b) angles between exact and numerically
determined stresses (stress increments in the deviatoric
plane), lefi: 8,, right: 6,; (c) angles between exact and
numerically determined stresses (stress increments in the
volumetric plane), lef: Aa,, in negative direction, right: Ae,,
in positive direction,
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Fig. 6. Iso-error maps of material 2. (a) Errors in norms of
numerically determined stresses (stress increments in the
deviatoric plane), left: point of smallest curvature, right:
point of strongest curvature; (b) angles 8, between exact and
numerically determined stresses (stress increments in the
deviatoric plane), Jeft: point of smallest curvature, right:
point of strongest curvature; (c) angles 6, between exact and
numetrically determined stresses (stress increments in the
deviatoric plane), /eft: point of smallest curvature, right:
point of strongest curvature; (d) angles between exact and
numerically determined stresses (stress increments Ae,, in
the volumetric plane, positive direction), lefi: point of
smallest curvature, right: point of strongest curvature,
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Fig. 7. Iso-error maps of material 3. () Errors in norms of
numerically determined stresses (stress increments in the
deviatoric plane), Jeft: point of smallest curvature, right:
point of strongest curvature; (b) angles 6, between exact and
numerically determined stresses (stress inctements in the
deviataric plane), /eft: point of smallest curvature, right:
point of strongest curvature; (c) angles 0, between exact and
numerically determined stresses (stress increments in the
deviatoric plane), /left: point of smallest curvature, right:
point of strongest curvature; (d) angles between exact and
numerically determined stresses (stress increments Ae,, in
the volumetric plane, positive direction), feft: point of
smallest curvature, right: point of strongest curvature,

Fig. 8. Iso-error maps of material 4, (a) Errors in norms of
numerically determined stresses (stress increments in the
deviatoric plane); left: point of smallest curvature, right:
point of strongest curvature; (b) angles 8, between exact and
numerically determined stresses (stress increments in the
deviatoric plane), /eft: point of smallest curvature, right:
point of strongest curvature; (c) angles 6§, between exact and
numerically determined stresses (stress increments in the
deviatoric plane), left: point of smallest curvature, right:
point of strongest curvature; {d) angles between exact and
numerically determined stresses (stress increments Ag,, in
the volumetric plane, positive direction), /eft: point of
smallest curvature, right: point of strongest curvature.
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Fig, 9. Iso-error map for the von Mises yield function.

sive yield strength in other axes of orthotropy. In
the computations the tangential trial stress in the
volumetric planes ranges from —35 to 5 times the
unit magnitude with positive direction towards the
apex of the yield surface. The magnitude of all other
trial stress increments is between 0 and 5 times the
unit increment. In Figs 5-8 R and T are the multi-
pliers for the radial and tangential unit trial stress
increments.

On basis of the iso-error maps the following
remarks can be made:

e When the anisotropy of the yield surface becomes
more pronounced, the errors in numerical results
decrease. Taking into account the fact that use of
implicit integration at corners in the yield surface
leads to exact results [11], the observed tendencies
of decreasing errors at points with a strong curva-
ture are well explainable.

e The calculated errors are small when compared to
the von Mises criterion (Fig. 9). Only when the
tangential trial stress increment Ae, is directed
towards the apex of the yield surface, do the errors
become relatively large, especially when the trial
stress is beyond the apex (Fig. 5¢),

o When the trial stress is in the volumetric plane and
directed from the apex, the errors are small. For
this reason the corresponding iso-error map is only
given for material 1 (Fig. 5c).

o Figure 6c and f show that the errors belonging to
the point of strongest curvature in the deviatoric
plane exceed the errors belonging to the point of
smallest curvature in the deviatoric plane when the
trial stress increments are in the volumetric direc-
tion. This is because points of the yield contour
where the curvature in the deviatoric plane is large
show a smaller curvature in the volumetric plane
than points that have a small curvature in the
deviatoric plane.

L=76 ([m]
d = 0.076 [m]

Fig. 10. Geometry of the cylindrical shell,

o If an initial stress point is located at the strongly
curved part of the yield surface and the trial
stress increment is in the deviatoric plane, we
note that for large o,/s, ratios the errors become
less dependent on the tangential stress incre-
ments when a material becomes more aniso-
tropic. We also observe that the errors 6, in the
volumetric direction slightly increase with increas-
ing anisotropy. This is a result of a decreasing
curvature of the yield surface in the volumetric
direction.

7. EXAMPLES

All the example calculations to be discussed in the
sequel have been carried out under arc-length control
and a full Newton-Raphson iteration method has
been used. Since the use of the consistent tangent
operator leads to improved convergence behaviour
when compared to the continuum tangent operator,
especially when anisotropic material properties are
concerned [12], calculations have been carried out
with the former method,

A cylindrical shell

The first shell structure that has been analysed is
the cylindrical shell of Fig. 10{13, 14]. The vertical
displacements of both curved ends are prevented.
Because of symmetry considerations the calculations
have been carried out for only a quarter of the
shell, Eight-noded degenerated shell elements with
2 % 2 Gauss integration in the plane and a five-point
Simpson integration through the thickness have been
used. In the calculations a Young's modulus of
E =21 x 10kN/m? and a Poisson’s ratio v = 0 have
been used. The yield stresses used in the analyses are
given in Table 2. Figure 11 shows the load—deflection
curves for the different cases under a uniformly
distributed self-weight load.

Table 2, Plastic material properties

5 5% = "
gy 01y 57} On

- o - n =
033 033 Gy O3 03

Case | 4.2E3 4,2E3 4.2E3 4.2E3
Case 2 4,2E3 84E3  4.2E3 8.4E3
Case 3 8.4E3 4.2E3 8.4E3  4.2E}
Case 4  43E4  43E3  43E3 4.3E3

4,2E3 4.2E3 24E3  24E3  24E3
4.2E3 8.4E3 24E3  24E3  24E3
8.4E3 4.2E3 24E3  24E3  24E3
4.3E3 4.3E3 24E3  24E3  24E3
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load q [ kN/m? )

4.0

10 —a— Case |
—— gase g
............... ase

204 F Case 4

1.0 4

0.0

00 0.05 01 0.1s

displacement point A [ m ]

Fig. 11. Load—deflection curves for point A.

A clamped plate

The second example concerns a clamped square
plate which is loaded in the centre by a concentrated
load [13, 14]. Again, only a quarter of the plate has
been modelled because of symmetry considerations
(Fig. 12). The same elements have been used as
in the first example with 2 x 2 integration in the
plane and seven integration points through the
thickness. Analyses have been carried out with
a Young's modulus E=30x10°kN/m* and a
Poisson’s ratio v =0.3, The yield values are given
in Table 3. The hardening behaviour has been
modelled by using Besseling’s fraction model [15].
The bardening modulus of s =0.01E has been
approximated by a two-fraction model with weights
¢, =099 and ¢,=0.01 where the second fraction
remains elastic throughout the loading process.
Figure 13 shows the load as a function of the
displacement of the centre of the plate for the case
listed in Table 3.

A spherical shell

The third example is the clamped spherical shell
of Fig. 14[12, 13]. The material properties are identi-
cal to those of the clamped plate. Again only a
quarter of the structure has been analysed, The shell
is loaded in the centre by a concentrated load. The
number of integration points is as in the second
example. Figure 15 shows the load in the centre of the
shell as a function of the vertical displacement in that
point for the various cases.

From Figs 11, 13 and 15 we observe that a clear
difference exists between the results for the isotropic
and the anisotropic strength properties. In cases of
anisotropy the ultimate bearing capacity increases up
to 100%. Because of the arching effect, an increase of
the compressive yield strength has a greater influence
on the bearing capacity of the two shells than has an
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L =60 [m]
d=0.2 [m]

Fig. 12. Geometry of the clamped plate.

load P[ kN ]

7.0+
6.0
5.0
4.0
3.0 4
2.0
1.0—1
0.0

015
displacement centre [ m |

0.0 0.05 ol

Fig. 13. Load-deflection curves for the centre of the plate.

z L =6.0[m]
d =02 {m]

Fig. 14. Geometry of a clamped spherical shell,

load P kN ]

0.03

0.015

0.06
displacement centre [ m ]

0.045

Fig. 15. Load-deflection curves for the centre of the
spherical shell.

Table 3. Material properties for plastic behaviour

ay il G ) 03 F% 61, 48 G
Case 1 3E4 3E4 3E4 3E4 3E4 3E4 1.7E4 1.7E4 1.7E4
Case 2 3E4 3E4 4E4 4E4 3.5E4% —_ 2.02E4 1.7E4 1.7E4
Case 3 6E4 3E4 6E4 3E4 6E4 3E4 1.7E4 1.7E4 {.7E4
Case 4 6E4 3E4 6E4 JE4 6E4 3E4 1.7E4 1.7E4 1.7E4

1 The value of 4, is given,
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increase of the tensile yield strength. For the plate
structure the opposite holds true.

8. CONCLUDING REMARKS

In this contribution an Euler backward algorithm
has been derived and assessed for the Hoffman
yield criterion of anisotropic plasticity. The algorithm
appeared to be accurate even for strongly curved
parts of the yield contour. This appeared to hold true
for the errors in the deviatoric plane as well as those
in the volumetric plane., Only when the trial stress
increments in the volumetric plane are directed
towards the apex, do larger deviations from the exact
solution occur, The fact that the Euler backward
algorithm yields only small to moderate errors for the
Hoffman yield criterion gives confidence that appli-
cation of this algorithm to more sophisticated an-
isotropic yield functions (e.g. Tsai and Wu [16]} where
we have coupling between shear and normal stress
components) also results in an acceptable accuracy.
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