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A multiple spiking neural network architecture
based on fuzzy intervals for anomaly detection: a
case study of rail defects

Wassamon Phusakulkajorn, Member, IEEE, Jurjen Hendriks,
Jan Moraal, Rolf Dollevoet, Zili Li, and Alfredo Nuiiez, Senior Member, IEEE,

Abstract—In this paper, a fuzzy interval-based method is
proposed for solving the problem of rail defect detection relying
on an on-board measurement system and a multiple spiking
neural network architecture. Instead of outputting binary values
(defect or not defect), all data will belong to both classes with
different spreads that are given by two fuzzy intervals. The
multiple spiking neural networks are used to capture different
sources of uncertainties. In this paper, we consider uncertainties
in the parameters of spiking neural networks during the training
phase. The proposed method comprises two steps. In the first step,
multiple sets of the firing times for both classes are obtained
from multiple spiking neural networks. In the second step, the
obtained multiple sets of firing times are fuzzy numbers and
they are used to construct fuzzy intervals. The proposed method
is showcased with the problem of rail defect detection. The
numerical analysis indicates that the fuzzy intervals are suitable
to make use of the information provided by the multiple spike
neural networks. Finally, with the proposed method, we improve
the interpretability of the decision making regarding the detection
of anomalies.

Index Terms—spiking neural network, parameter uncertainty,
prediction interval, interpretability, anomaly detection.

I. INTRODUCTION

The performance of forecasting systems, control strategies
and fault detection systems can be strongly affected by un-
certainties in the processes. In addition, uncertainties in the
model development are also of importance because they will
affect the generalisation and predictive capability of the model,
particularly when dealing with nonlinear processes.

Uncertainties in the model development can be classified
into three types [1]. The first is model misspecification. It is
uncertainty determined by how close the estimate model can
approximate the real data under optimal parameter and data
conditions. The second is uncertainty related to training data.
It is uncertainty over how representative the training data is
with respect to the whole input distribution, and how sensitive
the model can be to unseen samples. The third is parameter
uncertainty. It is uncertainty on the values of the model
parameters due to local minimum stagnation. In this paper,
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parameter uncertainty will be the main focus, particularly we
will analyse the effect of synaptic weights.

In literature of neural networks, the estimation of synaptic
weights is typically tackled by solving a non-convex optimisa-
tion problem. Thus, finding the global optimal parameters can
not be guaranteed. To obtain a near optimal solution, multiple
sets of synaptic weights are evaluated as the first estimation
from which an optimisation algorithm searches for a better
solution. As these weights are obtained from a random set
of variables with a distribution defined a priori, it implies that
there are many possible models in which some might be prone
to local minimum stagnation.

The study of uncertainty quantification and its effects is
crucial for the full understanding of the performance of the
systems [2], [3]. Then, prediction interval arises as one of the
techniques to represent effects of uncertainties over the future
process behaviour [4]-[11]. Among the existing methods in
the literature, fuzzy and fuzzy-neural interval models have
been successfully used to quantify uncertainties in nonlinear
systems from different research fields and applications [1],
[12]. Some examples include waste-water treatment plants
[13], modelling of the pH-titration curve [14], financial sys-
tems [6], [15], [16], biomedical engineering [17], renewable
energy systems and microgrids [18]-[20], the solder paste
deposition process [21], reactive power in electric arc furnace
[22], aeronautics and astronautics [23], fault detection [24]-
[26], among many others.

This paper investigates an effect of parameter uncertainty
on anomaly detection using measurements of rail defects, a
multiple spiking neural network (MSNN) architecture, and
fuzzy intervals. In this paper, the dispersion of the firing times
are considered and the firing times are generated from MSNNs
whose synaptic weights are adjusted by backpropagation ap-
proach [27], [28] with multiple sets of random initial weights.
To represent the most likely region to which the firing times
will belong, the concept of fuzzy numbers is employed. Within
these fuzzy intervals, a spread of firing times is analysed to
obtain information that is used to define a classification rule
and to quantify the prediction certainty of an anomaly detec-
tor based on MSNNs. Therefore, the decision regarding the
detection of anomalies is interpretable. The dispersion of the
output of the anomaly detector captured by the fuzzy intervals
provides key information concerning uncertainty required in
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maintenance decision-making processes, making them more
informative and accurate [29]-[31].

The rest of the paper is organised as follows. Section
II introduces a multiple spiking neural network architecture
based on fuzzy intervals for anomaly detection. The problem
of rail defect detection is introduced as a case study to
evaluate the method in Section III. The experimental analysis
is elaborated in Section IV. Section V concludes the paper.

II. METHODOLOGY

Figure 1 presents a fuzzy interval based method that relies
on an on-board measurement system and an MSNN archi-
tecture to solve the problem of anomaly detection. In this
paper, MSNNSs are used to capture uncertainties arising from
the training phase due to random initial weights in a binary
classification of the problem (nondefective and defective rails).
The proposed method comprises two steps. In the first step,
multiple sets of the firing times for both classes are obtained
from MSNN:Gs. In the second step, the obtained multiple sets of
firing times are converted into fuzzy numbers and they are used
to construct fuzzy intervals. With different spreads of firing
times in both classes, the following information are obtained
as outputs: an indication of the membership degree to each
class and a predicted class label related to the fuzzy interval
considering an estimation of the level of certainty.

A. Problem formulation

Anomaly detection can be considered as a classification
problem. This problem assumes availability of a dataset
D = {(x®,c®),b=1,..., B} containing pairs of an input
x® = [z, ... 2!)] € RM and its class label ¢®) € {1,2},
in which B is the number of pairs in D and M is the number
of features used to represent each input x(®).

In this paper, the ground truth that relates an input x(*)
with its class label ¢(®) is obtained from experiments and
fieldwork. In railways, collecting data and correctly labelling
the samples of both defective and healthy states is costly,
difficult, and time-consuming. It is costly because data are
typically collected using specialised measurement trains and
requires expert personnel with the know-how to evaluate the
data. As rails are affected by local track dynamics and different
stochastic variables, obtaining class information for both de-
fective and healthy data is also difficult and time-consuming as
typically field tests and additional measurements are required
to confirm the presence of defects. These difficulties explain
the large amount of data that is not being fully used by
inframanagers, and the amount of unlabelled samples when
dealing with railway data. Therefore, the goal in this paper is
to provide a method that allows to obtain the correct class c(*)
directly from x(®) by capturing their relationship using fuzzy
interval modelling together with an MSNN-based estimator.

Let G be a set of spiking neural network-based estimators,
Gpp=1,...,P, such that G, : x® — &), in which &
represents a predlcted class label obtamed from G,. Given a
dataset D and a set of spiking neural network hyperparameters
O, a set of synaptic weights of G, is tuned to obtain a good

estimator of the problem. The tuning of these synaptic weights
is a non-convex optimisation problem. Thus, these weights are
initialised from multiple random variables and then optimised
to obtain a near optimal solution using backpropagation. With
the near-optimal synaptic weights W, each G, € G generates
a corresponding set of firing times F, = {{},15}.

For all G,,, the obtained firing times of neuron j, £,p =
1,...,P,5 = 1,2 are defined as fuzzy numbers and are
used to define lower and upper bounds of the fuzzy interval
I; = [t]L7 tgj] for a class label j. Then, in this paper, based on
the fuzzy intervals I; and I, the percentage of prediction
certainty is provided to improve the interpretability of the
decision regarding the detection of anomalies. Then, we can
define classification rules to predict the fuzzified output class
label ¢(®) by making use of the multiple sets of firing times

provided by the MSNN F,, p = ., P for every given input
(b)
x\%),

B. Multiple spiking neural networks

A spiking neural network (SNN) is considered as the
third generation of neural networks [32]-[35]. It has been
employed in ficlds such as biomedical science and mechanical
engineering [36]-[39]. It processes and transmits information
via trains of spiking events. For a given real-valued input x
= [x1,...,24,...,2p)T € [0,1]M, this paper employs the
population rank encoding scheme with K receptive fields and
the overlap constant set to 0.7 to convert each feature z; into
presynaptic spike times t; = [t},...,t5]T € [0, T]¥ [28].

Compared to the other generations of neural networks,
SNNs use spiking neurons as their computational units. In
this paper, the spike times are processed in the presynaptic
spiking neurons in which its spiking neuron model is based
on the leaky-integrate-and-fire (LIF) model and the synaptic
weights are time-varying [28], [40]. The membrane potential
of each presynaptic spiking neuron has to be computed for
a continuous duration of time to obtain the precisely timed
patterns of spikes [33]. For the LIF neuron, a membrane
potential v;(t) of the output neuron j is defined as the
summation of a postsynaptic potential over the spike time k
and the input feature ¢. Mathematically, a membrane potential
v;(t) is expressed as:

M K
ZZ et — 1), )
i1=1 k=1
0 if t <0,
«(t) = { Lexp(1- L) ift>0, @

where 7 is the time constant of the spiking neuron and
wfj (t) € [0,T) is a time-varying synaptic weight that connects
between the presynaptic neurons associated with the spike time
k of the input feature ¢ and the postsynaptic neuron j.

The information transmission of SNNs is based on the
precise timing of spikes in addition to the number of spikes.
The emission of spikes is allowed only when the membrane
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Fig. 1: The framework of the proposed fuzzy interval method based on multiple spiking neural networks for the detection of
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potential v;(¢) reaches its firing threshold A. The postsynaptic
firing time of neuron j, t;, is defined as:

tAj = {t|’Uj(tAj) = A} (3)

At the postsynaptic firing time #;, the membrane potential of
the neuron j is defined as:

. M K R
A=wi(d) =D whi(t) - ei;

i=1 k=1

— 1), 4)

where fj lies in the postsynaptic spike time interval of [0, Tm]
ms. The parameter T, represents the simulation time used for
the internal potential to reach the threshold of the neuron. Its
value is problem dependent.

For an SNN with the transmission type ruled by the time-to-
first spike coding scheme, its output neuron can emit only once
and its output associated with class j is the first postsynaptic

spike times fj. For a problem two classes, the classification
rule to predict the output class label from the outputs [t;, 5]
for an input x is typically defined as:

¢ = argmin {{1,%}. 5)
J

Suppose MSNN-based estimators, Gp,p = 1,...,P are
employed to capture parameter uncertainty due to random
sets of initial weights in this paper, in which P is the
number of SNNs. Therefore, the near-optimal synaptic weights

W, = [wfj’p(t),...,wfj’p(t),...,wfj’p(t)}T of each G, gen-

erates a set of firing times F, = {f},5}, in which ¥ is
the postsynaptic firing time of neuron j of Gp,p =1,..., P
defined as:
= {t]o} () = A}, (6)
and,
M K
k,p
A== w0 k)

i=1 k=1

Note that we are assuming the thresholds are the same;
however, in more general settings, these thresholds can depend
on the particular SNN, G/,. Our propose of using MSNNSs is to
capture different recommendations from different SNNs that
contain different knowledge about the problem and provides
information with different levels of certainties. To incorporate
the diversity of information provided by MSNNs, a fuzzy
interval method is considered. This is to select and capture
useful information for the decision making process of anomaly
detection.

C. Fuzzy interval method

With the concept of fuzzy numbers, the generated firing
times 157; are then defined as fuzzy numbers and are expressed
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as a fuzzy interval. For the input x(*), the fuzzy interval of
firing times of neuron j is expressed as I; = [t(b) oL t(b) U]

J
where t( )L and t( )"V are the lower and upper bounds of the
fuzzy 1nterval respectively.

To define the lower and upper bounds for class label j, the
firing times of the respective neuron j are characterised b
a mean m; and a spread s; such that t(b) L= (b) sgb
and t(b) U= (b) (b) [18]. In this paper, a k" percentlle
is proposed for 1dent1fy1ng a mean and spreads. The 50" per-
centile is selected for the value of mean to address asymmetric
distribution of the firing times, whereas different orders of
percentile can be selected for a lower and upper bounds to
provide a coverage probability of (1 — «)% that future firing

times under uncertain belong to the interval as:

>

(b) _ [ (®) —(b)]
J

Then, the spread s can be identified as:

gb) (b) o f;.b)’L (9)
) — ( ) )
5; —m; . (10)

D. Performace metrics of fuzzy interval

For the concept of fuzzy numbers, the prediction interval
coverage probability (PICP) and the prediction interval nor-
malised average width (PINAW) are employed to quantita-
tively evaluate the quality of a fuzzy interval [18], [22]. The
PICP provides the probability of firing times fall within the
fuzzy interval. For a given dataset containing B samples, the
PICP of class label j is mathematically expressed as:

B
1
PICP; = — > pice)”,

(11)
b=1
and,
PICP'” Z ap, (12)
where a,, is a Boolean value calculated as:
2(0), L ~ 2p - 2(b),U
0 — Lt i < df <) (13)
0, otherwrse.

For the PINAW, it indicates the average width of the fuzzy
interval. The PINAW of class label j is expressed as:

RZ HOR

where R is the range of the firing times which is between O
ms and T4, ms.

PINAW, = (14)

E. Classification rule with percentage of certainty

For MSNNs G,,p = 1,---, P, the classification rule to
predict the output class label from the multiple sets of firing
times F,, = {#},#5},p = 1,..., P is proposed based on fuzzy

intervals. For an input x(), its predicted class label ¢®) is

expressed as:
o) = arg min fg-b)’L.
J

15)

In this paper, the percentage of prediction certainty is pro-
posed to quantify the decision uncertainty/certainty regarding
the detection of anomalies using MSNNs. For class label j,
the percentage of prediction certainty is defined as:

Ap x 100, (16)
P x PICP(b) Z
where A, is a Boolean value calculated as:
70, L  2(0),p - 2(b),L —
Ay = Looaf 77 <77 <t and ap = 1 (17)
0, otherwrse

III. CASE STUDY
A. Dataset

Data used in this paper are collected from axle box accel-
eration (ABA) measurements in both vertical and longitudinal
directions covering approximately 1 kilometer of rails [41],
[42]. The measurements are labelled according to experiments
and fieldwork into two groups of non-defective rails and
defective rails. There are a total of 662 rail samples, of which
577 samples are labelled as non-defective rail and 85 samples
are labelled as defective rail. All samples in this paper are
described by the 54 frequency-based representations of the
measured ABAs [28]. They are assumed given in this paper.

B. Experimental setup

This paper considers a hundred SNNs. Each of them is
designed with a two-layered fully connected feedforward
architecture containing no hidden layers and no hidden nodes.
After encoding input features by using 6 neurons with the
Gaussian receptive fields, each network architecture consists
of 324 input neurons and 2 output neurons associated with the
class labels of the problem. The objective is to classify whether
or not a given rail segment is defective. Therefore, a binary
classification problem consists of a class of non-defective rails,
referred to as Class 1, and a class of defective rails, referred
to as Class 2.

The model parameters of each SNN comprise a group of
hyperparameters and a group of synaptic weights. In this
paper, parameter uncertainty is assumed to arise from only
random sets of initial synaptic weights. For the hyperparam-
eters, they include the time-varying weight kernel (o), the
desired postsynaptic firing time (£%), the time constant of
spike response function (7), and learning rate of weight update
(n). Their values are assumed given as: T = 3, Ty = 4,
t4 =246, 7 = 3.44, 0 = 0.21, and = 0.000248. These
are optimal values for the dataset obtained from sensitivity
analysis reported in [28]. Using the given rail samples and
value of hyperparameters, the synaptic weights of all SNNs
are adjusted based on backpropagation with multiple sets of
random initial weights. All models G,,p = 1,...,100 are
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trained with 100 epochs, which has shown to be sufficient
based on the experimental data.

IV. EXPERIMENTAL ANALYSIS

After training the MSNNs, Gp,p = 1,...,100, a hundred
sets of firing times {F1,...,F,,...Figo} are obtained. Fig-
ure 3 illustrates a hundred sets of firing times of Class 1 and
Class 2 for nondefective rails (see Figure 3a) and defective
rails (see Figure 3b). It is observed that the firing times are
more scattered in samples of defective rails than those of
nondefective rails. This is the knowledge about the detection
problem that the MSNNs are providing as a group. The firing
times for Class 1 and Class 2 from samples of both rail groups
are consistent when analysing each SNN. This consistency is
exploited by defining the fuzzy intervals of each class.

Class 1 Class 2
200 : 200 :
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180 1807 3
160 160 3
.'?<‘,-
i
L, 1401 L 140)
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E 120y g0 A
g R g A 1
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(a) For 200 samples of non-defective rails.
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(b) For all samples of defective rails.

Fig. 3: Distribution of firing times obtained from Gp,p =
1,...,100 of Class 1 and Class 2.

For each sample b, the corresponding fuzzy intervals can
be obtained from specifying an order of percentile of its firing
times f;b)’p ,p=1,...,100 for the lower and upper bounds
for Class 1 and Class 2. In this paper, a sensitivity analysis
of the order of percentile to determine the fuzzy bounds
was conducted. For this particular dataset, the construction
of the fuzzy interval for Class 1 and Class 2 was defined by
setting fgb)’U at 92" percentile and fgb)’U at 94.5" percentile,
Figure 4 presents the effect of changing orders of percentile
used to determine f;b)’L, j = 1,2 on the accuracy of the
proposed method for predicting nondefective and defective
rails. It is evident that different orders of percentile provide
different prediction accuracy for both rail groups. For example,
by selecting fgb)’L at the 9" percentile and fgb)’L at the 8
percentile, 96% of defective and 68% of nondefective rails
are correctly predicted.

=0 Nondefectives
© Defectives

z
—0
(R

g

'S

Accuracy (%)

>

<o
[

5
i=1 Jj=2

Fig. 4: Effect of changing order of percentile used to determine
f§b)’L, 7 = 1,2 on the performance of the proposed method.

To showcase, we consider that I £b), Vb € D are constructed
such that tAgb)’L and £V is at the 9™ and 92t percentile,
respectively. And, IQ(b ,Vb € D are constructed such that
the #"% is set at the 8" percentile and 75"V at 94.5%
percentile. Using the specified intervals, Figure 5 illustrates
the comparative plot of Ifb) and Iéb) (magenta bars) along
with the obtained firing times (black dots) from samples of
nondefective and defective rails.

To evaluate the quality of the constructed fuzzy intervals, the
PICP and the PINAW of Class j,j = 1,2 are analysed for all
samples b. It is demonstrated in Figure 6 that the constructed
fuzzy intervals Il(b) and Iéb) provide a reasonable coverage
of the firing times produced by the ncuron of Class 1 and
Class 2. Both I 1(b) and I éb) cover similar probability between
0.86 and 0.89. It can be noticed that the values of PINAW?’)
and PINAng) of nondefective rails are relatively smaller than
those of defective rails for all sample b of the respective
class. This reflects the high variability of the firing times of
defective samples (see Figure 3(b)) which can infer that they
are relatively more sensitive to the existing uncertainties than
the samples of non-defective rails.

The predictive performance of the fuzzy intervals is inves-
tigated for rail anomaly detection by comparing to [28] where
96.67% of defective and 90.30% of nondefective rails were
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TABLE I: Comparative prediction between the proposed method and the method in [28]. NB

D stands defective.

Number of samples

(b) For all samples of defective rails.

and IQ(b) (magenta bars) along with the obtained firing times (black dots).

: ND stands for nondefective and

Sample Fuzzy interval PICP PINAW Class label
b i i picP” | pIcP(” | PINAW(” | PINAWS” | Actual Predicted by
[28] | This paper Y%certainty
1 [246.18,252.00] | [245.00,254.78] 0.85 0.87 5.82 9.78 ND D D 5.68
2 [246.00,254.00] [247.00,258.73] 0.86 0.87 8.0 11.73 ND ND ND 3.44
3 [246.00,255.00] [247.00,258.84] 0.86 0.87 9.0 11.84 ND ND ND 3.44
4 [244.95,253.42] | [245.58,254.95] 0.83 0.86 8.47 9.37 ND D ND 16.0
5 [246.36,254.42] [245.00,250.95] 0.83 0.87 8.06 5.95 ND D D 79.54
658 [37.59,350.38] [22.00,159.57] 0.83 0.89 312.79 137.57 D D D 95.56
659 [161.00,322.94] | [147.74,338.80] 0.84 0.86 161.94 191.06 D D D 13.79
660 [116.13,378.40] [62.58,274.89] 0.83 0.86 262.27 212.31 D D D 77.01
661 [143.36,302.26] [129.00,275.24] 0.83 0.87 158.9 146.24 D D D 21.59
662 [23.00,188.52] [19.00,28.00] 0.84 0.89 165.52 9.0 D D D 88.89

correctly predicted. For the chosen fuzzy intervals (Figure 4),
the prediction accuracy is relatively 0.69% less for defective
and 24.70% less for non-defective rails. Please note that
the predictive performance of our method based on fuzzy
intervals is expected to be improved when the fuzzy intervals
are optimally constructed. However, more interpretability of
anomaly detection of rails is provided by the proposed fuzzy
interval method. This is to elaborate in what follows.

Table I presents the predicted class label with a ercentage
of prediction certainty and the fuzzy intervals I1 and I2
for the selected samples b. It can be noticed that the class
label of samples 658" and 659" is both correctly predicted
by the proposed fuzzy interval method but with different
percentage of prediction certainty. As sample 658" provides
higher percentage of prediction certainty than that of sample
659", it is observed from Figures 7(a) and 7(b) that the firing
times t(658)’p =1,...,100 are less spread within 15658 and
more concentrated around its mean. For a single optimised
SNN obtained in [28], it is shown that its firing time of the
predicted class label is in a closer proximity to the mean of

the firing times obtained from this paper when a percentage
of prediction certainty is higher.

In the case of sample 4" where the prediction result do
not agree with that of [28], it is correctly predicted as a
nondefective rail with 16% certainty. The lower percentage
is explained in Figure 8 where both firing times tAYL)’p and
1?%4)”’ ,p = 1,...,100 are concentrated around its respective
mean. Unlike [28], the level of prediction certainty from the
fuzzy intervals provides an interpretability for human operators
in order to make final decision whether it is a defective/non-
defective rail. Therefore, the spread of the firing times around
the mean of the predicted class label and the value of PINAW
play a role as an indication of decision uncertainty in anomaly
detection using MSNNSs. Further analysis can be conducted of
those defective samples where a low certainty is obtained, so
to tailor methods that explicitly handle those particular cases.

V. CONCLUSIONS

This paper has presented a fuzzy interval method based on
a multiple spiking neural network architecture for anomaly
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detection. The concept of fuzzy numbers is employed to con-
struct fuzzy intervals of firing times generated from multiple
spiking neural networks. The intervals are to represent the
effect of uncertainties over anomaly detection with new dataset
of different behaviour. The fuzzy interval method is evaluated
with the problem of rail defect detection considering only
uncertainty from the training phase due to random initial
weights. With our selection of spread values of the fuzzy
intervals, the experimental results show that the corresponding
fuzzy intervals for the firing times of a neuron associated with
Class 1 and Class 2 provide a reasonable coverage probability.
The intervals can be used to detect 96% of defective and 68%
of nondefective rails. This proves our idea that information
carried via firing times of certain SNNs can be selected and
included in the decision making process of the model. Using
fuzzy intervals to express these information, an interpretability
of anomaly detection confidence is improved. It is concluded
that the more concentrated around the mean of the predicted
class label and the lower the value of PINAW, the more certain
the prediction. For future work, a multi-spiking neural network
architecture will be used to capture more sources of uncer-
tainty and to provide the respective supervision knowledge of
rail squats. Then, we will work on multi-objective optimisation
to maximise predictive performance and minimise spread
values of the firing times representing necessary knowledge
learned by the multi-spiking neural networks that should
be included into the decision making process for anomaly
detection.
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