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ABSTRACT

Build logs are textual by-products that a software build process

creates, often as part of its Continuous Integration (CI) pipeline.

Build logs are a paramount source of information for developers

when debugging into and understanding a build failure. Recently,

attempts to partly automate this time-consuming, purely manual

activity have come up, such as rule- or information-retrieval-based

techniques.

We believe that having a common data set to compare different

build log analysis techniques will advance the research area. It will

ultimately increase our understanding of CI build failures. In this

paper, we present LogChunks, a collection of 797 annotated Travis

CI build logs from 80 GitHub repositories in 29 programming lan-

guages. For each build log, LogChunks contains a manually labeled

log part (chunk) describing why the build failed. We externally

validated the data set with the developers who caused the original

build failure.

The width and depth of the LogChunks data set are intended to

make it the default benchmark for automated build log analysis

techniques.

CCS CONCEPTS

• Software and its engineering→ Software creation andman-

agement.

KEYWORDS

CI, Build Log Analysis, Build Failure, Chunk Retrieval

ACM Reference Format:

Carolin E. Brandt, Annibale Panichella, Andy Zaidman, Moritz Beller. 2020.

LogChunks: A Data Set for Build Log Analysis. In 17th International Con-

ference on Mining Software Repositories (MSR ’20), October 5–6, 2020, Seoul,

Republic of Korea. ACM, New York, NY, USA, 5 pages. https://doi.org/10.

1145/3379597.3387485

1 INTRODUCTION

Continuous Integration (CI) has become a common practice in

software engineering [10]. Many software projects use CI [2, 10, 17]

to detect bugs early [8, 18], improve developer productivity [10, 13]

and communication [7]. CI builds produce logs which report results

of various sub-steps within the build. These build logs contain
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a lot of valuable information for developers and researchers—for

example, descriptions of compile errors or failed tests [2, 14, 20].

However, build logs can be verbose and large—sometimes in

excess of 50 MB of ASCII text [2]—making them inadequate for

direct human consumption. Therefore, to support developers and

researchers in efficiently making use of the information within

build logs, we must at least semi-automatically retrieve the chunks

of the log that describe the targeted information.

There are different techniques to retrieve information chunks

from CI build logs. Beller et al. use a rule-based system of regular

expressions to analyze logs from Travis CI [2]. Such regular expres-

sions are developed by looking at exemplary build logs. Vassallo

et al. wrote a custom parser to gather information for build repair

hints [19]. Recently, Amar et al. reduced the number of lines for a

developer to inspect by creating a diff between logs from failed and

successful builds [1].

These approaches have various strengths and weaknesses: Reg-

ular expressions are exact, but tedious and error-prone to main-

tain [12]. Custom parsers are powerful though fragile in light of

changes in the log structure. Diffing between failed and success-

ful logs can reduce the information to be processed, but is at best

semi-automatic [1].

At the moment, there is only anecdotal evidence on the per-

formance of these techniques, and when a technique should be

preferred over its alternatives. In fact, there is no data set available

to support the creation of such a benchmark for build log analysis

techniques. Following Sim et al., a benchmark gives us the chance

to “increase the scientific maturity of the area” [15] of build log

analysis by evaluating and comparing research contributions.

Thus, in this paper, we present LogChunks [4],1 a collection of

797 labeled Travis CI build logs from 80 highly popular GitHub

repositories in 29 programming languages with we manually la-

beled the chunk describing why the build failed. The data set also

provides keywords the authors would use to search for the labeled

log chunk and categorizes the log chunks according to their format

within the log.

2 CREATING LOGCHUNKS

This section presents how we gathered the logs and our manual

labeling process.

2.1 Log Collection

In this section, we describe along the overview in Figure 1 how we

created LogChunks. All steps are automatized as Ruby scripts2 and

highly configurable.

1LogChunks is openly available on Zenodo: https://zenodo.org/record/3632351
2Data collection scripts and their original parameterization are included in the data
set.
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Figure 1: Overview of LogChunks

Repository Sampling. We target mature GitHub repositories that

are using Travis CI. To avoid personal and toy projects we se-

lect popular projects based on the number of users that starred

a project [11]. We query GHTorrent [9] for the most popular lan-

guages on GitHub, and subsequently, the most popular repositories

for a given language.

For LogChunks, we queried GHTorrent from 2018-04-01 for the

three most popular repositories of each of the 30 most popular lan-

guages to cover a broad range of development languages. Among

the resulting repositories are, for example, Microsoft/TypeScript,

git/git and jwilm/alacritty.

Build Sampling. To sample builds for LogChunks we keep the

ten most recent builds of the status failed [6]. We check up to 1,000

builds per repository to ensure predictable termination of the log

collection.

Log Sampling. Travis CI builds comprise a number of jobs that

actualize a build process in different environments. Hence, the

outcome from different jobs might be different. For each build in

LogChunks, we download the log of the first job that has the same

state as the overall build.

We inspected the collected build logs and discarded logs from

three repositories. One had only one failed build, two others had

empty build logs on Travis CI. In total, we collected 797 logs from

80 repositories spanning 29 languages.

2.2 Manual Labeling

After collecting build logs, the first author manually labeled which

text chunk describes why the build failed. Following that, she as-

signed search keywords and structural categories to each log chunk.

Chunk That Describes Why The Build Failed. For each repository,

the labeler skimmed through the build logs and copied out the first

occurrence of a description why the build failed. She preserved

whitespaces and special characters, as these might be crucial to

detect the targeted substring. To support learning of regular expres-

sions identifying the labeled substrings the labeler aimed to start

and end the labeled substring at consistent locations around the

fault description.

Search Keywords. To extract the search keywords, we considered

the Chunk and ten lines above and below. The labeler’s task was

to note down three strings they would search for (“grep”) to find

this failure description. The strings should appear in or around the

Chunk and are case-sensitive. We made no limitations on the search

string; particularly, spaces are allowed.

Structural Category. To label the structural categories we pre-

sented the Chunk and the surrounding context to the labeler for all

logs from a repository. We asked the labeler to assign numerical

categories according to whether the Chunk had the same structural

representation.

2.3 Validation

We validated our collected data points in an iterative fashion. First,

we performed an initial inter-rater reliability study with the second

author of this paper. Our learnings from this initial internal study

are that 1) it is important and difficult to adequately communicate

all decisions and assumptions on how to and which data to label and

2) there can be different legitimate viewpoints on which log chunk

constitute the cardinal error and which keywords best to use. These

learning informed the design of a second, larger cross-validation

study for which we contacted over 200 developers.

In our second validation, we sent out emails to the original devel-

opers whose commits triggered the builds represented in LogChunks

and asked themwhether the log chunkwe labeled actually describes

why the build failed. This section describes our survey and discusses

our results.

Method. Using the Travis API, we collected the commit infor-

mation for each build represented in LogChunks. We grouped all

commits triggered by one developer and sent out an email to them.

It included links to the corresponding commits, the build overview

and the log file. We asked the developers to fill out a short form

in case our extraction was not correct. In the survey, we asked the

developer to paste in the log part actually describing the failure

reason or describe in their own words why our original extraction

was incorrect.
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Results. In total, from 2019-10-15 to 2019-10-17, we sent out

emails to 246 developers. Of these, 32 could not be delivered. We

performed the sending out in three batches and used the first au-

thor’s academic email address as the sender. All emails were specific

to each recipient. We only sent one mail per recipient. We received

answers from 61 developers, corresponding to 144 build logs with

a response rate of 24.8%. Compared to typical response rates to

cold calling known from Software Engineering [16], this is very

high. We believe that our personalization and the ease of use for the

participant are the main reasons for this—simply clicking on a link

to confirm or refute an answer is enough, there is no need to craft

an answer. Indeed, we only received seven replies from developers

along the lines of “done.”

Of the 144 answers, 118 initially indicated that our extraction

was correct. We manually inspected the 26 negative answers and

found that some stated that the proposed extraction did not show

the whole description of why the build failed. This was because we

chose to trim long chunks to keep the mails readable, and not a fault

in our extraction per se. After adjusting for these answers, only

12 answers remained that stated that our labeled log chunk was

not correct. This validates our data set with an externally validated

consensus on 94.4% of the extracted data.

Discussion. We believe that our developer survey highly strength-

ens the trust in the validity of the labeled log chunks. The study

received answers for about 18% of the data in LogChunks. After

manual correction, 91% of the received answers indicated our la-

beled chunks were accurate. One possible threat regarding the high

number of correct answers is that, since we show the error message

we extracted, it might be operationally easier for developers to

validate it, rather than search for it in a long log file. To alleviate

this problem, we made it as easy to confirm as to reject an extracted

log chunk. We only ask for more details (the correct log chunk) in

a second step.

One of our 12 incorrect extractions only showed a warning and

the developer proposed to also include the line stating that warnings

are treated as errors. In others, we labeled the error message of an

error that was later ignored.

3 DATA SCHEMA

This section presents the internal structure and data schema of

LogChunks. In principle, LogChunks comprises automatically re-

trieved and manually labeled and cross-validated logs.

LogChunks comprises information on 797 build logs, which are

organized in folders for each language and repository. For each

repository, LogChunks has about 10 Examples. Every repository

folder contains the full log files for the build status ‘failed’ in plain

text.

The folder build-failure-reason contains the manually la-

beled data of LogChunks, one XML file for each repository:

<repository_owner>@<repository_name>.xml. Table 1 gives an

overview of the data within these XML files on the example of

one build from php@php-src. The remainder of this section de-

fines in more detail the data embedded in the XML files, that

is, the labeled log chunk, search keywords and structural cate-

gories. Data from the developer validation study is in the file

========DIFF========
-=-=-=-=-=-
005+ Parameter #1 [ < o p t i o n a l > $ f l a g s ]
005− Parameter #1 [ < o p t i o n a l > $ a r _ f l a g s ]
========DONE========
FAIL Bug #71412 A r r a y I t e r a t o r r e f l e c t i o n
-=-=-=-=-=-
TEST 9895 / 1 3942 [ 2 / 2 t e s t workers running ]

Figure 2: Log chunk from the same structural category as

the log chunk presented in Table 1. We inserted the special

marker “-=-=-=-=-=-” to separate the log chunk from its con-

text.

[ 0K$ . / s a p i / c l i / php run− t e s t s . php −P . . .
-=-=-=-=-=-
I l l e g a l sw i t ch ' j ' s p e c i f i e d !
-=-=-=-=-=-
S y n o p s i s :

Figure 3: Log chunk from a different structural category

than the log chunk presented in Table 1.

developer-crossvalidation.csv, the build id can be used as a

unique identifier to match it with the other data.

Chunk That Describes Why The Build Failed. The Chunk is the

substring of the build log that describes why the build failed. This

can, for example, be the failing test case or a compiler error. In

cases where the reason why the build failed is contained in a log

file external to the main build log, the Chunk includes only the fact

that the build failed, for example “The command "test/run !"

exited with 1.” In Table 1, the Chunk describes a failing test in

which the tested process timed out.

Search Keywords. The Keywords contain a list of one to three

freely chosen search strings appearing within the Chunk or in the

area around it in the build log. We selected keywords the authors

would use to search for the log Chunk, as we found them repeat-

edly next to failure describing chunks while analyzing about 800

build logs manually. Some keywords from LogChunks are “Error”,

“=DIFF=”, “ERR!”, or the keywords shown in Table 1.

Structural Category. For each repository, we assign structural

categories to the Chunks. The structural category compares how

Chunks are represented within the build log. Build tools highlight

their error messages with markings, e.g. starting each line with

“ERROR” or surrounding special characters. Two chunks fall into

the same structural category if they are surrounded by the same

markings. Listing 2 presents a log chunk from the same category

as the log chunk from Table 1. In comparison to that, Listing 3

presents a log chunk which is formatted differently within the log

file. For each repository, the structural categories are represented

as integers, starting at 0 and increased with the next appearing

category in chronological build order.

4 POTENTIAL USE CASES

LogChunks can be the basis for a range of further studies:

Benchmarking Build Log Analysis Techniques. LogChunks origi-

nated from the first author’s Master’s Thesis in which she compared

three different log chunk retrieval techniques. LogChunks can be
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Data Description Unit Example

Log Relative path to the input build log Unique Path C/php@php-src/failed/529279089.log

Chunk Log chunk that describes why the build failed String 001+ ** ERROR: process timed out **

001- OK.

========DONE========

FAIL Bug #60120 (proc_open hangs)

Keywords Keywords the authors would use to search for and find

the log chunk

List of Strings ERROR, FAIL, DIFF

Category Categorization of the structural representation of the

log chunk within the build log

Integer 0

Table 1: Exemplary, complete data excerpt from LogChunks for a failed build in php@php-src.

a benchmark to evaluate other build log analysis techniques. For

example, one can use the data set to investigate how reliably the

diff-based approach of Amar et al. [1] retrieves build failure reasons.

Support Build Log Classification Algorithms. Various researchers

examine why CI builds fail and use build logs as a data source [14,

20]. They typically write custom parsers and classifiers to catego-

rize builds according to why a build failed. The manually labeled

chunk can help researchers locate the source for their classification

algorithms and cross-validate their data.

Research on Build Logs. The data from LogChunks can support

research around the topic of build logs such as how developers use

keywords to retrieve information about build failures from logs or

how they discuss failures of CI builds within pull requests [5].

Automatic Processing of Build Results. LogChunks enables re-

searchers to train algorithms that retrieve build failure descrip-

tions from build logs. It can provide the basis for further automatic

on-ward processing of the retrieved log chunks.

5 RELATED DATA SETS

This section presents existing data sets of CI build logs and how

LogChunks differs from them.

5.1 TravisTorrent

TravisTorrent [3] collects a broad range of metadata about Travis CI

builds. It combines data accessible through the public Travis CI and

GitHub APIs and through GHTorrent [9]. Similar to LogChunks,

among the metadata are the failing test cases. However, TravisTor-

rent obtained these through a manually developed parser, which

only supports specific Ruby test runners and Java Maven or JUnit

logs. Anecdotally, many of the failing tests are at least incomplete

and lack validation. By contrast, LogChunks provides manually la-

beled and two-fold cross-validated data of why builds failed, not

only for failing tests like TravisTorrent, but for all possible build-

failing errors.

5.2 LogHub

LogHub [21] is a collection of a wide range of system log data sets.

It is the basis for various studies that compare different approaches

to parse unstructured system log messages into structured data for

further analysis. LogChunks is situated in a different area, build log

analysis, which tend to be semi-structured, and could play a similar

role to LogHub in its area: empower research with a benchmark to

compare different build log analysis techniques.

6 FUTURE EXTENSIONS TO LOGCHUNKS

In this section, we describe current limitations and future improve-

ments of LogChunks and extensions we are planning.

Chunk as One Consecutive Substring. The Chunk contains only

one continuous substring of the log text. The reason a build failed

could be described at multiple locations within the log. We propose

to extend LogChunks to contain multiple substrings of the log text.

Include More Repositories and Logs. LogChunks encompasses a

range of repositories from various main development languages,

though only 10 logs from each repository. Including more logs and

repositories will strengthen LogChunks as the go-to benchmark.

Classification of the Build Failure Cause. Our data set contains

no further classification according to the cause of the failure, such

as due to tests, compilation or linter errors. As researchers are

investigating why CI builds fail, a useful extension is to annotate

cause of the build failure for each log.

Other Information Chunks. Build log analysis is not limited to the

chunk that describes why a build failed. LogChunks can be extended

with labels for all information that is contained in the build log,

such as descriptions of warnings, build infrastructure and more.

Validation of Search Keywords. The keywords LogChunks pro-

vides are based on the experience of the authors gained from ana-

lyzing around 800 build logs. Next, we propose to evaluate whether

these keywords would also be used by developers to find the log

chunk describing why a build failed.

7 SUMMARY

In this paper, we introduce LogChunks, a cross-validated data set

encompassing 797 build logs from 80 projects using Travis CI. For

each log, we annotated the log chunk describing why the build

failed and provided keywords a developer would use to search for

the log chunk as well as a categorization of the log chunks according

to their format within the log. LogChunks advances the research

field of build log analysis by introducing a benchmark to rigorously

examine research contributions [15] and opening various research

possibilities that previously required tedious manual classification.
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