

Delft University of Technology

Sparse discovery of differential equations based on multi-fidelity Gaussian process

Meng, Yuhuang; Qiu, Yue

DOI
10.1016/j.jcp.2024.113651
Publication date
2025
Document Version
Final published version
Published in
Journal of Computational Physics

Citation (APA)
Meng, Y., & Qiu, Y. (2025). Sparse discovery of differential equations based on multi-fidelity Gaussian
process. Journal of Computational Physics, 523, Article 113651. https://doi.org/10.1016/j.jcp.2024.113651

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.jcp.2024.113651
https://doi.org/10.1016/j.jcp.2024.113651

Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

Sparse discovery of differential equations based on multi-fidelity

Gaussian process ✩

Yuhuang Meng a, Yue Qiu b,c,d,∗

a Delft Institute of Applied Mathematics, Delft University of Technology, Delft, 2628 CD, the Netherlands
b College of Mathematics and Statistics, Chongqing University, Chongqing, 401331, China
c Key Laboratory of Nonlinear Analysis and its Applications (Chongqing University), Ministry of Education, Chongqing, 401331 China
d Innovation Center for Mathematical Analysis of Fluids and Chemotaxis, Chongqing University, Chongqing, 401331 China

A R T I C L E I N F O A B S T R A C T

Keywords:

Sparse discovery
Gaussian process regression
Multi-fidelity data
Uncertainty quantification

Sparse identification of differential equations aims to compute the analytic expressions from
the observed data explicitly. However, there exist two primary challenges. Firstly, it exhibits
sensitivity to the noise in the observed data, particularly for the derivatives computations.
Secondly, existing literature predominantly concentrates on single-fidelity (SF) data, which
imposes limitations on its applicability due to the computational cost. In this paper, we present
two novel approaches to address these problems from the view of uncertainty quantification.
We construct a surrogate model employing the Gaussian process regression (GPR) to mitigate
the effect of noise in the observed data, quantify its uncertainty, and ultimately recover the
equations accurately. Subsequently, we exploit the multi-fidelity Gaussian processes (MFGP) to
address scenarios involving multi-fidelity (MF), sparse, and noisy observed data. We demonstrate
the robustness and effectiveness of our methodologies through several numerical experiments.

1. Introduction

Nonlinear differential equations are widely prevalent in both science and engineering applications. Nonetheless, these equations
are generally unknown in many situations, which makes it difficult to understand and control the systems of interest. Fortunately,
amounts of data concerning the underlying systems can be available through experiments or simulations. To address this challenge,
data-driven approaches have emerged. For instance, the Koopman operator theory and dynamic mode decomposition (DMD) embed
a nonlinear system into a higher-dimensional linear space via a set of observation functions, which provides a powerful and efficient
tool for understanding the behavior of the nonlinear dynamic systems, especially in fluid dynamics [1–4].

In recent years, numerous efforts have been dedicated to learn these nonlinear equations from the observed data. Based on
the diversity of the final results, these methods can be broadly categorized into two classes. The first develops black-box models
to approximate the underlying differential equations. Such techniques rely on deep neural networks and numerical schemes. Raissi
et al. [5] combined the multistep method with deep neural networks to discover nonlinear ordinary differential equations (ODEs). They

✩ This work is partially supported by the National Natural Science Foundation of China (NSFC) under grant number 12471404, the Fundamental Research Funds
for the Central Universities under grant number 2024CDJYXTD-009 and 2024IAIS-QN010, and the Chongqing Entrepreneurship and Innovation Program for Returned
Overseas Scholars under grant number CX2023068.

* Corresponding author at: College of Mathematics and Statistics, Chongqing University, Chongqing, 401331, China.

E-mail addresses: y.meng@tudelft.nl (Y. Meng), qiuyue@cqu.edu.cn (Y. Qiu).

https://doi.org/10.1016/j.jcp.2024.113651
Received 29 January 2024; Received in revised form 7 October 2024; Accepted 2 December 2024

Journal of Computational Physics 523 (2025) 113651

Available online 5 December 2024
0021-9991/© 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:y.meng@tudelft.nl
mailto:qiuyue@cqu.edu.cn
https://doi.org/10.1016/j.jcp.2024.113651
https://doi.org/10.1016/j.jcp.2024.113651

Y. Meng and Y. Qiu

represented the right-hand-side of ODEs using deep neural networks. In a similar vein, Raissi [6] harnessed deep neural networks and
employed automatic differentiation to compute the partial derivatives. Rudy et al. [7] introduced a robust identification algorithm
for dynamic systems that combines neural networks with the Runge-Kutta method to denoise the data and discover the dynamic
system simultaneously. Qin et al. [8] used a residual network to approximate the integral form of the underlying ODEs. Conversely,
the second approach seeks an analytic expression for the hidden differential equations. Sparse Identification of Nonlinear Dynamic
Systems (SINDy), introduced by Brunton et al. [9], has emerged as a significant framework. It assumes the underlying differential
equations could be represented by few predefined functions. The core procedure of SINDy involves the computation of derivatives
and the solution of linear equations while imposing constraints for a sparse solution. Long et al. [10] employed convolutional neural
networks to learn the symbolic representations of partial differential equations (PDEs). Kim et al. [11] pursued symbolic regression
using neural networks. Kang et al. [12] proposed the so-called IDENT to obtain sparse solutions through Lasso and validated these
solutions by assessing time evolution errors.

SINDy has proven to be a successful tool in the discovery of PDEs, primarily due to its simplicity and efficiency [13]. However,
there remain two critical challenges. The first involves robust approximation of the temporal or spatial partial derivatives when the
observed data is corrupted by noise. In practice, only the states observed data is available whereas the temporal derivatives or partial
derivatives are required to be calculated using numerical differentiation methods. However, these numerical differentiation methods
magnify the noise in the observed data, which makes SINDy sensitive to noise. The second revolves around effectively leveraging the
multi-fidelity data to reduce the computational cost.

Regarding the first challenge, various robust algorithms have emerged. The first category constructs a local polynomial surrogate
model aimed to smooth the noisy observed data and obtain the derivatives analytically. For instance, He et al. [14] employed the
moving least squares (MLS) to smooth the observed data and enhance the stability of numerical differentiation when applied to noisy
datasets. Similarly, Sun et al. [15] represented the observed data by a set of cubic spline basis functions and the surrogate model
and discovered equations are trained simultaneously. Notably, the noisy data is fitted by local quadratic and cubic polynomials
in [14] and [15], respectively. Analogous methodologies have appeared in [16–18]. While these approaches show promising results
in specific scenarios, they primarily rely on the local regression models that entail manual selection of parameters (such as the window
length) and require analysis case-by-case. The second category seeks to recover nonlinear equations from the perspective of sparse
Bayesian learning. Relevance vector machine (RVM) was introduced to infer the nonlinear equations [19,20]. Furthermore, Tikhonov
regularization is utilized for derivatives computations [13,21], and neural networks were employed as a surrogate model to smooth
the data, which transforms numerical differentiation to automatic differentiation to decrease the impact of noise [22,23]. Moreover,
in addition to the aforementioned approaches to smooth noisy data, there are several derivative-free methods. Notably, RK4-SINDy
eliminates the approximations of derivatives by employing the fourth-order Runge-Kutta method [24]. On the other hand, weak SINDy
(WSINDy) avoids the derivative approximations by constructing the weak form of the underlying differential equations [25,26].

As for the second challenge, related work mainly concentrate on the single-fidelity, namely high-fidelity (HF) data. Nevertheless,
the accurate simulation of HF data suffers from the large computational cost. To address this issue, the integration of a small amount of
HF data with suitable low-fidelity (LF) observed data which may be of lower accuracy but also lower cost, becomes a feasible approach.
This is commonly referred to as the multi-fidelity modeling. The problem of harnessing multi-fidelity data for sparse identification
remains unresolved. One classical MF modeling technique is the linear autoregressive method known as co-kriging [27,28], where
each fidelity level model is represented by a Gaussian process and the relationship between the outputs of the LF and HF model
is assumed to be linear. Perdikaris et al. [29] proposed the nonlinear autoregressive multi-fidelity GP regression (MFGP) scheme
which extends the capabilities of the linear autoregressive approach. Moreover, recent developments have seen the emergence of
deep neural networks for multi-fidelity modeling [30–32].

This paper aims to address the aforementioned challenges by introducing two methodologies. Firstly, we propose the Gaussian
Process based Sparse Identification of Nonlinear Dynamics (GP-SINDy) to construct a global surrogate model and alleviate the effect
of noise in the observed data. GP-SINDy leverages the non-parametric model GPR to effectively smooth the noisy data. Meanwhile,
the derivatives are computed analytically within the GP framework. Notably, GPR provides valuable uncertainty quantification (UQ)
information for the variables inference. We incorporate this UQ information into the weighted least squares (WLS) problem to en-
sure the accurate recovery of the potential functions. Furthermore, we introduce the Multi-Fidelity Gaussian Process based Sparse
Identification of Nonlinear Dynamics (MFGP-SINDy) to infer the explicit representation of the differential equations using a suitable
amount of LF data and limited HF data. To achieve this, MFGP [29] is utilized for the information fusion among different fidelity
levels. The main contributions of this paper include:

1. A robust algorithm for sparse identification of differential equation using GP, aka GP-SINDy, is proposed.
2. The uncertainty of time derivative is approximated by its posterior variance in GP and this UQ information are embodied into

the process of sparse identification of differential equation.
3. MFGP-SINDy is developed to cope with the case of multi-fidelity, sparse, and noisy observed data. Meanwhile, the partial deriva-

tive computations of MFGP kernel are provided, which is the key for MFGP-SINDy.

This paper is organized as follows. We present the problem of sparse discovery for differential equations in Section 2. In Section 3,
we briefly review the Gaussian process regression and present our GP-SINDy and MFGP-SINDy algorithms. Several numerical exper-
iments in Section 4 are carried out to demonstrate the efficiency and robustness of our methods, and we summarize our paper in
Section 5.

Journal of Computational Physics 523 (2025) 113651

2

Y. Meng and Y. Qiu

2. Problem statement

Consider a (nonlinear) differential equation (ODE or PDE) described by the following form

𝑑

𝑑𝑡
𝐮 = 𝐟(𝐮), (1)

where 𝐮 = [𝑢1(𝐱), 𝑢2(𝐱),⋯ , 𝑢𝑑 (𝐱)]𝑇 ∈ℝ𝑑 represents the state variables, the (nonlinear) evolution 𝐟(𝐮) of the system is unknown, and
𝐱 ∈ ℝ𝐷 represent the time (and the space location), where 𝐱 = 𝑡 for ODEs, and 𝐱 = (𝑡, 𝑥) for PDEs, with 𝑡 ∈ [0, 𝑇]. For PDEs, the
right-hand-side of (1) also contains the partial derivatives with respect to (w.r.t.) 𝑥, i.e., 𝐟(𝐮) = 𝐟(𝐮,𝐮𝑥,𝐮𝑥𝑥,⋯).

The available observed data is represented by = {𝐱𝑖,𝐮𝑖} for 𝑖 = 1,⋯ ,𝑁 , where 𝐮𝑖 = 𝐮∗
𝑖
+ 𝜺𝑖. Here, 𝐮∗

𝑖
denotes the clean data

sampled from the true system, and 𝜺𝑖 is independent and identically distributed (i.i.d.) Gaussian white noise with 𝜺𝑖 ∼ (𝟎𝑑 , 𝜎2𝐈𝑑),
where 𝟎𝑑 and 𝐈𝑑 denote the zero vector of size 𝑑 and the identity matrix of size 𝑑 × 𝑑, respectively. We could assemble the data
into the matrix form with 𝐗 = [𝐱1,𝐱2,⋯ ,𝐱𝑁] ∈ℝ𝐷×𝑁 , 𝐔= [𝐮1,𝐮2,⋯ ,𝐮𝑁]𝑇 ∈ℝ𝑁×𝑑 and

𝐔 =𝐔∗ +𝐄,

where 𝐔∗ represents the corresponding clean data matrix and 𝐄 is the noise matrix. Our objective is to discover the explicit expression
of 𝐟(𝐮) based on the noisy observed data 𝐔.

Assume that 𝐟(𝐮) can be expressed by a linear combination of as few as predefined functions from a function library denoted by
𝚽(𝐮) = [𝜙1(𝐮), 𝜙2(𝐮),⋯ , 𝜙𝑁𝑓

(𝐮)] where each 𝜙𝑖 is referred to as a basis function or function feature, and 𝑁𝑓 is the size of the function
library. The function library 𝚽(𝐮) is often selected as the polynomial basis functions or trigonometric functions. For PDE systems,
the basis functions also involve the partial derivatives w.r.t. the space variables, such as 𝐮𝑥 , 𝐮𝑥𝑥, and their combination functions
𝐮𝐮𝑥, 𝐮𝐮𝑥𝑥, and 𝐮𝑥𝐮𝑥𝑥. The task of discovering the (nonlinear) system (1) can be reformulated as the problem of solving the following
linear equations while enforcing the constraint of sparse solution,

�̇� =𝚽𝐂+𝐄′. (2)

Here, �̇� ∈ℝ𝑁×𝑑 represents the temporal derivatives of the state variables, which needs to be computed from the given data matrix
𝐗 and 𝐔. 𝐄′ ∈ℝ𝑁×𝑑 is the noise matrix. The matrix 𝚽 ∈ℝ𝑁×𝑁𝑓 corresponds to the function library, and 𝐂 ∈ℝ𝑁𝑓×𝑑 represents the
sparse coefficient matrix to be determined.

The problem of sparse discovery of differential equations described by (2) involves solving a linear least square problem. Partition
𝐔, �̇� and 𝐂 using 𝐔 = [𝐔1,𝐔2,⋯ ,𝐔𝑑], �̇� = [�̇�1, �̇�2,⋯ , �̇�𝑑], and 𝐂 = [𝐂1,𝐂2,⋯ ,𝐂𝑑], where 𝐔𝑖, �̇�𝑖 ∈ ℝ𝑁 , and 𝐂𝑖 ∈ ℝ𝑁𝑓 represent
the 𝑖-th column of matrices 𝐔, �̇�, and 𝐂, respectively. We aim to compute a sparse solution 𝐂𝑖 ∈ℝ𝑁𝑓 with

min
𝐂𝑖

(
�̇�𝑖 −𝚽𝐂𝑖

)𝑇 𝐖𝑖

(
�̇�𝑖 −𝚽𝐂𝑖

)
+ 𝜆0‖𝐂𝑖‖0, (3)

for each 𝑖 = 1,2,⋯ , 𝑑. We transform the problem of sparse discovery of differential equations into a WLS problem.
Here 𝐖𝑖 is the weight matrix and should be positive semi-definite and the 𝓁0 regularization term is employed to promote the

sparsity of 𝐂𝑖. If the weight matrix 𝐖𝑖 is chosen as the identity matrix, this problem degenerates to an ordinary least squares
formulation which is studied in classical SINDy [9,13].

3. Sparse identification using Gaussian process

In this section, we propose two methods that leverage the GPR and MFGP to recover the nonlinear differential equations, named
GP-SINDy and MFGP-SINDy, respectively. First, we briefly review some fundamental concepts of GPR. Subsequently, we present the
GP-SINDy approach, which incorporates the inference outcomes of GPR into the sparse discovery of nonlinear systems. Finally, we
employ MFGP to fuse the nonlinear information among different fidelity levels for the sparse identification.

3.1. Gaussian process regression

Assume that the observation =
{
(𝐱𝑖, 𝑦𝑖)

|||, 𝑖 = 1,⋯ ,𝑁
}

satisfies the following model,

𝑦𝑖 = 𝑓 (𝐱𝑖) + 𝜀𝑖.

Here, 𝐱𝑖 ∈ Ω ⊂ ℝ𝐷 , and the scalar 𝑦𝑖 is contaminated by i.i.d. noise 𝜀𝑖 ∼ (0, 𝜎2
0). The function 𝑓 could be characterized by a

Gaussian process, i.e., 𝑓 (𝐱) ∼ (
𝑓 (𝐱), 𝑘

(
𝐱,𝐱′;𝜽

))
, where 𝜽 is the hyperparameters to be determined, the mean function 𝑓 (𝐱) and

the covariance function (kernel function) 𝑘
(
𝐱,𝐱′;𝜽

)
are defined by,

⎧⎪⎨⎪⎩
𝑓 (𝐱) = 𝔼(𝑓 (𝐱)),

𝑘
(
𝐱,𝐱′;𝜽

)
= 𝔼

[(
𝑓 (𝐱) − 𝑓 (𝐱)

)𝑇 (
𝑓
(
𝐱′
)
− 𝑓 (𝐱′)

)]
.

Journal of Computational Physics 523 (2025) 113651

3

Y. Meng and Y. Qiu

In this paper, we choose the squared exponential (SE) kernel, i.e., 𝑘SE

(
𝐱,𝐱′;𝜽

)
= 𝜽20 exp

(
−

𝐷∑
𝑠=1

(
𝐱𝑠−𝐱′𝑠

)2
2𝜽2𝑠

)
. For simplicity, we denote

the training data by 𝐗 = [𝐱1,𝐱2,⋯ ,𝐱𝑁] ∈ℝ𝐷×𝑁 and 𝐲 = [𝑦1, 𝑦2,⋯ , 𝑦𝑁]𝑇 ∈ℝ𝑁 .

3.1.1. Inferring the state variables

GPR provides a non-parameter model that allows one to infer the quantities of interest. Given the training data 𝐗 and 𝐲, our
objective is to infer the value and uncertainty of 𝑓 ∗ = 𝑓 (𝐱∗) where 𝐱∗ ∈ ℝ𝐷 is called the test data. The joint Gaussian distribution
can be expressed by,[

𝐲
𝑓 ∗

]
∼

(
𝟎𝑁+1,

[
𝐊SS(𝐗,𝐗) + 𝜎2

0𝐈𝑁 𝐊SS(𝐗,𝐱∗)
𝐊SS(𝐱∗,𝐗) 𝐊SS(𝐱∗,𝐱∗)

])
. (4)

Here, the covariance matrix of the training data denoted by 𝐊SS(𝐗,𝐗) ∈ℝ𝑁×𝑁 is defined such that 𝐊SS(𝐗,𝐗)𝑖,𝑗 = 𝑘
(
𝐱𝑖,𝐱𝑗 ;𝜽

)
, where

the subscript “SS” represents the covariance between states. 𝐊SS(𝐗,𝐱∗) ∈ ℝ𝑁 represents the cross-covariance matrix between the
training data 𝐗 and the test data 𝐱∗ with 𝐊SS(𝐗,𝐱∗)𝑖 = 𝑘

(
𝐱𝑖,𝐱∗;𝜽

)
. 𝐊SS(𝐱∗,𝐗) =𝐊SS(𝐗,𝐱∗)𝑇 and 𝐊SS(𝐱∗,𝐱∗) = 𝑘 (𝐱∗,𝐱∗;𝜽).

The posterior distribution, which represents the conditional distribution of 𝑓 ∗ given 𝐗, 𝐲, 𝐱∗, and 𝜽, can be expressed by

𝑓 ∗|||𝐗,𝐲,𝐱∗,𝜽 ∼ (
𝑓 ∗,var(𝑓 ∗)

)
,

where the mean and variance of the posterior distribution are calculated by{
𝑓 ∗ = 𝔼[𝑓 ∗|𝐗,𝐲,𝐱∗,𝜽] =𝐊SS(𝐱∗,𝐗)

[
𝐊SS(𝐗,𝐗) + 𝜎2

0𝐈𝑁
]−1 𝐲,

var(𝑓 ∗) =𝐊SS(𝐱∗,𝐱∗) −𝐊SS(𝐱∗,𝐗)
[
𝐊SS(𝐗,𝐗) + 𝜎2

0𝐈𝑁
]−1𝐊SS(𝐗,𝐱∗).

(5)

3.1.2. Inferring the partial derivatives of state variables

Since differentiation is a linear operator, the derivative of a Gaussian process remains a Gaussian process [33]. Beyond inferring
the mean and variance of the states data 𝑓 ∗ = 𝑓 (𝐱∗), GPR enables the derivation of the partial derivatives, such as the first-order
partial derivative with respect to the 𝑗-th component 𝐱∗

𝑗
, denoted by (𝜕𝑓 ∗)𝑗 =

𝜕𝑓
(
𝐱∗

)
𝜕𝐱∗

𝑗

. Similar to the formulas in (4), a joint Gaussian

distribution encompassing the derivatives and states data can be expressed by,[
𝐲

(𝜕𝑓 ∗)𝑗

]
∼

(
𝟎,
[
𝐊SS(𝐗,𝐗) + 𝜎2

0𝐈𝑁 𝐊SD(𝐗,𝐱∗)
𝐊DS(𝐱∗,𝐗) 𝐊DD(𝐱∗,𝐱∗)

])
,

where the subscript “S” and “D” represent “State” and “Derivative”, respectively. 𝐊SD(𝐗,𝐱∗) ∈ℝ𝑁 and 𝐊DS(𝐱∗,𝐗) =𝐊SD(𝐗,𝐱∗)𝑇 rep-

resent two covariance matrices between the training data 𝐗 and the test data 𝐱∗, where 𝐊SD(𝐱,𝐱∗)𝑖,1 =
𝜕𝑘

(
𝐱,𝐱′;𝜽

)
𝜕𝐱′

𝑗

|||𝐱=𝐱𝑖 ,𝐱′=𝐱∗ . Similarly,

𝐊DD(𝐱∗,𝐱∗) =
𝜕2𝑘

(
𝐱,𝐱′;𝜽

)
𝜕𝐱𝑗 𝜕𝐱′𝑗

|||𝐱=𝐱∗ ,𝐱′=𝐱∗ .

The conditional distribution of (𝜕𝑓 ∗)𝑗 given 𝐗,𝐲,𝐱∗,𝜽, can be given by,

(𝜕𝑓 ∗)𝑗
|||𝐗,𝐲,𝐱∗,𝜽 ∼ (

(𝜕𝑓 ∗)𝑗 ,var((𝜕𝑓 ∗)𝑗)
)
,

where the mean and variance of the posterior distribution are calculated by{
(𝜕𝑓 ∗)𝑗 = 𝔼[(𝜕𝑓 ∗)𝑗 |𝐗,𝐲,𝐱∗,𝜽] =𝐊DS(𝐱∗,𝐗)

[
𝐊SS(𝐗,𝐗) + 𝜎2

0𝐈𝑁
]−1 𝐲,

var((𝜕𝑓 ∗)𝑗) =𝐊DD(𝐱∗,𝐱∗) −𝐊DS(𝐱∗,𝐗)
[
𝐊SS(𝐗,𝐗) + 𝜎2

0𝐈𝑁
]−1𝐊SD(𝐗,𝐱∗).

(6)

The inference of the partial derivatives is utilized for the terms such as 𝑢𝑡 in ODEs, as well as 𝑢𝑡, 𝑢𝑥, 𝑢𝑦, 𝑢𝑥𝑥, 𝑢𝑦𝑦 in PDEs. Here, we
focus solely on demonstrating how to infer the first-order partial derivatives. Further details regarding the derivation of the first-order
and higher-order partial derivatives of the SE kernel are given in Appendix A.1.

3.1.3. Training the hyperparameters in GP

The marginal likelihood at 𝐗 can be described by

𝑝(𝐲|𝐗) = ∫ 𝑝(𝐲|𝐟 ,𝐗)𝑝(𝐟 |𝐗)d𝐟 ,
where the priori 𝑝(𝐟 |𝐗) is a Gaussian distribution, i.e., 𝐟 |𝐗 ∼ (𝟎,𝐊SS(𝐗,𝐗)) [33]. Meanwhile, due to the existence of noise in GP and
𝑝(𝐲|𝐟 ,𝐗) = 𝑝(𝐲|𝐟), we have 𝐲|𝐟 ,𝐗 ∼ (

𝐟 , 𝜎2
0𝐈𝑁

)
. Then, we obtain 𝐲|𝐗 ∼ (

𝟎,𝐊SS(𝐗,𝐗) + 𝜎2
0𝐈𝑁

)
. The value of hyperparameters 𝜽 in

the kernel of GP, as well as the noise variance 𝜎2
0 are determined by maximizing the likelihood function of 𝐲|𝐗, which is equivalent

to minimizing the negative log marginal likelihood given by,

GP

(
𝜽, 𝜎2

0 ;𝒚,𝐗
)
= 1

2
𝒚T

(
𝐊SS(𝐗,𝐗) + 𝜎2

0𝐈𝑁
)−1

𝒚 + 1
2
log |||𝐊SS(𝐗,𝐗) + 𝜎2

0𝐈𝑁
|||+ 𝑁

2
log(2𝜋). (7)

Journal of Computational Physics 523 (2025) 113651

4

Y. Meng and Y. Qiu

3.2. GP-SINDy for single-fidelity data

In this part, we propose the GP-SINDy algorithm, which utilizes 𝐗 and the noisy observed data and 𝐔 to compute the sparse
solution 𝐂 for the WLS problem given by (3). GP-SINDy involves four steps,

1. Constructing the GP surrogate model based on observed data 𝐗,𝐔;
2. Inferring the states variable, and their partial derivatives;
3. Assembling the derivatives matrix �̇�𝑖 and function library matrix 𝚽;
4. Resolving the WLS problem (3).

Since the dimension of the state variable 𝐮 is 𝑑 and the single output GP is employed, it becomes imperative to compute the
sparse coefficients for each individual dimension of 𝐮. Now we need to construct 𝑑 independent GPR models in order to extract
information for each dimension, including the states and the associated derivatives. The 𝑖-th GPR model is constructed based on
training data {𝐗,𝐔𝑖} and the kernel function 𝑘

(
𝐱,𝐱′;𝜃𝑖

)
, where the optimal hyperparameters 𝜃𝑖 and noise variance 𝜎2

𝑖
are determined

by minimizing equation (7).
Then, we perform the inference at 𝑁 ′ test inputs (denoted by 𝐗𝑝 ∈ ℝ𝐷×𝑁 ′

) using equation (5) and (6). This inference involves
three parts: the states, the posterior mean and variance of partial derivatives w.r.t. time denoted by 𝐔𝑖, �̇�𝑖, and var(�̇�𝑖), respectively.
Here, var(�̇�𝑖) is a matrix with size 𝑁 ′ ×𝑁 ′. For PDEs, we also need to calculate the partial derivatives w.r.t. the spatial variables
denoted by 𝐕𝑖, such as first-order and second-order partial derivatives matrices 𝐕𝑖 (order=1) and 𝐕𝑖 (order=2). Typically, to ensure
accuracy, the size of the prediction is set to be greater than the size of the training data, i.e., 𝑁 ′ ≥𝑁 .

Remark 1. Standard GPR has cubic computational complexity when learning the hyperparameters and predicting target values.
To alleviate this computational burden, various algorithms have been developed [34,35]. Nonetheless, to keep a clear structure of
this paper, we utilize conventional GPR with a constrained dataset size to maintain the computational tractability. Furthermore, at
the stage of hyperparameters optimization, subsampling of the training data is an optional technique to considerably diminish the
runtime.

Let 𝐔 = [𝐔1,𝐔2,⋯ ,𝐔𝑑], 𝐕 = [𝐕1,𝐕2,⋯ ,𝐕𝑑]. In the function library of PDEs, the term 𝐮, 𝐮𝑥 , and 𝐮𝑥𝑥 are approximated by the state
matrix 𝐔, the first-order and second-order partial derivatives matrices 𝐕 (order=1) and 𝐕 (order=2), respectively. The nonlinear
term 𝐮𝐮𝑥 is approximated by element-wise product of two matrices 𝐔 and 𝐕 (order=1). Hence, in equation (3), the derivatives
matrix �̇�𝑖 is computed by the posterior mean �̇�𝑖, and the function library matrix 𝚽 is constructed using 𝐔 and 𝐕, i.e., 𝚽 =𝚽(𝐔,𝐕).
As a result, we obtain the following linear equation to be solved:

�̇�𝑖 =𝚽𝐂𝑖 + 𝜺𝑖, (8)

where 𝜺𝑖 ∼ (𝟎,𝚺𝑖) accounts for the noise and embodies the uncertainty associated with the derivative data �̇�𝑖. We can rewrite this
equation as a WLS problem given by,

min
𝐂𝑖

(
�̇�𝑖 −𝚽𝐂𝑖

)𝑇

𝐖𝑖

(
�̇�𝑖 −𝚽𝐂𝑖

)
. (9)

Before computing the sparse solution of 𝐂𝑖, the following lemma illustrates the WLS estimator of equation (9).

Lemma 1 (Gauss-Markov Theorem [36]). For the least squares problem

min
𝐂𝑖

(
�̇�𝑖 −𝚽𝐂𝑖

)𝑇 (
�̇�𝑖 −𝚽𝐂𝑖

)
,

arising from Equation (8) with 𝚺𝑖 = 𝜎2𝐈, the best linear unbiased estimator (BLUE) is given by �̂�𝑖 = (𝚽𝑇𝚽)−1𝚽𝑇 �̇�𝑖.

Theorem 1. For the weighted least squares problem (9) associated with Equation (8), the optimal solution is given by

�̂�𝑖 = (𝚽𝑇𝐖𝑖𝚽)−1𝚽𝑇𝐖𝑖�̇�𝑖.

Moreover, �̂�𝑖 becomes the best linear unbiased estimator (BLUE) for the special case where 𝐖𝑖 = 𝚺−1
𝑖

.

Proof. The optimality condition of (9) is given by

𝜕

𝜕𝐂𝑖

(
�̇�𝑖 −𝚽𝐂𝑖

)𝑇

𝐖𝑖

(
�̇�𝑖 −𝚽𝐂𝑖

)
= 2𝚽𝑇𝐖𝑖

(
�̇�𝑖 −𝚽𝐂𝑖

)
= 0,

and we obtain the optimal solution

�̂�𝑖 = (𝚽𝑇𝐖𝑖𝚽)−1𝚽𝑇𝐖𝑖�̇�𝑖.

Journal of Computational Physics 523 (2025) 113651

5

Y. Meng and Y. Qiu

Since 𝔼
(
�̇�𝑖

)
= 𝔼

(
𝚽𝐂𝑖 + 𝜺𝑖

)
=𝚽𝐂𝑖, we have

𝔼
(
�̂�𝑖

)
= (𝚽𝑇𝐖𝑖𝚽)−1𝚽𝑇𝐖𝑖𝔼

(
�̇�𝑖

)
= (𝚽𝑇𝐖𝑖𝚽)−1𝚽𝑇𝐖𝑖𝚽𝐂𝑖

=𝐂𝑖,

which indicates that �̂�𝑖 is unbiased.
For the positive definite matrix 𝚺𝑖, denote its Cholesky decomposition by 𝚺𝑖 = 𝐋𝐋𝑇 . Then, Equation (8) can be rewritten by,

𝐋−1�̇�𝑖 = 𝐋−1𝚽𝐂𝑖 +𝐋−1𝜺𝑖,

where 𝐋−1𝜺𝑖 ∼ (𝟎, 𝐈). This least square problem

min
𝐂𝑖

(
𝐋−1�̇�𝑖 −𝐋−1𝚽𝐂𝑖

)𝑇 (
𝐋−1�̇�𝑖 −𝐋−1𝚽𝐂𝑖

)
,

is identical to Equation (9) when 𝐖𝑖 = 𝚺−1
𝑖

. According to Lemma 1, the corresponding BLUE is given by

�̂�𝑖 =
((

𝐋−1𝚽
)𝑇 𝐋−1𝚽

)−1 (
𝐋−1𝚽

)𝑇 𝐋−1�̇�𝑖

= (𝚽𝑇 (𝐋𝐋𝑇)−1𝚽)−1𝚽𝑇 (𝐋𝐋𝑇)−1�̇�𝑖

= (𝚽𝑇𝚺−1
𝑖 𝚽)−1𝚽𝑇𝚺−1

𝑖 �̇�𝑖. □

The Sequential Threshold Ridge regression (STRidge) algorithm introduced in [9,13] offers a powerful approach to seek the
sparse solution of equation (9). Unlike other methods that relax the 𝓁0 regularization to 𝓁1 regularization, such as the least absolute
shrinkage and selection operator (LASSO), STRidge enforces sparsity by applying thresholds iteratively. Based on STRidge, we propose
the Sequential Threshold for Weighted Least Squares (STWLS) described by Algorithm 1, which incorporates the WLS estimator into
the sparsity-promoting process. In order to keep the clarity of Algorithm 1, we replace �̇�𝑖 and 𝐖𝑖 by the notations 𝐙 and 𝐖,
respectively.

Algorithm 1 Sequential Threshold for Weighted Least Squares (STWLS).

Input: 𝚽 ∈ℝ𝑁 ′×𝑁𝑓 , 𝐙 ∈ℝ𝑁 ′
, 𝐖 ∈ℝ𝑁𝑓 ×𝑁𝑓 , Λ(𝜆≥ 0,∀𝜆 ∈ Λ), 𝜂 > 0, 𝐾 , 𝐽 .

1: Initialization: 𝜏 = 0, 0 = {1,⋯ ,𝑁𝑓 }, 𝐜0 =𝚽†𝐙, ∗ = (𝚽𝐜0 −𝐙)𝑇𝐖(𝚽𝐜0 −𝐙) + 𝜂‖𝐜0‖0 , 𝐜 = 𝟎𝑁𝑓

2: for 𝜆 ∈ Λ do

3: for 𝑘 = 1 to 𝐾 do

4: = 0 , �̃�=𝚽, ̃𝐖=𝐖
5: for 𝑗 = 1 to 𝐽 do

6: 𝐜[] = (�̃�𝑇𝐖�̃�+ 𝜆𝐈)−1(�̃�𝑇𝐖𝐙)
7: = {𝑟 ∶ |𝐜[𝑟]| ≥ 𝜏}, 𝐜[0 ⧵] = 0
8: �̃�= �̃�[∶,], ̃𝐖=𝐖[,]
9: end for

10: 𝐜[] = (�̃�𝑇𝐖�̃�)−1(�̃�𝑇𝐖𝐙), 𝐜[0 ⧵] = 0
11: = (𝚽𝐜−𝐙)𝑇𝐖(𝚽𝐜−𝐙) + 𝜂‖𝐜‖0
12: if ≤∗ then

13: ∗ =, 𝐜∗ = 𝐜
14: end if

15: 𝜏 = 1.05min𝑖{|𝑐∗𝑖 | ∶ 𝑐∗
𝑖
≠ 0}

16: end for

17: end for

Output: Sparse solution 𝐜∗ .

In STWLS, Λ is the set that contains all candidate values of 𝜆. For a fixed 𝜆 ∈Λ, there are two loops, the outer loop is to determine
the suitable threshold 𝜏 , while the inner loop seeks the sparse solution under the specified threshold iteratively. It is noteworthy that
in STWLS, 𝜆 and 𝜂 are two key parameters for sparse solutions. A series of ridge regression techniques are employed to identify the
support function terms in the inner loop, wherein 𝜆 serves as the regularization parameter. Non-zero 𝜆 is employed to highlight the
correct feature terms. Different from the standard ridge regression, 𝜆 in STWLS merely has impact on the support function terms
(line 6 in Algorithm 1), which makes an indirect contribution to the final coefficient matrix. Another key parameter 𝜂 is utilized to
decide whether to accept the sparse solution from the inner loop or not, which makes the trade-off between the residual of linear
equations and the sparsity of the solution. When 𝜂 is smaller, the sparsity loss term is less penalized, which leads to the defectively
sparse solution. Conversely, if it is too large, the solution exhibits an exceptionally high degree of sparsity since the sparsity loss term
becomes dominant.

Journal of Computational Physics 523 (2025) 113651

6

Y. Meng and Y. Qiu

Remark 2. In the numerical experiments of Section 4, the final outcomes are not sensitive to 𝐾 , 𝐽 , and 𝜂. In practice, 𝜆 is typically
difficult to choose, especially when the training data is limited, small 𝜆 would result in an excess of the function terms while larger
values would yield much fewer terms. Analogous phenomenon also present in [21], where corner point criterion in Pareto curve is
exploited to balance the fitting and sparsity of the solution. Here, we choose 𝜆 in a naive but effective manner by setting a candidate
set Λ, where the total least square residual reaches its minimum when the optimal 𝜆 is selected. This straightforward approach
demonstrates its effectiveness in our experiments. We believe that more sophisticated methods, such as Bayesian optimization, would
also be effective in finding the optimal 𝜆.

Remark 3. In Algorithm 1, we address the WLS problem in the context of sparse identification of nonlinear systems, where the
variance of noise is approximated by the posterior variance of temporal partial derivatives in GPR. Similar techniques can be found
in related literatures, for example, the generalized least squares problem [25,37], wherein the covariance matrix (corresponding to
the inverse of the aforementioned weight matrix) is approximated through the residual analysis of methods in [25,37].

Finally, for the WLS problem (9), the STWLS algorithm (Algorithm 1) is employed to derive the sparse solution 𝐂𝑖 . We leverage
the posterior variance of the partial derivative w.r.t. time to approximate the covariance matrix of 𝜺𝑖, i.e., the weight matrix 𝐖𝑖 =(
diag

(
var(�̇�𝑖)

))−1
. Consequently, our Gaussian Process based SINDy (GP-SINDy) algorithm is summarized in Algorithm 2.

Algorithm 2 Gaussian Process based SINDy (GP-SINDy).

Input: Data =
{
𝐗 ∈ℝ𝐷×𝑁 ,𝐔 ∈ℝ𝑁×𝑑

}
, test input 𝐗𝑝 ∈ℝ𝐷×𝑁 ′

, parameters of STWLS Λ, 𝜂, 𝐾 , 𝐽 .

1: for 𝑖 ∈ {1,⋯ , 𝑑} do

2: Construct the GPR model with {𝐗,𝐔𝑖}, and learn the optimal hyperparameters, 𝜃𝑖 and 𝜎2
𝑖
.

3: Infer the posterior 𝐔𝑖 , �̇�𝑖 , var
(
�̇�𝑖

)
, and 𝐕𝑖 at test input 𝐗𝑝 .

4: Compute the weight matrix 𝐖𝑖 =
(
diag

(
var(�̇�𝑖)

))−1
.

5: end for

6: Assemble the data matrices, 𝐔= [𝐔1 ,𝐔2,⋯ ,𝐔𝑑], 𝐕= [𝐕1,𝐕2,⋯ ,𝐕𝑑].
7: Compute the function library matrix 𝚽=𝚽(𝐔,𝐕).
8: for 𝑖 ∈ {1,⋯ , 𝑑} do

9: 𝐂[∶, 𝑖] = STWLS(𝚽, �̇�𝑖 , 𝐖𝑖 , Λ, 𝜂, 𝐾 , 𝐽).
10: end for

Output: Sparse coefficient matrix 𝐂.

Remark 4. In Algorithm 2, GP is utilized to mitigate the impact of noise in the observed data. It is noteworthy that the selection of
the basis function library Φ can also introduce model errors, especially for some complicated differential equations. Given Φ, the
discovered equation could be considered as an approximation of the “true equation”.

3.3. MFGP-SINDy for multi-fidelity data

In this part, we will briefly review the nonlinear autoregressive multi-fidelity GP regression (MFGP) [29] to assimilate the nonlinear
information from the MF data into the inference of the HF model. Let 𝑙 =

{
(𝐱𝑙

𝑖
, 𝑦𝑙

𝑖
)|||, 𝑖 = 1,⋯ ,𝑁𝑙

}
with 𝑙 = 1,⋯ ,𝐿 denote the

observed MF data, which satisfies,

𝑦𝑙
𝑖 = 𝑓𝑙(𝐱𝑙

𝑖) + 𝜀𝑙𝑖,

where 𝐱𝑙
𝑖
∈Ω𝑙 ⊂ℝ𝐷 represents the input, 𝑦𝑙

𝑖
∈ℝ is the noisy output of level 𝑙, and the noise term 𝜀𝑙

𝑖
is i.i.d. at each level with Gaussian

distribution (
0,
(
𝜎𝑙

mf

)2)
. We rewrite the training data as 𝑙 =

{
(𝐗𝑙 ,𝐲𝑙)

}
with 𝑙 = 1,⋯ ,𝐿 where 𝐗𝑙 = [𝐱𝑙

1,𝐱
𝑙
2,⋯ ,𝐱𝑙

𝑁𝑙
] ∈ℝ𝐷×𝑁𝑙

and

𝐲𝑙 = [𝑦𝑙
1, 𝑦

𝑙
2,⋯ , 𝑦𝑙

𝑁𝑙
]𝑇 ∈ℝ𝑁𝑙

. Here, 𝐿 corresponds to the HF data, and 𝑙 for (𝑙 = 1,⋯ ,𝐿− 1) are the LF data sorted by increasing
the level of accuracy. For the function 𝑓 1, it can be described by a Gaussian process, i.e.,

𝑓 1(𝐱) ∼ (
𝑓 1(𝐱), 𝑘1

(
𝐱,𝐱′;𝜃1

))
,

where 𝑘1
(
𝐱,𝐱′;𝜃1

)
is an SE kernel. We use the notation Cov(⋅, ⋅) to denote the covariance between two random variables. Assume

that the 𝑓 1, 𝑓 2,⋯ , 𝑓𝐿 follow the Markov property,

Cov
(
𝑓𝑙(𝐱), 𝑓 𝑙−1(𝐱′)|||𝑓𝑙−1(𝐱)

)
= 0,∀𝐱 ≠ 𝐱′, 𝑙 = 2,⋯ ,𝐿,

which means that given the value of 𝑓𝑙−1(𝐱), we can learn nothing more about 𝑓𝑙(𝐱) from any other information 𝑓𝑙−1(𝐱′), for
𝐱 ≠ 𝐱′ [27,29]. Hence, the correlation between two levels of models, 𝑓𝑙−1 and 𝑓𝑙 , can be described by,

𝑓𝑙(𝐱) = 𝑧𝑙(𝑓𝑙−1(𝐱)) + 𝛿𝑙(𝐱), (10)

Journal of Computational Physics 523 (2025) 113651

7

Y. Meng and Y. Qiu

where 𝑧𝑙 ∶ℝ→ℝ is an unknown nonlinear function and 𝛿𝑙(𝐱) is a Gaussian process independent of 𝑧𝑙 . Specifically, when 𝑧𝑙 is linear,
Equation (10) degenerates to a linear autoregressive structure described in previous works [27,28].

However, Equation (10) involves a complicated problem that results in huge computational complexity. To address this issue,
we can approximate 𝑧𝑙 with a Gaussian process, which embeds the LF model 𝑓𝑙−1(𝐱) into the higher fidelity model 𝑓𝑙(𝑥). This is
achieved by substituting 𝑓𝑙−1(𝐱) with its posterior estimation 𝑓𝑙−1(𝐱). As a result, the correlation (10) can be transformed as:

𝑓𝑙(𝐱) = 𝑔𝑙(𝐱, 𝑓 𝑙−1(𝐱)),

where 𝑔𝑙 is a nonlinear function, which maps from a (𝐷+1)-dimensional subspace to a scalar in ℝ. It can be represented by a Gaussian
process, and prior distribution of the 𝑙-th level function 𝑓𝑙(𝐱) is

𝑓𝑙(𝐱) ∼ (
𝑓𝑙(𝐱), 𝑘𝑙

((
𝐱, 𝑓 𝑙−1(𝐱)

)
,
(
𝐱′, 𝑓 𝑙−1(𝐱′)

)
;𝜃𝑙

))
,

where 𝑘𝑙
((
𝐱, 𝑓 𝑙−1(𝐱)

)
,
(
𝐱′, 𝑓 𝑙−1(𝐱′)

)
;𝜃𝑙

)
is the corresponding kernel function and 𝜃𝑙 is its hyperparameter. Here, 𝛿𝑙(𝐱) can be con-

sidered implicitly due to the first input argument 𝐱.
However, 𝐱 and 𝑓𝑙−1(𝐱) belong to different spaces, which pose a challenge when computing the partial derivative of the kernel

w.r.t. 𝐱𝑗 since 𝑓𝑙−1(𝐱) is related to 𝐱. For the sake of derivation of partial derivative of the kernel, we adopt the decomposition
structure defined by Perdikaris et al. [29],

𝑘𝑙
((
𝐱, 𝑓 𝑙−1(𝐱)

)
,
(
𝐱′, 𝑓 𝑙−1(𝐱′)

)
;𝜃𝑙

)
= 𝑘𝜌(𝐱,𝐱′;𝜃𝜌)𝑘𝑓

(
𝑓𝑙−1(𝐱), 𝑓 𝑙−1(𝐱′);𝜃𝑓

)
+ 𝑘𝛿(𝐱,𝐱′;𝜃𝛿), (11)

where 𝑘𝜌, 𝑘𝑓 , and 𝑘𝛿 are three SE kernels. In this paper, this kernel is referred to as the MFGP kernel. It bridges the gap between the
input 𝐱 and the estimated LF function values 𝑓𝑙−1(𝐱) in a flexible form.

3.3.1. MFGP construction

In this paper, we focus on coping with the bi-fidelity data, i.e., 𝐿 = 2, wherein 𝑓 1(𝐱) ∼ (
𝑓 1(𝐱), 𝑘1

(
𝐱,𝐱′;𝜃1

))
and 𝑓 2(𝐱) ∼

 (
𝑓 2(𝐱), 𝑘2

((
𝐱, 𝑓 1(𝐱)

)
,
(
𝐱′, 𝑓 1(𝐱′)

)
;𝜃2

))
represent the LF and HF GP models. We use the abbreviated notations 1 and 2 to

represent them, respectively.
Before describing the computation of the MFGP, we analyze the structure of the MFGP model and make a reasonable assumption.

Let 𝐱∗ ∈ℝ𝐷 be a predictive point. Given that the LF model 𝑓 1(𝐱∗) subject to a GP prior, its posterior distribution 𝑓 1(𝐱∗) remains to be
GP, which enables the analytical computations of both the posterior mean and variance. Nevertheless, the HF model 𝑓 2(𝐱∗) follows
a GP prior, its posterior distribution do not follow a GP anymore due to the nonlinear mapping 𝑓 2(𝐱∗), wherein the uncertainty no
longer subject to a Gaussian distribution. The posterior distribution of the HF model 𝑝

(
𝑓 2 (𝐱∗)

)
can be approximated merely by a

numerical approach [29], such as the Monte-Carlo integration,

𝑝
(
𝑓 2 (𝐱∗)) = 𝑝

(
𝑓 2 (𝐱∗, 𝑓 1 (𝐱∗)) ||||𝑓 1 (𝐱∗) ,𝐱∗,𝐲2,𝐱2)

= ∫ 𝑝

(
𝑓 2 (𝐱∗, 𝑓 1 (𝐱∗)) ||||,𝐱∗,𝐲2,𝐱2

)
𝑝
(
𝑓 1 (𝐱∗))d𝐱∗, (12)

where the posterior distribution of the LF model 𝑝
(
𝑓 1 (𝐱∗)

)
is a Gaussian distribution, but the conditional probability

𝑝

(
𝑓 2 (𝐱∗, 𝑓 1 (𝐱∗)

) ||||,𝐱∗,𝐲2,𝐱2
)

is non-Gaussian.

However, such numerical computations result in unaffordable computational cost. To reduce the computational complexity, we
assume that the posterior variance of the LF model 𝑓 1(𝐱∗) is sufficiently small to be ignored, thereby, it could be treated as a
deterministic variable. In other words, 𝑓 1(𝐱∗) in HF model 2 is replaced by its mean value 𝑓 1(𝐱∗). Subsequently, the posterior
distribution of the HF model turns into as a Gaussian distribution and the posterior mean and variance could be computed analytically.
Since we are focusing on the inference of the HF model, this assumption is reasonable and efficient in practical computations.
Numerical experiments in Section 4.2.3 illustrate the fairness of this assumption.

Analogous to GPR, MFGP consists of two stages: training and inferring, and this bi-fidelity GP scheme can be readily extended to
deal with even higher fidelity levels data. In the training stage, we firstly construct the 1 model using the LF data 1 =

{
(𝐱1,𝐲1)

}
and a SE kernel 𝑘1(𝐱,𝐱′;𝜃1). The hyperparameter 𝜃1 and noise variance

(
𝜎1

mf

)2
are obtained by minimizing the negative log marginal

likelihood in equation (7). Then we compute the posterior mean denoted by 𝑓 1(𝐱2) of 1 at 𝐱2 using equation (5). Moreover, 2

is devised based on the data
{(

𝐱2, 𝑓 1(𝐱2)
)
,𝐲2

}
and the kernel 𝑘2((𝐱, 𝑓 1(𝐱)), (𝐱′, 𝑓 1(𝐱′));𝜃2) defined in (11). The hyperparameter 𝜃2

and
(
𝜎2

mf

)2
is optimized by minimizing equation (7).

During the inference stage, we initially compute the posterior mean of 1 at predictive input 𝐱∗ by equation (5) denoted
by 𝑓 1(𝐱∗). We obtain the posterior mean and variance of 2 at

(
𝐱∗, 𝑓 1(𝐱∗)

)
represented by 𝑓 2(𝐱∗), var

(
𝑓 2(𝐱∗)

)
, respectively.

Furthermore, we can also employ MFGP to infer the posterior mean and variance of partial derivatives of 2 at
(
𝐱∗, 𝑓 1(𝐱∗)

)
by

equation (6) denoted by (𝜕𝑓 2(𝐱∗))𝑗 , var
(
(𝜕𝑓 2(𝐱∗))𝑗

)
. Here, the subscript 𝑗 means the partial derivatives to the 𝑗-th element of 𝐱∗ ,

Journal of Computational Physics 523 (2025) 113651

8

Y. Meng and Y. Qiu

so we tend to use the 𝜕𝑓 2(𝐱∗) and var
(
𝜕𝑓 2(𝐱∗)

)
to abbreviate them. Details on partial derivatives of the MFGP kernel (11) are

demonstrated in Appendix A.2.
The MFGP algorithm for the case of bi-fidelity data (𝐿 = 2) is summarized in Algorithm 3, where step 1 to 3 focus on learning the

optimal hyperparameters in the kernel and the noise variance, while steps 4 to 6 are concerned with predictions for the state and its
partial derivatives of the HF model.

Remark 5. As for the inference of partial derivatives, we can utilize the automatic differentiation techniques to track the gradient
information during the process of state prediction, such as PyTorch [38]. This approach offers the advantage that we only need
to conduct state prediction once, wherein the derivatives are obtained through automatic differentiation. However, it brings two
drawbacks. One is that the posterior mean results of first-order partial derivatives is accurate, whereas accuracy diminishes for the
second and higher-order derivatives due to the existence of noise. The other is that this method cannot offer an approximation to the
posterior variance.

Algorithm 3 Multi-fidelity GP regression (MFGP).

Input: MF training data 𝑙 =
{
(𝐗𝑙 ,𝐲𝑙)

}
, 𝑙 = 1,2, predictive input 𝐱∗ , kernel functions 𝑘1(𝐱,𝐱′;𝜃1), and 𝑘2((𝐱, 𝑓 1(𝐱)), (𝐱′, 𝑓 1(𝐱′));𝜃2).

1: Construct the 1 based on 1 and 𝑘1(𝐱,𝐱′;𝜃1), and learn 𝜃1 and (𝜎1
mf

)2
by minimizing equation (7).

2: Compute the posterior mean 𝑓 1(𝐱2) of 1 at 𝐱2 using equation (5).

3: Construct 2 based on
{(

𝐱2, 𝑓 1(𝐱2)
)
,𝐲2

}
and 𝑘2((𝐱, 𝑓 1(𝐱)), (𝐱′, 𝑓 1(𝐱′));𝜃2) in equation (11), and learn 𝜃2 and (𝜎2

mf

)2
by minimizing equation (7).

4: Compute the posterior mean 𝑓 1(𝐱∗) of 1 at 𝐱∗ using equation (5).

5: Calculate the posterior mean 𝑓 2(𝐱∗) and variance var
(
𝑓 2(𝐱∗)

)
of 2 at

(
𝐱∗, 𝑓 1(𝐱∗)

)
using equation (5).

6: Calculate the posterior mean 𝜕𝑓 2(𝐱∗) and variance of partial derivative var
(
𝜕𝑓 2(𝐱∗)

)
of 2 at

(
𝐱∗, 𝑓 1(𝐱∗)

)
using equation (6).

Output: 𝑓 2(𝐱∗), var (𝑓 2(𝐱∗)
)
, 𝜕𝑓 2(𝐱∗), var

(
𝜕𝑓 2(𝐱∗)

)
.

3.3.2. MFGP-SINDy

Similar with GP-SINDy, MFGP-SINDy also consists of three steps: constructing the MFGP model based on MF data, inferring the
state and its partial derivatives, and computing a sparse solution of a WLS problem.

Firstly, MFGP is exploited as a surrogate model, which enables one to sample more points in the grid. Next, we use MFGP to
infer the variables of interest. The MFGP kernel provides a sophisticated and powerful approach wherein the partial derivatives are
calculated though the differentiation of the kernel function. This analytical manner is highly appropriate suitable for sparse and noisy
observed data. Several local surrogate approaches can smooth the noisy data, but their parameters are difficult to select. Since the
outcomes heavily depend on the choice of parameters, particularly when the noisy data is scarce. GP and MFGP have the merit that
they do not need to select the parameters manually.

Finally, we obtain the discovered system via solving the WLS problem, which is accomplished by STWLS (Algorithm 1). Combined
with GP-SINDy (Algorithm 2) and MFGP (Algorithm 3), the Multi-Fidelity Gaussian Process based SINDy (MFGP-SINDy) algorithm
for sparse and noisy MF observed data is outlined in Algorithm 4. The number of HF observed data is less than that of LF due to
fact that the cost of numerical simulation of HF model is more expensive. The size of HF data is a significant factor for the trade-off
between computational cost and accuracy, which will be demonstrated in Section 4.

Algorithm 4 Multi-Fidelity Gaussian Process based SINDy (MFGP-SINDy).

Input: MF data 𝑙 =
{
𝐗𝑙 ∈ℝ𝐷×𝑁𝑙 ,𝐔𝑙 ∈ℝ𝑁𝑙×𝑑

}
with 𝑙 = 1,2, test input 𝐗𝑝 ∈ℝ𝐷×𝑁 ′

, parameters of STWLS Λ, 𝜂, 𝐾 , 𝐽 .

1: for 𝑖 ∈ {1,⋯ , 𝑑} do

2: Construct the MFGP model using training data {𝐗𝑙 ,𝐔𝑙
𝑖} with 𝑙 = 1,2 and the kernel functions 𝑘1 , 𝑘2 , and learn the optimal hyperparameters 𝜃1

𝑖
, 𝜃2

𝑖
, (𝜎1

mf

)2
𝑖

and (𝜎2
mf

)2
𝑖

using steps 1 to 3 in Algorithm 3.

3: Infer the posterior 𝐔𝑖 , �̇�𝑖 , var
(
�̇�𝑖

)
, and 𝐕𝑖 at test input 𝐗𝑝 using steps 4 to 6 in Algorithm 3.

4: Compute the weight matrix 𝐖𝑖 =
(
diag

(
var(�̇�𝑖)

))−1
.

5: end for

6: Assemble the data matrices, 𝐔= [𝐔1 ,𝐔2,⋯ ,𝐔𝑑], 𝐕= [𝐕1,𝐕2,⋯ ,𝐕𝑑].
7: Compute the function library matrix 𝚽=𝚽(𝐔,𝐕).
8: for 𝑖 ∈ {1,⋯ , 𝑑} do

9: 𝐂[∶, 𝑖] = STWLS(𝚽, �̇�𝑖 , 𝐖𝑖 , Λ, 𝜂, 𝐾 , 𝐽).
10: end for

Output: Sparse coefficient matrix 𝐂.

The selection of the basis function library is a very typical question for SINDy. One intuitive approach is to integrate prior
knowledge into the function library. Another commonly used function library takes a set of partial derivatives with respect to the
spatial variables, such as 𝑢𝑥, 𝑢𝑥𝑥, and their combination functions such as 𝑢𝑥𝑢𝑥𝑥. In this paper, we also follow this way. However, we

Journal of Computational Physics 523 (2025) 113651

9

Y. Meng and Y. Qiu

must point out that this method does not guarantee to obtain the true equations for all PDEs, especially for PDEs exhibiting complex
dynamic behavior. Meanwhile, the number of basis functions depends on the highest order of the partial derivatives and the highest
order of polynomials while both are manually specified. To the best of our knowledge, the selection of basis functions still remains
challenging, as it is difficult to determine solely based on observation data. One possible strategy is to consider a basis function library
that is as comprehensive as possible.

4. Numerical experiments

In this section, we conduct three numerical experiments to demonstrate the performance of GP-SINDy and MFGP-SINDy, including
the Lorenz system, the Burgers’ equation, the KdV equation, and a two-dimensional example. In the discovery of Lorenz system, we
focus on the performance of GP-SINDy in handling SF observed data. The subsequent part involves the application of MFGP-SINDy
to MF data scenarios, which contains the discovery of the Burgers’ equation, the KdV equation, and a two-dimensional example. Our
approach is compared with other alternative methods in the context of SF data. Meanwhile, the effect of MF training data sizes on
the outcomes is explored.

In GP-SINDy or MFGP-SINDy, all hyperparameters in the kernel and the noise variance are initialized randomly, and they are
learned by minimizing equation (7). This is implemented through the Rprop optimizer in PyTorch [38]. For the parameters in
STWLS, we set 𝐾 = 20, 𝐽 = 10 for all experiments. We set Λ = {10𝑖, 𝑖 = 0,−1,−2,⋯ ,−5} with 𝜂 = 5 for the Lorenz system, and Λ =
{𝑖∕2, 𝑖 = 0,1,⋯ ,10} with 𝜂 = 150 for the remaining experiments.

Prior to conducting the experiments, we outline the setups of experiments. The noise-free data of ODEs is generated utilizing the
ode45 function within MATLAB that employs absolute and relative tolerance set of 10−8. For all PDEs experiments except Section 4.4,
the noise-free data of HF model is generated using the spin class from the Chebfun library [23,39]. The observed data is obtained
from the clean data through adding i.i.d. Gaussian white noise with zero mean and variance 𝜎2 , where 𝜎 is determined by the noise
ratio 𝜎NR and the clean data matrix 𝐔∗,

𝜎 = 𝜎NR
‖𝐔∗‖𝐹√

𝑁𝑑
.

Here the positive parameter 𝜎NR is manually specified, and ‖𝐔∗‖𝐹 represents the Frobenius norm of the matrix 𝐔∗ ∈ ℝ𝑁×𝑑 . This
formulation indicates that the noise-to-signal ratio is approximately equivalent to 𝜎 [25], i.e., 𝜎 ≈ ‖𝐔−𝐔∗‖𝐹 ∕‖𝐔∗‖𝐹 .

Let 𝐂∗ ∈ ℝ𝑁𝑓×𝑑 denote the true sparse coefficient matrix, we use three error metrics to evaluate the accuracy of 𝐂 obtained by
GP-SINDy and MFGP-SINDy algorithms. The first is the maximum error of the true non-zero coefficients,

𝐸∞(𝐂) = max
𝐂∗

𝑖,𝑗
≠0

|𝐂𝑖,𝑗 −𝐂∗
𝑖,𝑗
||𝐂∗

𝑖,𝑗
| .

The second is the relative 𝓁2 error between the discovered coefficients 𝐂 and the true coefficients 𝐂∗,

𝐸2(𝐂) =
‖𝐂−𝐂∗‖𝐹‖𝐂∗‖𝐹

,

And the last metric is the true positivity ratio (𝑇𝑃𝑅) [22],

𝑇𝑃𝑅(𝐂) = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
,

where 𝑇𝑃 represents the number of correctly discovered non-zero coefficients, 𝐹𝑁 represents the number of coefficients falsely
discovered as zero, and 𝐹𝑃 represents the number of coefficients falsely discovered as non-zero. 𝑇𝑃𝑅 measures the percentage of
correctly identified function terms, and a 𝑇𝑃𝑅 value of 1 indicates a perfect discovery of non-zero function terms.

4.1. Lorenz system

The Lorenz system is described as,

⎧⎪⎨⎪⎩
�̇� = 𝛽1(𝑦− 𝑥),
�̇� = 𝑥(𝛽2 − 𝑧) − 𝑦,

�̇� = 𝑥𝑦− 𝛽3𝑧.

Here we choose 𝛽1 = 10, 𝛽2 = 28, 𝛽3 = −8
3 , and the time domain 𝑡 ∈ [0,10], the initial value [𝑥0, 𝑦0, 𝑧0] = [−8,7,27]. The training data

is generated with time-step Δ𝑡 = 0.001. During the process of sparse learning, polynomials up to the third-order are utilized as the
function library, i.e., 𝚽(𝑢) = 𝚽(𝑥, 𝑦, 𝑧) = [1, 𝑥, 𝑦, 𝑧, 𝑥2, 𝑥𝑦, 𝑥𝑧, 𝑦2, 𝑦𝑧, 𝑧2, 𝑥3, 𝑥2𝑦, 𝑥2𝑧, 𝑥𝑦2, 𝑥𝑦𝑧, 𝑥𝑧2, 𝑦3, 𝑦2𝑧, 𝑦𝑧2, 𝑧3]. For GP-SINDy,
the predictive input is the same with the input in the training data. SE kernel is adopted in this experiment.

We plot the ground truth and noisy observed data with a noise ratio 𝜎NR = 0.1 (the exact standard deviation 𝜎 = 1.59742) in Fig. 1.
Our GP-SINDy algorithm is applied to these observed data, where observed data is subsampled evenly with size of 626 during the
training of hyperparameters in order to mitigate the computation afford of GPR. The results of hyperparameters and noise variance

Journal of Computational Physics 523 (2025) 113651

10

Y. Meng and Y. Qiu

Fig. 1. The ground truth and noisy data with 𝜎NR = 0.1.

Table 1
Optimal hyperparameters results of GPR
in GP-SINDy. Here, 𝑥, 𝑦, and 𝑧 are state
variables, which correspond to three GP
models.

(𝜃𝑖)0 (𝜃𝑖)1 𝜎2
𝑖

𝑥(𝑖 = 1) 0.826 0.023 0.047
𝑦(𝑖 = 2) 0.865 0.014 0.034
𝑧(𝑖 = 3) 1.049 0.015 0.034

in GPR are shown in Table 1. The corresponding states prediction and derivatives prediction results with uncertainty approximation
obtained from GPR are exhibited in Fig. 2 and 3, respectively. We observe that the posterior variance of the derivatives data are
greater near the boundary points compared to the interior points, which attributes to the availability of information on only one side
rather than both sides.

Next, we compare GP-SINDy with SINDy [9], Savitzky-Golay SINDy (SG-SINDy) [40], and Modified SINDy (M-SINDy) [41],
wherein the same function library is exploited. In SG-SINDy, the Savitzky-Golay filter is exploited to fit a series of local polynomials
for the training data, and the derivatives are calculated by the finite difference method. Here, we set the order of local polynomials
to 3 and the length of window to 10. Besides, M-SINDy is another robust algorithm that combines the automatic differentiation and
time-stepping constraints. The discovered results and coefficients error of these algorithms under 𝜎NR = 0.05,0.1 are summarized in
Table 2 and the best results are listed in bold. The comparison of discovered dynamic systems are shown in Fig. 4. As for a local
fitting model, the performance of SG-SINDy closely depends on the selection of parameters (the length of window). M-SINDy requires
to solve an ill-posed optimization problem, since the degree of freedom of the optimized variables is more than the known data, and
we observe that it is prone to overfit and fall into a local minimal. As pointed out by [41], it may produce a system that has a similar
behavior to the actual system in given time interval, but the symbolic repression is extremely different from the exact solution.

4.2. Burgers’ equation

Consider the 1D Burgers’ equation,

𝑢𝑡 = 𝜈𝑢𝑥𝑥 − 𝑢𝑢𝑥, (13)

with the initial condition 𝑢(𝑥,0) = −sin(𝜋𝑥∕8) and the periodic boundary condition 𝑢(−8, 𝑡) = 𝑢(8, 𝑡), where 𝑡 ∈ [0,10], 𝑥 ∈ [−8,8].
Here, the diffusion coefficient 𝜈 = 0.5.

4.2.1. GP-SINDy for SF data

The SF data is generated by the fine spatiotemporal grid using the spin class from the Chebfun library. The time step size is
Δ𝑡 = 0.002 and the spatial grid size Δ𝑥 = 0.00625. The training data is obtained by adding noise and downsampling of the clean data.
Here, we downsample the data evenly with size 𝑛𝑠, which is referred to the size of SF data. For the sake of notation simplicity, we
describe the training data using its size, instead of the downsampling step. For instance, 𝑛𝑠 (41 × 65 = 2665) represents a uniform
spatiotemporal grid with time step 41 and space size 65. The function library contains spatial partial derivatives up to the second-
order and polynomials up to the second-order, i.e., 𝚽(𝑢) = [1, 𝑢, 𝑢𝑥, 𝑢𝑥𝑥, 𝑢2, 𝑢𝑢𝑥, 𝑢𝑢𝑥𝑥, 𝑢2𝑥, 𝑢𝑥𝑢𝑥𝑥, 𝑢

2
𝑥𝑥]. The predictive points are set as

the spatiotemporal grid in [0,10] ∪ [−8,8] with Δ𝑡′ = 0.1, Δ𝑥′ = 0.0625 throughout this experiment.
First, we demonstrate the performance of GP-SINDy with SF data, here we use three SF data sizes, 𝑛𝑠1 (41 × 65), 𝑛𝑠2 (41 × 33),

and 𝑛𝑠3 (41 × 17). We show the identification results and error under various noise levels in Table 3, where 𝜎 represents the exact

Journal of Computational Physics 523 (2025) 113651

11

Y. Meng and Y. Qiu

Fig. 2. Comparison between the ground truth, training data, and states prediction obtained from GPR.

Fig. 3. The prediction and uncertainty approximation of derivatives.

Journal of Computational Physics 523 (2025) 113651

12

Y. Meng and Y. Qiu

Table 2
Discovered results and error under two noise levels (𝜎NR ∈ {0.05,0.1}), where excessive results in SINDy are replaced by “⋯”.

Method Discovered equation (𝜎NR = 0.05) 𝐸∞(%) 𝐸2(%) 𝑇𝑃𝑅

SINDy �̇� =− 0.814 + 4.078𝑦− 0.265𝑥𝑧
+ 0.149𝑦𝑧

�̇� =− 1.249 + 28.651𝑥− 1.276𝑦
+ 0.131𝑧− 0.113𝑥2 +⋯

�̇� =− 1.761 − 0.358𝑥+ 0.3𝑦
− 2.58𝑧+ 0.998𝑥𝑦

100.00 37.70 0.33

SG-SINDy �̇� = 0.284 − 9.83𝑥+ 9.746𝑦 �̇� = 27.853𝑥− 1.273𝑦− 0.988𝑥𝑧 �̇� = 3.312 − 2.778𝑧+ 0.986𝑥𝑦 27.34 10.64 0.78

M-SINDy �̇� = −9.908𝑥+ 9.914𝑦 �̇� = 28.083𝑥− 1.033𝑦− 1.002𝑥𝑧 �̇� = −0.396 − 2.654𝑧+ 1.002𝑥𝑦 3.30 1.35 0.88

GP-SINDy �̇� = −9.944𝑥+ 9.933𝑦 �̇� = 27.916𝑥− 0.991𝑦− 0.999𝑥𝑧 �̇� = −2.663𝑧+ 0.999𝑥𝑦 0.93 0.39 1

Method Discovered equation (𝜎NR = 0.1) 𝐸∞(%) 𝐸2(%) 𝑇𝑃𝑅

SINDy �̇� =56.124 + 9.489𝑥− 0.815𝑦
− 5.446𝑧− 0.502𝑥𝑧+⋯

�̇� =24.768𝑥+ 1.948𝑦+ 0.12𝑧
− 0.151𝑥2 + 0.345𝑥𝑦+⋯

�̇� =− 4.71 − 1.04𝑥+ 0.79𝑦
− 2.437𝑧+ 1.001𝑥𝑦

294.76 193.44 0.35

SG-SINDy �̇� = 0.82 − 9.429𝑥+ 9.156𝑦
�̇� =2.955 + 26.468𝑥− 1.609𝑦

− 0.114𝑧− 0.935𝑥𝑧
�̇� =0.176 + 0.28𝑦− 2.568𝑧

+ 0.687𝑥𝑦+ 0.187𝑦2
60.94 11.62 0.54

M-SINDy �̇� = −9.747𝑥+ 9.769𝑦 �̇� = 28.165𝑥− 1.062𝑦− 1.004𝑥𝑧 �̇� = −0.965 − 2.636𝑧+ 1.007𝑥𝑦 6.15 3.30 0.88

GP-SINDy �̇� = −9.881𝑥+ 9.861𝑦 �̇� = 27.721𝑥− 0.942𝑦− 0.995𝑥𝑧 �̇� = −2.659𝑧+ 0.998𝑥𝑦 5.81 1.08 1

Fig. 4. The visualization of discovered dynamic systems, and these figures correspond to Table 2, where all initial conditions are set to [-8, 7, 27].

standard deviation of noise. We observe that for each SF data size 𝑛𝑠, the results deteriorate as the noise level get larger. Results in
Table 3 show that GP-SINDy is capable of discovering the correct differential equation when the observation data is sparse and noisy.
In the case of noise level 𝜎NR = 0.3, although the corresponding coefficient errors 𝐸∞ and 𝐸2 are too large to accept, GP-SINDy could
discover the correct function terms, i.e., 𝑇𝑃𝑅 is 1. Additionally, as the SF training data gets coarser from 𝑛𝑠1 to 𝑛𝑠2 to 𝑛𝑠3, the results
get worse consistently at each specific noise level. The optimal hyperparameters of GPR are obtained by minimizing the negative log
marginal likelihood, and we list the optimal values under different noise levels in Table 4.

Next, we compare GP-SINDy with other methods, including Tik in PDE-FIND [13], Robust IDENT (rIDENT) [14,42], and SG-
Tik [13]. For Tik, the Tikhonov differentiation [13] is used for the derivatives computations. In rIDENT, we select the Savitzky-Golay
filter as the smoother during the process of successively denoised differentiation (SDD) and subspace pursuit cross-validation (SC) for
the sparse discovery of the differential equations. SG-Tik is the combination of Tik and rIDENT, and we use the Savitzky-Golay filter
to smooth the noisy data and apply Tik to the smoothed data for the derivatives computations.

For Tik, rIDENT, and SG-Tik, the data used for sparse identification only focuses on the training data grid. However, GP-SINDy
provides an alternative, which allows to infer the data on a finer grid and apply to discover the differential equations. To ensure
the fairness and illustrate the smoothing effect instead of the interpolation, we add a control method called GP-SINDy* based on
GP-SINDy, where these two methods differ only on the prediction points. Specifically, GP-SINDy uses the above default prediction
points (Δ𝑡′ = 0.1, Δ𝑥′ = 0.0625), and GP-SINDy* infers the data only in the training data points. For sparse training data, the size of
predictive points in GP-SINDy is larger than that of GP-SINDy*.

The error comparison (𝐸2) with three SF data sizes 𝑛𝑠3 (41 × 81), 𝑛𝑠4 (41 × 129), and 𝑛𝑠5 (41 × 257) are listed in Table 5. We can
see that GP-SINDy* outperforms Tik, rIDENT, and SG-Tik under these noise levels, and GP-SINDy gives slightly better results than
GP-SINDy*. Results demonstrate that GP-SINDy has better denoising effect than other three methods, and it is capable to discover the

Journal of Computational Physics 523 (2025) 113651

13

Y. Meng and Y. Qiu

Table 3
Identification results and error of GP-SINDy with three SF data sizes.

SF data size 𝜎NR 𝜎 Discovered equation 𝐸∞ (%) 𝐸2(%) 𝑇𝑃𝑅

𝑛𝑠1

0.02 0.009 𝑢𝑡 = 0.495𝑢𝑥𝑥 − 0.983𝑢𝑢𝑥 1.69 1.57 1
0.1 0.046 𝑢𝑡 = 0.479𝑢𝑥𝑥 − 0.933𝑢𝑢𝑥 6.73 6.30 1
0.2 0.093 𝑢𝑡 = 0.469𝑢𝑥𝑥 − 0.87𝑢𝑢𝑥 12.96 11.92 1
0.3 0.139 𝑢𝑡 = 0.462𝑢𝑥𝑥 − 0.822𝑢𝑢𝑥 17.83 16.30 1

𝑛𝑠2

0.02 0.009 𝑢𝑡 = 0.492𝑢𝑥𝑥 − 0.969𝑢𝑢𝑥 3.08 2.85 1
0.1 0.046 𝑢𝑡 = 0.467𝑢𝑥𝑥 − 0.89𝑢𝑢𝑥 11.02 10.29 1
0.2 0.093 𝑢𝑡 = 0.445𝑢𝑥𝑥 − 0.826𝑢𝑢𝑥 17.40 16.33 1
0.3 0.139 𝑢𝑡 = 0.426𝑢𝑥𝑥 − 0.775𝑢𝑢𝑥 22.48 21.17 1

𝑛𝑠3

0.02 0.009 𝑢𝑡 = 0.488𝑢𝑥𝑥 − 0.945𝑢𝑢𝑥 5.51 5.03 1
0.1 0.046 𝑢𝑡 = 0.457𝑢𝑥𝑥 − 0.843𝑢𝑢𝑥 15.72 14.58 1
0.2 0.093 𝑢𝑡 = 0.446𝑢𝑥𝑥 − 0.774𝑢𝑢𝑥 22.61 20.79 1
0.3 0.139 𝑢𝑡 = 0.433𝑢𝑥𝑥 − 0.694𝑢𝑢𝑥 30.55 27.98 1

Table 4
Optimal hyperparameter results of GPR for data size 𝑛𝑠1 un-
der various noise levels, where 𝑖= 1.

𝜎NR 𝜎 (𝜃𝑖)0 (𝜃𝑖)1 (𝜃𝑖)2 𝜎2
𝑖

0.02 0.009 0.493 10.112 2.542 0.0004
0.1 0.046 0.657 19.651 2.909 0.010
0.2 0.093 0.617 21.896 3.337 0.039
0.3 0.139 0.597 23.335 3.599 0.084

Table 5
Identification error 𝐸2(%) of Tik, rIDENT, SG-Tik, GP-SINDy* and GP-SINDy with three SF data sizes, and
we use “—” to represent the failed discovery and give the discovered function terms following.

𝜎NR Size Tik (%) rIDENT (%) SG-Tik (%) GP-SINDy* (%) GP-SINDy (%)

0.02
𝑛𝑠3 5.36 5.82 4.62 1.27 1.24

𝑛𝑠4 5.09 5.75 3.87 0.90 0.89

𝑛𝑠5 4.73 5.64 2.84 0.78 0.78

0.1
𝑛𝑠3 — (𝑢𝑢𝑥, 𝑢𝑥𝑢𝑥𝑥) 13.37 9.87 6.97 6.89

𝑛𝑠4 — (𝑢𝑢𝑥) 12.61 9.12 4.89 4.83

𝑛𝑠5 — (𝑢𝑢𝑥) 11.66 7.32 3.87 3.84

0.2
𝑛𝑠3 — (𝑢𝑢𝑥) 16.50 10.91 10.68 10.52

𝑛𝑠4 — (𝑢𝑢𝑥) 21.46 18.38 11.35 11.26

𝑛𝑠5 — (𝑢, 𝑢𝑢𝑥, 𝑢𝑥𝑢𝑥𝑥) 21.27 15.86 10.16 10.10

correct differential equations with sparse and noisy data. It is capable to infer the states or derivatives analytically at any point in the
input domain with their uncertainty. Tik can discover the correct function terms when the noise level is low, but fails when the noise
level is large since the data is sparse and highly corrupted. Notably, when the noise level is relatively high (𝜎NR = 0.2), increasing the
size of the dataset does not necessarily lead to more accurate results. In other words, when the noise level is large, using less training
data may yield better outcomes. In rIDENT and SG-Tik, the smoothing parameters of the Savitzky-Golay filter (windows parameters)
are difficult to choose, and they are closely related to the data sizes, which is a common issue for the local parameterized surrogate
model. For different sizes of data, we need to adjust them manually. However, GP-SINDy offers an elegant manner that constructs a
non-parametric model, which significantly increases the applicability.

4.2.2. MFGP-SINDy for MF data

In this part, we test the performance of MFGP-SINDy with MF data. The HF data is generated by the fine spatiotemporal grid
using the spin class from the Chebfun library. The time step size is Δ𝑡 = 0.002 and the spatial grid size Δ𝑥 = 0.00625. The LF data
is generated by the finite different method with coarse spatiotemporal grid Δ𝑡𝑙 = 0.25, Δ𝑥𝑙 = 0.5. We interpolate the LF data linearly
on the fine grid to generate more LF data. The HF ground truth of equation (13) and LF data before interpolation are depicted in
Fig. 5. In MFGP-SINDy, the LF and HF training data are corrupted by the noise with the same noise level 𝜎NR. We use 𝑛ℎ and 𝑛𝑙 to
denote the size of HF and LF data, respectively. Three SE kernels 𝑘𝜌, 𝑘𝑓 , 𝑘𝛿 are utilized in the MFGP kernel (11).

We consider three evenly sampled HF training data sizes 𝑛ℎ1 = 𝑛𝑠1(41 × 65), 𝑛ℎ2 = 𝑛𝑠2(41 × 33), 𝑛ℎ3 = 𝑛𝑠3(41 × 17) and LF training
data size 𝑛𝑙1 (51 × 81). Meanwhile, we investigate the result of GP-SINDy with data size 𝑛𝑙1 as a comparison experiment, and the
results are listed in Table 6. We can see that all results under these noise levels are not satisfactory. The discovered outcomes of MFGP-
SINDy with three MF data sizes (𝑛ℎ1, 𝑛𝑙1), (𝑛ℎ2, 𝑛𝑙1), and (𝑛ℎ3, 𝑛𝑙1) are listed in Table 7. Compared with the results in Table 3, the LF

Journal of Computational Physics 523 (2025) 113651

14

Y. Meng and Y. Qiu

Fig. 5. The HF data and LF data (before interpolation) in Burgers’ equation (13). (For interpretation of the colors in the figure(s), the reader is referred to the web
version of this article.)

Table 6
Identification results and error of GP-SINDy with data size 𝑛𝑙1 .

𝜎NR Discovered equation 𝐸∞ (%) 𝐸2(%) 𝑇𝑃𝑅

0.02 𝑢𝑡 = 0.478𝑢𝑥𝑥 − 1.007𝑢𝑢𝑥 − 0.246𝑢𝑢𝑥𝑥 4.45 22.13 0.67
0.1 𝑢𝑡 = 0.44𝑢𝑥𝑥 − 0.978𝑢𝑢𝑥 + 0.231𝑢2

𝑥𝑥
12.06 21.44 0.67

0.2 𝑢𝑡 = 0.307𝑢𝑥𝑥 − 1.204𝑢𝑢𝑥 − 0.692𝑢𝑥𝑢𝑥𝑥 38.53 66.76 0.67
0.3 𝑢𝑡 = −1.224𝑢𝑢𝑥 − 1.572𝑢𝑥𝑢𝑥𝑥 100.00 148.87 0.33

Table 7
Identification results and error of MFGP-SINDy with three MF data sizes.

MF data size 𝜎NR Discovered equation 𝐸∞ (%) 𝐸2(%) 𝑇𝑃𝑅

(𝑛ℎ1, 𝑛𝑙1)

0.02 𝑢𝑡 = 0.495𝑢𝑥𝑥 − 0.995𝑢𝑢𝑥 1.04 0.67 1
0.1 𝑢𝑡 = 0.475𝑢𝑥𝑥 − 0.966𝑢𝑢𝑥 4.95 3.75 1
0.2 𝑢𝑡 = 0.465𝑢𝑥𝑥 − 0.933𝑢𝑢𝑥 7.05 6.75 1
0.3 𝑢𝑡 = 0.461𝑢𝑥𝑥 − 0.912𝑢𝑢𝑥 8.81 8.63 1

(𝑛ℎ2, 𝑛𝑙1)

0.02 𝑢𝑡 = 0.493𝑢𝑥𝑥 − 0.99𝑢𝑢𝑥 1.46 1.14 1
0.1 𝑢𝑡 = 0.458𝑢𝑥𝑥 − 0.903𝑢𝑢𝑥 9.68 9.45 1
0.2 𝑢𝑡 = 0.456𝑢𝑥𝑥 − 0.89𝑢𝑢𝑥 11.04 10.62 1
0.3 𝑢𝑡 = 0.465𝑢𝑥𝑥 − 0.863𝑢𝑢𝑥 13.70 12.65 1

(𝑛ℎ3, 𝑛𝑙1)

0.02 𝑢𝑡 = 0.478𝑢𝑥𝑥 − 0.98𝑢𝑢𝑥 4.33 2.61 1
0.1 𝑢𝑡 = 0.46𝑢𝑥𝑥 − 0.9𝑢𝑢𝑥 10.04 9.66 1
0.2 𝑢𝑡 = 0.449𝑢𝑥𝑥 − 0.852𝑢𝑢𝑥 14.77 13.99 1
0.3 𝑢𝑡 = 0.43𝑢𝑥𝑥 − 0.77𝑢𝑢𝑥 23.01 21.51 1

Fig. 6. The HF and LF noisy observation data of sizes (𝑛ℎ1, 𝑛𝑙1), and prediction result of MFGP under 𝜎NR = 0.2.

data improves the accuracy of outcomes dramatically, especially when the noise levels are 0.2, 0.3. This indicates the robustness of
MFGP-SINDy to large noise levels.

Fig. 6 illustrates the HF and LF noisy observation data with sizes (𝑛ℎ1 , 𝑛𝑙1), and prediction results of MFGP under noise level
𝜎NR = 0.2. The corresponding optimal hyperparameters in MFGP are listed in Table 8.

Journal of Computational Physics 523 (2025) 113651

15

Y. Meng and Y. Qiu

Table 8
Optimal hyperparameters in MFGP, where 𝜃𝑙 and (𝜎𝑙)2 are hyperparameters in
the GP model level-𝑙 (𝑙 = 1,2), with the MFGP kernel 𝑘2(𝜃2) = 𝑘𝜌(𝜃𝜌)𝑘𝑓 (𝜃𝑓) +
𝑘𝛿(𝜃𝛿). Here, large (𝜃𝛿)1 implies that the corresponding input (spatial coordi-
nate) has little contribution.

(𝜃1)0 (𝜃1)1 (𝜃1)2 (𝜃𝜌)0 (𝜃𝜌)1 (𝜃𝜌)2
0.554 14.745 2.580 0.735 65.972 5.607

(𝜃𝑓)0 (𝜃𝑓)1 (𝜃𝛿)0 (𝜃𝛿)1 (𝜃𝛿)2 (𝜎1
mf
)2 (𝜎2

mf
)2

0.746 0.664 0.488 4.581 × 1025 13.561 0.039 0.037

Table 9
Identification error 𝐸2(%) and 𝐸∞(%) of MFGP-SINDy*, MFGP-SINDy(MC) and
MFGP-SINDy with three MF data sizes.

MF data size
MFGP-SINDy* MFGP-SINDy(MC) MFGP-SINDy
𝐸∞(%) 𝐸2(%) 𝐸∞(%) 𝐸2(%) 𝐸∞(%) 𝐸2(%)

(𝑛ℎ1, 𝑛𝑙1) 5.22 4.33 2.94 1.99 2.88 1.94

(𝑛ℎ2, 𝑛𝑙1) 6.69 6.64 3.23 2.79 3.19 2.75

(𝑛ℎ3, 𝑛𝑙1) 9.52 8.96 5.51 5.25 5.49 5.23

Fig. 7. The visualization of LF posterior variance of 𝑢, HF posterior variance of 𝑢𝑡 in MFGP-SINDy and MFGP-SINDy(MC).

4.2.3. Test for posterior variance of MF prediction

To compute the posterior distribution of the HF model prediction, one can apply the Monte-Carlo methods for direct computations
(cf. Equation (12)). However, such operations suffer high computational complexity. To simplify computations, we assume that the
posterior variance of the LF model is sufficiently small to be ignored in Section 3.3. In this experiment, we evaluate the fairness of
our assumption.

We denote the method which applies the Monte-Carlo methods for direct computations by MFGP-SINDy (MC). Besides, we in-
troduce a control method named MFGP-SINDy*, where the posterior variance in MFGP-SINDy* is ignored, i.e., the weight matrix in
MFGP-SINDy* is an identity matrix. Under our assumption, MFGP-SINDy allows one to compute the posterior distribution of the HF
model analytically. In contrast, the posterior mean and variance are obtained via a group of samples for MFGP-SINDy (MC). Denote
the number of sample points in MFGP-SINDy (MC) by 𝑛𝑠𝑎𝑚. Since each sample point corresponds one standard GP implementation,
the runtime of the prediction step for the HF model in MFGP-SINDy (MC) is approximately 𝑛𝑠𝑎𝑚 times that of MFGP-SINDy.

Firstly, the error comparison of identified outcomes of MFGP-SINDy*, MFGP-SINDy (MC), and MFGP-SINDy under noise level
𝜎NR = 0.05 are listed in Table 9, where we set 𝑛𝑠𝑎𝑚 = 50 for MFGP-SINDy (MC). We observe that the uncertainty information (posterior
variance) of the HF model can enhance the accuracy of discovered results compared with the performance of MFGP-SINDy*. Moreover,
the outcomes of MFGP-SINDy (MC) and MFGP-SINDy are very close, and MFGP-SINDy is slightly better than MFGP-SINDy (MC).

Fig. 7 depicts the LF posterior variance of 𝑢 and HF posterior variance of 𝑢𝑡 in MFGP-SINDy and MFGP-SINDy (MC) where the MF
data size is set as (𝑛ℎ1, 𝑛𝑙1). We can conclude that the variance at most points over the spatiotemporal grids is concentrated between
0 and 0.4 × 10−4, indicating a small overall variation.

4.2.4. Randomly sampled data

In the previous part, we only consider the uniform grid data. Given that the MF data size plays an essential role, we focus on
testing the performance of MFGP-SINDy using randomly sampled observation data in this part. To explore the impact of HF training
data size on the outcome, we fix the size of LF data to 𝑛𝑙1 (51 × 81) and randomly select 𝑛ℎ points from the fine spatiotemporal grid
as the HF training data. Meanwhile, the results of GP-SINDy are used for comparison.

Fig. 8 illustrates 𝐸∞, 𝐸2, and 𝑇𝑃𝑅 under varying HF training data sizes from 100 to 1000 when the noise level 𝜎NR ∈ {0.1,0.2,0.3},
where the results are computed on the average over 50 runs. It can be observed that for each noise level, both GP-SINDy and MFGP-

Journal of Computational Physics 523 (2025) 113651

16

Y. Meng and Y. Qiu

Fig. 8. The comparison of GP-SINDy and MFGP-SINDy with varying randomly sampled HF data sizes.

Table 10

Discovered results and error of MFGP-SINDy.

MF data size 𝜎NR Discovered equation 𝐸∞ (%) 𝐸2(%) 𝑇𝑃𝑅

(𝑛ℎ2, 𝑛𝑙2)

0.02 𝑢𝑡 = 0.496𝑢𝑥𝑥 − 0.985𝑢𝑢𝑥 1.55 1.43 1
0.1 𝑢𝑡 = 0.479𝑢𝑥𝑥 − 0.92𝑢𝑢𝑥 8.03 7.42 1
0.2 𝑢𝑡 = 0.455𝑢𝑥𝑥 − 0.861𝑢𝑢𝑥 13.94 13.11 1
0.3 𝑢𝑡 = 0.431𝑢𝑥𝑥 − 0.801𝑢𝑢𝑥 19.86 18.80 1

SINDy have better outcome with the increasing HF data size 𝑛ℎ. Significantly, for noise levels 0.2 and 0.3, the 𝐸∞ (the maximum
error in the true non-zero coefficients) of GP-SINDy is close to MFGP-SINDy, but 𝐸2 and 𝑇𝑃𝑅 are worse. When the data is abundant,
GP-SINDy yields accurate results. The incorporation of MF data in MFGP-SINDy enables effective information fusion, thereby yields
satisfactory results with lower computational cost compared with large high resolution SF data.

4.2.5. Another multi-fidelity structure

In this part, we focus on another MF structure, where the only difference with Section 4.2.2 is the LF model which is obtained by
neglecting the nonlinear term in the HF model, such LF model also appears in [31]. The HF and LF models are described by{

(𝑢ℎ)𝑡 = 𝜈(𝑢ℎ)𝑥𝑥 − 𝑢ℎ(𝑢ℎ)𝑥,
(𝑢𝑙)𝑡 = 𝜈(𝑢𝑙)𝑥𝑥.

(14)

Here, the “clean” LF data is generated by solving the LF model via the spin class from the Chebfun library [39] with the same
spatiotemporal grid Δ𝑡𝑙 = 0.25, Δ𝑥𝑙 = 0.5. When we set the training data sizes 𝑛ℎ2 (41 × 33), 𝑛𝑙2 (41 × 33), the identification results
under different 𝜎NR are listed in Table 10. The LF model in (14) has different evolution with the HF model, which makes LF data
inaccurate, although its effects is not as strong as the coarse grid data in Table 7. MFGP-SINDy has the ability to identify the correct
function terms using MF data.

4.3. KdV equation

Our third example is the Korteweg-de Vries (KdV) equation [23], which is given by,

𝑢𝑡 = −𝑢𝑥𝑥𝑥 − 𝑢𝑢𝑥, (15)

with the initial condition 𝑢(𝑥,0) = exp(−𝜋(𝑥∕30)2) cos(𝜋𝑥∕10) and the periodic boundary condition 𝑢(−20, 𝑡) = 𝑢(20, 𝑡), where 𝑡 ∈
[0,40], 𝑥 ∈ [−20,20]. Similar with the Burgers’ equation, we generate the HF and LF data by the spin class from the Chebfun library
with fine grid Δ𝑡 = 0.002, Δ𝑥= 0.015625 and coarse grid Δ𝑡𝑙 = 0.1, Δ𝑥𝑙 = 1.25, respectively. The LF data is interpolated linearly on the
grid Δ̃𝑡𝑙 =Δ𝑡𝑙 , Δ̃𝑥𝑙 =Δ𝑥𝑙∕8 in order to generate more data. Fig. 9 shows the ground truth (HF data) and LF data before interpolation.
The function library contains spatial partial derivatives up to the third-order and polynomials up to the second-order, i.e., 𝚽(𝑢) =
[1, 𝑢, 𝑢𝑥, 𝑢𝑥𝑥, 𝑢𝑥𝑥𝑥, 𝑢2, 𝑢𝑢𝑥, 𝑢𝑢𝑥𝑥, 𝑢𝑢𝑥𝑥𝑥, 𝑢2𝑥, 𝑢𝑥𝑢𝑥𝑥, 𝑢𝑥𝑢𝑥𝑥𝑥, 𝑢

2
𝑥𝑥, 𝑢𝑥𝑥𝑢𝑥𝑥𝑥, 𝑢

2
𝑥𝑥𝑥]. The predictive points are set as the spatiotemporal grid in

[0,40] ∪ [−20,20] with Δ′
𝑡 = 0.4, Δ′

𝑥 = 0.15625.
The SF training data size is set to 𝑛𝑠 (41 × 81) and MF data size is set to 𝑛ℎ (41 × 81), 𝑛𝑙 (41 × 129). Here, we test the performance

of Tik, rIDENT, SG-Tik, GP-SINDy with SF data size 𝑛𝑠, and MFGP-SINDy with MF data size (𝑛ℎ, 𝑛𝑙) under three noise levels 𝜎NR ∈
{0.03,0.05,0.1}. Table 11 shows the symbolic discovered results of GP-SINDy and MFGP-SINDy. The identification error (𝐸2) of Tik,
rIDENT, SG-Tik, GP-SINDy, and MFGP-SINDy are listed in Table 12. rIDENT has better outcomes than SG-Tik since rIDENT smooths
the data repeatedly rather than once in SG-Tik. Overall, MFGP-SINDy performs best to capture the accurate system. Meanwhile, the
LF training data contributes to the final symbolic results, especially when the noise level is relatively high (𝜎NR = 0.1).

Journal of Computational Physics 523 (2025) 113651

17

Y. Meng and Y. Qiu

Fig. 9. The HF data and LF data (before interpolation) in KdV equation (15).

Table 11

Identification results of GP-SINDy with SF data size 𝑛𝑠 and MFGP-SINDy with MF data
size (𝑛ℎ, 𝑛𝑙).

𝜎NR Discovered equation (GP-SINDy) Discovered equation (MFGP-SINDy)
0.03 𝑢𝑡 = −0.882𝑢𝑥𝑥𝑥 − 0.875𝑢𝑢𝑥 𝑢𝑡 = −0.901𝑢𝑥𝑥𝑥 − 0.894𝑢𝑢𝑥

0.05 𝑢𝑡 = −0.824𝑢𝑥𝑥𝑥 − 0.813𝑢𝑢𝑥 𝑢𝑡 = −0.86𝑢𝑥𝑥𝑥 − 0.853𝑢𝑢𝑥

0.1 𝑢𝑡 = −0.699𝑢𝑥𝑥𝑥 − 0.685𝑢𝑢𝑥 𝑢𝑡 = −0.804𝑢𝑥𝑥𝑥 − 0.804𝑢𝑢𝑥

Table 12

Identification error 𝐸2(%) of Tik, rIDENT, SG-Tik, and GP-SINDy with SF data size 𝑛𝑠 and MFGP-SINDy
with MF data size (𝑛ℎ, 𝑛𝑙), and we use “—” to represent the failed discovery and give the discovered
function terms.

𝜎NR Tik (%) rIDENT (%) SG-Tik (%) GP-SINDy (%) MFGP-SINDy (%)
0.03 — (𝑢𝑢𝑥) 17.12 43.76 12.12 10.27

0.05 — (𝑢𝑥, 𝑢𝑢𝑥, 𝑢𝑥𝑢𝑥𝑥) 28.01 48.21 18.17 14.36

0.1 — (𝑢𝑥, 𝑢𝑢𝑥) 43.45 54.13 30.80 19.63

4.4. Two-dimensional PDE

Our final example is a two-dimensional PDE problem [14], which is given by,

𝑢𝑡 = 𝜈𝑢𝑥𝑥 − 𝑢𝑢𝑦, (16)

with the initial condition 𝑢(𝑥, 𝑦,0) = sin2(𝜋𝑥∕8) cos2(𝜋𝑦∕16) and the periodic Dirichlet boundary condition. Here, 𝑡 ∈ [0,1.0], (𝑥, 𝑦) ∈
[−8,8]2, and 𝜈 = 0.5. Both HF and LF data are generated by finite different method with fine grid Δ𝑡 = 0.001, Δ𝑥=Δ𝑦 = 0.0625 and
coarse grid Δ𝑡𝑙 = 0.01, Δ𝑥𝑙 =Δ𝑦𝑙 = 1.0, respectively. Similar to the settings in Section 4.2.2, the LF data is interpolated linearly over
the grid Δ̃𝑡𝑙 = Δ𝑡𝑙∕10, Δ̃𝑥𝑙 = Δ𝑥𝑙∕16, Δ̃𝑦𝑙 = Δ𝑦𝑙∕16. Fig. 10 illustrates the ground truth (HF data) and LF data before interpolation
at 𝑡 = 0. The function library contains spatial partial derivatives up to the second-order and polynomials up to the second-order, i.e.,
𝚽(𝑢) consists of 1, 𝑢, 𝑢𝑥, 𝑢𝑥𝑥, 𝑢𝑦, 𝑢𝑦𝑦, 𝑢𝑥𝑦 and their combination functions, which results in 28 basis functions in 𝚽(𝑢). The predictive
points are defined over the spatiotemporal grid in [0,1.0] ∪ [−8,8]2 with Δ′

𝑡 = 0.02, Δ′
𝑥 =Δ′

𝑦 = 0.25.
The SF training data size is set to 𝑛𝑠 (26 × 9 × 9) and the MF data size is set to 𝑛ℎ (26 × 9 × 9), 𝑛𝑙 (26 × 17 × 17). Here the data size

(26 × 9 × 9) represents a uniform spatiotemporal grid with 26 time steps and a spatial grid of size 9 in both the 𝑥 and 𝑦 dimensions.
Here, we evaluate the performance of Tik, rIDENT, SG-Tik, GP-SINDy with data size 𝑛𝑠 , and MFGP-SINDy with MF data size (𝑛ℎ, 𝑛𝑙)
under three noise levels 𝜎NR ∈ {0.01,0.05,0.1}. Table 13 gives the symbolic results of identified PDEs by GP-SINDy and MFGP-SINDy.
The identification errors (𝐸2 or 𝑇𝑃𝑅) for Tik, rIDENT, SG-Tik, GP-SINDy, and MFGP-SINDy are listed in Table 14. We observe that
Tik, rIDENT, and SG-Tik fail to discover the correct function terms due to the limited amount of training data (only 26 × 9× 9 = 2106
data points) and inaccurate approximation of partial derivatives. However, GP-SINDy and MFGP-SINDy remain effective for sparse
noisy data. Furthermore, the integration of LF data dramatically reduces the identification error.

5. Conclusion

In this paper, we propose two robust algorithms GP-SINDy and MFGP-SINDy for effective sparse discovery of differential equations.
GP-SINDy and MFGP-SINDy are designed for coping with single-fidelity and multi-fidelity observed data, respectively. Both of them
are based on Gaussian process regression which eliminate the effect of noise and provide the uncertainty quantification for the
inference variables. We compute the variance of time derivatives by their posterior variance in GPR, which is embodied in the

Journal of Computational Physics 523 (2025) 113651

18

Y. Meng and Y. Qiu

Fig. 10. The HF data and LF data (before interpolation) at 𝑡= 0 in two-dimensional PDE (16).

Table 13

Identification results of GP-SINDy with SF data size 𝑛𝑠 and MFGP-SINDy with MF data
size (𝑛ℎ, 𝑛𝑙).

𝜎NR Discovered equation (GP-SINDy) Discovered equation (MFGP-SINDy)
0.01 𝑢𝑡 = 0.516𝑢𝑥𝑥 − 0.994𝑢𝑢𝑦 𝑢𝑡 = 0.506𝑢𝑥𝑥 − 1.0𝑢𝑢𝑦

0.05 𝑢𝑡 = 0.496𝑢𝑥𝑥 − 0.924𝑢𝑢𝑦 𝑢𝑡 = 0.493𝑢𝑥𝑥 − 1.008𝑢𝑢𝑦

0.1 𝑢𝑡 = 0.465𝑢𝑥𝑥 − 0.825𝑢𝑢𝑦 𝑢𝑡 = 0.486𝑢𝑥𝑥 − 1.013𝑢𝑢𝑦

Table 14

Identification error 𝐸2(%) of Tik, rIDENT, SG-Tik, and GP-SINDy with SF data
size 𝑛𝑠 and MFGP-SINDy with MF data size (𝑛ℎ, 𝑛𝑙), and we use “—” to repre-
sent the failed discovery and give the TPR value.

𝜎NR Tik, rIDENT, SG-Tik (%) GP-SINDy (%) MFGP-SINDy (%)
0.01 — (0.50) 1.50 0.52

0.05 — (0.50) 6.77 0.96

0.1 — (0.50) 15.94 1.72

weighted least-squares to improve the discovery outcomes. MFGP-SINDy enables to use less amount of high-fidelity data to obtain
satisfactory results, which reduces the computational cost.

CRediT authorship contribution statement

Yuhuang Meng: Writing – original draft, Visualization, Validation, Software, Methodology, Investigation, Data curation. Yue
Qiu: Writing – original draft, Writing – review & editing, Supervision, Resources, Project administration, Methodology, Investigation,
Funding acquisition, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

We would like to thank Yuchen He and Sung Ha Kang for sharing their code. We also would like to thank the anonymous referees
that help to improve the quality of this paper.

Appendix A. Computations of the partial derivatives of the kernel functions

A.1. Partial derivatives of the SE kernel

Before the derivation of the partial derivatives of the MFGP kernel, we first give some useful formulas in this part. For an SE kernel

function 𝑘SE

(
𝐱,𝐱′;𝜃

)
= 𝜃20 exp

(
−

𝐷∑
𝑠=1

(
𝐱𝑠−𝐱′𝑠

)2
2𝜃2𝑠

)
, its first-order partial derivative w.r.t. 𝐱′

𝑗
(the 𝑗-th elements of 𝐱′) is

Journal of Computational Physics 523 (2025) 113651

19

Y. Meng and Y. Qiu

𝜕𝑘SE

(
𝐱,𝐱′;𝜃

)
𝜕𝐱′

𝑗

= 𝜃20 exp

(
−

𝐷∑
𝑠=1

(
𝐱𝑠 − 𝐱′𝑠

)2
2𝜃2𝑠

)
𝐱𝑗 − 𝐱′

𝑗

𝜃2
𝑗

, (A.1)

and its first-order partial derivative w.r.t. 𝐱𝑖 is given by,

𝜕𝑘SE

(
𝐱,𝐱′;𝜃

)
𝜕𝐱𝑖

= −𝜃20 exp

(
−

𝐷∑
𝑠=1

(
𝐱𝑠 − 𝐱′𝑠

)2
2𝜃2𝑠

)
𝐱𝑖 − 𝐱′

𝑖

𝜃2
𝑖

= −
𝜕𝑘SE

(
𝐱,𝐱′;𝜃

)
𝜕𝐱′

𝑖

.

Its second-order partial derivative w.r.t. 𝐱′
𝑗

and 𝐱𝑖 are

𝜕2𝑘SE

(
𝐱,𝐱′;𝜃

)
𝜕(𝐱′

𝑗
)2

= 𝜃20 exp

(
−

𝐷∑
𝑠=1

(
𝐱𝑠 − 𝐱′𝑠

)2
2𝜃2𝑠

)
1
𝜃2
𝑗

⎛⎜⎜⎜⎝
(
𝐱𝑗 − 𝐱′

𝑗

)2

𝜃2
𝑗

− 1
⎞⎟⎟⎟⎠ , (A.2)

and

𝜕2𝑘SE

(
𝐱,𝐱′;𝜃

)
𝜕(𝐱𝑖)2

=
𝜕2𝑘SE

(
𝐱,𝐱′;𝜃

)
𝜕(𝐱′

𝑖
)2

.

Meanwhile, its second-order cross partial derivative is

𝜕2𝑘SE

(
𝐱,𝐱′;𝜃

)
𝜕𝐱𝑖𝜕𝐱′𝑗

=

⎧⎪⎪⎨⎪⎪⎩
−𝜃20 exp

(
−

𝐷∑
𝑠=1

(
𝐱𝑠−𝐱′𝑠

)2
2𝜃2𝑠

)
𝐱𝑖−𝐱′𝑖
𝜃2
𝑖

𝐱𝑗−𝐱′𝑗
𝜃2
𝑗

, 𝑖 ≠ 𝑗,

𝜃20 exp

(
−

𝐷∑
𝑠=1

(
𝐱𝑠−𝐱′𝑠

)2
2𝜃2𝑠

)
1
𝜃2
𝑗

(
1 −

(
𝐱𝑗−𝐱′𝑗

)2
𝜃2
𝑗

)
= − 𝜕2𝑘SE

(
𝐱,𝐱′;𝜃

)
𝜕(𝐱′

𝑗
)2 , 𝑖 = 𝑗.

A.2. Partial derivatives of the MFGP kernel

The MFGP kernel is given by,

𝑘𝑙
((
𝐱, 𝑓 𝑙−1(𝐱)

)
,
(
𝐱′, 𝑓 𝑙−1(𝐱′)

)
;𝜃𝑙

)
= 𝑘𝜌(𝐱,𝐱′;𝜃𝜌)𝑘𝑓

(
𝑓𝑙−1(𝐱), 𝑓 𝑙−1(𝐱′);𝜃𝑓

)
+ 𝑘𝛿(𝐱,𝐱′;𝜃𝛿).

For simplicity, we rewrite it as

𝑘((𝐱, 𝑓 (𝐱)), (𝐱′, 𝑓 (𝐱′))) = 𝑘𝜌(𝐱,𝐱′)𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′)) + 𝑘𝛿(𝐱,𝐱′),

where 𝑘𝜌(𝐱,𝐱′), 𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′)) and 𝑘𝛿(𝐱,𝐱′) are three SE kernel functions, and its first-order partial derivative w.r.t. 𝐱′
𝑗

is

𝜕

𝜕𝐱′
𝑗

𝑘((𝐱, 𝑓 (𝐱)), (𝐱′, 𝑓 (𝐱′)))

=
𝜕𝑘𝜌(𝐱,𝐱′)

𝜕𝐱′
𝑗

𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′)) + 𝑘𝜌(𝐱,𝐱′)
𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′))

𝜕𝐱′
𝑗

+
𝜕𝑘𝛿(𝐱,𝐱′)

𝜕𝐱′
𝑗

=
𝜕𝑘𝜌(𝐱,𝐱′)

𝜕𝐱′
𝑗

𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′)) + 𝑘𝜌(𝐱,𝐱′)
𝜕𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′))

𝜕𝑓 (𝐱′)
𝜕𝑓 (𝐱′)
𝜕𝐱′

𝑗

+
𝜕𝑘𝛿(𝐱,𝐱′)

𝜕𝐱′
𝑗

,

where 𝜕𝑘𝜌(𝐱,𝐱′)
𝜕𝐱′

𝑗

, 𝜕𝑘𝑓 (𝑓 (𝐱),𝑓 (𝐱′))
𝜕𝑓 (𝐱′) , and 𝜕𝑘𝛿 (𝐱,𝐱′)

𝜕𝐱′
𝑗

are computed by (A.1). Here, 𝜕𝑓 (𝐱
′)

𝜕𝐱′
𝑗

is the prediction of the first-order partial derivatives

in the LF model.
The second-order partial derivative of MFGP kernel is given by,

𝜕2

𝜕𝐱𝑖𝜕𝐱′𝑗
𝑘((𝐱, 𝑓 (𝐱)), (𝐱′, 𝑓 (𝐱′)))

= 𝜕

𝜕𝐱𝑖

[
𝜕𝑘𝜌(𝐱,𝐱′)

𝜕𝐱′
𝑗

𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′)) + 𝑘𝜌(𝐱,𝐱′)
𝜕𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′))

𝜕𝑓 (𝐱′)
𝜕𝑓 (𝐱′)
𝜕𝐱′

𝑗

+
𝜕𝑘𝛿(𝐱,𝐱′)

𝜕𝐱′
𝑗

]

=
𝜕2𝑘𝜌(𝐱,𝐱′)
𝜕𝐱𝑖𝜕𝐱′𝑗

𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′)) +
𝜕𝑘𝜌(𝐱,𝐱′)

𝜕𝐱′
𝑗

𝜕𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′))
𝜕𝑓 (𝐱)

𝜕𝑓 (𝐱)
𝜕𝐱𝑖

+
𝜕𝑘𝜌(𝐱,𝐱′)

𝜕𝐱𝑖

𝜕𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′))
𝜕𝑓 (𝐱′)

𝜕𝑓 (𝐱′)
𝜕𝐱′

𝑗

+ 𝑘𝜌(𝐱,𝐱′)
𝜕

𝜕𝐱𝑖

(
𝜕𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′))

𝜕𝑓 (𝐱′)

)
𝜕𝑓 (𝐱′)
𝜕𝐱′

𝑗

+
𝜕2𝑘𝛿(𝐱,𝐱′)
𝜕𝐱𝑖𝜕𝐱′𝑗

Journal of Computational Physics 523 (2025) 113651

20

Y. Meng and Y. Qiu

=
𝜕2𝑘𝜌(𝐱,𝐱′)
𝜕𝐱𝑖𝜕𝐱′𝑗

𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′)) −
𝜕𝑘𝜌(𝐱,𝐱′)

𝜕𝐱′
𝑗

𝜕𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′))
𝜕𝑓 (𝐱′)

𝜕𝑓 (𝐱)
𝜕𝐱𝑖

−
𝜕𝑘𝜌(𝐱,𝐱′)

𝜕𝐱′
𝑖

𝜕𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′))
𝜕𝑓 (𝐱′)

𝜕𝑓 (𝐱′)
𝜕𝐱′

𝑗

+ 𝑘𝜌(𝐱,𝐱′)
𝜕2𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′))

𝜕𝑓 (𝐱)𝜕𝑓 (𝐱′)
𝜕𝑓 (𝐱)
𝜕𝐱𝑖

𝜕𝑓 (𝐱′)
𝜕𝐱′

𝑗

+
𝜕2𝑘𝛿(𝐱,𝐱′)
𝜕𝐱𝑖𝜕𝐱′𝑗

=
𝜕2𝑘𝜌(𝐱,𝐱′)
𝜕𝐱𝑖𝜕𝐱′𝑗

𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′)) −
𝜕𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′))

𝜕𝑓 (𝐱′)

(
𝜕𝑘𝜌(𝐱,𝐱′)

𝜕𝐱′
𝑗

𝜕𝑓 (𝐱)
𝜕𝐱𝑖

+
𝜕𝑘𝜌(𝐱,𝐱′)

𝜕𝐱′
𝑖

𝜕𝑓 (𝐱′)
𝜕𝐱′

𝑗

)

+ 𝑘𝜌(𝐱,𝐱′)
𝜕2𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′))

𝜕𝑓 (𝐱)𝜕𝑓 (𝐱′)
𝜕𝑓 (𝐱)
𝜕𝐱𝑖

𝜕𝑓 (𝐱′)
𝜕𝐱′

𝑗

+
𝜕2𝑘𝛿(𝐱,𝐱′)
𝜕𝐱𝑖𝜕𝐱′𝑗

,

where 𝜕
2𝑘𝜌(𝐱,𝐱′)
𝜕𝐱𝑖𝜕𝐱′𝑗

, 𝜕
2𝑘𝑓 (𝑓 (𝐱),𝑓 (𝐱′))

𝜕(𝑓 (𝐱))2 , 𝜕
2𝑘𝛿 (𝐱,𝐱′)
𝜕𝐱𝑖𝜕𝐱′𝑗

are computed through (A.2), 𝜕𝑓 (𝐱)
𝜕𝐱𝑖

and 𝜕𝑓 (𝐱
′)

𝜕𝐱′
𝑗

are the first-order partial derivatives of the LF

model.
Another second-order partial derivative of the MFGP kernel is given by,

𝜕2

𝜕(𝐱′
𝑗
)2

𝑘((𝐱, 𝑓 (𝐱)), (𝐱′, 𝑓 (𝐱′)))

= 𝜕

𝜕𝐱′
𝑗

[
𝜕𝑘𝜌(𝐱,𝐱′)

𝜕𝐱′
𝑗

𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′)) + 𝑘𝜌(𝐱,𝐱′)
𝜕𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′))

𝜕𝑓 (𝐱′)
𝜕𝑓 (𝐱′)
𝜕𝐱′

𝑗

+
𝜕𝑘𝛿(𝐱,𝐱′)

𝜕𝐱′
𝑗

]

=
𝜕2𝑘𝜌(𝐱,𝐱′)

𝜕(𝐱′
𝑗
)2

𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′)) + 2
𝜕𝑘𝜌(𝐱,𝐱′)

𝜕𝐱′
𝑗

𝜕𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′))
𝜕𝑓 (𝐱′)

𝜕𝑓 (𝐱′)
𝜕𝐱′

𝑗

+ 𝑘𝜌(𝐱,𝐱′)
𝜕

𝜕𝐱′
𝑗

[
𝜕𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′))

𝜕𝑓 (𝐱′)
𝜕𝑓 (𝐱′)
𝜕𝐱′

𝑗

]
+

𝜕2𝑘𝛿(𝐱,𝐱′)
𝜕(𝐱′

𝑗
)2

.

Here,

𝜕

𝜕𝐱′
𝑗

[
𝜕𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′))

𝜕𝑓 (𝐱′)
𝜕𝑓 (𝐱′)
𝜕𝐱′

𝑗

]

=
𝜕2𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′))

𝜕𝑓 (𝐱′)𝜕𝐱′
𝑗

𝜕𝑓 (𝐱′)
𝜕𝐱′

𝑗

+
𝜕𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′))

𝜕𝑓 (𝐱′)
𝜕2𝑓 (𝐱′)
𝜕(𝐱′

𝑗
)2

=
𝜕2𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′))

𝜕(𝑓 (𝐱′))2

(
𝜕𝑓 (𝐱′)
𝜕𝐱′

𝑗

)2

+
𝜕𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′))

𝜕𝑓 (𝐱′)
𝜕2𝑓 (𝐱′)
𝜕(𝐱′

𝑗
)2

,

where 𝜕
2𝑓∗1(𝐱′)
𝜕(𝐱′

𝑗
)2 is the second-order partial derivative in the LF model.

Analogously, the third-order partial derivative of the MFGP kernel is,

𝜕3

𝜕(𝐱′
𝑗
)3

𝑘((𝐱, 𝑓 (𝐱)), (𝐱′, 𝑓 (𝐱′))) = 𝜕

𝜕𝐱′
𝑗

(
𝜕2

𝜕(𝐱′
𝑗
)2

𝑘((𝐱, 𝑓 (𝐱)), (𝐱′, 𝑓 (𝐱′)))
)

=
𝜕3𝑘𝜌(𝐱,𝐱′)

𝜕(𝐱′
𝑗
)3

𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′)) + 3
𝜕2𝑘𝜌(𝐱,𝐱′)

𝜕(𝐱′
𝑗
)2

𝜕𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′))
𝜕𝑓 (𝐱′)

𝜕𝑓 (𝐱′)
𝜕𝐱′

𝑗

+ 2
𝜕𝑘𝜌(𝐱,𝐱′)

𝜕𝐱′
𝑗

𝜕

𝜕𝐱′
𝑗

(
𝜕𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′))

𝜕𝑓 (𝐱′)
𝜕𝑓 (𝐱′)
𝜕𝐱′

𝑗

)

+
𝜕𝑘𝜌(𝐱,𝐱′)

𝜕𝐱′
𝑗

⎛⎜⎜⎝
𝜕2𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′))

𝜕(𝑓 (𝐱′))2

(
𝜕𝑓 (𝐱′)
𝜕𝐱′

𝑗

)2

+
𝜕𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′))

𝜕𝑓 (𝐱′)
𝜕2𝑓 (𝐱′)
𝜕(𝐱′

𝑗
)2

⎞⎟⎟⎠
+ 𝑘𝜌(𝐱,𝐱′)

𝜕

𝜕𝐱′
𝑗

⎛⎜⎜⎝
𝜕2𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′))

𝜕(𝑓 (𝐱′))2

(
𝜕𝑓 (𝐱′)
𝜕𝐱′

𝑗

)2

+
𝜕𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′))

𝜕𝑓 (𝐱′)
𝜕2𝑓 (𝐱′)
𝜕(𝐱′

𝑗
)2

⎞⎟⎟⎠+
𝜕3𝑘𝛿(𝐱,𝐱′)

𝜕(𝐱′
𝑗
)3

=
𝜕3𝑘𝜌(𝐱,𝐱′)

𝜕(𝐱′
𝑗
)3

𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′)) + 3
𝜕2𝑘𝜌(𝐱,𝐱′)

𝜕(𝐱′
𝑗
)2

𝜕𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′))
𝜕𝑓 (𝐱′)

𝜕𝑓 (𝐱′)
𝜕𝐱′

𝑗

Journal of Computational Physics 523 (2025) 113651

21

Y. Meng and Y. Qiu

+ 3
𝜕𝑘𝜌(𝐱,𝐱′)

𝜕𝐱′
𝑗

⎛⎜⎜⎝
𝜕2𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′))

𝜕(𝑓 (𝐱′))2

(
𝜕𝑓 (𝐱′)
𝜕𝐱′

𝑗

)2

+
𝜕𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′))

𝜕𝑓 (𝐱′)
𝜕2𝑓 (𝐱′)
𝜕(𝐱′

𝑗
)2

⎞⎟⎟⎠
+ 𝑘𝜌(𝐱,𝐱′)

𝜕

𝜕𝐱′
𝑗

⎛⎜⎜⎝
𝜕2𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′))

𝜕(𝑓 (𝐱′))2

(
𝜕𝑓 (𝐱′)
𝜕𝐱′

𝑗

)2

+
𝜕𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′))

𝜕𝑓 (𝐱′)
𝜕2𝑓 (𝐱′)
𝜕(𝐱′

𝑗
)2

⎞⎟⎟⎠+
𝜕3𝑘𝛿(𝐱,𝐱′)

𝜕(𝐱′
𝑗
)3

.

Here

𝜕

𝜕𝐱′
𝑗

⎛⎜⎜⎝
𝜕2𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′))

𝜕(𝑓 (𝐱′))2

(
𝜕𝑓 (𝐱′)
𝜕𝐱′

𝑗

)2

+
𝜕𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′))

𝜕𝑓 (𝐱′)
𝜕2𝑓 (𝐱′)
𝜕(𝐱′

𝑗
)2

⎞⎟⎟⎠
=

𝜕3𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′))
𝜕(𝑓 (𝐱′))3

(
𝜕𝑓 (𝐱′)
𝜕𝐱′

𝑗

)3

+ 2
𝜕2𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′))

𝜕(𝑓 (𝐱′))2
𝜕𝑓 (𝐱′)
𝜕𝐱′

𝑗

𝜕2𝑓 (𝐱′)
𝜕(𝐱′

𝑗
)2

+
𝜕2𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′))

𝜕(𝑓 (𝐱′))2
𝜕𝑓 (𝐱′)
𝜕𝐱′

𝑗

𝜕2𝑓 (𝐱′)
𝜕(𝐱′

𝑗
)2

+
𝜕𝑘𝑓 (𝑓 (𝐱), 𝑓 (𝐱′))

𝜕𝑓 (𝐱′)
𝜕3𝑓 (𝐱′)
𝜕(𝐱′

𝑗
)3

.

Data availability

Data will be made available on request.

References

[1] B.O. Koopman, Hamiltonian systems and transformation in Hilbert space, Proc. Natl. Acad. Sci. 17 (1931) 315–318.
[2] J.N. Kutz, S.L. Brunton, B.W. Brunton, J.L. Proctor, Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems, Society for Industrial and Applied

Mathematics, Philadelphia, PA, 2016.
[3] B. Lusch, J.N. Kutz, S.L. Brunton, Deep learning for universal linear embeddings of nonlinear dynamics, Nat. Commun. 9 (2018) 4950.
[4] Y. Meng, J. Huang, Y. Qiu, Koopman operator learning using invertible neural networks, J. Comput. Phys. 501 (2024) 112795.
[5] M. Raissi, P. Perdikaris, G.E. Karniadakis, Multistep neural networks for data-driven discovery of nonlinear dynamical systems, arXiv:1801.01236, 2018.
[6] M. Raissi, Deep hidden physics models: deep learning of nonlinear partial differential equations, J. Mach. Learn. Res. 19 (2018) 1–24.
[7] S.H. Rudy, J. Nathan Kutz, S.L. Brunton, Deep learning of dynamics and signal-noise decomposition with time-stepping constraints, J. Comput. Phys. 396 (2019)

483–506.
[8] T. Qin, K. Wu, D. Xiu, Data driven governing equations approximation using deep neural networks, J. Comput. Phys. 395 (2019) 620–635.
[9] S.L. Brunton, J.L. Proctor, J.N. Kutz, Discovering governing equations from data by sparse identification of nonlinear dynamical systems, Proc. Natl. Acad. Sci.

113 (2016) 3932–3937.
[10] Z. Long, Y. Lu, B. Dong, PDE-Net 2.0: learning PDEs from data with a numeric-symbolic hybrid deep network, J. Comput. Phys. 399 (2019) 108925.
[11] S. Kim, P.Y. Lu, S. Mukherjee, M. Gilbert, L. Jing, V. Čeperić, M. Soljačić, Integration of neural network-based symbolic regression in deep learning for scientific

discovery, IEEE Trans. Neural Netw. Learn. Syst. 32 (2021) 4166–4177.
[12] S.H. Kang, W. Liao, Y. Liu, IDENT: identifying differential equations with numerical time evolution, J. Sci. Comput. 87 (2021) 1.
[13] S.H. Rudy, S.L. Brunton, J.L. Proctor, J.N. Kutz, Data-driven discovery of partial differential equations, Sci. Adv. 3 (2017) e1602614.
[14] Y. He, S.-H. Kang, W. Liao, H. Liu, Y. Liu, Robust identification of differential equations by numerical techniques from a single set of noisy observation, SIAM J.

Sci. Comput. 44 (2022) A1145–A1175.
[15] F. Sun, Y. Liu, Q. Wang, H. Sun, PiSL: physics-informed spline learning for data-driven identification of nonlinear dynamical systems, Mech. Syst. Signal Process.

191 (2023) 110165.
[16] A. Cortiella, K.C. Park, A. Doostan, A priori denoising strategies for sparse identification of nonlinear dynamical systems: a comparative study, J. Comput. Inf.

Sci. Eng. (2022) 1–34.
[17] A. Sandoz, V. Ducret, G.A. Gottwald, G. Vilmart, K. Perron, SINDy for delay-differential equations: application to model bacterial zinc response, Proc. R. Soc. A,

Math. Phys. Eng. Sci. 479 (2023) 20220556.
[18] F. Van Breugel, J.N. Kutz, B.W. Brunton, Numerical differentiation of noisy data: a unifying multi-objective optimization framework, IEEE Access 8 (2020)

196865–196877.
[19] S. Zhang, G. Lin, Robust data-driven discovery of governing physical laws with error bars, Proc. R. Soc. A, Math. Phys. Eng. Sci. 474 (2018) 20180305.
[20] R. Fuentes, R. Nayek, P. Gardner, N. Dervilis, T. Rogers, K. Worden, E. Cross, Equation discovery for nonlinear dynamical systems: a Bayesian viewpoint, Mech.

Syst. Signal Process. 154 (2021) 107528.
[21] A. Cortiella, Kwang-Chun Park, A. Doostan, Sparse identification of nonlinear dynamical systems via reweighted 𝓁1 -regularized least squares, Comput. Methods

Appl. Mech. Eng. 376 (2021) 113620.
[22] J.H. Lagergren, J.T. Nardini, G. Michael Lavigne, E.M. Rutter, K.B. Flores, Learning partial differential equations for biological transport models from noisy

spatio-temporal data, Proc. R. Soc. A, Math. Phys. Eng. Sci. 476 (2020) 20190800.
[23] Robert Stephany, C. Earls, PDE-LEARN: using deep learning to discover partial differential equations from noisy, limited data, arXiv:2212.04971, 2023.
[24] P. Goyal, P. Benner, Discovery of nonlinear dynamical systems using a Runge–Kutta inspired dictionary-based sparse regression approach, Proc. R. Soc. A, Math.

Phys. Eng. Sci. 478 (2022) 20210883.
[25] D.A. Messenger, D.M. Bortz, Weak SINDy: Galerkin-based data-driven model selection, Multiscale Model. Simul. 19 (2021) 1474–1497.
[26] D.A. Messenger, D.M. Bortz, Weak SINDy for partial differential equations, J. Comput. Phys. 443 (2021) 110525.
[27] M.C. Kennedy, A. O’Hagan, Predicting the output from a complex computer code when fast approximations are available, Biometrika 87 (2000) 1–13.
[28] L. Le Gratiet, J. Garnier, Recursive co-kriging model for design of computer experiments with multiple levels of fidelity, Int. J. Uncertain. Quantificat. 4 (2014)

365–386.
[29] P. Perdikaris, M. Raissi, A. Damianou, N.D. Lawrence, G.E. Karniadakis, Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling, Proc.

R. Soc. A, Math. Phys. Eng. Sci. 473 (2017) 20160751.
[30] X. Meng, G.E. Karniadakis, A composite neural network that learns from multi-fidelity data: application to function approximation and inverse PDE problems, J.

Comput. Phys. 401 (2020) 109020.

Journal of Computational Physics 523 (2025) 113651

22

http://refhub.elsevier.com/S0021-9991(24)00899-4/bibB99882472C12C1F7C3908DFD06E6541As1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bibCF62A4082D239BAAB8281306AD69E69Fs1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bibCF62A4082D239BAAB8281306AD69E69Fs1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bib8F140E423A81A99EA85EB409F2115A1Ds1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bibE9D356565D0C8BAD6AD74FDA415F0BDBs1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bibEB92122173254BACDD0406F7261EDC76s1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bib13CCFE1DBA8497442CF037F2CCDDC30As1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bib42751FD703E526B733E2FED9D56C4E9Fs1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bib42751FD703E526B733E2FED9D56C4E9Fs1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bib2FE94B75E8945D9F697BF3BED0A0C024s1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bib79BA2CB7E9FE73186B887E1C6A43315Bs1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bib79BA2CB7E9FE73186B887E1C6A43315Bs1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bib916577BB1F93C953609C770446B512F6s1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bibCAA71C7C1A2F09FAA3B5B01A07E72550s1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bibCAA71C7C1A2F09FAA3B5B01A07E72550s1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bib352AF5C6842FCD085971DC5EA97C9BEBs1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bib8F5FC9E5CC435AE222BE0BCAD1E3005Bs1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bibA9FEC846A8CA23806A13D531B3ADAAF5s1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bibA9FEC846A8CA23806A13D531B3ADAAF5s1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bib58F9EEED0A0F17CE6C05646512471F7Ds1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bib58F9EEED0A0F17CE6C05646512471F7Ds1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bib36796C8E85749FCFF67BEA7D030FAB7Es1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bib36796C8E85749FCFF67BEA7D030FAB7Es1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bib6B8CF2AF940CEB9BF58905847A16DD87s1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bib6B8CF2AF940CEB9BF58905847A16DD87s1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bib54718AFE6AE6AFE806B51C8BE4247D0Cs1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bib54718AFE6AE6AFE806B51C8BE4247D0Cs1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bibA8D1C4E36C2B7695AB27088566BDFF99s1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bib7EF45D4998282E87702408091B3D80CBs1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bib7EF45D4998282E87702408091B3D80CBs1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bib38A3A99036024DC263DEAA58A79393C2s1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bib38A3A99036024DC263DEAA58A79393C2s1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bib96184C92496174F77A1965FFF0D31106s1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bib96184C92496174F77A1965FFF0D31106s1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bib8EEEE03241DE47544F48C86FD515BDC6s1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bib412550C37CBAF45F0579CDC9808BB9DEs1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bib412550C37CBAF45F0579CDC9808BB9DEs1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bib6091A1CE9FA59F9ECF1935397B8420EDs1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bib462C43E3C77F1290E090A09C9E863738s1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bib4BBFB2CAF10BE3B466A1FF22B05796E0s1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bib467D897EFAB62BB9CD3FC7F0E391DDEFs1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bib467D897EFAB62BB9CD3FC7F0E391DDEFs1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bib7978B6791243423F6644F8A07989E03Cs1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bib7978B6791243423F6644F8A07989E03Cs1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bibD6CAA32441E862DB3C88A66E6A6F49E5s1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bibD6CAA32441E862DB3C88A66E6A6F49E5s1

Y. Meng and Y. Qiu

[31] S. Chakraborty, Transfer learning based multi-fidelity physics informed deep neural network, J. Comput. Phys. 426 (2021) 109942.
[32] P. Conti, M. Guo, A. Manzoni, J.S. Hesthaven, Multi-fidelity surrogate modeling using long short-term memory networks, Comput. Methods Appl. Mech. Eng.

404 (2023) 115811.
[33] C. Rasmussen, C. Williams, Gaussian Processes for Machine Learning, Adaptive Computation and Machine Learning, MIT Press, Cambridge, MA, USA, 2006.
[34] E. Snelson, Z. Ghahramani, Sparse Gaussian Processes Using Pseudo-Inputs, Advances in Neural Information Processing Systems, vol. 18, MIT Press, 2005.
[35] H. Liu, Y.-S. Ong, X. Shen, J. Cai, When gaussian process meets big data: a review of scalable gps, IEEE Trans. Neural Netw. Learn. Syst. 31 (2020) 4405–4423.
[36] B.E. Hansen, A modern Gauss–Markov theorem, Econometrica 90 (2022) 1283–1294.
[37] H. Chen, Data-driven sparse identification of nonlinear dynamical systems using linear multistep methods, Calcolo 60 (2023) 11.
[38] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., PyTorch: an imperative style, high-performance

deep learning library, Adv. Neural Inf. Process. Syst. 32 (2019) 8024–8035.
[39] T.A. Driscoll, N. Hale, L.N. Trefethen, Chebfun Guide, Pafnuty Publications, Oxford, 2014.
[40] A.A. Kaptanoglu, B.M. de Silva, U. Fasel, K. Kaheman, A.J. Goldschmidt, J. Callaham, C.B. Delahunt, Z.G. Nicolaou, K. Champion, J.-C. Loiseau, J.N. Kutz, S.L.

Brunton, PySINDy: a comprehensive Python package for robust sparse system identification, J. Open Sour. Softw. 7 (2022) 3994.
[41] K. Kaheman, S.L. Brunton, J. Nathan Kutz, Automatic differentiation to simultaneously identify nonlinear dynamics and extract noise probability distributions

from data, Mach. Learn.: Sci. Technol. 3 (2022) 015031.
[42] Y. He, S.H. Kang, W. Liao, H. Liu, Y. Liu, Group projected subspace pursuit for identification of variable coefficient differential equations (GP-IDENT), J. Comput.

Phys. 494 (2023) 112526.

Journal of Computational Physics 523 (2025) 113651

23

http://refhub.elsevier.com/S0021-9991(24)00899-4/bib84033C37955F48F29F104CB4E33CD47As1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bib412AE05C6B139AB7BD0EA812F9FD16D7s1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bib412AE05C6B139AB7BD0EA812F9FD16D7s1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bibAC21054954B5E90A7AFE5CB4BD4DD1C7s1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bib1EB5D596B24AD9E8CA805849631AEB9Bs1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bib96441212D0AEE592785CB5537351D19As1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bibB88CDE461C31981CD189E12810179C9Es1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bibCC16D4EB226793E930F5FC935D31C4E4s1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bibCF140574EC642AB39D31AC78D8A17FEFs1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bibCF140574EC642AB39D31AC78D8A17FEFs1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bibCAFE7656F56461AAA65037A5FFC77A3Bs1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bibF7246C2A0636E5DC2CDECAA73A52D027s1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bibF7246C2A0636E5DC2CDECAA73A52D027s1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bibE2409005A54622DF53F2F0C8A063236Fs1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bibE2409005A54622DF53F2F0C8A063236Fs1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bib0B0B353185300F0F823C25F6E4E50FC8s1
http://refhub.elsevier.com/S0021-9991(24)00899-4/bib0B0B353185300F0F823C25F6E4E50FC8s1

	Sparse discovery of differential equations based on multi-fidelity Gaussian process
	1 Introduction
	2 Problem statement
	3 Sparse identification using Gaussian process
	3.1 Gaussian process regression
	3.1.1 Inferring the state variables
	3.1.2 Inferring the partial derivatives of state variables
	3.1.3 Training the hyperparameters in GP

	3.2 GP-SINDy for single-fidelity data
	3.3 MFGP-SINDy for multi-fidelity data
	3.3.1 MFGP construction
	3.3.2 MFGP-SINDy

	4 Numerical experiments
	4.1 Lorenz system
	4.2 Burgers’ equation
	4.2.1 GP-SINDy for SF data
	4.2.2 MFGP-SINDy for MF data
	4.2.3 Test for posterior variance of MF prediction
	4.2.4 Randomly sampled data
	4.2.5 Another multi-fidelity structure

	4.3 KdV equation
	4.4 Two-dimensional PDE

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Computations of the partial derivatives of the kernel functions
	A.1 Partial derivatives of the SE kernel
	A.2 Partial derivatives of the MFGP kernel

	Data availability
	References

