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Consistent approach to onset theory

Simon Baar' ©, Leonid Pavlov? and Christos Kassapoglou®

Abstract

Onset Theory (previously known as Strain Invariant Failure Theory) is a physics-based composite failure criterion attempting
to predict failure at the level of constituents rather than for a homogenized ply. Applying Onset Theory correctly requires a
number of steps. As a starting point for other researchers, a consistent approach is developed by resolving contradictions
found in literature. This includes the micromechanical FEA process used to determine the individual fiber and matrix strains,
such as correct choice of representative volume elements (RVEs), the use of transformed RVEs, boundary conditions, and the
location of data extraction points. Analytical expressions are provided to determine the full state of strain in a ply, including in-
plane and out-of-plane Poisson’s strains and thermally induced mechanical strains. Literature definitions of the critical in-
variants are discussed, and a trend in critical distortional invariants is observed. Assumptions and limitations of the theory are

identified. Finally, a failure envelope is compared to World Wide Failure Exercise test data.

Keywords

onset theory, strain invariant failure theory, matrix cracking, composite failure criterion, representative volume element,
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Introduction

In 2001, Onset Theory was proposed in ref. 1 as Strain Invariant
Failure Theory (SIFT). It attempts to predict failure at the
constituent (fiber and matrix) level rather than for a homoge-
nized ply. It was further developed in refs. 2, 3, and 4. Ref. 5
gives an overview of SIFT, including the choices made during
development.

Many authors have published various versions of Onset
Theory. This article provides a summarized, consistent ap-
proach to Onset Theory as a starting point for other re-
searchers. Recently, ref. 6 had similar intent, but different
focus. It is referenced where appropriate. This article provides
additional insight, in particular how to determine the full state
of strain (including thermally induced mechanical strains)
analytically, and how to draw in-plane failure envelopes.
Familiarity with the articles mentioned above is assumed, in
particular regarding micromechanical enhancement (MME).

Onset Theory requires determining the homogenized
state of strain of the laminate under combined loading (see
Homogenized State of Strain), converting it to the deho-
mogenized constituent strains for each ply (see
Micromechanical Enhancement (MME)), and calculating
the first invariant and second deviatoric invariant of the
strain tensor (see Strain Invariants). Failure is assumed to
occur when any invariant reaches its critical value. The
critical values are postulated to be independent of each

other, the state of load, and the other constituent, i.e. there is
no interaction between the invariants for fiber and matrix,
and a given resin has the same critical invariants regardless
of fiber material and applied loads. Observations Regarding
Distortional Invariants lists some observations regarding
the critical distortional invariants for various materials.
Summary of Consistent Approach contains a list of all steps
required to apply Onset Theory, while Example Failure
Envelope provides a failure envelope based on World Wide
Failure Exercise test data.

Micromechanical enhancement (MME)

During MME, unit strains are applied to representative
volume elements (RVEs). Strain amplification factors are
extracted from the FEA results. These are used to convert
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Figure 1. The four standard fiber arrays. Blue circles: interstitial location (where fibers are furthest apart). Red squares: interfiber

location (where fibers are closest together).

the homogenized state of strain to dehomogenized con-
stituent strains without requiring FEA for every new case.
The state of strain is the vector of the six strain components.
This raises three questions: which RVEs need to be analyzed
(see Fiber array types and transformed representative
volume elements (RVEs)), the boundary conditions (see
Boundary Conditions (BCs) on Representative Volume
Elements (RVEs)), and where to extract results (see
Interrogation Points).

Fiber array types and transformed representative
volume elements (RVEs)

One of the strongest claims regarding the types of RVEs is
found in ref. 5: “four standard fiber arrays can provide
bounds on all of the possible random arrays [...]; the
square array, the diamond array, and the two hexagonal
arrays”, “two hexagonal arrays” meaning horizontal and
vertical long edges (see Figure 1). The authors of refs. 3
and 4 only mention square and hex fiber arrays, which is
even more limiting. They also do not mention random
arrays. Similarly, ref. 7 asserts that “the square and
hexagonal arrangements [...] have been shown to give
bounding magnification factors and are assumed to exist
somewhere in the random distribution of fibers in the
laminate” .

Contrary to that, a series of articles (in particular ref. 8)
suggests using a square and a hex RVE, but transforming
those RVEs by angles between 0° and 180°.

This article does not investigate whether regular fiber
arrays are indeed accurate or conservative representations of
a random fiber arrangement. It is only concerned with the
necessary regular fiber arrays assuming that it is valid to use
them in the first place. In regular fiber arrays, the fiber is
assumed to be circular.

Limiting the investigation to regular RVEs, it can be
shown that of the four proposed arrays (square, diamond,
and vertical/horizontal hex) only a square and either one of

the two hex fiber arrays have to be analyzed using FEA.
The results for the other two can be derived analytically. It
is straightforward to verify that transforming the FEA
results for a square array yields identical values to running
FEA for a diamond array. This is discussed in detail in ref.
9. The underlying principle can be formalized as
M = O 'M’' ®, where M is the 6x6 matrix of mechanical
strain amplification factors (relating the homogenized and
dehomogenized strain vectors, see equation (16)) for an
arbitrary angle, M’ is the matrix for one of the two fun-
damental RVEs (square and hex), and ® the applied
transformation (using ¢ = cos @ and s = sin 6, where 0 is
the RVE angle):

1 0 0 0 0 0
0 &2 52 cs 0 0
0 §? &2 —cs 0 0
6= 0 —2¢s 2cs =5 0 0 M
0 0 0 0 c —s
0 0 0 0 s ¢

For the thermal amplification factors, a similar equa-
tion can be derived. Since they are a vector, only a single
transformation 4 = @~ 'A4’ is required. 4 and A’ are the
vectors of thermal amplification factors for the trans-
formed and fundamental RVEs (relating the applied
temperature difference to the dehomogenized constituent
strain vector, see equation (16)).

Ref. 6 also concluded that the results of the square
and hex RVEs can and should be transformed. They do
not include the ®~' pre-multiplication for the me-
chanical amplification factors, which is acceptable in the
context of Onset Theory because the properties of in-
terest are invariants (and therefore coordinate system
independent). The authors of the present article find it
useful to include this transformation back to the original
coordinate system to allow for numerical comparison of
the resulting strain amplification factor matrices. Either
way the validity of the approach can be confirmed vi-
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sually in form of the failure envelopes (see the dis-
cussion of Figure 4).

The process to obtain M’ and 4’ can be found in the
standard literature on Onset Theory: the strain response for
an applied unit strain €;; determines the first column of M’
and so on. 4’ is obtained from an applied unit temperature
difference.

Results of a square cell transformed using 8 = 45° are
identical to FEA results of a diamond cell, though not for
any single point (see discussion below). The same holds for
vertical and horizontal hex arrays: one can be obtained from
the other using the transformation with 6 = 90°, without
running FEA.

In terms of the required angles, for the square cell angles
of 0°, 90°, 180°, ... give identical results due to rotational
symmetry. Since points in one half of the RVEs are used (see
Interrogation Points), the same results are already obtained
after 45°.

It should be emphasized that “the same results” is not
intended to mean that any single point in the RVE returns
the same results. The purpose of this application of Onset
Theory is to draw failure envelopes. The proposed limited
angle range causes the results of the two quadrants to be
“switched”. Since all points are used to determine the failure
envelopes, the relative location is irrelevant.

Based on these symmetry considerations, the only re-
quired angles are therefore 0° to 45°. For the hex cell, the
same reasoning shows that 0° to 30° are sufficient. Including
interrogation points in one half of the RVE and using
symmetry reduces the range from the one proposed by ref. 6
(0° to 180°).

In summary, for conservatism strain amplification factors
based on angles between 0° and 45° for a square base cell,
and between 0° and 30° for a hex base cell, are needed. The
degree increments depend on the desired fidelity of the
results.

Boundary conditions (BCs) on representative volume
elements (RVEs)

To determine the strain amplification factors, three types of
loads are applied: thermal, shear, and normal loads. For the
normal load cases there is contradicting information.
Given an applied load, say along the fiber, the remaining
faces (on which primary load is not applied) can be forced
to remain in place (“fixed BCs”), as chosen by one of the
original authors of SIFT, Jon Gosse (see e.g. ref. 4). The
other original author, John Hart-Smith, allows the re-
maining faces to freely, uniformly translate normal to their
original position (“movable BCs”), see ref. 5. For thermal
and shear load cases, all main sources (i.c. the ones
mentioned in the /ntroduction) agree on using movable

BCs for thermal loads and allowing the faces of the RVE to
warp under shear loads.

The correct BCs for the normal load cases can be
determined by means of a thought experiment. Assume a
RVE containing a single homogeneous isotropic mate-
rial. In this case, dehomogenized and homogenized
strains are the same. Clearly, this means amplification
factors of 1 for mechanical loads. It turns out that this is
equivalent to using fixed BCs. The enhancement factors
are derived based on the application of a unit strain in one
direction. If the faces are allowed to move, there will also
be Poisson’s contractions, which are also strains. These
strains (which would also be measured by for example
strain gauges) have to be included in the homogenized
state of strain. In equation form, this can be expressed as
follows, where the dehomogenized (subscript “d”)
strains are on the left, the matrix represents the ampli-
fication factors, and the homogenized (subscript “h”)
strains are on the right:

€ 1 000 0O €
— V26 01 0 0 0 O — V26,
—V13€ _ 0O 01 0 0 O —V13€ (2)
0 0001 0O 0
0 00 0 010 0
0 00 0 0 01 0

d h

However, given an appropriate choice of homoge-
nized state of strain, movable BCs are also correct. In
that case, the homogenized state of strain should not
contain Poisson’s strains, because the Poisson’s effect
is already contained in the matrix of amplification
factors:

€y 1 —V21 —V31 0 0 O €
—V02€, — V2 1 — V3 0 0 O 0
—VI3€x _|=viz —va 1 0 0 0 0
0 - 0 0 0 1 0 0 0
0 0 0 0 o0 1 0 0
o |, o 0o 0 00 1]]0],

3)

Either formulation is correct, and the strain ampli-
fication factors can be converted from one to the other,
as discussed in ref. 9. To use the correct applied strain, it
is important to be aware of the choice of BCs used
during FEA.

In many experiments (e.g. laminate tests), €, and €, are
controlled. Similarly, FEA will return all six strain com-
ponents. Movable BCs would require the additional step of
removing all Poisson’s effects. It is typically easier to use
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fixed BCs and measure or calculate the full homogenized
state of strain. This is discussed further in Homogenized
State of Strain.

For thermal loads, a similar thought experiment confirms
that movable BCS are correct. A temperature difference
should not cause dehomogenized constituent strains which
would cause failure. Since the material will expand or
contract depending on the temperature, the strain-free state
is achieved by allowing the boundaries to move. Ref. 6
arrived at the same conclusions and provides a complete
summary of BCs. It should be strongly emphasized (as done
in that article) that applied displacements in the long di-
rection of the hex array need to be scaled by v/3 in order to
apply a unit strain.

Interrogation points

Since dehomogenized strains vary throughout the RVE,
strain amplification factors have to be extracted at a number
of “interrogation points”. For the matrix phase, ref. 3 and all
other articles involving Jon Gosse (who is one of the
original developers of Onset Theory) state that the most
critical ones are the interstitial (IS; where fibers are furthest
apart) and interfiber (IF, where they are closest) locations.
These are indicated in the fiber arrays in Figure 1. Ref. 6
additionally includes points at the fiber/matrix interface on
radial lines passing from the center of the fiber through the
interfiber and interstitial points.

Regarding the fiber, ref. 10 uses points at its center, as
well as on the fiber boundary at 0°, 45° and 90° (as mea-
sured from the horizontal), for both the square and the hex

0.2

array. Others, e.g. ref. 11, use points at 0°, 30°, 60° and 90°
on the fiber edge for the hex array.

Another aspect that should be considered is symmetry of
the RVE. Ref. 3 only uses points in a single quadrant of the
RVE, while ref. 11 uses points in one half of the RVE, and
some authors such as ref. 12 investigate points around the
entire fiber.

Ref. 9 investigated the necessary interrogation points
based on the locations that were found to actually influence
the failure envelope. Figure 2 shows an example of such an
investigation. Distortional matrix failure envelopes based
on a large number of interrogation points are drawn, and the
points that contribute to the final failure envelope are in-
dicated on schematics of the square and hex RVEs. A closer
investigation of the contributions reveals that the points on
the fiber/matrix interface have a minor contribution to the
envelope and may only be critical due to the resolution of
interrogation points or numerical inaccuracies when de-
termining the intersection between failure envelopes.

Distortional fiber and dilatational matrix failure were
analyzed the same way. It is important to note that the
investigation was limited to a relatively small number of
failure envelopes. To ensure capturing the most conserva-
tive behavior, a dense grid of interrogation points should be
used (see Figure 3). Within the scope of that investigation
only the interfiber points of the square and hex arrays
proved to be relevant for distortional matrix failure, if minor
contributions to the failure envelope attributed to numerical
inaccuracies were excluded. However, since this was only a
single investigation this should not be taken to mean that
other points can be discarded. Points at 0° and 90° on the
fiber boundary determined dilatational matrix failure. Inter-
estingly, the commonly used interstitial location was never

0.1

VAN
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Figure 2. Location of critical interrogation points for distortional matrix failure envelope.
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Figure 3. Example of dense grid of interrogation points (yellow
circles) for a hex fiber array.

= Fiber failure 0° square (single quarter), array rotated by 45 ©

—— Distortional matrix failure 0° square (single quarter), array rotated by 45 °
= = Dilatational matrix failure 0° square (single guarter), array rotated by 45 °
Fiber failure 0° diamond

[[ == Distortional matrix failure 0° diamond

= Dilatational matrix failure 0° diamond
-

-
Pe

0.024

0.01+

Ey[_]

—0.01

—0.02

~0.005 0.005 0.015

ex[—1

-0.025  -0.015

Figure 4. Necessity of using interrogation points in one half of
the RVE.

critical for failure. For the fiber failure envelope, the fiber
center and points at 0° and 90° on the fiber edge were critical.

In terms of symmetry, it can be shown that using inter-
rogation points in a single quadrant is insufficient. Instead,
interrogation points in one half of the RVE need to be used, as
indicated in Figure 3. The reason is that for an applied shear
strain, neighboring quadrants of the RVE will have normal
strain response components of equal magnitude but opposite
sign. This means that in the expression for the distortional
strain invariant (see Strain Invariants), for terms such as
(enn — 633)2 the value will be either added or subtracted,
resulting in different failure predictions. It should be noted
that this does not occur for the “standard” interrogation points
for the matrix (interstitial and interfiber locations, as indicated
in the fiber arrays in Figure 1). In these locations, FEA results
do not show coupling terms (in other words, the normal strain
response for an applied shear strain is zero).

Another argument is related to the transformation of
RVEs, as discussed in Fiber Array Types and Transformed
Representative Volume Elements (RVEs). If a square array is
transformed with interrogation points in a single quadrant
only, it fails to reproduce the failure envelope produced by a
diamond RVE. This is shown in Figure 4.

Using interrogation points in only a single quadrant of
the square RVE is clearly unconservative in the compression
regime compared to the diamond RVE. If interrogation
points in one half of the square RVE are used, the trans-
formed square RVE correctly recovers the diamond cell
failure envelope. Note that, as discussed in Fiber Array
Dypes and Transformed Representative Volume Elements
(RVEs), this does not mean that any individual point in the
RVE returns the same results.

In summary, this means that it is insufficient to use in-
terrogation points in a single quadrant of the RVE if it is
transformed, or if interrogation points are used that cause a
coupling between shear and normal strains. Therefore, it is
necessary to use interrogation points in one half of the RVE.

Homogenized state of strain

The homogenized state of strain contains three contribu-
tions. First of all, there are strains due to mechanical loads.
These should only be mechanical strains (not total strains,
defined as %). This assumes that a homogeneous material
does not fail under pure heating, which would create a total
strain but no mechanical strains. In other words, to obtain
the mechanical strains, the effect of free thermal contraction
needs to be removed.

In addition to that, there are two types of strains that
depend on temperature, both on the macro level and on the
micro level. On the macro level, thermally induced me-
chanical strains due to the difference between the
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application temperature and the curing temperature (as-
sumed to be the strain free state) need to be taken into
account. These occur due to a mismatch in thermal ex-
pansion coefficients of plies of different orientations. At the
micro level, thermal strains arise due to the mismatch in
thermal expansion coefficients of the constituents. These
strains are determined using FEA and are included as the
vector of thermal strain amplification factors, A4.

As explained in Boundary Conditions (BCs) on
Representative Volume Elements (RVEs), if FEA was
carried out for both the thermally induced mechanical
strains and the applied strains, the results can be directly
used as the homogenized state of strain. Else, the equa-
tions in Poisson’s Effects and Thermally Induced
Mechanical Strains can be used as a proposed ap-
proach to determine the missing strain components, e.g. in
the typical case of having (€,.€,) failure data from tests.
The proposed expressions have not yet been verified
using full 3D FEA results, though this is in the plans for
future work.

It should be emphasized that the expressions in this Section
only capture applied in-plane strains. Similar equations could
be derived for applied curvatures (i.e. bending).

Poisson’s effects

Poisson’s effects are an important aspect of the full state of
strain. Neglecting it and using only the directly measured
strains (e.g. €] and €y, for the common case of in-plane
normal strain envelopes) would be unconservative. The
following derivation is based on classical lamination theory,
which can be found in any standard textbook.

It is important to understand the use of ply and laminate
properties. For the out-of-plane direction, the ply Poisson’s
ratio (in the ply coordinate system) should be used. This is due
to the fact that in that direction the stress is assumed to be zero
(plane stress conditions), meaning that each ply experiences a
strain according to its own Poisson’s ratios. On the other hand,
for cases where in-plane Poisson’s effects need to be taken into
account (for example for failure envelopes involving only one
of €, and €, or for uniaxial tests with an unknown nonzero
transverse strain), laminate properties (in the laminate coor-
dinate system) should be used because of the assumption of in-
plane strain compatibility made in classical lamination theory.

This means that in order to obtain the strain in a ply, a series
of steps need to be followed. First of all, possible in-plane
Poisson’s effects have to be applied to the known laminate
strains. Subsequently, the strains have to be transformed into
the ply coordinate system. Finally, out-of-plane Poisson’s
effects need to be included. All of these steps are done in form
of matrix multiplications. The resulting equation is €pjicd =
Houtqu'fplane Qnm7planeeapplied,laminate where

Vea £ 0 0 0 cs
§? Z 0 0 0 —cs
. 0 o 1 0 o0 0
Q= 0 0 0 ¢ -—s 0 “)
0 0 0 —s ¢ 0
—2cs 2cs 0 O 0 -5

(c = cos @ and s = sin 0, where 0 is the angle between ply
and laminate coordinate systems), and Iy —of—piane and
I, piane are the appropriate choices of the matrices below.
Measured ply properties in the ply coordinate system are
used for the out-of-plane matrices, while laminate properties
(derived using classical lamination theory) in the laminate
coordinate system are used for the in-plane matrices. The
terms used in the biaxial, out-of-plane matrix are terms of
the stiffness matrix for an orthotropic material, such that ¢ =
Ce.

o 0 00 0 0]
0 1 0 0 0 O
CE N I
Hbiaxial,outﬂyj —plane — C33 C33 (5)
0O 0 0100
0O 0 001 0
0 0 00 0 1]
1 0 00 0O
01 00 0 O
0 01 0 0 O
Hbiaxial,infplane = 0O 0 01 0 O (6)
0 0 0 01 O
0 0 0 0 0 1
1 0 00 0O
0 1000 0
—v3 0 0 0 0 O
H/ongitudina/,out70f7plane = 013 0O 01 0 o0 (7)
0 000 1 0
0 000 0 1
1 000 0 0
v, 00 0 0 0
0 0100 0
ng,in—plane: 0 0O 01 0O (8)
0 000 1 0
0 000 0 1
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1 0 0 0 0 O
0 1 0 0 0 O
0 —v 0O 0 0 O
H[ransverxe,outfoffplune - 0 023 0 1 0 0 (9)
0 0 001 0
0O 0 0 0 0 1
_ E2 -
0 —vip— 0 0 0 O
V12 E,
0 1 0 0 0 O
Hey,in—plane = 0 0 o000 (10)
0 0 01 00
0 0 00 10
0 0 00 0 1]

It should be stressed that the out-of-plane matrix
depends on the resulting state of strain in the ply co-
ordinate system. This means that a 90° ply, loaded in
uniaxial €, should be using Il j,—piane for in-plane
effects, but Il,ansverseour—of—piane for —out-of-plane
loads. For angles other than 0° or 90°
Wpiaxiat,oui—of —piane Should be used. Each ply will be using
a different Poisson’s ratio matrix. The matrices above
are a way of including the Poisson’s strains on free
edges. It is assumed that for purely uniaxial loads, the
other edge is free to translate and the strain needs to be
calculated using Poisson’s effects, while for biaxial
loads the strains on both edges are known.

Thermally induced mechanical strains

The thermally induced mechanical strains are based on the
mismatch in thermal expansion coefficients between the ply
and the laminate. The equations can once again easily be
derived from classical lamination theory. By enforcing
strain compatibility, the laminate thermal expansion coef-
ficient can be calculated as

ax,[aminate

Qlaminate =

— Ql::rlninate ZTTQ

oy @pivlpry (1)

ay,laminate
laminate

(Xxy,laminate
For typical (i.e. symmetric balanced) laminates, the shear
component should evaluate to oy, = 0. Q are the laminate or
ply stiffness matrices, ¢ refers to laminate or ply thickness as
specified in the subscript, T is

A2 §? cs
T=| ¢ A —cs 12)
—2¢s 2¢s & —s?

and the ply material thermal expansion properties are a,,, =
[Gepty  @ypry 0]" (where the third component refers to
shear, which — due to the orthogonality of a ply — is zero).
Note that these coefficients are assumed to be constant with
temperature.

Based on this, the in-plane thermally induced mechanical
strains are calculated as the strains required to remove the
discrepancy between the thermal expansion of the laminate
and the free thermal expansion of a ply, in other words (in
the ply coordinate system, and abbreviating thermally in-
duced mechanical strains as €7y)

Ex, T1,in—plane

eT[,in—plane = €y, T1,in—plane

= (Talaminate - aply)AT (13)

6xy,TI,in —plane

As discussed previously, these strains cause additional
Poisson’s effects. Therefore, the final equation is

Ex, T1,in—plane
€y Tl in—plane

0

€ = r[biwcial,out of plane 0

0

exy,Tl,in —plane

(14

It should be emphasized that these strains are very im-
portant for matrix failure. They have the same effect as
applied external strains. As an example, in Figure 7 dila-
tational matrix failure at €, = 0 is predicted in the 90° ply at
€ = 0.007, spot on with the suspected matrix cracking
observed in test. This prediction includes thermally induced
mechanical strains of €, cing = 0.0038. In other words, the
dilatational matrix capability is reduced from 10,800 mi-
crostrain to 7000 microstrain, a reduction of about 35%.

Strain invariants

Two strain invariants are used in Onset Theory. The first is
the dilatational strain  invariant, given by
J1 = €11 + € + €3. €1, € and €33 are components of
any strain tensor using an orthogonal basis (see any of the
sources listed in the Introduction). This is a reduced version;
the full expression for the dilatational strain invariant is
J+h+J3= (611 + 1)(622 + 1)(633 + 1) — 1. Since J,
and J; are related to the square and cube of strains, they are
negligible for small strains.

For the distortional strain invariant, several versions are
used in literature, all related to each other through a direct
algebraic operation. The most common version is to use the
equivalent strain (also known as von Mises strain due to its
resemblance to the well-known von Mises yield criterion for
isotropic materials), see equation (15).
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1
2

3
€eqv = \/[(611 - 622)2 + (611 - 633)2 =+ (622 - 633)2] +- [V%s + V%3 + J’%z}

Note that this equation is using engineering shear strains,
€.g2 7,3 = 2€»3. This is also why a factor% appears in front of
the shear terms, instead of a factor 3.

The relationship between the equivalent strain and the
second deviatoric strain invariant (J}), as well as other
common versions used in literature, is shown in Table 1.

These different definitions can cause confusion or even
incorrect results when looking at numerical values. In fact,
if these varying definitions are taken into account, some
trends in the critical invariants can be observed, as
discussed next.

Observations regarding
distortional invariants

An extensive literature study of critical distortional invariants
showed that the critical invariants for carbon fibers and
E-glass are all similar, approximately e:/;V =0.02+10%. As
shown in Figure 5, 9 of 16 entries in Table 2 fall in this range,
3 more in +15%, and the other 3 (the biggest outliers) are all
from a single source.

Thermoset resins show the same behavior, with
€, = 0.2%£10%. The analysis is more involved since
several values are suspected to be using a different definition
of'the critical distortional invariant than stated in the source.
Table 3 and Figure 6 show the results. Where applicable, the

suspected definition is used. If the suspicions are correct,

Table I. Comparison of distortional invariant definitions.

Definition #l (eg ref. 5) #2 (eg ref. 2) #3 #4 (eg.ref. 13)
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Figure 5. Distribution of € around 0.02.

eqv

2 (15)

only 8 of the 30 critical invariants are >10% off, and only 4
more than 12%.

The cause is unclear, but to the knowledge of the authors
this has not been published before. Composites using fibers
from IM7 or AS4 to E-glass have vastly different strengths,
so the similarity in critical strain invariants must be due to
stiffness effects. Either the same homogenized failure strain
results in different failure strengths, or due to MME identical
dehomogenized constituent strains correspond to different
homogenized strains. The former would be related to dif-
ferences in the stiffness of the composite, while the latter
would mean the individual constituent stiffnesses (together
with e.g. fiber volume fraction) are the relevant factor. Ref. 9
contains a more thorough critical review of the sources.

Summary of consistent approach

This section is intended as a step-by-step procedure to apply
Onset Theory.

Assumptions and limitations

Onset Theory in general, and the MME process in particular,
is highly idealized. It assumes that RVEs are acceptable to
obtain dehomogenized constituent from macro level strains.
This implies that the lamina consists of a single, infinitely
repeating type of RVE. Fibers are assumed to be perfectly
circular. Fiber Array Types and Transformed Representative
Volume Elements (RVEs) discussed these assumptions.
Additionally, the analyses assume temperature-invariant
material properties.

Onset Theory is a ply failure criterion (i.e. it is not used to
predict interply failures such as delaminations). It works on
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Figure 6. Distribution of €., around 0.2.
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Table 2. Critical distortional fiber invariants.

Source Material combination ezgv Deviation from EZQV =0.02
Ref. 14, Table 8.4 T300/BSL914C 0.0133 —34%
Ref. 15, Table 3 T700/CU200NS 0.01495 —25%
Ref. 16, Table 3 CCF300/5228 0.017 —15%
Ref. 16, Table 3 CCF300/5428 0.018 —10%
Ref. 5 and others citing Jon Gosse IM7/977-3 0.0182 —9%
Ref. 17, Table 5-11 E-glasssMTM57 0.0189 —6%
Ref. 14, Table 8.4 AS4/3501-6 0.019 —5%
Ref. 10, Table | IM7/K3B 0.0195 —3%
Ref. 18, Table | E-glass/MY750 0.0194 —3%
Ref. 19, Section 4.2 IM7/977-3 0.02 0%
Ref. 20, Table 5 IM7/5250—4 0.0204 2%
Ref. 21, Table 4 AS4/3501-6 0.021 5%
Ref. 22, Table 6-3 E-glass/RTM6 0.022434 12%
Ref. 16, Table 3 T700/5428 0.023 15%
Ref. 14, Table 8.4 E-glass 21xK43/LY556 0.0266 33%
Ref. 14, Table 8.4 E-glass 1200tex/MY750 0.0349 75%
Table 3. Critical distortional matrix invariants.
Material Critical invariant and €q (Based on suspected Deviation from
Source combination definition (stated/suspected) definition) €eqn = 0.2
Ref. 16, Table 3 CCF300/5228 0.144 (#1) 0.144 —28%
Ref. 17, Table 5-11 E-glasssMTM57  0.1472 (#1) 0.1472 —26%
Ref. 20, Table 5 IM7/5250—4 0.16 (#l1) 0.16 —20%
Ref. 5 and others citing Jon Gosse IM7/977-3 0.103 (#1/#2) 0.178 —11%
Ref. 10, Table | IM7/977-3 0.179 (#1) 0.179 —11%
Ref. |, Table 3 T300/5208 0.0339; 0.0331 (#1/#3) 0.184; 0.182 —8%; —9%
Ref. 18, Table | E-glass/MY750  0.036; 0.0313 (#1/#3) 0.190; 0.177 —5%; —12%
Ref. 13, Section 4.1 T800s/3900-2  0.03434 (#4/#3) 0.185 —7%
Ref. 19, Section 4.2 IM7/977-3 0.11 (1#2) 0.191 —5%
Ref. 16, Table 3 CCF300/5428 0.195 (#1) 0.195 —3%
Ref. 2, Tables | and 2 Carbon/glassy 0.1144; 0.1124; 0.1164; 0.198; 0.195; 0.202; —1%; —3%; 1%
polymer 0.114 (#2) 0.197 —1%
Ref. 21, Table 4 AS4/3501-6 0.198 (#1) 0.198 —1%
Ref. 16, Table 3 T700/5428 0.202 (#1) 0.202 1%
Ref. 23 Tables 4 and 5, Ref. 24 Table 2, T800s/3900-2 0.119;0.117;0.118; 0.113  0.206; 0.203; 0.204; 3%; 1%; 2%; —2%
Ref. 25 Section 3, Ref. 26 Table 5-3 #2) 0.196
Ref. 23 Tables 4 and 5, Ref. 26 Table 5-2, T300/Cycom 0.1125; 0.1186; 0.1184; 0.195; 0.205; 0.205; —3%:; 3%; 3%; 2%;
Ref. 27 Table 4 970 0.118; 0.121; 0.122 (#2) 0.204; 0.210; 0.211 5%; 6%
Ref. 15, Table 3 T700/CU200NS  0.04919 (#1/#3) 0.222 1%
Ref. 22, Table 6-3 E-glass/RTM6 0.020069 (#1/#4) 0.245 23%

thin, flat, orthotropic plies and laminates under plane stress.
The equations in Homogenized State of Strain do not in-
clude bending loads, although analytical expressions for
these cases can be derived as well.

Physically, Onset Theory asserts that there are two in-
dependent failure modes for any material: distortion and
dilatation, and that carbon fibers only fail in distortion.
Dilatational fiber failure would be another non-interactive

cutoff on the failure envelope. However, there are no critical
dilatational fiber invariants in literature.

Onset Theory does not include (micro)structural failures
such as fiber kinking. Adding these types of failure modes as
additional non-interactive cutoffs on the failure envelope
should be a high priority research item.

It should be emphasized that Onset Theory should not be
modified to use stress instead of strain invariants. Unlike



10

Journal of Composite Materials 0(0)

stress invariants, strain invariants are independent of each
other. There is an influence of the hydrostatic component of
the stress (but not strain) on yield. This is not captured by the
von Mises yield criterion. There are several other reasons,
including a strain rate dependency of the critical stress (but
not of the critical strain), as well as different failure stresses
(but not strains) in compression versus tension. Ref. 26
explains these reasons in detail.

Micromechanical enhancement (MME)

It is important to use a consistent order of strain components
during MME. In this article, the order will be
[enn e €3 73 i3 V12]T

Amplification factors should be extracted from a dense
grid of interrogation points in one half of the RVE (see
Interrogation Points). As discussed in Fiber Array Types
and Transformed Representative Volume Elements (RVEs),
square and hex fiber arrays are sufficient, transformed by 0°
to 45° (square) and 0° to 30° (hex cells).

As Boundary Conditions (BCs) on Representative
Volume Elements (RVEs) mentioned, ref. 6 came to the
same conclusions about displacements and BCs for the
RVE. These results will not be repeated here. The strain
response at the interrogation points is used to determine M’
and A (see Fiber Array Types and Transformed
Representative Volume Elements (RVEs)).

The mechanical amplification factors for €, for the hex
cell need to be multiplied by /3 to scale to an applied unit
strain for that direction. Alternatively, the BC could be
written as v = y; atyj, i.e. v = 1 aty; for the square cell and
v=+/3at vy for the hex cell. This is done for shear, where
the size of the RVE is included in the BCs.

Evaluating failure

Using the expressions in Strain Invariants, failure occurs if
either of the two invariants exceeds its critical value, i.e.
Ji>Jy (for the dilatational strain invariant) or €qy> €,,,
(using the equivalent strain as the distortional strain
invariant — any of the definitions in Strain Invariants can be
used to determine distortional failure). The asterisk indi-
cates the critical value. As emphasized in Strain Invariants,
the same definition of the invariant has to be used for actual
and critical distortional strain invariants.

The available literature agrees that for typical carbon
fibers, dilatational failure does not occur, while for resins
both types of failure are observed. For example, according
to ref. 5, “Carbon fibers used in the aerospace industry today
fail by distortion, regardless of the nature of the load. They
do not fail by dilatation”.

The strains in these equations are the components of the
dehomogenized state of strain, given by

0.020
- Fiber failure (predicted)
Matrix failure (predicted)
0.0151 4  Ultimate failure (test)
¥ Suspected matrix cracking (test)
0.0104 - Line of symmetry (Ql laminate)
0.005 1
T
E 0.000 1
—0.005 1
—=0.010
—0.0151
—-0.020

20.020-0.015-0.010-0.005 0.000 0.005 0.010 0.015 0.020

ex[-1]

Figure 7. Comparison between prediction and biaxial strain test data for an AS4/3501-6 [90/+45/0]s laminate.
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(16)

where AT is the applied temperature difference, and M and
A were derived in Fiber Array Types and Transformed
Representative Volume Elements (RVEs). Every combina-
tion of the two unique fiber arrays (hex and square), RVE
transformation angles, and interrogation points should be
investigated.

€ homogenized is giVen by € homogenized = €applied + € curing- As
discussed in Homogenized State of Strain, these strains can
be obtained from FEA or analytical expressions. Note that
the expressions in this article were derived for applied in-
plane rather than bending strains.

edehomagenized =M elwmogenized +AAT

Example failure envelope

Using the consistent approach, failure envelopes were
generated for several cases, including the AS4/3501-6 bi-
axial failure envelope from the WWFE (ref. 28). Constituent
and lamina material properties can be found in Table 1-3 of
that article. The curing temperature (assumed to be the strain
free state) as well as the ultimate failure strains are available
in Table 2 of refs. 29 and 30, while the location of suspected
matrix cracking is reported in ref. 31. Finally, the “default”
critical invariants from Strain Invariants are used.

Figure 7 shows the resulting failure envelope. Matrix
cracking is predicted very closely, while the ultimate failure
predictions were less accurate. In particular for
compression-dominated states of strain, predictions were
unconservative. A likely cause is that Onset Theory does not
include microstructural failure modes such as fiber kinking.
These failure modes should be added in form of other (non-
interactive) cutoffs of the failure envelope in strain space.

The other point to note is the large scatter of the test data in
the compression-dominated regime. On the same radial line,
i.e. for the same strain ratio, values between €, = —0.0061
and €, = —0.0094 are obtained, a difference of almost 55%.
This makes comparing predictions and test data challenging.

Finally, a perfect failure criterion, using the exact ma-
terial properties from the test specimen, should predict the
result achieved by a perfect test. In reality, some tests may
even overachieve the perfect test results due to scatter in
material properties. However, typically factors decreasing
the test result such as manufacturing flaws will be more
prevalent. This may be a partial explanation for the trend in
the tension-dominated regime, where the failure predictions
form an outer bound on the test data, with very few data
points outside of the predicted envelope.

Conclusions

This paper summarizes recent findings which provide re-
searchers with a consistent starting point for using Onset
Theory.

One major open question which is outside the scope of
this work is whether or not regular fiber arrays are a
physically meaningful, accurate, or at the very least con-
servative, representation of the true random fiber array.
Following the consensus in previously published literature
on Onset Theory (see Fiber Array Types and Transformed
Representative Volume Elements (RVEs)) the discussion in
this paper is limited to regular fiber arrays. In that case, it
was found that square and hex fiber arrays should be an-
alyzed, and additional arrays should be included by
transforming the results between 0° and 45° (square) and 0°
and 30° (hex). The faces of the RVE should be fixed in place
during mechanical analysis but allowed to move during
thermal analysis. Finally, data should be extracted from a
dense grid of points in one half of the RVE, including points
on the fiber/matrix boundary.

Analytical expressions for the full state of strain of a
ply are developed, including Poisson’s strains and con-
tributions from thermally induced mechanical strains.
Alternatively, an FEA model could be used to determine
these strains.

Critical distortional invariants (in this paper expressed as
equivalent strain) are surprisingly consistent across mate-
rials and material classes: for most carbon and glass fibers
ezf;v = 0.02+10%, and for most resins €, = 0.2+ 10%. At
present the causes are unknown.

Applying the approach to test data obtained from the
World Wide Failure Exercise shows excellent predictions of
matrix cracking and good agreement for ultimate failure in
tension/tension and tension/compression where tension is
dominating. Tension/compression failure where compres-
sion is dominating is poorly predicted, which may be due to
failure modes not included in Onset Theory (e.g. fiber
kinking).
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