
Combining Multiple ID’s, Attributes, and Policies to Provide Secure Access 
Control within Hyperledger Fabric Blockchain Networks

by

Daan Gordijn
Supervisor(s): Kaitai Liang, Roland Kromes

EEMCS, Delft University of Technology, The Netherlands

22-6-2022

A 
Dissertation

Submitted to EEMCS Faculty
of Delft University of Technology,

In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering



Abstract
Blockchain technologies allow users to securely
store and trace their data on a fully decentralized
system, and have the potential to make a huge im-
pact on many industries. While traditional, per-
missionless blockchains such as Bitcoin, Ethereum,
and Cardano are very popular, they are currently
unable to provide trust and privacy on the net-
work. To solve these issues, many new, permis-
sioned blockchain technologies have been imple-
mented, including Hyperledger Fabric. Although
Hyperledger Fabric has proven to be highly suc-
cessful in providing trust and privacy through the
use of identities, channels, and private data collec-
tions, one of its major drawbacks is the lack of a
flexible and scalable access control system. Cur-
rently, access control decisions have to be built into
each smart contract individually, which can cause
many vulnerabilities and prevent access policies to
be updated dynamically.
This research aims to answer the research ques-
tion “How can secure access control in Hyperledger
Fabric be guaranteed by combining multiple ID’s,
attributes, and policies with the components that
regulate access control?”. To answer this question,
the access control system currently used by Hyper-
ledger Fabric is first completely analyzed. Next, a
new implementation is proposed that builds upon
the existing solution but provides users and devel-
opers with easier ways to make access control de-
cisions based on combinations of multiple ID’s, at-
tributes, and policies. This solution is then im-
plemented using the smart contract technology of
Hyperledger Fabric, which allows it to easily be
deployed to existing Hyperledger Fabric networks.
Finally, the performance impact of this proposed
implementation is analyzed, and new areas of re-
search are proposed that can potentially be explored
in future papers.
At the end of this research, it was concluded that
it is possible to combine multiple ID’s, attributes,
and policies with the help of Hyperledger Fabric’s
smart contract technology. Furthermore, it could
be seen that the performance impact for real-world
applications is negligible compared to the insecure
case of always providing access to a resource with-
out performing access control.

1 Introduction
Ever since the anonymous Satoshi Nakamoto published his
Bitcoin white paper [1] in 2008, blockchain has become one
of the most disruptive technologies in the computer science
industry. In recent years, many other innovative blockchain
technologies have been developed [2], which are becoming
increasingly more popular.

While Bitcoin was created to provide a digital alternative
to traditional, bank-controlled currencies [3], many of these

newer blockchain technologies are designed to provide a plat-
form for building and deploying decentralized applications
through the use of smart contracts1. By implementing their
business logic within these smart contracts, decentralized ap-
plications can automatically execute any transaction without
human intervention, making them completely independent
and decentralized [5]. Due to the many benefits of decentral-
ized applications [6], the adoption of blockchain technolo-
gies has recently expanded to many non-financial applica-
tions such as “healthcare, supply chain management, market
monitoring, smart energy, and copyright protection” [7].

Most of these traditional blockchain technologies, such as
Bitcoin, Ethereum, and Cardano, are so-called “permission-
less” blockchain technologies. This type of blockchain tech-
nology, however, has many privacy issues when it is being
used in the context of enterprise-level applications, as de-
scribed in [8]. Many alternative, so-called “permissioned”
blockchain technologies have been proposed to solve the is-
sues, the most promising of which is Hyperledger Fabric [9].
Through the use of innovative concepts such as channels,
policies, identities, and Membership Service Providers, Hy-
perledger Fabric can determine the identity of participants,
perform access control based on these identities, and ensure
the privacy of transactions and smart contracts.

As with many technologies, the increase in popularity of
blockchain technologies also drives an increase in security
threats and attacks. One of the major issues that many
blockchain technologies, including Hyperledger Fabric, cur-
rently have is providing secure access control to the dis-
tributed ledger and smart contracts. Hyperledger Fabric par-
tially addresses this issue by only granting network access
upon submission of a valid X.509 certificate [10], issued and
approved by a trusted Certificate Authority. However, this
type of ID-based access control is not scalable for larger or-
ganizations. This paper will therefore investigate how secure
access control in Hyperledger Fabric can be improved, in par-
ticular by looking into solutions that can combine these ID’s
with attributes and policies.

The research question that has been formulated for this
study is “How can secure access control in Hyperledger Fab-
ric be guaranteed by combining multiple ID’s, attributes, and
policies with the components that regulate access control?”.
In order to systematically answer this research question, the
following sub-questions will be addressed:

• What is Hyperledger Fabric?
• What is secure access control in the context of Hyper-

ledger Fabric?
• What are the components that regulate access control

within Hyperledger Fabric?
• How are the components for access control currently in-

teracting within Hyperledger Fabric?
• How can multiple ID’s, attributes, and policies be com-

bined within Hyperledger Fabric?
• What is the performance impact of ID-, attribute-, and

policy-based access control within Hyperledger Fabric?
1A digital contract written into code that is stored and automati-

cally executed on the nodes of a distributed blockchain network [4]



This paper is structured in the following manner. First,
Section 2 will provide a summary of the most relevant work
that currently exists in literature. Next, Section 3 will pro-
vide an overview of the methodology that has been applied
during this research. Then, Sections 4 and 5 will explain the
proposed system model that has been implemented and an-
alyzed as part of this research. Subsequently, Section 6 will
provide an overview and analysis of the results that have been
obtained during the research, while Section 7 will provide a
brief discussion of the research as a whole. Finally, Section 8
will present the main conclusions and possible improvements
for future research, while Section 9 will provide a reflection
on the ethical aspects and reproducibility of this research.

2 Related Work
Research into secure access control in various blockchain
technologies, including Hyperledger Fabric, has been con-
ducted in multiple papers. Many of these studies are
performed in the context of exploring the integration of
blockchain technologies with the Internet of Things (IoT), as
blockchain is currently seen as the most promising technique
for providing secure access control to IoT devices [11].

In [12], a summary of the major problems of modern ac-
cess control systems is presented, together with an explana-
tion of how these problems can potentially be solved using
blockchain technologies. In addition, this paper provides an
overview of existing access control studies and describes the
current challenges of blockchain-based access control.

In [11], an attribute-based access control scheme for Inter-
net of Things devices is proposed by employing blockchain
technology to keep track of the distribution of the attributes.
In [13], a different scheme is proposed that is built upon
various smart contracts and so-called “functional modules”,
which are jointly responsible for managing attribute infor-
mation and making access control decisions. In [14], yet
another access control scheme is proposed which is imple-
mented and deployed using the smart contract technology of
the Ethereum blockchain network.

While the papers discussed so sofar describe general
blockchain-based access control systems, other papers make
specific use of the Hyperledger Fabric blockchain technology.
First, [15], [16], and [17] explore basic access control scenar-
ios for IoT devices in Hyperledger Fabric. Next, [18] com-
bines the Hyperledger Fabric blockchain technology with the
InterPlanetary File System (IPFS) [19], allowing IoT devices
to easily store documents on a distributed file system and
store the hashes of these documents on the blockchain ledger.
Finally, [20] proposes a multi-layered and multi-model access
control system in the context of an agricultural supply chain
system that runs on Hyperledger Fabric.

While research into secure access control in Hyperledger
Fabric and other blockchain technologies certainly exists, no
study into combining multiple ID’s, attributes, and policies
during the decision-making process has been conducted. To
fill in this gap, this paper will propose a new access con-
trol scheme that combines these ID’s, attributes, and policies
within a single smart contract deployed to a Hyperledger Fab-
ric network. For consistency, this research paper will consider

the scenario where an IoT device wants to store a document
on IPFS and subsequently save the returned document hash
on the blockchain network, as also used in [18].

3 Methodology
The research conducted for this paper consisted of two main
parts. First, a literature research was conducted to study the
existing solutions for secure access control, both within and
outside the context of Hyperledger Fabric. Second, a new
design to provide secure access control in Hyperledger Fab-
ric was proposed, which was then implemented and analyzed
during the implementation part using a smart contract.

3.1 Literature Research
During the literature research, Google Scholar was used to
find existing literature about secure access control in Hyper-
ledger Fabric and other blockchain technologies. The exact
search queries that have been used during this Google Scholar
search can be found in Appendix 1. In addition to Google
Scholar, the snowball method and citation searching method
[21] have been applied to retrieve additional literature that
was not listed in the initial search results. A full summary
of the most important literature gathered during the literature
research phase can be found in Section 2.

3.2 Implementation
Using the existing literature from the previous phase, a new
design was proposed to provide secure access control in Hy-
perledger Fabric. As stated in the research question, this de-
sign had to combine multiple ID’s, attributes, and policies
in the decision-making process. Subsequently, during the
implementation phase, the design was implemented using a
smart contract and deployed to a local Hyperledger Fabric
test network, which was set up using the official tutorial [22].

Hyperledger Fabric currently supports three programming
languages for the development of smart contracts and client
applications: Go, Java, and NodeJS [23]. For each language,
several SDK’s are available [24] that help make the imple-
mentation of smart contracts and client applications easier.
For this particular research project, NodeJS with TypeScript
has been selected as the toolchain for the implementation
phase, as this language is very easy to learn and understand.

The complete repository that contains a basic test network
together with the smart contracts and sample applications that
have been implemented during this research project is avail-
able on GitHub2. The README stored in this repository also
includes a small tutorial, as well as a complete overview of
the required tools and their recommended versions.

4 Current Implementation
This section discusses the current approach to secure access
control in Hyperledger Fabric. This section begins with a
brief introduction to Hyperledger Fabric and secure access
control in general, and subsequently discusses the main com-
ponents and methodologies that Hyperledger Fabric currently
uses to provide secure access control.

2https://github.com/daangordijn/Fabric-Access-Control

https://github.com/daangordijn/Fabric-Access-Control


4.1 Hyperledger Fabric
Hyperledger Fabric is an “open-source enterprise-grade per-
missioned distributed ledger technology (DLT) platform,
designed for use in enterprise contexts” [23]. While
many well-established blockchain platforms such as Bitcoin
and Ethereum are currently being modified to be used in
enterprise-grade applications, Hyperledger Fabric has been
built around enterprise applications from the beginning. First,
Hyperledger Fabric is highly modular, which allows core
parts of the blockchain network to be customized. Second,
Hyperledger Fabric has support for writing smart contracts in
general-purpose languages, including Go, Java, and NodeJS,
while most other blockchain technologies require develop-
ers to learn new languages, such as Vyper or Solidity in the
case of Ethereum [25]. Finally, Hyperledger Fabric is permis-
sioned, which means that the identity of all participants of the
network is known and can therefore be verified using access
control systems, allowing organizations to establish trust.

Figure 1 shows the main architecture of a Hyperledger Fab-
ric network that consists of four organizations, R1, R2, R3,
and R4. Each organization operates its own Certificate Au-
thority (CA) node, as shown in the top left corner. These
nodes are used by the organizations to issue X.509 certificates
[10], which are required when peer nodes, orderer nodes, or
client applications want to connect to the blockchain network.
In addition, organizations R1, R2, and R3 each have a client
application, A1, A2, and A3, respectively, which can interact
with the shared ledger through a smart contract.

Within Hyperledger Fabric, a network can be split into
multiple so-called “channels”, each maintaining a separate
distributed ledger. Channels are used to ensure the privacy
of smart contracts and ledger data since organizations can be
granted or denied access to one or more channels on an in-
dividual basis. In Figure 1, organizations R1 and R2 are al-
lowed to transact on channel 1, while organizations R2 and
R3 are allowed to transact on channel 2. Each channel main-
tains its own “channel configuration”, indicated by CC1 and
CC2, respectively, while the overall blockchain network also
maintains a “network configuration”, indicated by NC1.

Next, as shown in Figure 1, organizations R1, R2, and R3
each operate one peer node, P1, P2, and P3, respectively.
These peer nodes are jointly responsible for managing and en-
dorsing transaction proposals. To do this, these peers have to
store a copy of all smart contracts and their associated ledgers
from all channels they are connected to. As can be seen, peer
nodes P1 and P2 store a copy of smart contract S1 and its as-
sociated ledger L1, while peer nodes P2 and P3 store a copy
of smart contract S2 and its associated ledger L2. In addi-
tion to these peer nodes, organization R4 manages an orderer
node, O4, which is responsible for ordering the transaction
proposals when they are endorsed by the peers.

Finally, as shown in Figure 1, each node in the net-
work maintains a local Membership Service Provider (MSP).
These service providers store all X.509 certificates that have
been issued by the Certificate Authorities of their correspond-
ing organizations, which are then used by network nodes to
map X.509 identities to internal roles. Together with the Cer-
tificate Authorities, these providers are therefore responsible
for providing the initial layer of identity-based access control.

While the discussion above is nowhere near complete, it
provides sufficient information to understand the rest of this
paper. Readers who want more information about the Hyper-
ledger Fabric architecture can refer to the official Hyperledger
Fabric documentation, available at [9].

4.2 Secure Access Control

Access control is “a security technique that regulates who
or what can view or use resources in a computing environ-
ment” [27]. Different types of access control exist, includ-
ing Identity-Based Access Control (IBAC), Role-Based Ac-
cess Control (RBAC), and Attribute-Based Access Control
(ABAC) [28]. While older, established blockchain technolo-
gies such as Bitcoin and Ethereum are non-permissioned and
therefore do not implement these types of access control sys-
tems, Hyperledger Fabric is a permissioned blockchain tech-
nology, which enforces it to perform access control.

Currently, Hyperledger Fabric employs multiple layers of
access control to provide security and privacy within the
blockchain network. First, at the most basic level, Hyper-
ledger Fabric uses a simple identity-based access control sys-
tem, which prevents unauthorized entities from accessing
anything on the blockchain network. This layer is explained
in more detail in Sections 4.3 and 4.4 since the purpose of
this paper is to extend this simple system to a more complex
attribute-based access control system. Second, at an organi-
zational level, Hyperledger Fabric can restrict access to smart
contracts and the ledger through the use of channels, as de-
scribed in Section 4.1. By only granting individual organiza-
tions access to the minimal required subset of channels, the
privacy of smart contracts and ledger states can be preserved.

4.3 Certificate Authorities (CAs)

A Certificate Authority is an “organization that acts to vali-
date the identities of entities (...) and bind them to crypto-
graphic keys through the issuance of electronic documents
known as digital certificates” [29]. Hyperledger Fabric pro-
vides a special implementation, called the “Fabric Certificate
Authority” or “Fabric CA” in short, which can be used to cre-
ate and sign these digital certificates using the international
X.509 standard [30]. Fabric CA consists of both a client-
side and server-side command line interface (CLI), called
fabric-ca-client and fabric-ca-server, respectively.
Fabric CA provides many features including “registration of
identities, issuance of enrollment certificates, and certificate
renewal and revocation” [31].

When an administrator wants to enroll a new identity, Fab-
ric CA will generate a key-value pair that consists of a private
key and a public key. Together with the parameters provided
by the administrator, a Certificate Signing Request (CSR) will
be created, which is then processed by Fabric CA.

In Section 4.5, this process of registering and enrolling a
new identity with the Fabric CA server is visualized. This
section will also describe a new command line interface (CLI)
that has been implemented as part of this study and makes the
creation of new identities much easier.



Figure 1: Example of the Hyperledger Fabric architecture. The blockchain network is maintained by four organizations, R1, R2, R3, and R4,
each of which operates one or more nodes within the network. Source: Image adapted from [26].

4.4 Membership Service Providers (MSPs)
A Membership Service Provider is a component within Hy-
perledger Fabric that can be used by participants of the
blockchain network to prove their identity to other partici-
pants of this network. When a user wants to start interacting
with a Hyperledger Fabric blockchain network, it needs to
create a key pair, which consists of a public key and a pri-
vate key, which is needed to prove its identity to the rest of
the network. Next, this public key must be included in a Cer-
tificate Signing Request (CSR), which is then submitted to
a Certificate Authority and used to issue a new X.509 cer-
tificate. While X.509 certificates, including public keys, can
be shared publicly, private keys must always be kept secret to
comply with the principles of Public-Key Infrastructure (PKI)
[32].

When a participant of the blockchain network now wants to
submit a transaction, it needs to create a transaction proposal
and sign this proposal using its private key. All nodes on the
blockchain network are then able to verify this transaction
proposal using the public X.509 certificate of this participant
since it is stored inside the Membership Service Providers.
Because of this, Membership Service Providers can estab-
lish trust on the permissioned blockchain network, without
the need of sharing private keys.

4.5 Generating Certificates
In Figure 2, a simplified version of the process of generating
X.509 certificates using Fabric CA is visualized. As can be
seen, the Fabric CA Client has to invoke the Fabric CA Server
using two commands, fabric-ca-client register and

fabric-ca-client enroll [31]. By doing this, the server
will generate a private key, a public key, and a corresponding
signed X.509 certificate. This certificate is then automatically
stored in the Membership Service Providers that are located
on various nodes inside the blockchain network.

Figure 2: Current process of enrolling a new identity within a Hy-
perledger Fabric network. The fabric-ca-client CLI is used to
run the register and enroll commands, respectively. Then, the
resulting X.509 certificate is stored on a set of peer nodes, while both
the X.509 certificate and the corresponding private key are stored in
the user’s local file system wallet.

While this process of generating X.509 certificates for Hy-
perledger Fabric is not overly complicated, it can become
cumbersome to run multiple commands with many different



flags to just create one certificate. Therefore, as part of this
research paper, a wrapper around the fabric-ca-client
was created. This tool, called certgen, is publicly available
in the GitHub repository2, together with a small tutorial on
how to interact with it. The certgen tool internally uses the
fabric-ca-client commands and has the advantage that
it can automatically populate a local file system wallet with
the correct files which are required to connect a client ap-
plication to the blockchain network. In addition, since this
tool is highly interactive, it makes it much easier for admin-
istrators to add attributes to the certificate. More about the
importance of setting attributes within X.509 certificates will
be explained in Section 5.

5 Proposed Implementation
This section discusses the proposed implementation that im-
proves the current implementation of secure access control
in Hyperledger Fabric, introduced in Section 4. This section
begins with a brief discussion of how to independently com-
bine multiple ID’s, attributes, and policies, and subsequently
presents the final design incorporating these components.

5.1 Combining Attributes
In Hyperledger Fabric, every X.509 certificate issued by Fab-
ric CA [31] can have attributes. These attributes can be used
during access control to determine whether a client should
be given access, or not. To allow for more complex access
control decisions, multiple attributes can be combined into
so-called “policies”, which are visualized in Figure 3.

Figure 3: Combining multiple attributes. The EQUALS and
INCLUDES operators validate whether a specified attribute equals or
includes a certain value, respectively. The AND, OR, and NOT boolean
operators can be then be applied to combine or negate these individ-
ual attribute checks, allowing the client to create complex policies.

For this study, the following boolean operators have been
selected that can be used for building access control policies:

• EQUALS: Checks whether an attribute is present on the
certificate, and whether it is equal to the provided value.

• INCLUDES: Checks whether an attribute is present on the
certificate, and whether it includes the provided value.
This operator can be used when the specified attribute
on the certificate has a comma-separated list of strings
as its value, which must include a particular value.

• AND: Logical operator that combines two or more op-
erator trees. This operator returns true if and only if
all operator trees combined by this operator evaluate to
true, and returns false otherwise.

• OR: Logical operator that combines two or more oper-
ator trees. This operator returns true if and only if at
least one of the operator trees combined by this operator
evaluates to true, and returns false otherwise.

• NOT: Logical operator that negates the output of another
the given tree. This operator returns true if and only if
the operator tree provided to this operator evaluates to
false, and returns false otherwise.

Together, these operators can build complex policies that
can later be evaluated to determine whether a client has access
to a resource on the blockchain network, or not.

5.2 Combining Policies
As described in the previous subsection, an access policy is a
rule that enforces an X.509 certificate to possess a particular
combination of attributes and values. These access policies
can be used in Hyperledger Fabric to verify whether an entity
invoking a smart contract has sufficient permissions to invoke
the endpoint. Figure 4 shows a simplified example of a client
invoking three different operations on a smart contract: read-
ing an asset, updating the asset, and deleting the asset.

Figure 4: Combining multiple policies. Each smart contract has a
different purpose and might need different policies for different op-
erations. Multiple policies can be defined in a single smart contract,
and depending on the operation requested by the client, the correct
validation policy will be selected and used for access control.

As can be seen in the image, the invoked smart contract
has a different access policy for each of the three supported
operations. For example, a client might be able to satisfy the
ReadPolicy with its X.509 certificate, but might not be able
to satisfy the UpdatePolicy and DeletePolicy. Therefore,
this client will only be allowed to read the asset and will be
denied access when it tries to update or delete the asset.

5.3 Combining ID’s
In Hyperledger Fabric, IDs are composed of X.509 certifi-
cates [10], issued by Certificate Authorities and managed



by Membership Service Providers. Research into combin-
ing multiple such X.509 certificates has not been published
to the date of writing. In fact, X.509 certificates cannot be
combined by a simple merge, since the X.509 standard [30]
does not allow this. Therefore, for this study, alternative ways
of combining multiple X.509 certificates had to be found.

The solution proposed in this study can integrate one X.509
certificate, referred to as the “parent”, into another X.509 cer-
tificate. The process by which this integration can be realized
is visualized in Figure 5 and described below.

Figure 5: Combining multiple ID’s. First, the X.509 certificate of
identity A is hashed. Next, this hash is signed with the private key
of identity A. Finally, these two values, hash(certificate) and
sign(hash(certificate)), are added to the X.509 certificate of
identity B as custom attributes.

• First, the client invokes a special smart contract using
certificate A. This smart contract then extracts the cer-
tificate from the request, and subsequently stores it into
a hashmap on the distributed blockchain ledger;

• Second, the client creates the SHA-256 hash of certifi-
cate A, and stores this value in certificate B by setting
the hfa.ParentHash attribute;

• Third, the client signs the obtained SHA-256 hash using
private key A, and stores this value in certificate B by
setting the hfa.ParentSignature attribute.

Whenever a client now invokes a smart contract on the
blockchain network using identity B, this smart contract
can verify that this client also owns identity A, since it
needed access to private key A in step (3) to calculate the
hfa.ParentSignature attribute. If the client would not
have access to this private key, the signature provided in this
attribute cannot be valid. Since certificate A was previously
stored on the ledger in step (1), the invoked smart contract
has access to the public key of identity A, and could therefore
easily establish that the provided signature was forged, thus
denying access to the network.

Having established that the client invoking the smart con-
tract with identity B also owns identity A, the smart contract
can retrieve the certificate of identity A from the hashmap
stored on the distributed ledger, and use it to make access con-
trol decisions. The proposed smart contract has been imple-
mented and made available in the GitHub repository2. This
implementation currently supports one parent certificate to be
set in the hfa.ParentHash and hfa.ParentSignature at-
tributes, although it can easily be extended to support multiple
parents or recursive ancestor lookups in the future.

5.4 Final System Design
In the previous subsections, the proposed methods of combin-
ing multiple ID’s, attributes, and policies have been discussed
on an individual basis. This subsection will explain how these
three concepts will fit together, and how this combined de-
sign has been implemented using Hyperledger Fabric. Figure
6 shows a simplified version of the final system architecture3.

Figure 6: Final system design3, combining all discussed concepts.
Certificate 1 is granted access to the resource since it satisfies the
defined access policy. Certificate 2 is granted access to the resource
since it contains the hfa.ParentHash and hfa.ParentSignature
attributes, which connects it to certificate 1. Certificate 3 is denied
access since it does not satisfy the access policy, while certificate 4
is denied access since it contains an invalid hash signature.

The final system design consists of four main components,
which will be described below.

Fabric CA Server A Fabric CA Server instance will be
used to issue certificates to various nodes and clients within
a particular organization. Fabric CA plays a key role
when combining multiple ID’s, as it is responsible for cre-
ating the basic X.509 certificates and their corresponding
private keys, as well as setting the hfa.ParentHash and
hfa.ParentSignature attributes if applicable.

Security Smart Contract The security smart contract is a
custom-made smart contract that has two responsibilities.

• First, this smart contract is responsible for maintaining
the “parent” X.509 certificates stored on the ledger, as
described in Section 5.1. Clients that want to combine

3More detailed version available at https://github.com/
daangordijn/Fabric-Access-Control/blob/master/images

https://github.com/daangordijn/Fabric-Access-Control/blob/master/images
https://github.com/daangordijn/Fabric-Access-Control/blob/master/images


two identities, e.g., identity A and identity B, have to in-
voke this smart contract with identity A. The smart con-
tract will then calculate the SHA-256 hash of the pro-
vided certificate, store it in the hashmap on the ledger,
and return the hash to the client. Now, the client can
calculate the signature and set the required attributes.

• Second, this smart contract can be invoked by other
smart contracts that live on the blockchain network
to determine whether a client satisfies a particular ac-
cess policy. Smart contracts can make use of the
ctx.stub.invokeChaincode()method to invoke this
security smart contract, provide the access policy that
has to be validated, and will then be returned a boolean
value indicating whether the client certificate satisfies
the specified policy. The internal logic of this smart con-
tract method is visualized on the right side in Figure 6.

Client Smart Contract(s) The client smart contracts are
basic smart contracts that allow clients of the blockchain net-
work to interact with the ledger. Examples of such smart
contracts are the asset-transfer or commercial-paper
chaincodes provided in the fabric-samples repository4.
While previously, these smart contracts had to imple-
ment their business logic to validate whether a client
has access to the requested resource, developers are now
able to simply invoke the security smart contract using
the ctx.stub.invokeChaincode() method of the Hyper-
ledger Fabric SDK, and use the returned boolean to allow or
deny the client from accessing the requested resource.

Client Application(s) The client applications are basic ap-
plications that allow clients of the blockchain network to
more easily interact with smart contracts, instead of having
to use the peer CLI. Examples of such client applications
are the asset-transfer or commercial-paper applica-
tions provided in the fabric-samples repository4. To client
applications, changes made to the proposed solution are not
visible, except for the fact that some X.509 certificates con-
taining valid hfa.ParentHash and hfa.ParentSignature
attributes will now be granted access, while they would pre-
viously have been denied access from the network.

In summary, this section has presented a solution for com-
bining multiple ID’s, attributes, and policies in Hyperledger
Fabric. Since this solution can be fully implemented using
a single smart contract, the core components of the Hyper-
ledger Fabric blockchain can remain unchanged. In the next
section, a performance analysis will be presented, which anal-
yses the increase in runtime due to the invocation and execu-
tion of the security smart contract.

6 Results
One of the most important considerations when proposing
a new implementation is to minimize the latency and maxi-
mize the transaction throughput. To objectively analyze these
performance indicators, two benchmarks of the implemented
smart contract were performed with the help of the Hyper-
ledger Caliper [33] blockchain benchmarking tool:

4Available at https://github.com/hyperledger/fabric-samples

• Basic: This benchmark analyzes the average latency and
throughput when the entity that submits the transaction
proposal can satisfy the access policy with its own X.509
attributes; and

• Parent: This benchmark analyzes the average latency
and throughput when the entity that submits the trans-
action proposal can only satisfy the access policy with a
parent certificate.

The exact configuration files that have been used to per-
form these two benchmarks can be found in the caliper di-
rectory of the public GitHub repository2.

During this study, all benchmarks were performed on a vir-
tual machine running Ubuntu 20.04 LTS, with a total RAM
memory of 8GiB. The results that have been obtained are
listed in Table 1 and visualized in Figure 7. All reports gen-
erated by Hyperledger Caliper can be found in the previously
mentioned GitHub repository.

Checks
(n)

Latency
(Basic)

Latency
(Parent)

Throughput
(Basic)

Throughput
(Parent)

1 0.04 0.05 93.3 85.9
10 0.04 0.05 98.8 90.7
50 0.04 0.05 103.0 94.1
100 0.04 0.05 100.9 89.9
500 0.06 0.06 82.5 75.4
1,000 0.07 0.07 68.3 66.8
5,000 0.17 0.19 30.0 26.1
10,000 0.31 0.37 18.0 15.1
50,000 1.51 1.66 3.9 3.3
100,000 3.12 3.40 1.8 1.5

Table 1: Average latency and throughput of the access control smart
contract, measured using the Hyperledger Caliper benchmarking
tool. Each row reports the measured latency and throughput asso-
ciated with validating the submitted X.509 certificate on the defined
access policy, which consists of n attribute checks.

As can be seen in the image, the average latency increases
linearly with the number of attribute checks that have to be
performed by the smart contract. On the contrary, the average
throughput decreases exponentially with this same number of
attribute checks. In addition, as can be seen in the image,
the performance corresponding to satisfying the access policy
with a parent X.509 certificate is slightly worse compared to
satisfying this same access policy with its own attributes.

Finally, to objectively quantify these benchmark results, a
base case was created and benchmarked using the same Hy-
perledger Caliper configuration. The smart contract method
invoked during this base case benchmark immediately re-
turned a Boolean value, without running any additional code.
Hyperledger Caliper reported the average latency of this
benchmark to be 0.04 seconds, and the average throughput
to be 102.1 transactions per second. Comparing these values
with the values listed in Table 1, it can be concluded that the
increase in latency and decrease in throughput is very small.
When keeping the number of attribute checks below 100,
which is considered to be sufficient in most real-world ap-
plications, the decrease in performance can be disregarded.

https://github.com/hyperledger/fabric-samples


Figure 7: Average latency and throughput of the access control smart contract, measured using the Hyperledger Caliper benchmarking tool.
The blue and grey lines respectively show the average latency and throughput that corresponds to the case where the submitting entity satisfies
the access policy with its own attributes, while the orange and yellow lines show the case where the access policy had to be satisfied with the
parent X.509 certificate, i.e., using the hfa.ParentHash and hfa.ParentSignature attributes.

7 Discussion
This section will discuss the process and technologies that
were used to achieve the results and conclusions described
in this paper. First, a literature study was conducted on ex-
isting literature in the field of secure access control within
blockchains, and in particular Hyperledger Fabric. For this,
several search queries have been defined, which are included
in Appendix A, and executed using Google Scholar. Ulti-
mately, it turned out that there was no existing literature that
specifically related to the research topic of combining ID’s,
attributes, and policies within Hyperledger Fabric.

Next, a concept solution was defined which could be used
to combine these IDs, attributes, and policies. Using Hy-
perledger Fabric’s smart contract technology, these concepts
were then implemented and rolled out on a local test network.
Subsequently, a demo application and demo smart contract
were implemented to analyze the behavior of these concepts.
Finally, the implementation was benchmarked using Hyper-
ledger Caliper, after which these results were analyzed and
compared to a base case. Based on these results, it was con-
cluded that for real-world scenarios, the performance impact
caused by the implemented smart contract is minimal.

8 Conclusions and Future Work
Traditional permissionless blockchain technologies are not
sufficient for enterprise-level applications, where privacy and
trust are critical. Hyperledger Fabric solves this issue by
being a permissioned blockchain technology and using con-
cepts such as identities, channels, and private data collections
to create this level of privacy and trust. One of the major
problems of Hyperledger Fabric is that its current access con-

trol mechanism is not flexible enough for business scenarios.
This study aimed to solve this issue by answering the research
question “How can secure access control in Hyperledger Fab-
ric be guaranteed by combining multiple ID’s, attributes, and
policies with the components that regulate access control?”

First, to combine multiple ID’s within Hyperledger Fabric,
a technique has been proposed that hashes and signs one cer-
tificate, referred to as the parent certificate, and adds this hash
and signature as attributes to another certificate. In addition,
this technique stores this full parent certificate in a hashmap
on the distributed blockchain ledger. Upon receiving a trans-
action proposal, smart contracts on the blockchain can re-
trieve this parent certificate from the distributed ledger and
verify ownership using the provided signature. Second, to
combine multiple attributes, a technique has been proposed
that created access policies using the policy check opera-
tors EQUALS and INCLUDES, which can be combined with the
Boolean operators AND, OR, and NOT. Finally, to combine mul-
tiple policies, a technique has been proposed that maintains
multiple policy definitions on the distributed ledger, which
can dynamically be selected as the validating policy depend-
ing on the method invoked with the transaction proposal.

Finally, in terms of performance, it has been established
that for real-world applications the performance impact is
negligible. For access policies with less than 100 attributes to
check, the increase in average latency is below 0.01 seconds
compared to the base case of always allowing access. How-
ever, an increase in average latency of 0.1 seconds has been
measured when comparing the case where the access policy
is satisfied with a client’s own attributes with the case where
the access policy is satisfied with a client’s parent certificate.



While this paper provides a fully working solution to solve
the identified problem, some potential improvements have
been identified that can be explored in future research:

• Although the benchmarks performed by Hyperledger
Caliper indicate that the performance impact caused by
the proposed implementation is minor, research could be
done into ways of improving the algorithms used to val-
idate access policies within the smart contract.

• Currently, the proposed implementation only allows
users to set one certificate as its parent certificate using
the hfa.ParentHash and hfa.ParentSignature at-
tributes. Future research could be done to study whether
multiple such parent certificates can be set, for example
by allowing array-typed values for these two attributes.

• Although the proposed implementation allows users to
define complex access policies by combining one or
more EQUALS or INCLUDES operators using the AND, OR,
and NOT operators, research could be done into ways of
allowing users to define even richer access policies.

• Currently, clients must store private key data using file
system wallets, which are considered insecure [34]. Fu-
ture research could be done to allow users to store their
private key data in Hardware Security Modules (HSM)
to improve the security of this data.

9 Responsible Research
This section will reflect on the ethical aspects and the repro-
ducibility of the study performed in this research paper.

9.1 Ethical Aspects
As described in Section 1, this study aims to present a way
to provide secure access control by combining multiple ID’s,
attributes, and policies within Hyperledger Fabric blockchain
networks. As a result, the most important ethical aspects rel-
evant to this study are the security and privacy of the Hyper-
ledger Fabric blockchain technology. While most traditional
blockchain technologies do not provide ways to easily estab-
lish privacy and trust on the network, Hyperledger Fabric en-
ables blockchain participants to identify each other through
the use of identities. In addition, Hyperledger Fabric allows
users to protect their data from other blockchain participants
through the use of channels and private data collections. Be-
cause of these innovative techniques, Hyperledger Fabric pro-
vides all the basic features that traditional blockchains can of-
fer, and builds upon these features to offer trust and privacy
on the blockchain network.

An important point in the context of ethical responsibility
is that this research aims to contribute to the security of Hy-
perledger Fabric by improving its access control mechanism.
While access control must currently be performed by validat-
ing individual X.509 certificates within smart contracts, the
solutions proposed in this paper allow smart contract devel-
opers to easily combine multiple ID’s, attributes, and poli-
cies during their access control decisions. This allows smart
contracts to make more fine-grained access control decisions,
which in turn makes it easier to adhere to the principle of
least privilege [35]. Therefore, the contributions of this paper

only aim to improve the security and privacy of Hyperledger
Fabric and can thus be considered ethically responsible.

9.2 Reproducibility
It is highly important that research is conducted in such a way
that it is reproducible. By allowing other researchers to re-
peat the study presented in this paper, all contributions and
results can objectively be validated. To guarantee the repro-
ducibility of this particular study, several measures have been
taken. First, Section 3 of this paper aims to provide an in-
depth explanation of the methodology that was used to arrive
at the final contributions. Second, the entire code-base that
has been implemented as part of this study has been made
publicly available on GitHub2. Finally, Section 6 presents the
raw benchmark data that has been obtained, which can also be
found in the README file inside the caliper directory of the
aforementioned GitHub repository. Thus, since all research
data is made publicly available, this study should be fully re-
producible by other researchers.



A Search Queries

Figure 8: Google Scholar search queries that have been used during the literature research, as described in [21]. First, five different search
queries have been defined, which were then combined using the “AND” operator.

B Ledger Data Format

Figure 9: Format of the data stored on the shared blockchain ledger. The first table represents the hashmap that stores X.509 certificates, as
described in Section 5.1. The second table represents the storage of application data, in this case metadata of files stored on IPFS.



References
[1] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic

Cash System,” Bitcoin.org, Oct. 2008. [Online]. Avail-
able: https://bitcoin.org/bitcoin.pdf.

[2] T. McGovern. “How Many Blockchains Are There In
2022?” (May 23, 2022), [Online]. Available: https: / /
earthweb.com/how-many-blockchains-are-there/.

[3] J. Kelleher. “Why Do Bitcoins Have Value?” (May 19,
2022), [Online]. Available: https://www.investopedia.
com / ask / answers / 100314 / why - do - bitcoins - have -
value.asp.

[4] J. Frankenfield. “Smart Contracts.” (May 19, 2022),
[Online]. Available: https : / /www.investopedia .com/
terms/s/smart-contracts.asp.

[5] D. Tapscott and A. Tapscott, The Blockchain Revolu-
tion: How the Technology Behind Bitcoin is Chang-
ing Money, Business, and the World. May 2016, ISBN:
978-0670069972.

[6] W. Cai, Z. Hong, Z. Wang, and C. Feng, “De-
centralized Applications: The Blockchain-Empowered
Software System,” IEEE Access, Oct. 2018. [On-
line]. Available: https : / / www . researchgate . net /
publication / 327711685 Decentralized Applications
The Blockchain-Empowered Software System.

[7] M. Xu, X. Chen, and G. Kou, “A Systematic Review
of Blockchain,” Financial Innovation, Jul. 2019. [On-
line]. Available: https://jfin-swufe.springeropen.com/
articles/10.1186/s40854-019-0147-z.

[8] L. Peng, W. Feng, Z. Yan, Y. Li, X. Zhou, and S.
Shimizu, “Privacy Preservation in Permissionless
Blockchain: A Survey,” Digital Communications
and Networks, May 2020. [Online]. Available:
https : / / www . researchgate . net / publication /
342455474 Privacy preservation in permissionless
blockchain A survey.

[9] Hyperledger. “Hyperledger Fabric Documentation.”
(May 6, 2022), [Online]. Available: https : / /
hyperledger-fabric.readthedocs.io/en/release-2.2/.

[10] National Institute of Standards and Technology.
“X.509 Public Key Certificate.” (Jun. 2, 2022), [On-
line]. Available: https://csrc.nist.gov/glossary/term/
x 509 public key certificate.

[11] S. Ding, J. Cao, C. Li, K. Fan, and H. Li, “A
Novel Attribute-Based Access Control Scheme Using
Blockchain for IoT,” IEEE Access, vol. 7, pp. 38 431–
38 441, 2019. DOI: 10.1109/ACCESS.2019.2905846.
[Online]. Available: https : / / ieeexplore . ieee . org /
document/8668769.

[12] S. Rouhani and R. Deters, “Blockchain Based Access
Control Systems: State of the Art and Challenges,”
in IEEE/WIC/ACM International Conference on Web
Intelligence, ser. WI ’19, Thessaloniki, Greece: As-
sociation for Computing Machinery, 2019, pp. 423–
428, ISBN: 9781450369343. DOI: 10.1145/3350546.
3352561. [Online]. Available: https://doi.org/10.1145/
3350546.3352561.

[13] L. Song, M. Li, Z. Zhu, P. Yuan, and Y. He, “Attribute-
Based Access Control Using Smart Contracts for
the Internet of Things,” Procedia Computer Science,
vol. 174, pp. 231–242, 2020, 2019 International Con-
ference on Identification, Information and Knowledge
in the Internet of Things, ISSN: 1877-0509. DOI: https:
/ / doi . org / 10 . 1016 / j . procs . 2020 . 06 . 079. [Online].
Available: https : / / www. sciencedirect . com / science /
article/pii/S1877050920315933.

[14] M. Yutaka, Y. Zhang, M. Sasabe, and S. Kasa-
hara, “Using Ethereum Blockchain for Distributed
Attribute-Based Access Control in the Internet of
Things,” in 2019 IEEE Global Communications Con-
ference (GLOBECOM), 2019, pp. 1–6. DOI: 10.1109/
GLOBECOM38437.2019.9014155.

[15] A. Iftekhar, X. Cui, Q. Tao, and C. Zheng, “Hyper-
ledger Fabric Access Control System for Internet of
Things Layer in Blockchain-Based Applications,” En-
tropy, vol. 23, no. 8, 2021, ISSN: 1099-4300. DOI: 10.
3390 /e23081054. [Online]. Available: https : / /www.
mdpi.com/1099-4300/23/8/1054.

[16] Z. Yang, D. Shao, L. Qu, and M. Zhang, “Inter-
net of Things Access Control System Based on Hy-
perledger,” Journal of Physics: Conference Series,
vol. 1748, no. 4, p. 042 031, Jan. 2021. DOI: 10.1088/
1742-6596/1748/4/042031. [Online]. Available: https:
//doi.org/10.1088/1742-6596/1748/4/042031.

[17] M. A. Islam and S. Madria, “A Permissioned
Blockchain Based Access Control System for IOT,”
in 2019 IEEE International Conference on Blockchain
(Blockchain), 2019, pp. 469–476. DOI: 10 . 1109 /
Blockchain.2019.00071.

[18] X. Zhao, S. Wang, Y. Zhang, and Y. Wang, “Attribute-
Based Access Control Scheme for Data Sharing on
Hyperledger Fabric,” Journal of Information Security
and Applications, vol. 67, p. 103 182, 2022, ISSN:
2214-2126. DOI: https : / / doi . org / 10 . 1016 /
j . jisa . 2022 . 103182. [Online]. Available: https :
/ / www . sciencedirect . com / science / article / pii /
S2214212622000643.

[19] IPFS. “IPFS Documentation.” (May 30, 2022), [On-
line]. Available: https://docs.ipfs.io/.

[20] H. D. Bandara, S. Chen, M. Staples, and Y. Sai,
“Modeling Multi-Layer Access Control Policies of a
Hyperledger-Fabric-Based Agriculture Supply Chain,”
in 2021 Third IEEE International Conference on Trust,
Privacy and Security in Intelligent Systems and Appli-
cations (TPS-ISA), 2021, pp. 355–364. DOI: 10.1109/
TPSISA52974.2021.00039.

[21] TU Delft Library. “Making A Search Plan.” (May 30,
2022), [Online]. Available: https : / / tulib . tudelft . nl /
searching-resources/making-a-search-plan.

[22] Hyperledger. “Using the Fabric Test Network.”
(May 30, 2022), [Online]. Available: https : / /
hyperledger - fabric . readthedocs . io / en / release - 2 . 2 /
test network.html.

https://bitcoin.org/bitcoin.pdf
https://earthweb.com/how-many-blockchains-are-there/
https://earthweb.com/how-many-blockchains-are-there/
https://www.investopedia.com/ask/answers/100314/why-do-bitcoins-have-value.asp
https://www.investopedia.com/ask/answers/100314/why-do-bitcoins-have-value.asp
https://www.investopedia.com/ask/answers/100314/why-do-bitcoins-have-value.asp
https://www.investopedia.com/terms/s/smart-contracts.asp
https://www.investopedia.com/terms/s/smart-contracts.asp
https://www.researchgate.net/publication/327711685_Decentralized_Applications_The_Blockchain-Empowered_Software_System
https://www.researchgate.net/publication/327711685_Decentralized_Applications_The_Blockchain-Empowered_Software_System
https://www.researchgate.net/publication/327711685_Decentralized_Applications_The_Blockchain-Empowered_Software_System
https://jfin-swufe.springeropen.com/articles/10.1186/s40854-019-0147-z
https://jfin-swufe.springeropen.com/articles/10.1186/s40854-019-0147-z
https://www.researchgate.net/publication/342455474_Privacy_preservation_in_permissionless_blockchain_A_survey
https://www.researchgate.net/publication/342455474_Privacy_preservation_in_permissionless_blockchain_A_survey
https://www.researchgate.net/publication/342455474_Privacy_preservation_in_permissionless_blockchain_A_survey
https://hyperledger-fabric.readthedocs.io/en/release-2.2/
https://hyperledger-fabric.readthedocs.io/en/release-2.2/
https://csrc.nist.gov/glossary/term/x_509_public_key_certificate
https://csrc.nist.gov/glossary/term/x_509_public_key_certificate
https://doi.org/10.1109/ACCESS.2019.2905846
https://ieeexplore.ieee.org/document/8668769
https://ieeexplore.ieee.org/document/8668769
https://doi.org/10.1145/3350546.3352561
https://doi.org/10.1145/3350546.3352561
https://doi.org/10.1145/3350546.3352561
https://doi.org/10.1145/3350546.3352561
https://doi.org/https://doi.org/10.1016/j.procs.2020.06.079
https://doi.org/https://doi.org/10.1016/j.procs.2020.06.079
https://www.sciencedirect.com/science/article/pii/S1877050920315933
https://www.sciencedirect.com/science/article/pii/S1877050920315933
https://doi.org/10.1109/GLOBECOM38437.2019.9014155
https://doi.org/10.1109/GLOBECOM38437.2019.9014155
https://doi.org/10.3390/e23081054
https://doi.org/10.3390/e23081054
https://www.mdpi.com/1099-4300/23/8/1054
https://www.mdpi.com/1099-4300/23/8/1054
https://doi.org/10.1088/1742-6596/1748/4/042031
https://doi.org/10.1088/1742-6596/1748/4/042031
https://doi.org/10.1088/1742-6596/1748/4/042031
https://doi.org/10.1088/1742-6596/1748/4/042031
https://doi.org/10.1109/Blockchain.2019.00071
https://doi.org/10.1109/Blockchain.2019.00071
https://doi.org/https://doi.org/10.1016/j.jisa.2022.103182
https://doi.org/https://doi.org/10.1016/j.jisa.2022.103182
https://www.sciencedirect.com/science/article/pii/S2214212622000643
https://www.sciencedirect.com/science/article/pii/S2214212622000643
https://www.sciencedirect.com/science/article/pii/S2214212622000643
https://docs.ipfs.io/
https://doi.org/10.1109/TPSISA52974.2021.00039
https://doi.org/10.1109/TPSISA52974.2021.00039
https://tulib.tudelft.nl/searching-resources/making-a-search-plan
https://tulib.tudelft.nl/searching-resources/making-a-search-plan
https://hyperledger-fabric.readthedocs.io/en/release-2.2/test_network.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/test_network.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/test_network.html


[23] ——, “What is Hyperledger Fabric?” (May 6, 2022),
[Online]. Available: https : / / hyperledger - fabric .
readthedocs.io/en/release-2.2/whatis.html.

[24] ——, “Hyperledger Fabric SDKs.” (May 30, 2022),
[Online]. Available: https : / / hyperledger - fabric .
readthedocs.io/en/release-2.2/fabric-sdks.html.

[25] Ethereum. “Smart Contract Languages.” (Jun. 8,
2022), [Online]. Available: https: / /ethereum.org/en/
developers/docs/smart-contracts/languages/.

[26] Hyperledger. “Blockchain Network.” (Jun. 8, 2022),
[Online]. Available: https : / / hyperledger - fabric .
readthedocs.io/en/release-2.2/network/network.html.

[27] B. Lutkevich. “What Is Access Control?” (Jun. 8,
2022), [Online]. Available: https : / / www. techtarget .
com/searchsecurity/definition/access-control0.

[28] M. Ed-Daibouni, A. Lebbat, S. Tallal, and H.
Medromi, “Toward a New Extension of the Ac-
cess Control Model ABAC for Cloud Computing,”
in Advances in Ubiquitous Networking, E. Sabir, H.
Medromi, and M. Sadik, Eds., Singapore: Springer
Singapore, 2016, pp. 79–89, ISBN: 978-981-287-990-
5.

[29] SSL.com. “What Is A Certificate Authority?” (Jun. 8,
2022), [Online]. Available: https://www.ssl.com/faqs/
what-is-a-certificate-authority/.

[30] International Telecommunication Union. “Public-Key
and Attribute Certificate Frameworks.” (Jun. 2, 2022),
[Online]. Available: https://www.itu.int/rec/T-REC-
X.509-201910-I/en.

[31] Hyperledger. “Fabric CA User’s Guide.” (Jun. 3,
2022), [Online]. Available: https://hyperledger-fabric-
ca.readthedocs.io/en/release-1.4/users-guide.html.

[32] KeyFactor. “What is PKI and How Does it Work?”
(Jun. 10, 2022), [Online]. Available: https : / / www .
keyfactor.com/resources/what-is-pki/.

[33] Hyperledger. “Hyperledger Caliper.” (Jun. 17, 2022),
[Online]. Available: https : / / hyperledger . github . io /
caliper/v0.5.0/getting-started/.

[34] Solana. “Command Line Wallets.” (Jun. 18, 2022),
[Online]. Available: https://docs.solana.com/wallet-
guide/cli.

[35] M. Gegick and S. Barnum. “Least Privilege.” (Jun. 17,
2022), [Online]. Available: https : / / www. cisa . gov /
uscert / bsi / articles / knowledge / principles / least -
privilege.

https://hyperledger-fabric.readthedocs.io/en/release-2.2/whatis.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/whatis.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/fabric-sdks.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/fabric-sdks.html
https://ethereum.org/en/developers/docs/smart-contracts/languages/
https://ethereum.org/en/developers/docs/smart-contracts/languages/
https://hyperledger-fabric.readthedocs.io/en/release-2.2/network/network.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/network/network.html
https://www.techtarget.com/searchsecurity/definition/access-control0
https://www.techtarget.com/searchsecurity/definition/access-control0
https://www.ssl.com/faqs/what-is-a-certificate-authority/
https://www.ssl.com/faqs/what-is-a-certificate-authority/
https://www.itu.int/rec/T-REC-X.509-201910-I/en
https://www.itu.int/rec/T-REC-X.509-201910-I/en
https://hyperledger-fabric-ca.readthedocs.io/en/release-1.4/users-guide.html
https://hyperledger-fabric-ca.readthedocs.io/en/release-1.4/users-guide.html
https://www.keyfactor.com/resources/what-is-pki/
https://www.keyfactor.com/resources/what-is-pki/
https://hyperledger.github.io/caliper/v0.5.0/getting-started/
https://hyperledger.github.io/caliper/v0.5.0/getting-started/
https://docs.solana.com/wallet-guide/cli
https://docs.solana.com/wallet-guide/cli
https://www.cisa.gov/uscert/bsi/articles/knowledge/principles/least-privilege
https://www.cisa.gov/uscert/bsi/articles/knowledge/principles/least-privilege
https://www.cisa.gov/uscert/bsi/articles/knowledge/principles/least-privilege

	Introduction
	Related Work
	Methodology
	Literature Research
	Implementation

	Current Implementation
	Hyperledger Fabric
	Secure Access Control
	Certificate Authorities (CAs)
	Membership Service Providers (MSPs)
	Generating Certificates

	Proposed Implementation
	Combining Attributes
	Combining Policies
	Combining ID's
	Final System Design

	Results
	Discussion
	Conclusions and Future Work
	Responsible Research
	Ethical Aspects
	Reproducibility

	Search Queries
	Ledger Data Format

