
Multi-inference on the Edge: Scheduling Networks with Limited Available
Memory

Jeroen Galjaard1 , Bart Cox1 , Lydia Chen2 , Amirmasoud Ghiassi2

EEMCS, Delft University of Technology
1{j.m.galjaard-1, b.a.cox}@student.tudelft.nl, 2{y.chen-10, c.ghiassi}@tudelft.nl

Abstract
The execution of multi-inference tasks on low-
powered edge devices has become increasingly
popular in recent years for adding value to data
on-device. The focus of the optimization of such
jobs has been on hardware, neural network ar-
chitectures, and frameworks to reduce execution
speed. However, it is yet not known how different
scheduling policies affect the execution speed of a
multi-inference job. An empirical study has been
performed to investigate the effects of scheduling
policies on multi-inference. The execution perfor-
mance information of multi-inference batch jobs
under combinations of loading and scheduling poli-
cies were determined under varying levels of con-
strained memory. These results were obtained us-
ing EdgeCaffe: a framework developed to exe-
cute Caffe networks on edge oriented devices. Our
research showed that a novel scheduling policy,
MEMA, can significantly reduce execution speed
under stringent memory availability. Overall, this
study demonstrates that scheduling policies can
significantly reduce the execution speed of multi-
inference jobs.

Keywords: Edge computing, Scheduling, Constrained memory,
Memory aware, Multi-inference, Convolutional neural networks

Introduction
Deep Neural Networks (DNN) are ubiquitously applied. Where this
was previously only possible on dedicated machines, recent tech-
nological advancements have resulted in a paradigm shift to edge
computing [1]. Such edge devices have limited processing power,
memory, and energy consumption available. Due to these limiting
factors, it may not be feasible to directly execute DNNs on such de-
vices. This problem gets even more prominent when multiple DNNs
are needed for a task, so-called multi-inference jobs. Insight in ways
of scheduling multi-inference jobs allows the optimization of infer-
ence execution time without making changes to existing DNNs. As
a result, allowing for more efficient computation on narrow memory
availability.

The optimization of edge-based multi-inference jobs is an ac-
tively researched topic. One of the earliest results came from
DeepEye, a wearable device capable of efficient offline multi-
inference [2]. DeepEye combines several optimization techniques,
such as DNN layer compression, network optimization, caching, and
a novel layer loading and execution policy [2], [3]. These two lat-
ter optimizations combine the execution and loading of DNN layers
with orthogonal resource requirements [2]. Effectively loading fully
connected layers while executing convolutional layers are being pro-
cessed. Thereby significantly optimizing resource utilization [3]. As
a result, DeepEye gains inference speed-ups of 1.7 and 1.88 times
over baseline performance for life-logging and video-assistance sce-
narios respectively [2]. Other approaches such as NestDNN ap-
proach the optimization by the introduction of a hierarchical com-
pressing scheme for DNNs to dynamically trade-off between exe-
cution speed and inference quality [4]. Resulting in a significant
reduction of the energy footprint and execution time of the eval-
uated multi-inference jobs [4, p. 124]. Other research by Xian and
Kim [5] approaches the optimization process by utilizing offline cal-
culated execution orders for a static set of networks on devices with
dedicated GPUs. Their solution, called DART, uses a pre-emptive
scheduling scheme for prioritized DNN execution with shared re-
sources [5].

However, it is currently not known yet what the advantages and
trade-offs are of different scheduling policies for multi-inference
workloads with limited memory. This paper contribution is the gen-
eration of insight into the effects of scheduling policies on memory-
constrained multi-inference pipelines. It does so using an empirical
investigation of the effects on the execution performance of schedul-
ing strategies. These scheduling policies are three well-known poli-
cies, as well as a novel memory aware policy. The paper is struc-
tured as follows. First, a general background of multi-inference and
is provided in section 1. Following that is a synopsis of the papers’
contribution. The results of the evaluated experiments are provided
in section 3. The results and ethical evaluation are provided in sec-

Delft University of Technology, In Partial Fulfilment of the Requirements For the Bachelor of Computer Science and Engineering

tion 3 and section 4 respectively. Following that is the discussion of
the results in section 5. The conclusion, section 6, and future work,
section 7, conclude the paper.

1 Background information
Two multi-inference scenarios were considered in which the execu-
tion time of different runtime configurations was recorded. Different
kinds of workloads were simulated through the use of five state-of-
the-art DNNs. The first scenario is concerned with the execution of
small batches, where a single image needs to be executed on a sub-
set of images. In the second scenario, a set of images needs to be
run on all five networks. These scenarios ran under different levels
of memory availability, ranging from relatively unrestricted to strin-
gent. The execution time of each performed batch was kept track for
analysis of performance using multi-way ANOVA tests.

1.1 Convolutional neural networks
The used DNNs, provided in subsection 3.1, are convolutional neu-
ral networks (CNN). CNNs are types of DNNs that, in addition to
fully connected layers, also contain pooling, subsampling, or con-
volutional layers. These latter types of layers are capable of extract-
ing increasingly complex features from the input of the network.
The output of these convolutional layers is then in turn processed
by fully connected layers to make classifications. By their con-
struction, fully connected layers require large amounts of parame-
ters compared with convolutional layers. As a result, the execution
of fully connected layers is IO-bound [2]. However, convolutional
layers require more computations, making that their processing time
is execution-bound.

1.2 Execution pipeline
To execute and record the performance of the multi-inference jobs,
the EdgeCaffe1 [6] framework was used. EdgeCaffe is developed
as an extension of the Caffe framework [7] to allow for more fine-
grained control of the execution of Caffe models. The status-quo
execution of DNNs starts by first loading the entire network into
memory and processing it afterward. EdgeCaffe, however, allows
for the loading and execution in a layer-by-layer fashion. Because
of this, for each layer two tasks are created, a load task and execu-
tion task. These tasks are created according to a layer loading policy,
as described in subsection 1.3. These layer loading policies dictate
the order in which DNN layers may be loaded and executed. Ad-
ditionally, a network initialization task is created, to allow for the
lazy initialization of network input. A more detailed overview the
internals of the EdgeCaffe runtime is provided in section 2.

ExecutesSchedulesArrives Worker

Worker

Worker

Orchestrator TaskPool

EdgeCaffe Runtime

InferenceTask

Network description
Input description

Figure 1: Global overview of EdgeCaffe’s runtime structure. In-
ference Tasks are delivered to the Orchestrator, which controls the
placement of sub-tasks in Taskpool, which are in turn consumed by
Worker threads.

In the EdgeCaffe runtime, Inference Tasks are managed by an Or-
chestrator. This Orchestrator places interence job’s subtasks in

1https://gitlab.com/bacox/edgecaffe

Taskpools for once they are eligible for execution. An abstract rep-
resentation of EdgeCaffe is provided in Figure 1. To allow for better
extension of scheduling policies the EdgeCaffe back-end was ex-
tended further to allow for fine-grained control of different schedul-
ing policies. More detail on how the scheduling process is per-
formed is given in section 2.

1.3 Layer loading policies
The current state of the art regarding the loading and executing of
DNN layers is set apart in this subsection. In EdgCaffe these load-
ing policies dictate dictates in which order tasks can be executed.
Allowing for varying degrees of freedom for a scheduling policy to
schedule tasks at runtime.

Bulk. The bulk layer loading policy is the status-quo approach in
DNN execution. As can be seen in Figure 2, the bulk policy gener-
ates task dependencies for an inference job according to two states.
In the first stage, the DNN input gets loaded, after which all the
network layers must be loaded into memory. Once this first stage
is complete, the execution tasks corresponding to the loaded layers
become eligible for scheduling.

I L1 L2 L3 E1 E2 E3

Figure 2: Bulk partitioning layer execution dependency graph. Once
the initialization task (I) is executed, the layer loading tasks can be
executed (Lx). After completing the Ln tasks, the layer execution
tasks (Ey) can scheduled.

Linear. Linear loading imposes task dependencies such that a layer
may only be loaded once the output of the preceding layer is avail-
able. Loading and executing layers in this fashion results in a com-
pletely interleaved execution of the loading and execution of infer-
ence sub-tasks. Figure 3 shows a graphical depiction of the linear
loading policy.

I L1 E1 L2 E2 L3 E3

Figure 3: Linear partitioning layer execution dependency graph.
Layers are loaded and executed in order of the position in the DNN,
requiring the preceding layer to be executed.

DeepEye. When the DeepEye loading policy is enabled, as de-
scribed in [2, p. 72], the Orchestrator creates task dependencies
such that convolutional layer can be executed during the loading of
a network’s fully connected layers. The DeepEye policy uses one
Taskpool to load and execute convolutional layers in a linear order,
while a second Taskpool can be used simultaneously to load fully
connected layers into memory. Doing so allows for partial amortiza-
tion of the loading time of fully connected layers over the execution
time of convolutional layers [2].

2

https://gitlab.com/bacox/edgecaffe

Convolutional layers

Fully connected layers

I

CL1 CE1 CL2 CE2

FL1 FL2 FL3 FE1 FE2 FE3

Figure 4: DeepEye layer loading dependency graphs as described by
[2, p. 72]. The convolutional layers are loaded (CLx) and executed
(CEx) in a linear fashion. During the processing of convolutional
layers, fully connected layers can be loaded (FLy) in advance to be
executed in bulk fashion later.

2 Scheduling under constrained memory
To allow for different types of scheduling policies to be evaluated,
EdgeCaffe was further extended with the SJF, LJF and MEMA pol-
icy. To this end a Scheduler class was introduced, which extracts
the logic related to Taskpool selection and execution order from the
Orchestrator and Taskpools. Additionally, expected memory utiliza-
tion based on the expected memory usage of tasks was added to the
Taskpools.
The execution of an inference job in the extended EdgeCaffe frame-
work is then as follows. First, an Inference Task gets registered by
the Orchestrator, which creates tasks according to the set layer load-
ing policy. Once these tasks are created, the execution is delegated
to the Scheduler. Which, during inference time, pins the tasks to the
available Taskpools. A detailed depiction of the EdgeCaffe runtime
is provided in Figure 5.

2.1 Partial loading
To allow for more freedom during task scheduling, the ‘partial load-
ing’ policy was used. With partial layer loading, the Orchestrator
creates inference sub-tasks such that layers can be arbitrarily loaded
upon network initialization. To prevent layers from being loaded be-
fore its network is initialized, an network and input initialization task
must be executed. In Figure 6 a graphical depiction of the EdgeCaffe
runtime is given.

2.2 Proposed MEMory Aware Scheduler (MEMA)
Memory Aware (MEMA) scheduling was created with the idea of
preventing memory over-allocation during execution. When a pro-
cess allocates more memory than is available results in having to
page to disk. These paging operations result in a time penalty that is
orders of magnitudes higher than direct memory access. The MEMA
policy aims at preventing over-allocation, delaying the initialization
of networks and layers to avoid racking up this penalty. As memory
requirements of a layer may exceed the available memory, execu-
tion with insufficient memory is allowed to a certain extend. This
is achieved by always allowing the scheduler to load one layer in
advance. As a result, the order in which layers are loaded matters.
With stringent memory availability in mind, it was chosen to load
layers in order of appearance in the network.

To keep track of the different loading and execution tasks that
may be scheduled, two prioritized lists of tasks are kept track of. One
for tracking load tasks, based on layer index, and another for execu-
tion tasks, based on expected throughput. This throughput priority is

2Memory throughput is calculated as the estimated needed mem-
ory over the estimated execution time of the Task.

3Returns whether a new network may be started (depending on
concurrency) the expected memory utilization does not exceed the
expected memory availability

Algorithm 1 Pseudo code for EdgeCaffe’s memory aware
(MEMA) scheduling policy.

1: procedure INITINFERENCETASK
2: inferenceTask ← NEXTJOB()
3: for all task ∈ inferenceTasks do
4: if taskINSTANCEOF(LOADTASK) then
5: Insert task into load . Prioritity queue using

task’s layerID.
6: else
7: Insert task into exec . Priority queue using

task’s expected memory throughput2.

8: procedure READYTASKS
9: while CANSTARTNEWINFERENCE() do 3

10: INITINFERENCETASK()

11: execTasks← READYEXECUTETASKS(exec)
12: loadTasks← READYTASKS(load)
13: return loadTasks, execTasks

14: procedure MEMA
15: exec, load← READYTASKS()
16: for all ∀task ∈ exec do
17: PINTASK(task)

18: while !OVERSPENDMEMORY() do
19: task ← NEXTTASK(load)
20: PINTASK(task)

calculated by the expected memory requirement of a layer, divided
by the expected computation time of the layer. The scheduler starts
by checking whether new load tasks and execution tasks have be-
come available since the last scheduling round. Loading tasks are
then prioritized by the corresponding layer index, forcing layers to
be loaded in an in-order fashion. Execution tasks are prioritized
separately by the expected throughput of the layer. This through-
put of a task is calculated by dividing the required memory by the
expected execution duration. Algorithm 1 provides pseudo-code for
the MEMA scheduling policy.

As MEMA requires performance data for effective scheduling,
data files must be provided to the scheduler. These files are gen-
erated offline by evaluating the performance of individual networks
on a device. These files were generated by recording the average
execution time of each DNN multiple times, in our case in 50 fold.
Additionally, the configuration files provide the expected memory
requirements for loading and executing each layer. These estimates
come in two-fold as well, again for the loading and the execution
of layer. The file sizes of the partial network layers were used as
estimates for loading a network. For the memory estimates for the
execution of layers, the memory analysis performed by Bouwer [8]
was used for the five networks.

2.3 Non-memory aware schedulers
First Come First Served (FCFS) is a greedy scheduling algorithm
that prioritizes tasks that are the longest waiting inline. The sched-
uler places the earliest submitted task with completed dependencies
on the earliest available TaskPool. In batched execution where tasks
are available from the start, this results in the execution in order of
submission.

Shortest and Longest Job First (SJF, LJF) greedily schedules
tasks in respectively increasing and decreasing order of expected

3

Orchestrator

InferenceSubTask
Net (Caffe)

Task

ExecTask

LoadTask

InitTask

TaskPoolWorker

Inference NetworkInference Task

Scheduler

Schedule ►

Create
network ►

Schedule
tasks ►

◄ Execute
Task

Create tasks ►

Create
subtasks ►

Create
Network ►

Figure 5: Detailed overview of the EdgeCaffe Orchestrator, Scheduler, and Taskpools. The Orchestrator keeps a collection of InferenceTasks,
which are delegated to the scheduler for placement on the available Taskpools. Inference tasks get divided into Network initialization (Init),
layer loading (Load), and layer execution (Exec) Tasks.

I L1

E1

L2

E2

L3

E3

Figure 6: Partial partitioning layer execution dependency graph. Af-
ter the initialization task (I) is executed, layer loading tasks (Lx) can
be scheduled in arbitrary order. Execution tasks (Ey) can be sched-
uled once the corresponding network layer is loaded.

execution duration. SJF’s approach minimizes the average waiting
time of tasks, as no task has to wait for the longest available task.
Whereas LJF provides a guarantee that the longest tasks have
minimal waiting time. Both these scheduling policies require
additional information for each task in order to schedule effectively.

3 Results
Two types of batched multi-inference were considered. The first
scenario evaluated the inference time of running a set of DNNs on
an input image (500x500). The second scenario considers the ex-
ecution of multiple images (500x500) on all five neural networks.
Both these types of batched execution were evaluated under vary-
ing memory availability, with both serial and parallel execution of
networks. A summary of the investigated runtime configurations is
given in Table 1.

3.1 Deep Neural Networks
During the evaluation of the scheduling policies, five DNNs were
used. The chosen networks are capable of extracting meaning and
context from images. An overview of the general description of the
architecture of the used networks is provided in Table 2. Here fol-
lows a short overview of the used networks.

AgeNet and GenderNet [9]: the AgeNet and GenderNet networks
trained to estimate the age and gender of subjects in images. The
used implementation was provided by the original authors, which is

Parameter Values/input
Parallelism 1 - 2 (number of allowed concurrent

networks)
Memory 1G, 512M, 256M (RAM)
Scheduling FCFS, SJF, LJF, Memory Aware
Loading Bulk, Partial, Linear, DeepEye

Small batches 3 - 5 (subsets of the 5 networks)
Large batches 1, 2, 4, 8 (number of images)

Table 1: Runtime configuration parameters of the evaluated small
and large batches. Each combination of these values were run in 20
fold to gather data for performance analysis.

publicly accessible on the Caffe Model Zoo.

FaceNet [10]: FaceNet is a DNN specialized in the detection of
faces in different poses in images. As the implementation by the au-
thors is not available to the public, the implementation by Guo [11]
was used.

Salient Object Subitizing [12]: the two used Caffe models for
Salient object subitizing were created by the original authors of the
accompanying paper. The two networks SoS and SoS_GoogleNet
are based on the AlexNet [13] and GoogleNet [14] network struc-
tures respectively. The used Caffe models are publicly available
through the authors’ site.

Model Size (Disk) Architecture

AgeNet 43.5 MiB conv4:12 fc5:8
GenderNet 43.5 MiB conv:12 fc:8
FaceNet 217.0 MiB conv:16 fc:8
SoS 217.0 MiB conv:16 fc:6
SoS_GoogleNet 22.8 MiB conv:10 fc:142

Table 2: Description of the used deep neural networks in the batch
execution scenarios. (AgeNet and GenderNet [9], FaceNet [10],
[11], SoS and SoS_GoogleNet [12]).

4

3.2 System specifications
The experiments were performed using virtual machines (VMware),
which were executed on HP ZBook G4 Studio equipped with an In-
tel i7-7700HQ processor and NVME drive. For the small batches
two parallel virtual machines were used, each with 2 virtual cores, 4
GB RAM and 40 GB disk space running Ubuntu (18.04). The evalu-
ation of the large batches was run on a single virtual machine, which
was provided with 2 additional cores. These machines executed the
extended version of EdgeCaffe using Caffe version 1.0.0 with Open-
Blas (0.2.20) as backend. To simulate the varying levels of memory
availability Linux cgroups were used, which was allowed to use up
to 4 GB of memory including swap space.

3.3 Constraining memory
To gain insight into the effects of constraining memory on the in-
dividual networks, the runtime of the used neural networks was
evaluated under four memory configurations. Table 3 provides an
overview of the average speed-up factor on the average runtime a
single DNN at a time. The data shows that at relatively uncon-
strained memory, the partial loading policy is favourable, with the
exception of the MEMA policy at 1G. The other layer loading poli-
cies also show minor impact by the chosen scheduling policies.
Again with the exception of MEMA at 1G of memory.

When considering tighter memory constraints, at 512M and
256M, partial loading paired with MEMA scheduling performs well
again. This contrasts with the trend visible in the other schedul-
ing policies with partial loading, which degrade in performance gain
quickly. The performance gain of DeepEye stays relatively constant
under the various loading schemes.

Layer
loading

Scheduling
policy 2G 1G 512M 256M

bulk

fcfs 1.00 1.00 1.00 1.00
ljf 1.00 1.00 1.00 0.99
memory 1.01 1.01 1.01 1.00
sjf 1.01 1.01 1.00 1.00

deepeye

fcfs 0.92 0.91 0.91 0.88
ljf 0.93 0.92 0.92 0.87
memory 0.91 1.02 1.00 0.92
sjf 0.92 0.91 0.91 0.88

linear

fcfs 1.00 1.00 1.00 0.91
ljf 1.01 1.01 1.01 0.92
memory 1.01 1.01 1.01 0.92
sjf 1.01 1.01 1.01 0.92

partial

fcfs 0.77 0.77 0.89 1.15
ljf 0.78 0.77 0.90 1.16
memory 0.80 0.92 0.95 0.91
sjf 0.76 0.75 0.85 1.16

Table 3: Average inference speed gain of runtime combinations of
layer loading policies and scheduling policies, relative to Bulk load-
ing with FCFS (status-quo). MEMA performs well at relatively un-
constrained as well as stringent memory availabilities. Further, it
can be seen that the partial loading scheme combined with greedy
scheduling policies deteriorates in its performance.

4Convolutional layers (conv).
5Fully connected layers (fc).

3.4 Small batch evaluation
After considering the performance of the DNNs under constrained
execution, the small batched jobs were evaluated. As can be seen
in Figure 9, it is apparent that decreasing the memory availability
negatively impacts the execution runtime. This increase is slight
when reducing memory from 2G to 1G. But even more evident when
the memory is reduced further to 512M and 256M (see Figure 8).
Some even more than doubled in their execution time. At 512M
and lower the execution of networks does generally not benefit from
executing networks concurrently.

The linear layer loading method shows not to be affected by dif-
ferent scheduling policies. Although its execution time in the uncon-
strained environment is relatively high, it starts to perform compara-
bly to the other layer loading schemes with limited memory. Bulk,
DeepEye, and partial loading show a steeper increase in execution
time when memory is restricted when MEMA is not enabled, as can
be seen in Figure 9c and Figure 9d illustrate. This trend becomes
more evident when parallel execution is allowed, which generally
shows a degradation in inference speed. The exception to this is the
MEMA policy, which is less affected by allowing parallel execution
at 512M (see Figure 9c, and not at all at 256M (Figure 8b).

An overview of the performed four-way ANOVA-test is given
in Table 4. Its result stresses the effects of limiting memory (F(2,
30624) = 6581.61, p = 0) as well as the different layer loading poli-
cies. Besides, it provides evidence that scheduling policies affect
execution time is limited when compared to the contribution that the
different layer loading policies provide.

df F PR(>F)

memory 2 6581.61 0.00e+00
splitting 3 89.11 2.06e-57
schedule 3 54.99 1.93e-35
parallel 1 193.49 7.47e-44

memory:splitting 6 123.62 4.69e-155
memory:scheduling 6 44.12 5.08e-54
splitting:scheduling 9 9.76 4.69e-15
memory:parallel 2 205.16 3.11e-89
splitting:parallel 3 23.86 2.05e-15
scheduling:parallel 3 25.88 1.03e-16

memory:splitting:scheduling 18 8.91 8.33e-25
memory:splitting:parallel 6 37.38 1.87e-45
memory:scheduling:parallel 6 20.00 1.83e-23
splitting:scheduling:parallel 9 3.57 1.89e-04

all 18 3.61 3.23e-07
Residual 30624

Table 4: ANOVA test result of the small batches using the memory
available (memory), layer loading policy (splitting), scheduling pol-
icy (schedule) and concurrent networks (parallel) as categories for
the the execution time. The execution time was normalized by the
count of layers within an executed batch. Although significant, the
scheduling policy shows a smaller contribution to the explainability
than compared to the other runtime parameters.

5

1 2 4 8
Batch size (images)

0

10

20

30

40

50

Ti
m

e
(s

)
mode = memory

1 2 4 8
Batch size (images)

mode = ljf

1 2 4 8
Batch size (images)

mode = sjf

1 2 4 8
Batch size (images)

splitting = partial
splitting = partial

mode = fcfs
Batch execution time partial loading with 2G memory

Max concurrent
networks

1
2

(a) With 2G of available memory, all scheduling policies perform comparable to another under the provided workloads.

1 2 4 8
Batch size (images)

0

20

40

60

Ti
m

e
(s

)

mode = memory

1 2 4 8
Batch size (images)

mode = ljf

1 2 4 8
Batch size (images)

mode = sjf

1 2 4 8
Batch size (images)

splitting = partial
splitting = partial

mode = fcfs
Batch execution time partial loading with 1G memory

Max concurrent
networks

1
2

(b) Although the greedy scheduling policies show comparable execution times, the MEMA seems to stagnate at this lower level of memory
availability.

Figure 7: Multi-inference execution speed (seconds) under a non memory-constrained execution environment. Each bar represents the
average of 20 independent runs. Choosing different scheduling policies at these levels does not show significant improvement over baseline
performance. However, MEMA shows an increase in execution time at 1G.

3.5 Large batch evaluation
Batches of 1, 2, 4, and 8 images were run using the partial layer
loading policy paired with the scheduling policies. We continue the
results by looking into the effects of scheduling policies when larger
batches of inference tasks need to be executed under limited mem-
ory.

Figure 7 illustrates the limited impact of scheduling policies when
the execution is relatively unconstrained. With sufficiently large
memory availability, as Figure 7a showcases, all scheduling poli-
cies perform similarly. All scheduling policies show a reduction in
execution time when networks are allowed to run concurrently. Fig-
ure 7b shows a slight increase in average execution time for the batch
jobs over execution with 2G (see Figure 7a). However, the MEMA
does not show an improvement when compared with the other poli-
cies as concurrent network execution is allowed.

When memory is restricted further, as can be seen in Figure 8, the
average execution time shows a considerable increase in execution
duration. In Figure 8a, all scheduling policies perform compara-
bly and show a global increase in execution time when networks
are run concurrently. This penalty of concurrent execution increases
as memory is constrained to even lower levels, as can be seen in
Figure 8b. Compared to the deterioration in execution speed expe-
rienced by FCFS, SJF, and LJF, MEMA experiences this to a lesser
degree. At 256M MEMA requires significantly less time to complete
inference jobs than the greedy scheduling algorithms.

With the collected data a three-way ANOVA test was performed.
Using the memory availability, scheduling mode, and concurrency
as predictors for execution time normalized by the batch size. An
overview of the results from the ANOVA test is given in Table 5.
From these results, it can be seen that the trend seen by decreasing

df F PR(>F)

memory 3 46708.28 0.00e+00
scheduling 3 525.91 7.61e-258
parallel 1 35.07 3.69e-09

memory:scheduling 9 603.89 0.00e+00
memory:parallel 3 474.92 4.41e-238
scheduling:parallel 3 14.93 1.26e-09

all 9 34.50 2.15e-57
Residual 2208

Table 5: ANOVA test summary of the large batches. The execution
time was normalized by the number of images in the batch. Using
the memory available (memory), layer loading policy (splitting) and
scheduling policy (schedule) as predictors for the the execution time.
The execution time was normalized by the batch size.

6

1 2 4 8
Batch size (images)

0

20

40

60

80

Ti
m

e
(s

)
mode = memory

1 2 4 8
Batch size (images)

mode = ljf

1 2 4 8
Batch size (images)

mode = sjf

1 2 4 8
Batch size (images)

splitting = partial
splitting = partial

mode = fcfs
Batch execution time partial loading with 512M memory

Max concurrent
networks

1
2

(a) At 512M the networks start to become resource constrained during execution. MEMA scheduling shows a slight edge over the other
scheduling policies.

1 2 4 8
Batch size (images)

0

50

100

150

200

Ti
m

e
(s

)

mode = memory

1 2 4 8
Batch size (images)

mode = ljf

1 2 4 8
Batch size (images)

mode = sjf

1 2 4 8
Batch size (images)

splitting = partial
splitting = partial

mode = fcfs
Batch execution time partial loading with 256M memory

Max concurrent
networks

1
2

(b) With MEMA scheduling enabled, batches are executed considerably faster. The other greedy scheduling policies perform comparable to
one another.

Figure 8: Multi-inference execution speed (seconds) under a resource-constrained execution environment. Each bar represents the average of
20 independent runs. At more constrained memory availability, MEMA shows to significantly decrease execution time.

the memory is confirmed by the ANOVA test. Additionally, it can
be seen that the execution time is significantly influenced by the se-
lected scheduling policy under varying levels of memory constraint,
confirming the trends observed in Figure 7 and Figure 8.

4 Ethics
During the execution of the research care was taken to localize and
address ethical aspects. Given the lack of data collection or human
computer interaction during the research, no privacy related issues
are relevant. As such we focus on the epistemic problems that relate
to the repeatability of the conducted experiments.

The research is based on Caffe the caffe framework and DNNs
developed for Caffe named Caffe models. Caffe is open-source and
accessible to the public under the 2-Clause BSD License, as such
the used Caffe code allows the inclusion in the EdgCaffe framework
for research purposes. The used Caffe models needed for workload
eveluation were obtained through the the Caffe ModelZoo6. The
used networks are released under a license that permit re-use and
adaption.

The EdgeCaffe framework and source code used for this research
is not yet available to the public. Its release to the public is at the time
of writing aimed at September 2020, accompanied with a comple-
mentary paper evaluating its performance. The EdgeCaffe contains,
besides the core of the EdgeCaffe framework, a modified version of
Caffe needed for EdgeCaffe bindings. Additionally the scripts used
to gather the data are contained there as well. To allow for better
reproducibility of the performed work, the repository includes in-
structions to setup an environment similar to the one used during the

6https://github.com/BVLC/caffe/wiki/Model-Zoo

evaluation. As such we consider that care has been taken to allow
for a repeatable evaluation of memory constrained multi-inference.

5 Discussion
In this paper, the extent to which scheduling policies affect multi-
inference execution performance with limited memory was investi-
gated. This was done by collecting the average execution of DNNs
on varying degrees of constrained memory. The findings of the
study show that scheduling policies can significantly affect the ex-
ecution speed of constrained memory multi-inference jobs. The ef-
fects of scheduling policies become more pronounced when memory
is stringent or larger volumes of input are processed. In these cases,
conservative layer loading policies such as linear loading, as well
as the novel MEMA scheduler have significantly shorter inference
speed over baseline performance.

The utilization of the DeepEye policy resulted in considerable
performance improvements over bulk execution. However, the
speed gain reported by Mathur et al. [2] was not achieved. We con-
sider that this is caused by a lower degree of concurrency, and further
evaluation would be needed to confirm this. Other approaches, such
as Neurosurgeon [15] and EdgeBatch [16], also focus on energy
consumption during execution. Conducting such measurements on
execution would be a valuable addition to allow for a more com-
plete evaluation of different scheduling policies. Other resource-
aware scheduling policies exist, albeit at different levels of abstrac-
tion. MCDNN approaches edge multi-inference with partial cloud
offloading by scheduling with the ability to manage power, latency,
and monetary budgets for multi-inference tasks [17]. NestDNN at-
tacks it from a different angle, using the dynamic selection of hier-
archically compressed networks to schedule within its resource bud-
get [4]. Although these approaches also utilize a resource-aware

7

https://github.com/BVLC/caffe/wiki/Model-Zoo

scheduling policy, they focus on a network-by-network execution
approach. A distributed approach named DeepThings utilizes shared
computation to speed up and execute DNNs even exceeding a single
device available memory [18]. However, this framework is meant
for scheduling tasks on a cluster of Internet of Things (IoT) de-
vices [18].

The performed evaluations and the MEMA scheduler have some
limitations. The discovery of execution starvation could not be ad-
dressed in the evaluation addressing this issue would improve the
performance of the MEMA policy. The performance dip at 1G ex-
perienced by MEMA seems to be caused by an underestimation of
memory availability. Solutions for these points were drafted up, but
could not be included in the performance evaluation due to time con-
straints. Aside from performance, the scheduler is dependent on of-
fline generated data. Doing so requires a one-time initialization pro-
cedure, using a model to estimate layer execution time and memory
usage would allow for the more general applicability of the sched-
uler. The evaluation gives limited insight into benefits from paral-
lelism at higher levels of memory availability. We consider that run-
ning evaluations with higher degrees of concurrent execution would
be a valuable addition.

6 Conclusion
In this paper, the effects of scheduling policies on memory-
constrained multi-inference jobs were investigated. Besides two pre-
existing used policies, also a new so-called memory aware (MEMA)
scheduler was introduced. MEMA performs online scheduling based
on offline gathered performance data of DNN layer loading and
execution. This study shows that multi-inference jobs under strin-
gent memory availability can benefit from resource-aware schedul-
ing policies such as MEMA.

7 Future work
Different kinds of evaluations were left for the future for the inter-
est of time. Evaluating the performance of more neural networks
using different kinds of input would be of interest. Doing so would
allow us to gain insight into how types of neural networks benefit
from different scheduling policies. Furthermore, simulating differ-
ent execution environments (i.e. when EdgeCaffe is one of many
processes) would be considered as a valuable extension of the per-
formed research.

Besides the exploration of different types of execution environ-
ments, also evaluation of different hardware platforms, such as
ARM-based platforms, is considered to be a valuable addition. Do-
ing so would allow us to establish whether the effects observed dur-
ing this study generalize over different hardware platforms. Alter-
natively, testing on devices with other types of storage would allow
us to better evaluate the time penalty of paging to disk during exe-
cution.

Acknowledgement
We want to express our gratitude to Dr. Lydia Chen for her time
and insight. Dr. Chen’s enthusiastic approach and refreshing angles
of attack during the research were an invaluable for the setup and
process of the research.

References
[1] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge,

J. Mars, and L. Tang, “Neurosurgeon: Collaborative in-
telligence between the cloud and mobile edge”, in Pro-
ceedings of the Twenty-Second International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems - ASPLOS ’17, ACM
Press, 2017, pp. 615–629, ISBN: 978-1-4503-4465-4.
DOI: 10.1145/3037697.3037698. [Online]. Available:
http : / / dl . acm . org / citation . cfm ? doid = 3037697 .
3037698.

[2] A. Mathur, N. D. Lane, S. Bhattacharya, A. Boran, C.
Forlivesi, and F. Kawsar, “DeepEye: Resource efficient
local execution of multiple deep vision models using
wearable commodity hardware”, in Proceedings of the
15th Annual International Conference on Mobile Sys-
tems, Applications, and Services, ser. MobiSys ’17, Ni-
agara Falls, New York, USA: Association for Comput-
ing Machinery, Jun. 16, 2017, pp. 68–81, ISBN: 978-
1-4503-4928-4. DOI: 10.1145/3081333.3081359. [On-
line]. Available: https : / / doi . org / 10 . 1145 / 3081333 .
3081359 (visited on 04/20/2020).

[3] N. D. Lane, S. Bhattacharya, A. Mathur, P. Georgiev,
C. Forlivesi, and F. Kawsar, “Squeezing deep learn-
ing into mobile and embedded devices”, IEEE Perva-
sive Computing, vol. 16, no. 3, pp. 82–88, 2017, ISSN:
1558-2590. DOI: 10.1109/MPRV.2017.2940968.

[4] B. Fang, X. Zeng, and M. Zhang, “NestDNN:
Resource-aware multi-tenant on-device deep learning
for continuous mobile vision”, in Proceedings of the
24th Annual International Conference on Mobile Com-
puting and Networking, ser. MobiCom ’18, New Delhi,
India: Association for Computing Machinery, Oct. 15,
2018, pp. 115–127, ISBN: 978-1-4503-5903-0. DOI:
10.1145/3241539.3241559. [Online]. Available: https:
/ / doi . org / 10 . 1145 / 3241539 . 3241559 (visited on
04/21/2020).

[5] Y. Xiang and H. Kim, “Pipelined data-parallel cpu/gpu
scheduling for multi-dnn real-time inference”, in 2019
IEEE Real-Time Systems Symposium (RTSS), 2019,
pp. 392–405.

[6] B. Cox, Edgecaffe, https://gitlab.com/bacox/edgecaffe,
2019.

[7] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J.
Long, R. Girshick, S. Guadarrama, and T. Darrell,
“Caffe: Convolutional architecture for fast feature em-
bedding”, in Proceedings of the 22nd ACM Interna-
tional Conference on Multimedia, ser. MM ’14, Or-
lando, Florida, USA: Association for Computing Ma-
chinery, 2014, pp. 675–678, ISBN: 9781450330633.
DOI: 10.1145/2647868.2654889. [Online]. Available:
https://doi.org/10.1145/2647868.2654889.

[8] H. Brouwer, “Modeling inference time of deep neural
networks on resource-constrained systems”, Jun. 2020.

[9] G. Levi and T. Hassncer, “Age and gender classifi-
cation using convolutional neural networks”, in 2015
IEEE Conference on Computer Vision and Pattern

8

https://doi.org/10.1145/3037697.3037698
http://dl.acm.org/citation.cfm?doid=3037697.3037698
http://dl.acm.org/citation.cfm?doid=3037697.3037698
https://doi.org/10.1145/3081333.3081359
https://doi.org/10.1145/3081333.3081359
https://doi.org/10.1145/3081333.3081359
https://doi.org/10.1109/MPRV.2017.2940968
https://doi.org/10.1145/3241539.3241559
https://doi.org/10.1145/3241539.3241559
https://doi.org/10.1145/3241539.3241559
https://gitlab.com/bacox/edgecaffe
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1145/2647868.2654889

Recognition Workshops (CVPRW), IEEE, Jun. 2015,
pp. 34–42, ISBN: 978-1-4673-6759-2. DOI: 10.1109/
CVPRW. 2015 . 7301352. [Online]. Available: http : / /
ieeexplore.ieee.org/document/7301352/.

[10] S. S. Farfade, M. J. Saberian, and L.-J. Li, “Multi-
view face detection using deep convolutional neural
networks”, in Proceedings of the 5th ACM on Inter-
national Conference on Multimedia Retrieval - ICMR
’15, ACM Press, 2015, pp. 643–650, ISBN: 978-1-
4503-3274-3. DOI: 10.1145/2671188.2749408. [On-
line]. Available: http://dl.acm.org/citation.cfm?doid=
2671188.2749408.

[11] A. Guo, Facedetection_cnn, 2015. [Online]. Available:
https : / / github . com / guoyilin / FaceDetection _ CNN /
commits/master.

[12] J. Zhang, S. Ma, M. Sameki, S. Sclaroff, M. Betke, Z.
Lin, X. Shen, B. Price, and R. Mech, “Salient object
subitizing”, arXiv:1607.07525 [cs], Jul. 2016, arXiv:
1607.07525. [Online]. Available: http://arxiv.org/abs/
1607.07525.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Ima-
genet classification with deep convolutional neural net-
works”, in Advances in neural information processing
systems, 2012, pp. 1097–1105.

[14] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-
novich, “Going deeper with convolutions”, in Proceed-
ings of the IEEE conference on computer vision and
pattern recognition, 2015, pp. 1–9.

[15] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge,
J. Mars, and L. Tang, “Neurosurgeon: Collaborative in-
telligence between the cloud and mobile edge”, ACM
SIGARCH Computer Architecture News, vol. 45, no. 1,
pp. 615–629, 2017.

[16] D. Zhang, N. Vance, Y. Zhang, M. T. Rashid, and
D. Wang, “Edgebatch: Towards ai-empowered opti-
mal task batching in intelligent edge systems”, in 2019
IEEE Real-Time Systems Symposium (RTSS), IEEE,
Dec. 2019, pp. 366–379, ISBN: 978-1-72816-463-2.
DOI: 10 . 1109 / RTSS46320 . 2019 . 00040. [Online].
Available: https : / / ieeexplore . ieee . org / document /
9052125/.

[17] S. Han, H. Shen, M. Philipose, S. Agarwal, A.
Wolman, and A. Krishnamurthy, “MCDNN: An
approximation-based execution framework for deep
stream processing under resource constraints”, in Pro-
ceedings of the 14th Annual International Confer-
ence on Mobile Systems, Applications, and Services,
ser. MobiSys ’16, Singapore, Singapore: Association
for Computing Machinery, Jun. 20, 2016, pp. 123–136,
ISBN: 978-1-4503-4269-8. DOI: 10 . 1145 / 2906388 .
2906396. [Online]. Available: https://doi.org/10.1145/
2906388.2906396 (visited on 04/21/2020).

[18] Z. Zhao, K. M. Barijough, and A. Gerstlauer,
“Deepthings: Distributed adaptive deep learning infer-
ence on resource-constrained iot edge clusters”, IEEE
Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 37, no. 11, pp. 2348–2359,
Nov. 2018, ISSN: 0278-0070, 1937-4151. DOI: 10 .
1109/TCAD.2018.2858384.

9

https://doi.org/10.1109/CVPRW.2015.7301352
https://doi.org/10.1109/CVPRW.2015.7301352
http://ieeexplore.ieee.org/document/7301352/
http://ieeexplore.ieee.org/document/7301352/
https://doi.org/10.1145/2671188.2749408
http://dl.acm.org/citation.cfm?doid=2671188.2749408
http://dl.acm.org/citation.cfm?doid=2671188.2749408
https://github.com/guoyilin/FaceDetection_CNN/commits/master
https://github.com/guoyilin/FaceDetection_CNN/commits/master
http://arxiv.org/abs/1607.07525
http://arxiv.org/abs/1607.07525
https://doi.org/10.1109/RTSS46320.2019.00040
https://ieeexplore.ieee.org/document/9052125/
https://ieeexplore.ieee.org/document/9052125/
https://doi.org/10.1145/2906388.2906396
https://doi.org/10.1145/2906388.2906396
https://doi.org/10.1145/2906388.2906396
https://doi.org/10.1145/2906388.2906396
https://doi.org/10.1109/TCAD.2018.2858384
https://doi.org/10.1109/TCAD.2018.2858384

A Small batch execution performance

0

20

40

60

80

Ti
m

e
(m

s /
 la

ye
r)

schedule = memory schedule = ljf schedule = sjf

splitting = deepeye
splitting = deepeye

schedule = fcfs

0

20

40

60

80

Ti
m

e
(m

s /
 la

ye
r) splitting = bulk

splitting = bulk

0

20

40

60

80

Ti
m

e
(m

s /
 la

ye
r) splitting = linear

splitting = linear

59 61 63 66 83 18
9

19
1

19
3

19
4

19
6

19
8

21
1

21
3

21
5

21
8

23
5

Number of layers

0

20

40

60

80

Ti
m

e
(m

s /
 la

ye
r)

59 61 63 66 83 18
9

19
1

19
3

19
4

19
6

19
8

21
1

21
3

21
5

21
8

23
5

Number of layers

59 61 63 66 83 18
9

19
1

19
3

19
4

19
6

19
8

21
1

21
3

21
5

21
8

23
5

Number of layers

59 61 63 66 83 18
9

19
1

19
3

19
4

19
6

19
8

21
1

21
3

21
5

21
8

23
5

Number of layers

splitting = partial
splitting = partial

Small batch performance with 2G memory

Max concurrent
networks

1
2

(a) Comparison of the runtime of the small batches at 1G of available memory. The scheduling policies perform comparable
per splitting policy for serial execution of inference tasks, whilst the MEMA scheduler does not show a reduction in execution
time when allowing concurrent execution.

10

0

20

40

60

80

Ti
m

e
(m

s /
 la

ye
r)

schedule = memory schedule = ljf schedule = sjf

splitting = deepeye
splitting = deepeye

schedule = fcfs

0

20

40

60

80

Ti
m

e
(m

s /
 la

ye
r) splitting = bulk

splitting = bulk

0

20

40

60

80

Ti
m

e
(m

s /
 la

ye
r) splitting = linear

splitting = linear

59 61 63 66 83 18
9

19
1

19
3

19
4

19
6

19
8

21
1

21
3

21
5

21
8

23
5

Number of layers

0

20

40

60

80

Ti
m

e
(m

s /
 la

ye
r)

59 61 63 66 83 18
9

19
1

19
3

19
4

19
6

19
8

21
1

21
3

21
5

21
8

23
5

Number of layers

59 61 63 66 83 18
9

19
1

19
3

19
4

19
6

19
8

21
1

21
3

21
5

21
8

23
5

Number of layers

59 61 63 66 83 18
9

19
1

19
3

19
4

19
6

19
8

21
1

21
3

21
5

21
8

23
5

Number of layers

splitting = partial
splitting = partial

Small batch performance with 1G memory

Max concurrent
networks

1
2

(b) Comparison of the runtime of the small batches at 1G of available memory. The scheduling policies perform comparable
per splitting policy for serial execution of inference tasks, whilst the MEMA scheduler does not show a reduction in execution
time when allowing concurrent execution.

11

0

25

50

75

100

125

150

Ti
m

e
(m

s /
 la

ye
r)

schedule = memory schedule = ljf schedule = sjf

splitting = deepeye
splitting = deepeye

schedule = fcfs

0

25

50

75

100

125

150

Ti
m

e
(m

s /
 la

ye
r) splitting = bulk

splitting = bulk

0

25

50

75

100

125

150

Ti
m

e
(m

s /
 la

ye
r) splitting = linear

splitting = linear

59 61 63 66 83 18
9

19
1

19
3

19
4

19
6

19
8

21
1

21
3

21
5

21
8

23
5

Number of layers

0

25

50

75

100

125

150

Ti
m

e
(m

s /
 la

ye
r)

59 61 63 66 83 18
9

19
1

19
3

19
4

19
6

19
8

21
1

21
3

21
5

21
8

23
5

Number of layers

59 61 63 66 83 18
9

19
1

19
3

19
4

19
6

19
8

21
1

21
3

21
5

21
8

23
5

Number of layers

59 61 63 66 83 18
9

19
1

19
3

19
4

19
6

19
8

21
1

21
3

21
5

21
8

23
5

Number of layers

splitting = partial
splitting = partial

Small batch performance with 512M memory

Max concurrent
networks

1
2

(c) Comparison of the runtime performance of the small batches at 512M of available memory. The greedy FCFS, SJF, and LJF
policies perform comparable per splitting policy for serial execution of inference tasks. Overall an increase in execution time
is visible, and a deterioration in execution speed when jobs contain larger networks. MEMA scheduling shows comparable to
the other policies but does not show an increase in execution time when networks can be executed concurrently.

12

0

100

200

300

400

Ti
m

e
(a

vg
. /

 la
ye

r)

schedule = memory schedule = ljf schedule = sjf

splitting = deepeye
splitting = deepeye

schedule = fcfs

0

100

200

300

400

Ti
m

e
(a

vg
. /

 la
ye

r) splitting = bulk
splitting = bulk

0

100

200

300

400

Ti
m

e
(a

vg
. /

 la
ye

r) splitting = linear
splitting = linear

59 61 63 66 83 18
9

19
1

19
3

19
4

19
6

19
8

21
1

21
3

21
5

21
8

23
5

Number of layers

0

100

200

300

400

Ti
m

e
(a

vg
. /

 la
ye

r)

59 61 63 66 83 18
9

19
1

19
3

19
4

19
6

19
8

21
1

21
3

21
5

21
8

23
5

Number of layers

59 61 63 66 83 18
9

19
1

19
3

19
4

19
6

19
8

21
1

21
3

21
5

21
8

23
5

Number of layers

59 61 63 66 83 18
9

19
1

19
3

19
4

19
6

19
8

21
1

21
3

21
5

21
8

23
5

Number of layers

splitting = partial
splitting = partial

Small batch performance with 256M memory

Max concurrent
networks

1
2

(d) Comparison of the runtime of the small batches at 256M of available memory. At this memory availability, all run times are
increased relative to the execution with 1G available. Especially the more memory-intensive bulk is especially affected by the
constraints in memory. Partial loading, which is indifferent regarding the chosen scheduling policy, performs well under this
constrained memory, which performs comparably to partial loading paired with the MEMA scheduler. Due to time constraints,
the evaluation on batch size 3 was not evaluated for scheduling policies other than the MEMA scheduler.

Figure 9: Execution performance graphs under varying degrees of constrained memory. Each bar represents the average execution time
(seconds) of 20 independent runs. The x-axis represents the total sum of layers that was executed in a batch.

13

	Background information
	Convolutional neural networks
	Execution pipeline
	Layer loading policies

	Scheduling under constrained memory
	Partial loading
	Proposed MEMory Aware Scheduler (MeMa)
	Non-memory aware schedulers

	Results
	Deep Neural Networks
	System specifications
	Constraining memory
	Small batch evaluation
	Large batch evaluation

	Ethics
	Discussion
	Conclusion
	Future work
	Small batch execution performance

