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Abstract— Visual Place Recognition (VPR) remains a chal-
lenging problem, particularly under difficult conditions such
as night-time or winter weather, which are often underrepre-
sented in existing training datasets. Although transformer-based
models have recently advanced the state-of-the-art, their high
computational demands can hinder deployment in real-world
robotic systems. This thesis proposes a new data augmentation
strategy for VPR using image-to-image Vision Foundation Model
InstructPix2Pix to generate realistic visual variations such as
night and snow scenes from the original training data. These
synthetic augmentations are added to the original training dataset
to extend dataset diversity without requiring additional data col-
lection. To further improve performance, the method is combined
with more advanced augmentations using the Kornia library,
which already improves robustness over traditional augmentation
techniques. Experiments on multiple benchmark datasets show
that lightweight, ResNet-based models trained with our VFM
augmentations achieve significantly improved performance under
challenging visual conditions. Additional ablations demonstrate
the importance of careful prompt design and hyperparameter
tuning. Overall, this work shows that VFMs can serve as practical
tools for targeted dataset augmentation, improving the robustness
of existing VPR methods in difficult scenarios.

I. INTRODUCTION

The ability to recognize a specific location solely from
visual information in an image, known as Visual Place Recog-
nition (VPR), is a fundamental component of robot state
estimation [1]. A VPR system attempts to identify the location
of a query image by matching it to the most similar image in
a large reference database. VPR plays a critical role in a range
of applications, from autonomous navigation to augmented
reality [2]. The most common application is in Simultaneous
Localization and Mapping (SLAM) [3], where VPR is used
for loop closure detection to reduce localization drift in robotic
navigation systems [1].

In many real-world robot applications, where robots and
embedded platforms have limited onboard processing power
and must make quick localization decisions, efficiency is
crucial. Because of this, memory usage and inference speed are
often just as important as accuracy. VPR methods deployed in
these settings must therefore find a balance between accuracy
and computational efficiency [9, 10].

Early VPR techniques relied on hand-crafted feature de-
scriptors to extract local and global image features [1]. How-
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Fig. 1: Recall@5 performance across four benchmark datasets
[4, 5, 6], comparing original models to those trained with
our VEM-based image-to-image augmentation strategy (red
for night-time augmentation, yellow for winter). The results
show that incorporating VFM-augmented training data con-
sistently improves performance for ResNet-based VPR models
MixVPR [7] and BoQ ResNet [8], under challenging night-
time and winter conditions.

ever, these approaches were limited in their ability to capture
high-level semantic information and struggled to adapt to the
specific challenges of VPR due to their general-purpose design
[2]. The field has since shifted toward deep learning-based
approaches, particularly those using Convolutional Neural
Networks (CNNs) [11, 12], which extract more expressive
visual features and can be fine-tuned for the VPR-specific task.
CNN-based models and especially those based on the ResNet
[13] architecture have demonstrated improved robustness and
adaptability, while remaining lightweight enough for real-time
deployment [2].

Recently, Vision Transformers (ViTs) have emerged as a
powerful alternative to CNNs for feature extraction in VPR.
Unlike CNNs, which are restricted by local receptive fields,
ViTs leverage self-attention mechanisms to capture global
relationships across the entire image [14], which allows them
to significantly outperform CNN-based VPR methods [8, 15].



However, these ViT-based models typically require signifi-
cantly more computational resources, both in terms of memory
and inference time [16, 17]. This makes them less suitable for
certain real-time robotic applications, where lightweight CNN-
based models can remain more practical.

Despite advancements in model architecture, modern VPR
systems still struggle under challenging conditions. Perfor-
mance can decrease significantly due to factors such as view-
point changes, lighting variations, seasonal transitions, weather
conditions, dynamic objects, and occlusions [1]. Although
several VPR datasets exist, most fail to represent all these chal-
lenges typically encountered in VPR. In particular, extreme
lighting conditions, unusual viewpoints, and drastic seasonal
shifts are often underrepresented in the most popular training
datasets, which limits the ability of models to learn and
generalize to these scenarios [18]. This limitation is especially
critical for ResNet-based models, which are pre-trained on Im-
ageNet [19], a dataset that also lacks many of these challenges.
When both pre-training and fine-tuning datasets fail to expose
models to scenarios like nighttime or winter environments,
reliable performance under such conditions becomes unlikely
during deployment.

To address these limitations, we propose extending existing
VPR training datasets by using an image-to-image Vision
Foundation Model (VFM). By leveraging the generative ca-
pabilities of VFMs, we create new data that simulates chal-
lenging conditions such as day-to-night transitions or seasonal
changes. Unlike conventional data augmentation, this approach
introduces genuinely new visual content to the original image
while preserving the scene’s spatial layout and semantics.
This enables the controlled introduction of hard-to-capture
conditions into existing training datasets.

Our goal is to evaluate whether this form of targeted,
VEM-based augmentation can improve the performance of
more lightweight, ResNet-based VPR models, helping them
better handle certain VPR challenges without increasing com-
putational cost and closing the performance gap to more
computationally expensive transformer-based methods, which
leads to the following research question:

"How can image-to-image Vision Foundation Models
be used for dataset augmentation to improve ResNet-
based Visual Place Recognition methods?"

The remainder of this paper is structured as follows: Section
II reviews relevant related work. Section III then presents the
methodology in detail. Section IV describes the experimental
setup and Section V reports the results. Finally, Section VI
concludes the paper and outlines future research directions.

II. RELATED WORK
A. Traditional methods

The first VPR methods primarily relied on handcrafted
feature descriptors to extract visual information from images.
Local feature extraction techniques, such as SIFT [20] and
SURF [21], were commonly used to detect keypoints and
compute local descriptors for these keypoints. Other traditional
approaches focused on global descriptors, which aimed to
summarize the visual content of an entire image. Methods like

Bag-of-Words (BoW) [22], VLAD [23], and GIST [24] created
compact global feature representations that could be used
for image matching. While handcrafted methods performed
reasonably well under stable conditions, they struggled with
the variability of real-world environments. Their general-
purpose design limited their ability to handle typical VPR
challenges such as viewpoint changes and lighting variations,
which motivated the transition to more robust deep-learning-
based approaches [25].

B. CNN-based methods

The rise of deep learning introduced a significant shift in
VPR, with Convolutional Neural Networks becoming very
popular for feature extraction in VPR models. CNNs automati-
cally learn hierarchical feature representations from raw image
data, effectively capturing complex visual patterns essential
for VPR tasks [25]. Early VPR approaches which used CNNs
often employed pre-trained networks, such as VGG [26] and
ResNet [13], as fixed feature extractors [27]. Newer methods
improved on this by fine-tuning these pre-trained backbones
on VPR-specific datasets, often integrating a specialized ag-
gregation technique to create more robust data-driven models
[12, 28].

As deep learning techniques evolved, more sophisticated
CNN-based models emerged, such as MixVPR [7], Eigen-
Places [29] and BoQ [8], each contributing to enhanced ro-
bustness and accuracy in VPR tasks. However, all these CNN-
based methods have the same limitation: they rely on ResNet-
based backbone networks, which are pre-trained on the Ima-
geNet dataset, which lacks most of the diverse environmental
conditions typically encountered in VPR problems [19]. This
means that these models are not exposed to challenges like
night-time scenes or seasonal changes during pre-training. If
such conditions are also missing from the dataset used for fine-
tuning, the models struggle to perform well in these scenarios,
leading to suboptimal performance in real-world applications
[30].

C. Transformer based methods

The introduction of transformer architectures, particularly
Vision Transformers (ViTs), has marked a significant advance-
ment in the field of VPR. Unlike CNNs, which are constrained
by local receptive fields, transformers utilize self-attention
mechanisms to capture global dependencies across entire
images, enabling more comprehensive feature representations
[14].

The first application of transformers in VPR was AnyLoc
[15], which leverages pre-trained transformer models such as
DINOv2 [31], CLIP [32] and MAE [33] to extract features
without additional fine-tuning. This approach has demon-
strated robust performance across diverse environments and
conditions, highlighting the potential of transformer backbones
in VPR applications, even without fine-tuning.

More recent methods like SALAD [34], CricaVPR [35]
and DINOv2 BOQ [8] have fine-tuned these transformer
backbones on VPR-specific datasets. These approaches have



achieved new state-of-the-art performance, significantly out-
performing earlier CNN-based methods.

However, the enhanced capabilities of transformer-based
models come with increased computational demands. Trans-
formers typically require more memory and exhibit slower
inference times compared to CNNSs, posing challenges for
deployment in resource-constrained environments such as real-
time robotic systems [16, 17].

D. Data augmentation and dataset extension

Data augmentation is a widely used technique in deep learn-
ing to improve model generalization and robustness, especially
when data collection is expensive or limited [36] and is also a
standard component of most VPR pipelines. Techniques such
as random cropping, flipping, color jittering, and brightness
adjustment are often applied as part of the training process
[37]. However, while augmentation is widely used in VPR,
the majority of these methods remain relatively traditional and
simplistic, focusing on low-level transformations rather than
introducing realistic, high-level scene variations.

Some studies have explored more systematic or advanced
augmentation techniques. For example, one study [37] eval-
uated geometric transformations, illumination changes, and
occlusion methods such as Cutout [38] and GridMask [39],
showing modest improvements in performance, especially
when combined with techniques like RandAugment. Oth-
ers have looked into query-specific augmentations like color
jittering and flipping [40], or style-based methods such as
style transfer [5] and style randomization [41], which aim to
improve domain generalization.

An example of a more advanced augmentation in VPR is
CLASP-Net [42], which uses the Kornia library [43]. Kornia
is a toolkit that enables the application of a broader, more
advanced and more diverse set of pixel-level transformations,
helping the model learn robustness to appearance variations.
Although their approach demonstrated the potential of using
Kornia augmentations for improved VPR performance, the use
of Kornia remains underexplored in other VPR methods, as
most VPR pipelines continue to rely on simpler augmentation
methods.

Despite these advancements, current augmentation tech-
niques used in VPR are not able to simulate very realistic,
semantically rich conditions such as night-time scenes, sea-
sonal shifts, or adverse weather. As a result, there remains a
gap between what current augmentation methods can offer and
the kind of complex, photorealistic variability encountered in
real-world VPR applications.

E. Image-to-image Vision Foundation Models

The emergence of Vision Foundation Models (VFMs) has
significantly expanded the possibilities for image generation
and editing tasks in computer vision. Trained on large-scale,
diverse datasets, these models are designed to generalize
across a wide range of visual domains and downstream tasks
[44]. Of particular interest in the context of this thesis are
image-to-image VFMs, which take an existing image and a

text prompt as input and produce a semantically modified
version of the image as output.

Unlike traditional data augmentation methods, which rely
on geometric transformations or simple color and brightness
changes, image-to-image VFMs can introduce high-level, pho-
torealistic transformations such as turning day into night,
adding snow, or changing architectural styles. This capability
could be highly beneficial for VPR, where generalization
across diverse environmental conditions is essential, and where
many datasets are missing some of these challenges.

Several image-to-image models have recently been devel-
oped, with most methods building on top of the open source
VFM of Stable Diffusion [45]. For instance, DA-Fusion [46]
uses Stable Diffusion to generate diverse semantic variations
of input images, improving generalization in low-data regimes.
InstructPix2Pix [47] combines Stable Diffusion with GPT-3
[48] to allow natural language-based edits, providing fine con-
trol over how images are transformed while preserving spatial
consistency. Imagic [49] introduces more precise, text-guided
edits through optimized text embeddings, enabling subtle yet
semantically meaningful changes. Finally, StreamDiffusion
[50] focuses on real-time image generation, prioritizing speed
and efficiency through batched denoising strategies, though
possibly at some cost to image quality.

While existing VPR state-of-the-art methods often rely
on traditional augmentation techniques and high-capacity
transformer-based models to improve robustness, this
thesis explores an alternative strategy: using image-to-
image vision foundation models to generate realistic,
semantically meaningful augmentations from existing
images. This approach aims to enrich training datasets with
underrepresented conditions, such as night-time and snow,
without the need for costly data collection or complex
architectures.

By integrating these VFM-generated augmentations into
the training pipeline, we focus primarily on improving the
performance of more lightweight, ResNet-based VPR models,
showing that when trained on richer, more diverse data, these
models can close the gap with state-of-the-art transformer-
based methods.

In this work, we present the following major contributions:

« A novel data augmentation strategy for VPR using image-
to-image vision foundation models to generate realistic
variations (e.g., night-time, winter) is introduced, which
can significantly improve performance on ResNet-based
models, narrowing the gap with transformer-based meth-
ods.

« A systematic ablation study of prompt design and key hy-
perparameters (e.g., text/image weights, diffusion steps,
augmentation ratio) is conducted to evaluate and optimize
the use of image-to-image vision foundation models for
data augmentation in VPR.

o The effectiveness of replacing traditional augmentations
with Kornia-based augmentations is demonstrated, show-
ing that Kornia offers a superior alternative for enhancing
the robustness of existing ResNet-based VPR methods.
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Fig. 2: Overview of our pipeline used to introduce new challenges into existing datasets by using image-to-image vision
foundation model InstructPix2Pix [47] to create partially augmented training datasets.

III. METHODOLOGY

A. Dataset selection

To effectively evaluate the impact of image-to-image VFM-
based augmentation, it is important to select a training dataset
that can benefit from the inclusion of certain challenging con-
ditions. In this study, we focus on night-time and snow, which
are commonly underrepresented in existing VPR training
datasets [18]. These conditions will be synthetically introduced
into the training data using a VFM-based approach.

To assess whether this augmentation leads to improved
model performance, we also identify appropriate benchmark
datasets that include real-world instances of these challenges.
These test datasets enable a direct evaluation of the effective-
ness of the augmented training data.

The specific training and evaluation datasets, along with the
motivation for their selection, are discussed in detail in Chapter
IV-A.

B. Image-to-image model selection and parameter selection

To introduce missing visual challenges into the training
dataset, image-to-image VFM InstructPix2Pix [47], a powerful
generative model that builds on Stable Diffusion [45] and GPT-
3 [48], is used. InstructPix2Pix enables high-quality image
transformations guided by natural language instructions, while
preserving the semantic and structural content of the original
image. The model is open-source and relatively efficient,
allowing for fast generation of synthetic images at scale. These
properties make it particularly well-suited for augmenting
VPR datasets with realistic scene variations, such as night-
time or winter weather, that are typically underrepresented in
existing training data [18].

InstructPix2Pix operates by taking an input image along
with a textual prompt that describes the desired transformation.
It then generates a modified image that reflects the requested
change while maintaining the spatial layout and key semantic
features of the scene. To ensure that the generated images were
both realistic and relevant for VPR tasks, a hyperparameter
tuning study was conducted (details provided in Section V-C)
to find a good balance between keeping the relevant semantic
information and adding the challenge to the image.

C. Dataset extension and training on extended datasets

Once the vision foundation model and hyperparameters
were selected, a data augmentation pipeline was implemented
to integrate synthetic images into the training process as is
shown in Figure 2. The objective was to enrich the dataset
with realistic environmental variations, specifically night-time
and winter scenes, while preserving spatial consistency and
ground-truth labels.

The process begins by randomly selecting approximately
one-sixth of the images from the original training dataset as
candidates for augmentation. Each selected image is then pro-
cessed using the InstructPix2Pix model, guided by predefined
prompts and tuned parameters, to simulate either a night-time
or snow-covered version, while trying to retain the spatial
structure and scene identity of the original image.

Rather than replacing existing data, the synthetic images
are added on top of the original training set. This preserves
the full diversity of the dataset while introducing new realistic
examples of underrepresented conditions. The final training
set consists of the complete original dataset, supplemented
with transformed samples, such that approximately one in
every seven images presents a synthetically generated visual
challenge. This augmentation strategy exposes the model to
a broader range of visual appearances, with the goal of
improving generalization to unseen environments, particularly
those involving lighting and seasonal variation common in
real-world deployments without requiring any changes to the
VPR model architecture. As a result, it can be seamlessly
combined with traditional data augmentation techniques or
more advanced augmentation techniques such as Kornia [43].

IV. EXPERIMENTAL SETUP
A. Datasets

To evaluate the impact of incorporating synthetically aug-
mented images into existing datasets during training, a set
of suitable VPR datasets was selected. Most importantly, a
training dataset was required in which specific challenges such
as night-time conditions and seasonal changes were missing
or underrepresented.

It was also important to choose relevant evaluation datasets
in which these same challenges do exist. This will enable en-
able a clear comparison: if training on the partially augmented
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Fig. 3: Examples of the original GSV-cities images converted to night (first two rows) or winter (bottom two rows) using

InstructPix2Pix [47].

dataset is effective, models trained on it should perform better
on these relevant test sets than those that are only trained on
the original dataset.

The following sections describe the datasets used in this
thesis, their roles in training and evaluation, and the rationale
behind their selection with an overview given in Table 1.

1) GSV-cities: GSV-cities [51] is a large-scale training
dataset designed for VPR research. It consists of approxi-
mately 530,000 Google Street View images collected from
over 40 cities worldwide, representing more than 62,000
distinct locations. Each location is depicted by multiple images
captured over a 14-year span with highly accurate ground truth
data.

This dataset is the most popular dataset used for training
VPR methods [7, 8, 35, 51] due to its extensive geographic
coverage and substantial size, which strikes a balance between
diversity and manageability. However, since it is derived from
Google Street View, the dataset lacks images captured during
nighttime or winter conditions. These scenarios present signif-
icant challenges for VPR systems in real-world deployments.

This gap presents an opportunity to augment the GSV-Cities
dataset by artificially introducing these missing challenges. By
employing vision foundation models, we can generate syn-
thetic nighttime and winter images from the existing data. This
augmentation aims to enhance the dataset’s diversity, thereby
improving the robustness and generalization capabilities of
VPR models trained on it.

2) Tokyo 24/7: Tokyo 24/7 [4] is a dataset specifically
designed to evaluate VPR systems under varying illumination
conditions, including significant day-to-night changes. The
dataset comprises 315 query images captured at 125 distinct
locations throughout Tokyo. At each location, images were
taken from three different viewpoints at three different times
of day: daytime, sunset, and night. This setup provides a
comprehensive assessment of temporal variations in urban
environments.

The reference database consists of 76k geo-tagged images
collected from Google Street View, offering a broad repre-
sentation of the city’s scenes under standard conditions. The
combination of diverse viewpoints and illumination conditions
makes Tokyo 24/7 a challenging and valuable benchmark
for assessing the robustness of VPR systems, particularly in
handling day-to-night transitions.

In this study, we use Tokyo 24/7 to evaluate our model’s
performance in recognizing places under day-to-night changes.

3) SVOX-Night and SVOX-Snow: SVOX (Street View Ox-
ford) [5] is a test dataset specifically designed for evaluating
cross-domain VPR. It is built by combining reference images
from Google Street View, covering the city of Oxford, with
query images from the Oxford RobotCar dataset [52]. While
GSV-Cities includes images from many cities worldwide, it
does not include Oxford, ensuring that there is no data overlap
between the training and evaluation datasets in this study.

The RobotCar queries are labeled with their lighting and



weather conditions (Snow, Rain, Sun, Night or Overcast).
This labeling enables targeted evaluation under specific visual
challenges. In this work, we focus specifically on the night-
time and snow conditions, as these represent some of the most
difficult scenarios for VPR systems.

For the experiments in this thesis, we use the 823 night-time
queries and 870 snow queries from RobotCar in the SVOX test
set and attempt to match each to its corresponding location in
the SVOX gallery, which contains 17,166 reference images
taken from Google Street View.

4) Nordland: Nordland [6] captures a train journey of
728 km through different seasons and provides around 115k
images. For evaluation, the dataset is scaled-down to a version
with 27k reference images and 27k query images. The refer-
ence images are taken in the summer and the query images
are taken in the winter [53]. The challenge in this dataset is
thus to match an image taken in snowing winter conditions to
a summer image. This means that this dataset can be used to
show how well the model can handle this domain-gap between
winter and summer images.

Dataset # Query # Patabase Night Winter
images images
GSV-cities [51] 529683
Tokyo 24/7 [4] 315 75984 v
SVOX-Night [5] 823 17166 v
Nordland [6] 27592 27592 v
SVOX-Snow [5] 870 17166 v

TABLE I: Overview of datasets used for training and evalua-
tion.

B. Evaluated Techniques

1) MixVPR: MixVPR [7] is one of the most advanced
approaches based on a ResNet CNN backbone. It introduces a
novel feature aggregation mechanism using multiple feature
mixing blocks, which capture global relationships between
features extracted from pre-trained backbones. Combined with
a Multi-Similarity loss function [54] and trained on the GSV-
Cities dataset [51], MixVPR achieves competitive performance
while remaining relatively lightweight.

Its ability to mix features across different abstraction levels
enables strong generalization, even under limited computa-
tional resources. However, its performance has started to lag
behind newer transformer-based models, also on night and
winter datasets, making it a strong candidate for evaluating
the effectiveness of our augmentation method.

2) BoQ: BoQ (Bag of Learnable Queries) [8] also used
a ResNet-based architecture and introduces a more advanced
aggregation technique via a multi-head attention (MHA) mech-
anism [55]. The model incorporates learnable global queries
that interact with feature maps through cross-attention, en-
abling the selective aggregation of the most relevant image fea-
tures. The output is a compact, discriminative global descriptor
formed through concatenation, projection, and normalization.
Like MixVPR, it is trained using the Multi-Similarity loss and
on the GSV-Cities dataset.

BoQ currently represents the state-of-the-art for ResNet-
based VPR methods and has demonstrated strong results

across diverse datasets. Its attention-based design helps it
handle complex scene structures more effectively. However,
challenges like night-time and winter conditions still impact
its robustness, making it another suitable benchmark for eval-
uating the impact of our data augmentation strategy.

C. Implementation details

To generate realistic synthetic images that effectively intro-
duce the new visual challenges, a small hyperparameter study
was conducted on the most optimal use of the InstructPix2Pix
model [47]. The results of this tuning are discussed in more
detail in Section V-C. Three core hyperparameters were varied:
the image guidance scale, which controls how closely the
output resembles the original image; the text guidance scale,
which determines the strength of adherence to the textual
prompt; and the number of diffusion steps, which influences
the visual quality and transformation extent. In addition to
these parameters, careful prompt design played a critical role
in achieving realistic augmentations.

Table II summarizes the selected prompts and correspond-
ing hyperparameters used to generate night-time and winter
versions of original database images.

Type of Prompt Image Text Diffusion
Augmentation P Weight | Weight Steps
Night "It is now midnight" 1.5 15.0 20
Winter "It is now snowing" 1.2 15.0 20

TABLE 1II: Hyperparameters and prompts used to generate
augmented night and winter images from original GSV-cities
dataset images using InstructPix2Pix [47].

The GSV-Cities dataset is extended by randomly sampling
one in six images from the original dataset and transforming
them into either night-time or winter-themed images using
the prompts and hyperparameters listed in Table II. Example
outputs of these transformations are shown in Figure 3. The
augmented images are added on top of the original dataset,
increasing the total dataset size by approximately 16.67%.
This means that around one in seven training images is a
synthetically augmented image generated by InstructPix2Pix
[47].

Unlike many standard VPR datasets, GSV-Cities does not
provide a fixed query/reference split. Instead, the splits are
randomly redefined at the beginning of each epoch. As a result,
the augmented images can serve as either query or reference
images throughout training.

Both MixVPR and BoQ models are trained using the
original GSV-Cities dataloaders provided by the respective
authors. For MixVPR, training follows the original setup
exactly. A ResNet50 backbone is used to generate 4096-
dimensional descriptors, and training is performed for 80
epochs. The model is validated on the Pitts30k dataset [56],
and the checkpoint with the highest Recall@1 score on this
validation set is selected for testing.

BoQ is similarly trained with a ResNet50 backbone and
largely follows the configuration used by the original authors,
with one exception: the batch size is reduced from 128 to 64
to fit within the available GPU memory. The descriptor size



Model Augmentations Used Night datasets Winter datasets Average

Traditional | Kornia | VFM | SVOX-Night | Tokyo 24/7 | Nordland | SVOX-Snow | performance

(ours) | R@1 R@5 | R@1 R@5|R@1 R@5 | R@1 R@5 | R@1 R@5

v 63.2 80.7 | 81.6 914 | 73.3 855 | 96.6 98.6 | 78.7 89.1

MixVPR v v 744 86.5 | 85.1 937 | 81.8 909 | 964 989 | 844 925
v 764 87.1 | 87.0 924 | 833 913 [ 941 982 | 852 922

v v 80.0 888 | 86.0 933 | 864 933|944 983 | 86.7 934

v 855 932 | 8.9 940|784 879|985 99.5 | 8.1 93.7

ResNet BoQ v v 894 954 | 89.2 94.6 | 833 913|985 994 | 90.1 952
v 88.6 938 | 883 943 | 853 943 | 97.8 994 | 90.0 954

v v 91.1 95.6 | 88.6 949 | 868 92.8 | 97.7 99.0 | 91.0 95.6

TABLE III: Comparison of Recall@N performance between MixVPR and ResNet BoQ models under various augmentation
strategies, including traditional augmentations, Kornia [43], and our proposed Vision Foundation Model (VFM) augmentations.
For VFM augmentations, a night-augmented model is used for evaluation on night datasets, and a winter-augmented model is
used for evaluation on winter datasets. Evaluation is conducted on four benchmark datasets. Best results are shown in bold,

and second-best results are underlined.

is set to its maximum of 16384. Training also runs for 80
epochs, and the best model is selected based on Recall@1
performance on the MSLS-val dataset [18].

To evaluate the impact of our VFM-based augmentation
method, we compare model performance across four dif-
ferent training conditions: (1) using only the original tradi-
tional augmentations, (2) using the traditional augmentations
combined with our proposed VFM-based augmentations, (3)
using Kornia-based augmentations [43] instead of the tradi-
tional augmentations and (4) using Kornia-based augmenta-
tions combined with our VFM-based augmentations. For the
traditional augmentation baseline, we retain the RandAugment
configuration used in the original MixVPR and BoQ imple-
mentations. Kornia augmentations are selected based on those
used in prior work by [42].

All models are trained and evaluated on an NVIDIA Tesla
V100-SXM2-32GB GPU. Model performance on test datasets
is evaluated using the standard Recall@k metric, as imple-
mented in the VPR evaluation framework used for evaluation
[29]. Recall@k reports the percentage of query images for
which at least one of the top-k retrieved reference images
is within a ground truth threshold of 25 meters [1]. For the
Nordland dataset, a query is considered correct if the reference
lies within 10 frames of the query image [6].

V. RESULTS AND ANALYSIS

A. Quantitative results

Table III reports Recall@1 and Recall@5 scores for both
Mix VPR and BoQ on four datasets that capture the challenging
night-time and winter conditions. Figure 1 also provides
a visual comparison of Recall@5 performance when using
traditional or Kornia augmentations, with and without our
proposed VFM-based augmentation.

Adding our VFM augmentation on top of the traditional
pipeline significantly improves performance across nearly all
datasets and models, with the exception of SVOX-Snow,

where the baseline already performs strongly. This already
shows the potential of using targeted, synthetic training data
to address specific visual challenges such as night-time or
seasonal changes.

Replacing traditional augmentations with Kornia-based
transformations also results in consistent performance gains,
confirming the advantage of using more advanced and con-
trolled pixel-level augmentations. Most notably, combining
Kornia with our VFM augmentations leads to the strongest
results overall, especially on SVOX-Night and Nordland,
demonstrating that these two approaches are complementary.

In both cases where our VFM augmentations were applied,
whether on top of traditional or Kornia augmentations, per-
formance consistently improved across nearly all evaluation
datasets. This highlights the practical value of our VFM-based
approach as an effective and scalable method for enhancing
ResNet-based VPR methods without requiring changes to the
model architecture, particularly when combined with more
advanced augmentation pipelines.

B. Qualitative results

Figure 4 shows examples where the augmented models
correctly found a match in the reference database for SVOX-
Night and Nordland, while the original models failed. These
cases illustrate how training with our VFM-extened dataset
can improve robustness to night-time and winter conditions,
particularly in visually challenging scenes with obstacles or
low-light conditions.

C. Ablations

1) Effect of prompt variation in InstructPix2Pix: To ef-
fectively introduce night-time and snow conditions into the
training images, an ablation study was conducted to determine
which text prompts produced the most visually realistic and
consistent results using the InstructPix2Pix model. A wide



Original MixVPR

Augmented MixVPR

Original ResNet BoQ Augmented ResNet BoQ

Fig. 4: Qualitative results of predictions of original model compared to the predictions of the augmented models for MixVPR [7]
and ResNet BoQ [8] on SVOX-night using night augmented models (first two rows) and on Nordland using winter augmented
models (bottom two rows).

range of prompt variations was tested, a selection of which
is illustrated in Figure 5.

For the night-time transformation, prompts such as "It is
now midnight" and "The sky is now dark and it is night" were
evaluated. For the snow transformation, examples included "It
is now snowing" and "It is now winter". Each prompt was
applied to a diverse set of daytime images, and the resulting
outputs were visually inspected to assess realism, semantic
consistency, and transformation quality.

Based on qualitative evaluation, the prompt "It is now
midnight" consistently yielded the most convincing night-time
transformations, while "It is now snowing" produced the most
realistic snow-covered scenes.

2) Effect of image and text weights in InstructPix2Pix:
After selecting the appropriate prompts for introducing night-
time and winter conditions, a follow-up study was conducted
to determine the most effective settings for the text guidance
and image guidance weights in the InstructPix2Pix model. The
goal was to strike a balance between creating the transforma-
tion described by the prompt and preserving the semantic and
spatial structure of the original image. If the text guidance
is too strong or the image guidance too weak, the result can
become visually unrealistic or semantically misaligned with
the original location. However, overly conservative settings can
fail to introduce the desired visual challenge.

To explore this balance, multiple images from a VPR
dataset were selected and augmented across a range of values,
specifically, text weights from 7.5 to 15.0 and image weights
from 1.0 to 1.5. The resulting outputs were manually inspected

and qualitatively evaluated based on three criteria: the realism
of the transformation, the presence of the intended challenge
(night or snow), and the preservation of critical scene elements.
Examples of generated outputs using different image weights
are shown in Figure 6.

The results of this visual inspection showed that varying
the image weight had a greater impact on visual quality than
changing the text weight. The default text guidance value of
15.0 provided sufficient adherence to the prompt without over-
modifying the image. For night-time augmentation, an image
weight of 1.5 yielded the most consistent and realistic results.
For winter augmentation, slightly weaker preservation of the
original scene was necessary, with an optimal image weight
of 1.2. These settings were therefore selected for generating
the final synthetic training subsets.

3) Effect of number of diffusion steps in InstructPix2Pix:
To identify the most effective number of diffusion steps for
generating high-quality augmented images, we conducted an
ablation study varying this parameter across a wide range.
The number of diffusion steps controls how thoroughly the
transformation process refines the image, affecting both visual
quality and computational cost. A subset of representative step
counts was selected for detailed comparison, as illustrated in
Figure 7.

At 5 diffusion steps, image generation was fast, but trans-
formations were often incomplete or visually unconvincing.
Night-time prompts led to unrealistic darkening, and snow
effects were also rarely realistic, indicating that 5 steps are
insufficient for effective scene modification. Using 10 steps
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Fig. 5: Generated night (first and second row) or winter (third and fourth row) images with different prompts using

InstructPix2Pix [47].

improved quality, with more recognizable night and snow fea-
tures and better semantic consistency. However, some outputs
remained inconsistent, especially in complex scenes. At 20
steps, the model achieved consistently high-quality results.
Transformations were realistic and semantically coherent, with
well-balanced lighting for night scenes and convincing snow
effects. This setting offered the best trade-off between quality
and inference time. Increasing to 50 steps gave small visual
gains but significantly longer generation times, making it
inefficient for large-scale augmentation.

Based on these observations, 20 diffusion steps were iden-
tified as the optimal configuration, offering a balance between
transformation quality and computational efficiency for train-
ing data generation.

4) Effect of augmentation ratio: To introduce new visual
challenges using an image-to-image VFM without using too
much computation time to generate these new images, this
work initially used a training set consisting of the full original
GSV-Cities dataset combined with a synthetically augmented
subset amounting to one-sixth of the original data added on
top of the original dataset. This meant that one in seven images
were augmented at training time. This augmentation ratio was
chosen as a compromise between dataset extension percentage
and generation time. However, it was unclear whether this ratio

is optimal in terms of model performance.

To determine the optimal proportion of VFM-augmented
images to add to the original training dataset, an ablation study
was conducted. The augmentation ratio was varied from 0% to
100% of the original dataset in 16.67% increments (equivalent
to one-sixth of the dataset per step). For each configuration,
performance was evaluated using MixVPR and ResNet-based
BoQ with the results being shown in Table IV.

. MixVPR ResNet BoQ

A ‘Added (%) SVOX-Night Tokyo 24/7 SVOX-Night Tokyo 24/7
R@1 R@5 | R@1 R@5 | R@1 R@5 | R@l R@5

0 (original) 63.2 80.7 81.6 914 85.5 93.2 89.9 940
16.67 744 86.5 85.1 93.7 894 954 892 946

3333 74.2 85.9 86.3 93.7 889 9338 88.6 952

50 74.2 87.0 854 93.3 88.7 94.8 892 949

66.67 752 870 86.3 92.7 88.5 95.4 89.9 959

83.33 74.9 86.4 85.1 93.3 88.2 94.0 883 952

100 75.9 85.5 854 91.7 88.2 93.8 88.9 94.6

TABLE IV: Performance comparison of MixVPR and BoQ
ResNet on the SVOX-Night and Tokyo 24/7 datasets for
different percentages of augmented night images added to the
GSV-Cities training set.

Both models exhibited clear performance gains when
16.67% of the dataset was augmented. However, increasing
the proportion of augmented images beyond this point did not
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cause significant improvements and, in some cases, resulted
in slight performance decrease. This performance plateau sug-
gests limited benefit from further increasing the augmentation
ratio.

Given the minimal performance difference beyond the
first augmentation step and the high computational cost of
generating VFM-based image-to-image augmentations, adding
only one-sixth (16.67%) of augmented images to the original
dataset offers the most efficient and practical strategy. This
ratio provides a strong balance between performance gains
and resource usage, and is therefore selected as the optimal
augmentation ratio for subsequent experiments.

Original model VFM augmented model

D Model
ataset ode R@l R@5 | R@l A R@5 A
Tokyo 24/7 CricaVPR 94.0 97.5 946 06 97.8 0.3
BoQ DINOv2 | 96.5 98.1 96.5 00 98.1 0.0
SVOX-Night CricaVPR 88.5 95.9 888 03  96.0 0.1
BoQ DINOv2 | 96.5 99.5 977 12 994 -0.1
CricaVPR 91.0 96.5 91.6 0.6 96.7 0.2

Nordland

BoQ DINOv2 | 90.6 96.1 9.6 00 96.1 0.0

TABLE V: Performance of original and VFM night augmented
DINOv2-based models on SVOX-Night and Tokyo 24/7 and
VEM winter augmented DINOv2-based models on Nordland.

5) Evaluation on DINOv2-based models: While our pro-
posed VFM augmentation strategy has shown clear benefits

Default AW: 1.5, TW: 7.5) IW: 1.0, TW: 7.5

IW: 1.5, TW: 15.0 IW: 1.0, TW: 15.0

i |
= Qal
Fig. 6: Generated night (first and second row) or winter (third and fourth row) images with different image weights (IW) and
text weights (TW) using InstructPix2Pix [47].

for ResNet-based models, these architectures no longer rep-
resent the true state of the art in VPR. Transformer-based
models, particularly those using DINOv2 backbones, have
recently become dominant due to their stronger generalization
capabilities and performance across diverse conditions. To
evaluate whether such models can also benefit from synthetic
data augmentation, experiments were conducted using our
augmentation pipeline with both CricaVPR and BoQ DINOv2,
each trained on the full GSV-Cities dataset with an additional
1/6th night- or winter-augmented subset.

The results are shown in Table V . These results however,
indicate that transformer-based models benefit only marginally,
if at all, from this form of data augmentation. For BoQ
DINOV2, performance marginally increased on SVOX-Night
for R@1, but also slightly decreased for R@5. On Tokyo
24/7 and Nordland the results remained unchanged. CricaVPR
also showed only minor gains, with R@1 and R@5 increasing
slightly on Tokyo 24/7, SVOX-Night and Nordland, but these
are changes that are not significant enough to indicate a
consistent benefit from training on augmented data.

These findings suggest that DINOv2-based transformer
models are less sensitive to the benefits of our VFM dataset
extension method. This is likely due to their extensive pre-
training on large and diverse image distributions, which may
already expose the model to many of the visual challenges
simulated by our augmentations.
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Fig. 7: Generated night (first and second row) or winter (third and fourth row) images with different number of diffusion steps
using InstructPix2Pix [47].

VI. CONCLUSION AND FUTURE WORK

This paper introduced a new method for synthetically ex-
tending datasets for Visual Place Recognition using Vision
Foundation Models. Our goal was to answer the question of
how existing datasets can be expanded to improve performance
of more efficient ResNet-based VPR models, which are better
suited for real-world robotic applications with limited compu-
tational resources. Motivated by the limitations of current VPR
datasets, we proposed introducing missing visual challenges,
like day-to-night and seasonal changes, by generating new
image variants from the original data using an image-to-image
vision foundation model.

Our results show that, for ResNet-based models, the pro-
posed VFM-based augmentation approach gives significant
performance improvements. Replacing traditional augmenta-
tions with more advanced Kornia augmentations further en-
hances results. In both cases where our VFM augmentations
were applied, whether on top of traditional or Kornia aug-
mentations, performance consistently improved across nearly
all evaluation datasets, with the Kornia+VFM combination
achieving the strongest overall results. Our method helps
narrow the performance gap between lightweight ResNet ar-
chitectures and more advanced, but computationally expensive,
transformer-based models. We also evaluated the impact of this
method on transformer models, which showed only marginal
gains or none at all, likely due to their robust backbones

already pre-trained on large, diverse datasets that capture many
of the same visual variations.

While our method has already shown promising potential,
it also opens up many new directions for future research.
One interesting research direction would be to explore how
these synthetic augmentations can be used more effectively
to maximize performance. Additionally, future work could
investigate the use of different vision foundation models for
data generation, especially as newer and more powerful models
continue to emerge. Another interesting research topic would
be to explore alternative generative approaches, such as image-
to-video or text-to-image models, for producing training data.
Lastly, introducing other types of challenges, such as variations
in viewpoint, which were not addressed in this study, could
possibly further enhance the robustness of VPR models.

In summary, this thesis demonstrates that leveraging the
generative power of VFMs to augment training data is a
viable strategy for improving VPR systems. By closing the gap
between lightweight and high-capacity models, our approach
advances the practicality of deploying robust VPR in real-
world, resource-constrained environments.
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