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For reasons of computational efficiency, phase-averaged emergy based models are
preferred over phase-resolving models in computations of random waves in extensive
areas.

The influence of depth-induced breaking on the evolution of the wave spectrum can
be modeled (in case of single-peaked spectra) by spectrally distributing the total local
rate of energy dissipation in proportion to the spectral levels.

The nonlinearly generated low-frequency waves due to incident random waves are
significantly damped in the surf zone. This effect is associated with depth-induced
breaking of the short waves.

The biphase evolution in shallow-water waves can be parametrized in terms of local
parameters such as the Ursell number.

For computational efficiency in practical applications, the average effect of triad wave
interactions on the wave spectrum can be modeled using a lumped presentation of the
interaction integral, in which the values of the integrand are scaled with those of the
self-interactions, supplemented with an empirical parametrization of the biphase
evolution.

The statistical description of nonlinear random waves is a subject about which
pumerous misunderstandings can remain even after repeated explanations.

In extreme events in the southern North Sea, the wave heights are mainly depth
controlled and the significant wave height is of order 0.4 times the water depth.

International exchange of researchers is beneficial to science and thus it should be
encouraged.

Heuristic approaches can be beneficial to practical applications as much as the
fundamental approaches.

For great discoveries, intnition is as important as intelligence.
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Voor. berekeningen van onregelmatige golfvelden in uitgestrekte gebieden wordt uit
overwegingen van rekenefficiéntie de voorkeur gegeven aan fase-gemiddelde model-
len boven deterministische modellen.

In gevallen van enkeltoppige spectra kan de invloed van diepte-geinduceerde breking
op de ontwikkeling van het spectrum gemodelleerd worden door het totale gedissi-
peerde vermogen spectraal te verdelen in verhouding tot de spectrale niveaux.

De niet-lineair opgewekte lange golven in een invallend veld van onregelmatige
korte golven worden significant gedempt in de brandingszone. Dit effect is geasso-
cieerd met de diepte-geinduceerde breking van de korte golven.

De ontwikkeling van de bifasen in ondiep-water golven kan worden geparameteri-
seerd in termen van lokale parameters zoals het getal van Ursell.

Ten behoeve van rekenefficiéntie kan het gemiddelde effect van drie-golfwisselwer-
kingen op het golfspectrum voor praktische toepassingen gemodelleerd worden door
de waarden van alle interacties te schalen met die van de zelf-interacties, en door
gebruik te maken van een empirische parameterisatie van de bifasen.

De statistische beschrijving van niet-lineaire onregelmatige golven is een onderwerp
waarover zelfs na herhaalde uitleg tal van misverstanden kunnen blijven bestaan.

Tijdens extreme omstandigheden zijn de golfhoogten in de zuidelifke Noordzee
overwegend bepaald door de diepte en is de significante golfhoogte in de orde van
0,4 keer de lokale waterdiepte.

Internationale uitwisseling van onderzoekers is goed voor de wetenschap en moet
daarom worden gestimuleerd.

Heuristische benaderingen kunnen voor praktische toepassingen even waardevol zijn
als fundamentele.

Voor grote ontdekkingen is intuitie even belangrijk als intelligentie.
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Abstract

Growing demands to both utilize and preserve our coastal zones cause a need
for better understanding of the underlying coastal dynamics as well as the
capabilities to model these processes. This study deals with the nonlinear
transformation of wave spectra in the shallow nearshore regions, in particular
those due to nonlinear triad wave interactions and wave breaking. The study
aims at increasing the knowledge and the physical insight in the mechanism of
these processes, and incorporating this knowledge in numerical shallow-water
wave models.

Bispectral analysis of shallow-water waves is performed to investigate aspects
of nonlinear dynamics. Among these is the mechanism of phase couplings as
waves evolve over a shoaling region. The evolution of the biphase has
previously been found to be consistent with visual observation that waves
evolve from a slightly peaked, nearly sinusoidal shape in deep water (with
biphase equal to zero) to a shape characterized by a steep front face and a
gently sloping rear face (with biphase equal to -#/2). This biphase evolution is
also found in present study, based on analyses of detailed data sets; its variation
has been parametrized in terms of the Ursell number for use in approximate
computational models.

The bispectral analysis is also used to examine the spatial variation in intensity
of nonlinear coupling in a random wavefield propagating over and beyond a
shallow bar. The observed spatial variations of nonlinearity parameters (such
as bicoherence, skewness and asymmetry) indicate strong phase couplings
between the primary and its harmonics over the bar owning to nonlinear triad
interactions. In the deepening region beyond the bar, the bound harmonics are
released and the wavefield is found to be spatially homogeneous without
memory of phase locks which existed over the bar. This implies that the
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wavefield there can again be fully described by the energy density spectrum
without specific additional phase information.

Deterministic complex-amplitude evolution equations based on Boussinesq
equations with improved dispersion characteristics are used to simulate
harmonic generation in shallow water. An existing model has been extended
into the surf zone by incorporating the effect of energy dissipation due to wave
breaking. The spectral breaking function distributes the total rate of random-
wave energy dissipation in proportion to the local spectral level, based on
previous experimental results. The model is used to predict the surface
elevations from given complex Fourier amplitudes obtained from measured time
records in laboratory experiments at the upwave boundary. The model is also
used, together with the assumption of random, independent initial phases, to
calculate the evolution of the energy spectrum of random waves. The results are
in good agreement with observed surface elevations as well as spectra.

For random-wave predictions in the nearshore, phase-averaged energy based
models are preferred. A statistical model for the average effect of triad wave
interactions is presented and investigated. The model is based on the Zakharov
kinetic equation for resonant three-wave interactions. A narrow frequency filter
is introduced to allow for the off-resonant energetic triad interactions. The
model is applicable for dispersive waves without restriction to resonant colinear
interactions. Numerical simulation of the spectral evolution in shallow-water
waves has shown the ability of the model to transfer energy to higher harmonics
with intensities dependent on the filter bandwidth. Verification with
observations has shown promising results, but the model needs improvement
especially the specification of the filter bandwidth. Suggestions for further
development and improvement of this approach are given.

Along the line of statistical modeling of triad wave interactions, a parametrized
energy formulation is developed in order to minimize the computational efforts.
The model is based on the Boussinesq evolution equations, supplemented with
an empirical parametrization of the biphase evolution and a lumped presentation
of the interaction integral, in which the values of the integrand are scaled with
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those of the self-interactions. This lumped triad approximation (LTA) model is
implemented in a one-dimensional energy balance equation to compute the
evolution of the energy spectrum in shallow water. Comparisons with
observations have shown good agreement. The computational efficiency and the
fair performance of the LTA model favour its use in application for wind-
generated waves in coastal regions.
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Samenvatting

De toenemende druk op kustzones brengt de behoefte met zich mee aan een
beter begrip van hydrodynamische en morfologische kustprocessen en aan het
vermogen die te modelleren. Dit onderzoek heeft betrekking op niet-lineaire
transformaties van golfspectra in ondiepe kustwateren, in het bijzonder als
gevolg van drie-golfwisselwerkingen en de invloed van golfbreking. Het doel
van het onderzoek is het verhogen van het inzicht in en de kennis van deze
processen, en de ontwikkeling van numerieke modellen voor de berekening
ervan.

Bispectrale analyse is uitgevoerd om een aantal niet-lineaire aspecten van de
dynamica van ondiep-water golven te onderzoeken, met name met betrekking
tot de fasckoppelingen tussen spectrale componenten in een golfveld in
afnemende diepte. De ontwikkeling van de bifase was al eerder onderzocht, en
kwalitatief in overeenstemming gevonden met de visueel waar te nemen
vervorming van het golfprofiel van een licht gepiekte, min of meer sinusvormig
profiel in diep water (bifase gelijk aan nul) tot vrijwel een zaagtand profiel met
steil voorfront (bifase gelijk aan -w/2). Deze trend is in het onderhavig
onderzoek ook gevonden in een analyse van een verzameling gedetailleerde
gegevens, en is geparameteriseerd als functie van een lokaal getal van Ursell
voor gebruik in een benaderend rekenmodel.

Bispectrale analyse is eveneens gebruikt voor een onderzoek van de ruimtelijke
variaties van de intensiteit van de niet-lineaire koppelingen in een onregelmatig
golfveld dat zich voortplant over en voorbij een lokale ondiepte. De
waargenomen variaties van niet-lineariteitsparameters zoals bicoherentie,
scheefheid en asymmetrie duiden op sterke koppelingen boven de ondiepte
tussen de primaire componenten en hun harmonischen, als gevolg van drie-
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golfwisselwerkingen. In het diepere gedeelte voorbij de ondiepte worden de
aanvankelijk gebonden harmonischen ontkoppeld; het resulterend golfveld wordt
ruimtelijk homogeen, zonder "geheugen” voor de specifieke fasekoppelingen die
boven de ondiepte hebben bestaan. Het golfveld in dat gebied kan, evenals
ervoor, worden beschreven met uitsluitend het energiespectrum, op basis van
het conventioneel random-fase model.

Een deterministisch spectraal model voor complexe amplituden, gebaseerd op
Boussinesq vergelijkingen met verbeterde dispersie, is gebruikt om opwekking
van hogere harmonischen in ondiep water te simuleren. Een bestaand model is
uitgebreid met een formulering voor het effect van energiedissipatie door
golfbreking. De totale dissipatie is spectraal verdeeld naar evenredigheid met
de lokale spectrale dichtheid. Met dit uitgebreide model zijn oppervlakte
uitwijkingen in een aantal punten gesimuleerd, uitgaande van gemeten waarden
aan de bovenwindse zijde. Ook zijn op basis van de berekende complexe
amplituden schattingen gemaakt van de ruimtelijke variatie van de
energiespectra. De simulaties zijn in goede overeenstemming met de metingen,
zowel voor de energiespectra als voor de oppervlakte-uitwijkingen.

Voor berekening van onregelmatige golven in uitgestrekte gebieden zijn
deterministische modellen te rekenintensief en verdienen statistische modellen
de voorkeur. Voor dat doel is een formulering gegeven van de gemiddelde
spectrale energie-overdracht als gevolg van niet-resonante drie-golf-
wisselwerkingen, - gebaseerd op. een soortgeliik model voor resonante
wisselwerkingen van Zakharov. Hiertoe is een frekwentie-filter van kleine maar
eindige breedte gebruikt. Het model geldt nominaal voor ééndimensionale niet-
dispersieve golven. Numerieke simulaties van de ontwikkeling van
energiespectra in ondiep water hebben aangetoond dat dit model weliswaar
kwalitatief de juiste trends voorspelt, met name overdracht van energie van de
spectrale piek naar de hogere harmonischen, maar de geschikte bepaling van de
te gebruiken filterbandbreedte moet nader worden onderzocht. Hiervoor wordt

een concrete suggestie gegeven.
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Ten einde de vereiste rekencapaciteit nog meer terug te brengen is een
geparameteriseerde formulering ontwikkeld voor de gemiddelde energie-
overdracht als gevolg van drie-golf-wisselwerkingen. Deze is gebaseerd op de
deterministische Boussinesq-vergelijkingen voor complexe amplituden en is uit
praktische overwegingen in geparameteriseerde vorm uitgedrukt, waarbij de
drie-golfwisselwerkingen evenredig zijn gesteld aan de zelf-zelf wisselwerkingen
en waarbij tevens gebruik is gemaakt van de eerder gegeven Ursell-afhankelijke
parameterisatie van de bifasen. Dit "Lumped Triad Approximation" (LTA)
model is in een één-dimensionaal numeriek model voor de golfenergiebalans
ingebouwd. De rekenuitkomsten van dit model zijn in redelijk goede
overeenkomst met meetwaarden. De geringe rekenintensiteit en de redelijke
prestaties van het model zijn een indicatie van het potentieel van het model voor
toepassingen in kustgebieden.
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Chapter 1

1. Introduction
1.1 General

Wave transformations in the nearshore region result in a visually spectacular
and scientifically and technically important phenomenon. The dissipation of
wave energy by breaking and subsequent fluid motion in the surf zone are both
significant from the engineering point of view. They are of great importance
concerning natural or man-induced morphological developments, coastal
structures and the transport and dispersion of dissolved and suspended matter
in coastal regions.

Waves in the nearshore regions are profoundly modified by bottom topography.
In shallow water, linear and nonlinear dynamical processes change the
characteristics of the wavefield. Refraction, shoaling, nonlinear interactions and
breaking are typical manifestations of these transformations. The understanding
of these physical processes has been improved in recent years and a number of
attempts have been made to incorporate this knowledge in numerical wave
models.

Observations of shoaling wavefields indicate that waves evolve from a slightly
peaked, nearly sinusoidal shape in deep water to a shape characterized by sharp
crests, flat troughs and relatively steep shoreward faces. These profile
distortions, that occur just before wave breaking, are typical manifestation of
the nonlinear effects in the nearshore region. These nonlinear effects together
with dissipation of wave energy by breaking represent the dominant physical
mechanisms in the evolution of waves in the nearshore. Thus a good
understanding of the nonlinear aspects of shallow-water waves including the
effects of breaking, and modeling these effects are both of direct interest.
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The wave energy spectrum, which contains information about many statistical
properties of the wavefield, has long been considered as an appropriate design
tool in engineering application. Thus, knowledge of the wave spectrum in the
shoaling region and in the surf zone is of great importance to coastal engineer-
ing. The wave spectrum in the nearshore region is significantly modified due
to both nonlinear effects as well as wave breaking. These transformations are
the main concern of this study.

1.2 Literature review

The propagation of nonlinear shallow-water waves has been investigated by
numerous researchers during the last few decades. Investigations have been
carried out to gain insight in the nonlinear dynamics involved in the nearshore
wave evolution, and to incorporate this knowledge in numerical wave models.

Relevant literature related to nonlinear shallow-water waves is reviewed below.
A distinction is made between literature dealing with the physical aspects and
literature concerned with the modeling aspects.

Physical aspects

Generation of high-frequency waves, due to nonlinearity in a wavefield
propagating over a shallow region, has long been known both observationally
and theoretically.

Johnson et al. (1951) observed that over natural reefs the energy was
transmitted as a multiple crest system. Jolas (1960) conducted experiments with
a simple incident wave over a submerged shelf and observed higher harmonics
of the primary on the transmission side when the water depth above the shelf
was shallow enough. Dattatri et al. (1978) observed rather complex forms of
the transmitted waves over submerged breakwaters, which indicated the
presence of higher harmonics. Kojima et al. (1990) reported their experimental
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results with immersed plates, emphasizing the phenomenon of harmonic
generation and of wave decomposition. Rey et al. (1992) have reported
experiments for wave propagation over a submerged self. They noted that
nonlinear effects at the obstacle introduce asymmetry and skewness to the
initially symmetric wave profile, and generate a hierarchy of shorter
superharmonic free waves propagating away from the obstacle.

Beji and Battjes (1993) have performed laboratory experiments to elucidate the
phenomenon of high-frequency energy generation observed in the energy
spectra of waves traveling over a submerged shallow bar. The dominant
physical mechanism is found to be the amplification of bound harmonics in the
shoaling region, and their release in the deeper region, resulting in the
decomposition of the wavefield.

Field observations in the nearshore regions with-bar-trough type bathymetries
indicated significant changes in the wave spectrum. Byrne (1969), Dingemans
(1989) and Young (1989) reported generation of higher harmonics during the
wave passage over shallow regions.

Phillips (1960) showed theoretically that a second-order Stokes wave is the
result of a nonlinear interaction between two primary wavetrains which forces
a harmonic. He showed that these nonlinear triad interactions, i.e., two waves
interacting to give rise to a third, are near-resonant. Laboratory experiments
conducted by Longuet-Higgins and Smith (1966) and Phillips (1967) confirmed
Phillips’ theory.

Hasselmann et al. (1963) used the bispectrum to investigate the skewness of
surface waves, i.e., lack of symmetry with respect to the horizontal. The
bispectrum is formally defined as the Fourier transform of the second-order
covariance function. The imaginary part of the bispectrum is related to wave
asymmetry, i.e., lack of symmetry with respect to the vertical (Masuda and
Kuo, 1981a; Elgar and Guza, 1985b). Thus, the lack of horizontal and vertical
symmetry can be examined simultaneously using the bispectral analysis.
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Elgar and Guza (1985b) used the bispectral analysis to examine the skewness
and asymmetry of shoaling nonbreaking surface gravity waves. In deep water
they observed phase-coupling between the primary waves in the energetic part
of the spectrum and the first harmonic, consistent with Stokes-type
nonlinearities, similar to those observed by Hasselmann et al. (1963). They
noted that further shoaling gradually leads to more intense triad interactions
involving higher harmonics, and an evolution of the phase relations consistent
with the wave profile that is pitched shoreward relative to a vertical axis. They
also observed that shoreward propagating low-frequency energy has a
significant coupling to higher-frequency modes within the spectral peak, which
is suggestive of a difference interaction between primary frequencies; a similar
interaction was also noted by Hasselmann et al. (1963). Moreover Elgar and
Guza (1985b) observed that the low-frequency wave was 180° out of phase with
the wave group, a value consistent with the classical concept of bound waves
(Longuet-Higgins and Stewart, 1962; 1964).

Along with the cross spectral energy transfers, shallow-water nonlinearity leads
to phase evolution of various frequency components. These phase modifications
result in phase speeds substantially different from those predicted by the linear
Stokes theory. In the field observations of Yefimov et al. (1972), high-
frequency waves had phase speeds between the free-wave speed and the speed
of the spectral peak, suggestive of presence of free and forced components in
these data. Numerous other investigators have also noted a discrepancy between
linear theory and observed phase speed in shallow water (Biisching, 1978; Elgar
and Guza, 1985a). Specifically, they have noted that the celerity was roughly
constant for all wind-wave frequencies.

Field and laboratory observations of velocity measurements indicated that the
onshore velocity associated with the wave crest is stronger and of shorter
duration than the offshore velocity associated with the wave trough (Huntley
and Bowen, 1975; Flick et al., 1981; Herbers et al., 1992). The horizontal
asymmetry of the cross-shore flow, which is a reflection of the wave shape, is
known as the velocity skewness.
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Recently Doering and Bowen (1995) investigated the spatial variation of
velocity skewness and asymmetry for shoaling and breaking surface gravity
waves. They utilized a simple analytical solution for harmonic growth in the
special case of a monochromatic primary wavetrain (Elgar and Guza, 1986).
They proposed and tested a simple parametrization for bispectral evolution, that
is based on the Ursell number. They found that the parametrization provides a
reasonable prediction of velocity skewness and asymmetry due to wave
shoaling.

Elgar et al. (1992) have examined the sensitivity of nonlinear interactions to the
directional distributions of incident waves in laboratory experiments. They
found that the shape of the directional spectrum of the incident wavefield has
only a minor effect on the magnitudes of nonlinear energy transfers during
shoaling. The principal effect of directionality is found to be in the directions,
not the amplitudes, of the nonlinearly generated waves, implying the importance
of triad interactions between noncolinear as well as colinear waves.

The effect of wave breaking on the spectral evolution in random waves in the
presence of harmonic generation has been investigated experimentally by several
authors. Battjes and Beji (1992) performed experiments for nonbreaking and
breaking waves over a submerged bar using single-peaked incident wave spectra
(see also Beji and Battjes, 1993). The wave steepness was varied as well as the
spectral shape; both a narrow, swell-type spectrum and a broader, wind-sea-
type spectrum with a Jonswap (Joint North Sea Wave Project) high-frequency
tail were used. In their experiments, significant spectral changes occurred, both
for breaking and steep but nonbreaking waves. However, the spectral shape (not
the overall energy content) evolved in a like manner for the two cases.

Mase and Kirby (1992) have performed laboratory experiments to elucidate the
shoaling and breaking of random waves over a plane beach profile. They
observed that in very shallow water the high-frequency energy is more
influenced by breaking compared with the primary spectral peak. Their analysis
suggested a spectral breaking function that consists of two parts: the first part
represents proportional energy decay for all frequency components, the second
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part is proportional to the square of the frequency.

Smith and Vincent (1992) have measured shoaling and decay of two coexisting
wave systems on a beach in a wave flume. They observed that the high-
frequency wave system decays faster in the presence of low-frequency waves
than in their absence. They mentioned several mechanisms as possible
explanations, among which is a shoaling analogue of the mechanism proposed
by Banner and Phillips (1974) in which the high-frequency waves experience
the underlying low-frequency waves in terms of a large-scale flow that enhances
breaking of shorter waves. Later Vincent et al. (1994) have analyzed laboratory
data on irregular waves with single-peaked spectra shoaling and breaking on a
1:30 slope. They concluded that within the surf zone the spectral distribution
of dissipation due to breaking is proportional to the energy densities and is not
otherwise dependent on frequency. This is consistent with the results of Beji
and Battjes (1993).

Modeling aspects

Analytical solutions to the governing equations of motion are usually obtained
by expanding the dependent variables in a power series and by assuming that
the bottom slope is a small quantity of higher order than that to which the
expansion is carried. Classical wave theories based on this approach include
Stokes waves and cnoidal waves. The Stokes theory formally requires that wave
nonlinearity is much smaller than the dispersivity; in the shoaling region this
criterion is satisfied only for infinitesimal waves. The Boussinesq equations
(Boussinesq, 1872) are valid in the shoaling region where both nonlinearity and
dispersivity are of the same order. For unidirectional wave propagation
Boussinesq equations reduce to the Korteweg-deVries (KdV) equation
(Korteweg and de Vries, 1895), to which the cnoidal wave is an exact analytical
solution. These exact analytical solutions to the Boussinesq and KdV equations
are waves of permanent form. However, the waves in the shoaling region
undergo substantial deformation, a process characterized by gradual peaking of
the wave crest, flattening of the trough, and steepening of the front faces.




Introduction 7

Clearly, solutions for waves of permanent form to describe the wave evolution
are unrealistic. Thus, models are required to describe wave evolution in the
shoaling region.

Two classes of models for wave propagation can be distinguished, differing
mainly in their formulations and the field of applications. In the first, phase-
averaged, class of models the governing equations are formulated in terms of
wave energy (or action) density. These models describe the average properties
of the wavefield. Their computational efficiency makes them feasible for wind
wave prediction on the open sea in relatively extensive areas (dimensions many
times the wavelength). The second, phase-resolving, class of models comprises
equations describing the instantaneous state of motion, either in the time-domain
or in the frequency-domain (with amplitudes and phases). These models are
computationally demanding compared with those of the first class and are
therefore restricted to smaller domains.

Phase-resolving models, such as Boussinesq equations, incorporate nonlinear
shallow-water effects. Peregrine (1967) formulated Boussinesq equations for
shallow-water wave propagation over varying bottom. A major limitation of
these equations is that they are only applicable to relatively shallow-water
depths because of their weak dispersion characteristics.

Several attempts have been made to improve the dispersion in Boussinesq-type
equations in order to extend their range of applicability into deeper water.
Witting (1984) developed a one-dimensional Boussinesq-type equation from the
depth-integrated flow equations. He used a Taylor series expansion of the
velocity about the bottom, and selected the coefficients of this expansion such
that the resulting dispersion relation best matched that of exact linear theory for
a wide range of water depths. Madsen et al. (1991) introduced additional terms
in the momentum equation to recapture the excellent dispersion characteristics
of Witting (1984). Nwogu (1993), using the inviscid Euler equations, developed
a set of extended Boussinesq equations by choosing an arbitrary depth z, where
the velocity variables are taken. The resulting dispersion relation was then
expressed in terms of this arbitrary depth, and thus best-fitted to the dispersion
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relation of the exact linear theory from deep to shallow water. Schiffer and
Madsen (1995) used higher order Padé expansion in kk of the Stokes linear
dispersion relation for waves on arbitrary depth to derive a new set of
Boussinesq equations. Their equations are valid even for wavelengths as small
as the water depth. Merckelbach (1995) presented another set of Boussinesq
equations with higher-accuracy dispersion.

Beji and Battjes (1994) used a variant of Madsen and Serensen’s (1992)
extended Boussinesq equations to model the nonlinear evolution of
unidirectional nonbreaking waves over a bar. Their equations are expressed in
depth-averaged velocity. The observed phenomena of bound harmonics
generation in the shoaling region and their release beyond the bar were well
predicted by their time-domain computations using this model.

Elgar et al. (1990) used a Boussinesq-based model to predict the velocity
skewness through the shoaling region. They obtained accurate estimates of the
velocity skewness. However, the model is not applicable for breaking waves.
Bosboom (1995) used a spectral Boussinesq model for breaking waves
(Eldeberky and Battjes, 1996) to predict the velocity skewness of waves in the
shoaling region and the surf zone. The model predictions were in fair agreement
with observations.

The KdV equation is essentially a reduction of the Boussinesq equation
assuming unidirectional propagation (i.e., no reflection). The KdV equation is
a wave equation expressed in only one dependent variable (surface elevation).
Svendsen (1976) formulated a KdV equation for variable depth. The extension
of KdV equation to deeper water by adding more dispersion has not been
considered in the literature as has been done for Boussinesq equations.

To study the nonlinear energy transfers between spectral wave components,
spectral evolution equations are commonly used. Several authors have derived
spectral evolution equations for shallow-water waves from KdV or Boussinesq
equations. The KdV equation is easier to transform into the frequency-domain
since it has only one variable (surface elevation) in one equation. Bryant (1973)
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and Mei (1989) derived evolution equations from KdV-type equations for a
horizontal bottom:.

Freilich and Guza (1984) derived evolution equations for the Fourier amplitude
and phase from Peregrine’s equation (1967). They noted that triad interactions
across the energetic part of the wind-wave spectrum provide the mechanism for
cross spectral energy transfers and modal phase modifications as the waves
propagate shoreward through the shoaling region. Based on comparisons of
energy spectra, coherence and relative phase between model predictions and
data, they concluded that the spectral evolution equations accurately predict
Fourier coefficients of the wavefield through the shoaling region (their study did
not include breaking waves).

Liu et al. (1985) used time-domain Boussinesq equations to derive evolution
equations for spectral wave components in a slowly varying, two-dimensional
domain using the parabolic approximation. Their model is an extension of the
Freilich and Guza (1984) model to two horizontal dimensions. The model is
used to compute the evolution of a monochromatic wave with its harmonics.
Application of this model to an entire spectrum of wind waves required an
extensive computational effort.

Elgar and Guza (1986) used the one-dimensional nonlinear Boussinesq model
of Freilich and Guza (1984) to model the bispectral evolution in shoaling
nonbreaking waves. They noted that model predictions of bispectrum, sea-
surface-elevation skewness and asymmetry match field observations. They found
that the bispectral evolution is insensitive to mild bottom slopes; that is, model
runs over a horizontal bottom and over mildly sloping bottoms resulted in a
similar bispectral structure. They also concluded that the gross trends in the
nonlinear evolution of the bispectrum, skewness and asymmetry do not depend
critically on the initial phase coupling. They further found a simple analytical
solution for harmonic growth in the special case of a monochromatic primary
wavetrain, in which the relative phase is dependent on the relative depth as well
as the propagation distance. '
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Madsen and Serensen (1993) derived evolution equations for the complex
Fourier amplitudes based on their time-domain extended Boussinesq equations.
They used the evolution equations to study triad wave interactions in shallow
water. Comparisons of model predictions with observations and direct time-
domain solutions showed good agreement.

Agnon et al. (1993) derived a one-dimensional nonlinear shoaling model for
time periodic, spatially varying waves. In the limit of shallow water, the
quadratic interaction model converges to the Boussinesq model. Extension to
two-dimensional domain for small angle of incidence is made by Kaihatu and
Kirby (1995) using the parabolic approximation.

Nwogu (1994) has used his extended time-domain Boussinesq model to
investigate the effect of near-resonant triad interactions on the transformation
of directional wave spectra in shallow water. He derived expressions from the
Boussinesq equations for the magnitude of the second-order waves induced by
bidirectional, bichromatic waves. He observed that the growth of sub- and
superharmonics of the primary waves is near-resonant for unidirectional waves
in shallow water. However in a multidirectional sea in shallow water, the
second-order interactions are near-resonant for the higher harmonics but non-
resonant for the lower harmonics.

Phase-averaged spectral energy models are feasible for application in the open
ocean (€.g., WAM Development and Implementation Group, 1988). The state-
of-the-art wind wave propagation models are based on the spectral energy
balance equation with various source/sink terms representing generation by
wind, nonlinear quadruplet wave interactions or wave-current interactions,
dissipation by bottom friction and whitecapping (deep-water breaking).
Reference is made to Komen et al. (1994) for a detailed description of the
theoretical background and derived models for oceanic and shelf sea
applications.

Recently attempts have been made to extend spectral energy oceanic models into
the shallower water and even to the surf zone (e.g., Resio, 1988; Holthuijsen
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et al., 1993). In shallow water, the cross-spectral energy transfers become
increasingly important, therefore a representation for the average effects of
nonlinear triad interactions is highly desired.

Abreu et al. (1992) made the first step and developed a statistical model for the
nonlinear evolution of the frequency-directional spectrum, suitable as a source
term in a spectral energy balance. The model is based on the nondispersive,
nonlinear shallow-water equations and an asymptotic closure (Newell and
Aucoin, 1971) for directionally spread, nondispersive waves. In their
formulation only triads containing waves travelling in the same direction (i.e.,
with colinear wavenumber vectors) are considered resonant. In practical
application, the restriction to nondispersive waves is a grave one, because it
implies a continued, resonant, one-way transfer to the higher harmonics, in
contrast to the case of (weakly) dispersive waves for which the transfer is non-
resonant and back-and-forth, because of the mismatch in the phase speed. This
restriction is easily violated in practical application. The consequence of this is
an unwanted behavior of the high-frequency part of the spectrum (dispersive
waves).

In the surf zone, energy dissipation due to depth-induced wave breaking
becomes a dominant process. A few theoretical models exist for the prediction
of the total rate of breaking-induced energy dissipation in random waves (e.g.,
Battjes and Janssen, 1978; Thornton and Guza, 1983).

For application of time-domain Boussinesq equations to the surf zone, Schiffer
et al. (1993) suggested a breaking criterion based on a surface roller approach.
The effect of the roller is included in the vertical distribution of the horizontal
velocity, which leads to an additional convective momentum term.

Recently several attempts have been made to develop a spectral formulation for
energy dissipation by wave breaking. Liu (1990) presented a spectral parabolic
equation supplemented with a breaking dissipation term. He extended the energy
dissipation function for linear waves of Dally et al. (1985) to nonlinear shallow-
water waves. His breaking dissipation term is a complex function with
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magnitude proportional to the wave amplitude. The imaginary part of the
complex dissipation function, which influences the phase of each harmonic and,
consequently, the surface profile inside the surf zone, is chosen to have the
same value as the real part. The consequences were that the free-surface
profiles were entirely wrong compared with the measurements, although the
wave heights were correctly predicted.

Mase and Kirby (1992) have presented a hybrid frequency-domain KdV
equation for random wave transformation. In their equation the damping
coefficient which accounts for breaking dissipation was estimated from
observations of spectral densities over a sloping beach. It was formulated as a
summation of two terms; the first term represents proportional energy decay for
all frequency components, the second term is proportional to the square of the
frequency (see, also, Kirby et al., 1992). The model results were in agreement
with the observations used in the analysis.

Eldeberky and Battjes (1996) have formulated a spectral dissipation function
both for energy models and complex amplitude models, in which the total rate
of random-wave energy dissipation is distributed in proportion to the local
spectral level (based on observations of Beji and Battjes, 1993). The spectral
breaking term is implemented in the evolution equations of an extended
Boussinesq model. The model predictions for the wave spectrum as well as the
wave profile were in good agreement with observations in shallow water.

1.3 Study objectives

The aim of the study presented in this thesis is twofold. In the first place, to
gain more understanding of the dynamics of nonlinear shallow-water waves, in
particular the generation of higher harmonics due to triad wave interactions and
the influence of wave breaking.

For random wave predictions in extensive areas, phase-averaged, spectral
energy based models are appropriate. The significant role of triad wave
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interactions in the nearshore area has made the development of a predictive
energy-based spectral model for the generation and dissipation of the harmonics
in breaking waves highly desired. The second goal of this study is therefore to
develop a statistical model for nonlinear triad wave interactions and a spectral
formulation for depth-induced wave breaking.

1.4 Outline

The layout of this thesis is as follows. In chapter 2, a phenomenological
description of harmonic generation is given as an introductory documentation
to the phenomenon of nonlinear triad interactions. Bispectral analyses of
observations of shallow-water waves are presented in chapter 3. In chapter 4,
a deterministic spectral Boussinesq model is extended into the surf zone by the
inclusion of a dissipation term to account for wave breaking and used to
simulate harmonic generation in shallow water.

Random wave modeling of nonlinear triad wave interactions is considered in
chapter 5, in which a Hamiltonian formulation for nonlinear shallow-water
waves is considered. An energy formulation for triad interactions based on the
Zakharov kinetic equation is presented and investigated in chapter 6. In chapter
7, a computationally efficient, parametrized energy formulation based on
Boussinesq equations representing harmonic generation is developed and
verified. Conclusions and suggestions for future research are finally presented
in chapter 8.
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Chapter 2

2. Phenomenological description of harmonic generation

Harmonic generation in shallow-water waves is described in this chapter from
a phenomenological point of view. The description and interpretations presented
here are based partly on review of existing literature and partly on knowledge
gained during the course of this study.

The arrangement of this chapter is as follows. Section 1 contrasts the role of the
linear and nonlinear transformations in shallow-water waves and the influence
of the dispersion characteristics in the mechanism of nonlinear interactions.
Some elementary principles of nonlinear triad wave interactions are given in
section 2. In section 3, qualitative features of nonlinear wave transformation in
shallow water are presented. The role of wave breaking is finally considered in
section 4.

Some of the comments and interpretations given in this chapter are fairly
general for which no explicit references are given. For specific points, some
references are cited occasionally.

2.1 Linear and nonlinear transformations

As ocean surface gravity waves propagate toward the shore in shoaling waters,
they undergo substantial evolution from their deep-water state. In the shoaling
waters, linear and nonlinear processes act simultaneously to transform the wave
characteristics. Changing bottom topography causes refraction and shoaling of
the wavefield, which result in spatial variations in the amplitudes and directions.
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Although linear theory predicts the observed increasing wave amplitudes and
narrowing directional distributions of swell and sea waves in a qualitative sense,
nonlinear effects are important. Nonlinear evolution can alter the spectral
(frequency-direction) characteristics of the wavefield as well as the wave
profiles. Initially symmetric wave profiles and oscillatory velocities become
asymmetric and skewed. In addition, phase speeds substantially differ from
those predicted by the linear dispersion relationship.

As waves travel from deep to shallow water, the dispersion characteristics of
the wavefield play an important role in the mechanism of the nonlinear wave
interactions. Three regions of different dispersion characteristics can be
distinguished. In deep water (relative depth kh>O(1), where k is a
characteristic wavenumber and 4 the water depth), the wavefield undergoes
strong frequency dispersion. Strong frequency dispersion is the dependency of
phase speed ¢ on frequency w (deep-water waves c=g/w, where g is the
gravitational acceleration). In this region, the dispersion characteristics permit
resonant interactions among quartets of waves to occur, resulting in slow cross-
spectral energy transfers. Although energy exchanges due to these cubic
nonlinearities are very small on wavelength scales, the wave spectrum is
substantially modified over hundreds of wavelengths (Hasselmann, 1962).

In very shallow water (k2<1, a condition approximately satisfied by wind
waves within the surf zone), waves are almost nondispersive (shallow-water
waves c=+/gh). Near-resonant interactions among triads of waves occur,
resulting in rapid spectral evolution.

In intermediate depths (kh=0(1)), between the deep-water region with strongly
dispersive waves and the shallow-water region with nondispersive waves, waves
are weakly dispersive (c=(g/w)tanh kk) and undergo substantial changes caused
by the off-resonant energetic triad interactions. Triad interactions drive rapid
spectral evolution over several (rather than hundreds of) wavelengths.
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2.2 Nonlinear triad wave interactions

In the shoaling region, the short evolution distance and moderate dispersion
suggest that second-order (quadratic) nonlinearities involving triads of waves are
important. Triad interactions occur among waves with frequencies and
wavenumbers such that

hth=£h 2.1

and

k +k =k 2.2)

where fand k are the scalar frequency and vector wavenumber, respectively.
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Figure 2.1 Wavenumber vectors of triad interactions (a): sum interaction, ®):
difference interaction

The wave components (f},k;) and (f;,k,) each satisfy the linear dispersion
relation
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«* = gk tanh(kh) (2.3)

in which k is the wavenumber magnitude. The physical meaning of (2.1) and
(2.2) is that the sum (or difference) interaction between wave components 1 and
2 forces motions with the scalar-sum (or difference) frequency and the vector-
sum (or difference) wavenumber (Fig. 2.1). If component 3 satisfies the linear
dispersion relation (2.3) then the interaction is resonant (Armstrong et al.,
1962) implying a continued one-way transfer of energy to component 3. Note
that for gravity surface waves this is only possible in very shallow water where
the waves are nondispersive. In fact theories for weakly nonlinear wind-
generated surface gravity waves show that the nonlinear triad interactions do not
support resonances (e.g. Phillips, 1960; Hasselman, 1962). If component 3 does
not satisfy the linear dispersion relation (2.3) then the interaction is non-
resonant (in intermediate depths where waves are weakly dispersive) and the
transfer is back-and-forth because of the mismatch in the phase speed.

The intensity of the triad interactions is mainly controlled by the phase
mismatch. The difference between the so-called bound wavenumber given by
|k +k,| and the free wavenumber obtained from the linear dispersion relation
| k(f;)| represents the wavenumber mismatch:

N L YR L) 2.4

The normalized wavenumber mismatch

8, = A/ k(f] 2.5)

is a measure of the departure from exact resonance. Its magnitude determines
the intensity of energy exchanges between the interacting waves. Zero mismatch
(nondispersive shallow-water waves) represents the limiting case in the
interaction process, in which the interacting waves remain intact and in phase
(resonant interaction) during evolution. Thus, the magnitude of energy transfer
is maximum and a continued one-way transfer takes place to the harmonics over
relatively short evolution distance.
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When the mismatch 6, <1 (weakly dispersive shoaling waves), phase relations
between the interacting waves vary slightly over a wavelength. Consequently
the magnitudes and the sign of energy transfers between the interacting waves
vary slowly over a wavelength, allowing significant net energy transfers over
several wavelengths. Large values of the mismatch (strongly dispersive deep-
water waves), imply that phase relations between interacting waves vary rapidly
over a wavelength, not allowing for significant energy transfers.

It is common practice to distinguish between the sum and difference
interactions. In shallow water, the sum interactions between the primary waves
at the energetic part of the spectrum (with peak frequency f,) lead to the
generation of harmonics around a frequency 2f, (first harmonic of the primary).
Eventually, the sum interactions between the primary waves near f, and the first
harmonics at 2f, give rise to harmonics near 3f,. The difference interactions
between primary waves within the energetic part of the spectrum lead to the
generation of bound long waves.

2.3 Qualitative features of nonlinear wave transformation in the nearshore

In the shoaling regions, nonlinearity significantly transforms the characteristics
of the wave spectra as well as the wave profiles. It drives cross-spectral
transfers of energy and phase modifications leading to distortion of wave
profiles. Qualitative descriptions are given below for the influence of
nonlinearity on the phase speed, the wave-profiles, the frequency and
frequency-direction energy spectra, and the underlying velocity field.

Phase speed

Free waves propagate with phase speeds determined from the linear dispersion
relation (2.3). In shallow water, however, the bound waves generated by the
off-resonant energetic interactions are coupled to the primary wave group and
thus propagate with phase speeds substantially different from those predicted by
the linear dispersion relation (Biisching, 1978). Due to nonlinearity, high-
frequency waves have phase speeds between the free-wave speed and the speed
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at the spectral peak.

Wave profiles

As waves propagate in a shoaling region, two stages of profile distortion can
be distinguished. As they travel in decreasing intermediate depth, they lose their
horizontal symmetry and develop sharp crests and flat troughs (Stokes-type) due
to the weak nonlinearity. This is a consequence of gemeration of bound
harmonics that are phase locked and in phase with the primary. As they
propagate into shallower water, the bound harmonics are gradually amplified.
During this stage the wave profiles gradually lose also their vertical symmetry
and assume a saw-toothed shape (Fig. 2.2b,c) with crests pitched forward (the
harmonics are leading the primary waves). This is implying that the harmonics
are forced to a forward phase shift (i.e., propagate faster) with respect to the
primary (Flick et al., 1981). These profile distortions are also influenced by the
effects of amplitude dispersion (i.e., tendency for a wave crest to propagate
faster than the trough, as in c=+/g(h+{) where { is the surface elevation)
because of the finite amplitude effects.

When waves propagate over a submerged shallow bar the phenomenon of
harmonic generation manifests itself strongly (Beji and Battjes, 1993). In the
shoaling region, bound harmonics are amplified due to the increasing
nonlinearity. Over the bar crest, where the waves enter a nearly nondispersive
medium, the resonant conditions are nearly satisfied and rapid transfers of
energy take place from the primary waves to the harmonics. These transfers
coupled with the effects of amplitude dispersion generate the so-called
dispersive tail waves propagating at nearly the same phase speed as the primary
waves (Fig. 2.2c). These dispersive tail waves can be regarded as free since
their phase speeds are mainly determined by the water depth. In the deepening
region beyond the bar, the nonlinearity decreases, and the wavefield
decomposes into freely propagating shorter components with smaller amplitude
(Fig. 2.2d,e).
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(e)
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Figure 2.2 Sea surface elevation versus time for evolution of random waves
over a submerged bar. (a): in deep water, (b) and (c): over the bar
crest, (d) and (e) beyond the bar. Measurements taken from Beji
and Battjes (1993). '
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Frequency spectra

The evolution of the frequency spectrum of wave energy in shallow water is
dominated by the energy transfers between the spectral components. The
influences of these transfers on the shape of the spectrum vary with the
frequency distribution of the incident deep water spectrum. Narrowband
frequency-spectra develop secondary peaks at harmonics of the peak frequency
(Fig. 2.3a), while broadband frequency-spectra show an increase in the energy
level over a wide range of frequencies higher than the energetic part of the

spectrum (Fig. 2.3b).

(a)
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Figure 2.3 Energy spectra of sea surface elevation for random waves evolution
in shoaling region. Solid lines denote spectra at deep water,
dashed lines denote transformed spectra in shallow water. (a):
Narrowband spectrum, (b): broadband spectrum. Measurements
taken from Arcilla et al. (1994)
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Frequency-direction spectra

The directional properties of the wavefield play a role in the interaction
mechanism in which the harmonics are generated. First consider a wavefield
with a wide directional distribution in deep water. As waves propagate into
shallow water, changing bottom topography tends to narrow the directional
distribution owing to refraction. Thus, all wavenumber vectors attain nearly the
same direction (i.e., “colinear”). Nonlinear triad interactions between the nearly
colinear waves (i.e., waves propagating within the same directional sector)
generate higher harmonics which are directionally aligned with the primary
directional peak. (Note this does not hold for the long waves resulting from the
difference interactions.)

Directionally bi-modal wave spectra (in deep water) behave differently as they
transform in shallow water (Freilich et al., 1990). In this case, the wavenumber
vectors of the two directional peaks are not (nearly) colinear. The interactions
between the primary waves in the two directional peaks (the so-called
“noncolinear” interactions) produce a new directional peak (at the vector-sum
wavenumber k, +k,). Colinear interactions between waves within each primary
peak generate also peaks that are directionally aligned with the primary ones.
In shoaling directionally bi-modal wave spectra, both colinear and noncolinear
triad interactions are important.

Near-bottom velocity

Harmonic generation does not only influence the wave shape, but also the
underlying velocity field. Observations of near-bottom velocity show skewed
velocity records in regions where there are strong nonlinear couplings. Phase-
couplings between the primary waves and their higher harmonics, as a result of
sum interactions between the primary waves, lead to oscillatory velocities
skewed onshore, i.e., onshore velocities stronger and of shorter duration than
offshore velocities. On the other hand, phase coupling between the primary and
the bound long wave, as a result of difference interaction between the primary
waves, leads to oscillatory velocity skewed offshore, i.e., offshore velocities
stronger and of shorter duration than onshore velocities (Doering and Bowen,
1995).
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2.4 The role of wave breaking

The distortions of the wave profiles in shallow water (asymmetric and skewed
profiles) associated with harmonic generation are characteristics of nearly
breaking and broken waves. The role of wave breaking in such regions and its
influence on the spectral evolution has not yet rigorously been established.
Knowledge of the spectral distribution of energy dissipation due to wave
breaking is necessary for prediction of wave evolution in the shoaling region
and in the surf zone.

Wave breaking can be seen as a two-stage process. The pre-breaking stage is
characterized by a sequence of orderly motions dominated by the generation of
bound harmonics resulting in wave steepening and profile distortions. The
second stage starts with the incipient wave breaking and is characterized by a
chaotic appearance, air-entrainment and turbulence. After breaking the wave
either recovers its laminar nature and continues to propagate with a smaller
amplitude or it turns into a turbulent bore. The first case is observed when
waves break over a submerged nearshore bar, the second on a beach where
depth decreases monotonically at a rate sufficient to sustain turbulence.

Several attempts have been made to establish a spectral distribution for the
energy dissipation due to wave breaking based on analyses of wave spectra in
the surf zone. Conclusions based on these analyses seem to significantly depend
on the experimental conditions such as the initial spectral shape and the
severeness of wave breaking. The method adopted in this study is based on the
observations of shallow-water wave breaking in the presence of harmonic
generation over a shallow bar (Beji and Battjes, 1993) as well as over a slope
(Vincent et al., 1994). They concluded that for single-peaked incident wave
spectra, the nonlinear interactions taking place in the course of waves’ passage
across shallow regions appeared not to be affected by wave breaking. Wave
breaking did not substantially affect the dynamics of the nonlinear triad
interactions (at least for the energetic part of the spectrum and its higher
harmonics).
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Little is known about the influence of wave breaking on the low-frequency
waves. In the surf zone, although wave height is depth limited, the amplitude
of the low-frequency waves tends to increase with decreasing depth, reaching
a maximum at the shore line generally without breaking of the long waves. This
does not necessarily imply that the low-frequency motions are not affected by
breaking of the shorter waves. The nonlinearly generated low-frequency motion
could be substantially damped in the inner surf zone (Eldeberky and Battjes,
1996).
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Chapter 3

3. Bispectral analysis of shallow-water waves
3.1 Introduction

In this chapter, aspects of nonlinear dynamics of waves propagating in shallow
water are investigated using the bispectral analysis. Since its introduction, the
bispectrum has been used extensively to examine nonlinearity in shoaling
surface gravity waves. The purpose of this chapter is to gain more
understanding and physical insight in the nonlinear transformation of wave
spectra in shallow water with aid of the bispectral analysis.

The organization of this chapter is as follows. The definition of bispectrum is
given in section 2. In section 3, the relation between the bispectrum and the
skewness and asymmetry are described. Bispectral analysis of shoaling waves
over a laboratory beach profile is carried out in section 4. In section 5, the
nonlinear couplings in waves passing over a bar region are investigated. The
evolution of relative phase in waves propagating over a shallow bar is examined
in section 6. A summary and conclusions are finally given in section 7. (Parts
of this chapter have been published in slightly different form in Eldeberky and
Battjes (1994a).)

3.2 The bispectrum

The bispectrum was introduced by Hasselmann et al. (1963) to examine wave
nonlinearity in intermediate water depths. Since its introduction, bispectral
analysis has been used by many investigators to study nonlinear phenomena in
a wide variety of fields such as seismic action (Haubrich, 1965), fluid
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turbulence (Yeh and Van Atta, 1973), plasma fluctuations (Kim and Powers,
1979) and deep-water surface gravity waves (Masudo and Kuo, 1981b).
Recently, it has been used extensively to examine nonlinearity in shoaling
surface gravity waves (Elgar and Guza, 1985b; Herbers and Guza, 1992).

The sea surface elevation can be represented using spatially varying Fourier
components, in which the time variation can be factored out (assuming time
periodicity) as follows

(x,t) = Y Cx) expl-i(w,n)] 3.1
p=-o
where w is the radian frequency (=2xf), p is the rank of the harmonic, C, is
the complex Fourier amplitude varying with position x.

For a Gaussian sea, the sea surface can be represented as a superposition of
statistically independent waves in which the phases are random. Consequently
the sea surface can be fully described by the continuous energy spectrum, which
is defined as the Fourier transform of the second-order correlation function R(7)
of the time series,

+0c

E(w) = [ R exp(-iwr) a7 3.2)
27 ]
where R(7) is given by
R(r) = <¢){+7)> 3.3)
in which 7 is a time lag, and <.> denotes the expected-value, or average,

operator. Note that the spectral energy density function E(w) is defined for
positive and negative frequencies.

For discretely sampled data, the discrete energy spectrum E, can be represented
in terms of Fourier amplitudes,
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- N 3.4
E, = <C, C, > 3.4
Here C, is the complex conjugate amplitude of C,. The discrete energy
spectrum E, is related to the continuous one by E,=E(w)Aw for w=w,, in
which Aw=27Af is the angular frequency-band.

The energy spectrum (3.4) is independent of the phases. If the phases of
Fourier components are not random and statistically correlated, the sea surface
is not Gaussian (Hasselmann et al., 1963). Departure from a Gaussian form
cannot be detected by the energy spectrum. Higher-order spectra such as the
bispectrum can be used to investigate nonlinearity in shallow-water waves. It
is a complex quantity, formally defined as the Fourier transform of the third-
order correlation function of the time series:

R | (3.5)
B(w,,w,) = [5—1;] LJ R(7,,7,) exp[-i(w,1,+w,7,)] d7,d7,

in which

R(7,,7,) = <SOt+7)(t+7,)> (3.6)

The digital (discrete) bispectrum, for discretely sampled data, is (Haubrich,
1965; Kim and Powers, 1979)

B

iLm

= <C,C, Cl.,> 3.7

in which / and m are the frequency indices. The digital bispectrum for
discretely sampled data can be estimated from (3.7) by ensemble averaging. It
relates to a triad of waves with frequency indices /, m and {+m.

The bispectrum B, ,, vanishes if:

(1) There is no energy present at frequencies / or m or [+m (i.e., zero Fourier
amplitude of any component participating in the triad interactions);

(2) There is no phase relation (coherence) between the waves forming the triad
(i.e., statistically independent free waves).
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On the other hand, if the wave at n=[+m is generated through the interaction
between / and m, then a phase coherence will exist and the expected value of
the bispectrum will be nonzero.

The bispectrum can be efficiently computed using symmetry properties, in
which it can be uniquely described by its values in a bi-frequency octant. For
a digital time series with Nyquist frequency fy, the bispectrum is uniquely
defined within a triangle in (f;, f;)-space (bi-frequency plan) with vertices at
(=0, m=0), (I=fy, m=0), and ((=fy,, m=fy,). The relation between the
continuous bispectrum B(w,,w,) and the discrete B, is

2
B(w,,w,) = [A%»] B, (3.8)

in which Aw is the frequency-band, w,=IlAw and w,=mAw.

The bispectrum can be used to identify coupled modes, however it does not
give a qualitative measure of the intensity of nonlinear interactions since its
value depends on the amplitudes of the three waves involved in the interaction.
It is convenient to cast the bispectrum into its normalized magnitude and phase,
the so-called bicoherence and biphase, given respectively by (Kim and Powers,
1979)

lBl,m,2

bl = (3.9)
I,m ) 2 ]
<[¢C *> <|C.,|*>
Im {B,,} (3.10)
= arctan | —————— :
Bl,m Re{Bz’m} }

Expressing the Fourier coefficient C in terms of magnitude |C| and phase ¢,
the biphase is (Kim et al., 1980)

Bimw = * 6, - b, (3.11)

In a random wavefield with statistically independent components, the phases are
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randomly distributed between -7 and 7, and thus the biphase-values tend to be
scattered between -7 and .

Clearly, the bicoherence is independent of the wave amplitude, unlike the
bispectrum. For the bicoherence normalization given by (3.9), the bicoherence
value is bounded by zero and 1 (i.e., 0<b?’<1). Zero-value of bicoherence
indicates statistically uncorrelated waves. On the other hand, the maximum
value of the bicoherence is unity, implying fully coupled waves. For a three-
wave system, Kim and Powers (1979) show that b%(/,m) represents the fraction
of the total energy at the sumfrequency (n=I[+m) due to the nonlinear
interaction.

For a finite-length time series even a truly Gaussian process will have a non-
zero bispectrum. A 95% significance level on zero bicoherence is given by
Haubrich (1965) as

bgsq = 6/d.0.f (3.12)
where d.o.f. is the number of degrees of freedom in the bispectral estimates.

Confidence limits on the estimates of bicoherence depend on the true value of
bicoherence, but it has been shown that the variance of bicoherence estimates
is less than 2/d.o.f. (Kim and Powers, 1979). Confidence levels for estimates
of biphase depend on bicoherence values and the number of degrees of
freedom. Biphase estimates for frequency pairs with very low bicoherence are
unstable and tend to randomly distributed values between -w and .

3.3 Skewness and asymmetry

The so-called skewness and asymmetry of the sea surface are profile distortions
caused by the presence of bound harmonics due to nonlinear interactions. The
so-called skewness is the lack of symmetry with respect to the horizontal.
Skewed profiles of gravity water waves are characterized by sharp crests and
flat troughs (Stokes-type wave), in which the harmonics are phase-locked and
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in phase with the primary. The name derives from the fact that the probability
density function of these profile is skewed. On the other hand, the asymmetry
is the lack of symmetry with respect to the vertical. Asymmetric profiles are
usually characterized by steep forward fronts and mild rear faces (nearly saw-
toothed shape), in which the harmonics are phase-locked and leading the

primary.

The skewness of a random variable (x) is conventionally defined as its
normalized third central moment:

<(x-p)>

S = . (3.13)

GX

Here, p, and o, are the mean and the standard deviation of x.

The mean square, or the variance of the surface elevation can be recovered
from the integral of the energy spectrum, i.e. (using the discrete form)

<8m>==i E, 3.14)
p=—0°

Hasselmann et al. (1963) showed that the integral over the real part of the
bispectrum recovers the mean cube, or third-order moment of the surface
elevation

<P0>=Y Y Re{B,) (3.15)

[=~00 m=-00

The skewness or the nondimensional mean cube of the surface elevation can be
obtained by normalizing (3.15) by the variance to the power 3/2:

. <> (3.16)
< §-2 ) >3

Similarly, the asymmetry of the surface elevation can be obtained from the
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integral over the imaginary part of the bispectrum after normalization with the
variance to the power 3/2:

Y T Im {B, .} (3.17)

A - [=~0 m=-o
<>

The skewness and asymmetry represent overall measures of nonlinearity and
indicate the departure of the wave profile statistics from the Gaussian
distribution. These parameters are used in the analysis of data presented in the
following sections.

3.4 Bispectral evolution of shoaling waves

Observations of shoaling waves are analyzed to elucidate the phenomenon of
harmonic generation in the shoaling region and the surf zone. The objectives
of these analyses are to determine the significant interactions that lead to
harmonic generation and the influence of wave breaking on the intensity of
nonlinear couplings.

Experimental data

The so-called Delta Flume ’93 experiment reported by Arcilla et al. (1994),
also Roelvink and Reniers (1995), has yielded time series of surface elevation
on a large-scale sandy 2DV beach in a laboratory. Three different wave
conditions were used representing slightly erosive, highly erosive, and strongly
accretive conditions. These wave conditions resulted in development of a
nearshore sand bar.

Surface elevation measurements taken from the Delta Flume experiment of
random waves propagating over a barred beach have been employed here to
examine nonlinear couplings. The target spectrum was narrow-banded with peak
frequency of 0.125 Hz and significant wave height of 0.60 m. The initial
bottom geometry was a barred beach profile with deep water depth of 4.1 m.
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Time series of surface elevation were obtained at several locations at a 10 Hz
sampling rate. The measurement locations and the bottom geometry used here
are shown in Fig. 3.1.

5
7 2 3 4/ 5 6178 e
€ 3} /\wwf—_/
% —-—"'""/
Q 2' /

l.

0

0 20 40 60 80 100 120 140 160 180 200
Distance (m)

Figure 3.1 Bed profile and locations of wave gauges (Arcilla et al., 1994)

Analysis and results

The surface elevation spectra are shown in Fig. 3.2. In the shoaling regions,
strong energy transfers occur from the primary to the higher harmonics. In
shallow water over the bar, wave breaking takes place leading to reduction of
the total energy.

The bispectra are computed according to equation (3.7), in which the complex
Fourier amplitudes 4, were determined from the time records with a standard
FFT-algorithm. The data were processed by dividing the record into equal
segments, each of 102.4 seconds duration resulting in a frequency resolution for
the raw data of 0.00976 Hz. The bispectral estimates are obtained by ensemble
averaging over 28 segments. Therefore the number of degrees of freedom in the
estimates is 56.
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Figure 3.2 Surface elevation spectra. Measurements from Arcilla et al. (1994)
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Figure 3.3 Bispectra at three stations, from top to bottom: panel (a) station 1,

(b) station 3, (c) station 4. Frequency fin Hz. Absolute bispectrum
| Bl in cm®/HZ.
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Figure 3.4 Bispectra at three stations, from top to bottom: panel (a) station 5,
(b) station 6, (c) station 7. Frequency fin Hz. Absolute bispectrum
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Absolute values of the continuous bispectra (computed using equation 3.8) for
six stations are given in Figs. 3.3 and 3.4, where only the positive quadrants
(fy, f,>0) are shown. Note that the bispectra are symmetric around the

diagonal f, =f,.

The bispectrum at the upwave boundary is shown in panel (a) in which a weak
bispectral peak already exists at (0.125 Hz, 0.125 Hz). This peak indicates the
self-interaction of the primary at 0.125 Hz with itself leading to the first
harmonic at 0.25 Hz. After propagation 39 m over a decreasing water depth,
the bispectrum (Fig. 3.3, panel b) shows amplification of the ’self-interaction’
peak of the primary. This peak suggests strong interaction, forcing first
harmonics, i.e., second-order Stokes-type nonlinearity. A less pronounced
bispectral peak exists at (0.125 Hz, 0.02 Hz). This peak indicates phase-
coupling between the primary and the low-frequency waves. Physically, this
peak is attributed to the interactions between neighboring primary waves; the
resultant wave group forces a long wave at the difference frequency that is
phase coupled to the group. Another bispectral peak starts to develop at (0.125
Hz, 0.25 Hz), indicating interaction between the primary and its first harmonic
resulting in energy transfer to the second harmonic. This peak is intensified
after propagation of an additional 47 m in shoaling waters (panel c) and a new
bispectral peak appears at (0.25 Hz, 0.25 Hz) indicating the self-interaction of
the first harmonic. Note that the bispectral peak at (0.125 Hz, 0.125 Hz) does
not show significant changes compared with the previous location (panel b).

As the wavefield propagates into shallower water, wave breaking takes place
leading to energy dissipation. The bispectral peak at (0.125 Hz, 0.125 Hz) is
significantly damped compared with the spectral peaks of the other interactions
(Fig. 3.4, panel a). Over the bar, most of the bispectral regions show
substantial reduction in their intensities (Fig. 3.4, panels b and c) owing to
strong wave breaking.
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Since the bispectrum depends on the wave amplitude, it is expected that the
bispectral values reduce in regions of strong wave breaking due to energy
dissipation. Conclusion about the influence of wave breaking on the nonlinear
couplings requires a measure of nonlinear coupling that is independent of the
wave amplitude. This is the normalized bispectrum, i.e., bicoherence.

Bicoherence functions have been calculated from the records using equation
(3.9). These calculations were restricted to those frequency pairs for which the
absolute value of the bispectral density exceeded 5% of the maximum value in
the same bispectrum in order to suppress noisy and spiky results. Isolines of
b(f,f,) at station 1 and 4 are shown in Fig. 3.5.

The results show a strong increase of the region of significant bicoherence
between station 1 and 4. The bicoherence at station 4 shows distinct regions of
high intensities at the harmonics of the primary waves. The variations of the
maximum squared bicoherence over the beach profile are shown in Fig. 3.6.
The bicoherence values for the harmonic interactions increase over the shoaling
region; farther shoreward bicoherence values are substantially reduced owing
to wave breaking.

The overall nonlinearity parameters, skewness and asymmetry, have been
calculated at several locations using equations (3.16) and (3.17). Their
variations over the beach profile are shown in Fig. 3.7. The skewness increases
significantly in the shoaling region, reaches a maximum value before the bar
crest, and decreases beyond the bar mainly due to wave breaking.

The variation of the asymmetry shows a different trend than the variation of the
skewness. In most of the shoaling region, the values of the asymmetry remain
rather low. They increase rapidly over the bar. Farther beyond the bar, the
asymmetry decreases due to wave breaking.
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Summary and conclusions

The bispectral analysis of shoaling breaking waves has shown that in the outer
part of the shoaling region, weak nonlinearity and the moderate dispersion
characteristics lead to off-resonant energetic triad interactions. In this region
bound waves that are locked and in phase with the primary are amplified
resulting in skewed wave profiles of Stokes-type. In the inner part of the
shoaling region, nonlinearity increases and waves become nearly nondispersive,
the near-resonant triad interactions result in amplification of the harmonics and
force them into forward phase shifts with respect to the primary. These phase
modifications lead to rapid increase in the asymmetry (nearly saw-toothed
shape) and a slight reduction in skewness. As waves inter the surf zone, wave
breaking substantially weakens the intensity of nonlinear couplings. This is
evident from the reduction in the bicoherence levels as well as the skewness and
asymmetry values.

3.5 Nonlinear coupling in waves passing over a bar
3.5.1 Introduction

Nonlinear coupling between spectral components is examined as the wavefield
evolves while passing over a shallow bar followed by a deepening region. The
conventional viewpoint is that on the seaside, the harmonics, bound to the
primary, are amplified because of the increasing nonlinearity in the shoaling
region, and that they are released on the shoreside, at least partially, because
of the decreasing nonlinearity in the deepening region. Strictly speaking,
however, even in the shoaling region free components are generated as a result
of the nonhomogeneity, whereas conversely some degree of phase lock may
remain in the deepening region. If the latter were true then the wavefield
beyond a bar region is statistically inhomogeneous and thus cannot fully
described by the energy density spectrum without the need for additional, site
dependent phase information.
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A question which deserves attention in this context relates to the possibility of
a "memory" in the wavefield on the downwave side of the bar, of what
happened over the bar. Such "memory" is equivalent to a persistent phase lock
between harmonics. This in turn can imply spatial nonhomogeneity. This
possibility is well established for the interaction between a discrete, finite set
of wave components in shallow water, in particular a monocromatic wave and
its harmonics, where a recurrent pattern of cross-spectral energy transfer back
and forth occurs, resulting in spatially periodic amplitude variations. However,
these effects are expected to cancel out in case of a continuous spectrum.
(Moreover, the nonlinearity will decrease as the waves move into deeper
water.) If this is indeed the case, the wavefield shoreward side of the bar would
again be statistically homogenous. Knowledge of the energy spectrum on the
downwave side without specific additional phase information from "upwave"
regions would then be sufficient to characterize the wavefield in a statistical
sense.

The description given above of the generation and release of harmonics is
qualitative, as is usually the case. Here these phenomena are investigated
quantitatively. The approach taken here is essentially experimental, with a
numerical extension. Time series of surface elevation at various locations are
analyzed in the time-domain and in the frequency-domain to determine the
bispectrum, bicoherence, biphase, skewness and asymmetry. The spatial
variations of these nonlinearity indicators over and beyond the bar are of special
interest, in view of the question raised above.

3.5.2 Analysis of experimental data

Experimental data

Experiments with random waves reported by Beji and Battjes (1993) have
yielded time series of surface elevation at a number of stations over a bar and
on either side of it. The bottom profile used in the experiments is shown in Fig.
3.8. A submerged trapezoidal bar was constructed, consisting of an upslope of
1:20 and a 2 m horizontal crest followed by 1:10 downslope. The still-water
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depth was 0.10 m over the bar crest, and 0.40 m in the deep-water regions. At
the end of the flume opposite to the wave generator, a plane beach with 1:25
slope was present from a previous experiment; it acted merely as a wave
absorber. The flume was equipped with a hydraulically driven, piston-type
random wave generator. The control signal is provided via a personal computer,
which is connected to a converter that supplies the voltage input for the
amplifier which in turn sends the amplified signal to the driver.

Wave gauges

1 2345678
Wave T
maker 5 A 1.1:1.1.1
0.40 1:25
1:20 1:10
o030 Bar Beach
. 600 6.00 200 300 195 18.75 .

7

Figure 3.8 Layout for the experimental setup of Beji and Battjes (1993). All
lengths are expressed in meters.

Surface elevations were measured at stations 1 to 8. Station 1 is at the
beginning of the upslope side of the bar, station 2 is 5.0 meters from station 1,
and stations 3 to 8 are positioned every 1.0 meter. The sampling frequency was
10 Hz, for a total of 9000 data points. The target spectrum for the data used
here was narrow-banded with peak frequency of 0.40 Hz and variance of 0.35

cm?.

Analysis and results

These measurements have been analyzed to address the questions raised above.
The analyses are mainly in the frequency-domain. Energy spectra for these
observations (Fig. 3.9) indicate significant transfers of energy from the spectral
peak to higher frequencies.
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The bispectra have been computed according to equations (3.7) and (3.8) with
ensemble averaging over 33 segments, each of 25.6 seconds duration (10 Hz
sampling rate). Therefore, the number of degrees of freedom in the estimates
is 66. Absolute values of the computed bispectra for four stations are given in
Figs. 3.10a, b. They show significant quadratic self-interactions of the primary
waves in the regions near the spectral peak, and interactions between these
components and their harmonics, with intensity increasing on the upslope to a
maximum over the bar crest (panel c) and decreasing again to low values in
deep water beyond the bar (panel d).

1.5

f21

Figure 3.11a Isolines of bicoherence b at station 1. Frequency f in Hz.
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Figure 3.11b Isolines of bicoherence b at station 4. Frequency f in Hz.
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Figure 3.11c Isolines of bicoherence b at station 8. Frequency f in HZ.
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Bicoherence functions have been calculated from the records using equation
(3.9). Noisy and spiky results have been suppressed by limiting the calculations
to those frequency pairs for which the absolute value of the bispectral density
exceeded 5% of the maximum value in the same bispectrum. Isolines of the
bicoherence b(f,.f,) at stations 1, 4 and 8 are shown in Figs. 3.11a, b and c.
These figures indicate a strong increase of the bispectral region with significant
values of the bicoherence, which persists even on the leeside of the bar. The
bicoherence values vary less with the depth than we had expected. Values of
b, are shown in Fig. 3.13. They vary from 0.33 at station 1, through a
maximum of 0.53 at station 2, to 0.28 at stations 6 and 8.

The biphase has been computed from the bispectrum using equation (3.10) for
selected frequency-pairs. These pairs represent the self-interactions of the
primary denoted as (f,.f,), and the interaction between the primary and the first
harmonic denoted as (fp,2]§,), and with the second harmonic denoted as (1,,31,)-

180 180
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g 8o 90
g
=
g %
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o 0 * 5 o
v x *
X v
L3 8 > ® v
—g0 > —-90
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Figure 3.12 Biphase for selected frequency pairs in random wave

propagating over a bar. & (f.f,); X (£,.2f,); v (,.3f,)-
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The variations in the biphase-values over the bar are plotted in Fig. 3.12. At
station 1, the biphase of only the (f,.f;) interaction is shown; biphases of the
other interactions are not plotted because no energy exists at the higher
harmonics. The near-zero value of the biphase at station 1 implies Stokes-type
waves with sharp crests and flat troughs. As the waves propagate over the
upslope side of the bar, the biphases converge to a value of -x/2 over the bar
crest implying a wave pitched forward (nearly saw-toothed shape). Over the
downslope of the bar the biphase-value of the (f,.f,) interaction evolves back to
near zero-values. On the other hand, the biphases of the harmonic interactions
tend to be randomly scattered beyond the bar. The evolution of the biphases
over and beyond the bar implies that the higher harmonics seem to be released
beyond the bar due to decreasing nonlinearity.

The variation of the skewness and asymmetry over the upslope, the bar crest
and the downslope is shown in Fig. 3.13. As a check on the bispectral
calculation, the skewness obtained directly from the time series (time-average
equivalent of equation 3.13) is also shown. The agreement is good. The
variations of skewness and asymmetry in Fig. 3.13 indicate a significant
increase on the upslope to a maximum over the bar. On the lee side of the bar,
the skewness and asymmetry decrease rapidly to near-zero values, comparable
to those on the exposed side of the bar. This in turn means absence of
significant nonlinear interactions at the downwave side of the bar. We expect
that for random waves with a continuous spectrum, this will imply spatial
homogeneity.

The spatial coverage of the experimental data (up to station 8) is not enough to
check or to illustrate this. Therefore, a numerical "wave flume" has been
employed to obtain computed signals in the region beyond that of the
measurements (farther downwave). Results are described below.
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Figure 3.13 Spatial variation of indicators of nonlinearity in the physical

wave flume. Solid line: skewness from time series; short
dash: skewness from bispectra; long dash: asymmetry from
bispectra; three-dots and dash: maximum squared
bicoherence.

3.5.3 Analysis of numerical-model results

Model formulation
Numerical simulations were performed using a 1-D extended Boussinesq model

(Beji and Battjes, 1994) with improved dispersion characteristics, as in Madsen
and Serensen (1992), describing relatively long, small amplitude waves
propagating in water of slowly varying depth. Reference is made to chapter 4
for a detailed description of Boussinesq theory. The model formulation used in
the numerical computation is given in chapter 4 by equation (4.16). This set of
equations has been integrated numerically using a difference scheme and
validated against measurements of wave propagation over a bar as described by
Beji and Battjes (1994).
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In the computation, the initial condition used is the unperturbed state. The
upwave boundary condition at station 1 is specified from the measurements of
surface elevation there at each time step. At the outgoing boundary, an
absorbing boundary condition has been used to ensure that the disturbances
leave the computational domain without reflection.

Analysis

The model performance in simulating the nonlinear propagation of waves over
a bar has been examined as follows. The original physical experiment has been
simulated and the numerical output, at the position of the wave gauges, has
been analyzed in the frequency-domain to obtain skewness and asymmetry
(equations 3.16 and 3.17). The spatial variations of these parameters are
compared with those obtained from the analysis of the measurements in the
physical experiment (Fig. 3.14).
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Figure 3.14 Skewness (+) and asymmetry (<) obtained from the

bispectra: comparisons between results from the physical
wave flume (solid lines) and the numerical wave flume
(dashed lines).
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The comparison shows the ability of the numerical model to reproduce the
nonlinear evolution of waves propagating in varying water depth with sufficient
accuracy for the present purpose.

Numerical simulation for extended region

Additional time-domain numerical computations have been performed extending
to distances farther downwave in order to examine the homogeneity of the
wavefield in that region. The computational domain now extends to station 16
at 11 m farther downwave from the bar; the distances between stations 9 to 13
are 1.0 m and those between stations 14 to 16 are 2.0 m.

Computations are done for two different upwave boundary conditions,
corresponding to sinusoidal and irregular waves. The former is to demonstrate
the spatial inhomogeneity associated with the interference between a single
primary wave and its free harmonics. The latter is to investigate the matter for
the case of a continuous spectrum, where the innumerable interferences are
expected to cancel, resulting in a homogeneous wavefield. To demonstrate the
contrast between the two cases, the nonlinearity parameter (amplitude to depth
ratio a/h) is kept constant by imposing the same surface elevation variance at
the upwave boundary. The computations are performed for the same record
duration as in the physical experiment, and the computed signals at stations 1
to 16 have been analyzed in the frequency-domain in the same manner as the
experimental records.

Fig. 3.15 shows the spatial variations of the harmonics’ amplitudes in case of
sinusoidal incident waves. Over the bar, a significant energy transfer takes place
into the first, second, and third harmonics. Beyond the bar, the amplitudes do
not vary because of absence of nonlinear interactions.

The corresponding variations in the skewness and asymmetry are shown in Fig.
3.16. They indicate a significant increase on the upslope to a maximum over the
bar as a result of harmonic generation. On the downslope side of the bar, the
skewness and asymmetry decrease rapidly to values between +0.5. Beyond the
bar, although the amplitudes of the harmonics are nearly constant, the skewness
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and asymmetry vary significantly as a result of the varying phase lags between
the freely propagating component-waves, resulting in a spatially
nonhomogeneous wavefield.
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Figure 3.15 Spatial variations of the amplitudes of the primary wave and

its harmonics primary wave (®), first harmonic (C), second
harmonic (0), and third harmonic (s).

Fig. 3.17 shows the variations of skewness and asymmetry of irregular waves
over the upslope, the bar crest, the downslope and farther downwave; the latter
is of particular interest here. It shows that over the horizontal region beyond the
bar, the skewness and asymmetry remain at near-zero values (less than 0.2),
comparable to those on the exposed side of the bar, without any significant
spatial variations, in contrast to the case of sinusoidal waves. (For skewness
values less than 0.2, Ochi and Wang (1984) found virtually no deviation from
the Gaussian probability density of the sea surface elevation.) This implies that
there is no memory of the bar location, in contrast to the discrete case. The
practical implication of this is that the waves downwave from the bar can again
be assumed to have independent, random phases and that the wavefield is
spatially homogeneous.
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Figure 3.16 The spatial variations of skewness (solid line) and asymmetry
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Figure 3.17 The spatial variations of skewness (solid line) and asymmetry

(dashed line) for irregular waves.
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3.6 The evolution of the biphase

Since the biphase depends on the ratio of the imaginary to the real part of the
bispectrum, which are related to skewness and asymmetry, respectively, it is
not surprising that the biphase is related to the wave shape. For statistically
independent free waves, in deep water, the biphase values are scatter over 2.
A biphase of zero is associated with wave shape of sharp crest and flat trough
(Stokes-type wave). A biphase-value of -%47 is associated with a wave pitched
forward (nearly saw-toothed shape).

Elgar and Guza (1986) have analyzed the evolution of the observed biphase
between the energy-spectral peak and its harmonics in a shoaling wavefield on
a beach. Their data show that the biphase evolves from values scattered around
zero in 9 m depth to about $=-%= in very shallow water. They have also used
a spectral Boussinesq model to examine numerically the effects of initial phase
coupling and bottom slope on the nonlinear evolution. They found that the gross
trends in the evolution of nonlinear quantities (such as skewness, asymmetry,
and biphase) are insensitive to the initial phases as well as the bottom slope.

Recently Doering and Bowen (1995) examined the dependence of the biphase
evolution on the relative depth k4 by analyzing field data and confirmed that the
evolution of the biphase for triad interaction does have a kh dependence. They
also found indications for a dependence on the finite amplitude a/h. This
combination of an (a/h) and (kk)* suggests an Ursell number dependence.

To examine a possible parametrization for the biphase evolution, laboratory
measurements for random wave propagation over a bar (Beji and Battjes, 1993)
have been analyzed. The biphase evolution is investigated in nonbreaking as
well as breaking waves with narrowband and broadband incident spectra. The
data have been analyzed to evaluate the evolution of the biphase function and
its dependence on a limited number of parameters such as those mentioned
above.
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Fig. 3.18 shows the biphase of the self-interactions of the primary (f,.f,),
hereafter referred to as the primary interaction, plotted versus Ursell number,
which is formally defined as the ratio of relative amplitude a/k to the square of
the relative depth (kh)*. It can be expressed in terms of integrated parameters
of the wavefield as

g H Iy (3.18)

Sﬁwz h?

Ur =

in which H; is the significant wave height, 7,, is the mean wave period, and &
is the water depth.
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Figure 3.18 Biphase of the self primary interaction (f,f,) as a function of
Ursell number for waves propagating over a bar. O
Nonbreaking waves with narrowband spectrum; s breaking
waves with narrowband spectrum; < Nonbreaking waves
with Jonswap spectrum; O breaking waves with Jonswap
spectrum. Solid line: equation (3.19)
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Fig. 3.18 indicates that for small Ursell numbers (deep water), the biphase
scatters round a mean value of about zero. With increasing Ursell number
values, it converges toward a final value of -Y2w. These analyses suggest a
crude parametrization of biphase in terms of Ursell number, expressing a
gradual variation of zero biphase for Ur < 0.1 (deep water) to a limit value of
-V in very shallow water (Ur ~ 10). A hyperbolic tangent is fitted to the
data. The relation between the biphase and Ursell number can be given by

- 5

tanh [E] (3.19)
Ur

Equation (3.19) will be used in a simplified representation of the effects of triad
interactions in chapter 7. A similar relation for the biphase evolution has been
given recently by Doering and Bowen (1995) for a parametrization of the
orbital velocity asymmetries.

The dependence of the biphase on only local parameters (such as a/h and kh)
cannot be theoretically supported. The theoretical biphase evolution, based on
Boussinesq equations simplified for horizontal bottom (Elgar and Guza, 1986),
has a dependence on the relative depth &% and the propagation distance kx. The
dependence on propagation distance is particularly evident in shallow water of
constant depth: the biphase seems to evolve and yet the Ursell number is
approximately constant. Inclusion of such dependency in the biphase
parametrization is not desired in wind-wave application. Thus for application
in spectral energy models the biphase will be parametrized in terms of the
locally dependent Ursell parameter.
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3.7 Summary and conclusions

The nonlinear transformation of wave spectra in shallow water is investigated
using bispectral analyses. These analyses have been carried out to elucidate
aspects of nonlinear dynamics of waves in shallow water. Laboratory
observations of both shoaling waves over a beach profile and waves propagating
over a shallow bar are analyzed to answer the following phenomenological
questions:

1. What are the dominant triad interactions that lead to harmonic generation?
2. What is the influence of wave breaking on nonlinear couplings?

3. How do nonlinear couplings influence the phase evolution?

4. Can the biphase evolution in shallow water be parametrized?

5. What are the dynamics of nonlinear couplings in waves propagating over a
bar region?

6. Is the energy spectrum enough to describe the evolution of the wavefield
beyond a bar region?

Observations of shoaling waves propagating over a laboratory beach profile
showed that as the wavefield begins to shoal, phase-coupling occurs between the
primary and the first harmonic. Weak nonlinearity in the shoaling region leads
to significant increase in the skewness-values and yet the asymmetry-values are
rather low. Further shoaling leads to phase-coupling between the primary and
second harmonic and eventually with yet higher harmonics. In this region,
strong nonlinearity results in a rapid increase in the asymmetry and farther
enhancement of the skewness. Bicoherence levels observed just seaward of
wave breaking are generally high, indicating strong nonlinear couplings. In the
surf zone, wave breaking occurs leading to substantial reductions in the
bicoherence, the skewness and asymmetry values.
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Observations of waves passing over a shallow bar have been analyzed. The
situation considered was such that significant harmonic generation took place
on the upslope leading to the bar crest. The spatial variation of a number of
quantitative indicators of nonlinear coupling over an beyond the bar has been
investigated. These are the bispectrum function, the bicoherence function, the
biphase, the skewness and the asymmetry. Results of inspection of their spatial
variations can be summarized as follows.

- The variation of the values of the maximum bicoherence over the bar was
very moderate (less than 50% increase between deep and shallowest water),
despite the fact that significant harmonic generation took place in the approach
to the bar crest.

- The region in the bispectral plane of significant bicoherence values is
expanding in the shoaling region and remains extended in the deepening region,
although with lower spectral levels than over the bar crest.

- The spatial variations of the skewness and asymmetry are very pronounced,
with values ranging from near-zero on either side of the bar to a strong peak
above it. This contrasts with the weak variation observed in the bicoherence.
Also, the locations of the maximum skewness and asymmetry occur farther
downwave than the maximum bicoherence. (In this regard, it should be pointed
out that skewness and asymmetry are overall-measures of nonlinearity, whereas
the bicoherence is a spectral variable.)

- The empirical values of skewness and asymmetry, obtained in the bar region,
are well predicted with a numerical model based on the Boussinesq equations
with improved dispersion characteristics.

- The numerically generated time series at the leeside of the bar showed that the
skewness and asymmetry remain at near-zero values comparable to those on the
exposed side of the bar, without any significant spatial variations.

- The observed evolution of biphase values is consistent with the visual
observation that as waves shoal they evolve from a slightly peaked, nearly
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sinusoidal shape in deep water (with biphase equals zero) to a shape
characterized by a steep front face and a gently sloping rear face (biphase
equals to -w/2). As the waves deshoal over the downslope side of the bar,
biphases of the harmonic interactions diverge from -#/2 and tend to be
randomly scattered.

- The biphase evolution seems to be dependent on local parameters such as the
relative depth k% and relative wave amplitude a/h.

On the basis of the bispectral analyses carried out in this chapter, the following
conclusions can be drawn.

(1) The generation of the second spectral peak is primarily ascribed to the sum
interactions between pairs of waves at the primary spectral peak.

(2) The generation of the low-frequency waves is primarily ascribed to the
difference interactions between pairs of waves at the primary spectral peak.
(3) Wave breaking reduces the intensity of the bispectral levels and the
skewness and asymmetry. Thus wave breaking weakens the strength of the
nonlinear couplings.

(4) In the initial shoaling region, weak nonlinearity leads to increase in the
skewness-values only but not in those of the asymmetry, whereas strong
nonlinearity in the region just before wave breaking leads to increase in the
asymmetry-values.

(5) The biphase evolution in shallow water can be crudely parametrized in
terms of Ursell number. A simple algebraic relation can be used, expressing a
gradual variation of zero biphase for Ur<0.1 (deep water) to a limit value of -
/2 in very shallow water (Ur ~ 10)

(6) Nonlinear couplings induced by a bar region in a random wavefield vanish
in the deepening region beyond the bar due to decreasing nonlinearity without
memory of phase locks which existed over the bar. The wavefield on the
downwave side is statistically homogeneous and can be fully described by the
energy density spectrum, without the need for additional, site-dependent phase
information.
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Standard models for forecasting or hindcasting of random waves are based on
phase-averaged energy formulations. In principle a nonlinear phase-resolving
(Boussinesq) model can be used locally, e.g. in a bar region, the results of
which can be phase-averaged afterwards to estimate energy spectra with which
the computations can proceed using a phase-averaged (energy balance) model.
The preceding result (6) imply that these models are suitable also on the
downwave side of a shallow (bar) region with significant harmonic generation.



64



65

Chapter 4

4. Deterministic modeling of wave evolution in shallow water
4.1 Introduction

The nonlinear transformation of waves in shallow water is considered in this
chapter from the deterministic point of view. Deterministic formulations require
phase information at the deep-water boundary, and resolve the wave phase
throughout the computational domain.

The arrangement of this chapter is as follows. Eulerian equations of motion for
water waves are given in section 2. Various formulations of Boussinesq
equations are briefly described in section 3, among which Boussinesq equations
with improved dispersion characteristics. In section 4, some details of the
derivation of the spectral evolution equations are given. The role of wave
breaking is reviewed, formulated in a spectral form, and incorporated in the
spectral evolution equations in section 5. The model is validated through
comparisons with experimental data in section 6. Finally a summary and
conclusions are given in section 7. (Parts of this chapter have been published
in slightly different form in Eldeberky and Battjes (1996).)

4.2 Eulerian equations of motion

Consider a surface gravity wavefield, with water-surface elevation {(x,y,?),
propagating over a spatially varying bottom A(x,y). A Cartesian coordinate
system (x,y,z) is adopted, with z measured upwards from the still-water level.
The fluid is assumed to be inviscid and incompressible, and the flow is assumed
to be irrotational.
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The governing equations for the fluid motion are the continuity equation and
Euler’s equations of motion. The continuity equation is

v.ou+ I _ g @.1)
¥4

and Euler’s equations of motion are

%+(u.V)u+w%y_+le=0,

¢ 0 .2)
a_w+(u-V)w+w%+lé£+g=O
at fi 54 p 0z

where u=(u,v) is the horizontal velocity vector; w is the vertical velocity; p is
the pressure; g is the gravitational acceleration; p is the density; and
V=(0/0x,0/dy) is the horizontal gradient operator. The irrotationality condition
is given by

du _8v . 9% _ vy, 4.3)
dy ox 9z

The fluid has to satisfy a dynamic boundary condition at the free surface and
kinematic boundary conditions at the free surface and seabed. These can be
expressed as:

p=0 at  z=¢(x,y,0) 4.4)
a¢ _ ~
3 (u-Vit=w at z = ¢(x,y,0 4.5
(w-VYh +w=0 at z=-hQx,y) (4.6)

There are three important length scales associated with the wave motion, the
wave amplitude a, the wave length L (or k') and the water depth 4. From
these, two independent characteristic dimensionless parameters can be formed.
One is the ratio of amplitude to depth, the so-called the nonlinearity parameter
€, given by
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e =alh .7

The second is the relative depth, the so-called dispersion parameter u, defined
by

p = kh 4.8)
where k, is a characteristic wavenumber.

Combination of these two dependencies can be given by the Ursell number Ur

Ur = £2 4.9)
13

In shallow water, u*<1, the order of magnitude of Ursell number Ur
determines the classification of the wave theory in question:

1. Ur<l (e<p?) : linear shallow-water equations
2. Ur=0(1) (e=0(u?») : Boussinesq equations
3. Urs>1 (e>p?) : nonlinear shallow-water equations

It is the regime with Ur=0(1) that is of interest for the present problem, in
which nonlinearity significantly influences the wave propagation from deep to
shallow water. Thus Boussinesq equations are the appropriate formulation to
investigate harmonic generation in the course of wave evolution in shallow
water.

4.3 Time-domain Boussinesq equations

4.3.1 Introduction

Boussinesq equations represent the depth-integrated flow equations for the
conservation of mass and momentum for an incompressible and inviscid fluid.

For horizontal propagation of waves, the three-dimensional problem can be
reduced to a two-dimensional one by integrating the equations over the water
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depth. Details of the integration procedures can be found in Mei (1989).

The Boussinesq equations include nonlinearity as well as frequency dispersion.
Basically the frequency dispersion is introduced in the flow equations by taking
into account the effect of the vertical accelerations on the pressure distribution.
The simplest way of including this effect in the vertically integrated momentum
equations is to assume a horizontal velocity distribution which is uniform
throughout the depth. This leads to a vertical velocity distribution which
increases linearly from zero at the bed to a maximum at the free surface.
However, there are other methods available to derive the Boussinesq equations,
and a variety of different forms exist differing mainly in the choice of the
velocity variable. Typical velocity variables are the surface velocity, the bottom
velocity, the depth-averaged velocity, and the volume flux (depth-integrated
velocity).

4.3.2 Boussinesq-type equations

Peregrine (1967) derived the equations for varying water depth in terms of the
depth-averaged velocity. For two-dimensional propagation they read

9 . v.(h+t)m1 =0,

3t (4.10)
3 |~ oy, 1, 9 T e
G @ VE Ve - Sh VIV (kD] + kP V(Y ) = 0

in which # the instantaneous depth-averaged velocity

e

i- [ ud @.11)

h+¢

_

The relative magnitude of each term in the formulations can be inferred using
non-dimensional expressions. A commonly used scaling of variable is:
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X 0y oz hog yshit  hu 4.12)
LO LU hO hO aO LO

ay/gh,

where Ly, Ay, and a,, is a characteristic wavelength, water depth and wave
amplitude respectively. Expressing equations (4.10) in these non-dimensional
variables, where the variables with prime denote the non-dimensional
counterparts one obtains

a_§f+v.[(ﬁ+e§)a] =0,

PY
989t et@ Oym -2 | 2919 Gy - Lt 299 @)
of 2 af 6 9f
= O(e,ep?, p) (4.13)

The first equation in (4.13), i.e., the continuity equation, has a nonlinear term
with €. The momentum equation can be divided into four parts; the first two are
lowest order terms, the third is a nonlinear term with e, and the fourth is a
dispersion term with p®. The first and second terms correspond to the linear
long wave approximation which gives a non-dispersive wavefield. The nonlinear
term with e is responsible for nonlinear shallow-water effects. Taken together,
the first three terms comprise the nonlinear shallow-water equations. The
dispersion term with > makes the Boussinesq equations different from Airy’s
linear long wave theory and from the nonlinear shallow-water equations.

Madsen and Serensen (1992) converted Peregrine’s (1967) equations from the
depth-averaged velocity into the volume flux (depth-integrated velocity). They
also added an order p* dispersion modification term which was chosen so as to
match more closely the linear dispersion relation of Stokes theory. For the two-
dimensional case, their equations are
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13_5 +V.0=0,
90.1.2 F7 02 V), oh rg(hsDVE- AP [ a—Q] @.19)
. %hﬁv[ %%] -BhZV[V [3Q+gth“”
where
Q= (h+P)u = [ udz 4.15)

The term containing B is a dispersion modification term of order u?. B can be
any number to maximize the accuracy of the linear dispersion relation. The
value of B was determined by matching the resulting linear dispersion relation
with a polynomial expansion of Stokes first-order theory combined with the use
of a Padé approximant. By this approach the value The value of B=1/15 is
recommended as an optimal choice.

Beji and Battjes (1994) have performed numerical simulations using a 1-D
extended Boussinesq model with improved dispersion characteristics, as in
Madsen and Serensen (1992). The model formulation, expressed in terms of
depth-averaged velocity, is

T _
a—f + [+ 0T = 0
9% ar ’u ,, 0 &%
du n = Ly 4.16
a a g Do T 3" aee P aa 419
+ih2_(_32_ du +gh ag‘
15 ax2| or ox

This set of equations has been integrated numerically using a difference scheme
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and validated against measurements of wave propagation over a bar as described
by Beji and Battjes (1994).

As this research concerns the influence of harmonic generation on the wave
spectra, it is convenient to work with the spectral version of Boussinesq
equations. The transformation from the time-domain to the frequency-domain
is described in the next section.

4.4 Spectral Boussinesq equations
4.4.1 Evolution equations

Boussinesq-type equations are composed of two equations (continuity and
momentum equations) with two unknown variables (surface elevation and
velocity). Madsen and Serensen (1993) used their extended equations for
sloping bottom in depth-integrated velocity (Madsen and Serensen, 1992), to
derive a spectral evolution equation for complex wave amplitudes of harmonic
components. This section describes some details of their derivation. For the
one-dimensional case, their extended equations are

a_g: +_?£ =
at ox
2 3 3
E-ﬁi i_ +g(h+{)i§_‘=ih2 P _lh3 i) f @.17
at ax h+§— ax 2 atax2 6 ataxz )
+Bh26_2 £+ghé_£
ax* | ot 0x

where P is the one-dimensional depth-integrated velocity. As mentioned before,
higher order terms arising from { are neglected when deriving the dispersion
terms in the above equations. For a mild slope bathymetry, dh/dx becomes of
small order and higher order terms such as 8?4/3x? or (0h/3x)* can be neglected.
Equations (4.17) can be combined into one equation after replacing dP/0x in the
right-hand-members of the momentum equation by d{/d¢ in accordance with the
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continuity equation, and taking partial derivatives in time and space,
respectively. Then,

L = M + N (4'18)
where

0%¢ ¢ 3 0% 12 0'C
L =_—"2-gh_>+Bgh’ > —(B+2)h (4.19)

FrERr R e Bt M per e
o ¢ , 3¢ | ah (4.20)

M= | g2 +2B+1)h %8 _5Bgp29 8 |00

[g6x+( +1) at?dx § ax3 | ax
-9 [1pp2, P 4.21
N= [Eg; h_;] 421)

The operator L contains lowest-order terms and dispersion terms of order pu?.
The operator M is of order dh/ox, representing effects of slowly varying
bathymetry, while N is of order ¢, representing nonlinear interactions.

Fourier representation

Evolution equations for complex Fourier amplitudes have been previously
derived from Boussinesq equations. Freilich and Guza (1984) transformed
Peregrine’s equations (1967) into spectral evolution equations for amplitude and
phase of the harmonic components of the velocity potential. They improved the
dispersion characteristics of the solution, but it is still based on the weak
dispersion of the original Boussinesq equation.

To derive an evolution equation from (4.18), the free surface elevation { and
the volume flux P should be expanded in Fourier series. Assuming
unidirectional propagation (no reflection), Madsen and Serensen (1993) used a
complex coefficient expansion for { :

F(x,0) = Y A0 expliw,t-y,(x))] (4.22)

p=-

in which p is the rank of the harmonic, 4,=4,", w,,=-w,, and ¥, =-Y, where
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4,0k “23)

k, can be obtained from ), according to equation (4.26). The volume flux P can
be expanded by combining (4.22) and the continuity equation in (4.17). Then

=]

PG, = ¥ % A,() expliw,f-v, ()] (4.24)
p=== Tp

It should be mentioned that there is no unique choice for a Fourier series
expansion. For example, we can choose the range of summation from 1 to
infinity instead of from negative infinity to infinity, in which case the
coefficient 4,(x) becomes two times larger.

The linear dispersion relation of extended Boussinesq equations
In deriving Boussinesq equations, the dispersion parameter u’ as well as the
nonlinear parameter e are assumed to be small. With this assumption, terms of
order e and p’ can be neglected to give a linear long wave approximation which
results in a non-dispersive wave field. At lowest order (i.e., L9=0) the
linearized problem yields

LO = E _wpz +ghkp2 +Bgh 3kp4 - (B+%)wp2h2kp2 Ap =0 (4.25)

p=-oo
and

wih _ (b +Bk, b

(4.26)
8 1 +(B+§)(kph)2

The linear dispersion relation (4.26) obtained from the lowest order solution is
compared with Stokes’ linear dispersion relation in Fig. 4.1. It shows good
agreement up to kh=2.5 for B=1/15, while the original Boussinesq equation
(B=0) shows earlier discrepancies from kA=1.5.
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Figure 4.1 Dispersion characteristics. Solid line denotes Stokes’ exact linear
dispersion relation, dotted line denotes Boussinesq with B=0; and
dashed line denotes Boussinesq with B=1/15.

The evolution equations of Boussinesq model

The evolution equation of complex Fourier amplitude can be derived by
collecting the nonlinear interaction terms of order e, the varying bathymetry
term with dk/0x, and the first order terms of the linear operator induced by the
slow variation of water depth, wavenumber and wave amplitude. The operator
L should include derivatives of the wavenumber k,. First derivatives of 4,, k,
and A are assumed to be small, and products of derivatives and higher
derivatives of these quantities are neglected in the formulation. The first
derivative of k, is expressed in terms of the first derivative of 4 by
differentiating the linear dispersion relations (4.26),

dk, _ gkj+3th2k;—2(B+§)wjhkj oh

% on 4.27)
dx 2ghk,+4Bgh’k, -2(B+)wh’k, 0%
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and after algebraic manipulations the resulting evolution equations (Madsen and
Serensen, 1993) become

dA B, dh : .

— P = 2574 -2 (F + F (4.28)

& o el h)

The first term on the right represents linear shoaling, proportional to the bottom

slope and the local amplitude; the second and the third term represent the triad
sum and difference interactions, respectively, defined by

p-1
m=1 50%1 eXp[_i("bm +¢p—m _¢p)] 4.29)
F, = ’; g—;A,: Ay €XP[~i (V) V= ¥,)] 4.30)

with 8, «*, and o are defined by

B, = -2k, [gh +2Bgh*k, - (B+3)w, h’] (4.31)
o = (k_ vk Y | Lo L Enon (4.32)
pmont 12 ghkk o,
- _ 2 1 1 wmwp+m
(K =K 5+§W (4.33)
L m +mJ

The linear shoaling coefficient 3, is defined as

h| (on)'dk .
g (2] s

where dk,/dx is determined from (4.27) and 8, and (3, are defined by

8, = ~Lgh+6Bgh’t; - (B+2)w) '] 4.35)
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B, = k,[g+5Bgh’k; - (2B+1)w)h] (4.36)

Equation (4.28) describes the evolution of the complex Fourier amplitude of
nonbreaking waves including the effects of linear shoaling and nonlinear
interactions. This equation is verified in section 4.6.2 using experimental
observations for nonbreaking random wave propagating over a submerged bar.

4.4.2 Nonlinear correction to the linear phase speed

The linear phase speeds of the individual wave components can be obtained as
follows

4.37)

here kp’ is the wavenumber obtained from the linear dispersion relation.
Nonlinear couplings between various wave components result in phase
modifications and consequently phase speeds differing from the linear
predictions.

The nonlinear phase speed can be determined by introducing the nonlinear
correction to the wavenumber 8k, such that

nl w

R p— (4.38)
k) + 6k,

Here 0k, represents the spatial rate of change of the slowly varying phase. We
express the slowly varying complex amplitude 4, in terms of its magnitude a,
and phase 6,

A () = a(x)exp[-if,(x)] 4.39)

Here 6, is the slowly varying phase due to the nonlinear interactions. The
nonlinear correction to the wavenumber 0k, can be expressed as
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sk - 250 (4.40)
r dx

The evolution equation of the slowly varying phase can be obtained by
differentiating equation (4.39) with respect to x. After straightforward algebra,
we obtain the following phase evolution equation for each harmonic after
omitting the x-dependency for abbreviation,

dé
7’
% dx

dA
44 | Gine 4.41)
dx P

%

=Im | —£| cosf - Re
dx 4

In the application to be given below, equation (4.28) is integrated first to obtain
the values of a, 6, and dA,/dx. Then 0k, can be obtained directly from
equation (4.41). The phase speed can then be obtained from equation (4.38).
Calculations of the nonlinear estimate of the phase speed in random waves
propagating over a bar are given in section 4.6.2. (Similar calculations have
been published before in Eldeberky and Battjes (1994b) to examine nonlinear
couplings in waves passing over a shallow bar.)

4.5 Spectral Boussinesq modeling of random breaking waves

Boussinesq equations incorporate generation of bound sub- and superharmonics,
leading to significant changes in the spectral shape as well as the wave profile.
These nonlinear cross-spectral transfers of energy and phase modifications lead
to asymmetric and skewed wave profiles that are characteristic of nearly
breaking and broken waves. However, the equations do not describe wave
breaking.

The role of wave breaking and its influence on the spectral evolution has not
yet rigorously been established. Knowledge of the spectral distribution of
energy dissipation due to wave breaking is necessary for predication of wave
evolution in the shoaling region and in the surf zone. This is the subject of this
section.
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4.5.1 Wave energy dissipation due to breaking

Wave breaking and the associated energy dissipation are extremely complex
processes. Several models have been developed for describing wave decay in
the surf zone for periodic or random waves, differing mainly in their
formulation of the energy dissipation due to breaking. The models for random
waves by Battjes and Janssen (1978) or Thornton and Guza (1983) assume a
shape of the wave height distribution in the surf zone and transform a represen-
tative statistical wave height in the cross-shore direction. The dissipation of
wave energy due to breaking is modeled using the bore analogy. The other class
of models that was originally developed for periodic waves and has since been
modified to simulate random waves uses a wave-by-wave approach (Mase and
Iwagaki, 1982; Dally et al., 1985). In these models the probability density
function of wave height at a seaward boundary is schematized to a discrete
number of wave height classes, and it is assumed that each class behaves like
a subgroup of periodic waves that propagates independently of the others. Both
classes of models do not provide any information about the spectral distribution
of the dissipated energy due to breaking.

The model of Battjes and Janssen (1978) for the total local rate of random-wave
energy dissipation per unit area due to breaking (D), is used as a starting point
toward a spectral formulation for wave breaking, both for energy-density
models and complex-amplitude models. It is given by them (apart from a factor
pg which is omitted here) as:

Dy = 3 1. O H, (4.42)

in which o is a free parameter of order 1, f, is a characteristic frequency, Q,
is the fraction of broken waves given by

1-0,

InQ, B

(4.43)

H

m

H_ is the root-mean-square wave height and H,, is the maximum wave height
which for shallow-water waves is given by
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H, = vh (4.44)

where £ is the water depth and v is the breaking coefficient. Realistic results
can normally be obtained for « equal to 1 and with v values in the range of 0.6
to 0.8 as proposed by Battjes and Stive (1985) in conjunction with the use of
the peak frequency in (4.42).

As indicated above, this model gives the total energy dissipation rate due to
breaking but not its spectral distribution. In what follows the influence of the
breaking dissipation is formulated in a spectral form. Here wavefields with,
initially, a single-peaked spectrum (in the linear approximation) are considered.
Combinations of independent wave systems like sea and swell are not
considered here.

It should be mentioned that the choice of the energy dissipation model is not
essential in the spectral formulation of wave breaking. Other models that
provide the total rate of energy dissipation by wave breaking (e.g., Thornton
and Guza, 1983) can be incorporated in like manner in the spectral formulations
given below.

In the experiments of Beji and Battjes (1993) for the transformation of random
waves over a submerged bar, the evolution of the spectral shape, including the
appearance of a high-frequency peak due to harmonic generation, was found to
be virtually the same for nonbreaking and for breaking waves. In view of this,
the following hypotheses have been used here as a basis to model the breaking-
induced dissipation:

(1) dissipation does not interact with other processes affecting the wave
evolution, including triad interactions;

(2) the total energy dissipation is distributed over the spectrum in such a manner
that it does not influence the local rate of evolution of the spectral shape (but
only of the total energy).

As it stands, the latter hypothesis is formulated for the entire spectrum.
However, the observations by Beji and Battjes (1993) were restricted to
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wavefields whose initial spectra were single-peaked, and they did not pertain
to the low-frequency waves accompanying the shorter incident waves. It may
be expected that the low-frequency waves are less affected by breaking than the
higher-frequency components, but there is no firm theoretical foundation at
present to formulate this in a quantitative sense. Two extremes are considered
in the following. The simple hypothesis as formulated above is at first applied
to the entire spectrum, including the low-frequency waves. As an alternative,
the low-frequency part will be excluded from breaking-induced dissipation.
Results of both will be presented and discussed in section 4.6.2.

In the context of a balance equation for the spectral energy density, the effect
of wave breaking can be formulated as a spectral energy "source” term S,
representing a (negative) contribution to the temporal rate of change of spectral
density. According to the hypotheses stated above, it must be proportional to
the local (in the spectral domain) spectral energy density, and its spectral
integral should equal D, the total local rate of energy dissipation. For one-
dimensional (frequency) spectra E(f) this leads to the following quasi-linear
expression:

D
S,(f) = - E“" E(f) (4.45)

tot

Here E(f) is the energy density at frequency f and E,, is the total wave energy
(more precisely, the integral over the energy density spectrum). For two-
dimensional frequency-direction spectra E(f, ) a relation similar to (4.45) can
be formulated. This spectral energy formulation for wave breaking enables the
incorporation of the effects of depth-induced wave breaking in spectral energy-
density models.

For spectral phase-resolving models which are formulated in terms of space-
dependent complex Fourier amplitudes of the surface elevation, such as
equations (4.28), the effects of wave breaking can be accounted for in a similar
manner. As a starting point, consider the energy balance equation for a
monochromatic wave, expressing that the spatial gradient of the energy flux
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should balance the rate of energy dissipation due to breaking D, i.e.,

d
= (Ec,) = -D (4.46)

where the energy E is proportional to the square of the wave amplitude |A4|2.
After straightforward algebra, equation (4.46) can be expressed as follows

2d4 14 D 4.47)
A dx ¢, dx |4|%c,

Rearranging the terms in equation (4.47) yields

y (4.48)

D
—_ —_— L
dx 2 F

dA _ 1 |1dc,
cgdx

Here F=|A|%c, is the energy flux. The first term in the right-hand-side of
equation (4.48) represents shoaling, the second the energy dissipation due to
wave breaking.

Application of the dissipation term to the evolution equations of the space-
dependent complex Fourier amplitude for irregular waves (4.28) is made by
letting F represent the total energy flux, D the total rate of energy dissipation
due to breaking, and A the complex amplitude of the individual wave
component. This leads to the following quasi-linear dissipation term d,,
(contribution to spatial rate of change of complex amplitude 4,):

D
_ _ 17 tot
p T3 P AP (4.49)

Here F,, is the total local rate of energy flux per unit width. In principle, both
free waves and ‘beynd: waves contribute to F,,. However, in view of the
crudeness of: the' hypothas;s concerning the spectral dissipation formulation, a
refined ;mnplmwn Qf F,; is not warranted. We have used a simple linear
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estimate, in which F,, is given by

Eot = E IApIZ cg_p ’ (4.50)
p

with the group velocity ¢, , determined from the linear dispersion relation of the
model. An alternative with more emphasis on the contribution of the bound
waves is Fi, = E,Cy, Where ¢y is the group velocity at the peak frequency of
the spectrum. It has also been tested, but it gave no significant differences. The
results of the first alternative are shown below.

The dissipation term d,, is proportional to A, with a frequency-independent
factor, so that the dissipation term reduces the spectral amplitudes in the same
proportion,; it does not affect the spectral shape. Strictly speaking, the breaking
term d,, could be a complex function. Its imaginary part would influence the
phase of each harmonic, and therefore the free-surface profile in cases where
breaking is significant. Liu (1990) used a complex form for his spectral
breaking dissipation term, introducing both amplitude and phase modifications
due to wave breaking. The consequences were that the predicted wave profiles
were entirely wrong compared with the measurements, although the wave
heights were correctly predicted. Here d,, is chosen to be real; there is, at
present, no basis for inclusion of certain phase shifts due to breaking.

To examine the performance of the spectral breaking model in shallow water
it has been implemented in the evolution equation based on the extended
Boussinesq equations.These are chosen because of their improved dispersion
characteristics that make them applicable for a wide range of water depths. The
resulting evolution equation and its numerical implementation are described
below.

4.5.2 Evolution equation for random breaking waves

Inclusion of the spectral dissipation term for wave breaking obtained in the
previous section (equation 4.49) in equation (4.28), yields the following set of
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evolution equations for breaking waves:

dA h, , . ... D,
Ep = B4, - i28 (Fj+ F)) - F:‘Ap 4.51)

>

[N

ot

In (4.51) the total local rate of energy dissipation due to breaking D, is
determined using (4.42-44). In the computations presented below the mean
frequency of the local spectrum is used in (4.42) to allow for influence of
higher harmonics. This is compensated by a higher value of v (see below). (A
reduction of « in equation (4.42) while keeping < constant would have given
comparable results.)

The inclusion of the spectral breaking term in the Boussinesq equations should
extend their range of applicability into the surf zone. Laboratory data for
random breaking waves are used to validate the spectral Boussinesq equations
with breaking dissipation. The model is used to simulate the surface elevation
as well as the wave spectra. The boundary conditions and the numerical
integration are described below.

4.6 Model to data comparison
4.6.1 Model implementation

The evolution equations (4.28) for nonbreaking waves and (4.51) for breaking
waves comprise a set of first-order ordinary differential equations which require
knowledge of the set of complex amplitudes 4, (p=1,2,3,..) at an upwave
location for their integration.

To simulate the wave profile, the measured time records at the upwave
boundary are used to obtain the complex amplitudes using a standard fast
Fourier transformation algorithm. Following numerical integration of the
evolution equations using a fourth-order Runge-Kutta method, a set of complex
amplitudes is obtained at each location. These are transformed into surface
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elevations using backward (i.e., inverse) fast Fourier transformation. It should
be noted that the evolution equations predict the complex Fourier amplitudes
that contain only the nonlinear part of the phase function. In the simulations the
linear contribution to the phase function is computed separately by spatial
integration of k, obtained from the linearized dispersion equation (4.26). This
space dependent part of the phase is added to the nonlinear phase obtained from
the evolution equation.

In applications of the deterministic evolution equations for complex Fourier
amplitudes to random waves with only a given energy spectrum E(f) at the
upwave location, this spectrum was discretized with bandwidth Af ; initial
amplitude values |4,| were set equal to (Y2E,Af)" (the frequencies are taken
nonnegative). For each realization a set of initial phases was drawn at random,
assuming them to be mutually independent, each uniformly distributed over 2.
Following numerical integration of the evolution equations, raw values of
spectral energy density at downwave locations were estimated as 2|4, |*/Af.
These raw spectra appeared to vary between realizations, thus exhibiting
influence of the particular set of initial phases (Won and Battjes, 1992). This
was largely eliminated by averaging over 20 realizations, each with a different
set of initial phases, and over three neighboring frequency bands, yielding a
number of degrees of freedom in the spectral estimates of 120.

4.6.2 Verification of the evolution equation for nonbreaking waves

For nonbreaking waves, the spectral evolution equation (4.28) has been verified
against laboratory measurements of Beji and Battjes (1993) of transformation
of nonbreaking waves over a shallow submerged bar (Fig. 4.2). Two tests are
used in the verification. In the first test the incident wave spectrum is narrow-
banded with peak frequency of 0.40 Hz and significant wave height of 2.37 ¢cm.
In the second test the incident wave spectrum is broad-banded with peak
frequency of 0.40 Hz and significant wave height of 2.93 cm.

The wave spectra are simulated by averaging over 20 realizations, each with a
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different set of initial random phases. The number of frequency components nf
used in the computation is 78 with the bandwidth Af equal to 0.039 Hz. The
nonlinear phase speeds are computed using equations (4.38, 4.41), and
compared to the linear predictions (equation 4.37) using the linearized
dispersion relation (equation 4.26) obtained from the extended Boussinesq
equations.

Wave gauges

1 2345678
Wave : T T
maker p 5 i1:1.1 ,1:1 .1
0.40 1:25
1:20 1:10 eac
030 Bar Beach
600 600 200 300 195 _ 1875

Figure 4.2 Layout for the experimental setup (Beji and Battjes, 1993). All
lengths are expressed in meters.

Figs. 4.3a,b and 4.4a,b show the energy spectra and the linear and the
nonlinear phase speeds at different locations over the bar for narrow- and
broad-band spectra, respectively. The overall results for the spectral evolution
over the shallow bar show that the generation of higher harmonics is well
predicted with the evolution equations of extended Boussinesq model. Over the
shoaling region, strong energy transfers take place from the primary spectral
peak to the higher harmonics.

The predicted nonlinear phase speeds, over the upslope of the bar, show that
the higher harmonics propagate faster than the linear estimates due to the
nonlinear couplings to the primary. Over the bar crest (station 4), the nonlinear
phase speeds are nearly constant and equal to /g/ (nondispersive shallow-water
waves). Beyond the bar (station 8), the nonlinear predictions of phase speed
agree with the linear estimates, implying full release of bound harmonics. These
results are consistent with the findings of chapter 3, in which it is found that
beyond the bar, the effects of nonlinear couplings vanish.
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4.6.3 Verification of the evolution equation for breaking waves

Input data

The spectral evolution equation (4.51) has been verified against laboratory
measurements for finite-amplitude waves propagating in shallow water with
breaking dissipation. Four different experimental data sets have been used for
wave transformation over barred and nonbarred profiles, as shown in Figs. 4.2,
4.7, 4.10 and 4.13. These experiments and the incident wave conditions are
listed in Table 4.1, in which f; is the peak frequency and H,, is the significant
wave height given by 4(m,)"* where mj is the surface elevation variance (=E,,).

Table 4.1 Description of the Experiments and the Incident Wave Conditions.

Test Reference Bed Profile Breaking f,, Hz H,, cm
A Beji and Battjes (1993) submerged bar mild 047 54
B  Luth et al. (1993) submerged bar strong 0.55 21.7

C  Arcilla et al. (1994) monotonic beach strong 0.20 90.0
D Arcilla et al. (1994) barred beach mild 0.125 58.0

Test A in Table 4.1 represents the case of narrow-spectrum of breaking waves
of Beji and Battjes (1993), and tests C and D in Table 4.1 represent tests 1A
and 1C of Arcilla et al. (1994). In each of these experiments, free-surface
elevations were measured at several locations along the bottom profile.

These experiments are chosen because they feature various wave conditions and
different bed configurations. These conditions are quantified using the following
wave parameters: the nonlinearity parameter e=a/h (in which a is a wave
amplitude equal to H,,,/8'?), the dispersion parameter u=kyh (in which , is the
wavenumber corresponding to the peak frequency f,), the Ursell number
Ur=e¢/y?, and the bottom slope parameter |A |/koh. The values of these
parameters are listed in Table 4.2. The subscripts d and s denote the parameter
value in deep and shallow water, respectively, where the deep water values are
computed at the upwave boundary and the shallow water values are taken over
the bar crest for the barred profiles (i.e., tests A, B, and D) and at the
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shallowest measurement location (station 8) for the monotonic beach (test C).
The maximum value of the bottom slope parameter along each profile is given
in Table 4.2, where in the cases with barred profile (i.e., tests A, B, and D) it
is calculated at the beginning of the downslope of the bar (where the slope is
maximal and k2 is minimal) and in the case of test C it is computed at the
region with the steepest slope (i.e., between stations 5 and 6). In the
simulations the upwave boundary conditions are specified from the
measurements at station 1 for each test.

Table 4.2 Wave Parameters for Different Experiments in Deep and Shallow

Water.

Test €y € Uy U, Ur, Ur, |, | Thoh
A 0.05 0.17 0.63 0.30 0.13 1.88 0.33
B 0.10 0.26 1.18 0.52 0.07 0.96 0.19
C 0.08 0.23 0.91 0.36 0.10 1.77 0.09
D 0.05 0.24 0.53 0.21 0.18 4.96 0.52

Variables are defined as follows: e, nonlinearity parameter; u, dispersion parameter;
Ur, Ursell number; |h.|/keh, bottom slope parameter. The subscripts d and s refer to
deep and shallow water, respectively.

Computational parameters and results

To simulate the measured wave profiles, a large number of Fourier modes is
needed with high resolution and high cutoff frequency to ensure adequate
representation of the higher harmonics. The sampling rate in the measurements
of tests A, C, and D is 10 Hz, implying a maximum cutoff frequency in the
simulations of 5 Hz. In test B the data were available with 20 Hz sampling rate,
implying a 10-Hz maximum cutoff frequency.

The wave spectra are simulated by averaging over 20 realizations, each with a
different set of initial random phases. The number of frequency components
nf and the bandwidth Af used in the simulations are listed in Table 4.3, both for
the simulations of the surface elevations and of the wave spectra. For all tests
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the maximum frequency used in the computations of the surface elevations was
equal to the cutoff frequency in the data. In equation (4.42), a=1 was used.
The value of the breaking coefficient  (equation 4.44) was set at 0.85. This
value is on the high side to compensate for the use of the mean frequency in
(4.42), instead of the more commonly used peak frequency.

Table 4.3 Computational Parameters Used in the Numerical Simulations

Test Surface Elevations Wave Spectra

nf Af, Hz  results nf Af, Hz results

256 0.0195 Fig. 4.6 78 0.039 Fig. 4.5
512 0.0195 Fig. 4.9 85 0.025 Fig. 4.8
512 0.00975 Fig.4.12| 100 0.01 Fig. 4.11
512 0.00975 Fig.4.15( 100 0.01 Fig. 4.14

o O w »

Discussion of the results

Inspection of the comparisons of energy spectra and wave profiles shows, at a
glance, that the model simulates the observed evolution of irregular waves with
breaking dissipation fairly well for the case of a submerged artificial bar (tests
A and B) as well as for the nearly monotonic sandy beach profile (test C) and
the barred sandy beach (test D).

In the cases with a submerged artificial, trapezoidal bar (i.e., tests A and B) the
initial nonlinear steepening on the seaward side is well represented and also the
subsequent enhancement of higher harmonics and ensuing profile distortion
(Figs. 4.6 and 4.9). As the waves travel upslope, they gradually lose their
vertically symmetric profile and become pitched forward (nearly saw-toothed
shape) due to the increasing nonlinearity and bottom slope influence. Over the
bar crest, where the waves become nearly nondispersive, the resonant
conditions are nearly satisfied and a very rapid energy exchange occurs between
the primary and its harmonics (see chapter 3 for a detailed analysis of these
phenomena). As the waves propagate into the deeper water, they decompose
into several smaller-amplitude waves.
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As wave breaking takes place, it reduces the degree of nonlinearity, hence
weakens the intensity of the nonlinear interactions. The energy dissipation
results in a reduction of the amplitudes of the harmonics which apparently is

close to proportional in view of the realistic model predictions.
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Comparing the model performance for tests A and B, it can be seen that the
energy spectra are predicted about equally well (Figs. 4.5 and 4.8), but that the
time domain predictions for test B (Fig. 4.9) are not as good as those for test
A (Fig. 4.6). It is worth noting in this respect that test B is more demanding
than test A, both with respect to the dispersion characteristics and with respect
to the representation of dissipation. Test B involves larger relative propagation
distances than test A; the longitudinal dimension of the bar normalized with the
initial wave length is almost 3 times larger than in test A. Also, the breaking
in test B is significantly more intense than in test A. In test A the dissipated
energy is about 20% of the incident wave energy, whereas it is about 75% in
test B. Evidently, wave breaking is so strong in test B that breaking dissipation
dominates harmonic generation. The data do not include lower, nonbreaking
waves of the same length as in test B, so that we cannot pinpoint the source of
the errors in test B with certainty.

The scenario in test C is different than in tests A and B because the monotonic
profile in test C allows for wave breaking to continue for large propagation
distance and for continuous generation of low-frequency energy, as inferred
from the spectra (Fig. 4.11). The nonlinearity is dominant over the entire surf
zone without the occurrence of wave decomposition, unlike the phenomena
downwave from the bar, where the intensity of nonlinear couplings decreases
due to the deepening water.

In test D the bottom topography (barred beach with steep slopes) highlights
some interesting features about the model applicability. In the shoaling region
the predicted surface elevations are in very good agreement with the measure-
ments up to the bar crest (Fig. 4.15, station 6). This is an indication of the
accurate predictions of the higher harmonics. The spectral evolution shows a
distinct energetic second spectral peak which is ascribed to the nearly resonant
triad interactions. Beyond the bar, discrepancies are noticeable in the model
predictions, where the waves decompose without a distinct primary peak,
which, however, is still observable in the measurements (Fig. 4.14, station 8).
This is ascribed to the relatively steep bottom (|4, |/kx2=0.52), which is in
contrast to the assumption of slowly varying bottom (|4, |/k2<1). In fact, the
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bottom slope condition implies that the smallest bottom variation should
accommodate at least one wavelength. Beyond the bar crest the local
wavelength of the incident peak frequency is about 22 m, whereas the length
of the trough in the bottom profile is about 20 m (see Fig. 4.13). Note that a
somewhat similar phenomenon (disappearance of primary peak in the
computations) is noticeable in test A (Fig. 4.5, station 7), where also the bottom
slope parameter was not very small compared with unity (0.33).

Generally, the realistic model predictions of the wave profile, even after
breaking, support the use of a real function for the breaking dissipation term.
There seems to be no need of additional assumptions about a complex
dissipation function, that would introduce phase modifications due to energy
dissipation by wave breaking.

It has been pointed out above that the dissipation model presented here is not
intended for the low-frequency part of the spectrum. Nevertheless, in most of
the computations referred to above, the formulation intended for the frequency
range of the incident waves and their higher harmonics has provisionally been
applied to the entire spectrum. Some computations have also been carried out
of the energy spectra in which the dissipation was not applied to the low-
frequency waves (frequencies less than about half the peak frequency of the
incident waves). We show only results for tests B and C because these have
strong breaking (see Table 4.1), both on a barred profile (test B) and on a
monotonic beach (test C).

Fig. 4.8 shows the results for test B. Over the upslope (station 3), where
breaking starts, the computation with dissipation switched off overpredicts the
low-frequency energy somewhat. This discrepancy becomes significant where
more breaking dissipation has occurred (station 4). Over the downslope (station
5) the low-frequency energy is reduced due to deshoaling in the measurements
as well as in both computations. The computation with dissipation switched on
in the low-frequency range shows good agreement with the experimental results
in the whole range.
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Fig. 4.11 shows the results for test C. For unknown reasons the model
overpredicts the low-frequency energy levels in the upwave region where
breaking does not yet occur or is very weak (station 4). Farther downwave, this
overprediction increases if the low-frequency dissipation is switched off. Unlike
test B, the overestimation of the low-frequency energy increases up to station
8, which is ascribed to continued shoaling. In case dissipation is switched on,
the model results tend to the experimental values in shallow water, but in view
of the above, it can be argued that this may be due more to a fortuitous
cancellation of model errors than the result of accurate modeling. Nevertheless,
when combined with those of test B, the results do indicate that there is
significant dissipation in the low-frequency range, but our limited results do not
permit definite conclusions as to the mechanism causing this dissipation nor that
our dissipation model is suitable to represent it.

It is noticeable in all four tests that at some locations in the shoaling region the
spectral evolution equation tends to underestimate the crest elevation of the
highest waves. This could be due to insufficient frequency range or resolution.
To verify this, additional computations were carried out. The maximum
frequency in the computations was already equal to that in the data, therefore
it was not increased. The influence of resolution has been examined for test C
by doubling it (frequency resolution 0.00488 Hz, instead of 0.00975 Hz).
However, this did not seem to improve the numerical predictions. The same
discrepancy has been noted by Madsen and Serensen (1993).

4.7 Summary and conclusions

The nonlinear transformation of wave spectra in shallow water is considered
from the deterministic modeling point of view. The governing equations for
water waves have been reviewed. Various formulations of the Boussinesq-type
equations for shallow-water waves have been briefly discussed .

Boussinesq equations incorporate nonlinear shallow-water effects, such as near
resonant triad interactions and the generation of bound sub- and superharmonics.
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The strength of the cross spectral energy transfer is governed by the mismatch
between the bound and the free wavenumbers. This implies that the accuracy
of the linear dispersion relation is of the utmost importance for the description
of this phenomenon. For this reason, Boussinesq equations with improved
dispersion characteristics have been employed in this study. The equations
derived by Madsen and Serensen (1992) seem the most suitable to be
transformed into the frequency domain. Some details of this derivation (Madsen
and Serensen, 1993) have been described.

The nonlinear cross-spectral transfers of energy and phase modifications lead
to the asymmetric and skewed profiles that are characteristics of nearly breaking
and broken waves. The frequent occurrence of wave breaking in such regions
required a link between the two processes from the modeling point of view. The
role of wave breaking and its influence in the spectral shape is reviewed, with
the aim of developing a model that combines the cross-spectral energy transfers
due to triad interactions and breaking dissipation.

The main results of this chapter can be summarized with some conclusions as
follows:

1. Spectral evolution equations based on Boussinesq model with improved
dispersion characteristics are able to describe the generation of sub- and
superharmonics. The phase mismatch is of utmost importance for the
description of this phenomenon.

2. The model predicts nonlinear correction to the phase speeds of various wave
components due to nonlinear interactions, leading to virtually nondispersive
propagation in shallow water despite the presence (weak) frequency dispersion.
3. Energy dissipation due to wave breaking is formulated in a spectral form,
both for energy-density models and complex amplitude models. The spectral
breaking term is based on the total rate of energy dissipation by breaking. On
the basis of observations of Beji and Battjes (1993), the spectral dissipation term
is chosen such that it reduces the total (spectrally integrated) energy without
affecting the spectral shape.

4. The spectral breaking model has been applied to a deterministic spectral
evolution equation, based on extended Boussinesq equations. This formulation
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is used to describe the evolution of random waves propagating into shallow
water, including the simultaneous effects of harmonic generation and wave
breaking.

5. The model is validated against laboratory measurements for random wave
transformation over barred and nonbarred bed profiles. It has been found to
yield realistic predictions of the spectral evolution in the shoaling region and
inside the surf zone. This validation supports previous observational results in
which wave breaking dissipation appeared to be proportional to the spectral
energy level, without dependence on the frequency.

6. The model results are also compared to measured surface elevation. It is
found to yield realistic prediction of the wave profile in the shoaling region and
the outer surf zone. Some discrepancies are observed for the inner surf zone.
The data do not support the need of a phase shift induced by breaking.

7. The nonlinearly generated low-frequency waves are significantly damped.
The model proposed here for the higher-frequency range seems to predict the
low-frequency energy reasonably well in comparison with experimental results,
but that may be fortuitous. This problem deserves further study.
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Chapter 5

5. Random-wave modeling of wave evolution in shallow water
5.1 Introduction

As shown in chapter 4, Boussinesq equations can be used to establish evolution
equations for the amplitudes and phases of waves propagating over slowly
varying topography, simulating harmonic generation. For computational
efficiency, phase-averaged energy based models are preferred. For application
in such models, Abreu et al. (1992) have presented an energy source term
representing the average effect of triad interactions. Their derivation is
restricted to nondispersive shallow-water waves with resonant colinear triad
interactions. This is a grave restriction in application to dispersive waves in
shallow water depths. Thus a model for the effect of triad interactions in
dispersive waves is highly desired.

Two approaches for modeling triad interactions in dispersive waves are
described in chapters 6 and 7. The governing equations used in these
approaches are essentially based on established formulations for nonlinear
random wave interaction theory, in particular the Zakharov kinetic equation for
resonant triad interactions. In this chapter a resume of the derivation of this
equation is given to prepare the ground for the following chapters. The material
presented in this chapter is mainly taken from Zakharov et al. (1992). Further
details may be found in Eldeberky (1995).

The arrangement of this chapter is as follows. The Hamiltonian equations of
motion for surface gravity water waves are presented in section 2. In section 3,
evolution equations of the canonical variable are given. A statistical description
in terms of the spectral density function is presented in section 4. In section 5,
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the hierarchy of moment equations is constructed and truncated. The kinetic
equation for three-wave interactions is given in section 6. A summary and
conclusions are finally given in section 7.

5.2 Hamiltonian equations of motion

The problem of gravity-water waves in a depth-limited ocean is considered. The
fluid is assumed incompressible and inviscid in a homogeneous gravitational
field. Potential flow is assumed and surface tension effects are neglected. The
bottom is a rigid and impermeable surface at z=-A(r), where r is the two-
dimensional horizontal coordinate. The free surface elevation is {(r,f), and
®(r,z,?) is the velocity potential. The velocity potential at the surface is ¥(r,f)=

S(r,z={(r,0),0)

The fluid flow is described by Laplace’s equation

V2q> azq) = 5 1
+?-o W) < z < {rD (5.1

with the bottom boundary condition

? FVR-V® =0 z=—h(r) (5.2)

<

The sea surface z={(r,?) and the velocity potential ¥(r,7) are the canonical
variables. The kinematic and the dynamic free surface boundary conditions are
respectively (Zakharov, 1968)

¢ _ 0H (5.3)
a  ov
oV _ _oH (5.4

E TS
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where 6/6¢ and 6/6¥ designate variational derivatives and H is the total energy
per unit mass of the fluid, the so-called Hamiltonian, defined as the summation
of the kinetic energy and the potential energy:

1 e
H =5 fdr|

“h

. 0 I A 5.5)
PV¢) @2 }& £ [ tar

For the problem of shallow-water weakly nonlinear waves , shoaling over a
mildly sloping bottom, equation (5.5), in terms of the free surface variable,
reduces to

H = % Idr [ (h+O(V¥)? + gi7 (5.6)

The formulation (5.6) includes the effects of weak nonlinearity via the term
{(V¥)? and the effect of slowly varying depth (h=h(r)).

For a formulation in a spectral domain, equation (5.6) is to be expressed in
terms of the Fourier transforms of { and ¥. The Fourier transforms of { and
¥ are given by:

{r) = 2i [ di $0 expi-r) 5.7)
™

¥ = L [ dk k) exp (k-7 (5.8)
27

where k is the wavenumber vector. Upon substitution of (5.7) and (5.8) for ¢
and ¥ in equation (5.6), the spectral formulation reads
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H = % [ die Uk ) Sk + gEU0OF ()

(5.9)
|| LR (ON NGRS
47
Here
1 .
(k) = G Jdr exp(ik- 1) (5.10)

is the Dirac delta function. The first integral in (5.9), which is quadratic in the
Fourier modes of both ¥ and ¢, represents the linear part. The second integral,
which is cubic in a combination of the Fourier modes for ¥ and {, represents
the nonlinear contribution due to the three-wave interactions.

Instead of a formulation in terms of ? and ¥ , Zakharov (1968) suggested a
formulation in a complex variable G(k,?) given by

Glk,t) = = |ty +i 2D (5.11)
\/5 A
Here A is a dimensional factor such that the real and the imaginary parts of
G(k,t) (i.e., AN{ and ¥/N respectively) have the same dimension. The form of

A depends on the governing dispersion relation. For surface gravity water waves
in intermediate depth, with the exact linear dispersion relation,

w; = gktanh(kh) (5.12)

where k is the wavenumber magnitude, the general form of A\ is given by
(Zakharov and Kharitonov, 1970):

\ = [L]i (5.13)
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Using the canonical transformation to the complex variable G(k.,7) (with the
shorthand notation G,), { and ¥ can be expressed as follows:

I 1 : *
{ = —— (G,+G}) (5.14)
V2 A e

¥ - ~i‘/_% (G,-G2) (5.15)

Here G, is the complex conjugate of G,. The canonical equations (5.3 and 5.4)
can be expressed in terms of the variables G,” and G, as follows
0G, _ _; oH 0G _ ;o0 (516)

T E ’ o 3G,

Using equations (5.14), (5.15) and (5.16), the total energy (5.9) can be
expressed in the form of a series in powers of G, and G,". Retaining only the
quadratic and cubic terms, the total energy becomes

H-= I dkw,G,G," + J J J dkdk,dk,[V,,,(G," G,G,+G, G G,)5,_, 5.17)

" %VkIZ(GkGl G,+G G Gy)5,, ]
with the shorthand notation §;,,, =8(k+k;+..). The first integral, which is
quadratic in the complex variable, represents the linear part of the formulation.
The second integral, which is cubic in the complex variable, represents the
nonlinear part ascribed to the three-wave interactions. Equation (5.17) is similar
to that obtained by Zakharov (1968). (Zakharov’s equation has an extra integral
describing the four-wave interactions.)

The general form of the interaction matrix V,,, for water waves in intermediate
depth is given by (Stiassnie and Shemer, 1984):
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V= {[k-k, _(wkwl/g)z] (wz/“’k‘”l)m

812
LKk - (0,0,/8) ] (@ fww)” (5.18)

+ [k -k, + (o, w,/8)*] (co,/colcuz)”2 }

The nonlinear part of equation (5.17) (i.e., the second integral) contains four
terms of triple products of the complex amplitude. Zakharov et al. (1992) point
out that the third and fourth terms represent mutual annihilation of three waves
and their creation from vacuum respectively; their contributions in surface
gravity water waves can be neglected.

5.3 The evolution equations

The approximation for the total energy (5.17) is repeated here for convenience
after keeping only the relevant terms for the process of three-wave interactions

H= f dk GGy + I J I dkdk,dk, V(G G,G,+G .G G)6, ., 19

The dynamic equation for the complex variable G, can be derived from the
equation (5.19) using the canonical equations (5.16). The evolution equation of
the complex variable is

dG,

7 ) _ikak m .[J dkl dk2 (VkIZ Gl G2 6k—l-—2 *2 V1k2 Gl GZ* 6k+2—1) (520)

The first term on the right-hand-side represents the linear evolution term. The
second term represents the interaction integral with two contributions: the first
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is the sum interaction; the second term is the difference interaction.

The dynamic equations (5.20) for £=1,2,... constitute a set of coupled
nonlinear differential equations which can be integrated to determine the time
evolution of the amplitudes | G,| and their phases ¢, i.e., G,=| G, |exp[-ip,].
Here ¢,=w,t+0,, where wt is the rapid wave phase, which is ascribed to the
linear evolution, and 6, is the slow wave phase ascribed to the three-wave
interactions.

5.4 Statistical description of random waves

The formulation given by (5.20) is deterministic since it yields both amplitudes
and phases. In general, a statistical formulation is preferred when the system
is inherently chaotic or unpredictable, when there is insufficient knowledge of
the initial conditions to pose a deterministic problem, or, perhaps most often,
when the information desired is a measure of "typical” or "average" properties
of the system. This is the case for wind-generated waves. The following
derivation of a statistical formulation for nonlinear triad wave interactions is
mainly taken from Zakharov et al. (1992).

In a statistical description of random waves it would be natural to average over
the ensemble of random phases. Such averages will be denoted with <.>.
After such averaging, only moments that are independent of the wave phase will
be nonzero. For example

<G,> = < |G,|exp[-i¢,]> =0
<GG,> = <|G]|G,|expl-i(,+$)]> =0 (521)

k=K’

<G,G.> = <|G,||G,/|exp[-i($, -¢,)]> =0
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The complex canonical variable G(k,¢) can be seen as the Fourier transform of
the random variable »(r,7) given by

G(k,1) = (_2%5 jdr v (r,1) exp(-ik-r) (5.22)

The second statistical moment is by definition

1

<G,G, > =
Qr

J J dr dr, <v(r)v(r)> expl-i (k-r,~k,-r,)] (5.23)

)4

in which <w(r))»(r,)> is the second-order correlation function denoted by
C(ry,r,) or equivalently C(r,,7 ), where ¥ =r,-r, is the spatial separation vector.
If the statistical properties of »(r,) are independent of r, i.e., a homogeneous
wavefield, the correlation function becomes only dependent on the spatial
separation vector ¥

<w(r) v(r,)> = C(F) (5.24)

The continuous energy spectrum of the sea surface elevation is defined as the
Fourier transform of the second-order correlation function. Substituting equation
(5.24) in (5.23), we find

<G,G’' > = n(k) 8(k -k, (5.25)
where

1 Ay L
n(k) = o jdr C(7) exp(-ik, -F) (5.26)

is the spectral density function of the complex variable G,, and

1 :
S(k,~k,) = WI dr expli(k,~k,) - r] (5.27)

is the Dirac delta function.
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In the next section, we elucidate a transition from a deterministic description of
the problem of nonlinear triad interactions in random waves in terms of
amplitude and phase to a statistical one in terms of average quantities such as
<G>, <GG >, <G,GG,>.

5.5 The hierarchy of moment equations

The moment equations

The evolution equation for the so-called second-order moment <G, G,> can
be derived by multiplying (5.20) by G, , the complex conjugate equation of
(5.20) by G, adding the latter to the former, and averaging.

Multiplying equation (5.20) by G,” yields

* dG « * ; *
G, —ka = -10,GGT - l“ dkdky [V, G G1G012 (508

*2Vie

Gk* Gl G2* 6k+2—1]
Similarly, multiplying the complex conjugate equation of (5.20) by G, yields

dGy
G dt

= iwG G, + i f j ak,dk, [V,,G,G" G 81 (5.20)
+2V,,G.G" G5 ;..

1k2

Now the evolution equation for the second-order moment is:

*

dgG, aG
4 <66 > = <G, L (5.30)

dt

Substitution of equation (5.28) and (5.29) into (5.30), yields
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% <G, > =i [ dhy iV d <G G, G, >~ < G,G)' Gy >18,,, (53D
+2V,,[<G{G,G,’ > - <G,G,'G,> 5.,

Simplification of the terms between brackets gives

d

5 <GG’>=-2Im I J dk, dk,[V,,, <G, GG,>5,

(5.32)
-2 V1k2 < GkGl* Gz > 6k+2—1]

Equation (5.32) for the second-order moment is consistently derived from the
evolution equation of the complex amplitude (equation 5.20), but it cannot
describe the evolution of the second-order moment without additional
information about the third-order moment (triple product of complex
amplitudes).

For simplicity we use shorthand notation for the moments M,,= < G,G,” >
and M,;,= <G,'G,G,>. Equation (5.32) can be written as

d
P M, = -2Im If dk,dk, (V1,058 ,-2VuMy, 80y) (5.33)

The evolution equation for the third-order moment M,;, can be obtained as
follows

d

) . dG . dG dG,'
+<G G,G,>=<G G,—>>+<G, G27;> +<G,G—_> (5.34)

Substituting equation (5.20) in (5.34) and performing some algebraic
manipulations (Eldeberky, 1995), the evolution equation of the third-order
moment M,,, becomes



Random-wave modeling of wave evolution in shallow water 117

d , .
EMI(IZ = i~ —w,) M, -1 ” dk,dk,[2V,, M, 59, (.35
+2V30uM 550105~ ViseMay156, 5]

with the shorthand notation M,,,;=<G,'G,"G,G;> for the fourth-order
moment, in which the indices are dummy arguments. This equation is similar
to that obtained by Zakharov et al. (1992). Clearly the third-order moment
evolves in terms of fourth-order moments. So a hierarchy of moment equations
is obtained where every moment evolves in terms of the next higher one, i.e.,
the second-order moment evolves in terms of the third one, the third-order
moment in terms of the fourth one, and so on. To solve this infinite system of
moment equations we need to truncate the hierarchy at a certain level.

Truncation of the moment equations
The fourth-order moments can be expressed in terms of products of second-
order moments and an irreducible quantity b, a so-called fourth-order cumulant:

My = My, My + My My, + My, My + by, (5.36)

where M, ;= < G,G;> . Reference is made to Monin and Yaglom (1979) for the
definition of cumulants both for random variables and random fields. For
decreasing steepness the ensemble of non-interacting waves tends to a Gaussian
state. The nonlinearities will tend to create correlations (higher cumulants).
These are important because they measure the extent to which the probability
distribution of the sea surface differs from normal (Gaussian). If nonlinearity
is weak, then the fourth-order cumulants b,,;, can be neglected. This is called
the "quasi-Gaussian hypothesis”, in which the statistics of the sea surface
elevation are assumed to be near-Gaussian. The use of the "zero fourth-order
cumulants" assumption means that the fourth-order moment can be expressed
in terms of pairs of products of second-order moments, and consequently
enables the closure of the hierarchy of the evolution equations.
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5.6 Kinetic wave equation

The evolution equation of the second moment (5.33) can be rewritten in terms
of the spectral density function n, (Zakharov et al., 1992) as

d
7 n, = -2Im ” dk;dky (Viypd120i02-2Vidys 8,0 )  G:37)

Here J,,, is the third-order correlation function defined by

M,

k12

szz 6k—1-2 (5.38)
In order to calculate the evolution of #;, one should know J,,,. Using definition
(5.38) in the evolution equation of the third-order moment (5.35),

d . .
— iz = (@ —w; =) Ty, - l[fdk3dk4 VAN (5.39)

dt
+2 V314Jk42361+4—3 - ‘/k34‘]34126k—3—4]

Here J,,,; is the fourth-order correlation function defined by

Jiazs Vs = My (5.40)
The chain of evolution equations for the wave correlators (5.37 and 5.39) can
be truncated using the quasi-Gaussian hypothesis, in which the fourth-order
wave correlator Jiy,; can be expressed via the second-order correlators .
Reference is made to Zakharov et al. (1992) for the underlying theory. The

evolution equation of the third-order correlator becomes

d . ,
T Sz = U @m0 ~w) Jpypy = 20V, Imn +nn,-nn]  (5.41)

To integrate this equation, one should neglect the time dependence of #,, i.e,
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set the second term on the right-hand-side equal to constant. Integrating from
t=0to 7, we get

exp[-i(w,~w ~w,)7]-1 (5.42)
—i(w, —w, ~w,)

J,

w2 =~ 20V,

iz [hy + iy =y

Substitution of (5.42) into (5.37) gives two kinds of contributions. First an
integral (over the wavenumber spectrum) of a fast oscillating function;
Zakharov et al. (1992) neglected its contribution based on the phase-mixing
effect. Second a steady contribution that gives for J an expression that is slowly
varying in time and depends on » according to

1

J .
Q+i(w,-w, ~w,)

k2 =

(5.43)

-2iV,,nn +nn,-nn,l

Q is an auxiliary frequency parameter added to circumvent the pole at w,-w;-
w,=0. Substitution of (5.43) into (5.37) gives the following integral for three-
wave interactions

dn
d—tk =4 JJ dk,dk,[ VkZIZ Nz By 201272 V12kZ Ny t1026 4., (5.44)

where

Ny, = ~(mn+nn,—nn,) (5.45)

and

Mein = Re[@+i(w,~w, ~w,)]" (5.46)
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Using the shorthand notation Aw=w,-w,-w, and p for u,,,, we have

Q
= 5.47
K 0% + Aw? 47

The factor p functions as a frequency filter. It is useful to gain insight in its
behavior. A normalized representation of u is given in Fig. 5.1 in which Qu is
plotted versus Aw/Q). The plot indicates that u is a spiky-type distribution. Its
integral has the value «.

-20 -10 0 10 20
Aw/Q

Figure 5.1 Normalized representation of p

A non-normalized representation of y is given in Fig. 5.2, in which y is plotted
versus Aw for various values of Q. The plot indicates that the filter becomes
narrower and more spiky by decreasing the value of Q, but the integral always
equals 7 independent of (.
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10

-7.5 -5.0 -25 0.0 2.5 5.0 7.5
Aw

Figure 5.2 Non-normalized representation of u. Dashed line: 2=1.0;
Dot-dashed line: 2=0.5; Solid line: 2=0.1.

In the limit of Q-0, we have y, , ,=70(w,-w;-w,). Zakharov et al. (1992) use
this limit, which upon substitution in (5.44) results in the kinetic equation for
three-wave interactions

dn, 2

Tk~ 4n j j dk,dk, (Vi Nypdhk k)8 (@-0,-0) 5 40
+ 2Vig N0k, ~k-k,)6(w,~w,~w,)}

The evolution equation (5.48) gives nonzero contributions only for waves
satisfying the resonance conditions k-k,-k,=0 and w,-w,-w,=0. For the problem
of off-resonant energetic triad interaction, Holloway (1982) suggested to use



122 Chapter 5

(5.46) for p,,, with a small but finite value of Q instead of its limit for Q-0,
i.e., mo(w-w;-w,). He used © as a prognostic variable related to the rate of
growth of individual harmonics. A similar approach to include the off-resonant
energetic triad interactions is investigated in chapter 6.

5.7 Summary and conclusions

A resume has been presented of results from literature for a statistical
formulation of spectral energy transfer due to triad interactions, mainly taken
from Zakharov et al. (1992).

Random-wave modeling of wave evolution in shallow water is considered using
the Hamiltonian formulation. The governing equations of motion and the
Hamiltonian formalism for surface gravity water waves are viewed at an
introductory level with emphasis on the nonlinear three-wave interactions.
Evolution equations for the moments of the complex canonical variable are
derived from the governing equations of motion; they represent a chain of
interconnected equations. The solution of this chain requires a closure using the
quasi-Gaussian assumption under which the wavefield is assumed to be near
Gaussian. This is used to express the fourth-order moment in terms of products
of the second-order moments. The kinetic equation for three-wave interactions
is derived in terms of the spectral density function. Zakharov et al. (1992) used
this equation to formulate the kinetic wave equation for resonant three-wave
interactions. This is a grave restriction in application to dispersive waves in
intermediate water depths. The inclusion of off-resonant energetic triad
interactions in dispersive waves is considered in the next chapter.
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Chapter 6

6. Energy formulation for triad wave interactions
6.1 Introduction

The problem of off-resonant triad wave interactions is considered in this
chapter. The kinetic integral for three-wave interactions derived in chapter 5 is
used with an analytical formula as suggested by Holloway (1982) to allow for
the off-resonant energetic triad interactions. The purpose of this chapter is to
investigate the feasibility of such approach for application in spectral energy
wave models to represent the cross-spectral energy transfers between various
spectral components.

The arrangement of this chapter is as follows. In section 2, the kinetic equation
for off-resonant triad wave interactions is presented for the energy spectrum.
The kinetic equation is expressed in non-dimensional form, numerically
investigated, and the results are analyzed in section 3. In section 4, the kinetic
integral is used as an energy source/sink term in a spectral evolution model that
is used for verification against experimental data. In section 5, a discussion is
given about the consequences of the approximation made in the kinetic
equation. Finally a summary and conclusions are given in section 6.

6.2 Kinetic equation for off-resonant triad interactions

6.2.1 Formulation for the energy spectrum of the canonical variable

The problem of off-resonant triad interactions of surface gravity waves is
treated mathematically using the Zakharov kinetic equation, which is described
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in details in chapter 5. The evolution equation of the spectral "energy" density
n, due to triad interaction between components k, k, and k,, is repeated here for
convenience

dn ) )
—d_lk =4 ” dk,dky[ Vi1a Nyt 1 20 2= 2Via Ny iy 12 8, 1.1 (6.1)

where

etz = My ~m(n +n,) (6.2)

and

= @ (6.3)

2 2
(W, —w, ~0,)* +Q

Mr122

Q is an auxiliary frequency parameter which is small compared to the spectral
peak frequency (2<w,). Resonance corresponds to 0->0 in which case p, .,
reduces to 76(w;-w,-w,) (Zakharov et al., 1992), leading to the Zakharov kinetic
equation for resonant three-wave interactions (described in chapter 5). The
restriction to resonant interactions means that wave components contributing to
the nonlinear transfer rate dn,/df must satisfy the following resonance conditions

w(k)-w(k)-w(k) =0
(6.4)

k-k,~k, = 0

Exact resonance cannot be satisfied for surface gravity waves in water of
arbitrary depth (Phillips, 1960; Hasselmann, 1962) with the following frequency
dispersion

w?* = gktanh(kh) 6.5
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Thus for practical applications in intermediate depth, a formulation which
allows for a degree of phase mismatch between the interacting waves is required
to include the effect of the off-resonant energetic triad interactions.
Mathematically this can be done by using a finite value for Q (instead of 2-0)
in equation (6.3).

The factor p with small parameter @ is a narrow frequency filter of finite but
small bandwidth; it has the effect of broadening the resonance condition. In
Holloway (1982), Q is a prognostic variable related to the rate of growth of
individual harmonics. Polnikov (1995) suggested to treat  as a constant to be
determined empirically. This approach will be taken up in the following.

Multiple time scales are used to separate different scales of motion. There is a
fast time scale of the wave phase evolution (f,=¢,~w,) and a slow time scale
of the spectral energy evolution (¢;>?,~w,). The latter is the time scale in
which the cross-spectral energy transfers take place due to triad interactions.
Assuming that the spectral energy is of second-order in nonlinearity: E(k) ~€,
one can put t1=tpe‘2. Then an appropriate value for © should be of the order

~ 2
Q=1 =€w,.

Substituting equation (6.3) into equation (6.1) and integrating in k space yield
the time evolution of the spectral "energy" density 7, due to triad interaction
between components k, k; and k,

Q 2 Q
-2 VN,
(w,—o,~w,)* + e (w, -, +w,)* + P

1 (6.6)

dn
715 =4 j dk, {V} 12Ny,

This is the final equation describing the slow time evolution of the wave
spectrum due to off-resonant triad interactions. In the first term of the
integrand, k,=k-k;, representing the sum interaction (k=k; +k,); in the second
term, k,=k,-k, representing the difference interaction (k=k;-k,). Note that the
resonance condition (6.4) does not necessarily have to be fulfilled in (6.6).
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Nj; is expressed in terms of pairs of products of the spectral density function #,,
given by equation (6.2), and V,,, is the interaction coefficient given by equation
(5.18). The present formulation is directionally coupled in which the integral
over the vector wavenumber space allows for both colinear and noncolinear

interactions.

6.2.2 Formulation for the energy spectrum of the sea surface elevation

The kinetic wave equation (6.6) is expressed in terms of the spectral density
function n(k) of the canonical variable G(k). In application to spectral wave
models based on the energy (or action) balance equation, source/sink terms are
normally expressed in terms of energy (or action) density function E(w,8) of the
sea surface elevation. Here the relation between n(k) and the spectral energy
density E(k) is given, followed by transition from the wavenumber spectrum
E(k) to the frequency-directional spectrum E(w,6) .

Transition from n(k) to E(k)

The relation between the spectral density function n(k) of the complex variable
G, and the wavenumber energy spectrum E(k) of the sea surface elevation can
be found from equation (5.14), yielding

_Qn)Yg 6.7
n(k) (D) E(k) (6.7)

In fact equation (6.7) indicates that apart from a constant factor 47°g, n(k) can
be regarded as the wave action density.

Transition from E(k) to E(w,6)
The relation between the wavenumber spectrum E(k) and the frequency-
directional spectrum E(w,6), Komen et al. (1994), is
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E(w,0) dw df = E(k) dk (6.8)

(dw is the angular frequency bandwidth, df is the directional bandwidth, dk is
the area in wavenumber space) or equivalently.

E(w,0) dw d6 = E(k) k dk do 6.9

Substitution of k=w/c and dk=dw/c, in the right-hand-side, in which ¢ and ¢,
are the phase speed and group velocity respectively, yields

E(k) = b E(w,0) ' (6.10)
w

Substitution of (6.10) in (6.8) gives

dk = “_ dw do (6.11)
ch

Transition from n(k) to E(w,0)
The relation between n(k) and E(w,f) can be finally obtained by substituting
(6.10) in (6.7)

nk) = @a) £55% E(w.0) (6.12)

w

Evolution equation of E(w,0)
The evolution equation of the frequency-directional energy spectrum E(w,f) can
be found by substitution of (6.12) into (6.6) and rearranging

27 oo

= 161I’2gj; 1dwld0 2 32 (Tkl2 - 2T1k2) (6'13)

W, 0)2

dE(w,,0,)
dt
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Here
b2 @ @, w? ’ Q ‘ (6.14)
Ti12=Viaal EE,- EE - EE,] ) ’
«Co .k 66 €16 (W=, ~w,) + (2 J
- @ W’ @ , Q ‘ (6.15)
Tyo= Vil EkEz - EkEl - El E2] 7. 02 '
€% €€ CCok | (0~ +a,)" +Q J

Note that the dimension of E(w,6) is m*/Hz/rad. The interaction coefficient V,,,

is given by

g1/2
V.= { [k k- (w,0/8P] (w,/ww)""?

k12 8 ﬁ
T
[k dy— (w0, /g ] (@ fwm)!” (6.16)

+ [k -k, +(0,0,/8)°] (w/w,w) }

Equations (6.13-15) describe the time evolution of wave energy spectrum E(w,0)
due to the off-resonant triad interactions. The first term of the integrand 7,
represents the sum interaction (k=k,+k,), the second T}, the difference
interaction (k=£k;-k;). The present formulation is directionally coupled and thus
allows for both colinear and noncolinear interactions.

6.2.3 Nondimensional representation

For numerical investigation it is more convenient to express the interaction
integral in nondimensional form. We introduce the following nondimensional

variables

© kg he,  ca, 4%  E@.0) 0 iy

b k] b 2 ) —

@ o« 8 g 8 E, W,

)
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where E, is the peak value of the energy density E(w,). For simplicity we
introduce the modified spectrum defined by

E(,8) = % E(w,0) (6.18)

After using the non-dimensional variables given in (6.17), we use the
normalized modified spectrum £ (w,0)

4

E(w,0) = Ew” E(w.0) (6.19)

2
pg

All variables in the right-hand-side of (6.13-15) need to be made non-
dimensional. The interaction coefficient (6.16) in nondimensional form is

Vi = 812 & w,”" V,, (6.20)

After some algebraic manipulations, the evolution equation of the energy
density E(w,f) can be expressed in terms of non-dimensional kinetic integral as
follows

dE(w,8) =
=N — e 6.21)
dt a
where
C, = % g2 wg E; (6.22)
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is the non-dimensional interaction integral. In (6.23) all variables are
nondimensional and £ is the non-dimensional modified wave energy density
given by (6.18-19). The value of ' should be between 0.01 and 0.1. For
generality, all output results of the numerical investigations will be presented
in units of the dimensional constant C,.

6.3 Numerical investigation of energy transfer rate
6.3.1 Aim of investigation

The interaction integral (6.23) is computed to investigate the nonlinear rate
(NLR) of energy transfer in a Jonswap-type spectrum. The dependence of NLR
on the filter bandwidth ( and relative depth k% is examined. The Jonswap
spectrum is used to describe the frequency distribution of the wave energy. The
spectrum E(w,0) is then given by

s 4
(6.24)
E(w,0) = E, a L1 exp Sle I’ cos™(0)
w, 4 @,
where
2
1 [w—w ] (6.25)
g=exp|-= £
2 vw,

in which w, is the peak frequency (at which the spectrum has its maximum), T
is the peak enhancement parameter, » is the width of the peak enhancement (set
to 0.1), n is the angular spreading parameter, « is a multiplication constant such
that the maximum value of the spectrum equals E,. The choice of E, is
arbitrary.



Energy formulation for triad wave interactions 133

The general purpose of the investigations is to study the characteristics of the
kinetic integral. The following points are considered:

1. The dependence of the nonlinear rate (NLR) of energy transfer on the filter
bandwidth © and relative depth k% for two spectral shapes. These are a wide-
banded Pierson-Moskovitz spectrum with I'=1, and a narrow-banded Jonswap
spectrum with I'=3.3.

2. The dependence of the nonlinear rate (NLR) of energy transfer on the
directional spreading. The angular spreading parameter is varied from »=8 to
20 in combination with a narrow-banded Jonswap spectrum with I'=7.

3. The nonlinear rate (NLR) of energy transfers in the case of a directionally
bi-modal spectrum of the kind '

E(w,0) = E,(0,0) + ¢,E,(w,0) (6.26)

where the spectral energy distribution for E,(w,f) and E,(w,0) is determined
using (6.24), and ¢, is the nondimensional coefficient that determines the
relative contributions of the second mode with respect to the first one.

6.3.2 Discretization of the interaction integral

For numerical implementation, the interaction integral (6.23) has to be
discretized. The interaction integral can be divided into two parts, the sum
interaction integral I* and the difference interaction integral 7". In a discrete
form I* is '

1@.0) =21 3N 3 A, A8, P,0,,,.6,) O “n
w; V)= @ n wi’ "wm’ n .
o cicg,‘m=1 n=1 " ’ (wi—wm_w)2+ﬂ2 cmcgm (6°27)

[E(w,,0,)E(é,0)-E(w,6)E(6,0)~E(w,0) E(w,,6,)]

Here i and m are running counters in frequency domain, and j and n are
running counters in the directional domain. All variables are expressed in non-
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dimensional form. In the sum interaction term (6.27), any two discrete spectral
components (w;,0,) and (w,,0,) with wavenumbers k and k; respectively can
interact with a third component (&,d) with wavenumber k, such that k,=k-k,.

The difference interaction integral I" in a discrete form is

Fw,.0)= L3 3 A, A8, (e 0,00y @
LU= w 0, w.0.
@;5U; CiCpimat nel @, a0, m2Yn> QiU (“’i_“’m*‘;’)2+92 C o (6.28)

[E(w,0) E(6,8) - E(w,,,0,) E(,0) ~E(w,0) E(w,,8,)]

In the difference interaction term (6.28), any two discrete spectral components
(w;,8) and (w,,,0,) with wavenumbers k and k, respectively can interact with a
third component (@,4) with wavenumber &, such that k,=k-k.

6.3.3 Numerical grid

For a sufficiently fine calculation grid (w,8), the values obtained for the kinetic
integral do not significantly depend on the choice of grid. This choice is
important from the point of view of good resolution of spectral form E(w,) and
covering a proper interval of frequencies and directions for the output rate
dE/dt. After some test calculations, the following numerical grid (w,d) was
chosen (in nondimensional units)

w, = 0.25(1.06)" , for i=1,...,nf (6.29)
and

0, = -m+(Z)j ,forj=1,..,na (6.30)
na

Here nf and na are the number of frequency and directional components

respectively. It should be mentioned that comparison of calculations for

different grids showed a significant dependence of the nonlinear rate (NLR) on

the frequency and angular resolution. After some test calculations, we set
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nf=48 and na=24. For this choice, the accuracy of quantitative characteristics
of NLR in our calculations is of the order 10%. This grid permits to investigate
the integral properties in the frequency interval 0.265 < w/w,<4.

6.3.4 Results of calculations and analysis

Dependence of NLR on parameter Q and relative depth kh

The calculations of the kinetic integral (6.23) have been carried out for two
spectral shapes: Pierson-Moskovitz (PM) and Jonswap spectra with directional
spreading of a cos>-distribution. For each spectral shape, the kinetic integral is
considered for a range of relative depths £,2=3, 1.2, 0.6, and 0.3. Two values
for the nondimensional parameter (/w, are considered, these are 0.01 and 0.1.

Figs. 6.1 and 6.2 show NLR for PM and Jonswap spectra, respectively, for
k,h=0.3 and (/w,=0.01. The results are given in one-dimensional form (top),
i.e., integrated over directions, and in two-dimensional form (bottom). The
results show an energy flux from the region near the primary peak toward the
higher harmonics. The behavior of the NLR indicates the following two
features. First the maximum of the positive lobe occurs at f/f,=1.9 (less than
the location of the first harmonic 2f,). This is due to the fact that a triad of
waves is considered such that two wave components (w,,k;) and (w,,k,) can
force a motion at the vector sum or difference wavenumber k=k,+k, and
frequency w(k). This consideration implies that the first harmonic appears in the
wavenumber spectrum at 2k,, which corresponds to a peak in the frequency
spectrum at w < 2w, (in intermediate water). The second feature is that the area
under the positive lobe is smaller than the area under the negative lobe,
implying attenuation in the total energy.

Figs. 6.3 and 6.4 show NLR for PM and Jonswap spectra, respectively, for
k,h=12 and ¥w,=0.01. Similar to the previous results, the NLR has a
negative lobe around the primary peak and energy gain over a wide range of
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frequencies higher than two times the primary peak. In general the intensity of
NLR is much weaker than in case k,7=0.3.

For quantitative analysis we used the following characteristics:

- maximum value of positive lobe of two-dimensional NLR: MT*:

- maximum absolute value of negative lobe of two-dimensional NLR: MT;

- ratio of total NLR (two-dimensional NLR integrated over frequency and
direction) to the absolute value of the total negative part of NLR: D

Tables 6.1 and 6.2 summarize the results for PM and Jonswap spectra,
respectively, for various relative depths and Q-values. Note that the parameter
D is a measure of energy conservation within the system. Positive values of D
indicate energy gain and negative values indicate energy attenuation. Tables 6.1
and 6.2 indicate that NLR is proportional to the value of €.

The parameter D measures the percentage of energy gain/loss from the total
energy flux across the spectrum. In deep water D reaches large values but there
the energy transfers are weak, so that the nonconservation of energy is weak
also. As the water depth decreases in shallow water, the NLR increases
strongly. In shallow water, although the values of D decrease, the energy
attenuation becomes significant because of the strong increase in the NLR
values. In fact for Q/w,=0.01, D indicates an energy gain in shallow water
(k,2=0.6, 0.3). The intensity of nonlinear interactions in the Jonswap spectrum
is lower than that in the PM spectrum because the total energy content is larger
in PM compared with Jonswap (the spectra are normalized with E).

Dependence of NLR on angular spreading

The dependence of the nonlinear rate (NLR) of energy transfer on the angular
spreading is examined in the case of a Jonswap spectrum with '=7. NLR of
transfer is calculated for a cos®-distribution (Fig. 6.5) and a cos®-distribution
(Fig. 6.6). The results show clearly that the directional width of the primary
peak influences the directional width of the generated second peak. Nonlinearity
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in the initially narrow directional spectrum leads to a directionally narrow
second peak and vice versa.

NLR in bi-modal directional spectrum

Fig. 6.7 shows the NLR for a spectrum with double peaks of equal magnitude
and peak frequency and located 90 degrees apart. High directional resolution
(A0=5 degrees, na=72) is used in the computation to insure accurate
representation of the spectral peaks. The results show generation of two spectral
peaks, at the first harmonics, that are directionally aligned with the initial
spectral peaks. These are ascribed to the colinear interactions between waves
within each directional peak. The results do not show a directional peak at the
sum wavenumber vector of the initial spectral peaks, i.e., §=0 degrees,
implying absence of noncolinear interactions.

The preceding analysis permits to state the following peculiarities of NLR of
energy transfers due to off-resonant triad interactions:

1. NLR strongly depends on the relative depth k.. With decreasing k.., the
intensity of NLR increases.

2. NLR has a non-conservativity feature. Generally it results in an energy
attenuation in intermediate and shallow water depths.

3. The intensity of NLR increases proportionally with increasing 2.

4. The directional width of the primary spectral peak influences the NLR of
energy transfers. The directional width of the generated second peak is
proportional to the directional width of the primary peak.

5. The NLR of energy transfers in directionally bi-modal spectrum indicates the
absence of noncolinear interactions.
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Table 6.1 Statistics of nonlinear rate (NLR) of energy transfer for Pierson-
Moskovitz spectrum with direction spreading of cos*-distribution

kh 3 1.2 0.6 0.3

Ve, 001} 0.1 0.01 0.1 0.01 0.1 0.01 0.1

MT* 0.3 2.8 1.3 12.6 90 780 | 4,106 {23,546

MT -1.6 | -15.3 -4 -38 -124 | 930 | -5,433|-30,676
D -0.51| -0.51 | -0.41 | -0.44 | +0.08| -0.16 | +0.11 | -0.08

Table 6.2  Statistics of nonlinear rate (NLR) of energy transfer for Jonswap

spectrum with direction spreading of cos’-distribution

kp 3 1.2 0.6 0.3
Ve, 001 01 [o001 ] 01 [001 ] 01 | 001 | 01

MT* 01 | 1.1 | 1.1 | 107 | 48 | 401 [ 2,031 [11,071
MT 06| 61 | -1.9 | -184 | -64 | -348 | 2,566 |-17,646
D -0.48] -0.48 | 026 | -0.32 | +0.16| 0.13 | +0.12| -0.07

Variables are defined as, ; filter bandwidth, MT"; positive maximum value of

NLR, MT; maximum (absolute) value of NLR, and D is the ratio of fotal
(spectrally integrated) NLR to the absolute total negative part.
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Figure 6.1
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Figure 6.3
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Figure 6.5
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Figure 6.6 Nondimensional rate of energy transfer for Jonswap spectrum,
Vw,=0.01, k,h=0.3, directional spreading; cos®-distribution.
Top: one-dimensional, bottom: two-dimensional (MT* =1205, MT
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6.4 Spectral evolution
6.4.1 Model formulation and implementation

Assessment of the characteristics of the kinetic integral for three-wave
interactions requires verification with observations. Various observations that
show harmonic generation have been used throughout this study and will be
used here to verify the present triad formulation.
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For numerical simulation of the experiments, we need to develop a spatial
evolution model for the energy spectrum with a source/sink term representing
the effect of triad wave interactions. Since the experiments used here are
characterized by long-crested waves, a one-dimensional evolution model is
required for the simulations.

We start from the energy balance equation (WAM Development and
Implementation Group, 1988) in a fixed coordinate system,

aE(;,tr,t) + V. [¢,EG,r,)] + V- [¢cE(t,r,)] =S (6.31)

where E(i,r.?) is the essential five-dimensional energy density spectrum, r is the
two-dimensional horizontal space, ¢ are the independent spectral variables (e.g.
1=k or 1=(w,9)), ¢, is the two-dimensional propagation velocity in r space, ¢,
is the two-dimensional propagation velocity in ¢ space, and V is the two-
dimensional differential operator. The left-hand-side of (6.31) represents the
propagation part of the energy balance equation, while the right-hand-side (the
net source/sink terms) represents the generation and dissipation.

For one-dimensional propagation in x-direction and steady state solution (z-
independent), we obtain the following simplified energy balance equation

%{cg’k E(w)] = S, (6.32)

Here E(w,) is the frequency energy density, c,, is the one-dimensional group
velocity and S, is the net source/sink term.

To implement the effect of triad wave interactions in equation (6.32), the
kinetic integral should be simplified to a one-dimensional form and cast in a
source/sink term. For a unidirectional wavefield (no directional spreading) with
frequency energy spectrum E(w), the kinetic integral (6.13-15) can be cast in
an energy source/sink term as follows:
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2 CZCgZ + -
S, (w,) = 167 g'[dwl 3 (Tz2 - 2Ty2)
W, W,
: : 2 6.33
T = V(w0 ) —*_EE -2 EE -\ EE] 0 (6.33)
k12 k1 c.c 172 k™1 k2 2 2
k=g.k €€ C1Cqy (wk_wldwz) + {0
0)2 w2 w2 Q
- &
T1k2=V2(w17wk)[ C Cl EkE2 c 2 EkEl - E1E2] 3 >
1601 21Ce2 Clo (w,~w, +w,)* +{

Note that here we have transformed the directional formulation (given by 6.13-
15) to a unidirectional formulation. On the other hand one can derive a kinetic
integral for unidirectional waves from the beginning by expanding the canonical
variable in unidirectional Fourier components.

The energy source/sink term given in (6.33), for the effect of triad wave
interactions, represents a (positive/negative) contribution to the temporal rate
of change of spectral density. The first term under the integral 7], represents
the sum interaction k=k, +k,, the second T, the difference interaction k=k;-
k,. The interaction coefficient V given by (6.16) can be simplified to a one-
dimensional form as follows

172

V2= { LKk, - (0,781 (/@)

8my/2
+ [kk,~(w,w,/8)] (0 /ww)"? (6.34)

+ [k ky+(w,0,/ 0] (w/w,w)'? }

The one-dimensional nonlinear rate (NLR) of energy transfer has been evaluated
numerically. In the computations, the normalized filter bandwidth Q/w, was set
to 0.01. Fig. 6.8 shows the NLR computed for a Jonswap frequency spectrum
for k,2=0.3 and k,i=1.2. Not surprisingly the unidirectional NLR shows a
similar behavior to the directional NLR, in which energy is transferred from the
primary peak to the harmonics. The intensity of NLR increases strongly for
decreasing relative depth.
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The energy balance equation (6.32) together with (6.33) comprises a set of first-
order ordinary differential equations that describe the evolution of the energy
spectrum E(w). Giving the initial energy spectrum at the upwave boundary,
equation (6.32) has been numerically integrated using a fourth-order Runge-
Kutta method.
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Figure 6.8 Nondimensional rate of energy transfer using unidirectional

Jormulation and Jonswap spectrum, U/w,=0.01. Top: k=0.3,
bottom: kh=1.2.
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6.4.2 Simulation of spectral evolution

The numerical investigation of the nonlinear rate (NLR) of energy transfer
presented in the previous section has shown a strong dependence on the filter
bandwidth Q. In this section the influence of the parameter  on the computed
spectral evolution will be examined using observations for harmonic generation
in random waves propagating over a shallow bar (Beji and Battjes, 1993) as
well as over a beach profile (Arcilla et al., 1994). These data sets are described
in detail in chapter 3.

To simulate nonlinear shoaling and breaking of random waves, the energy
balance equation (6.32) is supplemented with source/sink terms for triad wave
interactions and wave breaking. For triad wave interactions the source term is
given by (6.33), and for depth induced wave breaking it is given by equation
(4.45).

Wave gauges

1 2345678
Wave : — T
maker 5 111,111, /
040 120 110
030 Bar
600 600 200 300 195 18.75

Figure 6.9 Layout for the experimental setup of Battjes and Beji (1992). All
lengths are expressed in meters.

To examine the sensitivity of the spectral evolution to the choice of {2, two
values are used in the computations: {/w,=0.01 and 0.1. The computed spectra
are compared to the measured ones in nonbreaking waves propagating over a
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bar (Fig. 6.9) and breaking waves over a beach profile (Fig. 6.10). The results
are given in Figs. 6.11 and 6.12 respectively.
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Figure 6.10 Bed profile and locations of wave gauges (Arcilla et al., 1994)

The comparisons indicate the following characteristics of the effects of the triad
source term.

1. The intensity of energy transfers from the primary spectral peak to the higher
frequencies is mainly controlled by the choice of Q-value. Increasing Q-value
results in stronger energy transfers, extended to higher frequencies.

2. The energy transfers to higher harmonics are underestimated when
{/w,=0.01, and overestimated when (/w,=0.1. The latter results in an
unwanted behavior for the energy spectrum at the high frequency range
(spectral tail).

3. The second spectral peak (in frequency-domain) is shifted to a lower
frequency compared with observation. It appears at a frequency less than two
times the primary peak. This is ascribed to the fact that triads are considered
such that K=k, +k,, which results in w, <w, +w, in intermediate water depths.
4. The total energy (spectrally integrated) is underestimated (Fig. 6.12, stations
7 and 8) due to the fact that the present triad interaction approximation does not
conserve energy.
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Figure 6.11 Energy spectra from experiments (solid lines) and from the
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Figure 6.12 Energy spectra from experiments (solid lines) and from the
evolution model: with O/w,=0.01 (dashed lines) and Vw,=0.1
(dot-dashed lines) for waves propagating over a beach profile.
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6.4.3 Remedy to the nonconservative approximation

The investigation of the nonlinear rate (NLR) of energy transfers of the triad
formulation presented in section 6.3 has shown that the present formulation is
not conservative. The numerical simulation of the spectral evolution over a
beach profile (presented in section 6.4.2) has shown that the non-conservative
feature of the formulation can be significant and results in an artificial energy
decay/gain. In fact this energy attenuation is a characteristics of the present
formulation resulting from the specification of the filter bandwidth €.

dE /dt

2
£/ fp
Figure 6.13 Sketch of NLR of energy transfer; solid line: present

approximation with energy attenuation; dashed line: modified
negative lobe to ensure energy conservation.

To eliminate these effects, the present formulation is temporarily remedied to
insure energy conservation during the nonlinear interactions. The energy
attenuation in the present formulation can be explained using Fig. 6.13 for the
NLR of energy transfers. In such case the area under the negative lobe, that
represents the energy transfers from the primary peak, does not equal (larger
than) the area under the positive lobe that represents the energy gained by the
harmonics.
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To ensure energy conservation the following ad Aoc method is used. First the
NLR of energy transfer is estimated as a first guess using the present
formulation. Next the integral (of NLR ) over the spectrum which represents
the total energy gain/loss D is computed. The NLR of energy transfer is then
rescaled by adding (or subtracting) the quantity D. If D is negative, implying
energy loss, then the area of negative lobe is reduced with D in proportion to
the values of the NLR (see Fig. 6.13). On the other hand if D is positive,
implying energy gain, then the area of positive lobe is reduced with D in
proportion to the values of the NLR. Computations with the non-conservative
approximation are hereafter referred to as NCTI, while computations with the
conservative approximation are referred to as CTI. The ad hoc method
proposed here to ensure energy conservation does not change the general
features of the interaction mechanism between the primary and the harmonics.

Additional numerical simulation of waves propagating over a beach profile has
been performed using the CTI model for comparison with that performed
previously with the NCTI model. The computed spectra with the CTI model
using /w,=0.01 as well as 0.1 are compared with the observation in Fig. 6.14.
The effect of the method proposed to ensure energy conservation is clearly seen
at stations 5, 6, 7, and 8 in which a substantial amount of energy exists in the
present computation (CTI) compared with the previous computation (NCTI).

It is noticeable that the primary spectral peak has disappeared in the computed
spectra in contrast with the observations. This indicates that the energy transfer
from the primary peak to the harmonics is overestimated in the present
numerical simulation. In addition, the computed spectra seem to have energy
transfer over a wider range of harmonics compared with that in the observation.
The latter can be explained as follows. In the present triad formulation, any
three waves participating in the sum interaction must satisfy the relation k-k,-
k,=0. For the special case of self interaction of the primary, in which
k,=k,=k,, the first harmonics appear at k=2k,. This implies that the second
spectral peak appears at frequency f(2k;) given by (in intermediate water depths)
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FQk) = _217;[2gk1 tanh 2k, )]"? < 2f(k,) (6.35)

In shallow water f(2k,) is given by

fQ@k) = %[Zk1 &M = 2f(k) (6.36)

The consequence is that in intermediate water depths, the energy transfer is to
frequency less than 2f,. In shallow water as waves become nondispersive the
energy transfer is to 2f,. The overall energy transfers in both intermediate and
shallow water depths result in a broader second spectral peak compared with the
observed one.

6.4.4 Sensitivity to the filter bandwidth

The previous results for the computed spectral evolution have shown
dependence of the NLR of energy transfer on the choice of the filter bandwidth
1. Additional numerical simulations for wave propagation over a shallow bar
and beach profile have been carried out with different values of Q. To evaluate
the variation in the spectral evolution for various values of Q, the variations in
the mean frequency of the spectrum are computed. The mean frequency of the

energy spectrum is defined as
E(fHd
£ [FEQe 6.37)
JE(f) df

Fig. 6.15 shows the observed variations in the mean frequency in waves passing
over a shallow bar and those computed by the CTI model with different values
of Q/w,. The observed variation in the mean frequency shows a rapid increase
(from 0.43 Hz to 0.85 Hz) over the upslope side and the horizontal part of the
bar, which is ascribed to generation of higher harmonics. Beyond the bar crest,
the mean frequency remains at a high level without significant change. The
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computed variations in the mean frequency using the CTI model show a strong
dependence on the value of the parameter Q. The larger the value of /w,, the
stronger the energy transfers and hence the shift in the mean frequency to
higher harmonics. From the results one can see that the best choice for the
parameter Q/wp, for best simulation of the observed shift in the mean frequency,
in this case is between 0.01 and 0.03.
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Figure 6.15 Spatial variation of mean frequency f,, in waves propagating over
a shallow bar. Solid line: experiment; Dashed lines: evolution
model with conservative approximation using different values for
Yw,.

Fig. 6.16 shows the observed variations in the mean frequency in waves

propagating over a beach profile and those computed by the CTI model with

different values of . The observed variation in the mean frequency shows a
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rapid increase in intermediate water from 0.14 Hz to 0.21 Hz due to harmonic
generation. In very shallow water, the mean frequency nearly attains a constant
level. The computed variations in the mean frequency using the CTI model
show a strong dependence on the value of Q. In intermediate water depths
(between stations 1 and 3) computations with /w,=0.04 and 0.05 seem to best
match the observed shift in the mean frequency. In shallow water, all
computations with different values of Q result in a trend which differs strongly
from the observed one, significantly overestimating the mean frequency.
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Figure 6.16 Spatial variation of mean frequency f,, in waves propagating over
a beach profile. Solid line: experiment; Dashed lines: evolution
model with conservative approximation using different values for

Q/wp.
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6.5 Discussion

The approach presented in this chapter to include the off-resonant energetic
triad interactions represents a modification to the Zakharov kinetic equation for
resonant interactions. The modification is done by using g, in equation (6.1)
instead of using the delta function &(w-w,-w,) that accounts for the exact
resonant triads as in the Zakharov kinetic equation, such that

Q

2 2
(0, ~w; —wy)* +{

(6.38)

Peio =

where Q has the effect of broadening the resonance condition. In this chapter
we investigated whether Q can be treated as a constant to be determined
empirically. The consequences of such treatment are energy attenuation and
unguaranteed spectral evolution.

Holloway (1982) proposed to treat Q as a prognostic variable such that

Qs = M+, 1, (6.39)

where 7, can be seen as a frequency uncertainty in the mode / participating in
the interaction with m and n. Holloway (1982) related u, to the rate of
interaction of component /. The magnitude of 7, and hence the magnitude of Q,,,
increases with increasing wave amplitude. This means that the magnitude of ©,,,
for the interaction between [, m, and n needs to be determined first by solving
three equations representing the interaction rates of the three components. These
three equations for each possible triad together with the spectral evolution
equations represent a closed set of equations guiding the evolution of the energy
density spectrum.

In principle the approach of Holloway (1982) sketched above may be applied
to provide an estimate for the parameter Q. This may achieve a better prediction
of the evolution of the energy spectrum. On the other hand the extensive
computational efforts required to resolve the closed set of equations are a
concern.
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6.6 Summary and conclusions

An approach to model the off-resonant triad interactions is presented and
investigated. The approach is based on the Zakharov kinetic equation for
resonant triad interactions, supplemented with a modification to allow for the
off-resonant energetic triad interactions. The present kinetic integral contains
a parameter, representing the broadening of the resonant condition, to be
determined empirically. The resulting interaction integral has been expressed
in nondimensional form and numerically investigated. The results indicated
energy flux from the spectral peak region toward the higher harmonics with the
following trends:

- NLR depends on the relative depth k4, with very small intensity in deep water
and increasing for decreasing k% in shallow water.

- NLR is roughly proportional to €.

- the total NLR (spectrally integrated) departs from zero implying that the
present approximation of the nonlinear interactions is not conservative. In
intermediate water depth the total energy loss/gain varied within 10-15% of the
total energy transfers from the primary peak.

The interaction integral has been cast into an energy source/sink term and
implemented in an energy balance equation that describes the evolution of a
unidirectional energy spectrum in shoaling regions. The evolution model is
verified using observations of waves propagating over a shallow bar as well as
over a beach profile. In general the comparisons have shown the ability of the
mode] to generate higher harmonics and a consequent upward shift in the mean
frequency. The following drawbacks are found:

- The location of the second spectral peak is at a too low frequency compared
with observation. This is ascribed to the fact that triads are considered in
wavenumber space such that k-k;-k,=0 and not in frequency space.

- The present approximation for the nonlinear triad interactions is non-
conservative, implying that the net nonlinear rate of energy transfer (integrated
over the spectrum) is not zero, as it should. Such effect is a major problem in
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describing the evolution of the energy spectrum, in which an artificial energy
decay is introduced. An ad hoc method is suggested as a remedy to this
problem by modifying the computed NLR such that the net energy gain/loss
becomes zero.

- The magnitude of the filter bandwidth Q cannot be treated as a constant. It
should be related to the rate of interactions as suggested by Holloway (1982).
This approach will required extensive additional computational effort.
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7. Parametrized energy formulation for triad interactions
7.1 Introduction

Deterministic evolution equations, based on a Boussinesq model, have been
used in chaptef 4 to describe harmonic generation in shallow-water waves. For
computational efficiency, a phase-averaged approach based on the Zakharov
kinetic equation (chapter 5) has been used in chapter 6 to develop an energy
formulation for triad interactions. However, this model needs further
improvement and investigation. In this chapter, our purpose is to develop a
computationally efficient, low cost algorithm to model the effects of triad wave
interactions for application in coastal energy-based wave models. Efficiency is
achieved by different approximations and parametrizations.

The organization of the chapter is as follows. The deterministic evolution
equations for the complex amplitudes, described in chapter 4, are summarized
in section 2. Based on these, an evolution equation for the wave energy
spectrum is derived in section 3. The evolution of the bispectrum is considered
in section 4. In section 5 a simplified energy expression for the triad
interactions is presented. Numerical simulations and comparisons are described
in section 6. A summary and conclusions are finally given in section 7: (Parts
of this chapter have been presented in slightly different form in Eldeberky and
Battjes (1995).)

7.2 Evolution equations for the complex amplitudes

Starting with the time-domain Boussinesq equations for a sloping bottom,
Madsen and Serensen (1993) have developed equations which describe the
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evolution of a unidirectional wavefield with complex Fourier amplitudes
including linear shoaling and triad interactions. They expanded the time ®
variation of the surface elevation ({) at each location (x) in a Fourier series as
in

§(t:x)y = Y 4,00 explifw,t-y,(x)] (7.1)
p=-o

with 4, denoting a complex amplitude, p indicating the rank of the harmonic,
w, = pw;, and Y, is the linear contribution of the phase such that d\bp/dx=kp,
the wavenumber corresponding to w, according to the dispersion equation for
the linearized Boussinesq equations. Their evolution equations can be written
in abbreviated form as

dA il ;
~d_£ =54, -1} Rinpmy Ay X0 [-1(¥, 44, ~¥,)] (7.2

x o m-p-m

The first term on the right-hand-side represents linear shoaling, the second the
nonlinear quadratic interactions between any three components m, p-m, and p.
Complete expressions for the shoaling coefficient S, and the interaction
coefficient Ry pm (real quantities) are given in chapter 4. Introducing the
complex Fourier amplitude Cp=Apexp(-i¢p) into equation (7.2) and dropping the
shoaling term temporarily for brevity, we obtain

acC i

P _; -3 7.
—2 = -ik,C, -iY R c,C (7.3)

m,p-m) m -m
dx = (m.p 4

The first term on the right-hand-side represents the linear phase evolution, the
second the quadratic interactions. The complex amplitude C, in (7.3) can be
expressed in terms of its magnitude a, and phase ?,

C, = a, exp(-i¢,) (7.4)
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in which ¢, represents total phase due to both linear propagation (y,) and
nonlinear interactions (6,). The evolution equations of the real amplitudes @, and
phases ¢, can be formulated from equation (7.3) as follows

da = .

de = —mg_; R pmy Oy SIS, + D, =) (7.5)
do @ a,a,.,
& Gt X Rpm =g 050,767 ) 7.6

P

The argument of the trigonometric functions in (7.5) and (7.6) represents the
relative phase of the interacting triad m, p-m, and p, the so-called biphase of
the frequency-pair (m, p-m) (see chapter 3, equation 3.11).

It is useful to compare the interaction term in the case of a discrete energy
spectrum and a continuous energy density spectrum. Equation (7.5) can be
formulated for the continuous case (instead of the discrete one as used above)
by introducing the continuous amplitude spectrum a(f) such that a(f) &f = a,
where f=f, and Af is the frequency bandwidth. The evolution equation for the
continuous amplitude spectrum a(f) becomes

d

a - .
dif) g, =~ A m;, Rppmy A0, sin,+ 8, ,=9,) (77
Note that the right-hand-side is the discretized representation of a convolution
integral over the continuous spectrum. The spectral values of the amplitudes are
independent of the choice of the frequency bandwidth Af, unlike the discrete
case (7.5).

Comparison between the interaction term in both cases indicates the following.
In the discrete case, decreasing the frequency bandwidth results in an inversely
proportional decrease of amplitudes but also in a proportional increase of the
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number of interactions in which a discrete component p participates. Thus the
spectral evolution (change in the amplitude 4,) is independent of the
discretization for infinitesimal value of Af. In the continuous case, although the
spectral densities are independent of discretization, the number of terms in the
discrete sum in equation (7.7) increases by decreasing the frequency bandwidth,
but this is balanced by the factor Af ensuring that the spectral evolution is
independent of the discretization, as it should.

7.3 Evolution equation for the spectral energy

To derive evolution equations for the energy spectrum from (7.3), the relation
between the complex amplitude C, and the energy density spectrum E(f) should
be given. The mean square sea surface elevation (or variance) can be expressed
in terms of Fourier amplitudes as

oo oo

<> =¥ UG = X 2g) @8

p=-= p=l

where <.> is the expected value, or average, operator. In terms of the
continuous energy spectrum E(f), the surface elevation variance is given by

(=]

<> = TE(f)df = 21 E(f) df (7.9)

The relation between the complex amplitude and the energy density spectrum
can be found from (7.8) and (7.9)

Ef)l, af = 1C 17, pil-o,0]  (1.10)

or

ED|p A = 2]C 7, p>0 (7.11)
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The evolution equation of the discrete spectral energy E,= < CPCP* > can be
obtained as follows. Multiplying equation (7.3) with the conjugate amplitude
C,’, the conjugate of equation (7.3) with the amplitude C,, and adding the
former to the latter, gives

m"p-m~P

d * . - * * *
(GG = _lm;m Ry CoConCy ~Cn CnCl T 12)
Using the fact that the second term between the brackets is the complex
conjugate of the first term, equation (7.12) becomes

d N - .

GG = 2m=z_ij(m‘P_m) Im[C,C,,C, ] (7.13)
The evolution equation of the energy spectrum can be obtained by taking the
statistical average of equation (7.13).

dE >

in which E,=< CpCf,> is the energy spectrum, and B, , ,= < Cme_mC;,> is the
bispectrum (described in detail in chapter 3). The right-hand-side represents the
average effect of triad wave interactions. Equation (7.14) can be rewritten to
separate the sum and difference triad interactions as follows:

dE Pl ) s )
_d;i’ = 2Y R, |B,,.,|sin@,,.,) - 4} R_|B, |sin(8,,) (7.15)
m=1 m=1

Here B is the biphase and R, and R._ are the interaction coefficients for the sum
and difference interaction respectively. The first sum in the right-hand-side
represents the triad sum interactions, the second the difference interactions.



168 Chapter 7

7.4 Evolution equation for the bispectrum

This section deals with a closure hypothesis for the evolution of the bispectrum,
which is needed for the integration of (7.15). The approach is aimed at a
computationally efficient formulation. This is achieved by parametrizing the
complete expressions. This refers both to a lumped representation of the
theoretical energy exchange due to triad interactions (as opposed to a frequency-
distributed function) and to a parametrization of biphases based on observations.

An evolution equation for the bispectrum B, ;= < C,,CqCP*> , where p=n-gq,
can be obtained as follows.

*

dc dcC dacC
4p —<cccir s < C, —>+<C,cr > (1.16)

dx ™ "4 dx " dx 7 dx
Substitution of equation (7.3) for dC/dx in equation (7.16) yields the following
evolution equation for the bispectrum due to quadratic couplings

d .
—B = -k -k )B
dx ™4 l(k n k) ng (7.17)

i E [ (m.,p-m) n 4,-p R(m,q—m) Tn,—p,q - R(m,n—m) Tq,—p,n ]
Here 7, , ,=< C,,CqC,,,*Cp_;, >, the fourth-order average amplitude product or
the so-called trispectrum. The zero-fourth-order-cumulants hypothesis permits
the fourth-order averages to be expressed in terms of second-order averages,
retaining only products of terms with opposite-signed phases. Since the
subscripts p, n, and q denote dummy variables of summation, they can be
interchanged and after some algebraic manipulations and simplifications we get

9B = i(k—k, -k )B, +2iR N (7.18)

dx mp-m mp-m (mp-m) " p.mp-m

where
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N,

vmn = EnE,~E,E,~EE, (7.19)
To determine the bispectrum, we need to spatially integrate equation (7.18).
The procedure here is similar to the one used in the derivation of the Zakharov
equation, presented in chapter 5. We assume that the third-order average is
initially zero and we negelct the space dependence of E,, i.e., set the second
term on the right-hand-side equal to constant. Integrating (7.18) from O to x, we
then obtain

v [l b, 0 -1
mp-m (m,p-m) * " p,m,p-m ;
v “itk, K, k)

(7.20)

This expression for the bispectrum is similar to that given in chapter 5 by
equation (5.42), except that the present expression is obtained for the spatially
varying amplitudes rather than the temporally varying amplitudes. The term
between brackets contains two Kinds of contributions. First a fast oscillating
function; its contribution vanishes after summing over the spectrum in (7.15)
due the phase-mixing effect. Second, a term representing a steady contribution.
Thus after neglecting the contribution of the fast oscillating function the
evolution equation of the discrete spectral emergy E, can be obtained by
substituting the absolute value of the bispectrum in (7.15):

p-1 R 2
=4 2 T p mopom sm(Bm,p_m) .
ooF (7.21)
o R 2 )
_8; T k ]\{Mm,m,psm(ﬁm,p)

‘p+m

For application in the case of a continuous energy density spectrum E(f), the
discrete energy E, in (7.21) can be replaced by E(f)Af. The evolution equation
of spectral energy density becomes
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dE(f) =4§( Af

| — =2 IRIN sin(8, )
I, 7 - +“Vp,m,p-m m,p-m
dx forms kp k,, kp_m

(7.22)

w [
y Af 2 % ,
. ———— |RIN sin
m=1 km+p - km _kp ] pm,m,p (Bm,p)

Here Nimn» has the same form as in (7.19) except that it is expressed in terms
of the energy density E(f).

To reduce the computational effort we introduce an approximation which
consists of lumping the contributions to the sums in the right-hand-side of
(7.22). Both sums are the discrete representation of a convolution integral over
the spectrum, i.e., §...df = Y ... Af, in which ... is the integrand and Afis
an arbitrary (infinitesimal) discretization value. This interaction integral (or
sum) is approximated by replacing it with the product of a representative value
of the integrand, for which we take the value corresponding to the self-
interactions (m=p/2 in the first summation and m=p in the second summation),
and an effective interaction bandwidth 8f. This gives

dE(f)

| = 4[—— K2k /2 o2 Ny o o SIB, ) o)
pI2
(7.23)
2p PP Sm(ﬂp,p)

We now assume that the effective interaction bandwidth 6f and the wavenumber
mismatch in (7.23) scale with f, and k, respectively, or that the ratio between
brackets scales with the phase speed ¢,, and obtain

dE(

dx lff B ac R Smpr/Zpﬂl [E 02:’2) 2EO;)E(];/2)]

-2ac,Rsin|B, | [E(f)-2E(f,)E(f)]

in which « is a tuning parameter.

(7.24)
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For application in an energy balance equation, the spatial variation of the
energy flux ¢, (HE (f) due to triad interactions, the so-called triad source term S,,,
is needed, which can be obtained by multiplying (7.24) with the corresponding
group velocity.

The expression (7.24) for the evolution of the spectral energy density due to the
self interaction has two contributions. The first represents a positive
contribution of the self interaction at frequency f,,, (contributing to E(f,)). The
second represents a negative contribution of the self interaction at frequency f,
(taking away from E(f,)). Notice that the positive contribution to E(f,) equals
one-half the negative one from E(f,,). This fact can be used to reduce the
computations. Thus the net source term due to triad interactions can be
expressed as follows

Sml(J;) = St:ll(‘];,)+ r;u(fp)
Sulfy) = @ ¢, €y Ry sin | 8,0 | [E°(£,) ~2E(f)E(f,p)] (725

Su(fy) = =28u(fy)

The biphase 8 is given by equation (3.19) in terms of Ursell number. The
Ursell number is computed according to (3.18), in which the mean wave period
T,, is used to allow for the influence of harmonic generation. The interaction
coefficient R is taken from the evolution equation of Boussinesq model (chapter
4). For the self interaction it can be expressed as

2 2
R _ kp/Z(gh +2Cp/2) (726)

p/2,pl2 2 2
k,h (gh +1_25gh3kp —%wplﬂ)

Note that S,;, represents the positive contribution to the first harmonic, and thus
it should not be allowed to be negative. Negative values for S, are set to zero.
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This closes the formulation for the evolution of the energy density due to triad
interactions. The expression given by (7.25) is hereafter referred to as the
Lumped Triad Approximation (LTA). It has the advantage of considerably
reducing the computational effort needed to simulate the generation of high-
frequency energy in energy-based wave models compared with the complete
expression.

7.5 Model to data comparisons
7.5.1 Evolution model

Assessment of the triad parametrization presented in this chapter requires
verification with observations. Various observations that manifest harmonic
generation have been used throughout this study and will be used here to verify
the present triad parametrization.

For numerical simulation of the experiments, we need to develop a spatial
evolution model for the energy spectrum with a source/sink term representing
the effect of triad wave interactions. Since the experiments used here are for a
unidirectional wavefield, a one-dimensional evolution model is required for the
simulations.

For one-dimensional propagation in x-direction and steady state solution (-
independent), the simplified energy balance equation is

i[c HEN]I=S (7.27)
ox ¢

Here E(f) is the frequency energy density, ¢, is the linear group velocity of
frequency f and S is the net source/sink term representing the total effect of
generation, dissipation and nonlinear cross-spectral energy transfers.
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To examine the validity of the triad parametrization, numerical simulations have
been performed for the evolution of the energy spectrum in shallow water. The
LTA algorithm (7.25) has been implemented as a source term in the energy
balance equation (7.27) to simulate the effect of triad wave interactions. A
fourth-order Runge Kutta method is used to numerically integrate the energy
balance equation.

7.5.2 Numerical simulations and comparisons

Numerical simulations for the evolution of the energy spectrum in shallow water
have been carried out for different bottom topographies. The resuits of the LTA
model have been compared against laboratory observations.

Simulations over a submerged bar

Measurements of Beji and Battjes (1993), already used in chapters 3 and 4, are
used here to verify the LTA model for propagation of nonbreaking waves over
a submerged bar. The still-water depth is 0.10 m over the bar crest and 0.40
m on either side of it. The upwave and downwave bottom slopes are 1:20 and
1:10 respectively. At the upwave boundary, a narrow-banded spectrum is used
with peak frequency f,=0.5 Hz and significant wave height H;=0.020 m.
Comparisons between the measured spectra and those computed by the LTA
model! are given in Fig. 7.1. The computations are performed using different
values of the tuning parameter . The results show energy transfers from the
primary spectral peak into the harmonics. Results with o=1 are in reasonable
agreement with the observed spectra.
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Figure 7.1 Energy spectra for waves propagating over a bar; experiments
(solid lines) and LTA model: «=0.25 (long-dashed lines); «=0.50
(short-dashed lines); «=1.00 (dot-dashed lines).
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Simulations over a beach profile

The large scale laboratory measurements reported by Arcilla et al. (1994) for
random wave propagation over a barred beach (described in detail in chapter
3) are used to verify the LTA model for breaking waves. Here the effects of
wave breaking are included using the spectral energy source term described in
chapter 4 and given by equation (4.45).

At the upwave boundary, a narrow-banded spectrum is used with peak
frequency f,=0.125 Hz and significant wave height H;=0.58 m. The bottom
profile and measurement locations are indicated in Fig. 3.1 (chapter 3).

Comparisons between the observed spectra and those computed by the LTA
model are given in Fig. 7.2. The results show that the LTA is capable of
transferring energy from the primary spectral peak into the harmonics. The
energy dissipation due to wave breaking is well simulated.

The numerical simulations were done on a 486-DX?2 personal computer with 66
MHz processor. In the numerical discretization, the frequency resolution is 0.01
Hz (60 frequencies in the range 0.01-0.60 Hz), and the spatial resolution is 0.5
m (269 steps in the range 20-154 m). The CPU time required for the complete
simulation (over the bottom profile) of a single case (fixed «) using the LTA
model is 13 s. However, using the complete deterministic spectral Boussinesq
model given in chapter 4, the calculation of the energy spectrum from an
average over 20 realizations with different initial sets of random phases takes
about 2400 s.
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Simulations over a horizontal bottom

The long-term evolution of the wave spectrum in shallow water, computed with
the LTA model, is investigated here. To this end, the long-distance propagation
of random waves is computed over a horizontal bottom. A narrowband
spectrum with peak frequency f,=0.5 Hz and significant wave height H.=0.02
m is used as initial value. A constant water depth of 0.10 m is used in the
simulation. The computation is carried out for nearly 10 wavelengths (20 m).
The tuning parameter « was set to 1. The computed spectra with the LTA are
shown in Fig. 7.3.

Initially the results of the LTA model show energy transfers from the primary
spectral peak into the first harmonics. The energy levels at the second peak
increase up to a distance of about two wavelengths (station 3). Farther
downwave the spectra do not evolve further. This implies that the LTA model
has a self-stabilizing feature, which is considered a useful property in
applications because it implies a certain robustness of the formulation.
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7.6 Summary and conclusions

A parametrized approach to model the phase-average effect of triad wave
interactions is presented. A spectral Boussinesq model is used to derive an
energy formulation representing triad wave interactions in random waves,
supplemented with an empirical parametrization for the biphase evolution and
a lumped presentation of the interaction integral, in which the values of the
integrand are scaled with those of the self-interactions. This Lumpe Triad
Approximation (LTA) model is implemented in a one-dimensional energy
balance equation to compute the evolution of the energy spectrum in shallow
water. The model is computationally very efficient compared to deterministic
models for harmonic generation.

Despite the crudeness of the approximations, the model results are encouraging
compared with observations. Numerical simulations for nonlinear shoaling of
random waves with and without breaking have shown the ability of the LTA
model to simulate the effect of triad wave interactions and the consequent
energy transfers to higher harmonics. Additional numerical simulation for long-
distance propagation of random waves over a horizontal bottom has shown that
the LTA model has a self-stabilizing feature.

The applicability of the LTA model in wind wave models for coastal regions
needs further investigation through comparisons with field observations.
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Chapter 8

8. Conclusions and recommendations
8.1 General

This study was undertaken with the aim of increasing the knowledge of the
nonlinear dynamics in the transformation of wave spectra in the shallow
nearshore region, and developing modeling capabilities for these processes.

Observations of shoaling wavefields indicate that waves evolve from a slightly
peaked, nearly sinusoidal shape in deep water to a shape characterized by sharp
crests, flat troughs and relatively steep shoreward faces. These profile
distortions, that occur just before wave breaking, are typical manifestation of
the nonlinear effects in the nearshore region. These nonlinear effects together
with dissipation of wave energy by breaking represent the dominant physical
mechanisms in the evolution of waves in the nearshore. The influence of these
transformations on the wave spectrum is considered in this study from both
physical and modeling point of view.

Observations of shallow-water waves have been extensively analyzed using
bispectral analyses. It has long been established that the bispectrum can be used
to examine nonlinearity in shoaling waves. Nonlinear couplings between
spectral wave components have been investigated in shoaling breaking waves
and in waves passing over a shallow bar.

In the present study, nonlinear shallow-water waves are modeled using two
spectral approaches, namely a deterministic, phase-resolving approach and a
statistical, phase-averaged approach. In the phase resolving approach,
Boussinesq equations are used to establish evolution equations for the wave
amplitudes and phases simulating harmonic generation. For computational
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efficiency in case of random wave propagation in extensive areas, the phase-
averaged approach is preferred, in which the average effect of triad wave
interactions is modeled using a statistical description.

The main conclusions of this study are summarized below. Distinctions are
made between various approaches used during the course of this study.
Suggestions for future research are finally given.

8.2 Bispectral analysis

Bispectral analysis is used to elucidate aspects of nonlinear dynamics of
shallow-water waves. Analyses of laboratory observations of nonlinear shoaling
and breaking waves over a beach profile as well as over a shallow bar have
yielded the following conclusions:

- Harmonic generation in shallow water is ascribed to nonlinear triad wave
interactions. The generation of the second spectral peak results from the sum
interactions between pairs of waves at the primary spectral peak. On the other
hand the generation of the low-frequency waves is due to the difference
interactions between pairs of waves at the primary spectral peak.

- Wave breaking tends to weaken the strength of the nonlinear couplings
between various wave components. It is found that the intensity of the bispectral
levels are reduced in regions of strong wave breaking as well as the skewness
and asymmetry values.

- In the initial shoaling region, weak nonlinearity leads to increase in the
skewness-values only but not in those of the asymmetry, whereas strong
nonlinearity in the region just before wave breaking leads to a significant
increase in the asymmetry-values.

- The biphase evolution in shallow water can be crudely parametrized in terms
of Ursell number. A simple algebraic relation is formulated, expressing a
gradual variation of zero biphase for Ur<0.1 (deep water) to a limit value of -
7/2 in very shallow water (Ur ~ 10)

- Nonlinear couplings induced by a bar region in a random wavefield vanish in
the deepening region beyond the bar due to decreasing nonlinearity. There is
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no memory of phase locks which existed over the bar. The wavefield on the
downwave side is statistically homogeneous and can be fully described by the
energy density spectrum, without the need for additional, site-dependent phase
information.

Standard models for forecasting or hindcasting of random waves are based on
phase-averaged energy formulations. In principle a nonlinear phase-resolving
(Boussinesq) model can be used locally, e.g. in a bar region, the results of
which can be phase-averaged afterwards to estimate energy spectra with which
the computations can proceed using a phase-averaged (energy balance) model.
The preceding result imply that these models are suitable also on the downwave
side of a shallow (bar) region with significant harmonic generation.

8.3 Deterministic modeling of nonlinear shallow-water waves

Deterministic evolution equations for the slowly varying complex Fourier
amplitudes, based on a Boussinesq model with improved dispersion
characteristics, are used to describe the evolution of nonlinear shallow-water
waves. The Boussinesq evolution equations are extended into the surf zone by
incorporating the effect of energy dissipation due to depth induced wave
breaking. The model is validated using laboratory observations of nonlinear
shoaling and breaking waves. The following conclusions can be drawn:

- The Boussinesq evolution equations with improved dispersion characteristics
are able to describe harmonic generation in shallow-water waves. The phase
mismatch between spectral wave components is of utmost importance for the
description of this phenomenon.

- The model predicts nonlinear correction to the phase speeds of various wave
components due to nonlinear interactions, leading to virtually nondispersive
propagation in shallow water despite the presence of (weak) frequency
dispersion.

- Energy dissipation due to depth-induced wave breaking is formulated in a
spectral form, both for energy-density models and complex amplitude models,
based on the total rate of energy dissipation by breaking. Based on previous
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observations, the spectral dissipation term is chosen such that it reduces the
total (spectrally integrated) energy without affecting the spectral shape.

- The Boussinesq evolution equations for random breaking waves have yielded
realistic predictions of the spectral evolution in the shoaling region and inside
the surf zone. This validation supports previous observational results in which
wave breaking dissipation appeared to be proportional to the spectral energy
level, without other dependence on the frequency.

- The model results are also compared to measured surface elevation for
breaking waves. The model is found to yield realistic predictions of the wave
profile in the shoaling region and the outer surf zone. The model-data
comparisons do not support the need of a phase shift induced by breaking.

- The nonlinearly generated low-frequency waves are significantly damped in
the surf zone. The model proposed here for the higher-frequency range seems
to predict the low-frequency energy reasonably well in comparison with
experimental results, but that may be fortuitous. This problem deserves further
study.

8.4 Statistical modeling of nonlinear shallow-water waves

Two approaches have been used in this study to model the average effect of
triad wave interactions. The first approach is based on the Zakharov kinetic
equation for resonant triad interactions, supplemented with a modification to the
frequency mismatch term (Holloway, 1982; 1986). A narrow frequency filter
is used to allow for off-resonant energetic triad interactions. In Holloway
(1982), the filter bandwidth is taken as a prognostic variable. Here, as
suggested by Polnikov (1995), we take it as a constant to be determined
empirically.

The interaction integral is calculated to examine the nonlinear rate (NLR) of
energy transfers in a Jonswap-type spectrum. The following conclusions can be
drawn:

- The nonlinear rate of transfer (NLR) has the property of transferring energy
from the primary spectral region toward the higher harmonics.
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- The magnitude of NLR increases by decreasing the relative depth k2 and
increasing the value of the filter bandwidth €.

- In case of a directionally bimodal spectrum, the NLR results in secondary
peaks that are directionally aligned with the primary peaks due to colinear
interactions. The NLR does not show the expected peak at the vector sum of
the primary peaks that are observed experimentally (Nwogu, 1994).

The interaction integral has been cast in an energy source/sink term and .
implemented in the energy balance equation that describes the evolution of a
unidirectional energy density spectrum in shoaling regions. The evolution model
is verified using observations of waves propagating over a shallow bar as well
as over a beach profile. The following conclusions can be drawn:

- The intensity of energy transfers and the consequent generation of higher
harmonics are dependent on the chosen value for the frequency broadening
parameter. A constant value for the frequency broadening parameter results in
unguaranteed spectral evolution.

- The model produces a second spectral peak in the frequency energy spectrum
at frequencies less than the first harmonic 2f, (the second spectral peak appears
at the first harmonic in wavenumber spectrum). This is ascribed to the fact that
in the present formulation space periodicity is assumed in expanding the
canonical variables, resulting in a formulation in wavenumber space.

- The present formulation is not energy conserving, implying that the net
nonlinear rate of energy transfers (integrated over the spectrum) departs from
zero. Such effect is a problem in describing the evolution of the energy
spectrum.

- An ad hoc approach is suggested to remedy the present formulation to-ensure
energy conservation, in which the total energy loss or gain resulting from the
original NLR is used to proportionally rescale the negative or positive lobe
respectively of the transfer function.

The second approach to model the phase-averaged effect of triad wave
interactions is aimed at a computationally efficient algorithm. It is based on an
energy formulation derived from the Boussinesq evolution equations
supplemented with an empirical parametrization of the biphase evolution and a
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lumped presentation of the interaction integral, of which the intensities are
scaled with those of the self-interactions. Despite the crudeness of the
approximations, this Zumped Triad Approximation (LTA) model provides
realistic estimates for the spectral evolution in shallow water at low cost.

The LTA model can be applied to two-dimensional problems if the interactions
are assumed to be colinear, i.e., directionally decoupled. Colinear interactions
result in energy exchanges only among wave components that propagate in the
same direction. In this approximation, the nonlinear interactions among various
frequency components along each direction can be treated independently from
the other directional components.

8.5 Recommendations for future research
For future research the following suggestions are made:

- The applicability of the LTA in random-wave models for coastal regions needs
further investigation through comparisons with field observations. The present
formulation is essentially one-dimensional and can be applied to two-
dimensional problem accounting only for the colinear interactions. In principle
the parametrization of the biphase can be used with two-dimensional
deterministic evolution equations to obtain a two-dimensional energy
formulation for the effect of triad wave interactions.

- If the filter bandwidth, in the triad formulation based on the Zakharov kinetic
equation is taken as a constant the result is energy attenuation and unguaranteed
spectral evolution. We suggest to use the filter bandwidth Q as a prognostic
variable. Its value should be related to the rate of growth of individual
harmonics as in Holloway (1982).

- In deriving the triad formulation based on the Zakharov kinetic equation, the
waves are assumed to be periodic in space. This assumption is violated in the
nearshore, in which the waves are rapidly varying in space. A formulation in
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which time-periodicity is assumed rather than the spatial periodicity is desired.

- In describing the nonlinear triad wave interactions in shallow water, we
focussed on the transition from the deterministic description in terms of
amplitude and phase to a statistical one in terms of the energy density spectrum,
for reasons of computational efficiency. Future research is required to infer the
third-order nonlinear statistics of the wavefield such as the skewness and
asymmetry from the energy spectrum.
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