
Investigating Arbitrageurs and Oracle Manipulators in
Ethereum

Written by Under the supervision of

Kevin Tjiam Prof. Dr. Kaitai Liang
Technische Universiteit Delft Technische Universiteit Delft

k.c.tjiam@student.tudelft.nl kaitai.liang@tudelft.nl

Abstract
Smart contracts on Ethereum enable billions of
dollars of value to be transacted in a decentralised,
transparent and trustless environment. However,
adversaries lie await in the Dark Forest, waiting to
exploit any and all smart contract vulnerabilities
in order to extract profits from unsuspecting
victims in this new financial system. As the
blockchain space moves at breakneck pace,
exploits on smart contract vulnerabilities rapidly
evolve, and existing research quickly becomes
obsolete. It is imperative that smart contract
developers stay up to date on the current most
damaging vulnerabilities and countermeasures
to ensure the security of users’ funds, and to
collectively ensure the future of Ethereum as a
financial settlement layer. This research focuses
on two smart contract vulnerabilities: transaction-
ordering dependency and oracle manipulation.
Combined, these two vulnerabilities have been
exploited to extract hundreds of millions of dollars
from smart contracts in the past year (2020-2021).
For each vulnerability, this research presents:
(1) a literary survey from recent (as of 2021)
formal and informal sources; (2) a reproducible
experiment as code demonstrating the vulnerability
and, where applicable, countermeasures to mitigate
the vulnerability; and (3) analysis and discussion
of proposed countermeasures. To conclude,
strengths, weaknesses and trade-offs of these
countermeasures are summarised, presenting
direction for future research.

1 Introduction
Blockchain technology provides a way to record transactions
on a distributed ledger that is immutable, decentralised and
cryptographically secure. While initially popularised by
Bitcoin, the Ethereum network builds on this idea of an
immutable public ledger with the ability to execute arbitrary
programs in a decentralised manner, with results recorded on
the blockchain, allowing for more than just simple peer-to-
peer transactions to be made. As described in the original
Ethereum whitepaper by Vitalik Buterin [5], these programs

Figure 1: Graph of Total Value Locked (USD) in DeFi from June
2020 to May 2021. (from DeFi Pulse)

are called smart contracts and are the basis of the recently-
birthed DeFi1 movement. Figure 1 illustrates how DeFi
has shown explosive growth, achieving over $76B (USD) of
TVL2 as of May 2021 [9]. In the world of DeFi, code is
law. Instead of needing to trust opaque entities such as banks,
financial transactions are executed by smart contracts that
are deployed onto the blockchain. Anyone can review and
verify any smart contract deployed to the blockchain before
interacting with it, providing a decentralised, transparent and
trustless financial environment. As described in the paper
by Atzei, Bartoletti, and Cimoli [3], smart contracts are
written in a Turing-complete bytecode language called EVM3

bytecode. These contracts are executed in a decentralised
manner by miners, and the results of the execution are
recorded immutably on the blockchain after the network
reaches consensus. It is only through the successful
interaction of these complex mechanisms that the Ethereum
network is able to effectively maintain an immutable and
trustless ledger.

Through the deployment of and interaction with smart
contracts, DeFi replicates traditional financial instruments
such as exchanges, yield-bearing assets and derivatives
trading, while also introducing novel concepts such as
AMMs4[14] (this lifecycle is shown in figure 2). These
smart contracts range from very simple storage of data,

1Decentralised Finance
2Total value locked
3Ethereum Virtual Machine
4Automated Market Makers

1

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

https://defipulse.com

Figure 2: A diagram depicting the smart contract lifecycle that
powers DeFi.

to standardised contracts such as ERC-205 tokens, to very
complex smart contracts like Uniswap V3’s capital-efficient
AMM liquidity pools [26]. A vulnerability that prevents
the correct execution of smart contracts may allow a bad
actor to siphon value from legitimate users of the Ethereum
network. Therefore, it is imperative to thoroughly investigate
existing and potentially undiscovered vulnerabilities in order
to evaluate whether we have effective solutions or mitigations
in order to ensure the continued future of the Ethereum
network as a settlement layer for billions of dollars in
transacted value.

In-depth literature exists on the execution of smart
contracts across many platforms, including Ethereum,
Quorum and Hyperledger (as described by Hu et al.
[15]). Furthermore, there exist recent surveys, like the one
conducted by Khan and Namin [16], that catalogue known
vulnerabilities in Ethereum smart contracts, placing them
in useful categories such as inter-contractual vulnerabilities,
arithmetic bugs, and gas-related issues, among others. Khan
and Namin also include in their paper a brief section on
available tools that help to mitigate these vulnerabilities,
while other papers like the Sereum paper [21] propose
specific countermeasures that mitigate certain classes of
vulnerabilities (re-entrancy in Sereum’s case).

While these papers are comprehensive in the
vulnerabilities and countermeasures they cover, the
explanations can be somewhat obtuse, such as in [16].
Furthermore, the provided implementations of vulnerabilities
are limited to simplified, fictional code listings, which are
not conducive to future research. To address this issue,
this research contributes implementations of vulnerabilities
and countermeasures based on real smart contracts that are
actively used on the Ethereum Mainnet6, where applicable.

As the rather young blockchain space also innovates at
breakneck pace, some of these discussed vulnerabilities and
countermeasures may no longer apply, or have very recent
developments in improving said countermeasures.

This research investigates security and privacy

5ERC-20 Token Standard: https://ethereum.org/en/developers/
docs/standards/tokens/erc-20

6Ethereum’s production network is referred to as Mainnet; test
networks (testnets) are named Ropsten, Kovan, Rinkeby, and Goerli.

vulnerabilities in Ethereum-based smart contracts that
present the highest risks to the ecosystem, and presents
up-to-date analyses of these vulnerabilities and state-of-
the-art countermeasures in an easily digestible format.
More importantly, this research demonstrates each
vulnerability and its respective countermeasure(s) as a
reproducible experiment, defined as code, so that they
may be used as a starting point for future experiments.
This code can be found in the accompanying GitHub
repository located at https://github.com/kevincharm/
arbitrageurs-and-oracle-manipulators. The research
questions that will be answered in this paper are as
follows.

1. What smart contract vulnerabilities present the highest
risk to the Ethereum ecosystem, and what features
of these vulnerabilities make them pose a higher risk
compared to other vulnerabilities?

2. What are the security and privacy implications
of transaction-ordering dependency vulnerabilities in
Ethereum-based smart contracts?
(a) How can transaction-ordering dependency

vulnerabilities be mitigated? Are these
countermeasures effective, or can we do better?

3. What are the security implications of using oracles in
Ethereum-based smart contracts?
(a) How can smart contracts resist oracle

manipulation? Are these countermeasures
effective, or can we do better?

First, the methodology of how this research and its
experiments were carried out are explained in section
2. Then, section 3 enumerates the contributions of this
research. Following on, section 4 gives a detailed run-
through on the transaction-ordering dependency vulnerability
and its countermeasures, as well as a discussion on the
security and privacy implications. Similarly, section 5
describes in detail the oracle manipulation vulnerability and
its countermeasures. Finally, the results of this research are
discussed in section 6.

2 Methodology
The methodology used in carrying out this research is
described in this section. A literary survey of prominent
attack vectors that were concerned with privacy and security
vulnerabilities on Ethereum smart contracts was conducted,
focusing on more recently published materials. These
published materials included not only formal research papers,
but also many informal sources such as personal blogs and
twitter feeds of prominent Ethereum security researchers like
samczsun7 and Igor Igamberdiev8, and conversations that
took place in Telegram channels where well-known DeFi
developers congregate such as LobsterDAO9.

After a literary survey was carried out, two specific
vulnerabilities stood out as being current major problems

7samczsun: https://samczsun.com
8FrankResearcher: https://twitter.com/FrankResearcher
9LobsterDAO: https://t.co/75UmHVB8lz

2

https://ethereum.org/en/developers/docs/standards/tokens/erc-20
https://ethereum.org/en/developers/docs/standards/tokens/erc-20
https://github.com/kevincharm/arbitrageurs-and-oracle-manipulators
https://github.com/kevincharm/arbitrageurs-and-oracle-manipulators
https://samczsun.com
https://twitter.com/FrankResearcher
https://t.co/75UmHVB8lz

in the Ethereum ecosystem at the time of writing. These
two vulnerabilities were Transaction-Ordering Dependency
and Oracle Manipulation. Following more in-depth research
on these selected vulnerabilities and their countermeasures,
reproducible test cases were written, using real smart
contracts and a locally forked mainnet - made possible by
using a tool named Hardhat10. These test cases were written
to demonstrate some of the ways the selected vulnerabilities
have been exploited by adversaries. Countermeasures to
these exploits were also proposed as code, derived from
prior work, to exemplify potential solutions or mitigations to
the problems caused by these exploited vulnerabilities. An
evaluation and comparison of these selected vulnerabilities,
along with other vulnerabilities encountered in the literary
survey, their severities and categorisations have also been
included in the discussion of results. Additionally, potential
new solutions have been proposed as novel countermeasures
to each of the selected vulnerabilities.

3 Contribution
This research presents an up-to-date representation of the
major security and privacy-related vulnerabilities plaguing
Ethereum-based smart contracts in the year 2021. As the
DeFi space is still in its infancy, the most recent exploit
analyses are published through more informal sources and
this research aggregates these findings into reproducible
code accompanied with easily digestible discussions and
evaluations. The main contributions of this research are as
follows.

• Insight into the current hot topics in vulnerabilities is
given, to provide a base on which other researchers
can look into vulnerabilities and hopefully develop
better countermeasures to mitigate the effects of these
exploited vulnerabilities.

• Background knowledge is provided for the reader to
easily understand the complex concepts behind smart
contract execution and how vulnerabilities are exploited.

• Code is provided, using real smart contracts
on Ethereum mainnet, where appropriate and
applicable, as examples. All code referred to in
this research paper can be found in the GitHub
repository located at https://github.com/kevincharm/
arbitrageurs-and-oracle-manipulators.

• Vulnerabilities are evaluated and compared, looking at
their features, categorisation, severities.

• Known countermeasures, their advantages, limitations,
are discussed and illustrated, with real world examples.

4 Transaction-Ordering Dependence
Certain classes of smart contracts are prone to the transaction-
ordering dependency (henceforth abbreviated as TOD)
vulnerability. Namely, smart contracts powering AMM11

DEXes12 such as Uniswap fall under this classification.
10Hardhat: https://hardhat.org
11Automated Market Maker
12Decentralised Exchanges

Figure 3: The exponential growth of MEV revenue in 2020 (from
Paradigm Research) [18]

As described in the Uniswap V2 Core Whitepaper [1],
AMM smart contracts manage large amounts of token pairs
(so-called liquidity pools). Uniswap, being specifically a
CPMM13, enforces that the amount of tokens x and y in the
pool maintains a constant product k such that x · y = k. In
other words, the price of each token is determined by the ratio
of the tokens in the liquidity pool as users trade tokens into
and out of the pool, while the smart contract enforces that
the pool maintains the constant product k. It should be clear
then, in this AMM mechanism, the price of a token at any
given time depends on the order of buy and sell transactions.

The presence of this dependence on transaction-ordering
has led to the currently on-going MEV crisis, first coined by
Daian et al. [7] in their Flash Boys 2.0 paper, which gives
deep insight into the numerous arbitrage opportunities on
DEX smart contracts that have been employed by bots, and
how the high gas fees paid by these bots pose significant
consensus-layer security risks. MEV14 is the measure of
profit that is available to be exploited by miners, as they
ultimately control the inclusion, exclusion and ordering of
transactions within blocks that they mine, and is a direct
result of the transaction-ordering dependency vulnerability
in smart contracts [18]. Figure 3 shows the exponential
growth in MEV revenue since the dawn of DeFi summer up
until December 2020. Ergo, the exploitation of transaction-
ordering dependency vulnerabilities is a security risk in
Ethereum smart contracts as it can lead to honest users
suffering monetary losses, and more severely, consensus-
layer instability. It can also be considered a privacy risk, as
the public and transparent nature of the Ethereum mempool
is a feature of attacks exploiting this vulnerability.

4.1 Enter the Dark Forest
The Ethereum mempool is a Dark Forest, as Robinson
[20] puts it, referencing a sci-fi novel written by Cixin
Liu. The novel describes a Dark Forest as a dangerous
environment where detection by advanced predators means

13Constant Product Market Maker
14Miner/Maximum Extractable Value

3

https://github.com/kevincharm/arbitrageurs-and-oracle-manipulators
https://github.com/kevincharm/arbitrageurs-and-oracle-manipulators
https://hardhat.org

Select a tx Ti from the mempool

Try to decode Ti to known ABIs

Profitable?

Create sandwich txes Tf & Tb

Flashbots?

Bid PGA for Tf , broadcast Tb

Submit bundle {Tf , Ti, Tb}

No

No

Yes

Figure 4: Flowchart of an indefatigable specialised frontrunner.

a swift death. This term indeed accurately describes the
Ethereum mempool, where transactions are broadcasted
before they are picked up by miners for inclusion in a block.
Advanced predators in the form of frontrunning bots actively
scan the mempool for any transactions with value to extract.
The most common and low-level predators are specialised
frontrunners, which are designed to detect transactions from
specific types of contracts. Then there are generalised
frontrunners, described by Daian et al. [7] and dubbed a
”cosmic horror” by Robinson [20], which have the ability to
scan the mempool for any profitable transactions to frontrun
[17]. Flowcharts are presented in figures 4 and 5 depicting the
indefatigable processes of these specialised and generalised
frontrunners, respectively.

Frontrunning, as previously mentioned, is an exploit that
is a direct result of the TOD vulnerability. The term
frontrunning hails from the world of traditional finance,
referring to the practice of running to the front of the
queue after receiving information about a big incoming
trade [8]. This analogy quite elegantly explains how the
exploit works on the Ethereum network: as described by
the Dark Forest, adversarial agents monitor the mempool
for transactions with extractable value and then attempt to
broadcast malicious transactions that are guaranteed to be
included before the original transaction, effectively profiting
from honest users of the network. This research primarily
focuses on TOD vulnerabilities in DEX smart contracts, as
these are amongst the biggest targets of MEV. One metric
to support this claim is the fact that Uniswap is consistently
at the top of the gas guzzlers rankings (dApps that consume
the most gas) on Etherscan’s Ethereum Gas Tracker15 which
paints it as a hotspot for high volumes of extractable value.

15Ethereum Gas Tracker: https://etherscan.io/gastracker

Select a tx Ti from the mempool

Create and simulate T ′
i with origin address replaced

Profitable?

Frontrun Ti with T ′
i

Flashbots?

Bid PGA for T ′
i inclusion

Submit bundle T ′
i

No

No

Yes

Figure 5: Flowchart of the cosmic horror lurking in the Dark Forest;
the generalised frontrunner.

Adversarial agents employ numerous techniques to exploit
smart contracts that depend on transaction ordering, which
are discussed in the following subsections.

4.2 Sandwich Attack!
The simplest and most commonly encountered subtype of
specialised frontrunning is the sandwich attack. Sandwich
attacks take advantage of the high slippage tolerance required
in large trades on AMM DEXes, especially for token pairs
with low liquidity or high volatility. The amount of tokens
that will be swapped by the smart contract (and therefore,
the price of the token) depends on the token reserves in
the liquidity pool for the token pair. Thus, it follows that
there is room for the price to be manipulated before the
trade, to extract profit, as long as the trade ultimately falls
within the slippage tolerance. When a frontrunning bot sees a
valuable trade like the one previously described, it will insert
a buy order for the same tokens such that the price of the
token increases but still within the trade’s slippage tolerance,
followed by a sell order (for the same amount of tokens
bought) immediately after the user’s trade, thereby making
a profit. Shown in figure 6 is an annotated list of trades taken
from ChartEx16, a trading tool, exemplifying a sandwich
attack that drained 0.09 ETH of value from frontrunning a
buy order. Zhou et al. [27] found that a single arbitrageur
has the ability to extract several thousands of USD per day
from performing sandwich attacks on Uniswap. Furthermore,
they describe a more complex variant of the sandwich attack
that involves frontrunning to remove liquidity, then re-adding
liquidity and selling after the victim’s transaction.

16ChartEx: https://chartex.pro

4

https://etherscan.io/gastracker
https://chartex.pro

Figure 6: Sandwich attack that drained 0.09 ETH, shown on ChartEx

4.3 Guaranteeing Transaction Order

In order to guarantee a profit from a sandwich attack, there
are strict requirements about the transaction ordering within
the mined block. That is, the malicious buy order transaction
must be included immediately before the victim’s transaction,
followed by the malicious sell order transaction immediately
after. One way to achieve this is by taking advantage of how
certain Ethereum clients order transactions within a block. It
was found by Zhou et al. [27] that out of analysing 388 days
of trading on Uniswap, 79% of the transactions were ordered
by gas price, which means that this percentage of Ethereum
miners likely use the Geth17 client, which orders transactions
for inclusion by gas price. Users have the ability to specify
how much to pay the miner (called the gas price) to have a
transaction included in the block. The higher the gas price,
the more likely it is that the transaction will be included in
the next block. Listing 1 illustrates in code how an attacker
would frontrun the victim’s transaction by specifying a gas
price that is explicitly higher for the buy order, and a gas fee
that is equivalent to the victim’s transaction for the sell order,
as transactions with the same gas price are included by order
of timestamp.

This particular technique of guaranteeing transaction order,
as illustrated in figure 7, would create instant competition
between adversarial agents: as long as there is still a margin
of profit to be made, another frontrunning bot is likely to
spot the attack and attempt to frontrun the current attacker
using the same technique, kicking off a phenomenon called
a Priority Gas Auction (abbreviated as PGA) [18]. Besides
polluting the entire Ethereum network with high gas fees for
regular users, it is clear to see that this particular technique
is not the most effective technique to guarantee transaction
ordering.

17Go Ethereum (Ethereum client implementation): https://geth.
ethereum.org

Figure 7: A diagram illustrating how adversaries guarantee
transaction order by exploiting Geth’s default transaction ordering
algorithm.

Figure 8: A diagram illustrating how adversaries guarantee
transaction order by participating in sealed-bid auctions to compete
for block space.

1 const frontrunTx = await uniswapV2Router.populateTransaction.
swapExactETHForTokens(

2 /* ... */,

3 {

4 value: amountEthToSwap,

5 gasLimit: BigNumber.from(300000),

6 gasPrice: BigNumber.from(100).mul(BigNumber.from(10).pow
(9)).add(tx.gasPrice),

7 }

8)

9 const backrunTx = await uniswapV2Router.populateTransaction.
swapExactTokensForETH(

10 /* ... */,

11 {

12 gasLimit: BigNumber.from(300000),

13 gasPrice: tx.gasPrice,

14 }

15)

Listing 1: Example of a sandwich attack, written in Hardhat,
utilising gas prices to guarantee transaction ordering. The gas
prices used to frontrun and backrun can be found at lines 6 and 13,
respectively. The variable tx in this example represents the valuable
transation Tv to be exploited. (truncated, see GitHub repository for
full example)

Since the inception of Flashbots, a research organisation
formed with the purpose of solving the MEV Crisis,
adversarial agents can participate in sealed-bid auctions by
directly connecting to miners that support the Flashbots

5

https://geth.ethereum.org
https://geth.ethereum.org
https://github.com/kevincharm/arbitrageurs-and-oracle-manipulators

MEV-Geth upgraded Ethereum client [19]. With this
mechanism, adversarial agents are able to more effectively
achieve their desired transaction orderings, without
introducing network congestion by way of PGAs. This
more advanced technique is described in figure 8.

4.4 Countering Arbitrageurs
Two protocols have recently been released to eliminate the
dependency on transaction ordering in DEX smart contracts:
Archerswap and CowSwap. These protocols exemplify
the forefront of countermeasure techniques against TOD,
mainly in an attempt to minimise MEV. Archerswap allows
users to submit Uniswap and Sushiswap trades to the so-
called Archer Relay, which negotiates for transactions to
be included directly with co-operating miners, in order to
bypass the mempool [24]. This protocol provides complete
protection from sandwich attacks by putting regular users
on a level playing field with adversaries that utilise direct
miner connections. On the other hand, CowSwap uses Gnosis
Protocol’s batch auction mechanism to create a pseudo-order
book system before sourcing liquidity from conventional
DEXes. While CowSwap does not explicitly bypass the
mempool, the privacy of each trade is preserved as many
transactions are executed in batches by specialised third-
parties (called solvers) with a single clearing price and tight
slippage, effectively reducing sandwich attack risk.

This research proposes that the current best
countermeasures to mitigating TOD vulnerability in
Ethereum-based smart contracts are to adopt the following
software design paradigms.

• Leverage off-chain computation and transaction
batching to minimise any negative effects from being
frontrun by adversaries.

• Provide a service to bypass the mempool, to protect
smart contract users, by employing the same tactics that
adversarial agents use, such as using Flashbots’ sealed-
bid auction mechanism.

While employing these design paradigms mitigates the
effects of TOD, their adoption requires the evaluation of
some trade-offs. Primarily, computations that are moved
out of smart contracts onto off-chain services lose the
property of being secured by the Ethereum network, and
add a trust requirement to the party executing the off-chain
computations. Additionally, leveraging off-chain services
usually requires users to sign raw transactions, which is a bad
security practice [24]. Table 2 shows a comparison of these
design paradigms and their properties.

In addition to the two design paradigms previously
mentioned, with the recent growth of layer-2 protocols
on Ethereum, research has been started on commit-reveal
schemes on ZK-rollups and optimistic rollups. Shadrach
[23] suggests that it is possible to eliminate MEV through
a system wherein block producers (rollup operators) must
commit to including transactions in a known order prior to
them being revealed. Some trade-offs have been identified;
such as the ability for users to withhold revealing transactions
and delaying the entire system.

User submits tx hash

Operator sequences block and publishes commitment

Operator signs root hash (put up bond)

User reveals tx data

Verify order

Slash operator bond

Invalid

Figure 9: Commit-reveal scheme to prevent transaction-reordering
for optimistic rollups [23]

Protocol CowSwap Archerswap

Design paradigm Off-chain settlement, tx batching Bypass mempool
Security model Not trustless (off-chain) Not trustless (off-chain), requires signing raw tx

Transaction privacy Only under certain conditions Complete privacy
TOD vulnerability Almost complete protection Complete protection

Table 1: Comparison of protocols countering transaction-ordering
dependency in smart contracts

4.5 The Future of Frontrunning
Even with the dawn of Ethereum 2.0 and the network’s
transition from proof-of-work to proof-of-stake, transaction-
ordering dependency, and in turn MEV, will remain a
security and privacy vulnerability in Ethereum-based smart
contracts [11]. As Vitalik mentioned in this interview, the
ecosystem’s best countermeasure to mitigate the consensus-
layer instability and centralisation of block production
arising from TOD and MEV aligns with the Flashbots
project; which is to firewall the centralisation instead
of trying to eliminate it. With the Flashbots MEV-
Geth project, a marketplace is created between ”dumb”
miners (or validators in the case of proof-of-stake) and
so-called searchers who bundle transactions and bid for
block space. In this system, the consensus layer (miners
and validators) are separated from the arbitrageurs, which
prevents permissioned communication infrastructure between
miners and arbitrageurs. Despite this countermeasure
implemented by Flashbots and the upgrade to proof-of-stake
on Ethereum 2.0, it is believed that frontrunning and MEV
will still exist [10], and so the search must continue to find
better countermeasures against TOD.

5 Oracle Manipulation
In computer science, an oracle is a black box device that
provides a source of truth that can be used by other systems;
such as providing an expected result for a test case. In the
context of Ethereum smart contracts, oracles provide a source
of truth for information that is external to the calling contract.

Design Paradigm Off-chain computation & tx batching Bypass mempool Commit-reveal on rollups

Trade-offs Loses security of Ethereum network Requires miner co-operation Users can delay the system
Effectiveness vs TOD Minimises risk of MEV Complete solution Complete solution

Table 2: Comparison of proposed smart contract design paradigms
as countermeasures to TOD

6

https://swap.archerdao.io/#/swap
https://cowswap.exchange

For example, a smart contract that allows users to bet on the
next president of the United States would require an oracle
to confirm the outcome of the elections in order to settle
payments [13] - this is called an off-chain oracle. There also
exist on-chain oracles that provide information using data
only available on the blockchain.

As coined by Fridman and Nazarov [12], in the world of
DeFi, hybrid smart contracts replace traditional contractual
agreements found in the global financial system. This
new format of contractual agreements offers two powerful
advantages over the traditional contractual agreements:

• Transparency - As this new format of contracts are
deployed as publicly-viewable code on the blockchain,
anyone can inspect the inner workings of any financial
products that they may have assets in; and

• Control - Any participant in DeFi interacting with these
smart contracts are in control of their own assets,
unlike in the traditional financial system where assets
are controlled by banks, brokers, and other financial
institutions.

These hybrid smart contracts rely on oracles as bridges
between Ethereum and the real world, thus cementing oracles
as essential building blocks for smart contract development
in the DeFi landscape.

A common use case for an oracle is for a smart contract
to receive a price feed of some asset. The price of this
asset is then used in calculations by the smart contract for
trading, lending, or borrowing. However, getting this price
information accurately, consistently, and reliably is not as
easy as it may seem. Depending on the architecture of
the oracle system, and the way in which the smart contract
uses the price information, it is possible for adversaries
to manipulate this source of truth to maliciously redirect
funds to themselves. Due to the immutable nature of the
blockchain, loss of funds are irreversible [2].

5.1 Malicious Manipulation

The birth of DeFi in the Summer of 2020 saw a shift in
smart contract exploits from typical re-entrancy attacks to
more sophisticated attacks manipulating entire markets by
way of flash loans. By December 2020, the total amount
of funds irreversibly lost to these DeFi exploits amounted
to approximately $100M (USD), an increase of 100%, from
$50M from the beginning of the year [2]. It is clear that the
presence of oracle manipulation vulnerabilities in Ethereum-
based smart contracts poses a significant security risk to user
funds locked in smart contracts. This research addresses
this issue by empowering smart contract engineers with an
aggregation of countermeasures against oracle manipulation
attacks that have been demonstrably proven to be effective.

1 contract SimpleLendingProtocol is ILendingProtocol {

2 // ...

3 /**

4 * Calculates the mid price of ETH (in DAI) from calculating
the liquidity reserves.

5 * This is vulnerable to instantaneous price movements as we
rely solely on Uniswap

6 * as an on-chain price oracle.

7 */

8 function getEthPrice() public view returns (uint256) {

9 (uint112 daiReserve, uint112 ethReserve,) =

10 IUniswapV2Pair(daiEthPairAddress).getReserves();

11
12 return FixedPoint.fraction(daiReserve, ethReserve).

decode();

13 }

14 // ...

15 }

Listing 2: A smart contract that is vulnerable to an instantaneous
oracle manipulation attack. (truncated, see GitHub repository for
full example)

Listing 2 shows a concrete example of a (vulnerable)
lending protocol that uses a Uniswap liquidity pool as a
price oracle. It is clear to see in this example that the price
returned by the getEthPrice function is directly calculated
from the reserves in the liquidity pool. Thus, it follows that
an adversary would be able to manipulate the ETH price in
this smart contract by simply manipulating the reserves of
this particular Uniswap liquidity pool (i.e., the price oracle).
Listing 3 exemplifies this type of attack.

1 contract SimpleOracleAttack is Ownable {

2 // ...

3 function attack() external {

4 // 1. Swap DAI -> ETH (This increases the ETH price on
Uniswap)

5 // ...

6 uniV2Router.swapExactTokensForETH(daiToSell, /* ... */);

7 // 2. Deposit ETH (_NOT_ the ETH we just swapped) into
lending protocol

8 // ...

9 lendingProtocol.depositCollateral{value: ethDeposit}();

10 // 3. Borrow max DAI according to new mid-price that
this lending protocol thinks it’s at

11 uint256 newEthPrice =

12 (daiReserve + daiSold) / (wethReserve - wethBought);

13 uint256 maxBorrow = (100 * newEthPrice * ethDeposit) /
150;

14 lendingProtocol.borrowDai(maxBorrow);

15 // At this point, we have more DAI than we started with

16 // 4. Swap back ETH -> DAI

17 // ...

18 uniV2Router.swapExactETHForTokens{value: wethBought}(

19 (daiSold * 99) / 100, /* ... */);

20 // ...

21 }

22 }

Listing 3: A smart contract that manipulates the price oracle of a
lending protocol to borrow more assets than is possible. (truncated,
see GitHub repository for full example)

Indeed, oracle manipulation attacks take on this common
form, as similarly described by CertiK [6]. Figure 10
presents a diagram depicting the general process of an oracle
manipulation exploit. More explicitly, the features of this
common form of attack are enumerated as follows.

1. Find a smart contract that uses an on-chain price oracle

7

https://github.com/kevincharm/arbitrageurs-and-oracle-manipulators
https://github.com/kevincharm/arbitrageurs-and-oracle-manipulators

Figure 10: A diagram depicting the general process of an oracle
manipulation exploit; involving the adversary, and the smart contract
to be arbitraged which queries an oracle (Chainlink in this example).

(usually an AMM DEX like Uniswap or SushiSwap) as
the source of truth for the price of token A against token
B (or vice versa).

2. Utilise an undercollateralised flash loan to access a large
amount of token A.

3. Sell token A on the AMM DEX in exchange for token B.
This increases the reserves of token A while decreasing
the reserves of token B in the liquidity pair, thus
changing the price of token A against token B.

4. Drain the smart contract of its assets via a function that
relies on the manipulated price oracle. Usually, this is
a borrow function that now allows the adversary to take
out more of an asset than would normally be possible.

5. Repay the flash loan plus some interest, and pocket the
profit.

5.2 Resisting Oracle Manipulators
This research proposes that the best countermeasures
against oracle manipulation attacks in Ethereum-based smart
contracts are to adopt the following software paradigms when
consulting oracles.

• Use TWAPs (Time-weighted Average Price) when
consulting a price oracle. This simple, but effective,
algorithm is employed by traders in the traditional
financial markets and has been proven to provide
resistance against flash loans attacks. An example of
such an oracle is illustrated in listing 4.

• Consult M-of-N reporters within the oracle architecture,
selecting the best M responses out of N reporters.
Indeed, this is the approach taken by the MakerDAO
[25] and Chainlink [22] protocols (with some
variations).

These paradigms have been used successfully by major
protocols such as MakerDAO and Compound [22] to guard
against price oracle manipulation via flash loan attacks.
However, as with the countermeasures previously proposed in
section 4, they come with trade-offs. Using TWAPs is a very
specialised solution that works only in the case of price feed

oracles, and may prevent the smart contract from reacting
quickly to price changes during times of high volatility in
the market [22]. This countermeasure could theoretically be
generalised for other types of oracles that provide numerical
data. On the other hand, consulting M-of-N reporters can be
applied to many types of oracles, at the expense of delegating
trust to third parties. This countermeasure could be compared
to leveraging off-chain computations in section 4.4: they both
add a trust requirement to off-chain parties, which is counter
to the trustless property of the Ethereum network.

1 contract DaiWethTwapPriceOracle {

2 uint256 public constant TWAP_PERIOD = 4 hours;

3 struct Observation {

4 uint256 timestamp;

5 uint256 cumPrice0;

6 uint256 cumPrice1;

7 }

8 uint8 private constant OBS_LEN = 6;

9 Observation[] private observations;

10
11 function updateTwap() public {

12 // ...

13 uint256 newCumulativePrice1 =

14 latestObservation.cumPrice1 +

15 uint256(FixedPoint.fraction(daiReserve,
ethReserve).decode()) *

16 timeElapsed;

17 recordObservation(Observation(timestamp,
newCumulativePrice1));

18 }

19
20 function getEthTwap() external view returns (uint256) {

21 uint256 sumTwap = 0;

22 for (uint256 i = obs_head; i < (obs_head + OBS_LEN) - 1;
i++) {

23 // ...

24 sumTwap += avgPrice;

25 }

26 return sumTwap / (OBS_LEN - 1);

27 }

28 }

Listing 4: A price oracle smart contract that records observations
periodically and returns a time-weighted average price. The
updateTwap() method is invoked periodically by keepers to record
cumulative prices, and the getEthTwap() method returns the time-
weighted average price. (truncated, see GitHub repository for full
example)

5.3 Beyond Flash Loans
As the Ethereum network grows and smart contracts become
ever more reliant on oracles for different kinds of information,
new oracle manipulation attacks will undoubtedly emerge
in the future. Thus, in addition to the adoption of the
software paradigms presented in this research, functional
audits from reputable smart contract security specialists (such
as samczsun18, Trail of Bits19, and CertiK20, among others)
should be performed as part of the smart contract testing
process. Regular audits usually include coverage on typical
EVM pitfalls like re-entrancy and arithmetic issues which are
largely detectable through the use of static analysers, while

18https://samczsun.com
19https://www.trailofbits.com/
20https://www.certik.io

8

https://chain.link
https://github.com/kevincharm/arbitrageurs-and-oracle-manipulators

functional audits would include more thorough coverage on
smart contract logic; such as how usage of oracles could
potentially be manipulated.

6 Conclusion
During the course of this research, from literary surveys,
it was found that there exist many categories of smart
contract vulnerabilities [16]. Some vulnerabilities, such as
re-entrancy and unchecked returns, are preventable from
exploit through the use of static analysers. Other approaches
such as Sereum tackle re-entrancy by implementing a taint
engine in a modified geth client [21]. A comparison of
these vulnerabilities is shown in 3. This research focused
on more complex smart contract vulnerabilities that present
the highest risks to the Ethereum ecosystem as of 2021:
transaction-ordering dependency and oracle manipulation.
It was shown, through both literary surveys and through
evaluation of experiments that implemented attacks on
these vulnerabilities, that these vulnerabilities require the
establishment and adherence to software design paradigms
specific to Ethereum-based smart contracts. Future work
should focus on enhancing the software design paradigms
that have been presented as countermeasures in this research,
in particular to improving the trade-offs in trustlessness and
decentralisation.

7 Acknowledgments
The author would like to thank Prof. Dr. Kaitai Liang for
supervising this research and providing valuable feedback
and direction. The author would also like to thank Cheyenne
Slager, Sara Op den Orth, Cathrine Paulsen, and Rado
Stefanov for their numerous contributions including, but not
limited to; peer reviews, project organisation, and moral
support.

8 Responsible Research
8.1 Ethical Considerations for Releasing

Vulnerability Implementations
While it was one of our main goals to contribute realistic
implementations of smart contract vulnerability attacks, we
realise that having these implementations publicly available
might raise concerns about enabling new adversaries
to participate in these attacks. However, the attacks
implemented by this research show only the necessary code to
illustrate smart contract vulnerabilities locally. For example,
in a real-world frontrunning attack on Ethereum Mainnet, an
adversary would be competing with much more advanced
attackers, many with direct connections to miners - and so
would not be able to use the attack provided by this research
effectively without major modifications. We feel that this is a
good trade-off in order to provide a useful base for others to
develop more advanced countermeasures in the future.

8.2 Reproducibility of Results
According to research done by Baker [4], greater than
half of researchers surveyed have failed when attempting
to reproduce their own experiments, with an even greater

number of researchers failing when attempting to produce
other scientists’ experiments. This has been dubbed the
reproducibility crisis. Out of 1576 scientists surveyed in the
study, more than 40% said that missing methods and code
was a factor that contributed to irreproducible research.

As reproducibility was another of our main goals in
this research, a lot of thought has been taken into
robust experimental design, and best-practices have been
implemented from the software engineering discipline. These
practices include:

• Providing a thorough test suite with continuous
integration;

• Delivering the codebase through a distributed version
control system (Git);

• Using package managers and public package
repositories for all external dependencies;

• Utilising common tooling favoured by the Ethereum
community (Hardhat);

• Providing automated scripts and explicit documentation
on how to build and run the attacks and
countermeasures; and

• Including a Dockerfile definition and prebuilt Docker
images.

The adoption of these software engineering practices should
guarantee that any future researcher is able to reproduce
the experiments described in this research. Prebuilt Docker
images have also been provided as a last resort, in case the
tooling required to build the experiment becomes unavailable
in the future.

References
[1] Hayden Adams, Noah Zinsmeister, and Dan Robinson.

Uniswap v2 Core. 2020. URL: https : / / uniswap . org /
whitepaper.pdf.

[2] Zaryab Afser. How $100M Got Stolen From DeFi
in 2021: Price Oracle Manipulation And Flash Loan
Attacks Explained. URL: https : / / hackernoon . com /
how - dollar100m - got - stolen - from - defi - in - 2021 -
price - oracle - manipulation- and- flash- loan- attacks -
explained-3n6q33r1.

[3] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli.
“A survey of attacks on ethereum smart contracts
(sok)”. In: International conference on principles of
security and trust. Springer. 2017, pp. 164–186.

[4] Monya Baker. “Reproducibility crisis”. In: Nature
533.26 (2016), pp. 353–66.

[5] V Buterin. A Next Generation Smart Contract &
Decentralized Application Platform. 2009.

[6] CertiK. Understanding Security Risks in DeFi: CertiK
Foundation Blog. URL: https://www.certik.org/blog/
understanding-security-risks-in-defi.

[7] Philip Daian et al. “Flash boys 2.0: Frontrunning,
transaction reordering, and consensus instability
in decentralized exchanges”. In: arXiv preprint
arXiv:1904.05234 (2019).

9

https://uniswap.org/whitepaper.pdf
https://uniswap.org/whitepaper.pdf
https://hackernoon.com/how-dollar100m-got-stolen-from-defi-in-2021-price-oracle-manipulation-and-flash-loan-attacks-explained-3n6q33r1
https://hackernoon.com/how-dollar100m-got-stolen-from-defi-in-2021-price-oracle-manipulation-and-flash-loan-attacks-explained-3n6q33r1
https://hackernoon.com/how-dollar100m-got-stolen-from-defi-in-2021-price-oracle-manipulation-and-flash-loan-attacks-explained-3n6q33r1
https://hackernoon.com/how-dollar100m-got-stolen-from-defi-in-2021-price-oracle-manipulation-and-flash-loan-attacks-explained-3n6q33r1
https://www.certik.org/blog/understanding-security-risks-in-defi
https://www.certik.org/blog/understanding-security-risks-in-defi

Table 3: Comparison of vulnerabilities.

Vulnerability Threat level Possible implications Countermeasures

Arithmetic overflow EVM contract malfunction, loss of funds static analysis tools, geth modifications
Re-entrancy EVM contract malfunction, loss of funds static analysis tools
TOD consensus layer consensus-layer instability, loss of funds off-chain computation, bypass mempool
Oracle Manipulation application layer loss of funds TWAPs, M-of-N reporters

[8] Eric Decourcy. Protecting Against Front-Running and
Transaction Reordering. Sept. 2019. URL: https : / /
forum.openzeppelin.com/t/protecting-against- front-
running-and-transaction-reordering/1314.

[9] DeFi Pulse: The DeFi Leaderboard: Stats, Charts and
Guides. URL: https://defipulse.com.

[10] William Foxley. Yes, Front-Running Will Still Exist on
Ethereum 2.0. Mar. 2021. URL: https://www.coindesk.
com/front-running-will-still-exist-ethereum-2-0-mev.

[11] Lex Fridman and Vitalik Buterin. Vitalik Buterin:
Ethereum 2.0 — Lex Fridman Podcast #188. YouTube.
May 2021. URL: https://www.youtube.com/watch?v=
XW0QZmtbjvs.

[12] Lex Fridman and Sergey Nazarov. Sergey Nazarov:
Chainlink, Smart Contracts, and Oracle Networks —
Lex Fridman Podcast #181. YouTube. May 2021. URL:
https://www.youtube.com/watch?v=TPXTmVdlyoc.

[13] Pierre Grimaud et al. Oracles. Apr. 2021. URL: https:
//ethereum.org/en/developers/docs/oracles/.

[14] Hasu. Understanding Automated Market-Makers, Part
1: Price Impact. Apr. 2021. URL: https : / / research .
paradigm.xyz/amm-price-impact.

[15] Bin Hu et al. “A comprehensive survey on smart
contract construction and execution: paradigms, tools,
and systems”. In: Patterns 2.2 (2021), p. 100179.

[16] Zulfiqar Ali Khan and Akbar Siami Namin. “A Survey
on Vulnerabilities of Ethereum Smart Contracts”. In:
arXiv preprint arXiv:2012.14481 (2020).

[17] Mario. LobsterDAO. URL: https://t.me/lobsters chat/
238257.

[18] Charlie Noyes. MEV and Me. Feb. 2021. URL: https:
//research.paradigm.xyz/MEV.

[19] Alex Obadia. Flashbots: Frontrunning the MEV
Crisis. Nov. 2020. URL: https://medium.com/flashbots/
frontrunning-the-mev-crisis-40629a613752.

[20] Dan Robinson. Ethereum Is a Dark Forest. Feb. 2021.
URL: https://medium.com/@danrobinson/ethereum-
is-a-dark-forest-ecc5f0505dff.

[21] Michael Rodler et al. “Sereum: Protecting existing
smart contracts against re-entrancy attacks”. In: arXiv
preprint arXiv:1812.05934 (2018).

[22] samczsun. So you want to use a price oracle. Nov.
2020. URL: https://samczsun.com/so- you- want- to-
use-a-price-oracle/.

[23] Samuel Shadrach. Off-chain commitments for rollups.
Apr. 2021. URL: https : / / ethresear . ch / t / off - chain -
commitments-for-rollups/8993/4.

[24] Caleb Sheridan. Scared of MEV? We share our proof
of concept – Archer Swap – for @Uniswap and
@SushiSwap traders to avoid being front-run. Apr.
2021. URL: https://twitter.com/calebsheridan/status/
1384811452402442240?lang=en.

[25] MakerDAO Community Development Team. How it
Works. URL: https : / / community - development .
makerdao.com/en/learn/Oracles/how-it-works/.

[26] Uniswap Team. Introducing Uniswap V3. Mar. 2021.
URL: https://uniswap.org/blog/uniswap-v3.

[27] Liyi Zhou et al. “High-Frequency Trading on
Decentralized On-Chain Exchanges”. In: arXiv
preprint arXiv:2009.14021 (2020).

10

https://forum.openzeppelin.com/t/protecting-against-front-running-and-transaction-reordering/1314
https://forum.openzeppelin.com/t/protecting-against-front-running-and-transaction-reordering/1314
https://forum.openzeppelin.com/t/protecting-against-front-running-and-transaction-reordering/1314
https://defipulse.com
https://www.coindesk.com/front-running-will-still-exist-ethereum-2-0-mev
https://www.coindesk.com/front-running-will-still-exist-ethereum-2-0-mev
https://www.youtube.com/watch?v=XW0QZmtbjvs
https://www.youtube.com/watch?v=XW0QZmtbjvs
https://www.youtube.com/watch?v=TPXTmVdlyoc
https://ethereum.org/en/developers/docs/oracles/
https://ethereum.org/en/developers/docs/oracles/
https://research.paradigm.xyz/amm-price-impact
https://research.paradigm.xyz/amm-price-impact
https://t.me/lobsters_chat/238257
https://t.me/lobsters_chat/238257
https://research.paradigm.xyz/MEV
https://research.paradigm.xyz/MEV
https://medium.com/flashbots/frontrunning-the-mev-crisis-40629a613752
https://medium.com/flashbots/frontrunning-the-mev-crisis-40629a613752
https://medium.com/@danrobinson/ethereum-is-a-dark-forest-ecc5f0505dff
https://medium.com/@danrobinson/ethereum-is-a-dark-forest-ecc5f0505dff
https://samczsun.com/so-you-want-to-use-a-price-oracle/
https://samczsun.com/so-you-want-to-use-a-price-oracle/
https://ethresear.ch/t/off-chain-commitments-for-rollups/8993/4
https://ethresear.ch/t/off-chain-commitments-for-rollups/8993/4
https://twitter.com/calebsheridan/status/1384811452402442240?lang=en
https://twitter.com/calebsheridan/status/1384811452402442240?lang=en
https://community-development.makerdao.com/en/learn/Oracles/how-it-works/
https://community-development.makerdao.com/en/learn/Oracles/how-it-works/
https://uniswap.org/blog/uniswap-v3

	Introduction
	Methodology
	Contribution
	Transaction-Ordering Dependence
	Enter the Dark Forest
	Sandwich Attack!
	Guaranteeing Transaction Order
	Countering Arbitrageurs
	The Future of Frontrunning

	Oracle Manipulation
	Malicious Manipulation
	Resisting Oracle Manipulators
	Beyond Flash Loans

	Conclusion
	Acknowledgments
	Responsible Research
	Ethical Considerations for Releasing Vulnerability Implementations
	Reproducibility of Results

