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A k-truncated resolving set of a graph is a subset S ⊆ V of its vertex set such that the 
vector (dk(s, v))s∈S is distinct for each vertex v ∈ V where dk(x, y) = min{d(x, y), k + 1} is 
the graph distance truncated at k + 1. We think of elements of a k-truncated resolving set 
as sensors that can measure up to distance k. The k-truncated metric dimension (Tmdk) 
of a graph G is the minimum cardinality of a k-truncated resolving set of G . We give a 
sharp lower bound on Tmdk for any tree T in terms of its number of vertices |T | and the 
measuring radius k. Our result is that Tmdk(T ) ≥ |T | · 3/(k2 + 4k + 3 +1{k ≡ 1 (mod 3)}) +
ck , disproving earlier conjectures by Frongillo et al. that suspected |T |/(�k2/4� + 2k) + c′

k as 
general lower bound, where ck , c′

k are k-dependent constants. We provide a construction 
for trees with the largest number of vertices with a given Tmdk value. The proof that our 
optimal construction cannot be improved relies on edge-rewiring procedures of arbitrary 
(suboptimal) trees with arbitrary resolving sets, which reveal the structure of how small 
subsets of sensors measure and resolve certain areas in the tree that we call the attraction 
of those sensors. The notion of ‘attraction of sensors’ might be useful in other contexts 
beyond trees to solve related problems. We also provide an improved lower bound on 
Tmdk of arbitrary trees that takes into account the structural properties of the tree, in 
particular, the number and length of simple paths of degree-two vertices terminating in 
leaf vertices. This bound complements the result of the above-mentioned work of Frongillo 
et al., where only trees without degree-two vertices were considered, except the simple 
case of a single path.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

The metric dimension of graphs is a combinatorial notion first introduced by Slater [34] in 1975, and independently 
by Harary and Melter [24] one year later. It is the optimal value of a source detection problem described as follows. Let 
G = (V , E) be a simple, undirected graph, and let d denote the graph distance on its vertex set V , with the convention 
that d(x, x) = 0. We call a subset of vertices S ⊆ V resolving, if the vector of graph distances (d(s, v))s∈S is distinct for each 
vertex v ∈ V . In other words, we imagine that the vertices in S are sensors that can measure their distances from each 
vertex in the graph, and call S a resolving set if each vertex in V can be (uniquely) identified by the measurements of the 
sensors. Then the metric dimension of G is the smallest cardinality of such a resolving set. This model of source detection 
is motivated by the problem of finding the unknown source of an infection in a network, based on the measured infection 
time of a certain subset of individuals, as in [32,38].
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In this paper we consider a modified version of the above problem, where we replace the graph distance d above by 
its truncated form dk(·, ·) = min{d(·, ·), k + 1}, with k being an integer parameter. This corresponds to limiting the radius 
of measurement of each sensor vertex to k, i.e., not allowing the sensor to distinguish between vertices that are further 
away than k. A set S ⊆ V is called a k-truncated resolving set if S is a resolving set under the metric induced by dk(·, ·), 
and additionally for every v ∈ V there is some s ∈ S with dk(s, v) ≤ k. The smallest cardinality of such a set is the k-
truncated metric dimension of G , denoted by Tmdk(G). In this paper we study the truncated metric dimension of trees
(cycle-free connected graphs), see Section 2 below for the usual definition. Trees, regarding the (classic) metric dimension 
are analytically tractable, see the work of Slater [34] which introduced the notion of metric dimension, and studied it first 
on trees. It is thus a natural question whether trees are also analytically tractable regarding the truncated version of the 
metric dimension. Our main result is a worst-case lower bound on Tmdk(G) based on the number of vertices in G when G
is a tree.

Theorem 1.1 (Lower bound on the k-truncated metric dimension). Let T be any tree on n ≥ 1 vertices. Then for all k ≥ 1,

Tmdk(T ) ≥
⌈

3n + k2 + k + 1{k ≡ 1 (mod 3)}
k2 + 4k + 3 + 1{k ≡ 1 (mod 3)}

⌉
.

These bounds are sharp, in the sense that for any positive integers n and k there exists a tree T on n vertices, which 
satisfies the respective bound. We prove Theorem 1.1 by identifying the size (number of vertices) of the largest tree with a 
given Tmdk (see Proposition 2.4 below), which turns out to be �(mk2/3). We also provide a construction of trees of optimal 
size, and from our proof it follows that the optimal tree is non-unique. In fact, for each m, the number of largest-size (i.e., 
optimal) trees that can be resolved by m sensors is at least as large as the number of non-isomorphic unlabeled trees on m
vertices.

The largest part of our paper is devoted to the proof that no tree on n vertices can be measured by less sensors than 
the lower bound in Theorem 1.1. In principle, there could be two proof strategies to show such a lower bound. Either 
one ‘spares’ a sensor on any suboptimal tree, i.e., one shows that the tree can be resolved by fewer sensors if it does not 
follow the optimal construction. This strategy however, does not work, since it is not hard to construct suboptimal trees and 
resolving sets where one cannot spare a sensor: such an example is a star-graph (a central vertex connected to n − 1 leafs). 
The star-graph needs at least n − 2 sensors for all k and it is not hard to show that no sensor can be removed.

The second possible strategy to show that a given labeled tree is suboptimal is to keep the sensors in place and add 
a new vertex to the tree, while still ensuring that every vertex is uniquely resolved. We follow this latter proof strategy. 
We add a vertex via a series of ‘transformations’, which can be applied to any tree not following the optimal construction. 
These transformations all preserve Tmdk and do not decrease the number of vertices. In more detail: given a labeled tree 
with a resolving set that does not follow the optimal construction, we slightly modify the edge set by rewiring a few edges 
and possibly adding a few labeled vertices, and show that the obtained (possibly) larger tree is still measured by the same 
sensor vertices, which violates the assumption that the tree was largest possible. Since the optimal tree is non-unique, these 
transformations either do not change the number of vertices and result in an optimal construction that we describe, or else, 
when we could add a vertex, they result in a tree T ′ on a strictly larger vertex set with Tmdk(T ′) = m.

Some notions that we introduce during the proofs, especially what we call attraction of sensors, might be useful in other 
contexts as well, because they uncover the structure of the vertices measured by a subset of sensors and as a result they 
reveal where optimality may be violated.

Besides giving a worst-case lower bound on Tmdk(T ) in Theorem 1.1, we also provide a sharper lower bound for certain 
suboptimal trees, which takes into account the structural properties of the particular tree in question (see Theorem 2.9). 
This bound is obtained by providing a locally optimal placement of sensors around certain degree-two paths terminating 
in leaves of the tree, and then applying Theorem 1.1 for the rest of the graph. In comparison to [22], which identifies the 
k-truncated metric dimension of a certain subclass of trees without degree-two vertices, our lower bound builds on exactly 
these degree-two structures. While our lower bound might be suboptimal on most trees, there are trees (with leaf-paths) 
on which it provides sharp bounds, hence in some sense the bound cannot be improved, at least not in full generality.

1.1. Related work and open questions

Algorithmic aspects. The question of finding the metric dimension of graphs has been extensively studied from an algo-
rithmic point of view. The problem on general graphs is NP-hard [29], and can only be approximated up to a factor log n
[3,25]. For parameter values k ≥ 2, k-truncated metric dimension of general graphs is also an NP-hard problem [13,21]. 
For trees, on the other hand, [29] provides a simple linear-time algorithm for the computation of the metric dimension, 
writing it as the difference between the number of leaves and the number of vertices that have degree at least 3 and are 
the endpoints of at least one simple path in the tree (which we will call a leaf-path). This idea is closely related to our 
approach to the improved lower bound in Theorem 2.9. As for the k-truncated metric dimension for k = 1, known as the 
location-domination number, the early work of Slater [35,36] shows that the location-domination number can be computed 
in linear time on trees, and gives a lower bound on its value, which was later improved by [4], and further improved by 
[37]. We are unaware of such a linear-time algorithm for the k-truncated metric dimension on trees for general k ≥ 2.
2
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Graph theoretical aspects. Many aspects of the metric dimension have been studied from the graph theoretic point of view 
as well, including bounds in terms of the diameter of the graph [8,26], bounds for certain Cayley graphs [18], Cartesian 
products of graphs [7], and the metric dimension of infinite graphs [6], and wheel graphs [5,33].

Modifications of the metric dimension. We also mention a few results on some modified versions of the metric dimension 
problem. A more general version of the problem is the k-metric dimension, where every pair of vertices needs to be 
resolved by at least k sensors (and where this notation k is used differently from our paper), has been studied in [11,
12,14–16]. A further variant of this circle of problems is the fractional metric dimension, introduced in [10], which is the 
linear programming relaxation of the integer programming problem encoding the identification of the metric dimension of 
a graph. Further work on this concept includes [1,2,20,19].

Slightly less related to our work are the concepts of r-identifying codes and r-locating-dominating codes, where a sensor 
can measure up to distance r but cannot distinguish between vertices within this radius (in the case of the identifying code), 
except itself (in the case of r-locating-dominating codes). The authors of [9] provide the sizes of the optimal r-identifying 
codes of paths and cycles, which asymptotically coincide with the optimal size of a 1-identifying code, i.e., it has density 
1/2. Similar results for the r-locating-dominating code for cycles in [17] show that the optimal code in this case also has 
the same asymptotic density, 1/3, as in the r = 1 case. For other work on this topic, see the references within [9].

Applied motivation. The particular version of the model that we study in this paper, the truncated metric dimension, 
is inspired by the scenario where the sensors can only make noisy measurements in a source detection problem: the 
noise accumulates over distance, and above a certain threshold the measurements become unreliable, as in [32,38,31]. In 
particular, if a Gaussian noise with variance ε � 1 is added along each edge, then detecting the source of infection from any 
given source breaks down roughly at distance of order 1/ε. Hence, the metric dimension problem with noisy observations 
roughly corresponds to the truncated metric dimension problem with truncation radius around 1/ε (see reference [31]). 
Works where the k-truncated metric dimension has been introduced include [13,39,22] and [23], and for k = 1 the truncated 
metric dimension is equivalent to the locating-dominating code problem, introduced by Slater earlier in [36].

Open questions. Next, we mention questions that our paper leaves open. The question of (algorithmically) quickly finding 
an optimal arrangement of sensors stays open on trees for general k ≥ 2. Our proof of Theorem 2.9 gives partial answer by 
finding the optimal placement on certain leaf-paths, parts of the tree that are simple paths leading to a leaf vertex. For the 
rest of the tree, however, only the size-dependent lower bound in Theorem 1.1 is used.

For the probability community large random trees (of various distributions) are important for several reasons. Some of 
the most commonly used non-spatial, sparse (i.e., finite average degree) random graph models are locally tree-like, e.g. the 
Erdős–Rényi random graph, the configuration model, preferential attachment models, etc. Moreover, combinatorial problems 
on trees are often better understood. See e.g. the surveys of [28,27], where the authors establish law of large numbers 
for various combinatorial problems on classes of random tree models, including random binary search trees, m-ary search 
trees, preferential attachment trees and conditioned Galton–Watson trees. The optimal resolving set – for the classic metric 
dimension – of a tree is local in the following sense: whether a vertex is a sensor or not is entirely determined by the 
structure of the subtree of the vertex pointing away from the root. This then implies law of large numbers for the metric 
dimension of a large class of random trees [30], including the above-mentioned ones. We conjecture that the truncated 
metric dimension of a tree is also a local property, and expect law of large numbers to hold for at least the random trees 
treated in [28].

The rest of the paper is structured as follows. In Section 2 we state our results after providing the necessary notation 
and definitions, and give a short sketch of our proofs. In Section 3 we introduce further definitions and concepts that will 
be used throughout the paper. Sections 4, 5 and 6 contain the three transformations that form the three main steps of 
the proof of Theorem 1.1. In Section 7 we complete the proof of Theorem 1.1, while also giving a construction for trees of 
optimal size. Finally, in Section 8 we prove the structural lower bound, Theorem 2.9.

2. Main results

We will start by fixing the notation that we will use throughout the paper. For a set V let V (2) denote the 2-element 
subsets of V . A (simple, undirected) graph G is an ordered pair (V , E) where V is a set of vertices and E ⊆ V (2) is a set 
of edges. We say that e ∈ E connects its two vertices in the graph. We will sometimes write V (G) and E(G) for the vertex 
and edge sets, respectively, of a given graph G . Somewhat abusing the notation we will sometimes write v ∈ G instead of 
v ∈ V (G) for a vertex of G , as is standard. The size of a graph G , denoted by |G|, is the cardinality of its vertex set. A subgraph
of G is a pair (V ′, E ′) such that V ′ ⊆ V and E ′ ⊆ E ∩ V ′ (2) . A subgraph induced by V 1 ⊆ V in G is the pair (V 1, E1) where 
E1 = E ∩ V (2)

1 . A path is a graph P such that V (P ) = {vi}k+1
i=1 , for some k ≥ 1, and E(P ) = {{vi, vi+1}}k

i=1. We call v1, vk+1

the end vertices of the path. A cycle is a graph C such that V (C) = {vi}k
i=1, k ≥ 3, and E(C) = ∪k−1

i=1 {{vi, vi+1}} ∪ {{vk, v1}}. 
The length of a path P or a cycle C is the number of edges in it. A graph G is connected if for any pair u, v ∈ V (G) there 
is a path in G (as a subgraph) that contains both u and v . We call a graph a forest if it has no cycles in it, and we call 
a connected forest a tree. The degree of a vertex v , denoted by deg(v), is the number of edges containing v . A vertex of 
degree one is called a leaf. We call a path P a leaf-path in G if P is the induced subgraph of G on the vertices V (P ), and, 
with respect to G , one end vertex of P is a leaf, the other has degree at least 3, and all its other vertices have degree 2. The 
distance between two vertices u, v in G , denoted by dG (u, v), is the length of the shortest path between u and v in G , with 
3
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the convention that dG (u, u) = 0. Here we omit the subscript when the underlying graph is clear from the context. Finally, 
we denote by k ∧ l = min{k, l}, and dk(x, y) := d(x, y) ∧ (k + 1).

Next we define the main topic of this paper.

Definition 2.1. Let G = (V , E) be an arbitrary simple, undirected graph, and fix an integer threshold k ≥ 1. We say that a 
vertex s resolves (or equivalently, distinguishes) a pair of vertices x, y ∈ V if dk(s, x) �= dk(s, y). A k-truncated resolving set is 
a subset S of V such that for every pair of vertices x, y ∈ V there is some vertex s ∈ S such that s resolves x, y, and for 
every x ∈ V there is some s ∈ S such that dk(s, x) ≤ k. The k-truncated metric dimension of G , denoted by Tmdk(G), is the 
smallest integer m such that there exists a k-truncated resolving set S for G with |S| = m.

We call the elements of a k-truncated resolving set sensors. We say that a vertex x is measured by a sensor s if dk(s, x) ≤ k.
Our main result, Theorem 1.1, readily implies the result of Slater [35] about the 1-truncated metric dimension, which is 

identical to the locating-dominating number of the tree.

Corollary 2.2 (Lower bound on the locating-dominating number [35]). Let T be any tree on n vertices. Then

Tmd1(T ) ≥
⌈

n + 1

3

⌉
.

To prove Theorem 1.1 we will identify the largest trees with a given k-truncated metric dimension. To state that result 
we introduce some notation first.

Definition 2.3. Fix k ≥ 1. We denote the set of trees with k-truncated metric dimension m by Tm = Tm(k), and T �
m = T �

m(k)

denotes the set of trees with the largest possible size within Tm:

Tm := {T tree : Tmdk(T ) = m},
T �

m := {T � ∈ Tm : |T �| = max
T ∈Tm

(|T |)}.

We then identify the maximal size of a tree that can be measured by m sensors.

Proposition 2.4. For all k ≥ 1, and any T � ∈ T �
m ,

|T �| = m · k2 + 4k + 3 + 1{k ≡ 1 (mod 3)}
3

− k2 + k + 1{k ≡ 1 (mod 3)}
3

= (k + 1)m + (m − 1)(k2 + k + 1{k ≡ 1 (mod 3)})/3.

(1)

We give the proof of Proposition 2.4 in Section 7 after establishing preliminary results in Sections 3, 4, 5 and 6. The idea 
of the proof is the following. We start with a tree with a k-truncated resolving set S on it, such that |S| = m. We show that 
the edges of this tree can be rewired by a series of transformations that do not decrease the number of vertices, keep S a 
k-truncated resolving set, and result in a construction that can be easily optimized to give an element of T �

m . We discuss 
the three required transformations in Sections 4, 5 and 6, respectively.

Theorem 1.1 is then immediate from Proposition 2.4.

Proof of Theorem 1.1. Let T be a tree on n vertices for which Tmdk(T ) = m. Then, by Definition 2.3, we have that n ≤ |T �|
for any T � ∈ T �

m . Combining this with (1) of Proposition 2.4 and rearranging yields Theorem 1.1. �
We can contrast Theorem 1.1 and Proposition 2.4 to the results of Frongillo et al. [40] (updated recently by the authors 

[22]). The authors of that paper conjecture that the leading coefficient of m in Proposition 2.4 should be �k2/4�, while we 
find that it is, in fact, (k2 + 4k + 4)/3 when k ≡ 1 (mod 3) and (k2 + 4k + 3)/3 otherwise, which is higher. The underesti-
mation of the size of the optimal tree comes from assuming that the distance between two neighboring sensors in the tree 
is exactly k for all k, when in fact this is a parameter that can be optimized and is the nearest integer to (2k + 1)/3.

Remark 2.5. Recall from Definition 2.1 that we require for a k-truncated resolving set S that every vertex v ∈ V be measured 
by at least one sensor in S . We use this convention to make the presentation of our results slightly more convenient. 
Omitting this requirement would simply add one extra vertex to the optimally-sized trees in T �

m that is not measured by 
any sensor, and would change the bounds in Theorem 1.1 accordingly.
4
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Next, we give an improved structural lower bound on the truncated metric dimension of suboptimal trees as well. The 
idea is that having multiple leaf-paths emanating from a common vertex v is very costly in terms of how many sensors are 
needed to identify them. Since sensors that are not part of such leaf-paths can only measure such paths via v , they cannot 
distinguish vertices at equal distance from v located on two different leaf-paths. Thus, we can compute how many sensors 
such a system of leaf-paths minimally requires. For the ‘rest’ of the tree, we then essentially use the optimal bound that 
we developed in Theorem 1.1. Our lower bound is valid for any tree, but gives fairly sharp lower bounds only for trees that 
have relatively large number of leaf-paths. To be able to state the result, we start with some definitions.

Definition 2.6 (Leaf paths and support vertices). We will write Lv = {P(v)
j } for the collection of leaf-paths starting at a vertex 

v with deg v ≥ 3, and denote their number by Lv = |Lv |. The length (number of edges) of a leaf-path P(v)
j will be denoted 

by �(P(v)
j ) = �(v, j). Define F T = {v ∈ T : deg(v) ≥ 3, Lv ≥ 2} to be the set of support vertices of T .

Definition 2.7. Fix k ≥ 1. For an integer � ≥ 1, let q and r be the non-negative integers such that � = q(3k + 2) + r, and 
r ≤ 3k + 1. Define the upper and lower complexity, respectively, of a path of length � to be

c̄(�) := 2q + 1{r ≥ 1} + 1{r ≥ 2k + 2}, and

c(�) := 2q + 1{r ≥ k + 1} + 1{r ≥ 2k + 2}.

The next lemma identifies how many sensors a system of leaf-paths minimally requires. We place the lemma here since 
it might be useful also for algorithmic aspects. In the proof, below in Section 8, we also provide the location of the sensors 
mentioned in the lemma.

Lemma 2.8. If S is a k-truncated resolving set on T , and v ∈ F T , then all but at most one of the vertex sets V (P (v)
j ) \ {v} for P (v)

j ∈Lv

contain at least c̄(�(v, j)) sensors in S, while V (P �) \ {v} for the remaining path P � ∈Lv contains at least c(�(P �)) sensors in S.

To determine which path shall be the special path P � in Lemma 2.8, for a lower bound we subtract the difference 
between the upper and the lower complexity for each path P (v)

j (since this is the number of sensors ‘spared’ by choosing 
P (v)

j to be the special path P �) and maximize it over paths in Lv .

Then the minimal number of sensors that need to be placed on ∪ j≤Lv V (P (v)
j ) \ {v} for some v ∈ F T is at least

R(Lv) =
Lv∑

j=1

c̄(�(v, j)) − max
1≤ j≤Lv

{
c̄(�(v, j)) − c(�(v, j))

}
. (2)

As a combination of Theorem 1.1 and Lemma 2.8, and (2) we get the general lower bound on the k-truncated metric 
dimension of trees:

Theorem 2.9. Let T be a tree with n vertices and fix k ≥ 1. Then

Tmdk(T ) ≥
⌈

3n − 3
∑

v∈F T

∑Lv
j=1 �(v, j) + k2 + k + 1{k ≡ 1 (mod 3)}

k2 + 4k + 3 + 1{k ≡ 1 (mod 3)}

⌉
+

∑
v∈F T

R(Lv) − |F T |. (3)

Observe that the sum 
∑

v∈F T

∑Lv
j=1 �(v, j) is the total number of vertices that are on leaf-paths emanating from support 

vertices.
To obtain the structural lower bound in Theorem 2.9, we show that each system of leaf-paths connecting to the same 

support vertex needs at least as many sensors as in (2). Once these leaf-paths are resolved, the sensors on them can measure 
some vertices in the rest of the tree, and resolve vertices there, but they cannot measure further than their support vertex 
would, if it was a sensor. Combining this argument with the lower bound on the number of sensors on the rest of the tree 
from Theorem 1.1 allows us to find a lower bound: adding the number of sensors on leaf-paths to the number of sensors 
the skeleton would need if it was an optimal tree, and then finally subtracting the number of support vertices. We provide 
the proof in Section 8.

3. The attraction of sensors

Before the proofs we first introduce some further notions, that not only will be crucial in our proofs, but we believe they 
could be useful in other contexts as well. As it will become clear later, the construction of the optimal trees is centered 
around the paths between sensors and the structure on ‘how’ they measure vertices with respect to other sensors, that we 
call direct measuring, and a related notion of attraction of sensors below.
5
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Definition 3.1 (Paths). For a tree T = (V , E) and any pair of distinct vertices x, y ∈ V we denote the unique path in T
between x and y by PT (x, y), its vertex set by V (PT (x, y)), and its edge set by E(PT (x, y)). We will omit the subscripts 
when the underlying graph is clear from the context.

Definition 3.2 (Weak and strong sensor paths). Given a tree T = (V , E), a set of sensors S ⊆ V and a distinct pair s1, s2 ∈ S , 
we call PT (s1, s2) a sensor path if it does not contain any other sensors beside s1 and s2. PT (s1, s2) is called a strong sensor 
path if it is a sensor path and |E(PT (s1, s2))| ≤ k + 1. A sensor path that is not strong is called weak.

Definition 3.3 (Measuring and direct measuring). Given a tree T = (V , E) and a set of sensors S ⊆ V , we say that a sensor 
s measures a vertex x in T if dT (s, x) ≤ k. In this case we further say that s directly measures x, if it also holds that s′ /∈
V (PT (s, x)) for all s′ ∈ S \ {s}.

We will introduce a concept that we call minimally resolving that will be crucial in our proofs. To ease the reader into 
the fairly non-obvious definition, we start with a simpler definition that is more intuitive:

Definition 3.4 (Resolved within a subset of sensors). Let T = (V , E) be a tree with a k-truncated resolving set S . We say that a 
vertex x ∈ V \ S is resolved within the sensors S ′ = {s1, . . . , sr} ⊆ S in T if
(i) d(si, x) ≤ k for at least one i = 1, . . . , r,
(ii) there is no sensor in S \ S ′ that directly measures x,
(iii) for all y ∈ V for which (ii) holds, there is some si ∈ S ′ that resolves x and y.

Note that (ii) is equivalent to the following: every sensor s� in S \ S ′ either does not measure x or has d(s�, x) =
d(s�, si) + d(si, x) for some i ≤ r. Heuristically, x is resolved within S ′ if all sensors not in S ′ can only measure x via a path 
crossing some sensor in S ′ , and x is distinguished by S ′ from all other vertices having the same property. Observe that in 
(iii), the condition that (ii) holds implies that (i) also holds for y. Indeed, if (ii) holds for y but (i) does not, then either 
there is a sensor s� /∈ S ′ measuring y, such that d(s′, y) ≤ d(s�, y) ≤ k for some s′ ∈ S ′ by (ii), which is a contradiction, or y
cannot be measured by any sensor, and we assumed throughout the paper that we only consider trees where such a vertex 
is not present in T , a contradiction again.

Definition 3.5 (‘Resolved-within area’ of a set of sensors). Let T = (V , E) be a tree with a k-truncated resolving set S ⊆ V . The 
resolved-within area of a set of sensors S ′ ⊆ S is

MT (S ′) = {x ∈ V \ S : x is resolved within S ′}.

It is not hard to see that the ‘resolved-within’ area is monotone under containment, i.e., when B ⊂ S ′ , then MT (B) ⊆
MT (S ′), and if S is a k-truncated resolving set for T , then MT (S) = V \ S .

The next definition decomposes MT (S ′) into disjoint subsets: heuristically speaking, starting from the set of single sensors, 
and increasing the set-size gradually, for a vertex x it finds the minimal set of sensors needed that can distinguish x from 
all other vertices via direct measuring.

Definition 3.6 (Minimally resolving). Let T = (V , E) be a tree with a k-truncated resolving set S . A subset of sensors S ′ ⊆ S , 
S ′ = {s1, . . . , sr} is said to minimally resolve a vertex x in T if
(i) d(si, x) ≤ k for all i = 1, . . . , r,
(ii) there is no sensor in S \ S ′ that directly measures x,
(iii) for all y ∈ V for which (ii) holds, there is some si ∈ S ′ that resolves x and y,
(iv) all si ∈ S ′ directly measure x, i.e., d(si, x) �= d(s j, x) + d(si, s j) for i, j = 1, . . . , r, i �= j.

For a single sensor s, Definitions 3.4 and 3.6 are identical. For more sensors, the difference between Definition 3.5 and 
3.6 is in parts (i) and the new criterion (iv): heuristically, a set of sensors minimally resolve a vertex x if they all directly 
measure it, (i.e., the shortest paths leading to the vertex x do not contain fully each other), and the set is minimal in the 
sense that no other sensor directly measures x by part (ii). Part (iii), similarly to Definition 3.5(iii), ensures that an x ∈ V for 
which all the conditions hold is distinguished from all vertices y in the resolved-within area of S ′ .

We call the vertices that are minimally resolved by a set of sensors the attraction of the sensor set S ′ , and this is our 
next definition.

Definition 3.7 (Attraction of a set of sensors). Let T = (V , E) be a tree with a k-truncated resolving set S ⊆ V . The attraction of 
a set of r sensors S ′ = {s1, . . . , sr} ⊆ S is

AT (s1, . . . , sr) = {v ∈ V \ S : v is minimally resolved by {s1, . . . , sr}}.
We will omit the subscript T when the underlying graph is clear from the context.
6
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It is not hard to see that AT (s) = MT (s) for a single sensor s ∈ S , AT (S ′) and AT (S ′′) are disjoint whenever S ′ �= S ′′ , and 
that

MT (S ′) =
⋃

B⊆S ′
AT (B).

Heuristically, if a path between a sensor and a vertex does not contain any sensor from S ′ then none of the vertices of 
this path can be in the attraction of S ′ . More formally, we will use the following straightforward claim in our proofs:

Claim 3.8. For a tree T = (V , E) with k-truncated resolving set S, let S ′ ⊆ S be any subset of sensors, and let s ∈ S \ S ′ . Assume that 
x ∈ V is measured by s, and V (PT (s, x)) is disjoint from S ′. Then V (PT (s, x)) is also disjoint from AT (S ′).

Proof. Assume that y ∈ V (PT (x, s)). Since x is measured by s, we have dT (s, y) ≤ dT (s, x) ≤ k. Hence, y is also measured by 
s. Since s /∈ S ′ , and V (PT (s, y)) does not contain any sensor from S ′ , it follows that y /∈ AT (S ′), otherwise Definition 3.6(ii) 
would be violated. �

Before we continue, we make a few claims, and a few definitions about the structure of the attraction of one or two 
sensors.

Claim 3.9 (Size of the attraction of a single sensor). The size of AT (s), for any sensor s ∈ S, is at most k.

Proof. It follows simply from the fact that for each distance 1 ≤ j ≤ k, there can only be a single vertex at graph distance 
j from s belonging to AT (s). Suppose to the contrary that for some j there are two vertices x, x′ ∈ AT (s) with d(s, x) =
d(s, x′) = j. Then s cannot distinguish between x, x′ , hence Definition 3.6 (iii) is violated. �
Claim 3.10 (Structure of the attraction of a pair of sensors). If v ∈ V belongs to AT (s1, s2) for a pair of sensors s1, s2 ∈ S, then either 
v ∈ V (PT (s1, s2)) \ {s1, s2} or v is connected by a path to a vertex in V (PT (s1, s2)) \ {s1, s2} which does not contain any sensor.

Proof. First, it is not possible that P(v, s1) fully contains P(v, s2), or vice versa, otherwise Definition 3.6 (iv) would be 
violated. Hence, P(v, s1) and P(v, s2) both intersect V (PT (s1, s2)) \ {s1, s2}. Therefore, there are two possibilities for the 
location of v . Either v ∈ V (PT (s1, s2)) \ {s1, s2} or v is connected by a path to a vertex in V (PT (s1, s2)) \ {s1, s2} that does 
not contain either s1 or s2. Further, there cannot be any third sensor on this path, otherwise {s1, s2} would not minimally 
resolve v by Definition 3.6 (ii). �

Based on Claim 3.10, we more generally define a type and a height of a vertex with respect to a pair of sensors s, s′ , 
which we will use in Sections 4–6.

Definition 3.11 (Type and height with respect to a sensor pair). Consider a tree T with a k-truncated resolving set S , and let 
s, s′ ∈ S and v /∈ {s, s′}. We define

typs,s′(x) := (
d(x, s) − d(x, s′) + d(s, s′)

)
/2, (4)

and we say that x is of type j ( j = typs,s′ (x)) with respect to s, s′ . We further define

hgts,s′(x) := dT (x, s) − typs,s′(x), (5)

and we say that it is the height of the vertex x with respect to s, s′ .

A short interpretation: x ∈ V is of type 0 if the shortest path PT (x, s′) from x to s′ fully contains PT (x, s), and x is of 
type d(s, s′) if the situation is reversed. For 1 ≤ j ≤ d(s, s′) − 1, x ∈ V is of type j if the closest vertex to x on the path 
PT (s, s′) is of distance j from s. Similarly, the height of a vertex x ∈ V with respect to s, s′ is the distance of x from the 
path PT (s, s′).

Based on these definitions, the following claims are direct consequences.

Claim 3.12 (Type-difference). Consider a tree T with a k-truncated resolving set S, and let s, s′ ∈ S and x, x′ /∈ {s, s′} satisfying that x
is measured by s and x′ is measured by s′. Then, if additionally typs,s′ (x) �= typs,s′ (x′) then the set {x, x′} is resolved by {s, s′}.

Proof. First, if x is measured only by s and not by s′ , then dk(s′, x) = k + 1 ≥ dk(s′, x′), hence s′ resolves the pair x, x′ . 
Analogously, if x′ is measured only by s′ but not by s then s resolves the pair x, x′ . The only remaining case is when both 
vertices are measured by both sensors. In this case, since x, x′ have different types, by (4)
7
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dk(x, s) − dk(x, s′) = d(x, s) − d(x, s′) �= d(x′, s) − d(x′, s′) = dk(x′, s) − dk(x′, s′),

hence, at least one of s, s′ resolves x, x′ . �
Claim 3.13. Consider a tree T with a k-truncated resolving set S, and let s, s′ ∈ S. Then the following is true.

(i) There are no two vertices x, y ∈ AT (s, s′) with typs,s′ (x) = typs,s′ (y) and hgts,s′ (x) = hgts,s′ (y).
(ii) For any 1 ≤ j ≤ d(s, s′) − 1 there are at most k − max{ j, d(s, s′) − j} + 1 vertices in AT (s, s′) with type j (with respect to s, s′).

Proof. Part (i) is a consequence of the fact that (dT (x, s), dT (x, s′)) is a one-to-one function of (typs,s′ (x), hgts,s′ (x)). Hence, if 
we had two vertices x, y ∈ AT (s, s′) with typs,s′ (x) = typs,s′ (y) and hgts,s′ (x) = hgts,s′ (y), then no sensor would resolve them. 
To show part (ii), notice that the possible pairs of distances of a type j vertex from s and s′ , respectively, are ( j, d(s, s′) −
j), ( j + 1, d(s, s′) − j + 1), . . . with the pair of largest distances being either (k, d(s, s′) + k − 2 j) or (2 j + k − d(s, s′), k), 
depending on whether j ≥ (d(s, s′))/2 or not (these pairs of distances correspond to heights 0, 1, . . . , k − max{ j, d(s, s′) −
j}). �

In the setting of part (ii) of Claim 3.13, observe that it could happen that a type j vertex is not in AT (s, s′) for some 
j ∈ {1, . . . , d(s, s′) − 1} even if its height is at most k − max{ j, d(s, s′) − j}, namely, when that vertex is directly measured by 
a third sensor s′′ .

The next three sections are structured as follows. In each of the Sections 4, 5, 6, we introduce a different rewiring 
procedure called Transformation A, B, C, respectively. Then, we gather some necessary preliminary claims about them, 
before we state and prove their main properties. Finally we use these transformations to obtain a modified version of our 
tree, which we can use to proceed further towards a structure that we will be able to optimize in Section 7.

4. Transformation A: moving the attractions of single sensors into leaf-paths

To prove Proposition 2.4, we take any tree T with a k-truncated resolving set S on it, and start by rewiring its edges such 
that attractions of single sensors become leaf-paths. This will be achieved by the repeated application of Transformation A, 
introduced in this section. After defining it, we prove several properties of the transformation before proving Lemma 4.4, 
the main result of this section. It states that the tree T can be transformed in a way (using Transformation A) such that 
its vertex set does not change, S remains a k-truncated resolving set, and every sensor has its attraction contained in a 
leaf-path starting from that sensor. This will make further transformations possible that can increase the size of the tree as 
well.

Recall from Claim 3.9 that |AT (s)| ≤ k for any sensor s.

Definition 4.1 (Transformation A). Given a tree T = (V , E) with a k-truncated resolving set S ⊆ V and some fixed s ∈ S , let 
AT (s) = {v1, . . . , v�} for some � ≤ k. Denote the connected components of T spanned on V \ AT (s) by T̃0, ̃T1, . . . , ̃Tr for 
some r, where T̃0 contains s. For each 1 ≤ i ≤ r let xi be the (unique) vertex in T̃ i that is closest to s in T . Define the edge 
sets

E1 := {{u, v} ∈ E(T ) : u ∈ AT (s) or v ∈ AT (s)}, (6)

E2 :=
{
{s, v1} ∪ ( ∪�−1

i=1 {vi, vi+1}
)}

, (7)

E3 := {{s, xi} : 1 ≤ i ≤ r}. (8)

Then define trA(T , S, s) = (V , E ′) where E ′ = (E \ E1) ∪ E2 ∪ E3.

For an example of Transformation A see Fig. 1.
A couple of comments on this definition: E1 is the set of edges that are adjacent to the vertices in AT (s) in T . After 

removing E1, E2 rewires AT (s) into a leaf-path emanating from s ending at v� . E3 connects the components on T spanned 
on V \ AT (s) back together, by connecting s to the (originally) closest vertex xi in each of the other components T̃ i . Note 
that the vertices xi in the above definition are indeed well-defined, since if some T̃ i had two closest vertices to s in T , then 
they would lie on a cycle in T .

We observe that trA(T , S, s) is indeed a tree, i.e., connected, since the addition of the edge set E3 to T̃ adds exactly one 
connection between the components T̃0 and T̃ i for each i = 1, 2, . . . , r, and all the vertices in AT (s) are connected to s via 
a leaf-path. See Fig. 1 for an illustration.

We start with a basic property related to trA , ensuring that sensors in the components T̃1, . . . T̃r can only measure 
vertices within their own component.

Claim 4.2 (No ‘communication’ between different subtrees). Consider the notation of Definition 4.1, and let T ′ := trA(T , S, s).
8
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Fig. 1. An example of transformation A with T on the left and T ′ = trA(T , S, s) on the right. Here k = 3. The blue vertices are the sensors in S , and the 
yellow vertices are in AT (s). The red edges belong to E1, and are deleted by the transformation. The grey edges belong to E2 ∪ E3, and are added by the 
transformation. The subtrees ̃T0, ̃T1 and ̃T2 are also highlighted. As an illustration of Claim 4.2, we can observe that sensors in ̃T1 and in ̃T2 only measure 
vertices inside their own subtrees, whereas s measures the vertex x1 in T̃1. Furthermore, s is necessary in both T and in T ′ to distinguish x1 from the 
other leaf vertex at distance 2 from it in ̃T1. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

(i) Let s� be any sensor in ̃Ti for some i ∈ {1, . . . , r}. Then, for all vertices y /∈ T̃ i , dT (s�, y) ≥ k + 1 and dT ′ (s�, y) ≥ k + 1 both hold.
(ii) Let s� �= s be any sensor in ̃T0 . Then, for any y ∈ T̃ i , i ≥ 1, either dT (s�, y) ≥ k +1, or the shortest path from s� to y in T contains s.

Proof. Proof of (i): Consider a vertex y /∈ T̃ i . Using the notation of Definition 4.1, the vertex closest to s within T̃ i on the 
path PT (s�, s) is xi . Since xi ∈ T̃ i , the edges of P(s�, xi) are present in both T and T ′ . Moreover, xi has a neighboring vertex 
v ∈ AT (s) in T , by the definition of trA , see the comments below the definition. v cannot be measured (in T ) by any sensor 
in T̃ i , otherwise that sensor would measure v via a path not containing s, and Definition 3.6(iii) would be violated as 
v ∈ AT (s). Hence, dT (s�, v) ≥ k + 1, and

dT (s�, xi) ≥ dT (s�, v) − 1 ≥ k + 1 − 1 = k.

These two facts will imply both conclusions as we argue next.
First, as y /∈ T̃ i , the path PT (s�, y) contains v ∈ AT (s), and we also have that PT (s�, v) does not contain s. Hence, if s�

measures y in T , then it also measures v in T , contradicting Claim 3.8, as v ∈ AT (s). Hence, dT (s�, y) ≥ k + 1 holds.
Next, we will show that dT ′ (s�, y) ≥ k + 1 as well. Since y /∈ T̃ i the path PT ′ (s�, y) contains s, since the only connection 

between T̃ i and V \ V (T̃ i) is the edge (s, xi) in T ′ . This implies that

dT ′(s�, y) ≥ dT ′(s�, s) = dT ′(s�, xi) + 1 = dT (s�, xi) + 1 ≥ k + 1.

Proof of (ii): Assume that dT (s�, y) ≤ k. Then, since s� ∈ T̃0 and y ∈ T̃ i , i ≥ 1, the path PT (s�, y) contains a vertex 
v ∈ AT (s). Hence, by Claim 3.8, PT (s�, y) has to contain s, otherwise Definition 3.6 (ii) would be violated for v belonging 
to AT (s). �

Building on the above preliminary facts, we next state and prove the main effects of applying Transformation A.

Lemma 4.3 (Properties of Transformation A). Let T = (V , E) be a tree with a k-truncated resolving set S ⊆ V . Fix some s ∈ S, and 
consider T ′ := trA(T , S, s). Then the following hold:

(i) S remains a k-truncated resolving set for the tree T ′.
(ii) AT ′ (s) = AT (s), and AT ′(s) forms a leaf-path emanating from s.

(iii) For any sensor s� ∈ S \ {s}, if AT (s�) is a leaf-path emanating from s� in T , then AT ′(s�) = AT (s�) is still a leaf-path emanating 
from s� in T ′ .

(iv) For any sensor s� ∈ S \ {s}, if AT (s�) is not a leaf-path emanating from s�, then AT ′(s�) ⊆ AT (s�).

Observe that (iii) ensures that attraction of sensors that are already leaf-paths are left untouched by trA , while (iv) 
ensures that for sensors with attraction that are not (entirely) leaf-paths, trA potentially decreases the number of vertices 
in the attraction, but never adds new vertices to it.
9
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Proof of Lemma 4.3. Proof of (i): Let x, y ∈ V be a pair of distinct vertices. We shall prove that there is a sensor in S that 
resolves them in T ′ . We will use the notations of Definition 4.1. We will do a case-distinction analysis with respect to the 
location of x and y in the components T̃ i, i ≥ 0 described in the transformation. We start with cases when neither of the 
vertices are in AT (s):

Case 1: Assume that x ∈ T̃ i and y ∈ T̃ j for some i ≥ 1, j ≥ 0, i �= j. Then, since x /∈ AT (s), there is a sensor s′ ∈ S \ {s} that 
measures x such that PT (s′, x) does not include s. Then, by Claim 4.2(i)–(ii), s′ ∈ T̃ i . Therefore, the edges of PT (s′, x) are 
unchanged in T ′ , so s′ still measures x in T ′ . However, it does not measure y ∈ T̃ j in T ′ by Claim 4.2(i). Hence, s′ resolves 
x and y in T ′ .

Case 2: Now assume that x, y ∈ T̃ i for some i ≥ 1. Let s′ ∈ S be a sensor that resolves x and y in T . Then s′ has to 
measure at least one of x and y in T , hence s′ /∈ T̃ j for j ≥ 1, j �= i by Claim 4.2(i). There are two (sub)cases: either s′ ∈ T̃ i , 
or s′ ∈ T̃0. First we consider s′ ∈ T̃ i . Then the paths PT (s′, x), PT (s′, y) do not contain any vertex in AT (s) (since both 
endpoints of both paths belong to T̃ i ). Therefore, the edges of PT (s′, x) and PT (s′, y) are all still present in T ′ , and s′
resolves x and y in T ′ .

If s′ ∈ T̃0, then either s′ = s or s′ �= s. We start with the case s′ = s. Recall xi from Definition 4.1. Then {s, xi} ∈ E3 (an 
edge added to create T ′). Since every path PT (s, v), v ∈ T̃ i starts with the segment PT (s, xi) in T , that we replaced with 
the single edge {s, xi} to obtain PT ′ (s, v), the following holds for all v ∈ T̃ i :

dT ′(s, v) = dT (s, v) − dT (s, xi) + 1.

Hence, the difference of the distances does not change:

dT ′(s, x) − dT ′(s, y) = dT (s, x) − dT (s, y) �= 0,

the latter being nonzero by the assumption that s resolves x, y in T . Since these distances in T ′ are less than in T , s still 
resolves x, y in T ′ .

The last possibility is that s′ ∈ T̃0 \ {s}. Then s′ has to measure at least one of x and y in T , say it measures x. Then, by 
Claim 4.2(ii), PT (s′, x) contains s. On the path PT (s, x), there has to be at least one vertex in AT (s) (since x ∈ T̃ i ), let the 
closest one to x be u. Then, since T̃ i is a connected component in V \ AT (s), and y ∈ T̃ i (and T is a tree), u is also on the 
path PT (s′, y). Hence, PT (s′, s) ⊆PT (s′, u) ⊆PT (s′, x) ∩PT (s′, y). This implies that

dT (s, x) = dT (s′, x) − dT (s′, s), and dT (s, y) = dT (s′, y) − dT (s′, s).

Therefore, if s′ resolves x and y in T , then s also resolves them in T , and then the reasoning of the previous paragraph 
applies, and so s resolves x, y also in T ′ .

Case 3: Next, suppose that x, y ∈ T̃0, and let s′ be a sensor that resolves them in T . Then s′ measures at least one of x
and y in T , which, by Claim 4.2(i) is only possible if s′ ∈ T̃0. (Here s′ may or may not be s.) This implies that the edges of 
the paths PT (s′, x) and PT (s′, y) stay intact in T ′ , thus they are still distinguished by s′ in T ′ .

We continue with cases for which at least one of x, y ∈ AT (s):
Case 4: If x and y are both in AT (s), then in T ′ they will both be part of a single leaf-path (of length at most k) 

emanating from s, hence s will resolve them in T ′ .
Case 5: The next case is when x ∈ AT (s) and y ∈ T̃ i for some i ≥ 1. Since y /∈ AT (s), there has to be a sensor s′ that 

measures y such that PT (s′, y) does not contain s. Further, since y ∈ T̃ i and by Claim 4.2(ii), this is only possible if s′ ∈ T̃ i . 
Then the vertices of the path PT (s′, y) remain unchanged in T ′ , so s′ still measures y in T ′ . However, it cannot measure 
x ∈ AT (s) in T ′ by Claim 4.2(i). Thus, s′ distinguishes x and y in T ′ .

Case 6: The final case is when x ∈ AT (s) and y ∈ T̃0. Then there exists a sensor s′ ∈ S \ {s} which measures y such that 
the path PT (s′, y) does not contain s. By Claim 4.2 (ii), s′ ∈ T̃0. Then there are two possible subcases.

First assume that V (PT (s, s′)) ∩ V (PT (s′, y)) = {s′}, i.e., s, s′, y all lie on a path in T̃0 in this order. Then in T ′ , x is 
added to a leaf-path emanating from s, and the edges of PT (s, s′), P(s′, y) are unchanged, hence x, s, s′, y will all lie 
on a single path in T ′ in this order. Then, since x is measured by s and y is measured by s′ , and typs,s′ (x) = 0 while 
typs,s′ (y) = dT ′ (s, s′), by Claim 3.12, at least one of s, s′ resolves x, y.

Next, assume that V (PT (s, s′)) ∩ V (PT (s′, y)) �= {s′}. Then, in fact, V (PT (s, s′)) ∩ V (PT (s′, y)) = V (PT (s′, v)) for some 
v �= s′ , i.e., typs,s′ (y) = typs,s′ (v) �= 0. For this we also know that v �= s, since PT (s′, y) does not contain s. Observe that the 
edges of the paths PT (s, v), PT (s′, v), PT (y, v) are unchanged in T ′ . We also know that typs,s′ (x) = 0 in T ′ since x is in a 
leaf-path emanating from s in T ′ . Hence, Claim 3.12 applies with y := x′ so at least one of s, s′ resolves x, y.

Proof of (ii): Using the notation of Definition 4.1, let AT (s) = {v1, . . . , v�}. We claim that AT ′ (s) = {v1, . . . , v�}. Indeed, 
{v1, . . . , v�} ⊆ AT ′ (s) since all these vertices are measured by s in T ′ , and (s, v1, . . . , v�) forms a leaf-path in T ′ , so the 
shortest path from every other sensor s� ∈ S to any vi contains the sensor s and hence Definition 3.6 (iii) would be violated 
otherwise.

In order to show that AT ′ (s) ⊆ {v1, . . . , v�}, consider a vertex x ∈ V \ (AT (s) ∪ S). Since x /∈ AT (s), there exists (at least 
one) s� ∈ S \ {s} that directly measures x. We will show that in this case

dT ′(s�, x) ≤ k and s /∈ V (PT ′(s�, x)), (9)
10
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hence x cannot be in AT ′ (s), either. Consider the path PT (s�, x). Since it has length at most k, and it does not contain s, 
none of its vertices can be in AT (s) by Claim 3.8. It follows that trA(T , S, s) does not remove any of the edges in PT (s�, x), 
since none of them are adjacent to any vertex in AT (s). Hence, all the edges of PT (s�, x) are present in T ′ . As a result, (9)
holds and x /∈ AT ′ (s).

Finally, AT ′ (s) = AT (s) forms a leaf-path emanating from s in T ′ , because E2 forms exactly that leaf-path in (7), finishing 
the proof of (ii).

Proof of (iii): Since the vertices of AT (s�) are all on a leaf-path emanating from s� , the shortest path between any of them 
and s contains s� , hence, these vertices, (including s�), cannot belong to AT (s). Therefore, when executing Transformation A 
at s, all the edges between vertices of AT (s�) ∪{s�} remain intact. Moreover, dT (s, s�) ≤ dT (s, x) for any x ∈ AT (s�), so such x
is not the closest vertex in the component to s, hence in the edge set E3 of (8) none of the edges connect to any x ∈ AT (s�). 
This shows that AT (s�) still forms a leaf-path in T ′ emanating from s� , and AT (s�) ⊆ AT ′ (s�). The fact that AT ′ (s�) ⊆ AT (s�)

is proved in the same way as part (iv) below.
Proof of (iv): For an indirect proof, let us assume that there is a vertex x ∈ AT ′ (s�), such that x /∈ AT (s�), i.e., a new vertex 

is added to the attraction of sensor s� because of the transformation. We observe that x ∈ AT ′ (s�) implies by Definition 3.6(i) 
that the path PT ′ (s�, x) has length at most k, and it does not contain s, or any other sensor besides s� , by Definition 3.6(ii) 
and (iii). This means that the edges of the path PT ′ (s�, x) can be neither in E3 nor in E2. That is, all edges of PT ′ (s�, x) are 
also present in T . If despite this x /∈ AT (s�), it is only possible if there is a sensor s′ ∈ S \ {s�} such that the path PT (s′, x)
has length at most k, and it contains no sensors besides s′ in T . Then there are the following two possibilities.

If s′ �= s, then none of the vertices in PT (s′, x) can belong to AT (s) because the path PT (s′, x) does not contain s by 
assumption. Hence none of the edges of PT (s′, x) is in E1, i.e., the transformation leaves these edges untouched. Therefore, 
PT (s′, x) is still a path in T ′ (of length at most k), contradicting the assumption that x ∈ AT ′ (s�), since both s� and s′ directly 
measure x in T ′ .

If s′ = s, and none of the vertices of PT (s, x) is in AT (s), then E(PT (s, x)) is disjoint from E1, hence PT (s, x) is still a 
path in T ′ (of length at most k). Since s� /∈ V (PT (s, x)), this contradicts the assumption that x ∈ AT ′ (s�).

The only remaining case is that s′ = s, and at least one vertex in V (PT (s, x)) belongs to AT (s). This means that s and 
x get disconnected in T̃ = (V , E \ E1), i.e., we may assume x ∈ T̃ i for some i ≥ 1. In this case, the edge set E3 contains an 
edge from s to xi (see Definition 4.1. This vertex xi must lie on the path PT (x, s), otherwise there would be a cycle in T . 
Hence, V (PT ′ (s, x)) ⊆ V (PT (s, x)). Therefore, the path PT ′(s, x) is of length at most k, and it does not contain any other 
sensor besides s, contradicting the assumption that x ∈ AT ′ (s�). This shows that AT ′ (s�) ⊆ AT (s�) for all S \ {s}, and finishes 
the proof of (iv). �

Now we are in a position to state and prove the main result of this section. Lemma 4.3 shows how we can use Transfor-
mation A to achieve the desired modification of the tree, described as follows.

Lemma 4.4. Let T = (V , E) be a tree on n vertices with k-truncated resolving set S ⊆ V . For any s ∈ S let AT (s) = {v1, v2, . . . , v�(s)}
for some �(s) ≤ k. Then there exists a tree ̂T = (V , ̂E) on the same vertex set in which S is also a k-truncated resolving set, and in 
which, for each s ∈ S, AT̂ (s) ⊆ AT (s) with AT̂ (s) being a leaf-path emanating from s.

Remark 4.5. A consequence of the proof of Lemma 4.4 is that if |AT (s)| is less than k for some s ∈ S , then T cannot be 
optimal, since we can add at least one extra vertex to the tree to this leaf-path and the new tree is still resolved.

Proof of Lemma 4.4. Let S = {s1, s2, . . . , sm}. Let T0 = T , and then let us iteratively define Ti := trA(Ti−1, S, si) for 1 ≤ i ≤ m. 
We prove that T̂ = Tm satisfies the conditions of Lemma 4.4. Indeed, for T1 it is true that AT1 (s1) = AT (s1) is a leaf-
path emanating from s1 by Lemma 4.3(ii), for all other sensors s j , j ≥ 2, AT1 (s j) ⊆ AT (s j), and S is still a k-truncated 
resolving set for T1. Inductively we can then assume that in Ti , the vertices of AT (s1), . . . , AT (si) already form leaf-paths 
emanating from s1, . . . , si , respectively, ATi (s j) ⊆ AT (s j) for all j ≥ 1, and S is a k-truncated resolving set in Ti . Then Ti+1 =
trA(Ti, S, si+1) moves the vertices ATi (si+1) = AT (si+1) into a leaf-path emanating from si+1, and leaves the attraction of 
sensors j ≤ i intact, i.e., ATi+1 (s j) = ATi (s j) is a leaf-path emanating from s j for all j ≤ i by Lemma 4.3 (iii). And, for 
j ≥ i + 1 it holds that ATi+1 (s j) ⊆ ATi (s j) ⊆ AT (s j) by Lemma 4.3 (iv) and the inductive assumption. This means that in Ti+1
already AT (s1), . . . , AT (si+1) are all leaf-paths emanating from their respective sensors. Finally S still resolves Ti+1, hence 
the induction can be advanced. When i = m, the attraction of each sensor has been transformed into a leaf-path, and S still 
resolves Tm , finishing the proof. �

Lemma 4.4 shows us that it is sufficient to consider optimal trees that have the attractions of single sensors contained 
in leaf-paths attached to the corresponding sensors. Next we analyze the arrangement of the attraction of pairs of sensors 
in an optimal tree.

5. Transformation B: shortening too long sensor paths

Let us consider now a tree T with k-truncated resolving set S on it, for which Transformation A has already been 
repetitively applied, as in Lemma 4.4. Recall from Definition 3.2 that sensor paths are strong (respectively, weak) if their 
11
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length is at most k +1 (respectively, at least k +2). Our next step is to obtain another tree from T , which has an overlapping 
pair of strong sensor paths, while keeping the properties that S is a k-truncated resolving set and that attractions of single 
sensors are contained in leaf-paths attached to the sensor. We will show that it is possible to do via the repeated application 
of another edge-rewiring process, Transformation B, as long as T has at least one weak sensor path. The transformation will 
shorten weak sensor paths with each application, until it finally produces a tree with overlapping strong sensor paths. In 
the case when T already has such a pair of sensor paths, we skip over Transformation B and continue with Transformation 
C, introduced in the next section. In the case when T does not have such a pair of sensor paths, but it also does not have 
any weak sensor paths, we move directly to Section 7, where we find the maximal size of such a tree.

In this section, we first state the conditions under which we will apply Transformation B, then we define this transfor-
mation. Next, after some preliminary observations, we prove the main properties of Transformation B in Lemma 5.7. Finally, 
we state and prove Lemma 5.8, the main result of this section, which makes use of this transformation to achieve our 
above-mentioned purpose.

Condition 5.1. Let T = (V , E) be a tree on n vertices with a k-truncated resolving set S . Suppose that the following hold:

(i) for all sensors s ∈ S the attraction AT (s) is contained in a single leaf-path starting from s,
(ii) any pair of strong sensor paths are disjoint, possibly except for their endpoints, and

(iii) there is at least one weak sensor path in T , and PT (s0, s1) is a longest one.

Claim 5.2. Condition 5.1(ii) above is equivalent to the following:

(ii)’ there are no two strong sensor paths in T that share an edge.

Proof. Assume PT (s1, s2) and PT (s3, s4) are two distinct strong sensor paths that do not share an edge, but do share 
a vertex v that is not the endpoint of either of them. If the si -s are not all different, say s4 = s2, then let w be the 
vertex neighboring s2 on the path PT (s1, s2). Then PT (s1, s2) and PT (s2, s3) share the edge {w, s2}, a contradiction. Hence, 
s1, s2, s3, s4 are indeed all different. Let s′

1, s
′
2, s

′
3, s

′
4 be a relabeling of s1, s2, s3, s4 such that s′

i (i = 1, 2, 3, 4), is the i-
th closest sensor to v among s1, s2, s3, s4, breaking ties arbitrarily. Let u be the vertex neighboring v on PT (s′

1, v). Then 
PT (s′

1, s
′
2) and PT (s′

1, s
′
3) share the edge {u, v}, and both are strong sensor paths, since

max{dT (s′
1, s′

2),dT (s′
1, s′

3)} = max{dT (s′
1, v) + dT (v, s′

2),dT (s′
1, v) + dT (v, s′

3)}
≤ max{dT (s1, v) + dT (v, s2),dT (s3, v) + dT (v, s4)}
= max{dT (s1, s2),dT (s3, s4)} ≤ k + 1. �

Building on Claim 5.2 we will use Conditions 5.1(ii) and (ii)’ interchangeably later in this paper.
To introduce Transformation B, recall Definition 3.7 and Claim 3.10 about the structure of the attraction of two sensors, 

as well as Definition 3.11 about the types and heights of a vertex x with respect to two sensors s, s′ .

Definition 5.3 (Transformation B). Let T = (V , E) be a tree with a k-truncated resolving set S ⊆ V and s0, s1 ∈ S such that 
Conditions 5.1(i)–(iii) hold. Let w1 ∈ V (PT (s0, s1)) be the vertex for which {s0, w1} ∈ E . Since w1 /∈ AT (s) and Condi-
tion 5.1(ii) holds, there is a unique other sensor s′

0 �= s1 that directly measures w1. Let w1, w2, . . . , wdT (s0,s′0)−1 be the 
vertices in V (PT (s0, s′

0)) \ {s0, s′
0} in order of increasing distance from s0, and let

V (PT (s0, s1)) ∩ V (PT (s0, s′
0)) = {w1, w2, . . . , wq}.

Furthermore, let uq+1 be the vertex of PT (wq, s1) for which {wq, uq+1} ∈ E(PT (wq, s1)). Now define the vertex sets

V 1 := {v ∈ AT (s0, s′
0) : typs0,s′0(v) = q, hgts0,s′0(v) ≥ 1, uq+1 ∈ V (PT (wq, v))},

V 2 := {v ∈ V : typs0,s′0(v) = q, hgts0,s′0(v) ≥ 1, uq+1 /∈ V (PT (wq, v))}
with V 1 =: {v(1), v(2), . . . , v(|V 1|)} and V 2 =: {v(|V 1|+1), v(|V 1|+2), . . . , v(|V 1|+|V 2|)}, and the edge sets

E1 := {{u, v} ∈ E : u ∈ V 1 ∪ V 2 or v ∈ V 1 ∪ V 2} ∪ {wq, uq+1},
E2 := {{wq, v(1)}}

⋃( ∪|V 1|+|V 2|−1
i=1 {{v(i), v(i+1)}}).

Consider the subgraph T̃ = (V \ (V 1 ∪ V 2), E \ E1), and denote its connected components by T̃0, ̃T1, . . . , ̃Tr where T̃0 contains 
s0 (and s′

0), and T̃1 contains s1. For each 1 ≤ i ≤ r let xi be the vertex in T̃ i that is closest to s0 in T . Define the third edge 
set
12
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Fig. 2. An example of transformation B with T on the left and T ′ = trB (T , S, s0, s′
0) on the right. Here k = 5, and q = 3. The blue vertices are the sensors in 

S , and the yellow vertices are in V 1 ∪ V 2: v1 ∈ V 1, v2 ∈ V 2. The red edges belong to E1, and are deleted by the transformation. The grey edges belong to 
E2 ∪ E3, and are added by the transformation. The subtrees T̃0, ̃T1, ̃T2 and T̃3 are also highlighted. Note that x3 and the leaf vertex at distance two from 
x3 within ̃T3 are only resolved by s′

0 in T , and by s0 in T ′ . While the sensors s0, s′
0 may measure vertices in the subtrees ̃T1, ̃T2, ̃T3, any sensor in ̃Ti , i ≥ 1

can measure vertices only within its own subtree and possibly in T̃0 (this latter case is not depicted in the picture, but could happen e.g. if the sensors 
s5, s6 were closer to u4).

E3 :={{s0, xi} : 1 ≤ i ≤ r}.
Finally, define trB(T , S, s0, s1) = (V , E ′) where E ′ = (E \ E1) ∪ E2 ∪ E3.

For an example of Transformation B see Fig. 2.
A couple of comments on this definition: s′

0 cannot be equal to s1, since d(s0, s1) ≥ k + 2 by the assumption that 
PT (s0, s1) is a weak sensor path. The sensor s′

0 is indeed unique, since if there was another sensor s′′
0 also directly measuring 

w1 in T , then the two sensor paths PT (s0, s′
0), PT (s0, s′′

0) would both be strong and violate Condition 5.1(ii). This uniqueness 
of the sensor s′

0 means that w1 ∈ AT (s0, s′
0). A similar argument shows that wdT (s0,s′0)−1 is also in AT (s0, s′

0).
E1 is the set of edges that are adjacent to the vertices in V 1 ∪ V 2 in T , plus the edge {wq, uq+1} (in case uq+1 /∈ V 1, 

that is, uq+1 /∈ AT (s0, s′
0)). The point of removing E1 from the graph is to rewire the edges (with the addition of E2 and 

E3) such that the path between s0 and s1 becomes shorter while ensuring that the vertices of AT (s0, s′
0) are still identified 

by the sensors. The removal of E1, and then the addition of E2 rewires AT (s0, s′
0) as follows: those vertices in AT (s0, s′

0)

that are not of type q stay ‘at their place’ (relative to s0 and s′
0). Those that are type q, are rewired into a single leaf-path 

emanating from wq . We will show that V 2 must be already a leaf-path in T , and thus we essentially append V 1 to the 
end of this path. We will show in Claim 5.6 that this leaf-path contains at most k − q vertices besides wq , which ensures 
that all of them will be measured by both s0 and s′

0 after the transformation. After all this, E3 connects the components of 
(V , (E \ E1) ∪ E2) back together, by connecting s0 to the (originally) closest vertex xi in each of the other components T̃ i . 
Note that the vertices xi in the above definition are indeed well-defined, since if some T̃ i had two closest vertices to s0 in 
T , then they would lie on a cycle in T , contradicting the tree property, similarly as before for Transformation A.

We observe that trB(T , S, s0, s1) is indeed a tree, i.e., connected, since the addition of the edge set E3 to T̃ adds exactly 
one connection between the components T̃0 and T̃ i for each i = 1, 2, . . . , r, and the addition of E2 adds the vertices of 
V 1 ∪ V 2 to T̃0 as a single leaf-path. See Fig. 2 for an illustration.

In order to proceed with description of Transformation B, we will first prove the following structural property. Recall the 
type of vertices with respect to two sensors from Definition 3.11.

Claim 5.4 (Location of sensors). Consider the notation of Definition 5.3. Then in T for any sensor s� ∈ S one of the following three 
possibilities holds:

(i) typs0,s′0 (s�) = 0,

(ii) typs0,s′0 (s�) = dT (s0, s′
0) or

(iii) typs0,s′0(s�) = q and {wq, uq+1} ∈ E(PT (s0, s�)).

Proof. First, we prove that typs0,s′0 (s�) /∈ {0, q, dT (s0, s′
0)} cannot hold. Assume indirectly that it does hold, and 1 ≤

typs0,s′0 (s�) ≤ q − 1. We can assume that hgts0,s′0 (s�) is minimal among the sensors of the same type, hence, there is no sen-
sor besides s� on the path PT (s�, wtyp(s�)). By the comments after Definition 5.3 we have w−1 := wdT (s0,s′0)−1 ∈ AT (s0, s′

0). 
This implies that s� cannot measure w−1, hence
13
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dT (s�, w−1) ≥ k + 1 > dT (s0, w−1). (10)

As wq lies on both paths PT (s0, w−1) and PT (s�, w−1), (10) gives

dT (s�, wq) > dT (s0, wq). (11)

Furthermore, as wq lies on both paths PT (s0, s1) and PT (s�, s1), (11) implies that PT (s�, s1) is a longer sensor path than 
PT (s0, s1), contradicting Condition 5.1 (iii). Therefore, 1 ≤ typs0,s′0 (s�) ≤ q − 1 cannot hold for any sensor s� .

The proof that q +1 ≤ typs0,s′0(s�) ≤ dT (s0, s′
0) −1 cannot hold either for any sensor s� is analogous to the above, reversing 

the roles of s0 and s′
0, and those of w1 and w−1.

We are left to prove the fact that if typs0,s′0 (s�) = q, then {wq, uq+1} ∈ E(PT (s0, s�)). Assume to the contrary that there 
exists a sensor s� with typs0,s′0 (s�) = q, and {wq, uq+1} /∈ E(PT (s0, s�)), moreover, dT (wq, s�) is minimal among these sensors. 
Now if dT (wq, s�) ≤ q, then

dT (s�, s′
0) = dT (s�, wq) + dT (wq, s′

0) ≤ dT (s0, wq) + dT (wq, s′
0) = dT (s0, s′

0),

implying that PT (s�, s′
0) is a strong sensor path sharing an edge with PT (s0, s′

0), contradicting Condition 5.1 (ii). On the 
other hand, if dT (wq, s�) > q, then

dT (s�, s1) = dT (s�, wq) + dT (wq, s1) > dT (s0, wq) + dT (wq, s1) = dT (s0, s1), (12)

as {wq, uq+1} ∈ E(PT (s0, s1)) and {wq, uq+1} /∈ E(PT (s0, s�)) by the assumptions, implying that {wq, uq+1} ∈ E(s�, s1). The 
consequence of (12) is that PT (s�, s1) is a longer sensor path than PT (s0, s1), contradicting Condition 5.1. �

Notice that Claim 5.4 implies, in particular, that for any v ∈ V 1 in Definition 5.3, {wq, uq+1} ∈ E(PT (s0, v)). In fact,

V 1 = {v ∈ AT (s0, s′
0) : uq+1 ∈ V (PT (wq, v))}, (13)

and thus AT (s0, s′
0) \ V 1 ⊆ T̃0.

Next, similarly to Transformation A, we prove a ‘no communication’ lemma for the graph components in trB .

Claim 5.5 (No ‘communication’ between different subtrees). Consider the notation of Definition 5.3, and let T ′ := trB(T , S, s0, s1).

(i) Let s� be any sensor in T̃ i for some i ≥ 1. Then, for all vertices y ∈ T̃ j , j ≥ 1, j �= i, we have that dT (s�, y) ≥ k + 1, and s0 ∈
V (PT ′ (s�, y)).

(ii) Let s� /∈ {s0, s′
0} be a sensor in ̃T0 . Then, for any y ∈ V \ T̃0 the path PT (s�, y) contains s0 or s′

0 .

Proof. (i) Since s� and y are in different components (T̃ i and T̃ j ), s0 ∈ V (PT ′ (s�, y)) follows from the construction of the 
edge set E3. Now consider the paths PT ′ (s�, s0) and PT ′ (y, s0). By the construction of the edge set E3 again, the vertices 
on these two paths neighboring s0 are xi and x j , respectively. Since xi �= x j , at least one of these two is not equal to uq+1. 
Without loss of generality, assume that xi �= uq+1 (the proof of the other case is analogous). This implies that on the path 
PT (xi, s0) the edge incident to xi was removed as part of E1 because its other endpoint, say v , belonged to V 1 (and not 
because it was the edge {wq, uq+1}). Hence, v ∈ AT (s0, s′

0), implying that dT (s�, v) ≥ k + 1. Consequently,

dT (s�, xi) ≥ dT (s�, v) − 1 ≥ k + 1 − 1 = k,

and thus

dT ′(s�, y) ≥ dT ′(s�, s0) = dT (s�, xi) + 1 ≥ k + 1,

since the path PT (s�, xi) remains untouched by the transformation.
To prove part (ii) notice that by Definition 5.3, typs0,s′0 (y) = q. On the other hand, Claim 5.4 implies that typs0,s′0 (s�)

is either 0 or dT (s0, s′
0) (as option (iii) of Claim 5.4 would contradict with s� ∈ T̃0). In the former case PT (s�, y) contains 

PT (s0, wq) as a sub-path, and in the latter it contains PT (s′
0, wq) as a sub-path, finishing the proof. �

We continue by showing that there cannot be too many vertices in V 1 ∪ V 2.

Claim 5.6. Consider the notation of Definition 5.3. Then the following hold in T :

(i) for every h ∈ {1, 2, . . . , k − q}, |{v ∈ V 1 ∪ V 2 : hgts0,s′0(v) = h}| ∈ {0, 1}, and
(ii) for every h > k − q, |{v ∈ V 1 ∪ V 2 : hgts0,s′0 (v) = h}| = 0.

Consequently, |V 1 ∪ V 2| ≤ k − q, and every vertex in V 1 ∪ V 2 is directly measured by both s0 and s′ in T ′ = trB(T , S, s0, s1).
0

14



Z. Bartha, J. Komjáthy and J. Raes Discrete Mathematics 346 (2023) 113410
Proof. In the following, ‘type’ and ‘height’ will always refer to type and height in T with respect to s0, s′
0. First, Claim 3.13

implies that there cannot be two distinct vertices x, y ∈ V 1 with the same height, since both x and y are of type q, and 
both belong to AT (s0, s′

0). Next, by Claim 5.4, for every sensor s ∈ S and for every v ∈ V 2 it holds that wq ∈ V (PT (s, v)). 
Hence, for any h ≥ 1 if there were at least two vertices in V 2 with the same height (hence, the same distance from wq), 
then they would not be distinguished from each other in T by any sensor.

Note that we must have q = dT (s0, wq) ≥ dT (s′
0, wq) as otherwise PT (s′

0, s1) would be a longer sensor path than 
PT (s0, s1), violating Condition 5.1(iii). This implies, by the discussion before Definition 5.3, that the maximal height of a 
type-q vertex in AT (s0, s′

0) is k − q. Consequently, for any v ∈ V 1, hgts0,s′0(v) ≤ k − q. To show the same for the vertices of 
V 2 fix some v ∈ V 2 and assume that there exists a sensor s ∈ S \ {s0, s′

0} that directly measures v . Then s also directly mea-
sures wq (by Claim 5.4). If dT (s, wq) ≤ q held, then PT (s, s′

0) would be a sensor path that is at most as long as PT (s0, s′
0), 

meaning that it would be a strong sensor path. PT (s, s′
0) and PT (s0, s′

0) would then form a pair of strong sensor paths shar-
ing an edge, contradicting Condition 5.1(ii). Hence, dT (s, wq) > q = max{dT (s0, wq), dT (s′

0, wq)}. Since wq ∈ V (PT (s, v)), this 
implies that if s directly measures v , then so do both s0 and s′

0. Hence, regardless of the locations of the other sensors, s0
and s′

0 both measure directly every vertex in V 2, implying that their height can be at most k − q.
Finally, we have to show that if x ∈ V 1 and y ∈ V 2, then hgts0,s′0(x) = hgts0,s′0 (y) cannot hold. Assume that it does hold. 

Then x ∈ AT (s0, s′
0) implies that y /∈ AT (s0, s′

0) (otherwise they would not be distinguished). That is, there exists a sensor 
sy ∈ S \ {s0, s′

0} that directly measures y. As before, wq ∈ V (PT (sy, y)) holds by Claim 5.4. This implies that

dT (sy, x) ≤ dT (sy, wq) + dT (wq, x) = dT (sy, wq) + dT (wq, y) = dT (sy, y) ≤ k, (14)

where in (14) we used that hgts0,s′0 (x) = hgts0,s′0 (y), combined with typs0,s′0(x) = typs0,s′0(y) = q. Hence, sy also measures 
x. By s0, s′

0 /∈ V (PT (sy, x)), this means that sy either directly measures x, or there is a sensor s′ ∈ S \ {s0, s′
0} on the path 

PT (sy, x) that directly measures x, contradicting the assumption that x ∈ AT (s0, s′
0).

Combining all the above finishes the proof of (i) and (ii). It then follows that |V 1 ∪ V 2| ≤ k − q. Since q = dT ′ (s0, wq) ≥
dT ′ (s′

0, wq), and the vertices of V 1 ∪ V 2 form a single leaf-path emanating from wq in T ′ , this implies that both s0 and s′
0

directly measure every vertex in V 1 ∪ V 2 in T ′ . �
Having proved the necessary preliminaries about Transformation B, we now state and prove its main properties.

Lemma 5.7 (Properties of Transformation B). Let T = (V , E) be a tree with a k-truncated resolving set S ⊆ V and s0, s1 ∈ S, for which 
Condition 5.1(i)–(iii) hold, and consider T ′ := trB(T , S, s0, s1). Then the following hold:

(i) S remains a k-truncated resolving set for T ′,
(ii) for each s ∈ S, AT ′ (s) = AT (s), and its vertices still form a leaf-path in T ′ emanating from s,

(iii) for each pair of sensors s, s′ ∈ S, if PT ′(s, s′) is a sensor path, then PT (s, s′) was also a sensor path (in T ), and dT ′ (s, s′) ≤ dT (s, s′),
(iv) PT ′ (s0, s1) is still a sensor path, and is strictly shorter than PT (s0, s1),
(v) if PT ′(s0, s1) is a strong sensor path, then T ′ has a pair of strong sensor paths that share an edge.

Proof. Proof of (i): Let x, y ∈ V be a pair of distinct vertices. We shall prove that there is a sensor in S that resolves them 
in T ′ , similarly to the proof of Lemma 4.3(i). We will use the notations of Definition 5.3. We will do a case-distinction 
analysis with respect to the location of x and y in the components T̃ i, i ≥ 0 or in V 1 described in the transformation. The 
numbering of the cases is consistent with that in the proof of Lemma 4.3(i).

Case 1: Assume that x ∈ T̃ i for some i ≥ 1, and that y ∈ T̃ j for some j ≥ 0, j �= i. Then, since x ∈ V \ (AT (s0) ∪ AT (s′
0) ∪

AT (s0, s′
0)), there is a sensor s′ ∈ S \ {s0, s′

0} that directly measures x. Then, by Claim 5.5(i)–(ii), s′ ∈ T̃ i . Therefore, the edges 
of PT (s′, x) are unchanged in T ′ , so s′ still directly measures x in T ′ . Then, either s′ distinguishes x and y in T ′ , or

dT ′(s′, y) = dT ′(s′, x) ≤ k. (15)

Assume that we have this latter case. Now Claim 5.5(i) implies that s0 ∈ V (PT ′ (s′, y)) (this is also true if y ∈ T̃0 by the 
construction). Then dT ′ (s0, y) ≤ dT ′ (s′, y) ≤ k, so s0 also measures y in T ′ . We will prove that in this case s0 distinguishes x
and y in T ′ . Assume that this is not the case, and in fact

dT ′(s0, x) = dT ′(s0, y) ≤ k. (16)

Then (15) and (16) imply that

dT ′(s′, y) − dT ′(s0, y) = dT ′(s′, x) − dT ′(s0, x). (17)

Since s0 ∈ V (PT ′ (s′, y)), the left-hand side of (17) is equal to dT ′ (s′, s0). However, this could only be equal to the right-hand 
side of (17) if s0 ∈ V (PT ′ (s′, x)) held, which cannot be the case, since PT ′ (s′, x) is fully contained in T̃ i . This contradiction 
finishes the proof of Case 1.
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Case 2: Now assume that x, y ∈ T̃ i for some i ≥ 1. Let s′ be a sensor that distinguishes them in T . If s′ ∈ T̃ i , then the 
paths PT (s′, x) and PT (s′, y) remain unchanged by the transformation, hence s′ still distinguishes x and y in T ′ and we 
are done. If s′ /∈ T̃ i , then s′ ∈ T̃0 by Claim 5.5(i). Then, since x, y ∈ T̃ i , the paths PT (s′, x) and PT (s′, y) both contain xi (the 
closest vertex to wq in T̃ i ). On the other hand, the paths PT (xi, x) and PT (xi, y) fully belong to T̃ i , so they are unchanged 
by the transformation, while the edge {s0, xi} is added when creating T ′ . Combining these facts gives

dT ′(s0, x) = 1 + dT ′(xi, x) = 1 + dT (xi, x) ≤ dT (s′, xi) + dT (xi, x) = dT (s′, x), (18)

dT ′(s0, y) = 1 + dT ′(xi, y) = 1 + dT (xi, y) ≤ dT (s′, xi) + dT (xi, y) = dT (s′, y), (19)

and we assumed that the right-hand side of both sides is at most k, so s0 measures both x and y in T ′ , and further, since 
we replaced the segment PT (s0, xi) by a single edge in T ′ ,

dT ′(s0, x) − dT ′(s0, y) = dT (xi, x) − dT (xi, y) = dT (s′, x) − dT (s′, y). (20)

The combination of (18), (19) and (20) implies that if s′ distinguished x and y in T , then s0 distinguishes them in T ′ , 
finishing the proof.

Case 3: Next, assume that x, y ∈ T̃0. Then there is a sensor s′ that resolves them in T . If s′ ∈ T̃0, then the paths PT (s′, x)
and PT (s′, y) completely lie in T̃0, so they stay intact during the transformation. Hence, s′ still resolves x, y in T ′ and we 
are done. Now assume that s′ ∈ T̃ i for some i ≥ 1. We will show that in this case either s0 or s′

0 resolves x, y in T ′ .
By Claim 5.4, typs0,s′0 (s′) = q in T , and {wq, uq+1} ∈ E(PT (wq, s′)). Hence, both PT (s′, x) and PT (s′, y) contain wq . 

Without loss of generality we can assume that there is no sensor besides s′ on the path PT (s′, wq) (if there was 
one, we could relabel that to s′). Now if dT (s′, wq) ≤ max{dT (s0, wq), dT (s′

0, wq)} then two of PT (s0, s′
0), PT (s0, s′) and 

PT (s′
0, s

′) would form a pair strong sensor paths that share an edge, contradicting Condition 5.1(ii). Hence, dT (s′, wq) >
max{dT (s0, wq), dT (s′

0, wq)}, thus

dT (s0, x) ≤ dT (s0, wq) + dT (wq, x) < dT (s′, wq) + dT (wq, x) = dT (s′, x), (21)

and the same holds for s′
0 in place of s0. This implies that if s′ measures x in T , then so do s0 and s′

0, and the same 
reasoning holds for y.

We know that s′ measures at least one of x and y in T , say x. Then, by (21) both s0 and s′
0 also measure x in T . Since 

s0, s′
0, x, y ∈ T̃0, the paths PT (s0, x), PT (s′

0, x) remain unchanged by the transformation, hence, s0 and s′
0 both measure x in 

T ′ too. Now assume that neither s0 nor s′
0 distinguishes x, y in T ′ . Recalling Definition 3.11, this means that

typs0,s′0(x) = typs0,s′0(y), hgts0,s′0(x) = hgts0,s′0(y),

in T ′ , and thus also in T , otherwise at least one of s0, s′
0 would resolve x, y. In particular this also implies that dT (wq, x) =

dT (wq, y). Then

dT (s′, x) = dT (s′, wq) + dT (wq, x) = dT (s′, wq) + dT (wq, y) = dT (s′, y)

by wq ∈ V (PT (s′, x)) ∩ V (PT (s′, y)). This contradicts the assumption that s′ resolved x, y in T , thus finishing the proof.
Case 4: Assume that x, y ∈ V 1 ∪ V 2. Then, by the construction of the edge set E2, x and y will both lie on a leaf-path 

in T ′ emanating from wq . Hence, typs0,s′0 (x) = typs0,s′0(y) and hgts0,s′0 (x) �= hgts0,s′0 (y) in T ′ , so x and y are distinguished by 
s0 or s′

0 (or both) as long as at least one of them is measured by at least one of s0 and s′
0. But in fact both x and y are 

measured by both s0 and s′
0 in T ′ by Claim 5.6, finishing the proof.

Case 5: Next, assume that x ∈ T̃ i for some i ≥ 1, and y ∈ V 1 ∪ V 2. The proof in this case is identical to that of Case 1.
Case 6: Finally, assume that x ∈ T̃0 and y ∈ V 1 ∪ V 2. Then, by the construction of T ′ , and by Claim 5.6, in T ′ we have 

typs0,s′0 (y) = q and 1 ≤ hgts0,s′0 (y) ≤ k − q, while for x either x = wq or typs0,s′0 (x) �= q. This implies that x, y are resolved by 
{s0, s′

0} in T ′ , either by Claim 3.12 or by the fact that the height is not identical.
Proof of (ii): Assume that for a sensor s ∈ S , the vertices of AT (s) form a leaf-path emanating from s in T . Then none of 

the vertices in AT (s) are adjacent to a vertex in V 1 ⊆ AT (s0, s′
0). Also, any vertex in AT (s) can only be adjacent to a type-q

vertex in T (with respect to s0, s′
0) if typs0,s′0(s) = q. In this case, by Claim 5.4, {wq, uq+1} ∈ E(PT (wq, s)) ⊆ E(PT (wq, v))

for any v ∈ AT (s). Thus, none of the vertices in AT (s) are adjacent to a vertex in V 2 either. Hence, the removal of the edge 
set E1 does not change this leaf-path. The addition of the edge set E2 also does not add an edge adjacent to any of the 
vertices in AT (s). After these steps, if any one of the vertices in AT (s) ∪ {s} is in T̃ i for some i ≥ 1, then all of AT (s) ∪ {s}
are in T̃ i , and s was closer to s0 in T than any vertex in AT (s). Hence, the addition of the new edge between s0 and T̃ i in 
E3 will again not add an edge adjacent to any vertex in AT (s). This proves that AT (s) ⊆ AT ′ (s), and the vertices of AT (s)
still form a leaf-path emanating from s in T ′ .

Next, we have to show that there is no new vertex in AT ′ (s) compared to AT (s) for any sensor s. Assume that x ∈
V \ (S ∪ (∪s∈S AT (s))). To prove that x /∈ AT ′ (s) for any s ∈ S , we distinguish the following cases.

Case 1: Assume that typs0,s′0 (x) = 0 in T . Then any sensor s� ∈ S that directly measures x in T also has typs0,s′0 (s�) = 0
(otherwise s0 ∈ V (PT (s�, x)) would hold). Hence, the path PT (s�, x) remains unchanged by the transformation. Since x ∈
16



Z. Bartha, J. Komjáthy and J. Raes Discrete Mathematics 346 (2023) 113410
V \ (S ∪ (∪s∈S AT (s))), there are at least two sensors s�
1, s�

2 that directly measure x in T , hence, by the above reasoning 
applied twice, they both measure x directly in T ′ too, proving that x /∈ AT ′ (s) for any s ∈ S .

Case 2: Assume that typs0,s′0 (x) = dT (s0, s′
0) in T . The proof in this case is identical to that of Case 1 with s′

0 taking the 
role of s0, and type dT (s0, s′

0) taking that of type 0.
Case 3: Assume that typs0,s′0 (x) /∈ {0, q, dT (s0, s′

0)} in T . Then by Definition 5.3 the paths PT (s0, x), PT (s′
0, x) remain 

untouched by the transformation. We will show that this implies that both s0 and s′
0 directly measure x in T ′ , and as a 

result x /∈ ∪s∈S AT ′ (s). Assume that x /∈ ∪s∈S AT ′ (s) ∪ S . Then there is at least two sensors s�
1, s

�
2 directly measuring x in T . 

We shall show that s0, s′
0 can have these roles. If we immediately know that s0, s′

0 both directly measure x, we are done. 
Suppose now that we only know that there is an s� ∈ S \ {s0, s′

0} that directly measures x.
By Claim 5.4, for every sensor s ∈ S , typs0,s′0(s) ∈ {0, q, dT (s0, s′

0)}. Since wq /∈ S , and typs0,s′0(x) �= {0, q, dT (s0, s′
0)} by 

assumption, this means that there is no sensor on the paths PT (s0, x), PT (s′
0, x) besides s0, s′

0, respectively. Furthermore, 
for every sensor s� ∈ S that directly measures x, wq ∈ V (PT (s�, x)), so s� also directly measures wq . Now we use the fact 
that in this case dT (s�, wq) > max{dT (s0, wq), dT (s′

0, wq)}, as in the proof of Claim 5.6, since otherwise two of the paths 
PT (s�, s0), PT (s�, s′

0) and PT (s0, s′
0) would form a pair of strong sensor paths sharing an edge, contradicting Condition 5.1. 

Hence,

dT (s0, x) ≤ dT (s0, wq) + dT (wq, x) < dT (s�, wq) + dT (wq, x) = dT (s�, x) ≤ k,

and the same holds for s′
0 in place of s0. Therefore, both s0 and s′

0 directly measure x in T . By the fact that typs0,s′0(x) �= q, 
the paths PT (s0, x), PT (s′

0, x) are untouched by transformation B, s0, s′
0 both directly measure x in T ′ as well, showing that 

x /∈ AT ′ (s) for any sensor s ∈ S .
Case 4: Assume that x ∈ V 1 ∪ V 2. Then x will lie on a leaf-path in T ′ emanating from wq , which is of length at most 

k − q by Claim 5.6. Hence, x will be directly measured by both s0 and s′
0 in T ′ , implying that x /∈ AT ′ (s) for any s ∈ S .

Case 5: The last case is when typs0,s′0 (x) = q in T and x /∈ V 1 ∪ V 2. Then, by Definition 5.3, x ∈ T̃ i for some i ≥ 1, 
and x /∈ AT (s0, s′

0). This latter fact implies that there exist two distinct sensors s�
1, s�

2 that directly measure x in T and 
{s�

1, s
�
2} �= {s0, s′

0}. If both s�
1, s

�
2 ∈ T̃ i , then the paths PT (s�

1, x), PT (s�
2, x) remain unchanged by the transformation, hence, 

both s�
1 and s�

2 still directly measure x in T ′ , finishing the proof. If either s�
1 or s�

2 is not in T̃ i , then it has to be in {s0, s′
0}

by Claim 5.5(i)–(ii). Since {s�
1, s

�
2} �= {s0, s′

0}, we can assume in this case that s�
1 ∈ {s0, s′

0} and s�
2 ∈ T̃ i . Similarly as above, s�

2
then directly measures x in T ′ . We will finish the proof by showing that the fact that either s0 or s′

0 directly measures x in 
T implies that s0 directly measures x in T ′ . Since xi is the closest vertex of T̃ i to s0 in T , and the edge {s0, xi} is added in 
T ′ by the transformation, we have

dT ′(s0, x) = 1 + dT ′(xi, x) = 1 + dT (xi, x),

since the path PT (xi, x) remains unchanged by the transformation. Hence,

dT ′(s0, x) ≤ min{dT (s0, xi),dT (s′
0, xi)} + dT (xi, x) = min{dT (s0, x),dT (s′

0, x)} ≤ k,

as xi lies on both paths PT (s0, x) and PT (s′
0, x). This shows that s0 indeed measures x in T ′ . The fact that s0 directly 

measures x in T ′ follows from the fact that PT ′ (xi, x) does not contain any sensors, since it is a subpath of both PT (s0, x)
and PT (s′

0, x), and one of these did not contain any internal sensors by the assumption. This finishes the proof that there 
are indeed at least two sensors that directly measure x in T ′ , and thus x /∈ AT ′ (s) for any s ∈ S .

Proof of (iii): If PT ′ (s, s′) is a sensor path, then there are two possible cases. First, if s, s′ ∈ T̃ i for some i ≥ 0, then 
PT ′ (s, s′) is the same as PT (s, s′) (its edges remain unchanged by the transformation), hence, PT (s, s′) is also a sensor path 
with the same length. Second, if, say, s′ = s0, and s ∈ T̃ i for some i ≥ 1, then the path PT ′ (s0, s) consists of the sub-path 
PT (xi, s) of PT (s0, s) and the edge {s0, xi}, where recall that xi is the closest vertex of T̃ i to s0 in T . If PT ′ (s0, s) is a sensor 
path, then there is no sensor beside s on PT ′ (xi, s) = PT (xi, s). On the other hand, if y is the vertex neighboring xi on the 
path PT (s0, xi), then either y ∈ AT (s0, s′

0) or y = wq , both implying that s0 directly measures y in T , that is, there is no 
other sensor between them. Consequently, PT (s0, s) is indeed a sensor path, and its length is more than that of PT ′ (s0, s), 
as y ∈ V (PT (s0, s)) \ V (PT ′ (s0, s)).

There are indeed no more cases for a sensor path PT ′ (s, s′), as the construction in Definition 5.3 ensures that if s and s′
are in different components among T̃0, T̃1, . . ., then PT ′ (s, s′) contains s0.

Proof of (iv): By Definition 5.3, x1 is the closest vertex to s0 in T in the subtree T̃1. Since T is a tree, and s1 ∈ T̃1, x1 lies 
on the path PT (s0, s1). This implies that PT (x1, s1) ⊆ PT (s0, s1), and the edges of PT (x1, s1) stay intact in T ′ . In particular, 
PT ′ (x1, s1) does not contain another sensor besides s1. Since {s0, x1} is an edge in T ′ , this proves that PT ′ (s0, s1) is indeed 
a sensor path in T ′ .

Next, we will prove that PT ′(s0, s1) is strictly shorter than PT (s0, s1). Since x1 ∈ T̃1, and w1 ∈ T̃0, it holds that x1 �= w1, 
furthermore, w1 ∈ V (PT (s0, x1)) \ {s0, x1}. Hence, |E(PT (s0, x1))| ≥ 2, while {s0, x1} is a single edge in T ′ . Since the edges 
of PT (x1, s1) remain unchanged in T ′ ,

PT (s0, s1) = PT (s0, x1) ∪PT (x1, s1) and PT ′(s0, s1) = {s0, x1} ∪PT (x1, s1),
17
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this finishes the proof.
Proof of (v): Let z be the vertex next to s1 on the path PT (s0, s1). Since PT (s0, s1) is a weak sensor path, s0 cannot 

measure z in T . On the other hand, s′
0 cannot measure z in T either, as we will now show. Assume s′

0 measures z in T . 
Then we have

dT (s′
0, s1) ≤ dT (s′

0, z) + dT (z, s1) ≤ k + 1. (22)

We also have V (PT (s′
0, s1)) = V (PT (s′

0, wq)) ∪ V (PT (wq, s1)), and V (PT (wq, s1)) ⊆ V (s0, s1). Since PT (s0, s1) and 
PT (s0, s′

0) are both sensor paths, it follows that PT (s′
0, s1) is also a sensor path. Hence, (22) shows that PT (s′

0, s1) is a 
strong sensor path. Thus PT (s0, s′

0) and PT (s′
0, s1) are a pair of strong sensor paths sharing an edge. This contradicts with 

Condition 5.1(ii), showing that neither s0 nor s′
0 can measure z in T . But z ∈ PT (s0, s1), so by Condition 5.1(i), z /∈ AT (s1), 

i.e., there has to be another sensor besides s1 that directly measures z, say s2. This, similarly to (15), shows that PT (s2, s1)

is a strong sensor path. This, in particular, implies that s2 ∈ T̃1, and the edges of PT (s2, s1) remain unchanged in T ′ . 
Now, if after the transformation, PT ′ (s0, s1) becomes a strong sensor path, then s2 /∈ PT ′ (s0, s1) shows that PT ′ (s0, s2) and 
PT ′ (s2, s1) form a pair of strong sensor paths that share an edge, thus finishing the proof of part (v). �

Finally, we can use the main properties of Transformation B to achieve the main result of this section: a modification of 
the tree that has overlapping strong sensor paths.

Lemma 5.8. Let T = (V , E) be a tree with a k-truncated resolving set S. Suppose that Condition 5.1(i)–(iii) hold for T . Then there is 
another tree ̂T = (V , ̂E) on the same vertex set such that the following hold:

(i) S is still a k-truncated resolving set in ̂T ,
(ii) for each s ∈ S, AT̂ (s) = AT (s), and its vertices still form a leaf-path in ̂T emanating from s, and

(iii) there is at least one pair of strong sensor paths in ̂T that share an edge.

Proof. Let T0 = T , and then let us iteratively define Ti := trB
(
Ti−1, S, s(i−1)

0 , s(i−1)
1

)
for i ≥ 1, as long as Ti−1 does not have a 

pair of strong sensor paths that share an edge, and where s(i−1)
0 , s(i−1)

1 are the endpoints of one of the longest weak sensor 
paths in Ti−1. Let T̂ = Timax where imax is the first index i in this procedure for which there is a pair strong sensor paths in 
Ti that share an edge. We prove that this procedure is well-defined, and T̂ = Timax satisfies the conditions of Lemma 5.8.

For an inductive proof, assume that S is a k-truncated resolving set in Ti−1, 1 ≤ i ≤ imax, and Condition 5.1(i)–(iii) all 
hold for Ti−1. (These indeed hold for i = 1.) Then Ti := trB

(
Ti−1, S, s(i−1)

0 , s(i−1)
1

)
is well-defined.

By Lemma 5.7(i), if S was a k-truncated resolving set in Ti−1, then it will remain so in Ti . By Lemma 5.7(ii), if Con-
dition 5.1(i) held for Ti−1, then it will also hold in Ti . Furthermore, for every sensor s ∈ S , ATi (s) = ATi−1 (s), and its 
vertices still form a leaf-path emanating from s in Ti . Condition 5.1(ii) holds for Ti by assumption when i ≤ imax − 1. By 
Lemma 5.7(iv)–(v) either PTi (s(i−1)

0 , s(i−1)
1 ) is still a weak sensor path in Ti , and then Condition 5.1(iii) holds for Ti , or 

PTi (s(i−1)
0 , s(i−1)

1 ) is a strong sensor path in Ti , and then Ti has a pair of strong sensor paths sharing an edge, meaning 
i = imax. This finishes the proof that Ti := trB

(
Ti, S, s(i−1)

0 , s(i−1)
1

)
is indeed well-defined for i ≤ imax, and inductively shows 

that parts (i), (ii) of Lemma 5.8 hold for Ti for any i ≤ imax. We are only left to show that the procedure finishes in finitely 
many steps, that is, imax < ∞. In that case, by assumption part (iii) of Lemma 5.8 also holds for T̂ = Timax .

By Lemma 5.7(iii), for i ≤ imax, each sensor path in Ti−1 either stops being a sensor path in Ti , or otherwise its length 
does not increase. Also, new sensor paths cannot emerge in Ti compared to Ti−1. Moreover, by part (iv) of the same lemma, 
the length of at least one sensor path strictly decreases from Ti−1 to Ti . Therefore, if �i is the sum of the lengths of all 
sensors paths in Ti , then �i ≤ �i−1 − 1 for every i ≤ imax. But �i ≥ 0 has to hold for every i, which implies that imax < ∞, 
finishing the proof. �
6. Transformation C: overlapping short sensor paths are suboptimal

Having applied Transformations A and B repeatedly, as in Lemmas 4.4 and 5.8 in the previous two sections, we can now 
assume that we have a tree T with k-truncated resolving set S such that one of the following two cases holds. In the first 
case T has a special structure, such that (i) attractions of single sensors are contained in a leaf-path attached to that sensor, 
(ii) all the strong sensor paths in T are disjoint, possibly except for their endpoints, and (iii) T does not have any weak 
sensor path. In this case, we skip the arguments in this section, and move directly to Section 7 to find the maximal size 
of such a tree. The other case is when T has a pair overlapping strong sensor paths. In this section we prove that such a 
tree cannot be optimal. We achieve this by introducing a third rewiring procedure, Transformation C, which separates these 
two overlapping sensor paths, while adding a new vertex to T , such that S is still a k-truncated resolving set on this larger 
graph.

The structure of this section is as follows. First, we state the conditions under which Transformation C will be applied, 
fixing the notation, before introducing the transformation. After that, we first observe preliminary facts about Transformation 
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C, then state and prove its main properties in Lemma 6.4. Finally, we state and prove Lemma 6.5, the main result of this 
section, which shows that an optimal tree cannot have overlapping strong sensor paths.

To help the reader we try to make the notation as similar to Transformations A and B as possible throughout this section.

Condition 6.1. Let T = (V , E) be a tree with a k-truncated resolving set S ⊆ V . Assume that T has at least one pair of strong 
sensor paths that share an edge. We assume that PT (s0, s′

0) is one of the shortest among the strong sensor paths that share 
an edge with another strong sensor path, and that PT (s0, s1) is one of the shortest among the strong sensor paths that 
share an edge with PT (s0, s′

0). With |V (PT (s0, s′
0)) ∩ V (PT (s0, s1))| = q ≤ k − 1, we denote the vertices on these two paths 

as follows:

V (PT (s0, s′
0)) = {s0, w1, . . . , wq, wq+1, . . . , wd(s0,s′0)−1, s′

0},
V (PT (s0, s1)) = {s0, w1, . . . , wq, uq+1, . . . , ud(s0,s1)−1, s1},

(23)

with q ≤ dT (s0, s′
0) − q ≤ dT (s0, s1) − q, and each sensor s� ∈ S \ {s0, s′

0, s1} that directly measures wq has dT (s�, wq) ≥
dT (s0, s1) − q.

The last statement is indeed true since the assumptions that PT (s0, s′
0) is the shortest strong sensor path among the 

ones sharing an edge with another strong one, and that PT (s0, s1) is at most as long as PT (s′
0, s1) imply that dT (s0, wq) ≤

dT (s′
0, wq) ≤ dT (s1, wq). I.e., among the sensors s ∈ S for which there is no other sensor on the path PT (s, wq), the closest 

one to wq is s0, the second closest one is s′
0, and the third closest one is s1 (ties are allowed). Moreover, all three of s0, s′

0, s1
(directly) measure wq , since PT (s0, s′

0) and PT (s0, s1) are strong sensor paths.
Note that it is possible that wq+1 = s′

0 or uq+1 = s1, but only if q = 1.
In order to prove that overlapping strong sensor paths (as in Condition 6.1) make T suboptimal, we introduce Transforma-

tion C next. Heuristically speaking, we will do the following. We ‘separate’ the overlapping paths PT (s0, s′
0) and PT (s0, s1)

by keeping the former one intact, while in PT (s0, s1) we replace the segment PT (s0, uq+1) by a new path (s0, v�, uq+1)

with a new vertex v� , while cutting the edge {wq, uq+1}. This way we increase the number of vertices in the graph while 
not increasing the length of either PT (s0, s′

0) or PT (s0, s1). Now the vertices that were measured in T by s0, s′
0 ‘through’ 

wq might not be distinguished from some other vertices anymore, since we cut the edge {wq, uq+1}. To solve this prob-
lem we make some further changes in the graph. We pretend that wq is a sensor, but with a smaller measuring radius 
k − (dT (s0, s′

0) − q). This is the distance up to which s′
0 measured vertices through wq in T . We then ‘cut out’ the attraction 

of wq (vertices that are only directly measured by wq , if it were the above-mentioned sensor) from the tree, and move it 
to a leaf-path emanating from wq , similarly to transformation A. We obtain then a forest. Then we connect each connected 
component of this forest to form a new tree by connecting s0 to the originally closest vertex in every other component, 
again similarly to transformation A. Formally, the transformation is as follows.

Definition 6.2 (Transformation C). Let T = (V , E) be a tree with a k-truncated resolving set S ⊆ V satisfying Condition 5.1(i), 
and s0, s′

0, s1 ∈ S , wq ∈ V satisfying the setting of Condition 6.1. Let, for some � ∈ {0, 1, . . . , k − (dT (s0, s′
0) − q)},

A�
T (wq) := {

x ∈ V \ S : ∀s� ∈ S : d(s�, x) ≥ k + 1 or wq ∈ V (PT (s�, x))
} =: {v1, . . . , v�}, (24)

where dT (wq, vi) ≤ dT (wq, v j) when i ≤ j. Then define the following edge sets.

E1 := {{wq, uq+1}} ∪ {{x, y} ∈ E(T ) : x ∈ A�
T (wq) or y ∈ A�

T (wq)
}
, (25)

E2 := {{wq, v1}}
⋃

(∪�−1
i=1 {{vi, vi+1}}). (26)

Let T̃0, ̃T1, . . . , ̃Tr be the connected components of T̃ = (V \ A�
T (wq), E \ E1), with T̃0 containing s0 (and the whole path 

PT (s0, s′
0)), and T̃1 containing s1. Let xi be the unique closest vertex of T̃ i to wq in T , for i ∈ {2, 3, . . . , r}, and let v� be a 

new vertex, which is not in V . Then we also define the edge set

E3 :=
(
{{s0, v�}} ∪ {{v�, uq+1}}

)⋃(
∪r

i=1 {{s0, xi}}
)
. (27)

Then define trC (T , S, s0, s′
0, s1) := (V ′, E ′) where V ′ := V ∪ {v�}, and E ′ := (E \ E1) ∪ E2 ∪ E3.

For an example of Transformation C see Fig. 3.
We make a couple of comments on this definition. Since PT (s0, s′

0) and PT (s0, s1) are both strong sensor paths, all of 
their vertices are measured directly by both endpoints of the path. Hence, V (PT (s0, s′

0)) ∪V (PT (s0, s1)) ⊆ V \ A�
T (wq), and in 

fact, V (PT (s0, s′
0)) ⊆ T̃0, and V (PT (uq+1, s1)) ⊆ T̃1. (Note that T̃1 is the only component T̃ i that was not separated from T̃0

by a vertex in A�
T (wq), but by the additional cut that we made at the edge {wq, uq+1}.) Next, |A�

T (wq)| ≤ k − (dT (s0, s′
0) −q), 

as we will now show. By the definition of A�
T , for every sensor s that measures a vertex x ∈ A�

T , wq ∈ V (PT (s, x)). Hence, if 
x, y ∈ A� (wq) had the same distance from wq , then they would have the same distance from every sensor that measures at 
T
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Fig. 3. An example of transformation C with T on the left and T ′ = trC (T , S, s0, s′
0, s1) on the right. Here k = 5. The blue vertices are the sensors in S , and 

the yellow vertices are in A�
T (wq) ∪ {v�}. The red edges belong to E1, and are deleted by the transformation. The grey edges belong to E2 ∪ E3, and are 

added by the transformation. The subtrees ̃T0, ̃T1, ̃T2 and ̃T3 are also highlighted. Observe that vertex x2 and the leaf vertex at distance two from x2 in ̃T2

are only resolved by s0 both in T and in T ′ . In T , the sensors in T̃0 may measure vertices in any subtree, while s1 may only measure vertices in T̃1 and 
possibly in ̃T0. Sensors in ̃T2 and ̃T3 can only measure vertices within their own subtrees.

least one of them, contradicting the fact that S is a k-truncated resolving set in T . On the other hand, the largest distance a 
vertex in A�

T can be from wq is k − (dT (s0, s′
0) −q), otherwise s′

0 would not measure it, meaning that only s0 could measure 
it directly (by the remarks after Condition 6.1), contradicting Condition 5.1(i).

Next, similarly to Transformations A and B, we prove a ‘no communication’ lemma for the graph components in trC .

Claim 6.3 (No ‘communication’ between different subtrees). Consider the setting and notation of Definition 6.2 and let T ′ =
trC (T , S, s0, s′

0, s1).

(i) Let s� be any sensor in ̃Ti for some i ∈ {2, 3, . . . , r}. Then, for all vertices y /∈ T̃ i , dT (s�, y) ≥ k + 1 and dT ′ (s�, y) ≥ k + 1 both 
hold.

(ii) Let s� be any sensor in ̃T0 ∪ T̃1 . Then, for any y ∈ V \ (T̃0 ∪ T̃1), either dT (s�, y) ≥ k + 1, or the path PT (s�, y) contains wq.
(iii) Let s� be any sensor in ̃T0 . Then, for any y ∈ T̃1 , it holds that {wq, uq+1} ∈ V (PT (s�, y)). The same is true if s� ∈ T̃1 and y ∈ T̃0 .

Proof. The proofs parts (i)–(ii) are completely analogous to those of Claim 4.2(i)–(ii), with s, AT (s) there replaced by 
wq, A�

T (wq) here. Part (iii) is immediate by the fact that the only edge connecting vertices of T̃0 and T̃1 in T is 
{wq, uq+1}. �

We continue by proving the main properties of Transformation C.

Lemma 6.4. Let T = (V , E) be a tree with a k-truncated resolving set S ⊆ V such that Condition 5.1(i) and Condition 6.1 hold. Then S
is still a k-truncated resolving set in trC (T , S, s0, s′

0, s1).

Proof. We will prove that for any pair of vertices x, y ∈ V ′ \ S there is a sensor in S that resolves them in T ′ =
trC (T , S, s0, s′

0, s1), similarly to the proofs of Lemma 4.3(i) and Lemma 5.7(i). We will use the notation of Condition 6.1
and Definition 6.2. We will do a case-distinction analysis with respect to the location of x and y in the components T̃ i , 
i ≥ 0, and in the vertex sets A�

T (wq) and {v�}. The numbering of the cases is consistent with those in the proofs of Lemma 
4.3(i) and 5.7(i).

Case 1a: Assume that x ∈ T̃ i and y ∈ T̃ j for some i ≥ 2, j ≥ 0, j �= i. Then, since x /∈ A�
T (wq), there is a sensor s′ ∈ S that 

measures x such that PT (s′, x) does not contain wq . Then, by Claim 6.3(i)–(ii), s′ ∈ T̃ i . Therefore, the edges of PT (s′, x) are 
unchanged in T ′ , so s′ still measures x in T ′ . However, it does not measure y ∈ T̃ j in T ′ by Claim 6.3(i). Hence, s′ resolves 
x and y in T ′ .

Case 1b: Assume that x ∈ T̃1 and y ∈ T̃0. Since x /∈ A�
T (wq), there has to exist a sensor s(x) ∈ S that measures x in T such 

that wq /∈ V (PT (s(x), x)). By Claim 6.3(i), s(x) /∈ ∪i≥2 V (T̃ i), and s(x) also cannot be in T̃0, since then wq ∈ V (PT (s(x), x))
would be the case. Hence, s(x) ∈ T̃1. By the similar reasoning, there has to exist a sensor s(y) ∈ S such that s(y) measures 
y, and wq /∈ V (PT (s(y), y)), and hence s(y) ∈ T̃0. It follows that the paths PT (s(x), x) and PT (s(y), y) are unchanged by 
the transformation, hence, s(x) still measures x in T ′ , and s(y) still measures y in T ′ . This implies that either s(x) or 
s(y) resolves x, y in T ′ as follows. For an indirect proof assume that neither s(x) nor s(y) resolves x, y in T ′ . Then, this 
assumption implies that s(x) measures both x and y in T ′ with dT ′ (s(x), x) = dT ′ (s(x), y), and the same holds for s(y). It 
then follows that typs(x),s(y)(x) = typs(x),s(y)(y) in T ′ . But this cannot be the case, as x, s(x) ∈ T̃1 and y, s(y) ∈ T̃0 together 
imply that
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typs(x),s(y)(x) < typs(x),s(y)(v�) < typs(x),s(y)(y)

in T ′ , finishing the proof.
Case 2: Now assume that x, y ∈ T̃ i for some i ≥ 2. Let s′ ∈ S be a sensor that resolves x and y in T . Then s′ has to 

measure at least one of x and y in T , hence s′ /∈ T̃ j for j ≥ 2, j �= i by Claim 6.3(i). There are two (sub)cases: either s′ ∈ T̃ i , 
or s′ ∈ T̃0 ∪ T̃1. First we consider s′ ∈ T̃ i . Then the edges of both PT (s′, x) and PT (s′, y) are all still present in T ′ , and s′
resolves x and y in T ′ .

For the other case, we assume that s′ ∈ T̃0 ∪ T̃1. We will prove that s0 also resolves x, y in T in this case, and as a result 
s0 will also resolve them in T ′ . First, we know that s′ measures at least one of x and y, say it measures x. Then, since x ∈ T̃ i

for some i ≥ 2, by Claim 6.3(ii), PT (s′, x) contains wq . On the path PT (wq, x) there has to be at least one vertex in A�
T (wq), 

let the closest one to x be u (u is unique, otherwise there would be a cycle in T ). Then, since ̃Ti is a connected component in 
V \ A�

T (wq), and y ∈ T̃ i , u is also on the path PT (wq, y). Hence, V (PT (s′, wq)) ⊆ V (PT (s′, u)) ⊆ V (PT (s′, x)) ∩ V (PT (s′, y)). 
This implies that wq is also contained in the path PT (s′, y). On the other hand, by the discussion after Condition 6.1, we 
have that dT (s0, wq) ≤ dT (s′, wq), hence

dT (s0, x) ≤ dT (s0, wq) + dT (wq, x) ≤ dT (s′, wq) + dT (wq, x) = dT (s′, x) ≤ k,

and thus s0 measures x in T . Then, by Claim 6.3(ii), the path PT (s0, x) contains wq . Then, by the same reasoning as above 
(changing s′ to s0), we get that PT (s0, y) also contains wq . Consequently,

dT (s0, x) − dT (s0, y) = dT (wq, x) − dT (wq, y) = dT (s′, x) − dT (s′, y),

proving that s0 indeed also resolves x, y in T if s′ resolves them in T .
Next, we will prove that s0 then also resolves x, y in T ′ . Recall xi = arg minv∈T̃ i

dT (wq, v) from Definition 6.2. To obtain 
T ′ , we cut the edges adjacent to A�

T (wq) and replaced them by {s0, xi} ∈ E3 (an edge added when creating T ′). Since every 
path PT (s0, v), v ∈ T̃ i , starts with the segment PT (s0, xi) in T , which we replaced with the single edge {s0, xi} to obtain 
PT ′ (s0, v), the following holds for all v ∈ T̃ i (for any i ≥ 2):

dT ′(s0, v) = dT (s0, v) − dT (s0, xi) + 1 ≤ dT (s0, v). (28)

Hence,

dT ′(s0, x) − dT ′(s0, y) = dT (s0, x) − dT (s0, y), (29)

and these distances in T ′ are no longer than in T . So, if s0 resolved x any y in T , then it still resolves them in T ′ . This 
finishes the proof of Case 2.

Case 3a: Next, suppose that x, y ∈ T̃0, and let s� be a sensor that resolves them in T . If s� ∈ T̃0, then the paths PT (s�, x)
and PT (s�, y) remain unchanged by the transformation, and thus s� still resolves x, y in T ′ . Now assume that s� /∈ T̃0. By 
Claim 6.3(i), s� ∈ T̃1 has to hold. We will prove that in this case either s0 or s′

0 will resolve x, y in T ′ . First, since s� ∈ T̃1

and x, y ∈ T̃0, it has to hold that wq ∈ V (PT (s�, x)) ∩ V (PT (s�, y)) by Claim 6.3(iii). Since s� measures at least one of x, y, 
say it measures x, we have

k ≥ dT (s�, x) = dT (s�, wq) + dT (wq, x)

≥ max{dT (s0, wq),dT (s′
0, wq)} + dT (wq, x) ≥ max{dT (s0, x),dT (s′

0, x)},
where in the first inequality we used the argument after Condition 6.1. Hence, both s0 and s′

0 measure x in T ′ . Now assume 
indirectly that neither s0 nor s′

0 resolves x, y in T ′ , then

typs0,s′0(x) = typs0,s′0(y) =: t, hgts0,s′0(x) = hgts0,s′0(y) =: h (30)

in T ′ . Then the same hold in T as all of s0, s′
0, x, y ∈ T̃0, hence the paths between them are all unchanged by the transfor-

mation. Then (30) implies that

dT (s�, x) = dT (s�, wq) + |q − t| + h = dT (s�, y),

contradicting the fact that s� resolved x, y in T . This finishes the proof.
Case 3b: Now assume that x, y ∈ T̃1, and let s� be a sensor that resolves them in T . If s� ∈ T̃1, then the paths PT (s�, x)

and PT (s�, y) remain unchanged by the transformation, and thus s� still resolves x, y in T ′ and we are done. Now assume 
that s� /∈ T̃1. By Claim 6.3(i), s� ∈ T̃0 has to hold. Then, by part (iii) of the same claim, uq+1 ∈ V (PT (s�, x)) ∩ V (PT (s�, y)). 
We will show that this implies that in T ′ s0 will resolve x, y. Recall that in T ′ , the length-2 path (s0, v�, uq+1) connects s0

to T1. Hence for any v ∈ T̃1,

dT ′(s0, v) = dT ′(s0, uq+1) + dT ′(uq+1, v) = 2 + dT (uq+1, v), (31)
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and since dT (s�, uq+1) ≥ 2 for all s� ∈ S ,

k ≥ dT (s�, v) = dT (s�, uq+1) + dT (uq+1, v) ≥ 2 + dT (uq+1, v). (32)

The combination of (31) and (32) with v = x and v = y, respectively, shows that s0 measures both x and y in T ′ . Since 
dT (s�, x) �= dT (s�, y), (32) applied twice for v = x and v = y shows that dT (uq+1, x) �= dT (uq+1, y), showing in turn by (31)
that dT ′ (s0, x) �= dT ′ (s0, y). This finishes the proof that s0 resolves x, y in T ′ .

Case 4: Assume that x, y ∈ A�
T (wq). In T ′ they will then both lie on a single leaf-path emanating from wq . By the remarks 

after Definition 6.2, x and y are at different distances from wq in T ′ , and both are measured by both s0 and s′
0, implying 

that both s0 and s′
0 resolve them in T ′ .

Case 5: Assume that x ∈ T̃ i for some i ≥ 2, and y ∈ A�
T (wq). The proof in this case is exactly the same as in Case 1a.

Case 6a: Assume that x ∈ T̃0 and y ∈ A�
T (wq). As noted before, y will be measured by both s0 and s′

0 in T ′ . Assume that 
neither of these two sensors resolve x, y in T ′ . This then implies that dT ′ (s0, x) = dT ′ (s0, y) ≤ k, and the same holds for s′

0
in place of s0. It then follows that

typs0,s′0(x) = typs0,s′0(y) = q, hgts0,s′0(x) = hgts0,s′0(y) =: h (33)

in T ′ . (Such a scenario can be seen on the right picture of Fig. 3, with q = h = 1, with y = v1 and x being the vertex right 
above v1, measured by s6.) Since x /∈ A�

T (wq), there has to be a sensor s(x) ∈ S \ {s0, s′
0} such that s(x) measures x in T , and 

wq /∈ V (PT (s(x), x)). By (33) and since h ≥ 1, by Claim 6.3(i),(iii), this implies that s(x) ∈ T̃0, moreover, typs0,s′0(s(x)) = q in 
both T and T ′ (another type would mean that the path PT (s(x), x) passes through wq , since typs0,s′0 (x) = q = typs0,s′0 (wq), 
a contradiction with x /∈ A�

T (wq)). Let the vertex of the path PT (s(x), x) that is closest to wq be z (on Fig. 3 z and x
coincide, but this is not necessarily the case if h ≥ 2). Then z �= wq by wq /∈ V (PT (s(x), x)). Notice that the edges of the 
paths PT (s(x), x) and PT (s(x), wq) are unchanged by the transformation, as these paths entirely lie in T̃0. Also note that 
z ∈ V (PT (wq, x)) and then dT (z, x) + dT (z, wq) = h. With this, we can write the following:

dT ′(s(x), y) = dT ′(s(x), z) + dT ′(z, wq) + dT ′(wq, y)

= dT (s(x), z) + dT (z, wq) + h

> dT (s(x), z) + dT (z, x) = dT ′(s(x), x),

where in the last line we used that dT (z, x) < dT (wq, x) = h. This proves that s(x) resolves x, y in T ′ .
Case 6b: Assume that x ∈ T̃1 and y ∈ A�

T (wq). We will prove that in this case either s0 or s′
0 will resolve x, y in T ′ . 

Assume indirectly that it is not the case. Then (33) of Case 6a applies for the same reason, which is a contradiction, since 
typs0,s′0 (x) = 0 in T ′ (as the only the pair of edges {s0, v�} ∪ {v�, uq+1} connects T̃0 with T̃1 in T ′).

Case 7: Finally, assume that x = v� �= y. Then we prove that either s0 or s1 will resolve x, y in T ′ . Assume indirectly that 
this does not hold. Since both s0 and s1 measure v� in T ′ (as dT ′ (s1, v�) = dT (s1, wq) ≤ k), this implies that dT ′ (s0, y) =
dT ′ (s0, v�) ≤ k, and the same holds for s1 in place of s0. Consequently, typs0,s1

(y) = typs0,s1
(v�) in T ′ . But this is impossible, 

as typs0,s1
(v�) = 1, and v� is the only such type-1 vertex in T ′ , as it has no other neighbors than the two on the path 

PT ′ (s0, s1). This contradiction finishes the proof. �
Finally, we are in a position to prove the main result of this section. Recall Definition 2.3 introducing T /∈ T �

m as the set 
of largest trees with Tmdk(T ) = m.

Lemma 6.5. Let T = (V , E) be a tree with a k-truncated resolving set S where |S| = m. Assume that for all s ∈ S, AT (s) is contained 
in a single leaf-path starting from s. Then, if T contains a pair of strong sensor paths PT (s0, s′

0) and PT (s0, s1) that share an edge, 
then T /∈ T �

m .

Proof. Suppose that T satisfies Condition 5.1(i) and contains a pair of strong sensor paths that share an edge. Then by 
choosing the shortest among the sensor paths that share an edge with another sensor path, and then choosing the shortest 
among those that overlap with the first path we can identify s0, s′

0, s1 and assume that Condition 6.1 holds. From now on we 
will use the notation therein. In this case, Lemma 6.4 implies that S is a k-truncated resolving set in T ′ = trC (T , S, s0, s′

0, s1), 
whereas T ′ has one more vertex than T , proving that T /∈ T �

m . �
Corollary 6.6. Let T = (V , E) be a tree with a k-truncated resolving set S where |S| = m. Assume that for all s ∈ S, AT (s) is contained 
in a single leaf-path starting from s. If (T , S) either has a weak sensor path or a pair of strong sensors paths that share an edge, then 
T /∈ T �

m .

Proof. If (T , S) has a pair of strong sensors paths that share an edge, then Lemma 6.5 is immediately applicable, yielding 
that T /∈ T �

m . In case (T , S) does not have a pair of overlapping strong sensor paths, but has a weak sensor path, then notice 
that the application of Lemma 5.8 for (T , S) results in another tree T̂ on the same vertex set, and with S still being a 
k-truncated resolving set on T̂ , for which Lemma 6.5 can be applied, and so again T /∈ T �

m . �

22



Z. Bartha, J. Komjáthy and J. Raes Discrete Mathematics 346 (2023) 113410
7. The size of the optimal tree

In this section, we establish the maximal size of a tree T with a given k-truncated metric dimension. Using Lemma 6.5
and Corollary 6.6 will allow us to restrict to the case where (i) attractions of single sensors are contained in a leaf-path 
attached to that sensor, (ii) all the strong sensor paths in T are disjoint, possibly except for their endpoints, and (iii) T does 
not have any weak sensor path. Recall T �

m , the set of trees with maximal number of vertices that can be resolved using a 
sensor set of size m.

Definition 7.1. Let T ��
m ⊆ T �

m be the set of trees T such that there is a k-truncated resolving set S(T ) on T for which 
|S(T )| = m, and for which Condition 5.1(i) holds. In case S(T ) is not unique we fix an arbitrary such choice.

Notice that T ��
m �= ∅, since the application of Lemma 4.4 for any T ∈ T �

m results in a tree T̂ ∈ T ��
m . Hence, giving the size 

of any tree in T �
m is equivalent to giving the size of any tree in T ��

m .

Lemma 7.2 (Number of sensor paths). Let T = (V , E) ∈ T ��
m and consider the sensor set S = S(T ) on it. Then T has m − 1 sensor 

paths.

Proof. We ‘renormalize’ the tree T ∈ T ��
m : we contract every sensor path to be a single edge and delete all vertices that are 

not sensors. This gives us H = (V 2, E2) with V 2 = S and {s1, s2} ∈ E2 if s1, s2 ∈ S and there is a sensor path between s1 and 
s2 in T .

We now prove that H is a tree. H is connected: if there were any s1, s2 in H with no path between them, then 
there would also not be a path between s1, s2 in T , which contradicts with T being a tree. Then, assume H has a cycle 
(s1, s2, . . . , sn, s1). Then the union of the sensor paths between these consecutive si ’s would form a cycle in T , as these 
sensor paths in T must be disjoint by Lemma 6.5 and Corollary 6.6. But T having a cycle contradicts with T being a tree, 
so H cannot have a cycle. Hence, H is a tree as it is a connected graph without cycles. As H is a tree on m vertices, it has 
m − 1 edges, meaning that there are m − 1 sensor paths in T . �

Lemma 7.2 tells us that T has m − 1 sensor paths, arranged in a tree-structure H . Now we optimize the number of 
vertices that can be identified by each of these sensor paths.

Lemma 7.3 (Number of vertices on each sensor path). Consider a tree T ∈ T ��
m with the k-truncated resolving set S = S(T ) for some 

m ≥ 1. The maximal number of vertices in AT (s0, s1) of two neighboring sensors s0, s1 is (k2 + k + 1)/3 if k ≡ 1 (mod 3) and 
(k2 + k)/3 otherwise.

Proof. By Lemma 6.5 and Corollary 6.6 we know that all sensor paths in T are disjoint and strong, i.e., they have at most 
k +1 edges. Consider the sensor path between two neighboring sensors s0, s1 ∈ S . Using Definition 3.3, disjointness of sensor 
paths implies that the vertices in V (PT (s0, s1)) \ {s0, s1} are not directly measured by any sensor in S \ {s0, s1}. Hence, each 
vertex on the sensor path PT (s0, s1) belongs to AT (s0, s1). Recall now the types and heights of vertices from Definition 3.11. 
Using Claim 3.10, and the observation before Definition 5.3, all vertices in AT (s0, s1) must have types between 1 and 
dT (s0, s1) − 1 with respect to s0, s1, and these indeed all belong to AT (s0, s1). Further, again by the observation before 
Definition 5.3, they all must have different (type, height) vectors.

Denote by d := |V (PT (s0, s1))| − 2 the number of vertices between the sensors of the sensor path, so the distance 
between the sensors is d + 1. By the observation before Definition 5.3, the maximal number of different height values that 
can belong to type-i vertices is min{k − i, k − (d + 1 − i)} + 1, since both s0 and s1 have to measure these vertices, the plus 
one is because of the vertex with height 0.

So the maximum number of vertices in AT (s0, s1) is

max
d≤k+1

(|AT (s0, s1)|) = max
d≤k+1

d∑
i=1

(
1 + min{k − i,k − (d + 1 − i)}

)
. (34)

The inner sum (denote it by Sum(d)) can be simplified, namely if d is even:

Sume(d) = d + 2
d∑

i=d/2+1

(k − i) = dk − 3d2

4
+ d

2
, (35)

and if d is odd, we have:
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Fig. 4. Two examples for the optimal construction from the proof of Proposition 2.4. In both cases, the number of sensors (blue vertices) is m = 3, while 
the measuring radius is k = 4 for the figure on the left, and k = 6 for the figure on the right. In the case of latter, if we disconnect the vertices x, y, z from 
their current locations, and instead connect x to u, then y to x, and z to v , then we get another construction with optimal size (that is, a graph in T �

3 ), 
but Condition 5.1(i) will be violated by the leftmost sensor, hence this graph will not be in T ��

3 .

Sumo(d) = d + (k − d + 1

2
) + 2

(d−1)/2∑
i=1

(k − (d + 1 − i))

= dk − 3d2

4
+ d

2
+ 1

4
.

(36)

Observe that Sum�(d) is a concave parabola of d for both � = o, e. In both cases the continuous maximizer results in 
d = (2k +1)/3. Because the formulas are quadratic, the maximal integer value of the formula is found by rounding (2k +1)/3
to the closest integer.

Here, we distinguish three cases depending on the value of (k mod 3).

1. If k ≡ 0 (mod 3), then the closest integer to (2k + 1)/3 is d = 2k/3. This value is always even, so we use d� = 2k/3 in 
(35), which gives (k2 + k)/3.

2. If k ≡ 1 (mod 3), then the closest integer to (2k + 1)/3 is (2k + 1)/3. This value is always odd, so we substitute 
d� = (2k + 1)/3 into (36), which gives (k2 + k + 1)/3.

3. If k ≡ 2 (mod 3), then the closest integer to (2k + 1)/3 is (2k + 2)/3. This value is always even, so we substitute 
d� = (2k + 2)/3 into (35), which gives (k2 + k)/3.

Observe that the optimizer d� ≤ k + 1 holds in all cases and for all k, even if we would drop the restriction of d ≤ k + 1
in (34). (This means that in principle one could allow weak sensor paths in the optimization but one would not gain extra 
vertices on them.) �

We can now prove Proposition 2.4.

Proof of Proposition 2.4. By the remark above Lemma 7.2 it is sufficient to restrict to T � ∈ T ��
m with the corresponding 

k-truncated resolving set S = S(T �). Any such T � has m sensors that have their attraction in a leaf-path of length k attached 
to the sensors themselves, accounting for (k + 1)m vertices. T also has m − 1 sensor paths, each carrying the maximal 
possible size of the attraction of two neighboring sensors, which is (k2 + k + 1)/3 vertices if k ≡ 1 (mod 3) and (k2 + k)/3
otherwise by Lemma 7.3. In total, this means |T �| = (k + 1)m + (m − 1)(k2 +k + 1)/3 if k ≡ 1 (mod 3) and |T �| = (k + 1)m +
(m − 1)(k2 + k)/3 otherwise. �

See Fig. 4 for two examples of the optimal construction described in the proof.

Remark 7.4. In our proof, we only constructed the optimal trees in T ��
m of Definition 7.1. There are trees of optimal size that 

do not satisfy Condition 5.1(i), that is, they belong to T �
m \ T ��

m . An example of how such a tree can be obtained from our 
constructions is illustrated in Fig. 4. However, it follows from our proofs that the repetitive application of Transformation A 
on any tree in T �

m \ T ��
m will result in a tree in T ��

m , which follows the construction that we described.
24



Z. Bartha, J. Komjáthy and J. Raes Discrete Mathematics 346 (2023) 113410
8. Improved lower bound based on leaves

Recall the notation Lv = {P(v)
j } for the collection of leaf-paths starting at a vertex v , and their number Lv = |Lv |, and 

that the length of a leaf-path P(v)
j is denoted by �(P(v)

j ) = �(v, j). Furthermore, we will denote the vertices of P(v)
j other 

than v by x(v, j)
1 , x(v, j)

2 , . . . , x(v, j)
�(v, j) , in order of increasing distance from v . For a generic P ∈ Lv we will also denote its 

vertices other than v in order by x(v)
1 , x(v)

2 , . . . , x(v)

�(P)
. Recall the support vertices F T from Definition 2.6 and the upper and 

lower complexities c̄(�), c(�) from Definition 2.7.

Proof of Lemma 2.8. Let us give some heuristics first: if the length of the leaf-path is at least 3k + 2, we can place two 
sensors at distance k and at distance 2k + 1 from the end-vertex (the leaf) of the leaf-path. These two sensors then resolve 
the last section containing 3k + 2 vertices. We can then ‘cut this section off’ and iterate the procedure until the length of 
the remaining leaf-path is strictly shorter than 3k + 2. Then we treat the remaining short leaf-paths together, and one of 
them will be the special path P � that might need one less sensor since it could be measured via a sensor through v . To 
show that this procedure is optimal, we prove by induction.

The base case is the following: all P (v)
j ∈ Lv have length at most 3k + 1. Let us first assume that this base case holds. 

We distinguish three subcases.
(1) If P (v)

j ∈ Lv has length �(v, j) ∈ [2k + 2, 3k + 1], then the end vertex x(v, j)
�(v, j) needs to be measured by a sensor s in 

{x(v, j)
�(v, j)−k, x

(v, j)
�(v, j)−k+1, . . . , x

(v, j)
�(v, j)}, say s = x(v, j)

i . Furthermore, s cannot distinguish between x(v, j)
i−1 and x(v, j)

i+1 unless there is 

another sensor among x(v, j)
i−k−1, x(v, j)

i−k , . . . , x(v, j)
� (note that i − k − 1 ≥ �(v, j) − 2k − 1 ≥ 1). Hence, we do need at least two 

sensors in V (P (v)
j ) \ {v}, which is exactly (both) c̄(�), c(�) for � ∈ [2k + 2, 3k + 1].

(2) If P (v)
j ∈ Lv has length �(v, j) ∈ [k + 1, 2k + 1], then the end vertex x(v, j)

�(v, j) again has to be measured by a sensor 

in {x(v, j)
�(v, j)−k, x

(v, j)
�(v, j)−k+1, . . . , x

(v, j)
�(v, j)} (note that �(v, j) − k ≥ 1), so V (P (v)

j ) \ {v} needs to contain at least one sensor, which 
gives (both) c̄(�), c(�) for � ∈ [k + 1, 2k + 1].

(3) Now consider all P (v)
j ∈ Lv that have length �(v, j) ∈ [1, k], and call these short leaf-paths. In order to distinguish 

between the vertices {x(v, j)
1 } j of all short leaf-paths {P (v)

j } j , all but at most one of them need to contain a sensor that is 
not at v: this gives c̄(�) for all but one short leaf-paths, and gives c(�) for a single short leaf-path.

This finishes the proof for the base case.
For the inductive step, assume that some P (v)

j ∈ Lv has length �(v, j) ≥ 3k + 2. Then, similarly to the first case above, 

x(v, j)
�(v, j) can only be measured by a sensor in {x(v, j)

�(v, j)−k, x
(v, j)
�(v, j)−k+1, . . . , x

(v, j)
�(v, j)}, say s = x(v, j)

i . Furthermore, s cannot distinguish 

between x(v, j)
i−1 and x(v, j)

i+1 unless there is another sensor s′ among x(v, j)
i−k−1, x

(v, j)
i−k , . . . , x(v, j)

�(v, j) . Here i − k − 1 ≥ �(v, j) − 2k − 1. 

Then, all the vertices that either s or s′ can measure belong to {x(v, j)
�(v, j)−3k−1, x

(v, j)
�(v, j)−3k, . . . , x

(v, j)
�(v, j)}. Hence, the rest of the 

leaf-paths, that is, ∪Lv
k=1 V (P (v)

k ) \ {v, x(v, j)
�(v, j)−3k−1, x

(v, j)
�(v, j)−3k, . . . , x

(v, j)
�(v, j)} need at least as many sensors as they would need in 

the graph T \ {x(v, j)
�(v, j)−3k−1, x

(v, j)
�(v, j)−3k, . . . , x

(v, j)
�(v, j)}. Thus, a leaf-path needs an extra 2 sensors at every multiple of 3k + 2, and 

this is exactly what both c̄(�) and c(�) express. This provides the induction step, and finishes the proof. �
Proof of Theorem 2.9. Assume first that k ≡ 1 (mod 3), and let

BT :=
⌈

3n − 3
∑

v∈F T

∑Lv
j=1 �(v, j) + k2 + k + 1

k2 + 4k + 4

⌉
.

For an indirect proof, assume that (3) does not hold, and in fact there exists a k-truncated resolving set S� for T such that

|S�| ≤ BT − 1 +
∑
v∈F T

R(Lv) − |F T |. (37)

Let

V L P :=
⋃

v∈F T

Lv⋃
j=1

V
(

P (v)
j

)
\ {v},

the union of vertices in leaf-paths starting at support vertices, and let T ′ := T \ V L P be the ‘trimmed’ version of T , when 
the leaf-paths emanating from the support vertices are removed, but the support vertices still belong to T ′ . Observe that T ′
is indeed a tree, i.e., connected, since we only removed leaf-paths ending at leafs. By Lemma 2.8, and (2),
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∣∣S� ∩ V L P
∣∣ ≥

∑
v∈F T

R(Lv).

Hence, since T ′ and V L P are on disjoint vertex-sets, by (37),

|S� ∩ V (T ′)| ≤ BT − 1 − |F T |. (38)

Consider now the new sensor set ̃S = S� ∪ F T . Since S� is a k-truncated resolving set for T , so is ̃S . Moreover, since F T ⊆ S̃ , 
none of the sensors in S̃ ∩ V L P directly measures any vertex in T ′ \ S̃ , in the sense of Definition 3.3. This also means that if 
some sensor s ∈ (V (Lv) \ {v}) ∩ S� resolves two vertices x, y ∈ T ′ , then so does v ∈ F T ∩ S̃ . It then follows that S̃ ∩ V (T ′) is 
a k-truncated resolving set for T ′ . Moreover, since S̃ = S� ∪ F T , by (38),

|̃S ∩ V (T ′)| ≤ |̃S� ∪ V (T ′)| + |F T | ≤ BT − 1.

However, Theorem 1.1 implies that Tmdk(T ′) ≥ BT , as |V (T ′)| = n −∑
v∈F T

∑Lv
j=1 �(v, j). This contradiction finishes the proof 

when k ≡ 1 (mod 3). The proof in the case k �≡ 1 (mod 3) is completely analogous. �
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