
 
 

Delft University of Technology

Incremental Control Dependency Frontier Exploration for Many-Criteria Test Case
Generation

Panichella, Annibale; Kifetew, Fitsum Meshesha; Tonella, Paolo

DOI
10.1007/978-3-319-99241-9_17
Publication date
2018
Document Version
Accepted author manuscript
Published in
Search-Baed Software Engineering - 10th International Symposium, SSBSE 2018 - Proceedings

Citation (APA)
Panichella, A., Kifetew, F. M., & Tonella, P. (2018). Incremental Control Dependency Frontier Exploration
for Many-Criteria Test Case Generation. In T. E. Colanzi, & P. McMinn (Eds.), Search-Baed Software
Engineering - 10th International Symposium, SSBSE 2018 - Proceedings (pp. 309-324). (Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics); Vol. 11036 LNCS). Springer. https://doi.org/10.1007/978-3-319-99241-9_17
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-319-99241-9_17
https://doi.org/10.1007/978-3-319-99241-9_17


Incremental Control Dependency Frontier
Exploration for Many-Criteria Test Case

Generation

Annibale Panichella1, Fitsum Meshesha Kifetew2, and Paolo Tonella3

1 Delft University of Technology
2 Fondazione Bruno Kessler, Trento, Italy

3 Università della Svizzera Italiana(USI), Switzerland
a.panichella@tudelft.nl, kifetew@fbk.eu, paolo.tonella@gmail.com

Abstract. Several criteria have been proposed over the years for mea-
suring test suite adequacy. Each criterion can be converted into a specific
objective function to optimize with search-based techniques in an at-
tempt to generate test suites achieving the highest possible coverage for
that criterion. Recent work has tried to optimize for multiple-criteria at
once by constructing a single objective function obtained as a weighted
sum of the objective functions of the respective criteria. However, this
solution suffers the problem of sum scalarization, i.e., differences along
the various dimensions being optimized get lost when such dimensions
are projected into a single value. Recent advances in SBST formulated
coverage as a many-objective optimization problem rather than applying
sum scalarization. Starting from this formulation, in this work, we apply
many-objective test generation that handles multiple adequacy criteria
simultaneously. To scale the approach to the big number of objectives to
be optimized at the same time, we adopt an incremental strategy, where
only coverage targets in the control dependency frontier are considered
until the frontier is expanded by covering a previously uncovered target.

1 Introduction

Various coverage criteria, such as branch or mutation coverage, have been pro-
posed to measure how thoroughly a given test suite exercises the program un-
der test. Correspondingly, automated test case generation has focused on the
achievement of these criteria as the objectives of the generation process. While
these criteria have been tackled mostly independently from each other, a recent
work by Rojas et al. [19] has proposed a test generation approach that optimizes
for multiple criteria simultaneously. With this strategy, the individual fitness
functions of each criterion are aggregated via weighted sum and optimized us-
ing single-objective search algorithms [19]. The resulting test suites are able to
detect more faults compared to those generated with a single criterion [11].

While the aforementioned studies showed the benefits of focusing on multiple
criteria, the weighted sum suffers from well-known theoretical limitations [7]: (i)
it is not able to find optimal solutions for non-convex problems; (ii) small changes



2 Annibale Panichella1, Fitsum Meshesha Kifetew2, and Paolo Tonella3

in the weights may lead to completely different solutions; (iii) differences along
the various criteria being optimized get lost when they are projected into a single
value. Moreover, the weighted sum is based on the assumption that the criteria
being summed-up are independent of each other. However, this assumption is not
applicable in coverage testing, because of the subsumption relationships between
coverage targets, due to the control dependencies in the program under test. For
example, to cover the lines of code in a basic block, the conditional branch
leading to it must be covered first. In turn, the branch condition could be nested
inside another conditional statement that controls its execution.

Recently, Panichella et al. [16, 17] applied many-objective algorithms to han-
dle single coverage criterion in which each criterion is handled as a different
objective to optimize in a many-objective fashion. To cope with a possibly large
number of objectives, coverage targets are selected dynamically by the proposed
algorithm, DynaMOSA [17]. This incremental/dynamic search helps achieve higher
coverage than sum scalarization when focusing on a single criterion [17, 4].

In this paper, we extend the idea of many-objective dynamic test generation
to multiple heterogeneous criteria being optimized simultaneously. First, we de-
fine an enhanced control dependency graph (ECDG), a variant of the classical
control dependency graph (CDG)4 enriched with the structural dependencies
among coverage targets coming from different coverage criteria (e.g., lines of
code, mutants, etc.). Second, we introduce a search algorithm, which we named
MC-DynaMOSA, that performs incremental exploration of the control dependency
frontier to achieve multiple criteria coverage. In particular, coverage targets are
incrementally selected during the search according to their position in the ECDG,
where the covered frontier expands over time. The results of our empirical study
show that the incremental exploration implemented in MC-DynaMOSA is more ef-
fective than (i) using the weighted sum with archiving strategy (MC-WSA), and
(ii) handling all coverage criteria as fully independent objectives (MC-MOSA). Ef-
fectiveness is measured as the ability of the generated test suites in both (i)
achieving higher coverage scores for seven testing criteria and (ii) detecting more
faults. Furthermore, our results confirm that combining multiple criteria leads
to test suites with superior fault revealing capability.

2 Background and related work

Several criteria have been proposed for structural coverage over the years. In
this work, we focus on branch, line, method, weak mutation, input, output, and
exception coverage [19]. In the context of Search-based Software Testing (SBST),
each of these coverage criteria is associated with a fitness function that is used to
guide the test generation process towards test cases that achieve the maximum
possible coverage for that particular criterion.

4 A control dependency edge between two nodes holds iff the latter is not a post-
dominator of the former, while it is a post-dominator of all intermediate nodes
between the two.



Title Suppressed Due to Excessive Length 3

Branch coverage (BC): is the most widely adopted coverage criterion. The
fitness function of a test case t with respect to a branch b is computed by con-
sidering the sum of the approach level (al) and the normalized branch distance
(bd) [15]: f(t, b) = al(t, b) + norm(bd(t, b)), where norm is a function that nor-
malizes values into the range [0, 1].

Line coverage (LC): is the simplest and most straightforward coverage cri-
terion, which measures coverage of non-comment lines of code in the System
Under Test (SUT). The associated fitness function is computed by minimizing
the distance to the closest branch on which the line is control dependent.

Weak mutation coverage (WMC): is a coverage criterion based on mutation
where a mutant is considered weakly killed if for a given test case t, the execution
of t on the mutant results in a different internal state than the original program.
Differently, from strong mutation coverage, the internal state difference (aka
infection [21]) may not necessarily propagate to any externally visible difference
(e.g., to a return value). Given a mutant µ and a test t, the fitness function for
calculating WMC is defined based on a heuristic infection distance (id) as follows:
f(t, µ) = al(t, µ) + norm(bd(t, µ)) + norm(id(t, µ)), where approach level and
branch distance refer to the branch which holds a control dependency on µ, while
id(t, µ) estimates the distance to infecting the mutant state. If the mutation is
executed, the minimal state infection distance depends on the mutation operator
that was applied and is estimated as the numerical distance from a value that
would make the states of mutant and original program differ. If the mutation is
not executed, the normalized infection distance is equal to 1 [20].

Input coverage (IC): captures the diversity in the inputs to the SUT used by
the test cases. It measures how spread the values are in the SUT input space.

Output coverage (OC): captures the diversity of the values output by methods
in the SUT. Ultimately, it measures the uniqueness of the output values produced
as a result of executing a test on the SUT.

Exception coverage (EC): measures the number of exceptions triggered by
the execution of a test. The more exceptions a test triggers, the higher EC.

Method coverage (MC): requires that every method of the SUT be called,
either directly or indirectly, by at least one test case.

When used as components of SBST, not all fitness functions of the various
criteria mentioned above provide the same degree of guidance to the search. In
fact, in our experience, IC, OC, EC, and MC contribute little or no guidance to
the search during test generation. On the other hand, criteria such as BC, LC,
and WMC provide strong guidance to the search. The reason for such stronger
guidance is that all the mentioned criteria are, directly or indirectly, associated
with some underlying branches that must be necessarily covered because they
hold a control dependency on the coverage targets.

Multiple criteria coverage. The first attempt to combine multiple coverage
criteria was proposed by Rojas et al. [19]. The authors aggregated the various
coverage criteria using a weighted sum with uniform weights (equal to 1), and
have left further investigation of different weight assignments to future work. The
approach was implemented in EvoSuite [10], and experimental results on sub-



4 Annibale Panichella1, Fitsum Meshesha Kifetew2, and Paolo Tonella3

jects sampled from the SF110 corpus [10] showed that adding a second criterion
besides line coverage resulted in 14% increase in test suite size and 20% increase
in coverage. On the other hand, using all coverage criteria increased test suite
size by 70%, while the coverage of the individual criteria was reduced on average
by just 0.4%. Overall, the work provides encouraging evidence that combining
multiple coverage criteria during test generation is feasible and beneficial.

After this initial work by Rojas et al., recent work explored, beyond feasibility,
fine-grained analysis of combinations of multiple criteria. In particular, Gay [11]
explored the ability of test suites, generated via multiple criteria, of exposing
known, real-world faults, considering the Defects4J benchmark [12]. Results show
that combining multiple criteria could improve fault detection up to 31%.

A recent trend in automated test case generation consists in recasting it as
a many-objective optimization problem [2, 16, 17]. However, none of the existing
work on multi-criteria coverage [19, 11] takes advantage of the recent, advanced
many-objective test generation algorithms. In fact, they aggregate all fitness
functions associated with multiple criteria into a single fitness function by means
of sum scalarization [6]. This paper presents the first attempt to apply many-
objective test generation to multiple coverage criteria, rather than just to the
multiple targets that can be found for a single criterion.

Recently, Panichella et al. [16] proposed MOSA (Many-Objective Sorting Algo-
rithm), a many-objective genetic algorithm that considers each coverage target
as an independent objective to be optimized. It employs a specialized preference
criterion to favor promising individuals in the search. Such a preference criterion
helps MOSA focus the search on the most promising individuals, whereas tradi-
tional dominance-based ranking would have resulted in a larger number of non-
dominated individuals, which are not necessarily useful for covering new targets.
Empirical results show that MOSA is indeed superior to state-of-the-art single ob-
jective approaches [16]. MOSA was later improved by its successor DynaMOSA [17]
with the objective of increasing the efficiency of the test generation process. In-
deed, in the presence of a high number of coverage targets, MOSA could suffer
from the algorithmic overhead for computing the Pareto fronts. DynaMOSA in-
troduces a smarter approach for dealing with this issue, by dynamically adding
new targets to be covered each time a previously uncovered target is reached.
DynaMOSA starts with branches that represent method entries, and every time a
branch is covered, all targets dependent on the covered branch are added to the
set of targets to be covered.

A recent study by Campos et al. [4] empirically explored the performance
of various test generation algorithms. They compared variants of traditional
Evolutionary Algorithms (EAs), MOSA, DynaMOSA, and Random Search in terms
of various coverage metrics. Results showed that EAs, supported by test archives,
perform better than random search. Furthermore, many-objective algorithms
(MOSA, DynaMOSA) achieve superior performance on branch coverage.

This paper shares with DynaMOSA [17, 4] the idea of dynamically updating
the coverage targets to be addressed by many-objective optimization. However,
DynaMOSA cannot be applied directly to multiple, heterogeneous criteria. In this



Title Suppressed Due to Excessive Length 5

paper, we extend the idea of dynamic target update to take into account targets
of heterogeneous nature (mutants, branches, diversity, etc.). Our intuition is that
the benefits brought by considering multiple coverage targets at the same time
could be even larger when not only multiple targets but also multiple criteria,
which in turn include multiple targets, are considered at the same time.

3 Approach

Our approach relies on control dependency analysis and branch/dependency cov-
erage as the guiding criterion, and exploits this guidance to effectively explore
the search space with respect to all the other criteria. Moreover, our approach
optimizes for multiple criteria via many-objective optimization, rather than sum-
ming up several different fitness functions into a single-objective function.

Problem formulation. Given a SUT, the multiple criteria test generation prob-
lem can be formulated as follows: Let B = α ∪ β ∪ . . . ∪ ω be the set of all
coverage targets representing different adequacy criteria α, β, . . . , ω and corre-
sponding fitness functions fα, fβ , . . . , fω. Find a set of test cases T = {t1, . . . , tn}
that minimize the fitness functions for all targets τi ∈ B. This formulation gives
rise to the many-objective optimization problem for minimizing the following
kα + kβ + . . .+ kω objectives:

minOα,1(t) = fα(τα,1, t), . . . , minOα,kα(t) = fα(τα,kα , t)
minOβ,1(t) = fβ(τβ,1, t), . . . , minOβ,kβ (t) = fβ(τβ,kβ , t)
...
minOω,1(t) = fω(τω,1, t), . . . , minOω,kω (t) = fω(τω,kω , t)

(1)

where fα, fβ , . . . , fω represent the fitness functions of adequacy criteria α, β, . . . , ω.

Example. To explain our approach, we present a simple example whose code
is shown in Figure 1(a). In the example, three types of coverage targets are
indicated: (i) branches α = {b1, b2, b3, b4}, (ii) lines β = {l1, . . . , l8}, and (iii)
mutants γ = {µ1, µ2}. The final set of coverage targets would be: B = α ∪ β ∪
γ = {l1, . . . , l8, b1, b2, b3, b4, µ1, µ2}, and the problem consists of finding a set of
test cases that achieve full coverage of all targets in B. The control dependency
graph (CDG) of the example program is shown in Figure 1(b). We can see from
the CDG that the branches in the sample program are interdependent, with
some branches being control dependent on others. For example, branch b2 can
only be executed after branch b1 has been executed.

3.1 MC-DynaMOSA: Many-Criteria Dynamic Many-objective
Optimization with Incremental Frontier Exploration

Our approach, MC-DynaMOSA (Many-Criteria Dynamic Many-objective Sorting
Algorithm) hereafter, optimizes for multiple criteria simultaneously by repre-
senting the various coverage criteria into an Enhanced CDG (ECDG), in such a



6 Annibale Panichella1, Fitsum Meshesha Kifetew2, and Paolo Tonella3

(a) Example program

s

1 6

2

 b1 

3

 b2 

5

 b3 

7

 b4 

(b) Single criterion

s

l1 l6, μ2

l2

 b1 

l3, μ1

 b2 

l5

 b3 

l7

 b4 

(c) Multiple criteria

Fig. 1. Code (left), CDG (middle), and ECDG (right) of an example program

Algorithm 1: MC-DynaMOSA

Input:
B = {τ1, . . . , τm} the set of coverage targets of a program.
CDG = 〈N,E, s〉: control dependency graph of the program
Result: A test suite T

1 begin
2 φ←− EXTEND-CDG(CDG,B)
3 B∗ ←− ENTRY-POINTS (CDG, φ, B) //targets without control dependencies
4 Pt ←− RANDOM-POPULATION(M) // followed by fitness evaluation
5 archive ←− UPDATE-ARCHIVE(Pt, ∅) // collect tests covering new targets
6 B∗ ←−UPDATE-TARGETS(B∗, CDG, φ)
7 while not (search budget consumed) AND (B∗ 6= ∅) do
8 Pt+1 ←− EVOLVE(Pt) // crossover, mutation, evaluation, selection
9 archive ←− UPDATE-ARCHIVE(Pt+1, archive)

10 B∗ ←−UPDATE-TARGETS(B∗, CDG, φ)

11 T ←− archive

way that the control dependency based frontier exploration can be performed on
multiple criteria using the ECDG as guidance. The high-level algorithm used to
build the ECDG is outlined in Algorithm 2: the original CDG is enriched with
the coverage targets that are control dependent on each branch. For example,
the ECDG for the program in Figure 1(a) is depicted in Figure 1(c): the cover-
age targets related to line, branch, and weak mutation are all represented in the
ECDG, as either node or edge labels, because the associated fitness functions
can be computed only when executing the frontier node whose outgoing control
dependency edge leads to the target. For method, input and output coverage,
the corresponding targets are associated with the root branch of the ECDG: if
the root branch is covered it implies that the method has been called/covered
and therefore it is possible to measure the diversity of both its input and output.

The high-level algorithm of MC-DynaMOSA is shown in Algorithm 1. As out-
lined in Algorithm 1, MC-DynaMOSA starts (line 2) by building the enhanced CDG
using Algorithm 2, which essentially extends the CDG by attaching coverage tar-
gets to the edges of the CDG which hold a control dependency over the targets.
Once the ECDG is built (i.e., function φ has been determined), MC-DynaMOSA
computes the initial set of coverage targets from the ECDG by collecting the



Title Suppressed Due to Excessive Length 7

Algorithm 2: EXTEND-CDG

Input:
G = 〈N,E, s〉: control dependency graph of the program
B: set of all coverage targets
Result:
φ : E → P(B): partial map between edges and targets

1 begin
2 ∀e ∈ E : φ(e)←− ∅
3 for τ ∈ B do
4 e←− getImmediateControlDependency(τ)
5 φ(e)←− φ(e) ∪ {τ}

Algorithm 3: UPDATE-TARGETS

Input:
CDG = 〈N,E, s〉: control dependency graph
B∗ ⊆ B: current set of targets
φ : E → B: partial map between edges and targets
Result:
B∗: updated set of current targets

1 begin
2 for τ ∈ B∗ do
3 if τ is covered then
4 B∗ ←− B∗ − {τ}
5 eτ ←− φ−1(τ)
6 B∗ ←−ADD-NEXT-TARGETS(B∗, eτ )

Algorithm 4: ADD-NEXT-TARGETS

Input:
CDG = 〈N,E, s〉: control dependency graph
B∗ ⊆ B: current set of targets
Result:
B∗: updated set of current targets

1 begin
2 for each en ∈ E immediately following e in CDG do
3 for each τ ∈ φ(en) do
4 if τ is not covered then
5 B∗ ←− B∗ ∪ {τ}

6 return B∗

targets in the initial frontier, i.e., those targets which are not under any control
dependency (line 3). It then generates the initial population of individuals (test
cases) and evaluates them (line 4). Subsequently, it collects individuals that cover
one or more previously uncovered targets (line 5). It then enters an evolutionary
loop in which it evolves the individuals by applying genetic operators (crossover,
mutation, fitness evaluation, and selection), resulting in the next generation of
individuals (line 8). It then collects individuals covering new targets (line 9),
and finally updates the current set of targets by removing those covered and
adding the targets which have the covered targets as their control dependencies
(line 10). This process continues until either the search budget is finished or all
targets are covered. Finally, the archive of test cases collected throughout the
process is returned as the final solution, i.e., the test suite (line 11).

We now illustrate the MC-DynaMOSA algorithm on the example in Figure 1(a)
whose ECDG is shown in Figure 1(c). A possible execution trace of MC-DynaMOSA
is shown in Table 1. In the beginning, the set of current targets are those with no
control dependency (second row in Table 1). When target b1 is covered (which
also means l1, l2 are covered), the set of current targets is updated by remov-
ing b1, l1, l2 and adding other targets over which b1 holds a control dependency

Table 1. A simulation of MC-DynaMOSA on the example

current targets covered targets
init {l1, l6, µ2, b1, b4} {}
b1 covered {b2, b3, µ2, b4} {l1, b1, l2, l6}
b4 covered {b2, b3, µ2} {l1, b1, l2, l6, b4, l7}
b2 covered {b3, µ2, µ1} {l1, b1, l2, l6, b4, l7, b2, l3}
b3 covered {µ2, µ1} {l1, b1, l2, l6, b4, l7, b2, l3, b3, l5}
µ2 covered {µ1} {l1, b1, l2, l6, b4, l7, b2, l3, b3, l5, µ2}



8 Annibale Panichella1, Fitsum Meshesha Kifetew2, and Paolo Tonella3

according to the ECDG, i.e., b2, b3 (third row in Table 1). Similarly, as new
branches are covered, new targets are added to the set of current targets in-
crementally following the ECDG. Finally, MC-DynaMOSA may be able to cover
all targets or may fail to cover some, as in this case where target µ1 remains
uncovered at the end of the process.

4 Empirical Evaluation

To evaluate the performance of MC-DynaMOSA, we conducted an empirical study
with a set of non-trivial Java classes selected from different open-source projects.

Research Questions. Our first RQ aims at assessing the benefits (if any) of
using incremental many-objective search compared to the weighted-sum:

RQ1: What is the effectiveness of unified many-objective/multi-criteria
coverage compared to the weighted-sum approach?

Furthermore, we want to investigate how MC-DynaMOSA performs compared with
a simple many-objective search that considers all coverage targets related to
different coverage criteria as independent search objectives:

RQ2: What are the benefits of incremental control dependency frontier
exploration?

A key observation in the previous section is that existing coverage criteria can
be directly related to branch-coverage (via ECDG) and that control dependency
branches can be used to guide multi-criteria coverage. Hence, the next question
is whether combining multiple criteria and performing an incremental many-
objective search provides any benefits over optimizing just branch coverage:

RQ3: Is it enough to target all branches in order to achieve high coverage
of all the other criteria?

Moreover, we question whether multi-criteria coverage is associated with higher
fault detection than branch coverage alone:

RQ4: What is the fault detection capability of the final test suites ob-
tained by many-criteria coverage vs branch coverage only?

In the following, we refer to MC-WSA (Multi-criteria Weighted Sum with Archives)
and MC-MOSA (Multi-criteria Many-Objective) as the baselines for RQ1 and
RQ2, respectively. For RQ3, we refer to SC-DynaMOSA (Single-Criteria Many-
Objective) for the many-objective algorithm (DynaMOSA) that optimizes branch
coverage alone.

Benchmark. The benchmark of our study is a set of 180 non-trivial Java classes
randomly sampled from the SF110 dataset [10], which contains 110 open-source
projects from the SourceForge.net repository. This dataset has been used in
recent studies [20, 9, 10, 17] to assess both the efficiency and the effectiveness of
test case generation tools.

To form our benchmark, we applied the same selection procedure used in prior
studies [17, 18], which first measures the McCabe’s cyclomatic complexity [14]



Title Suppressed Due to Excessive Length 9

(CC) to avoid sampling trivial classes. Specifically, we first removed classes from
SF110 containing exclusively methods with a CC lower than five [17]. Then,
we randomly sampled 180 classes from the resulting pruned SF110 dataset: two
classes from the largest projects in SF110 and one class from the remaining
projects. The number of coverage targets ranges between 61 (for class SapdbTable-
List from project db-everywhere) and 4,252 (for class JVCParserTokenManager
from project javaviewcontrol); the median number of coverage targets per
class is 405. These numbers include all coverage targets from the seven cover-
age criteria described in Section 2, namely branch, line, weak mutation, input,
output, method and exception coverage. The complete list of classes under test
(CUTs) in our benchmark is publicly available in FigShare at the following link:
https://figshare.com/s/c74652d1fcb79fa853dd.

Implementation. The four test generation strategies —i.e., MC-DynaMOSA, MC-
MOSA, MC-WSA, SC-DynaMOSA— were implemented in EvoSuite [9, 8]. MC-WSA cor-
responds to the default strategy in EvoSuite, which evolves test suites using a
monotonic genetic algorithm [4] guided by one single fitness function that com-
bines all coverage criteria using a weighted sum. MC-MOSA corresponds to the
MOSA algorithm [16], which evolves test cases rather than test suites, targeting
all coverage criteria simultaneously. Each coverage criterion corresponds to a dif-
ferent set of search objectives, one objective for each coverage target. Therefore,
the set of objectives in MC-MOSA is the union of the sets of objectives from all
seven coverage criteria. SC-DynaMOSA considers only branch coverage as testing
criterion, but it dynamically updates the set of objectives based on the structural
dependencies among branches, i.e., it corresponds to original DynaMOSA [17]. Fi-
nally, we implemented MC-DynaMOSA in EvoSuite as described in Section 3.1.
The implementation is publicly available from FigShare at the following link:
https://figshare.com/s/ecdef1f88cb00f1ad31f.

All testing strategies are implemented in the same version of EvoSuite, down-
loaded from GitHub on October 1st, 2017. Furthermore, all strategies use an
archive [17, 20], to take accidental coverage into account: whenever a test case
(or test suite) T satisfies a previously uncovered target, T is stored in the archive
while the target is removed from the set of objectives [1] or from computation of
the weighted sum [20, 4]. Therefore, in all testing strategies, the search is focused
on the uncovered targets only.

Methodology. For each CUT in our benchmark, we ran each testing strategy 30
times and collected the number and the type of targets covered in each run. This
setting led to 30 EvoSuite runs × 4 strategies × 180 CUTs = 21,600 executions
in total. In each run, we measured the percentage of covered targets for each

coverage criterion as: Cov(C, T ) = #Covered(C,T )
#Total(C) where #Total denotes the

total number of targets for a given criterion C, while #Covered(C, T ) is the
number of targets covered by the generated test suite T . Coverage scores are
computed after EvoSuite’s post-processing, which minimizes the generated suite
T and adds candidate assertions using a mutation-based strategy [10].

Then, we compare each pair of testing strategies by considering the average
(arithmetic mean) of each coverage criterion over 30 independent repetitions.



10 Annibale Panichella1, Fitsum Meshesha Kifetew2, and Paolo Tonella3

Differences (if any) are shown and discussed in terms percentage points (pp), i.e.,
the absolute difference between the coverage scores of the test suites generated by
the two testing strategies being compared. To assess the statistical significance
of such differences, we applied the Wilcoxon rank sum test [5] for each CUTs
and for each pair of testing strategies, adopting a significance level α = 0.05.
The obtained p-values are then adjusted with the Holm-Bonferroni procedure [5]
as required when comparing more than two treatments.

We also wanted to assess the ability of the generated test suites to detect
faults. To this aim, we applied strong mutation coverage as a proxy for the actual
fault detection capability. This is a common practice when assessing software
testing tools and approaches since previous studies [13] showed that mutants
can be regarded as valid substitutes of real-world faults to assess fault detection
rates. In this study, we used the mutation testing engine available in EvoSuite.
Strong mutation coverage is computed as the percentage of mutants that are
strongly killed by a generated test suite, i.e., the test suite contains a test case
that fails when comparing the output of the mutant to the output of the original
program. Note that strong mutation is not used in this study as guidance to the
search (i.e., as part of a fitness function or of some objectives), so it was possible
to use it to assess the fault-detection capability of the suite generated by each
testing strategy. It is also worth to remark that strong mutation has never been
used in previous studies in combination with other coverage criteria due to its
large overhead [4, 11, 19].

Parameter Setting. Previous studies have shown that default parameters pro-
vide acceptable results compared to fine-tuning of the evolutionary parame-
ters [3]. Hence, we adopted default parameter values in EvoSuite [20], as done in
previous studies targeting the SF110 dataset [20, 17, 19]: for all testing strategies,
(single and many-objective), genetic algorithms are configured with a population
size of 50 test cases/suites; single-point crossover with probability pc=0.75; mu-
tation with probability pm = 1/n, where n is the number of statements in a test
case (or number of test cases in the test suite for MC-WS); the selection operator is
tournament selection, the default in EvoSuite. For the search budget, we set the
same maximum execution time of three minutes for all testing strategies. The
search stopped earlier only when 100% coverage was obtained for all coverage
criteria before reaching the search timeout.

5 Experimental Results

Due to the space limits, we report only the average results obtained by each
strategy across all CUTs and the number of classes with a statistically significant
difference. The detailed results for each class are available at the following link:
https://figshare.com/s/b06984aa36bfe2e9d934.

Table 2 summarizes the results of the pairwise comparison for the three
multi-criteria testing strategies, i.e., MC-DynaMOSA, MC-WSA, and MC-MOSA. For
each strategy, the table reports (i) the mean coverage score obtained for each
coverage criterion across all 180 CUTs and (ii) the number of classes in our



Title Suppressed Due to Excessive Length 11

Table 2. Comparison between MC-DynaMOSA, MC-MOSA, and MC-WSA on all considered
coverage criteria and on strong mutation

Cov. Criterion
Average Coverage MC-DynaMOSA vs. MC-MOSA MC-DynaMOSA vs. MC-WSA

MC-DynaMOSA MC-MOSA MC-WSA #Better #Worse #No Diff. #Better #Worse #No Diff.

Branch 0.62 0.60 0.59 71 5 104 82 9 72
Line 0.67 0.65 0.64 62 4 114 85 10 85
Weak Mutation 0.64 0.63 0.62 57 6 117 81 12 87
Method 0.97 0.96 0.96 16 4 160 12 6 162
Input 0.95 0.94 0.94 30 4 146 29 14 137
Output 0.60 0.59 0.58 39 4 137 39 9 132
Exception 1.00 0.99 0.99 13 0 167 16 0 164

Strong mutation 0.29 0.27 0.23 55 25 100 97 4 79

benchmark in which MC-DynaMOSA is statistically better, worse or equivalent to
MC-WSA and MC-MOSA according to the Wilcoxon test. Finally, the last row of the
table shows the results (average scores and number of significant data points)
for strong mutation.

Results of MC-DynaMOSA vs. MC-WSA (RQ1). For branch coverage, MC-Dyna-
MOSA achieved on average +3pp across all CUTs in our benchmark. The former
was statistically significantly better than the latter in 82 classes out of 180,
while the latter statistically outperformed the former in only 9 classes. Similar
results can be observed for line coverage and weak mutation: in 85 classes and
in 82 classes out of 180, MC-DynaMOSA achieved statistically significantly higher
line and weak mutation coverage than MC-WSA, respectively. For these cases, the
largest difference of 27.94pp in line coverage is observed for class TableMeta

(project schemaspy); the largest difference in weak mutation is equal to 33.21pp
and was observed for class Shift (project jiggler). Only in 10 classes (for line
coverage) and 12 classes (for weak mutation) out of 180, MC-WSA outperformed
MC-DynaMOSA with an average difference of 3.61pp and 5.11pp for line and weak
mutation, respectively. For the remaining criteria —i.e., method, input, output,
and exception— MC-DynaMOSA still achieves higher coverage scores than MC-WSA.
However, the number of CUTs with statistically significant difference decreases
compared to the previously discussed criteria. In the very large majority of the
classes, the two testing strategies turned out to be statistically equivalent. In
6%-21% of the classes, the winner of the comparison is MC-DynaMOSA, while in
3%-7% the winner is MC-WSA. Remarkably, in none of the 180 classes, the test
suites generated by MC-WSA could trigger/cover more exceptions than the suites
generated by MC-DynaMOSA. In summary, we observed a much larger number
of significantly improved cases for branch, line and weak mutation coverage, as
compared to the other criteria, when MC-DynaMOSA is used. A possible expla-
nation for this finding is that branch, line and weak-mutation coverage provide
stronger guidance, as their associated fitness functions are crafted based on care-
fully defined, fine-grained heuristics, i.e., approach level [15], branch distance [15]
and infection distance [19].

In terms of strong mutation (last row in Table 2), MC-DynaMOSA detects a
significantly larger number of faults (strongly killed mutants) than MC-WSA in 97



12 Annibale Panichella1, Fitsum Meshesha Kifetew2, and Paolo Tonella3

CUTs out of 180. The opposite is true in only 4 classes. MC-DynaMOSA improved
the strong mutation score by +6pp on average. The largest improvement (+53pp)
is observed for class TableMeta from schemaspy (as for branch coverage).

The test suites generated by MC-DynaMOSA achieve higher coverage scores and
are able to detect more faults than the suites produced by MC-WS.

Results of MC-DynaMOSA vs. MC-MOSA (RQ2). As indicated in Table 2,
MC-DynaMOSA yielded on average +2pp over MC-MOSA for branch and line cov-
erage, and +1pp for the remaining coverage criteria. In 71 CUTs out of 180,
MC-DynaMOSA achieved a significantly higher branch coverage; the opposite is
true in only 5 classes. The largest difference (+23.68pp) is achieved for class
JMCAAnalyzer from project jmca. Instead, in the very few cases where MC-MOSA

achieves significantly higher branch coverage, the difference ranges between 0.50pp
(class ServerGameModel from hft-bomberman) and 6.49pp (class SimpleComboBox
from caloriecount). The results for the other coverage criteria are in line with
those observed for branch coverage. In 62 classes for line coverage and in 57
classes for weak mutation out of 180, MC-DynaMOSA outperformed MC-MOSA. The
differences range between 0.10pp (class FBProcedureCall from firebird) and
24.15pp (class JMCAAnalyzer from jmca) for line coverage and between 0.10pp
(class AntPathMatcher from jsecurity) and 32.36pp (the same class of line
and branch coverage) for weak mutation. MC-MOSA achieved higher scores than
MC-DynaMOSA in only 4 and 6 classes out of 180, for line coverage (3.05pp on
average) and weak mutation (1.37pp on average), respectively. The number of
CUTs with statistically significant difference decreases when analyzing method,
input, output and exception coverage compared to the other three criteria. Nev-
ertheless, there are many more CUTs where better coverage scores are obtained
when running MC-DynaMOSA (6%-21% of the benchmark) than cases where the
winner of the comparison is MC-MOSA (2%-3% of the benchmark). In none of the
180 classes, the test suites generated by MC-MOSA covered more exceptions than
the tests generated with MC-DynaMOSA.

The values reported in the last row in Table 2 indicate that MC-DynaMOSA

detected a significantly larger number of faults (strongly killed mutants) than
MC-MOSA in 55 CUTs out of 180. On these cases, the average improvement in
strong mutation score is +8.79pp, with the maximum of +39.46pp for class
HostMonitoringService (project quickserver). On the other hand, MC-MOSA
achieved a better mutation score in 25 classes out of 180. However, in these cases
the magnitude of the difference is small, being 4.76pp on average.

The incremental exploration of the control dependency frontier implemented
in MC-DynaMOSA leads to larger coverage scores and to a better fault-detection
capability than simply targeting all coverage targets as done by MC-MOSA.

Results of MC-DynaMOSA vs. SC-DynaMOSA (RQ3, RQ4). Table 3 sum-
marizes the results of the comparison of many-objective search with an incre-
mental exploration of the control dependency frontier when handling multiple



Title Suppressed Due to Excessive Length 13

Table 3. Comparison between MC-DynaMOSA and SC-DynaMOSA in terms of coverage
and strong mutation scores

Coverage Criterion
Average Coverage MC-DynaMOSA vs. SC-DynaMOSA

MC-DynaMOSA SC-DynaMOSA #Better #Worse #No Diff.

Branch 0.62 0.63 36 53 119
Line 0.67 0.65 88 28 64
Weak Mutation 0.64 0.62 107 19 54
Method 0.97 0.90 89 2 89
Input 0.95 0.57 146 1 33
Output 0.60 0.46 115 5 60
Exception 1.00 0.45 137 0 43

Strong mutation 0.29 0.26 89 21 70

criteria (MC-DynaMOSA) compared to branch coverage only (SC-DynaMOSA). In 53
classes out of 180, SC-DynaMOSA achieved significantly higher branch coverage
than MC-DynaMOSA; on the other hand, the latter outperformed the former in 36
classes. This finding clearly indicates that optimizing many coverage criteria at
the same time may lead to lower coverage scores compared to the optimization
of each criterion, taken separately from the others (as for branch coverage in
this case). For example, branch coverage decreases by 1.65pp on average, with a
minimum decrement of 1.00pp for class jgaapGUI (project jgaap) and a maxi-
mum one of 24.66pp for class JMCAAnalyzer (project jmca). On the CUTs where
MC-DynaMOSA won the comparison, the differences range between 1.40pp (class
Profile from project jiprof) and 24.71pp (class JSJshop from project shop),
being 5.63pp on average. While we observe that targeting only branches leads to
higher branch coverage in around 30% of CUTs, the results are quite different
when looking at the other coverage criteria. For example, MC-DynaMOSA statisti-
cally outperforms SC-DynaMOSA in 88 CUTs and 107 CUTs for line coverage and
weak mutation, respectively. This means that the additional branches covered
by SC-DynaMOSA and not by MC-DynaMOSA are associated to basic blocks in the
control flow graph with no statements (other than the branch itself) or with no
(or very few) weakly killed mutants. Although branches represent the main back-
bone to build the multi-criteria control dependency graph (and to incrementally
explore the frontier), branch coverage is not equivalent to the other criteria.

Even though MC-DynaMOSA may lead to lower branch coverage than
SC-DynaMOSA, it achieves higher coverage on all other criteria. Therefore,
it is not enough to target all branches in order to achieve high coverage of
all the other criteria.

Despite leading to lower branch coverage, MC-DynaMOSA achieved a higher
strong mutation score than SC-DynaMOSA in 89 CUTs out of 180. The increment
in strong mutation score ranges between 1.11pp (class ExportHook from project
freemind) and 35.80pp (class QuickServerConfig from project quickserver),
being 9.62pp on average. On the other hand, SC-DynaMOSA outperformed MC-Dyna-
MOSA in just 21 CUTs, with an average difference of only 2.93pp. This finding is
particularly remarkable as it shows that a statistically higher branch coverage
does not necessarily lead the generated test suites to reveal more faults.



14 Annibale Panichella1, Fitsum Meshesha Kifetew2, and Paolo Tonella3

Handling many criteria with MC-DynaMOSA increases the fault detection ca-
pability of the generated test suites compared to targeting branch coverage
alone.

Threats to validity. Construct validity. All algorithms are implemented in
the same tool, minimizing the risk of confounding factors. Internal validity. We
did 30 independent runs and drew conclusions following statistical significance.
We used default parameter values and those used in the respective algorithms.
The comparison was based on metrics with respect to the considered criteria,
and mutation scores. External validity. Enlarging the benchmark (beyond 180
CUTs) in future experiments could increase confidence of the results.

6 Conclusion

Coverage of multiple criteria has been the subject of recent research effort. While
targeting multiple criteria simultaneously offers various advantages, it also poses
difficulties to the search algorithm as the number of targets to be considered in-
creases. In this paper, we have presented an approach, MC-DynaMOSA, based on
incremental frontier exploration for multiple criteria test generation. In partic-
ular, we exploit inherent inter-dependencies among the various criteria to es-
tablish an enhanced control dependency graph, based on which we explore the
coverage targets incrementally. Experimental results on 180 classes showed that
MC-DynaMOSA outperforms the state-of-the-art approach for multiple criteria cov-
erage, which is based on sum scalarization, in terms of coverage of the various
criteria as well as strong mutation scores. Furthermore, results also showed that
covering all branches is not sufficient to achieve higher coverage of the other cri-
teria, even though control dependency branches provide the principal guidance
to the search.

Acknowledgement

This work is partially supported by the Italian Ministry of Education, University,
and Research (MIUR) with the PRIN project GAUSS (grant n. 2015KWREMX).

References

1. Abreu, R., Zoeteweij, P., Van Gemund, A.J.: An observation-based model for fault
localization (2008)

2. Arcuri, A.: Many Independent Objective (MIO) Algorithm for Test Suite Genera-
tion, pp. 3–17. Springer International Publishing, Cham (2017)

3. Arcuri, A., Fraser, G.: Parameter tuning or default values? an empirical investiga-
tion in search-based software engineering. Empirical Software Engineering 18(3),
594–623 (2013)

4. Campos, J., Ge, Y., Fraser, G., Eler, M., Arcuri, A.: An empirical evaluation of
evolutionary algorithms for test suite generation. In: International Symposium on
Search Based Software Engineering. pp. 33–48. Springer (2017)



Title Suppressed Due to Excessive Length 15

5. Conover, W.J.: Practical Nonparametric Statistics. Wiley, 3rd edition edn. (1998)
6. Deb, K.: Multi-objective optimization. In: Search Methodologies, pp. 403–449.

Springer US (2014)
7. Fonseca, C.M., Fleming, P.J.: An overview of evolutionary algorithms in multiob-

jective optimization. Evolutionary computation 3(1), 1–16 (1995)
8. Fraser, G., Arcuri, A.: EvoSuite: automatic test suite generation for object-oriented

software. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering. pp. 416–419. ES-
EC/FSE ’11 (2011)

9. Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Trans. Software Eng.
39(2), 276–291 (2013)

10. Fraser, G., Arcuri, A.: A large-scale evaluation of automated unit test generation
using evosuite. ACM Trans. Softw. Eng. Methodol. 24(2), 8:1–8:42 (2014), http:
//doi.acm.org/10.1145/2685612

11. Gay, G.: Generating effective test suites by combining coverage criteria. In: Search
Based Software Engineering - 9th International Symposium, SSBSE 2017, Pader-
born, Germany, September 9-11, 2017, Proceedings. pp. 65–82 (2017), https:

//doi.org/10.1007/978-3-319-66299-2_5

12. Just, R., Jalali, D., Ernst, M.D.: Defects4j: a database of existing faults to enable
controlled testing studies for java programs. In: International Symposium on Soft-
ware Testing and Analysis, ISSTA ’14, San Jose, CA, USA - July 21 - 26, 2014.
pp. 437–440 (2014)

13. Just, R., Jalali, D., Inozemtseva, L., Ernst, M.D., Holmes, R., Fraser, G.: Are
mutants a valid substitute for real faults in software testing? In: Proceedings of
the 22Nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering. pp. 654–665. FSE 2014, ACM, New York, NY, USA (2014), http:
//doi.acm.org/10.1145/2635868.2635929

14. McCabe, T.J.: A complexity measure. IEEE Transactions on software Engineering
(4), 308–320 (1976)

15. McMinn, P.: Search-based software test data generation: a survey. Softw. Test.
Verif. Reliab. 14(2), 105–156 (2004)

16. Panichella, A., Kifetew, F.M., Tonella, P.: Reformulating branch coverage as a
many-objective optimization problem. In: 8th IEEE International Conference on
Software Testing, Verification and Validation, ICST. pp. 1–10 (2015)

17. Panichella, A., Kifetew, F.M., Tonella, P.: Automated test case generation as
a many-objective optimisation problem with dynamic selection of the targets.
IEEE Trans. Software Eng. 44(2), 122–158 (2018), https://doi.org/10.1109/

TSE.2017.2663435

18. Panichella, A., Molina, U.R.: Java unit testing tool competition: fifth round. In:
Proceedings of the 10th International Workshop on Search-Based Software Testing.
pp. 32–38. IEEE Press (2017)

19. Rojas, J.M., Campos, J., Vivanti, M., Fraser, G., Arcuri, A.: Combining multiple
coverage criteria in search-based unit test generation. In: Search-Based Software
Engineering, pp. 93–108. Springer (2015)

20. Rojas, J.M., Vivanti, M., Arcuri, A., Fraser, G.: A detailed investigation of the
effectiveness of whole test suite generation. Empirical Software Engineering 22(2),
852–893 (2017), https://doi.org/10.1007/s10664-015-9424-2

21. Voas, J.M.: Pie: A dynamic failure-based technique. IEEE Trans. Softw. Eng. 18(8),
717–727 (Aug 1992), http://dx.doi.org/10.1109/32.153381


