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Summary

Preconditioning Optimal Flow Control Problems Using Multilevel
Sequentially Semiseparable Matrix Computations

Yue Qiu

Optimal flow control problems are important for applications in science and
engineering. Solving such problems usually requires the solution of a large
linear generalized saddle-point system. This linear system is sparse and highly
indefinite. In order to solve such systems using Krylov subspace methods, effi-
cient preconditioners are necessary to enhance their robustness and accelerate the
convergence.

Standard block preconditioning techniques for the generalized saddle-point systems
require an efficient approximation of the Schur complement. This is a big challenge
since the Schur complement is large and dense, and therefore computationally
expensive to approximate. For some problems, it is even impossible to approximate
the Schur complement efficiently.

In this dissertation, we propose a new class of preconditioners for optimal flow
control problems using multilevel sequentially semiseparable (MSSS) matrix com-
putations. In contrast to standard block preconditioners, MSSS preconditioners do
not approximate the Schur complement of the generalized saddle-point system but
compute an approximate factorization of the global block system in linear com-
putational complexity. This is a big advantage over block preconditioners. The
key to this global factorization is that the Schur complements in this factorization
usually have low off-diagonal rank. Therefore, these Schur complements can be
approximated by matrices with a low rank off-diagonal structure. For this, MSSS
matrix computations are very well suited.

Theoretical analysis shows that MSSS preconditioners yield a spectrum of the pre-
conditioned system matrix that is contained in a circle centered at (1,0). This
radius can be controlled arbitrarily by properly choosing a parameter in the MSSS
preconditioner computations. This in turn implies that the convergence of MSSS
preconditioned systems can be independent of the mesh size and regularization pa-
rameter for PDE-constrained optimization problems while for computational fluid
dynamics problems, the convergence is independent of the mesh size and Reynolds
number. Mesh size independent and wave number independent convergence can be
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viii Summary

also obtained when applying the MSSS preconditioning technique to the Helmholtz
problem. Numerical results verify the convergence property.

In this dissertation, we also studied the problem of optimal in-domain control
of the Navier-Stokes equation. We use a simplified wind farm control example to
formulate such a problem. Compared with standard PDE-constrained optimization
problems where the controls are distributed throughout the whole domain, this in-
domain control problem is even more difficult to solve since the control only acts
on a few parts of the domain. This in turn gives a linear system of the generalized
saddle-point type. Block preconditioners cannot give satisfactory performance for
such problem because the Schur complement for such system is very difficult or
even impossible to approximate efficiently. Applying MSSS preconditioners to this
problem gives superior performance compared to block preconditioning techniques.



Samenvatting

Het Preconditioneren van Optimal Flow Control Problemen met
Multilevel Sequentially Semiseparabel Matrix Berekeningen

Yue Qiu

Optimal flow control problemen zijn belangrijk in toepassingen in de weten-
schap en in de industrie. De aanpak van dergelijke problemen vereist vaak
het oplossen van grote algemene zadelpuntstelsels. Deze lineaire stelsels zijn ijl
en sterk indefiniet. Om gebruik te kunnen maken van Krylov deelruimte metho-
des bij het oplossen van zulke stelsels zijn efficiente preconditioners vereist die de
robuustheid vergroten en de convergentie versnellen.

Standaard blok-preconditioneringstechnieken voor algemene zadelpuntproblemen
vereisen een efficiente benadering van het Schur complement. Deze benadering is
een grote uitdaging, gezien het feit dat het Schur complement groot en vol is, en
daardoor duur is om te benaderen. Voor sommige problemen is het zelfs onmogelijk
om het Schur complement efficient te benaderen.

In dit proefschrift presenteren we een nieuwe klasse van preconditioneringen voor
optimal flow control problemen welke gebruik maakt van multilevel sequential se-
miseparable (MSSS) matrix berekeningen. In tegenstelling tot standaard blok-
preconditioneringen benaderen MSSS-preconditioneringen niet het Schur comple-
ment van het globale zadelpuntstelsel, maar in plaats daarvan berekenen zij een
benaderende ontbinding van het globale blok-stelsel in lineaire rekencomplexiteit.
Dit is een groot voordeel ten opzichte van blok-preconditioneringen. De sleutel tot
deze globale ontbinding is het feit dat het Schur complement in deze ontbinding
vaak een lage off-diagonal rang heeft. Daardoor kan dit Schur complement be-
naderd worden met matrices met een lage rang off-diagonal structuur. De MSSS
matrix berekeningen zijn hiervoor uitermate geschikt.

Theoretische analyse toont aan dat MSSS-preconditionering een spectrum van het
gepreconditioneerde stelsel geven dat in een cirkel rond het punt (1,0) ligt. De
radius kan willekeurig gekozen worden door de selectie van een parameter in de
berekening van de MSSS-preconditionering. Het gevolg is dat de convergentie van
MSSS-gepreconditioneerde stelsels onafthankelijk is van de grid grootte en de regu-
larizatie parameter in PDE-constrained optimalizatie problemen. In de vloeistof
mechanica maakt dit de convergentie dan onafhankelijk van de maasgrootte en het
getal van Reynolds. Convergentie onafhankelijk van maasgrootte en golfgetal kan
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tot slot ook verkregen worden met MSSS preconditioning toegepast op Helmholtz
problemen. Numerieke tests bevestigen de voorspelde convergentiesnelheid.

In dit proefschrift bestuderen we ook het probleem van optimal in-domain control
van de Navier Stokes vergelijkingen. We gebruiken een versimpeld windparkmodel
om het probleem te formuleren. Vergeleken met een standaard PDE-constrained
optimalizatieprobleem, waar de controle is verdeeld over het volledige domein, is
het in-domain probleem nog ingewikkelder omdat de controle op slechts enkele
delen van het domein werkt. Dit resulteert in een algemeen lineair zadelpuntstelsel.
Blok-preconditioneringen geven geen goed resultaat voor zulke problemen omdat
het Schur complement van het stelsel niet efficient te benaderen is. Het toepassen
van MSSS-preconditioneringen geeft een sterk verbeterd resultaat in vergelijking
met blok-preconditioneringen.
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1 CHAPTER

Background and State-of-the-Art

1.1 Motivation

Wind energy offers a possibility to reduce the green house gas emissions and the
dependence on fossil energy. Offshore wind energy provides more power than land
based because the wind is more steady, with less turbulence, and even larger wind
turbines can be installed. Grouping the wind turbines in wind farm helps to re-
duce the sea-area usage and the impact to the environment. This grouping also
cuts down the cost of maintenance and the connection cable for the power trans-
mission [57]. The clustering of wind turbines in the wind farm makes upstream
turbines interact with the downstream turbines. This aerodynamics interactions
are caused by the wakes of turbines, cf. Figure 1.1.

Figure 1.1: Wakes effects for Horns Rev 1 offshore wind farm at Denmark. Source: Christian
Steiness

Due to this wake interaction, a reduced velocity profile downstream is obtained.
This in turn reduces the energy extraction by the wind turbines downstream be-
cause the extracted energy scales with the cubic power of the velocity at the loca-
tion of turbines [76]. Wake effects make wind turbines downstream produce little
or no energy and simply struggle to operate in intensive turbulence. To reduce the
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wake effects, one has either to put turbines far away from each other or implement
control strategies. The first approach gives a lay-out optimization problem [36].
Enlarging the distance between turbines will increase the cost for maintenance and
investment. Therefore, a trade-off has to be made. Once the lay-out of turbines
is fixed, the wake effect can be further reduced by coordinating control operations
for all the turbines. This coordinate control aims at optimizing the total extracted
power of a wind farm, which in turn gives a wind farm control problem. The wind
farm control can be formulated as a PDE-constrained optimization problem, which
will be introduced in the next section.

1.2 Background

The wind farm control introduced in the previous section can be formulated as a
PDE-constrained optimization problem where the constraints are the partial dif-
ferential equations (PDEs) that describe fluid dynamics problems. In this section,
we will give a brief introduction of both PDE-constrained optimization problems
and standard fluid dynamics problems.

1.2.1 PDE-Constrained Optimization

Most natural or physical processes are mathematically modeled by a system of lin-
ear/nonlinear partial differential equations (PDEs). Many science and engineering
problems in control, design, and parameter optimization can be formulated as an
optimization problem that is governed by PDEs [1, 59, 69]. The computational
complexity of the PDE simulation often presents significant challenges. Due to
recent advances in numerical linear algebra and the computational capability of
modern computers, such simulations have become an essential tool for scientists
and engineers in academia as well as industry, such as aerodynamics [69], optimal
tomography [1], structural mechanics [7], optimal flow control [71], et al. to address
this challenge.

One example of a PDE-constrained optimization problem is the temperature con-
trol in a bounded domain. Let Q € Rd(d = 1,2,3) be a bounded set of mass, the
heat distribution of this mass satisfies the following partial differential equation,

(1.1) Lu=f,

subject to the following boundary condition

(1.2) u = ug on 0Qp, and % = uy on 0Qy.
Here L is a linear differential operator and £ = g — V2 for the heat equation,

V is the gradient operator, u is the heat distribution in the domain, ¢ represents
the time, and f is an outer source like microwave or electromagnetic induction of
the mass. The boundary is denoted by 92 and 0Q2p U 0Qn = 01, 7 is the unit
normal vector that points outwards on the boundary. Suppose we have a desired
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heat distribution profile & that prescribes the heat distribution in the domain that
we expect. Take the heated rebar for example, it is heated by an outer source
to make a proper temperature distribution for the shape control. This problem
belongs to the typical tracking problem type, i.e., how to choose the input f such
that u is as close to @ as possible?

If we consider this problem under the functional space, say L?(Q), then we can
formulate the following optimization problem,

o1 "
131}1 §||U—U||L2(Q)

(1.3) st. Lu=f,
u = ug on 00 p,
ou

3jn = uny on 8QN
The optimization problem (1.3) is ill-posed [106]. To make this problem well-posed,

we can add a Tychonoff regularization term [81, 106] that couples the cost function
directly with the input f, which is given by

o1 N
Hu111}1 5 Hu - UHL2(Q) + 6 ||f||L2(Q)

(1.4) st. Lu=f,
u = ug on 0Sp,
ou

ﬁ = upn Oon aQN

The regularization term 3 || f|] L2(q) can be interpreted as a restriction on the input
energy, while 8 corresponds to the weight of the restriction on the energy of the
input.

The control input f and the state u that reaches the minimum of this optimization
problem are called optimal input and optimal state, respectively. This type of
problem is called distributed PDE control problem because that the control input
f is distributed throughout the domain, cf. Chapter 2. Other types of optimal PDE
control problems include the boundary control problem where the control only acts
on the boundary or only the boundary condition can be adjusted [42, 70, 75], and
in-domain control where the control input only acts on few parts of the domain,
cf. [39, 84] and Chapter 5.

1.2.2 Computational Fluid Dynamics

The incompressible Navier-Stokes equations that describe the dynamics of Newto-
nian fluid [53] are given by

T v 2 T+ Vp— T

(1.5) ot
V-4 =0.
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Here v is the kinematic viscosity of the fluid, @ denotes the velocity of the fluid,

p denotes the pressure, is an outer source, and V- represents the divergence
operator.

o
We consider stationary flow in this dissertation, this corresponds to B = 0. Then

we have the steady-state Navier-Stokes equation,

o T+ T VT +Vp=f,
' V-4 =0.

The first equation in (1.6) is called the momentum equation which represents the

conservation of the momentum for the fluid. The second equation in (1.6) is called

the incompressibility condition and represents the conservation of the mass for

the fluid. The incompressible Navier-Stokes equations complemented with proper

boundary conditions form the most general model of incompressible viscous flow.

Note that the Navier-Stokes equation (1.6) is nonlinear. When the velocity of the
flow is small or the flow is tightly confined, the nonlinear term can be neglected,
which yields the Stokes equation

—vVU + Vp = ?,
7 V-d =0.

Another equation that simplifies the momentum equation of the Navier-Stokes
equation is the convection-diffusion equation. It is obtained by dropping the pres-
sure gradient from the momentum equation of the Navier-Stokes equation, and
taking a constant convection vector. This in turn gives

(1.8) VT W VT = .

Here W is a constant vector. The vector equation (1.8) cousists of few decoupled
scalar PDEs. Therefore, the general scalar convection-diffusion equation is given
by

(1.9) — V4 W - Vu = f.

Such equation describes the physical motion of many important processes, such as
the motion of pollutant in a river or in air.

1.3 State-of-the-Art of Numerical Solution of Gen-
eralized Saddle-Point Systems

To numerically solve the PDE-constrained optimization problem, we need to dis-
cretize the cost function and the PDE constraints and then compute the optimality
condition. To solve the fluid dynamics problem, we also need to discretize the PDEs
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that model the fluid dynamics. After discretization, both the PDE-constrained op-
timization problem and computational fluid dynamics problem yield a linear system
that is large, sparse and highly indefinite which is given by

(1.10) Lé BITD] m B [ﬂ '
Y Y

For PDE-constrained optimization problems and the Stokes equation discretized by
higher order mixed finite element method (Q2-Q1, Q2—P—_1 or Q2—Fp), A € R™**™
is symmetric positive definite (SPD), D = 0 and B € R™*"™ with m < n has full
column rank. This corresponds to a linear system of the saddle-point type. For
the linearized Navier-Stokes equation after discretization, the eigenvalues of A have
positive real parts, B € R™*"™ with m < n has full column rank, D is symmetric
positive semi-definite that corresponds to a stabilization term for lower order (Q1—
Py or Q1—Q1) discretization, or D = 0 for higher order (Q2—Q1, Q2—P—_1 or Q2—Fp)
discretization. This yields a linear system of the generalized saddle-point type.

There are many research efforts devoted to numerically solving (1.10) efficiently.
In general, there are two types of approaches, one is the direct solution methods,
and the other type is the iterative solution methods. Among all these methods,
Krylov subspace methods such as the conjugate gradient (CG) [60], minimal resid-
ual (MINRES) [92], generalized minimal residual (GMRES) and induced dimension
reduction (IDR(s)) [119] methods, are the most favored.

Since the linear system (1.10) is large and highly indefinite, the robustness and
efficiency of Krylov solvers need to be enhanced by applying so-called precondi-
tioning techniques. Preconditioning techniques for the system (1.10) have been
developed for many applications that arise from PDE-constrained optimization
problems [59, 106], computational fluid dynamics problems [53, 118], parameter
identification problems [26, 65], and have attracted many research efforts in the
last decades [15, 48, 52, 53, 72, 86, 89, 96, 106, 118, 121, 130], cf. [15, 89] for a
general survey.

The standard block preconditioners for (1.10) originate from the block factorization

TS o I |

where S = —D — BA~! BT is the Schur complement. The block-diagonal and block
lower-triangular preconditioners can be chosen as

(1.12) Py = {A S], P, = [g S} .

It is shown in [15] that

)\('Pd_lA) = {1, 1i2\/5}’ and )\(Pt—lA) _ {1},
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and that the preconditioned matrix P ! A has minimum polynomial of degree 3,
the preconditioned matrix P, ! A has minimum polynomial of degree 2. Therefore,
Krylov solvers such as IDR(s) and GMRES compute the solution at most three steps
by using the block-diagonal preconditioner P; and at most two steps by using the
block lower-triangular preconditioner P;.

The Schur complement S in (1.11) is computationally expensive to compute ex-
plicitly because one needs to invert a large sparse matrix which in turn yields a full
matrix and multiply a full matrix with a sparse matrix twice. It is therefore neces-
sary to compute an efficient approximation of the Schur complement. The research
effort devoted to block preconditioners focus on computing a spectrally equivalent
Schur complement S [17, 49, 50, 51, 90, 96, 98, 107, 116, 121, 130]. The block pre-
conditioners highly depend on efficient approximation of the Schur complement,
which is problem dependent. Moreover, the standard block preconditioners do not
give Reynolds number independent convergence for CFD problems [53], or regu-
larization parameter independent convergence for PDE-constrained optimization
problems [106, 107]. Although some recent developments in block precondition-
ers give regularization parameter independent convergence for PDE-constrained
optimization problems [93, 94, 96, 97|, they fail to solve boundary control or in-
domain control of PDEs. Preconditioning boundary control or in-domain control
of PDEs is still a big challenge for block preconditioners because the Schur com-
plement for such problems is even more difficult to approximate than that for the
standard PDE-constrained optimization problems where the control are distributed
throughout the whole domain [94, 107].

In this dissertation, we focus on developing efficient preconditioners for linear sys-
tem (1.10) based on multilevel sequentially semiseparable (MSSS) matrix computa-
tions. Compared with standard block preconditioners, such MSSS preconditioners
compute an approximate factorization of the global system matrix A in (1.10) up
to a prescribed accuracy in linear computational complexity. The motivation for
such a global factorization is that the Schur complements in the LU factorization
of the matrix from discretization of PDEs often have low numerical off-diagonal
rank [12, 35]. Therefore, the Schur complements can be efficiently approximated
by rank structured matrices with low off-diagonal rank, such as hierarchical matri-
ces (H-matrices) [66], H2-matrices [67], hierarchically semiseparable (HSS) matri-
ces [32], and multilevel sequentially semiseparable (MSSS) matrices [108].

HSS matrix computations are usually applied in the multifrontal solver [134]. Some
recent efforts devoted to preconditioning of symmetric positive definite systems are
described in [132, 135]. As introduced in [108], MSSS matrices originate from
interconnected systems, while H-matrices and H2-matrices, which are more gen-
eral structured matrices, originate from the approximation of the kernel of integral
functions. In [12, 13], Bebendorf extended H-matrices to solving elliptic PDEs.
Preconditioning techniques based on H-matrix computations for CFD problems
were studied in [24, 78]. In [78], an H-LU preconditioner was proposed to solve the
convection-diffusion equation, while in [24] the augmented Lagrangian (AL) pre-
conditioner based on H-matrix computations was introduced to solve the discrete
Oseen problems.

The advantage of MSSS matrix computations is their simplicity and low cost,
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which is O(r3N) with bounded small r << N and N is the number of blocks,
compared with O(N logy N) with moderate o for H-matrices and HSS matrices,
where N is the size of the matrix. Using MSSS matrix computations to compute
the preconditioner is motivated by the relation between interconnected systems
and MSSS matrices, which is introduced in [108]. Once the grid topology for
the discretization of PDEs is known, the MSSS matrix structure of the discretized
system will automatically be known. This will naturally represent the sparse matrix
as an MSSS matrix by considering the grid points as interconnected systems. The
permutation of MSSS blocks to a single MSSS matrix is also direct and clear by
checking the correspondence of interconnected systems with MSSS matrices, which
is a big advantage over H-matrices and HSS matrices. The permutation operation
plays a vital role for computing an approximate factorization of the global system
matrix A in linear computational complexity, as will be explained in Chapter 2.
For unstructured grids, HSS/H-matrices are well suited. It was shown in [12, 133]
that HSS matrices and H-matrices can be used to represent the discretized PDEs
on unstructured grids. For MSSS matrices, this is less natural. Although MSSS
matrices do not give a direct representation of discretized PDEs on unstructured
grid, it was shown in [115] that the HSS matrices and 1-level MSSS matrices can
be transferred from one to the other, which makes it possible for MSSS matrices
to infer unstructured grids.

1.4 Contributions and Outline

Recent research efforts on preconditioning using structured matrix computations
either focus on symmetric positive definite systems [12, 64, 87, 132, 135], or linear
systems whose matrix eigenvalues have positive real parts [78]. Structured matrix
computations on preconditioning indefinite linear systems are studied in [11, 54]
for the discretized Helmholtz equation, and in [24] for discrete Oseen problem from
computational fluid dynamics problems. However, these efforts either focus on
linear systems from discretized scalar PDEs, or Schur complement approximation
for the 2-by-2 block system from coupled PDEs for block preconditioners.

In this dissertation, we focus on developing efficient preconditioning techniques for
optimal flow control problems using multilevel sequentially semiseparable (MSSS)
matrix computations. Compared with standard block preconditioners, MSSS pre-
conditioners compute an approximate global factorization of the system matrix up
to a prescribed accuracy in linear computational complexity. This in turn avoids
approximating the Schur complement of the block system. This is a big advantage
over standard block preconditioners.

The contributions and outline of this dissertation are given as follows.

e In Chapter 2, we study the MSSS preconditioner for PDE-constrained op-
timization problems where the control is distributed throughout the whole
domain. The contributions in this chapter include

— We propose a global MSSS preconditioner for the saddle-point system
that arises from PDE-constrained optimization problems. This global
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MSSS preconditioner exploits the global MSSS structure of the saddle-
point system matrix, which avoids approximation of the Schur comple-
ment of the saddle-point matrix;

— We also study numerically the performance of the block preconditioners
that are computed by MSSS matrix computations. Our experiments
show that the global MSSS preconditioner gives mesh size and regular-
ization parameter independent convergence while the block MSSS pre-
conditioner only gives mesh size independent convergence;

— Model order reduction is the key to get linear computational complexity
for MSSS matrix computations. We propose a new model order reduc-
tion algorithm for 1-level MSSS matrix computations. Compared with
the standard model order reduction algorithm [33], the new algorithm
is computationally cheaper;

— Since the model order reduction for 2-level MSSS matrices is still an open
problem, extending MSSS preconditioning technique to 3D problems
is nontrivial. We develop an alternative approach to preconditioning
optimal control of PDEs in 3D.

e In Chapter 3, we apply the MSSS preconditioners to computational fluid
dynamics problems and evaluate their performance using Incompressible Flow
& Tterative Solver Software (IFISS) [117]. The contributions are

— We apply the MSSS preconditioner to the convection-dominated
convection-diffusion problem and compare its performance with the al-
gebraic multigrid (AMG) and geometric multigrid (GMG) methods. Nu-
merical results show that the MSSS preconditioner is much more robust
than both AMG and GMG methods;

— We apply both block MSSS preconditioner and global MSSS precondi-
tioner to the Stokes equation and compare their performance with AMG
and GMG based block preconditioners;

— We test the global MSSS preconditioner for the linearized Navier-Stokes
equation and compare its performance with the pressure convection-
diffusion (PCD) preconditioner [53] that uses the AMG method to ap-
proximate the (1, 1) block and both the AMG method and lumped pres-
sure mass matrix to approximate the Schur complement. Reynolds num-
ber independent and mesh size independent convergence are obtained
for the global MSSS preconditioner while only mesh size independent
convergence is obtained for the PCD preconditioner.

e In Chapter 4, we make an analytical study of the convergence property of
the MSSS preconditioner. The contributions in this chapter include

— We extend the convergence analysis in [11, 87] for the symmetric positive
definite case to general linear systems, where no symmetry or definite-
ness is assumed,;

— Our analysis also applies to block linear systems, while related work only
considers the linear system from discretized scalar PDEs [11, 87];
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— We give an analytic bound for the error introduced by the model order
reduction that is necessary for the MSSS preconditioning technique;

— The analysis for MSSS preconditioning in [87] only concerns 1-level
MSSS matrix computations, while our analysis also includes the 2-level
MSSS case;

— For the first time, we apply the MSSS preconditioning technique to the
Helmholtz equation.

e We apply the MSSS preconditioner to the in-domain optimal control of PDEs
in Chapter 5 and use a simplified wind farm control example to study the
performance of MSSS preconditioners. The contributions in this chapter
include,

— We formulate an in-domain optimal control of PDEs problem and apply
the reduced Newton’s method based on implicit function theorem to
solve this optimization problem. The reduced Newton’s method yields
a generalized saddle-point system to be solved;

— By using the reduced Newton’s method, we can compute the gradient
and Hessian matrix with very little cost and reduce the computational
complexity significantly;

— The Schur complement of the generalized saddle-point system is quite
difficult or even impossible to approximate, which prohibits a satisfac-
tory performance of the block preconditioners. We apply the global
MSSS preconditioner to solve the generalized saddle-point system;

— We evaluate the performance of the global MSSS preconditioner using
IFISS and compare its performance with standard block preconditioners.

e Conclusions are drawn in Chapter 6, where discussions and future research
recommendations are also given.






2 CHAPTER

Efficient Preconditioners for
PDE-Constrained Optimization
Problems with MSSS Structure

DE -constrained optimization problems yield a linear saddle-point system

that has to be solved. We propose a preconditioner that makes use of
the global MSSS structure and a preconditioner that exploits the block MSSS
structure of the saddle-point system. For the computation of precondition-
ers based on MSSS matrix computations, model order reduction algorithms
are essential to obtain a low computational complexity. We study two differ-
ent model order reduction approaches, one is the new approximate balanced
truncation with low-rank approximated gramians for SSS matrices and the
other is the standard Hankel blocks approximation algorithm. We test our
preconditioners on the problems of optimal control of the convection-diffusion
equation in 2D and optimal control of 3D Poisson equation. For 2D problems,
numerical experiments illustrate that both preconditioners have linear compu-
tational complexity and the global MSSS preconditioner reduces the number
of iterations significantly and needs less computation time. Moreover, the ap-
proximate balanced truncation algorithm is computationally cheaper than the
Hankel blocks approximation algorithm. Except for the mesh size independent
convergence, the global MSSS preconditioner also gives regularization param-
eter independent convergence, while the block MSSS preconditioner just gives
mesh size independent convergence. For 3D problems, both the block MSSS
preconditioner and global MSSS preconditioner give nearly mesh size inde-
pendent convergence. The global MSSS preconditioner reduces the number of
iterations dramatically compared with the block MSSS preconditioner.

11
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2.1 Introduction

PDE-constrained optimization problems have a wide application such as optimal
flow control [22, 23], diffuse optical tomography [1], and linear (nonlinear) model
predictive control [20]. The solution of these problems can be obtained by solving a
large-scale linear system of the saddle-point type. Much effort has been dedicated
to finding efficient iterative solution methods for such systems. Their performance
highly depends on the choice of preconditioners. In this chapter, we study a class
of preconditioners that exploits the multilevel sequentially semiseparable (MSSS)
structure of the blocks of the saddle-point system.

Semiseparable matrices appear in several types of applications, e.g. integral equa-
tions [62], Gauss-Markov processes [73], boundary value problems [63], rational in-
terpolation [124] and Kalman filtering [101]. Semiseparable matrices are matrices of
which all the sub-matrices taken from the lower-triangular or the upper-triangular
part are of rank at most 1 [128]. Sequentially semiseparable (SSS) matrices of
which the off-diagonal blocks are of low-rank, not limited to 1, introduced by
Dewilde et al. in [33] generalize the semiseparable matrices. Multilevel sequentially
semiseparable matrices generalize the sequentially semiseparable matrices to the
multi-dimensional cases. Systems that arise from the discretization of 1D partial
differential equations typically have an SSS structure. Discretization of higher di-
mensional (2D or 3D) partial differential equations give rise to matrices that have an
MSSS structure [40, 61]. Under the multilevel paradigm, generators that are used
to represent a matrix of a higher hierarchy are themselves multilevel sequentially
semiseparable of a lower hierarchy. The usual one-level sequentially semiseparable
matrix is the one of the lowest hierarchy. Operations like the matrix inversion and
the matrix-matrix multiplication are closed under this structure. The LU factor-
ization can also be performed in a structure preserving way. This factorization
results in a growth of the rank of the off-diagonal blocks of the Schur complements.
As aresult, the LU factorization is not of linear computational complexity because
the low rank property of the off-diagonal blocks is the key to obtain linear com-
putational complexity for MSSS matrix computations. Model order reduction can
be used to reduce the rank of the off-diagonal blocks, which yields an inexact LU
decomposition of an MSSS matrix that can be used as a preconditioner.

In [61], Gondzio et al. first introduced the MSSS matrix computations for pre-
conditioning PDE-constrained optimization problems. They exploited the MSSS
matrix structure of the blocks of the saddle-point system and performed an LU
factorization using MSSS matrix computations to approximate the Schur comple-
ment of the saddle-point system. With this approximated Schur complement as a
preconditioner, conjugate gradient iterations were performed to solve the saddle-
point system block-by-block. As aforementioned, the model order reduction plays
a vital role in obtaining a linear computational complexity of the LU factorization
for MSSS matrices. In [61], Gondzio et al. used a standard model order reduction
algorithm [33, 46] to reduce the computational complexity.

Our contribution in this chapter include: (1) We propose a new model order reduc-
tion algorithm for SSS matrix computations based on the correspondence between
linear time-varying (LTV) systems and blocks of SSS matrices. This new model
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order reduction algorithm is motivated by the work in [29, 31]. In [29], the approx-
imate balanced truncation was addressed for the model order reduction of linear
time invariant (LTI) systems, while in [31] the recursive low-rank approximation
was performed to approximate the gramians of LTV systems. In this chapter,
we use the low-rank approximation method in [31] and the approximate balanced
truncation in [29] for the model order reduction for the SSS matrices. Compared
with the model order reduction algorithms discussed in [33, 46], the approximate
balanced truncation method for SSS matrices in this chapter is computationally
cheaper. (2) With these model order reduction algorithms, we can compute an
inexact LU factorization for the MSSS matrix blocks of the saddle-point system in
linear computational complexity (O(N)). This yields a block MSSS preconditioner
for the saddle-point system. Exploiting the block structure of the saddle-point
system is the standard preconditioning technique, which is described in [15]. How-
ever, only the single preconditioner for the last block of the saddle-point system is
studied in [61]. (3) By permuting the blocks of the saddle-point system, we can
also compute an inexact LU factorization of the global system with MSSS matrix
computations in linear computational complexity. This gives a global MSSS pre-
conditioner and this novel MSSS preconditioner gives mesh size and regularization
parameter independent convergence. This is a big advantage over the block pre-
conditioners. (4) Besides the problem of optimal control of the Poisson equation,
we also study the problem of optimal control of the convection-diffusion equation.
(5) Moreover, we extend these preconditioning techniques to the 3D saddle-point
systems.

Note that the convergence of the block preconditioners depend on the regular-
ization parameter 8 for the PDE-constrained optimization problems [106]. For
small 8, block preconditioners do not give satisfactory performance. Recent de-
velopment in PDE-constrained optimization problems also gives 8 independent
convergence [95, 96]. However, they fail to solve PDE-constrained optimization
problems where control only act on few parts of the domain. The block precondi-
tioners in [106] are more general. In this chapter, we apply block preconditioners
developed in [106] computed by MSSS matrix computations and compare their
performance with global MSSS preconditioner. Numerical results show that the
global MSSS preconditioner gives not only mesh size independent convergence but
also # independent convergence. Block MSSS preconditioners only yield mesh size
independent convergence.

The outline of this chapter is as follows: Section 2.2 formulates a distributed op-
timal control problem constrained by PDEs. This problem yields a linear saddle-
point system. We introduce the MSSS matrix computations in Section 2.3. In
Section 2.4, we introduce the MSSS preconditioning technique. The new model
order reduction algorithm for SSS matrices is also described. With MSSS matrix
computations, we propose two types of preconditioners for saddle-point problem:
the global MSSS preconditioner, and the block-diagonal MSSS preconditioner. In
Section 2.5, we use the distributed optimal control of the convection-diffusion equa-
tion to illustrate the performance of these two preconditioners and the new model
order reduction algorithm. Section 2.6 presents how to extend such preconditioning
techniques to 3D saddle-point problems, and Section 2.7 draws the conclusions.
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2.2 Problem Formulation

2.2.1 PDE-Constrained Optimization Problem

Consider the following PDE-constrained optimization problem described by

1
win slu—al? + Bl
st. Lu = f inQ
(2.1) u = wup on I,

where L is an operator, u is the system state, f is the system input and @ is the
desired state of the system, 2 is the domain and 0f2 is the corresponding boundary,
B is the weight of the system input in the cost function or the regularization
parameter and 3 > 0. In this chapter, we consider £ = —V? for optimal control of
the Poisson equation and £ = —vV? 4+ @ - V for optimal control of the convection-
diffusion equation. Here W is a vector in Q, V is the gradient operator, and v
is a positive scalar. If we want to solve such a problem numerically, it is clear
that we need to discretize these quantities involved at some point. There are
two kinds of approaches, one is to derive the optimality conditions first and then
discretize from there (optimize-then-discretize), the other is to discretize the cost
function and the PDE first and then optimize that (discretize-then-optimize). For
the problem of optimal control of the Poisson equation, both approaches lead to the
same solution while different answers are reached for the problem of optimal control
of the convection-diffusion equation [106]. Since our focus is on preconditioning,
the discretize-then-optimize approach is chosen in this chapter.

By introducing the weak formulation and discretizing (2.1) using the Galerkin
method, the discrete analogue of the minimization problem (2.1) is therefore given
by
1
mi? 5uTMu —uTv + c+BfTMf
u,

(2.2) st. Ku=Mf + d,

where K = [K; ;] € RY*N with K;; = /quiV(bde is the stiffness matrix,
Q
M = [M;;] € RVN M = / ¢;¢;dQ is the mass matrix and is symmetric
Q

positive definite, b = [b;] € RY, b; = /ﬂi@»dQ, ce€R, c= /ﬁQdQ, d =
Q Q

N+0N
[dl] S RN, d, = — Z Uj/ V(bj . V@dQ The ¢1 (Z =1, 2, ... N) and
j=N+1 79
¢; (j=1,2,... N, N+1, ... N+09N) form a basis of V' and Vgh7 respectively.
Here Voh and Vgh are finite dimensional test space and solution space.

Consider the cost function in (2.2) and associate with the equality constraint, we
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introduce the Lagrangian function
1
T(u, f,\) = 5uTMu —uTo+c+ BfFIMf+ N (Ku— Mf —d),

where A is the Lagrange multiplier. Then it is well-known that the optimal solution
is given by finding u, f and A such that

VoJ(u, f,A) = Mu—b+K"X=0,
VaJ(u, f,\) = Ku—Mf—d=0.

This yields the linear system

26M 0 M| [f 0
(2.3) 0 M KT| |ul=1|b
-M K 0 A d
N~
A z g

The system (2.3) is of the saddle-point system type [15], i.e., the system matrix A
is symmetric and indefinite. It has the following structure

(2.4) A= [g fﬂ ,

where A € R™*™ is symmetric positive definite, B € R™*™ has full column rank.

The system matrix of the saddle-point system (2.3) is large, sparse and highly
indefinite. Preconditioned Krylov subspace methods, such as MINRES [92] and
IDR(s) [119], are quite efficient for solving such systems.

2.2.2 Preconditioning Saddle-Point Systems

The performance of iterative solution methods highly depends on the choice of the
preconditioners. For numerical methods to solve saddle-point system (2.3) and the
construction of preconditioners, we refer to [15, 89] for an extensive survey. In
this chapter, we study two types of preconditioners. The first exploits the MSSS
structure of the blocks of the saddle-point system, whereas the second type exploits
the global MSSS structure of the saddle-point system.

Block Preconditioners

Recall from (2.4), if A is nonsingular, then A admits the following LDL” factor-
ization given by

286M 0 —-M I 2BM I 0 —551
0 M KT'|=| 0 I M I M-IKT|,
-M K 0 —ogl KM~ I S I
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1
where S = — (2,8M + KM_lKT> is the Schur complement.

The most difficult part for this factorization is to compute the Schur complement
S because computing the inverse of a large sparse matrix is expensive both in time
and memory. Meanwhile, solving the system Sz = b is also expensive since S is
a large and full matrix. Note that all the blocks of (2.3) have a structure that is
called multilevel sequentially semiseparable (MSSS), which will be introduced in
the later section. Then the Schur complement S also has the MSSS structure but
with a bigger semiseparable order. If we exploit the MSSS structure of (2.3), we
can compute S in linear computational complexity.

In this chapter, we first study the block-diagonal preconditioner P; for the saddle-
point system (2.3), where

28M
(2.5) Py = M
-8

Here M is an approximation of the mass matrix M and S is an approximation of
the Schur complement S.

To approximate S = — <M+ KZ\J_lKT>7 S =—KM 'K" can be used for

A 1
big to middle range of g while S = —%M could be chosen for small 8 [107]. The

block lower-triangular preconditioner Py, which has the following form

28M
(2.6) Po=1| 0 M :
-M K S

is studied in the appendix of this dissertation.

Global Preconditioners

Since all the blocks of the saddle-point system (2.3) have the MSSS structure, there
exists a permutation matrix ¥ that permutes the saddle-point matrix with MSSS
blocks into a single MSSS matrix. This gives

where A = WAU” | 7 = Uz, and § = Vg are permutations of A, [fT uT )\T}T,
and [OT bT dT}T
in the next section. After this permutation, the system matrix A is an MSSS

matrix. We can compute an inexact LU factorization of A in linear computational
complexity using MSSS matrix computations. This gives,

in (2.3), respectively. This permutation will be introduced

(2.8) A~ LU,
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which can be used as a preconditioner. We call this factorization (2.8) the global
MSSS preconditioner. Since no information of 5 is dropped directly during the per-
mutation and factorization, if we can compute a relatively accurate factorization,
the global MSSS preconditioner will give S-independent convergence. This prop-
erty for the standard block preconditioners P; in (2.5) or Ps in (2.6) do not hold.
This is a big advantage of the global MSSS preconditioner over the standard block
preconditioners. Numerical examples in Section 2.5 demonstrate this advantage.
Theoretical analysis in Chapter 4 states the underlying principle.

2.3 Multilevel Sequentially Semiseparable Matri-
ces

Matrices in this chapter will always be real and their dimensions are compatible
for the matrix-matrix operations and the matrix-vector operations when their sizes
are not mentioned. The generators representation of the sequentially semiseparable
matrices are defined by Definition 2.1.

Definition 2.1 ([34]) Let A be an nxn block matriz with SSS structure such that
A can be written in the following block-partitioned form

UWigr---W; VI, if i <j;
(29) Aij = D, Zf i =7;
PiRi 1R QF, if i>j.

where the superscript ‘T’ denotes the transpose of a matrix and the sizes of

(UL WS, {Vidise, {DiYier, AP}, {R:}S,, {Qi}i) are listed in
Table 2.1.

Table 2.1: Generators size for the SSS matrix A in Definition 2.1

matrices U; W; Vi D; P; R; Qi

sizes m; X kl ki—l X kl m; X ki—l m; X my; m; X ll li—l X ll m; X li+1

The sequences {U i= 1) {W i= 25 {V}z 25 {Di}zn:lv {Pi}zn:Z’ {R i= 27 {Ql
are matrices and they are called generators of the SSS matrix A. With the gener—
ators representation defined in Definition 2.1, A can be denoted by

A= SSS(PszstsvDsa Us, W, ‘/s)

Note that we use the symbol SSS§ to represent a matrix that has an SSS struc-
ture. The parameters inside the brackets represent the sets of generators that
parameterize an SSS matrix.

Remark 2.1 The generators of an SSS matrix are not unique, there exists a series
of nonsingular transformations between two different sets of generators for the same
SSS matrix A.
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Remark 2.2 For an SSS matrix, only its generators are stored. If I; and k; are
bounded by a small constant. Then the memory consumption for storing such
matrix is linear with respect to the matrix size. This property is also introduced
in [34].

Take n = 4 for example, the SSS matrix A is given by (2.10),

Dy UVE  UWaVE UWaWa V[
(2.10) A P,QT D, U V3" Us W3 VI
PyR,QT PQY Ds UsV,"
PyR3R:QT  PiR3QT  PQY Dy

With the generators representation of SSS matrices, basic operations such as ad-
dition, multiplication and inversion are closed under the SSS matrix structure
and can be performed in linear computational complexity. Moreover, decompo-
sitions/factorizations such as the QR factorization [45, 47], the LU decomposition
[61, 128], and the ULV decomposition [125] can also be computed in linear com-
putational complexity and in a structure preserving way.

Similar to Definition 2.1 for SSS matrices, the generators representation for MSSS
matrices, specifically the k-level SSS matrices, is defined in Definition 2.2.

Definition 2.2 The matriz A is said to be a k-level SSS matriz if it has a form
like (2.9) and all its generators are (k — 1)-level SSS matrices. The 1-level SSS
matrix is the SSS matriz that satisfies Definition 2.1.

Most operations for the SSS matrices can be extended to the MSSS matrices,
which yields linear computational complexity for MSSS matrices. MSSS matrices
have many applications, one of them is discretized partial differential equations
(PDEs) [100].

Within this multilevel framework, generators to represent an MSSS matrix of a
higher hierarchy, are themselves MSSS matrices of a lower hierarchy. The 1-level
SSS matrix is the one of the lowest hierarchy. Basic operations of MSSS matrices
are still closed under this structure. In Example 2.1, we use a simple example to
show how the lower-level SSS matrices are related with high-level SSS matrices and
the correspondence between MSSS matrices and discretized PDEs.

Example 2.1 For the 2D Laplace equation with homogeneous Dirichlet boundary
conditions on a square domain, discretized using the Q1 finite element method on
a uniform mesh, the system matriz is given by

A B

K:BA " 7
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where

8/3 _2/3 _2/3 _2/3

=3 3z =73 =z =3 =73
A= =25 . , B= =2/

/3 e =Y
8

s s /s =3
The matriz K is an MSSS (2-level SSS) matriz and can be denoted as
K=MS8S8S8(I, 0, B, A, I, 0, B),

where I is an identity matriz and the matrices A and B are 1-level SSS matrices,
which can be represented as

A = SSS(]., 0, _2/37 8/37 17 Oa _2/3)7
B = 8S88(1, 0, =3, —%3, 1, 0, =%/3).

Note that we use the symbol MSSS here to represent a matrix that has an MSSS
structure. The parameters inside the brackets represent the sets of generators that
parameterize an MSSS matrix.

Remark 2.3 It is not necessary for the main diagonal blocks, super-diagonal
blocks or the sub-diagonal blocks of SSS matrices or MSSS matrices to be con-
stant just like Example 2.1. The MSSS matrices can also represent matrices from
discretized PDEs with variable coefficients. The sizes of these generators can even
be different from each other as long as conditions in Table 2.1 are satisfied for the
Definition 2.1.

Note that for a saddle-point system from the PDE-constrained optimization prob-
lem, all its blocks are MSSS matrices. This enables us to compute an LU factor-
ization of all its blocks with MSSS matrix computations in linear computational
complexity. However, the saddle-point matrix is not itself an MSSS matrix but
just has MSSS blocks, hence we cannot compute an approximate LU factorization
of the saddle-point system matrix by using MSSS matrix computations.

Lemma 2.4 explains how to permute a matrix with SSS blocks into a single SSS
matrix. This property can be extended to matrices with MSSS blocks. This enables
us to compute an LU factorization of the global saddle point matrix by using MSSS
matrix computations in linear computational complexity.

Lemma 2.4 ([108]) Let A, B, C and D be SSS matrices with the following gen-
erators representations

A = S8SS(P*,R%, Q% DU WV,
B = S88S(P°,Rb, Q% Db, Ut Wb v,
C = SSS(PS RS, QC,DE,US,WEVE),
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D = S8S8S8(PY RE,Q4,DILULWEVH.

Then there exists a permutation matriz ¥ with WUT = WTW = T such that

_ [A B].r
et 2o

and the matriz T is an SSS matriz. Its generators representation are given by

T= SSS(PSt,RZ, évDiaU;aW;J/:)’

where
D¢ Db Pe PP 0 0 Q* 0 Q° 0
t __ s s t __ s s t __ s s
DS[Dz D‘J]’ PS[O 0 P Pf]’ QS[O Q0 @
g [Us U 0o S L
s 10 0 Ug Usd’ s 10 Vsb 0 Vsd’
we R®
wb RY
Wt: s Rt: s
s we ’ RS
wd R

Proof: For the case that all the diagonal blocks of A have the same size and all
the diagonal blocks of D also have the same size, i.e., m¢ = m® and m¢ = m¢, the
permutation matrix ¥ has the following representation

(2.11) U= HLS] @I, [Iod] ®In} ;

m

where ® denotes the Kronecker product and I, is an n x n identify matrix.

With the permutation matrix ¥ given by (2.11), the permuted matrix is given by

(2.12) T=v [é g} T,

And we can explicitly write the matrix 7 as

(2.13)

ERCE) (G gy (s iy
UlC VQCT Uld VQdT U1C WZC V3CT Uld WQd V3dT

(o Moy (z o
T = PyQY PyQs D5 Dj
PERSQIT  PERIQIT
PSRSQST  PYRIQYT

It is clear to see that T is an SSS matrix and not difficult to verify that its generators
are given in Lemma 2.4.
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For the case that sizes of diagonal blocks A and D are varying, let {m{}”_, and

{mf}?zl represent the diagonal blocks size of A and D, respectively. The permu-
tation matrix U is given by

(2.14) U= {blkdiag ({Lg?]) blkdiag ( [ I:g] )} .

Here in (2.14),
. Im‘_" . . . . Im‘_" " . .
e blkdiag 0 is a block diagonal matrix with 0 as its diagonal
i=1
blocks,

I a

mé¢

e blkdiag ( |:Iod:| ) is a block diagonal matrix with { [
blocks.

0 n
} } as its diagonal
idJi=1

With the permutation matrix ¥ in (2.14), we can also get the permuted matrix 7
that has the form being represented by (2.12). Thus, it is an SSS matrix and its
generators are given in Lemma 2.4. ]

Remark 2.5 To one matrix with SSS blocks, one can apply Lemma 2.4 to per-
mute it into a single SSS matrix by using a permutation matrix ¥. However, this
permutation matrix is not explicitly multiplied on both sides of the matrix to be
permuted. The generators of the permuted matrix are combinations of the gener-
ators of its SSS blocks. This is illustrated by the generators representation of the
permuted matrix in Lemma 2.4. Such permutations are cheaper to compute due
to the fact that there is no matrix-matrix multiplication.

Remark 2.6 Lemma 2.4 is for a 2 x 2 block matrix, but it generalizes the case of
matrices with different numbers of blocks.

Remark 2.7 Extending Lemma 2.4 to the k-level SSS matrix case is also possible.
If A, B, C, and D are k-level SSS matrices, then their generators are (k — 1)-level
SSS matrices. For the permuted k-level SSS matrix 7, its (k — 1)-level SSS matrix
generators with (k — 1)-level SSS matrix blocks are permuted into a single (kK —1)-
level SSS matrix by applying Lemma 2.4 recursively.

For the saddle-point system (2.3) derived from the optimal control of the
convection-diffusion equation in [0, 1] X [0, 1], discretizing using the @ finite
element method on a uniform mesh yields a saddle-point system that has MSSS
(2-level SSS) matrix blocks. The spy plot of the saddle-point matrix before and
after permutation for mesh size h = 273 are shown in Figure 2.1.

Here in Figure 2.1, “nz” denotes the number of nonzeros in a sparse matrix.
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(a) Before permutation. (b) After permutation.

Figure 2.1: Structure of system matrix of (2.3) before and after permutation for h = 273.

2.4 Multilevel Sequentially Semiseparable Pre-
conditioners

The most important part of the PDE-constrained optimization problem is to solve
a linear system of the saddle-point type. In the following part, we first introduce
the LU factorization of MSSS matrices and then give a new model order reduction
algorithm for SSS matrices, which is necessary for computing an approximate LU
factorization in linear computational complexity. For comparison, the conventional
model order reduction algorithm [33] is also discussed.

2.4.1 LU Factorization of Multilevel Sequentially Semisepa-
rable Matrices

The semiseparable order defined in Definition 2.3 plays an important rule in the
MSSS matrix computations. Note that Dewilde et al. and Eidelman et al. studied
this kind of structured matrices independently, sequentially semiseparable matrices
named in [34] are called quasiseparable matrices in [44]. In this chapter, we use the
MATLAB style of notation for matrices, i.e., for a matrix A, A(i : j,s : t) selects
rows of blocks from ¢ to j and columns of blocks from s to t of A.

Definition 2.3 ([46]) Let A be an n x n block matriz and
rank A(s+1:n,1:8) =15, s=1,2, --- ,n—1.

The numbers ls(s = 1,2, --- ,n — 1) are called the lower order numbers of the
matriz A. Let

rank A(1:s,s+1:n)=u,, s=1,2, --- ;n—1
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The numbers us(s = 1,2, -+ ,n — 1) are called the upper order numbers of the
matriz A. Set r' = maxl, and r* = maxu,, where r' and r* are called the lower
quasiseparable order and the upper quasiseparable order of A, respectively.

Definition 2.4 ([108]) The SSS matriz A with lower and upper semiseparable
order ' and v is called block (r!, r*) semiseparable.

The semiseparable order for 1-level SSS matrices defined in Definition 2.3 can be
directly extended to the multilevel cases, which leads to Definition 2.5.

Definition 2.5 Let the matrizx A be an N x N block k-level SSS matriz with its
generators be (k — 1)-level SSS matrices. Let

rank A(s+1: N,1:s)=1,, s=1,2, --- N — 1.

The numbers ls(s =1,2, -+ N — 1) are called the k-level lower order numbers of
the k-level SSS matrix A. Let

rank A(1:s,s+1: N)=wus, s=1,2, --- ,N—1.

The numbers us(s = 1,2, --- | N — 1) are called the k-level upper order numbers
of the k-level SSS matriz A. Set r' = maxly and r* = maxug, where vt and
are called the k-level lower semiseparable order and the k-level upper semiseparable
order of the k-level SSS matriz A, respectively.

Definition 2.6 The k-level SSS matriz A with k-level lower and upper semisepa-
rable order v and r* is called k-level block (!, r*) semiseparable.

By using these definitions, we can apply the following lemma to compute an LU
factorization of a k-level SSS matrix.

Lemma 2.8 ([61, 128]) Let A be a strongly reqular N x N block k-level sequen-
tially semiseparable matriz of k-level block (v', ) semiseparable and denoted by
its generators representation A = MSSS(Ps, Rs, Qs, Ds, Us, Wy, Vi). Here we
say that a matriz is strongly reqular if the leading principal minors are nonsingular.
Let A = LU be its block LU factorization, then,

1. The block lower-triangular factor L is a k-level sequentially semiseparable
matriz of k-level block (rL, 0) semiseparable and the block upper-triangular
factor U is a k-level sequentially semiseparable matriz of k-level block (0, rY)
semiseparable. Moreover, r¥ = r! and vV = r*.

2. The factors L and U can be denoted by the generators representation

L MSSS(Py, Ry, Qs, DL, 0, 0, 0),
U = MSS8S(0, 0, 0, DY, U,, W, V).
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where Qs, DL, DY and U, are (k — 1)-level sequentially semiseparable ma-
trices. They are computed by Algorithm 2.1.

Algorithm 2.1 LU factorization of a k-level SSS matrix A
1: procedure LU(A) > LU factorization of MSSS matrix A
2: Input: (k — 1)-level SSS generators of A

3: Dy = DEDY (LU factorization of (k — 1)-level SSS matrix)

4 Let Uy = (DF)~'U; and Q; = (DF)"TQy

5: fori=2:N—-1do

6: if © == 2 then

7: M;=Ql U4

8: else

9: M;=QF \ Uy + Ry .\ M; W,

10: end if

11: (D; — P,M; V") = DFDY (LU factorization of (k—1)-level SSS matrix)
12: Let U; = (DX)~™Y(U; — PM;W;), Q; = (DY)"T(Q; — V;MF'RY).
13: end for

14: My =Q%_ \Unv_1+ Ry 1My Wy,

15: (Dn — PNMnVy) = DX DY, (LU factorization of (k—1)-level SSS matrix)
. LN U N L YN-1 , yN-1
16 Output: {DX} (DY}, {Q) {0

17: end procedure

Proof: For the proof of the lemma, we refer to [61, 128]. 0

Remark 2.9 In Algorithm 2.1, the LU factorization of a 0-level SSS matrix is just
the LU factorization of an ordinary matrix without SSS structure.

In Algorithm 2.1, for computing the LU factorization of a k-level SSS matrix, the
matrix-matrix operations are performed on its (k — 1)-level SSS generators, such
as computing the recurrence of M; in line 9 of Algorithm 2.1. Such operations
lead to the growth of the (k — 1)-level semiseparable order, which increases the
computational complexity. This can be verified from the matrix-matrix operations
introduced in [34, 44]. Take the 1-level SSS matrix A for example, the flops needed
for computing A? is O(n3N), where n is the semiseparable order and N is the
number of blocks of A [34]. To be specific, the following lemma is introduced.

Lemma 2.10 ([44]) Let Ay, Ay be SSS matrices of lower semiseparable order m;
and ny, respectively. Then the product A1As is of lower semiseparable order at
most m1 +ny. Let Ay, Ay be SSS matrices of upper semiseparable order ms and
ng, respectively. Then the product Ay Ao is upper semiseparable of order at most
mo + No.
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Remark 2.11 For a k-level SSS matrix, since the semiseparable order varies at
different levels, results of Lemma 2.10 also hold for the k-level semiseparable order.
But we do not know the exact upper bound of the (k—1)-level semiseparable order.
We just know the (k — 1)-level semiseparable order also increases.

Lemma 2.10 states that the semiseparable order grows by multiplying two SSS ma-
trices, this also holds for adding two SSS matrices. There are similar results for mul-
tilevel SSS matrices multiplication and addition. Model order reduction is necessary
to reduce the semiseparable order and keep the computational complexity of Algo-
rithm 2.1 low. The aim of model order reduction for a k-level SSS matrix A with its
generators representation A = MSSS(Ps, Rs, Qs, Ds, Us, W, V) is to find (k—

1)-level SSS matrices Pg, Rg, Qg, US, Wg, V of smaller order compared with Pg, Ry,
Qs, Uy, W, Vs, respectively such that A = MSSS(PS, R,, Q,, Dy, Uy, W4, VS) is
of k-level semiseparable order smaller than or equal to the minimal k-level semisep-
arable order of A. Meanwhile, Ais an approximation of A up to a small tolerance
e, e, ||[A—A| <e.

Remark 2.12 Since the LU factorization of a k-level SSS matrix needs the model
order reduction for (k—1)-level SSS matrices, the LU factorization in Lemma 2.8 is
an exact factorization for SSS matrices because no model order reduction is needed
for ordinary matrices (0-level SSS matrices). It is an inexact factorization for the
k-level (k > 2) SSS matrices.

For discretized one-dimensional PDEs on a regular grid, the system matrix has a
certain SSS structure. The LU factorization introduced in Lemma 2.8 could be
performed as a direct solver. For discretized higher dimensional PDEs on regular
grids, this LU factorization can be used as an efficient preconditioner.

2.4.2 Approximate Balanced Truncation for SSS Matrices

As introduced in the last subsection, the model order reduction plays a key role
in the LU factorization of an MSSS matrix. In this subsection, we design a new
model order reduction algorithm for SSS matrices. This new method exploits the
correspondence between SSS matrices and linear time-varying (LTV) systems.

The SSS matrices have a realization of linear time-varying systems, which is studied
by Dewilde et al. in [41]. Consider a mixed-causal system that is described by the
following state-space model

) _ | R xg Qi
= w L ]

yz:[Pi Ui}{xfl}—FDu“

7

(2.15)

where z¢ is the causal system state, x® represents the anti-causal system state,
u; is the system input, and y; is the system output. With zero initial system
states and stack all the input and output as u = (ulT, ud, ... u%)T, Yy =
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(le, yl'oL y%)T, the matrix H that describes the input-output behavior of
this mixed-causal system, i.e., ¥ = Hu, induces an SSS matrix structure. Take
N =4 for example, the matrix H is,

D; UlVa U WRVs UWoWsVy
Py D, Uy V3 UsWsVy
2.16 H =
(2.16) P3Ry(Qy P3Q) D3 U3V,
PiR3RyQ1 PiR3Q2  PiQs Dy

Using the LTV systems realization for SSS matrices, we have the following lemma
that gives a direct link between LTV systems order and the semiseparable order.

Lemma 2.13 ([109]) The lower and upper semiseparable order for an SSS matriz
with minimal LTV system realization are max {li}f\; and max {kz}f\i;l, respec-
tively. Here {ll}g2 and {kl}i\izl are defined in Table 2.1.

We describe the lemma in [109] more exactly by restricting the realization of an
SSS matrix to be minimal in Lemma 2.13. It is not difficult to set an example of
an SSS matrix with small semiseparable order, but its LTV systems realization is
of bigger order. Lemma 2.13 states that the order of the causal LTV system is
equal to the lower semiseparable order of an SSS matrix, while the order of the
anti-causal LTV system is equal to the upper semiseparable order. Therefore, to
reduce the semiseparable order of an SSS matrix is identical to reducing the order
of its realization by mixed-causal LTV systems.

Model order reduction for LTV systems is studied in [30, 111]. In [111], a linear
matrix inequality (LMI) approach was introduced to solve the Lyapunov inequali-
ties to compute the controllability and observability gramians. In [30], the low-rank
Smith method was presented to approximate the square-root of the controllability
and observability gramians of LTV systems.

Since the causal LTV system and the anti-causal LTV system have similar struc-
tures that correspond to the strictly lower-triangular part and the strictly upper-
triangular part of the matrix H, respectively. We only consider the causal LTV
system described by the following state-space model,

(2.17)

Trpt1 = Rz + Qrug
yr = Prag,

over the time interval [k,, k] with zero initial states. The controllability gramian
G.(k) and observability gramian G, (k) are computed by the following Stein recur-
rence formulas:

2.18

with initial conditions G.(k,) = 0 and G,(ky + 1) = 0.
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Note that the controllability gramian G.(k) and observability gramian G,(k) are
positive definite if the system is completely controllable and observable or semi-
definite if the system is partially controllable and observable. Therefore, their
eigenvalues are non-negative and often have a large jump at an early stage [6,
14]. This suggests to approximate these two Gramians at each step by a low-rank
approximation. In this chapter, we just consider the case that the LTV systems
are uniformly completely controllable and observable over the time interval, which
means that the gramians G, and G, are positive definite. This is reasonable because
the SSS matrices considered in this dissertation correspond to uniformly completely
controllable and observable LTV systems.

Since the controllability gramian G.(k) and observability gramian G, (k) have sim-
ilar structure, we will only use the controllability gramian G.(k) to introduce the
basic idea. The key to the low-rank approximation is to replace the factorization
of the controllability gramian G.(k)

(2.19) Ge(k) = Le(k) LY (k),
where L.(k) € RM>*M in each step k by its low-rank factorization,
(2.20) Ge(k) = Le(k)LE (),

with L.(k) € RM*™s where my, is the e-rank of G.(k), and my < M. Here, the
e-rank of a matrix is defined by the number of singular values that are bigger
than or equal to . Typically, my is set to be constant, i.e., my = m at each
step. Meanwhile, my can be also varying at different time steps. If G.(k) is of
low numerical rank, it is reasonable to use the rank my approximation (2.20) to
approximate G.(k).

Remark 2.14 The approximation of G.(k) can be also performed by setting a
threshold ¢ for the truncated singular values, which yields adaptive rank my. But
special attention should be paid for the approximation of G,(k) since my, should be
also used for the low-rank approximation of G, (k). This is the guarantee for the ex-
istence of the contragredient transformation that is introduced by Lemma 2.16 such
that the projection based balanced truncation for LTV systems can be performed.

Remark 2.15 Since the same rank should be used for the separate low-rank ap-
proximation of G.(k) and G, (k), if G.(k) and G, (k) are not well balanced, then there
will be a relative big approximation error for the approximation of the Hankel map
that will be introduced at (2.21) - (2.22). Here, “not well balanced” represents that
the singular values for one matrix have a sharp decrease while not for the other.

In [29], the recursive low-rank gramians method was used to approximate the grami-
ans of the linear time-invariant (LTI) systems. Such methods can also be applied
to approximate the gramians of the LTV systems. This is studied by the same au-
thor in an earlier reference [31]. In this section, we study the connections between
LTV systems and SSS matrices. Meanwhile, we extend the model order reduction
algorithm for LTV systems to the model order reduction for SSS matrices. The
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low-rank approximation method in [29, 31] was used to approximate the gramians
of the LTV systems that the SSS matrix corresponds to and the approximate bal-
anced truncation method was applied for the model order reduction. Even though
the low-rank approximation method in this chapter and the one in [31] are quite
similar, the novelty is that this algorithm has never been applied to reduce the
rank of the off-diagonal blocks of structured matrices. Moreover, the low- rank
approximation in [31] is more computationally expensive.

The low-rank approximation of the controllability and observability gramians for
LTV systems is introduced in Algorithm 2.2.

Algorithm 2.2 Low-Rank Approximation of the Gramians for LTV Systems

1: procedure Low_RANK(G,, G,)

2: Input: LTV system {Pk}évﬁ, {Rk}kN:_Ql, {Qk}kN:_ll, reduced order {mk}kN:2
3: for k=2: N do
4: if k == 2 then
5: { Qr_1 } = UCECVCT > singular value decomposition
6: else
7: [ Qr_1 ‘ Rk_lic(k— 1) ] = U2 VI (singular value decomposi-
tion)
8: end if
e
9: Pa'rtition UC = |: Ucl ‘ U(:2 i|a Zc = [ ! E 5 Ucl € RMX"”"’
c2
ch c Rmk ka.
10: Let Le(k) = Uy € RM*mx
11: end for
12: for k=N :2do
13: if k==N then
14: [ PkT ] = UOEOVOT (singular value decomposition)
15: else
16: [ PkT ‘ Rgfo(k—l— 1) ] = UOEOVOT (singular value decomposition)
17: end if
>,
18: Partition U, = [ Uni | Uso } 5, = [ ! | U € RM X
02
Zol 6 Rmk X?rbk.
19: Let io(k) =U, Y01 € RM >
20: end for

21: end procedure

- N . N
22: Output: Approximated factors {Lc(k’)}k:Q, {Lo(k)}k:2
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The balanced truncation approximates the LTV systems in the following way. The
Hankel map, which maps the input from past to the output in the future, has the
following definition for the LTV systems,

(2.21) Hy, = OkCr,

where O and Ci are the state to outputs map, and input to state map at time
instant k, respectively. Meanwhile, the following relation holds

G.(k) = CrCF,

2.22
( ) go(k) = Ogolw

where in (2.22) G.(k) and G, (k) are the controllability gramian and observability
gramian defined in (2.18), respectively.

The Hankel singular values oy are the singular values of the Hankel map, and it
was computed via the following equations in the finite dimensional spaces.

o3, = AHL M) = MCE OF O1Cr) = MCiCJ OF Or) = A(Ge(k)Go(k)).

It was shown in [129] that for any two positive definite matrices, there always exits
a so-called contragredient transformation such that

(2.23) Ay =T G ()T T = T Go(K) T,
where Ay is a diagonal matrix and

(2.24) Ay = diag(Arys Aoy o0y A )-
With this contragredient transformation, we have

(2.25) T 'Ge(k)Go (k) Ty = AR

This states that {)\k}zj‘il are the Hankel singular values at time step k. Such
contragredient transformation brings the systems into a “balanced” form, which
means that the controllability gramian and observability gramian of the system are
equal to a diagonal matrix. For the LTV system (2.17), after such a transformation,
the balanced LTV system is,

(2.26) { Tpt1 = TI;—&-llekak + Tk:,-lleuk

yr = PrTiTg.

Since for system (2.26), the controllability and observability gramians are balanced,
truncation can be performed to truncate the Hankel singular values that are below
a set threshold. This could be done by using the left and right multipliers L; and
L, that are defined by

(2.27) L= I, 0], L, = {I’g’“] :



30 Chapter 2: MSSS Preconditioners for PDE-Constrained Optimization

where I,,, is an my X my, identity matrix and my is the reduced system dimension
size at time step k. Then the reduced LTV system is

(2.28) { Fr = T(k + 1) ReTL (k)E5 + Tk + 1)Qpu

yr = Pell (k)Tk,
where Z = LiZy, I (k + 1) = L, T, | and I1,(k) = Ty L.

The reduced LTV system (2.28) is computed via a projection method with the
projector defined by II(k) = II,.(k)II; (k). This is because

I, (k)L (k) = LiT, '"Ty Ly = I,
and

1(k)? = IL (k)T (k)IL- (K)IT (k) = TI(k).

For the approximated gramians G.(k) and G,(k), which are positive semi-definite,
we have the following lemma, which states that there also exists a contragredient
transformation such that

(2.29) v =T (k)T " =T, Go(k) Tk,
where A}, is a diagonal matrix and

(2.30) Ay = diag(Ny,, Ny oo A, 0, oo, 0).

Lemma 2.16 ([129], Theorem 3) Let symmetric positive semidefinite Q, P €
RMXM: sqtisfy
rank QQ = rank P = rank QP = m,

where m < M. Then there exists a nonsingular W € RM>*M (contragredient
transformation) and positive definite diagonal ¥ € R™*™ such that

S 0l s o [2 0]
Q—W[O O]W7 P=W [O O}W .
Proof: For the proof of the lemma, we refer to [129]. |

We have already explained that the diagonal entries of the matrix A} in (2.30) are
the Hankel singular values of the approximate Hankel map in (2.21). If the control-
lability gramian G.(k) and the observability gramian G, (k) are well approximated
by G.(k) and G, (k) separately, then G.(k)G, (k) also approximates G.(k)G, (k) well.
This means that the approximate Hankel singular values {A;C }:7:1 are close to the
original Hankel singular values {Ag, }. .

In Algorithm 2.3, we show how to use the approximated gramians G.(k) and G, (k)
to compute the reduced system. By using the approximated gramians, this method
is called the approximate balanced truncation.
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Algorithm 2.3 Approximate Balanced Truncation for LTV systems
1: procedure ABT(P, R, Q)
N N-1 N-1 N
2: Input: LTV system { Py}, _o, {Ri}—o , {Qr}_; , reduced order {my},_,
3: Apply Algorithm 2.2 to compute the approximated gramian factors

- N - N
{Lc(k)}k:Q and {Lo(k)}kzz
4: for k=2 : N do
5: Compute the singular value decomposition E?(kj)io(l@) = UpXViL.
6: Let T (k) = £, 2 VT LT (k), and T,(k) = Lo(k)Uy3; *
7: end for
8: for k=1: N do
9: if kK ==1 then
10: Qr = IL(k +1)Qx
11: else if k == N then
12: Py, = PI1.(k)
13: else
14: Qr = i (k 4+ 1)Qx, Ry = I;(k + 1) ReIL,.(k), B = Pl (k)
15: end if
16: end for
3N . yN—-1 (. yN—-1
17: Output: Reduced LTV system {Pk}k:z, {Rk}k:Q , {Qk}k:l

18: end procedure

Lemma 2.17 Algorithm 2.3 is a projection based approximate balanced truncation
method for linear time-varying system (2.17).

Proof: Here, we assume that the time-varying order before performing Algo-
rithm 2.3 is uniform and equal to M. According to Lemma 2.16, there exists a
contragredient transformation Tj, € RM™*M such that

;c = Tlslgc(k)Tk_T = T]?éo(k)fky

where A} is a diagonal matrix and

, S 0
se= [0
Here
Zk:dlag( ;617 ;627 Tty )‘;@mk)v
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and { A}, }:’:1 are the singular values of LT (K)L,(k), i.e.,

LY(K)Lo(k) = UpZi VL.
According to the proof of Lemma 2.16, the contragredient transformation 7T}, are
computed via

et wif$ EJf5 8"

And the inverse of such transformation is computed by

=i 8]0 ol fel]

where N, (k) € RM*(M=m%) spans the null space of Gy(k), No(k) € RM*(M=mx)
spans the null space of Gc(kz), and we have the following singular value decompo-
sition

NE(E)N, (k) = Up S VT
With this contragredient transformation 7T}, the left and right multipliers are com-
puted via

) = o 07 = o 0[5 2] % &) [0 = stwrzn

(k) = Tp [Lgk} = [L(k) No(k)] F{f ng] [Zok Zok]‘% [I’gk — LUt

The projection is defined via
I, = 10 (k)L (),

since I1; (k)L (k) = I, and I3 = IIj. O

Note that the low-rank approximation together with the approximate balanced
truncation for linear time-invariant (LTI) system is studied in [28, 29]. Ounly bal-
anced truncation for linear time-varying (LTV) system is studied in [31].

For an SSS matrix A = SSS(Ps, Rs, Qs, Ds, Us, Wy, Vi) with lower semisep-
arable order M, we have already explained its LTV system realization. Thus, Al-
gorithm 2.2 and Algorithm 2.3 can be performed to reduce the order of the causal
LTV system (2.17), which corresponds to reduce the lower semiseparable order.
This yields the approximated SSS matrix A = SSS(PS, Rs, Qs, D, Uy, Wy, Vs).
For the strictly upper-triangular part of A, we first transpose it to the strictly
lower-triangular form then perform Algorithm 2.2 and Algorithm 2.3. After this
reduction, we transpose the reduced strictly lower-triangular part to the strictly
upper-triangular form.
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2.4.3 Hankel Blocks Approximation

To compare with the approximate balanced truncation for SSS matrices, we de-
scribe the standard model order reduction algorithm in this part. It is called Hankel
blocks approximation in [34, 33]. The Hankel blocks of an SSS matrix are defined
by Definition 2.7.

Definition 2.7 ([33]) Hankel blocks denote the off-diagonal blocks that extend
from the diagonal to the northeast corner (for the upper case) or to the southwest

corner (for the lower case).

Take a 4 x 4 block SSS matrix A for example, the Hankel blocks for the strictly
lower-triangular part are shown in Figure 2.2 by Hs, Hs and Hy.

Ha
Figure 2.2: Hankel blocks of a 4 x 4 block SSS matrix

It is easy to very that for the Hankel blocks H;, (i = 2, ..., N), the following
relation hold

(2.31) H, =0, (i=2, ,..., N),

where O; and C; are the current state to the current and future output map and
the past input to the current state map for system (2.17), respectively. Moreover,
the following relation hold for O; and C;.

P;_ .
(2.32) O = |:OiRi11]’ (i=2,,..., N-1), Oy = Py
(2.33) Ciy1=[RiC; Qi], (i=2,,..., N=1), Ca =1

The two maps C; and O; also satisfy
(2.34) G.(i) = C;Cl, Go(i) = O 0y,

where G.(i) and G, (i) are the controllability gramian and observability gramian
that satisfy (2.18).
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The rank of the Hankel map H; at time step i, i.e., the rank of the i-th Hankel
block is the order of the states x; of system (2.17) [125]. The standard way to
reduce the rank of the Hankel blocks is given in [33]. This standard approach
is based on the realization theory of a given Hankel map for LTV systems that
is introduced in [41, 125], i.e., according to the given Hankel map {Hi}f.v:z, find
a triple {Py, Rk, Qi} that satisfy (2.31) (2.32) (2.33). By using the realization

theory, it is also possible to get the reduced triple {131.C7 IA%k, Qk} that approximates
the Hankel map H; in (2.31).

To do this approximation, first we need to transform the map O; to the form
that has orthonormal columns and transform the map C; to the form that has
orthonormal rows. These two forms are called the left proper form and the right
proper form [34], respectively. Next, we use the transform of C; to introduce the
basic idea. The first step is to do a singular value decomposition (SVD) at the
starting point Cy, which gives

Co = UaXuVy

and let Cy = V4. At this step, the map C, is transformed to the form Co that has
orthonormal rows. Due to the change of Cs, to keep the Hankel map H; = O,C;
unchanged, the map Os is given by

@2 = O2U222a
then the Hankel map
Ha = O5Cy = O3Us %5 Vy = 05Cy = Ho.

Since all these transformations have to be done on the triple {Px, Ry, Qk}, not
on the maps, we have
Q=0C=Vy,
and
P
O3 Ry

which giVGS ]32 = PQUQEQ and Rg = RQUQZQ.

@2 = O2U222 = |: :| U2227

Now, suppose at step i, the map C; already has orthonormal rows, then for C;1,
we have

_ _ c,
(2:35) Cn=[RG Q] =[r Q]| ].
By performing a singular value decomposition to [Ri Qi], we have

(2.36) (R Qi) =US VT,
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let []:%, Qz] V-T and partition V; such that VT [VT sz] to make the size
of V;I' match the size of Q;. Then let

Qi=VI, R =VT.

2

To keep the use of notations consistent, we reuse R; to denote the transformed R;,
i.e., R;, this gives R; = VT By doing thls we have the transformed map

5 5 A 5 A1 |Ci Ci
(2.37) Ciy1=[RC: Qi] =[Ri Q] { I} =V { 1] :
which also has orthonormal rows. This is due to
C; cr
cotmit [ )7 ]

ooTr
_ ViT {CZCZ ] Vv, = ViTVi —1,

1

since C; also has orthonormal rows. Then the Hankel map at time step i + 1 before
and after such transformation has the following relation,

(2.38) Cit1 = UiXiCitn,

which can be checked by associating (2.35) and (2.36) with (2.37).

To keep the Hankel map at time step ¢ + 1 unchanged, the following relation needs
to hold,

(2.39) Oiv1 = 0; 1 U,
P

Since O; 41 =
o {Oi-'rQRi-&-l
have the transformed map

} by letting P11 = Pi1U;S; and Riy1 = Ry U;Y;, we

_ 2
2.40 Oit1 = =
(240) 1 [Oi+2Ri+1]
And by checking (2.38)(2.39)(2.40), it is easy to get the unchanged Hankel map at
time step ¢ + 1. Similar procedure can be applied to transform the map O; to the
form that has orthonormal columns.

After transforming the map O; and C; into the form with orthogonal column basis
and row basis, we start to transform C; to the form with orthonormal columns and
compute the approximate Hankel map (blocks) H; = O,C;. Therefore, this method
is called the Hankel blocks approximation.

Remark 2.18 For the approximate balanced truncation,the map O; and C; are
approximated separately via the low-rank approximation Algorithm 2.2. If the
maps are not well balanced, the Hankel map H; is not well approximated. We will
introduce the error bound for the Hankel blocks approximation in Chapter 4.
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Algorithm 2.4 Hankel Blocks Approximation
1: procedure HBA(P, R, Q)

2 Input:LTV system {Pk},inQ, {Rk}g:_zl, {Qk}g:_ll, reduced system order m
3 fori=2: N do
4 if i == 2 then
5: Qi_1 = U;X; VT (singular value decomposition)
6 Let Qi1 =V, P, = PU;%;, and R; = RU;Y;
7 else if i == N then
8 [Ri,l Qi,l} =U,;%; V' (singular value decomposition)
9: Partition V;| = [Vf; Vlﬂ such that the size of Q;_; and V;T match
10: Let Ri 1 = Vi1, Qo1 =V, P = BUY;
11: else
12: [Ri,l Qi,l} = U;%; V¥ (singular value decomposition)
13: Partition V;! = [Vf V;ﬂ such that the size of Q;_1 and Vg match
14: Let R;_1 = V“T, Qi1 = Vg, P, = PU;Y; and R; = R,U;S;
15: end if
16: end for
17: fort:=N:2do
18: if i == N then
19: P, = UiEiViT (singular value decomposition)
20: Let P, =U;, Ri—1 = S,V Ri1, Qic1 = SV Qi
21: else if i == 2 then

P; T, . .
22: =U;%;V;" (singular value decomposition)

i

23: Partition U; = | such that the size of U;, and R; match
24: Let P, = U, R; :12in Qi1 =%;ViQi1
25: else

P; T, . o
26: =U,;%;V;" (singular value decomposition)
27: Partition U; = Ui such that the size of U;, and R; match
28: Let P, =U,;,, R; :zQUiQ, Qi = X;ViQ;
29: end if

30: end for
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Algorithm 2.4 Hankel Blocks Approximation (continued)
31: fori=1:N do

32: if i ==1 then

33: Partition Q; = [ 6(231 } with Q;, € R™*0) let Q; = Q,

34: else if i==N then )

35: Partition P; = { J(D) with P;, € ROX™ et P, = P,

36: else )

37: Partition P; = { ](3) with P;, € ROX™ let P, = P,

38: Partition R; = { If’)l 8] with R;, € R™*™ et R, = R,
39: Partition Q; = [ 6(2.")1 } with Q;, € R™*() let Qi = Qi

40: end if

41: end for

42: end procedure
N L Y N-1 L yN-1
43: Output:Reduced LTV systems {Pk} {Rk} , {Qk}

)
k=2

2.4.4 Operations Count for the Two Model Order Reduction
Methods

Given an SSS matrix A = SSS(Ps, Rs, Qs, Ds, Us, Wy, Vi), to compare
the operations count of the approximate balanced truncation described by Algo-
rithm 2.2 - 2.3 and the Hankel blocks approximation introduced in Algorithm 2.4,
we assume that the generators sizes in Table 2.1 are uniform, i.e., m; = n and
k; =1; = M. Here N is the number of SSS blocks (LTV system time steps), M
is the unreduced LTV system order, and N > M > n. For the reduced SSS
matrix A = SSS(PS7 RS, QS, D, US, WS, VS), let Ifci = ZAZ' = m, m is the reduced
semiseparable order and m < M.

In this section, we measure the operations count by the floating-point operations
(flops). To compute the operations count of the approximate balanced trunca-
tion, first we compute the operations count for the low-rank approximation in
Algorithm 2.2. In the forward recursion, the flops count for the singular value
decomposition is

(2.41) m?M + (m +n)?M(N —2).

In this recursion, two matrix-matrix product are computed in each iteration, where
the flops count is

(2.42) mM?*(N —2) + m?*M (N — 1).

Adding (2.41) and (2.42) gives the total flops count for the forward low-rank ap-
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proximation,
(2.43) m? M 4 (m +n)?M(N —2) + mM?*(N —2) +m*M(N — 1),

Since the forward low-rank approximation and the backward low-rank approxi-
mation are symmetric in computing, the flops count for the backward low-rank
approximation is equal to (2.43). Then the flops count F; for the low-rank approx-
imation Algorithm 2.2 is

(2.44) Fy = 2mM?N + 4m>MN + 4mnMN + 2n* M N — 4(m +n)*M — 4mM?.

Next we compute the operations count of the approximate balanced truncation
Algorithm 2.3. First, to compute II;(k) and II,.(k), the flops count is

(2.45) (m*M + m® +2(m* + m*M)) (N — 1),
and the flops count to compute the reduced LTV system is
(2.46) 2mnM (N — 1) + (mM? + m*M)(N — 2).

Thus the total flops count F, for the approximate balanced truncation is the sum-
mation of (2.45) and (2.46), which is given by

(2.47) Fo = (M?*4+mM +2nM)N — 2mn(M +m + n).

Then we have the total flops count F;, of the approximate balanced truncation by
adding (2.44) to (2.47). Since we have N > M > m, n, we just use the O(-) to
denote the total flops count. Then, we get

(2.48) Fia =0 ((2m +1)M?N).

Similarly, we can compute the operations count Fj, for the Hankel blocks approxi-
mation in Algorithm 2.4, which is given by

(2.49) Fy, = AMPN+6nM?N+2(n?+2n) M N—8M?>—12nM?+2(n*—3n) M+2n?,

and by using the O(-) notation, we can write the flops count of the Hankel blocks
approximation method as

(2.50) Fn = OAM?>N).

Since N > M > m, by comparing the flops count F;, for the approximate balanced
truncation in (2.48) with the flops count F, for the Hankel blocks approximation in
(2.49), we see that the approximate balanced truncation algorithm is computation-
ally cheaper than the Hankel blocks approximation for the model order reduction
of SSS matrices.

Remark 2.19 By checking the flops count F;, for the approximate balanced trun-
cation in (2.48) with the flops count Fj, for the Hankel blocks approximation in
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(2.49), we can see that the flops count is linear with N for both method, where N
denotes the number of blocks of an SSS matrix. Moreover, the size of the SSS ma-
trix equals to n/NV and n < N. Thus, both methods have computational complexity
that is linear with the matrix size.

2.4.5 Flowchart of Preconditioning by Using MSSS Matrix
Computations

We have already described the MSSS matrix computations and showed how to
compute a preconditioner using such matrix computations. In this part, we use a
flowchart to illustrate how to compute a preconditioner for the PDE-constrained
optimization problem (2.1). This flowchart is shown in Figure 2.3.

start

discretize and
optimize

saddle-point
system (2.3)

l

formulate MSSS
matrix K, M

preconditioning

block —I— global

I R

approximate M permute MSSS blocks
and K by into global MSSS matrix
Lemma 2.8 by Lemma 2.4
formulate ;
approximate global
Py @5 or MSSS matrix
Py 26 by Lemma 2.8
Krylov solver
End

Figure 2.3: Flowchart for MSSS preconditioning of PDE-constrained optimization problem
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2.5 Numerical Experiments

In this section, we study the problem of optimal control of the convection-diffusion
equation that is introduced in Example 2.2. First, we compare the performance of
our model order reduction algorithm with the conventional model order reduction
algorithm. Next we test the global MSSS preconditioner and the block diagonal
MSSS preconditioner. Numerical results in the appendix also show the advantage
of the global MSSS preconditioner over the lower-triangular block MSSS precon-
ditioner for the PDE-constrained optimization problem. The superiority of the
global MSSS preconditioner to the block preconditioners that are computed by the
multigrid methods for computational fluid dynamics (CFD) problems is illustrated
in the next chapter.

Example 2.2 ([106]) Let Q = {(z,y)|0 < 2 < 1,0 < y < 1} and consider the
problem

1
min 3l — ol + 5117

s.t. —VV2u+j~Vu:f in

u=up on 0L,
where 0$) is the boundary of ), and

un (20 —-1)*2y—1)? if 0<x <3, and 0<y< 3,
P~V o0 otherwise.

v is a positive scalar, & = (cos(), sin(0))" is the unit directional vector and the
prescribed state 4 = 0.

The numerical experiments are performed on a laptop of Intel Core 2 Duo P8700
CPU of 2.53 GHz and 8Gb memory with Matlab R2010b. The iterative solver is
stopped by either reducing the 2-norm of the residual by a factor of 1076 or reaching
the maximum number of iterations that is set to be 100 in this section. Note that
there are three unknowns on each grid point. The problem sizes 3.07e+03,1.23e+04,
4.92e + 04 and 1.97e + 05 correspond to the mesh sizes h = 27°, 276 277 and 278,
respectively. The maximum semiseparable order for the model order reduction are
given in the brackets following the problem sizes. The “preconditioning” columns
in the tables report the time to compute the preconditioner while the “MINRES”
or “IDR(s)” columns give the time to solve the saddle-point problem by using such
Krylov solver, and the “total” columns is the summation of the time to compute
the preconditioner and iteratively solve the saddle-point system. All the times are
measured in seconds.
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2.5.1 Comparison of Two Model Order Reduction Algo-
rithms

In this part, we test the performance of the two model order reduction algorithms.
Consider the preconditioning of optimal control of the convection-diffusion equation
described by Example 2.2. For the block-diagonal preconditioner P; that is com-
puted by the approximate balanced truncation algorithm and the Hankel blocks
approximation method, the results for different v and 3 are shown in Table 2.2 - 2.9
while 6 is set to be ™/5 for all the experiments.

Table 2.2: Results for approximate balanced truncation for 8 = 101, v = 10~1

problem size iterations  preconditioning (sec.) MINRES (sec.) total (sec.)

3.07e+03 (4) 10 0.43 0.88 1.31
1.23e+04 (6) 10 1.79 2.07 3.86
4.92¢+04 (6) 10 4.11 5.95 10.06
1.97e+05 (7) 10 17.05 22.09 39.14

Table 2.3: Results for Hankel blocks approximation for 3 = 10~1!, v = 10~!

problem size iterations preconditioning (sec.) MINRES (sec.) total (sec.)

3.07c+03 (4) 10 0.69 1.32 2.01
1.23¢+04 (6) 10 2.59 2.38 4.97
4.92e+04 (6) 10 6.14 5.94 12.08
1.97e+05 (7) 10 26.11 21.59 47.70

Table 2.4: Results for approximate balanced truncation for 8 = 101, v = 10~2

problem size iterations preconditioning (sec.) MINRES (sec.) total (sec.)

3.07e+03 (3) 16 0.29 1.46 1.75
1.23e+04 (4) 14 0.96 3.01 3.97
4.92e+04 (4) 14 2.49 8.17 10.66
1.97e405 (5) 14 9.43 29.57 39.00

Table 2.5: Results for Hankel blocks approximation for 8 = 10~1, v = 10~2

problem size  iterations preconditioning (sec.) MINRES (sec.) total (sec.)

3.07e4-03 (3 16 0.46 1.48 1.94

4.92e+04 (4

3)

1.23¢+04 (4) 14 1.40 2.98 4.38
(4) 14 4.85 7.99 12.84
(5)

1.97e+4-05 (5 14 20.48 28.24 48.72
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Table 2.6: Results for approximate balanced truncation for 8 = 1072, v = 10~!

problem size iterations preconditioning (sec.) MINRES (sec.) total (sec.)

3.07e+403 (3) 18 0.28 1.59 1.87
1.23e+04 (3) 18 0.85 4.02 4.87
4.92e+04 (3) 18 2.26 10.79 13.05
1.97e+05 (5) 18 9.67 35.32 44.99

Table 2.7: Results for Hankel blocks approximation for 3 = 1072, v = 10~!

problem size iterations preconditioning (sec.) MINRES (sec.) total (sec.)

3.07e+03 (3) 18 0.47 1.65 2.12
1.23e+04 (3) 18 1.28 3.95 5.23
4.92e+04 (3) 18 4.41 10.38 14.79
1.97e+05 (5) 18 21.14 35.12 56.26

Table 2.8: Results for approximate balanced truncation for 8 = 102, v = 10~2

problem size iterations  preconditioning (sec.) MINRES (sec.) total (sec.)

3.07e+03 (3) 30 0.32 2.54 2.86
1.23e404 (3) 30 0.81 6.04 6.85
4.92e+04 (3) 30 2.28 17.79 20.07
1.97¢+05 (5) 30 9.42 58.01 67.43

Table 2.9: Results for Hankel blocks approximation for 8 = 1072, v = 10~2

problem size iterations preconditioning (sec.) MINRES (sec.) total (sec.)

3.07e+03 (3) 30 0.49 2.62 3.11
1.23e+-04 (3) 30 1.42 6.08 7.50
4.92e+04 (3) 30 4.46 17.43 21.89
1.97e405 (5) 30 20.39 57.32 77.71

The results in Table 2.2 - 2.9 show that the time to compute the preconditioner and
iteratively solve the saddle-point system is linear in the problem size, which verifies
that the MSSS preconditioning technique has linear computational complexity. It
shows that for the same group of v and 3, the block MSSS preconditioners com-
puted by the approximate balanced truncation and Hankel blocks approximation
methods give mesh size independent convergence. Moreover, the number of itera-
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tions for the block MSSS preconditioners computed by both model order reduction
algorithms are the same.

Remark 2.20 As shown by (2.48) and (2.49), the approximate balanced trunca-
tion is computationally cheaper than the Hankel blocks approximation and both
algorithms have linear computational complexity. This is illustrated by the time
to compute the preconditioners by these two methods for the same group of 8 and
v in Table 2.2 - 2.9.

2.5.2 Comparison of Preconditioners

In this part, we test the performance of the block-diagonal MSSS preconditioner
and the global MSSS preconditioner. For the block diagonal MSSS preconditioner,
from Table 2.2 - 2.9 we have seen that with the decrease of 3, the number of
iterations increases slightly for the same problem size and v. This is due to the
L 28 M term, which plays an increasingly important role with the decrease of 3,
while this term is often neglected in the preconditioner P; in (2.5) for big and
middle value of 5 [106]. If we continue decreasing (3, we obtain the computational
results for the block-diagonal MSSS preconditioner in Table 2.10-2.11. For the
preconditioners tested in this part, the Hankel blocks approximation method is
chosen as the model order reduction algorithm. Results for the preconditioners
computed by the approximate balanced truncation can be found in [102].

Table 2.10: Results for the block-diagonal MSSS preconditioner (2.5) for 8 = 1073, v = 107!

problem size iterations preconditioning (sec.) MINRES (sec.) total (sec.)

3.07e+03 (3) 34 0.43 2.91 3.34
1.23e+04 (3) 34 1.31 7.61 8.92
4.92e+04 (3) 34 4.26 19.83 24.09
1.97e+05 (5) 34 17.39 61.82 79.21

Table 2.11: Results for the block-diagonal MSSS preconditioner (2.5) for 8 = 10~4, v = 10~

problem size iterations  preconditioning (sec.) MINRES (sec.) total (sec.)

3.07e+03 (3) 82 0.45 4.91 5.36

1.23e+04 (3) 82 1.31 11.91 13.22
4.92e4-04 (3) 80 4.34 34.83 39.17
1.97e+05 (5) 80 17.89 133.28 141.17

As shown in Table 2.10 - 2.11, with the decrease of 3 from 1072 to 10~%, the number
of iterations more than doubles. Clearly if 8 is too small, the block-diagonal MSSS
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preconditioner P; cannot give satisfactory results. Alternatively, for small 5, we
can choose the block-diagonal MSSS preconditioner as follows

28M
(2.51) Py = M
—%M

The computational results of the preconditioner (2.51) for 3 = 107* are given in
Table 2.12. Here, we approximate the mass matrix M by performing approximate
LU factorization using MSSS matrix computations.

Table 2.12: Results for the block-diagonal MSSS preconditioner (2.51) for § = 1074, v = 10!

problem size iterations  preconditioning (sec.) MINRES (sec.) convergence

3.07e+03 (5) 100 0.35 6.73 no convergence
1.23e+04 (5) 100 1.17 17.97 no convergence
4.92e+04 (5) 100 4.19 44.93 no convergence
1.97e+05 (5) 100 15.72 156.89 no convergence

The results in Table 2.11 - 2.12 show that the block-diagonal MSSS preconditioner
does not give satisfactory performance when 5 becomes so small. Here in the
table, “no convergence” means that the 2-norm of the residual does not converge
to desired accuracy within 100 iterations. This is due to the fact that !/o5M cannot
approximate the Schur complement efficiently for small j.

Recall from Section 2.3 that we can permute the saddle-point system with MSSS
blocks into a global MSSS system. Due to the indefiniteness of the global MSSS
preconditioner, MINRES is not suitable to iteratively solve the preconditioned saddle-
point system, the induced dimension reduction (IDR(s)) method [127] is chosen
as the Krylov solver. To compare with the results for the block-diagonal MSSS
preconditioner in Table 2.10 - 2.12, we apply the global MSSS preconditioner to
the same test case. The results are given in Table 2.13 - 2.14.

Table 2.13: Results for the global MSSS preconditioner for = 1073 and v = 10~!

problem size  iterations preconditioning (sec.) IDR(4) (sec.) total (sec.)
3.07e+03 (4) 2 0.38 0.13 0.51
1.23e+04 (6) 2 1.56 0.24 1.80
4.92e+04 (8) 2 5.46 0.66 6.12
1.97e+05 (10) 2 21.29 2.21 23.50

Even though it takes slightly longer time to compute the global MSSS precondi-
tioner than to compute the block-diagonal MSSS preconditioner, much less time
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is needed for the IDR(s) method to solve the preconditioned system by the global
MSSS preconditioner. Meanwhile, the time to compute both preconditioners and
to solve the preconditioned system scales linearly with the problem size.

Table 2.14: Results for the global MSSS preconditioner for § = 10~% and v = 10~

problem size iterations  preconditioning (sec.) IDR(4) (sec.) total (sec.)

3.07e403 (4) 2 0.38 0.13 0.51
1.23e+04 (6) 2 1.55 0.24 1.79
4.92e+04 (7) 2 5.23 0.64 5.87
1.97e+05 (9) 2 21.87 2.18 24.05

Remark 2.21 By comparing the computational results of the global MSSS pre-
conditioner with that of the block-diagonal MSSS preconditioner, we find that for
the same numerical test with the same group of $ and v that the number of iter-
ations is reduced significantly by the global MSSS preconditioner. Meanwhile, the
global MSSS preconditioner gives both mesh size and § independent convergence.
This makes the global MSSS preconditioner superior to the block preconditioners.

Remark 2.22 Although recent advance in block preconditioning techniques also
has 8 independent convergence property [96], the block preconditioner developed
in [96] failed to solve PDE-constrained optimization problems where control only
act on parts of the domain, cf. [93, 107]. The block preconditioner we used for
comparison with global MSSS preconditioner in this chapter still suits that type
problem and is more general. Moreover, for the case of in-domain control of Navier-
Stokes equation that is described in Chapter 5, both block preconditioning tech-
niques introduced in this chapter and [96] fail to give satisfactory performance
while global MSSS preconditioning technique is still robust and efficient. Details
will be discussed in Chapter 5.

2.6 Optimal Control of 3D Problems

As analyzed in Section 2.4.1, to do an LU factorization of a k-level SSS matrix, the
model order reduction of a (k—1)-level SSS matrix is needed. Therefore, to compute
a preconditioner for 3D problems using MSSS matrix computations, model order
reduction for 2-level SSS matrices is needed. Since the model order reduction for
2 and higher level SSS matrices is still an open problem, only preliminary results
for optimal control of the 3D Poisson equation in Example 2.3 are given in this
section.

Example 2.3 Consider the following problem of optimal control of the 3D Poisson
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equation

1
min 3 — ol + 5112

(2.52) st.—Viu=f1inQ
u=up on 0L,

where Q = {(x,y,2)[0 <2 <1,0<y <1,0< 2 <1} and

sin(27y), ifx=0,0<y<1, z=0;
up = § —sin(2wy), frx=1 0<y<1, z2=0;

0, elsewhere.
The discretized analog of problem (2.52) is

1
min 5 fju - all® + gIIf11®

(2.53)
st. Ku=Mf+d,
where
D —L
-L D —L
(2.54) K= -L D . :
. —L
-L D

the matrices D and L in K are 2-level SSS matrices, M is the 3D mass matrix
that has the same structure as K, d is a vector that corresponds to the given
boundary condition. To compute the optimal solution of Example 2.3, system of
the form (2.3) needs to be solved. Here we again study two types of preconditioners:
the block-diagonal MSSS preconditioner and the global MSSS preconditioner.

2.6.1 Block-Diagonal Preconditioner

In this subsection, we test the block-diagonal preconditioner for big and middle 3,
then the block-diagonal preconditioner Py (2 5) is chosen. Here the Schur comple-
ment is approximated by KM~1KT where K is an approximation of K by MSSS
matrix computations.

To approximate the symmetric positive definite matrix K, we can compute its
approximate Cholesky factorization with MSSS matrix computations. At the k-th
step of the Cholesky factorization, the Schur complement is computed via

S, =D if k=1
(2.55) = » ! )
Se=D—LS; L, ifk>2.
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Since D and L are 2-level SSS matrices, Sy is also a 2-level SSS matrix. In the
recurrence (2.55), both the 2-level and 1-level semiseparable orders of Sy, increase as
k goes up. Model order reduction for 2-level and 1-level SSS matrices are necessary,
of which the model order reduction for 2-level SSS matrix is still an open problem.
Here we use an alternative approach to approximate the Schur complement with
lower 2-level semiseparable order.

As pointed out in [35], for a symmetric positive definite matrix from the discretiza-
tion of PDEs with constant coefficients, all its subsequent Schur complements are
also symmetric positive definite and converge to a fixed point matrix S, with a
fast rate. In [40], Dewilde et al. used a hierarchical partitioning for the 3D matrix
K (2.54) and did computations on 2D matrices using the 1-level SSS matrix com-
putations for preconditioning 3D Poisson equation on an 8 x 8 x 8 regular grid.
Due to the fact that 1-level SSS matrix computations were performed on 2D ma-
trices, the linear computational complexity is lost. Note that there is no numerical
experiment in [40] to study the performance of such preconditioning technique for
a certain Krylov solver.

In this section, we extend the method in [40] to the optimal control of 3D Pois-
son equation in the following ways. Instead of using the hierarchical partitioning
of a 3D matrix, we use the 3-level SSS matrix formulation. This avoids cutting
on “layers” that is introduced in [40] to bound the 2-level semiseparable order.
We exploit the fast convergence property of the Schur complements of symmetric
positive definite matrices to bound the 2-level semiseparable order. As analyzed in
Section 2.3, the 1-level and 2-level semiseparable order both grow in computing the
Schur complements in (2.55). To reduce the 1-level semiseparable order, we can
apply the approximate balanced truncation or the Hankel blocks approximation
that are introduced in Section 2.4. We use an alternative approach to bound the
2-level semiseparable order. We compute the Schur complements of the first k.
steps using MSSS matrix computations. Here k, determines the accuracy of the
approximate block factorization. By balancing the accuracy of the preconditioner
and computational cost, we usually choose k, as a small number. Using the Schur
complement at step k, to replace the Schur complements, we have the following
recursions for the Schur complements

Sk =D, if k=1,
(2.56) Sy =D— LS 'L, if2<k<k,
Sk = Sk, if k> k,.

Since only the Schur complements are computed in the first k, steps, the 2-level
semiseparable order is bounded. This also bounds the computational complexity.
Due to the fast convergence property, the Schur complement at step k, gives an
efficient approximation of the Schur complements afterwards. We also extend the
fast convergence property of the Schur complements from the symmetric positive
definite matrix to the symmetric indefinite matrix case. This extension enables
us to compute a good approximation of the 3D global saddle-point matrix, which
gives an efficient global MSSS preconditioner.

In this part, we apply the block-diagonal MSSS preconditioner (2.5) and MINRES
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method to iteratively solve the saddle-point system. The computational results are
reported in Table 2.15 - 2.17. Note that if the mesh size & is halved, the problem
size grows by a factor of 8. Besides, there are three unknowns per grid point. The
1-level semiseparable order is set to be 6 for all the numerical experiments in this
part. The iterative solver is stopped if the 2-norm of the residual is reduced by
a factor of 1076. The Hankel blocks approximation is chosen as the model order
reduction method. The “preconditioning” column, “MINRES” column and the
“total” column represent the same as the tables in Section 2.5.

According to the computational results for different 8 and A in Table 2.15 - 2.17,
we can see that for fixed h and (, the number of iterations decreases as k, goes
up, and a small k, is enough to compute an efficient preconditioner. Due to the
growth of k,, the time to compute the preconditioner increases. Since only the
Schur complements in the first k, steps are computed, the time to compute the
preconditioner increases less than linear when halving the mesh size h. This is
illustrated by the “preconditioning” columns in Table 2.15 - 2.17. Moreover, by
choosing a small k, that ranges from 3 to 8, the block MSSS preconditioner also
gives nearly size independent convergence and regularization parameter almost
independent convergence while the computational complexity is smaller than linear.
This property is obtained by carefully checking the computational results given in
Table 2.15 - 2.17.

Table 2.15: Block MSSS preconditioner for optimal 3D Poisson equation control with 8 = 10!

problem size h kr | preconditioning (sec.) | iterations | MINRES (sec.) | total (sec.)
1 1.59 16 17.41 19.01
2 2.76 10 11.09 13.85
1.54e+03 273
3 4.20 6 7.08 11.28
4 5.68 6 7.15 12.82
1 3.35 30 139.81 143.16
2 6.47 18 86.77 93.24
1.23e+04 | 27*
3 9.88 12 59.30 69.18
4 13.36 10 50.42 63.77
2 14.47 38 761.27 775.75
- 3 22.95 24 503.24 526.18
9.83e+04 277
4 33.51 18 397.82 431.33
5 42.83 14 321.34 364.17
7 215.42 20 2156.24 2371.66
7.86e+05 | 276
8 315.62 18 2024.42 2340.04
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Table 2.16: Block MSSS preconditioner for optimal 3D Poisson equation control with 8 = 10~2

problem size h kr | preconditioning (sec.) | iterations | MINRES (sec.) | total (sec.)
1 1.48 14 15.49 16.97
2 2.93 8 9.31 12.24
1.54e+03 | 273
3 4.29 8 9.22 13.51
4 6.07 6 .17 13.24
1 3.56 30 141.86 145.42
2 7.26 16 86.04 86.04
1.23e+04 | 271
3 10.59 12 59.85 70.44
4 13.36 8 42.63 56.82
2 15.86 36 726.65 742.51
3 27.34 24 504.29 531.63
9.83e-+04 275
4 35.72 18 408.10 443.82
5 50.33 14 356.48 406.80
7 216.87 20 2154.61 2371.48
7.86e+05 2-6
8 314.44 18 2050.43 2364.87

Table 2.17: Block MSSS preconditioner for optimal 3D Poisson equation control with 8 = 103

problem size h kr | preconditioning (sec.) | iterations | MINRES (sec.) | total (sec.)
2 2.90 14 15.36 19.01
3 4.44 14 15.60 13.85
1.54e+03 273
4 6.13 12 13.61 11.28
5 7.68 12 13.39 12.82
2 6.80 14 70.27 143.16
3 13.04 10 53.51 93.24
1.23e+04 | 274
4 20.34 10 53.79 69.18
5 17.22 10 52.10 63.77
2 14.52 32 647.86 775.75
3 22.43 22 459.30 526.18
9.83e+04 | 27°
4 30.73 16 347.96 431.33
5 40.11 12 273.07 364.17
6 183.13 22 2880.90 3064.03
7.86e+4-05 276 7 214.31 20 2419.73 2634.04
8 315.58 16 1843.61 2159.19
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2.6.2 Global Preconditioners

In the previous subsection, we studied the performance of the block MSSS pre-
conditioner for the optimal control of 3D Poisson equation. In this subsection, we
use the same technique with the previous subsection to bound the 2-level semisep-
arable order of the Schur complements of the symmetric indefinite system. Even
the analysis in [35] only holds for the symmetric positive definite matrix case, our
numerical experiments illustrate that the fast convergence property of the Schur
complements also holds for symmetric indefinite case.

The saddle-point system obtained by using the discretize-then-optimize approach
has exactly the same form as (2.3) and the system matrix can be represented by,

26M 0 -M
(2.57) A=| 0 M KT|,
-M K 0

where K is the stiffness matrix in (2.54), and M is the mass matrix. Since all these
matrices are from the discretization of 3D PDEs on a regular domain with uniform
mesh, K and M have the same 3-level SSS structure as shown in (2.54). Here we
can apply Lemma 2.4 again to permute the global saddle-point matrix A (2.57)
into a global MSSS matrix A. The permuted global saddle-point matrix A has the
same MSSS structure as subblocks of A, i.e.,

~i
el

L
D

pNY
Il
|

(2.58)

where D and L are obtained via Lemma 2.4. To compute an LU factorization, the
Schur complements are computed via the following recursions,

(2.59) {

Due to the indefiniteness of D, the Schur complements are also indefinite. We
apply the same method as introduced in the previous subsection: we compute the
Schur complements of the first &, steps and use the Schur complement at step k.
to approximate the Schur complements afterwards. This gives,

, if k=1,
— LS 'L, ifk>2.

U »

Il
wlwl

k
k

Sk =D, ifk=1,
(2.60) Sg=D—LS; 'L, if2<k<k,
S’kZSkT, if k> k,.

By using this approximation for the permuted global system, we can compute
the global MSSS preconditioner and apply it to iteratively solve the saddle-point
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system. The computational results are given in Table 2.18 - 2.20, where the columns
represent the same as Table 2.15 - 2.17.

Since we just compute the first few steps of the Schur complements, the compu-
tational complexity to compute the global MSSS preconditioner is smaller than
linear. This is stated by the “preconditioning” columns for the same k, in Ta-
ble 2.18 - 2.20. The number of iterations decreases as k, goes up for the same
B and h. By using a small k,, we have already reduced the number of iterations
significantly by the global MSSS preconditioner compared with the block-diagonal
MSSS preconditioner. Moreover, the global MSSS preconditioner gives virtually
mesh size h and regularization parameter 8 independent convergence for properly
chosen k..

Table 2.18: Global MSSS preconditioner for optimal 3D Poisson equation control with 8 = 10~1

problem size h kr | iterations | preconditioning (sec.) | IDR(4) (sec.) | total (sec.)
1 3 3.84 1.96 5.79
1.54e+03 23 2 3 4.95 1.59 6.53
3 2 7.70 1.08 8.78
2 6 13.37 15.19 28.56
1.23e+04 2—4 3 4 22.39 10.79 33.17
4 3 33.67 8.75 42.42
2 8 41.04 106.14 147.18
9.83e+04 275 3 7 78.87 109.18 188.05
4 6 143.04 109.26 252.31
2 14 153.60 1174.12 1327.72
7.86e+05 2-6 3 9 245.24 1101.88 1347.12
4 8 1152.20 1841.57 2993.78

Table 2.19: Global MSSS preconditioner for optimal 3D Poisson equation control with 8 = 102

problem size h kr | iterations | preconditioning (sec.) | IDR(4) (sec.) | total (sec.)
1 4 3.39 2.69 6.09
1.54e+03 | 273 | 2 3 4.92 1.61 6.53
3 2 8.13 1.09 9.22
2 7 13.41 17.98 31.40
1.23e+-04 2—4 3 4 22.39 10.78 33.17
4 3 34.16 8.80 42.95
2 8 38.71 103.94 142.65
9.83e+04 275 3 6 77.30 111.30 188.61
4 4 155.59 103.77 259.36
2 14 209.47 1362.70 1572.17
7.86e+05 276 3 9 290.69 1132.86 1423.55
4 8 1181.81 2277.18 3458.99
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Table 2.20: Global MSSS preconditioner for optimal 3D Poisson equation control with 8 = 103

problem size h kr | iterations | preconditioning (sec.) | IDR(4) (sec.) | total (sec.)
1 9 2.63 5.26 7.89
1.54e+03 | 273 | 2 4 5.30 2.72 8.03
3 3 6.32 1.64 7.96
2 6 10.54 15.25 25.79
1.23e+4-04 2—4 3 4 19.41 14.26 33.68
4 4 31.65 17.67 49.32
2 8 35.08 104.76 139.84
9.83e+04 275 3 7 78.38 108.77 187.15
4 4 134.06 93.27 227.44
2 16 162.84 1594.91 1757.75
7.86e+05 2-6 3 9 322.00 1328.26 1650.26
4 8 1503.76 2218.80 3722.56

Remark 2.23 Compare the results for the block-diagonal MSSS preconditioner
in Table 2.15 - 2.17 with that of the global MSSS preconditioner in Table 2.18 -
2.20, the global MSSS preconditioner reduces the number of iterations significantly.
Even though more time is spent in computing the global MSSS preconditioner for
the same group of numerical experiment, the time to iteratively solve the precon-
ditioned system is much reduced due to the fact that fewer iterations are needed.
Moreover, the total computation time for the global MSSS preconditioner is less
than that for the block MSSS preconditioner.

Remark 2.24 Since there is no efficient model order reduction to reduce the 2-
level semiseparable order, the 2-level semiseparable order continues growing before
k, is reached. It is shown in Table 2.18 - 2.20, when k, goes from 3 to 4 for h = 276,
the time to compute the global MSSS preconditioner increases dramatically. This
is due to the fact that when k, goes from 3 to 4, the 2-level semiseparable order
is not bounded by a small number, but by a moderate constant. However, the
computational complexity increases slightly more than linear when h goes from
275 to 276 for k., = 4. Moreover, the global MSSS preconditioner already gives
satisfactory performance by choosing k, = 3 for h = 276,

2.7 Conclusions

In this chapter, we have studied the multilevel sequentially semiseparable (MSSS)
preconditioners for saddle-point systems that arise from the PDE-constrained op-
timization problems. By exploiting the MSSS structure of the blocks of the saddle-
point system, we are able to construct the preconditioners and solve the precon-
ditioned system in linear computational complexity for 2D problems and almost
linear computational complexity for 3D problems. To reduce the computational
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complexity of computing the preconditioners, we have proposed a new model order
reduction algorithm based on the approximate balanced truncation for SSS matri-
ces. We evaluated the performance of the new model order reduction algorithm
by comparing with the standard model order reduction algorithm, which is called
the Hankel blocks approximation. Numerical experiments illustrate that our model
order reduction algorithm is computationally cheaper than the standard method.
Besides, it shows that for the optimal control of 2D PDEs, the global preconditioner
reduced the number of iterations significantly compared with the block precondi-
tioners. Both preconditioners give mesh size independent convergence and have
linear computational complexity. Moreover, the global MSSS preconditioner yields
regularization parameter independent convergence while the block MSSS precon-
ditioner does not have this property.

For PDE-constrained optimization problem in 3D, since efficient model order re-
duction algorithm for 2- or higher- level SSS matrices is still an open problem, we
apply an alternative approach to bound the 2-level semiseparable order. Numerical
experiments also illustrate that the global MSSS preconditioner gives mesh size and
regularization parameter virtually independent convergence while the block MSSS
preconditioner just yields mesh size almost independent convergence.






3 CHAPTER

Evaluation of MSSS
Preconditioners On CFD
Benchmark Problems Using IFISS

In this chapter, we evaluate the performance of MSSS preconditioners for
computational fluid dynamics (CFD) problems. Through numerical exper-
iments on standard CFD benchmark problems in IFISS, we show the per-
formance of the MSSS preconditioners. Numerical results indicate that the
global MSSS preconditioner not only yields mesh size independent convergence,
but also gives Reynolds number independent convergence. Compared with
the algebraic multigrid (AMG) method and the geometric multigrid (GMG)
method, the MSSS preconditioning technique is more robust than both the
AMG method and GMG method, and considerably faster than the AMG
method.

3.1 Introduction

The most time consuming part of a computational fluid dynamics (CFD) simulation
is the solution of one or more linear systems of the following type

(3.1) Az =10,

where A = [A;;] is an n x n matrix and b is a given right-hand-side vector of
compatible size [17]. Normally, the system matrix A is large and sparse. Many
efforts have been dedicated to finding efficient solution methods for such systems.
Krylov subspace methods such as the conjugate gradient (CG), minimal residual
(MINRES), generalized minimal residual (GMRES) and induced dimension reduction
(IDR(s)) methods are some of the most popular methods [60, 110, 119]. Efficiency
and robustness of iterative methods can be improved dramatically by combining

%)
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the preconditioning techniques [136]. In this chapter, we study MSSS precondi-
tioners for CFD problems and evaluate the performance of MSSS preconditioners
on standard CFD benchmark problems using the Incompressible Flow and Iter-
ative Solver Software (IFISS) [117]. IFISS is a computational laboratory for ex-
perimenting with state-of-the-art preconditioned iterative solvers for the discrete
linear equations that arise in incompressible flow modeling, which can be run under
Matlab or Octave.

In this chapter, we consider MSSS preconditioning techniques for CFD problems
on structured grids. For the discretized convection-diffusion equation, we exploit
the MSSS structure of the global system matrix, whereas for the discretized Stokes
and linearized Navier-Stokes problem, we exploit the MSSS structure of the blocks
of the system and permute the system matrix with MSSS blocks into a single
MSSS matrix. With this permutation, the discrete Stokes equation and discrete
linearized Navier-Stokes equation can be put in the MSSS matrix framework and
so avoids the computations of the Schur complements. This enables us to solve
the CFD problems with preconditioned Krylov subspace methods in linear com-
putational complexity. We evaluate the performance of the MSSS preconditioning
technique on CFD benchmark problems in IFISS and compare with block pre-
conditioning techniques that use the algebraic multigrid (AMG) method and the
geometric multigrid (GMG) method to solve sub-problems which correspond to
the (1,1) block of saddle-point systems. Numerical experiments illustrate that the
MSSS preconditioning technique yields mesh size independence convergence and
eliminates or reduces the convergence dependency on the Reynolds number, which
is an important advantage over the AMG and GMG methods. In addition to ro-
bustness, it is shown that the MSSS preconditioning technique is much faster than
the AMG method.

The outline of this chapter is as follows. In Section 3.2, we study the MSSS precon-
ditioners for the convection-diffusion equations. We apply both the block MSSS
preconditioner and global MSSS preconditioner to the Stokes equation in Sec-
tion 3.3. In Section 3.4, we apply the global MSSS preconditioner to the linearized
Navier-Stokes equation. Conclusions are given in Section 3.5.

3.2 Convection-Diffusion Problem

In this section, we test the performance of MSSS preconditioning techniques for
the convection-diffusion problems. The algebraic multigrid (AMG) method and
geometric multigrid (GMG) method in IFISS are also used to compare their per-
formance with that of the MSSS preconditioners. The MSSS matrix computations
are performed under MATLAB. All the numerical experiments are implemented
in MATLAB 2011b on a desktop of Intel Core i5 CPU of 3.10 GHz and 16 Gb
memory with the Debian GNU/Linux 7.2 system. The iterative solution methods
are terminated if the 2-norm of the residual is reduced by a factor of 107° or the
maximum number of iterations, which is set to 100, is reached.

In the tables that give numerical results, the “precond.” column reports the time
to compute the approximate LU factorization for MSSS preconditioners or the
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time to setup the multigrid for the AMG and GMG method. Induction dimension
reduction (IDR(s)) [119, 127] is chosen as the iterative solution method. The
“IDR(4)” column reports the time to solve the preconditioned system. The total
time is the sum of the time to compute the preconditioner and the time to solve the
preconditioned system, which is reported in the “total” column. All the columns
concerning time in this chapter are measured in seconds.

3.2.1 Moderate viscosity case

We first consider the convection-diffusion problem described in Example 3.1, which
is given as the example 3.1.4 in [53]. The details of the discretization of the
convection-diffusion equation can also be found in [53]. To investigate the per-
formance of the MSSS preconditioning technique, we first consider a moderate
viscosity v = 1/509. Next we consider the convection-dominated case, which has
a viscosity parameter v = 10~4. These experiments are also performed using the
AMG and GMG method for comparison.

Example 3.1 ([53]) Zero source term, recirculating wind, characteristic boundary
layers.

—wWVu+&Vu = f in Q

u = up on 0N

where @ = {(z,y)| -1 <z <1,-1<y<1}, & = (2y(1 — 2%), —22(1 —y?)),
f = 0. Homogeneous Dirichlet boundary are imposed everywhere except thatup = 1
on [—-1,1] x 1.

We use the @1 finite element method to discretize the convection-diffusion equation.
First, we consider a moderate value for the viscosity parameter v = /509, the com-
putational results for the MSSS preconditioner and the AMG and GMG method
are listed in Table 3.3 - 3.2. The maximum semiseparable orders for the MSSS pre-
conditioner are in the brackets that follow after the mesh size. The smoother for the
AMG and GMG method is chosen as the incomplete LU factorization (ilu(1)).
The solution for the mesh size h = 277 is shown in Figure 3.1.

Table 3.1: AMG method for v = 1/200

mesh size  problem size  #iter. precond. (sec.) IDR(4) (sec.) total (sec.)

24 1.09e+03 8 0.49 0.06 0.55
25 4.23e+03 4 2.38 0.05 2.43
26 1.66e+04 4 14.30 0.17 14.47
2-7 6.60e-+04 4 127.71 0.28 127.99
2-8 2.63e-+05 4 2513.11 1.53 2514.64
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Table 3.2: GMG method for v = ﬁ

mesh size  problem size  #iter. precond. (sec.) IDR(4) (sec.) total (sec.)

24 1.09e+03 5 0.02 0.02 0.04
275 4.23e+03 4 0.05 0.03 0.08
2-6 1.66e+04 3 0.12 0.04 0.16
2-7 6.60e+04 3 0.46 0.08 0.54
2-8 2.63e+05 3 2.72 0.31 3.03

Table 3.3: MSSS Preconditioner for v = 1/200

mesh size  problem size  #iter. precond. (sec.) IDR(4) (sec.) total (sec.)

274(4) 1.09e+03 4 0.48 0.31 0.79
275(5) 4.23e+03 4 1.22 0.74 1.96
276(5) 1.66e+04 4 4.16 2.20 6.36
2-7(7) 6.60e+04 4 16.11 8.09 24.20
2-8(7) 2.63e+05 4 63.15 30.42 93.58

solution in the domain contour view of the solution

X y X

(a) Solution of wu. (b) Contour view.

Figure 3.1: Solution of test problem 3.1 for v = 1/200 and h =27

According to Table 3.3, the MSSS preconditioner gives mesh size independent con-
vergence for this convection-diffusion problem. Both the time to compute the
approximate LU factorization with MSSS matrix computations and the time to
solve the preconditioned system scale linearly with the problem size.

Compared with the computational results shown in Table 3.1 - 3.2 for the AMG
and GMG methods, it is clear to see that the computational time of the AMG
method setup is much bigger than the MSSS preconditioner, while the time for the
GMG method is much smaller than for the MSSS preconditioner. Both the AMG
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and GMG methods give mesh size independent convergence. Table 3.1 illustrates
that the computational complexity for setting up the AMG method grows with the
problem size and is bigger than linear. This is due to the fact that MATLAB is
not competitive in speed and the MATLAB code in IFISS is not highly optimized.
Or perhaps the AMG method implemented in IFISS is not of linear computational
complexity.

It is clear to see from Table 3.1 - 3.3 that for the convection-diffusion problem with
moderate viscosity, the GMG method is competitive.

3.2.2 Small viscosity case

Next, we test the convection-dominated case with the viscosity parameter v = 10~*
for the MSSS preconditioner, the AMG and GMG method. The computational
results are listed in Table 3.4 - 3.6. The solution for the mesh size h = 277 is
shown in Figure 3.2.

Table 3.4: MSSS preconditioner with v = 10~*

mesh size  problem size  #iter. precond. (sec.) IDR(4) (sec.) total (sec.)

274(12) 1.09e+03 14 0.46 0.84 1.30
2-5(24) 4.23e+03 11 1.61 1.89 3.50
2-6(26) 1.66e+04 12 6.68 6.80 13.48
2-7(26) 6.60e-+04 14 29.90 16.68 46.58
2-8(10) 2.63e+05 5 66.63 38.22 104.85

Table 3.5: AMG method with v = 10—%

mesh size  problem size  #iter. precond. (sec.) IDR(4) (sec.) total (sec.)

2—4 1.09e+03 100 0.49 no convergence -
25 4.23e+03 100 2.41 no convergence -
26 1.66e+04 100 14.53 no convergence -
27 6.60e+-04 100 131.27 no convergence -
28 2.63e+05 100 2498.11 no convergence -

Table 3.6: GMG method with v = 10~

mesh size  problem size  #iter. precond. (sec.) IDR(4) (sec.) total (sec.)

24 1.09e+03 100 0.02 no convergence -
25 4.23e+03 100 0.04 no convergence -
26 1.66e+04 100 0.12 no convergence -
27 6.60e+04 100 0.48 no convergence -

28 2.63e4-05 100 2.81 no convergence -
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solution in the domain contour view of the solution

(a) Solution of w. (b) Contour view.

Figure 3.2: Solution of test problem 3.1 for v = 10=% and h = 2~7.

For the convection-dominated problem test case, the system is ill-conditioned. It
is therefore more difficult to compute a good enough preconditioner, and a larger
semiseparable order is needed to compute an accurate enough approximation com-
pared with the case for v = /5. This is illustrated by comparing the semisepara-
ble orders in Table 3.3 and Table 3.4. Due to the bigger semiseparable order, more
computational time is needed. Even the time to compute the preconditioner and
to solve the preconditioned system is bigger than the time for larger v, the compu-
tational time still scales linearly with the problem size. Due to the ill-conditioning
of the problem, both AMG and GMG method fail.

Remark 3.1 Compared with the AMG and GMG method, the MSSS precondi-
tioner is more robust. Moreover, the MSSS preconditioning technique is consider-
ably faster than the AMG method.

3.3 Stokes Problem

In this section, we evaluate the performance of the MSSS preconditioners for the
lid-driven cavity problem described by the Stokes equation that is given by Exam-
ple 3.2. This example is given as example 5.1.3 in [53]. Mixed finite elements are
used for the discretization of the Stokes equation [53].

Example 3.2 ([53]) Lid-driven cavity problem, enclosed flow boundary condition.

V2 +Vp = 0
V-4 = 0

in a square domain Q = {(z,y)| — 1 <z < 1,—1 < y < 1}, where the regularized
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cavity condition is imposed, i.e.,

CJ@=a*0) on 90 =[-1, 1] x1
(0, 0) on  9Q\OQ ‘

Here, 02 denotes the boundary of the domain .

The discretized Stokes equation using the @1-Fp finite element method has the
following saddle-point system form

K B7][u
(3:2) EE =1
t] [P g
where K € R?"«X2nu ig the vector Laplace matrix, B € R"»*?"u is the divergence
matrix, Sy € R™*"r ig the stabilization term to satisfy the inf-sub condition of the

Stokes problem, n,, is the number of velocity grid points, and n, is the number of
pressure grid points.

3.3.1 Block Preconditioners

The Schur complement for CFD problems is even more difficult to compute or
approximate than that for PDE-constrained optimization problems. A standard
way is to compute an approximation that has an equivalent spectrum with the
Schur complement. For the discrete Stokes equation, it is shown in [130] that the
Schur complement has an equivalent spectrum with the pressure mass matrix M,
i.e., the relation

xTBK-1BT;

<TI? VzeR™\{0
Ay ST VreR\(0)

(3.3) 7 <
holds, where v and I" are constants that are independent of the mesh size h. Thus,

the block preconditioners for the Stokes problem could be chosen as

K
MJ , P2= {B —M,J '

This type of preconditioners are called the Silvester-Wathen preconditioner and is
widely studied for the Stokes problems in [53, 118, 130].

(3.4) Py = {K

Since the diagonal blocks of the block preconditioners are MSSS matrices, an ob-
vious way is to apply the Silvester-Wathen preconditioner to iteratively solve the
discrete Stokes equation by MSSS matrix computations. In addition, the global
system matrix of the discrete Stokes equation (3.2) has MSSS blocks, we can ap-
ply the global MSSS preconditioner to iteratively solve the global system (3.2) by
Lemma 2.4. Both MSSS block preconditioner and MSSS global preconditioner are
studied in this part.

First, we test the block MSSS preconditioner case. Choose the block diagonal
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preconditioner as

(3.5) P = [K M}

P
where K is the approximation of K, Mp is the lumped pressure mass matrix M,,.
For comparison, the AMG and GMG methods, together with the block MSSS pre-
conditioner, are performed to approximate K. Due to the symmetric definiteness
of the block diagonal preconditioner and the symmetry and indefiniteness of the
saddle point system, minimal residual (MINRES) method [92] is chosen as the it-
erative solver. The results for block MSSS preconditioner are listed in Table 3.7
and for the AMG and GMG method are given in Table 3.8 and Table 3.9. The
smoother for the AMG and GMG method is chosen as the point damped Jacobi,
which is very computationally cheap.

Table 3.7: Silvester-Wathen preconditioner for the Stokes equation by MSSS matrix computa-

tions
h problem size  #iter. precond. (sec.) MINRES (sec.) total (sec.)
2-4(12)  3.20e+03 33 0.36 3.82 4.18
2-5(12)  1.25e+04 33 1.17 11.21 12.38
2-6(12) 4.97e+04 33 3.97 37.15 41.12
2-7(12) 1.98e4-05 35 15.04 140.06 155.10
278(14) 7.88e+4-05 33 62.55 558.64 621.19

Table 3.8: Silvester-Wathen preconditioner for the Stokes equation by AMG method

h problem size  #iter. precond. (sec.) MINRES (sec.) total (sec.)

2—4 3.20e+03 36 0.18 0.19 0.37
275 1.25e+04 38 0.69 0.33 1.02
2-6 4.97e404 40 6.76 0.83 7.59
2-7 1.98e+05 40 45.72 3.07 48.79
2-8 7.88e+05 37 875.73 9.68 885.41

Table 3.9: Silvester-Wathen preconditioner for the Stokes equation by GMG method

h problem size  #iter. precond. (sec.) MINRES (sec.) total (sec.)

2—4 3.20e+03 34 0.09 0.09 0.18
2795 1.25e+04 34 0.14 0.28 0.42
2-6 4.97e404 32 0.61 0.58 1.19
2-7 1.98e405 32 2.01 2.00 4.01

2-8 7.88e+05 30 3.26 7.38 10.64
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Results in Table 3.7 - 3.9 illustrate that the block MSSS preconditioner, together
with the AMG and GMG methods, gives mesh size independent convergence. The
time to compute the block MSSS preconditioner and to solve the preconditioned
system scale linearly with the problem size, which is verified in Table 3.7. The
setup time for the AMG method is still bigger than linear, while it is still not
clear whether the AMG method implemented in IFISS has linear computational
complexity or not.

For the block MSSS preconditioner, most time was spent to solve the preconditioned
system. This is mainly due to the overhead of the Matlab implementation in each
iteration to solve the preconditioned system. Less time is needed if the number
of iterations is reduced. Next, we focus on the global MSSS preconditioner for
iteratively solving the Stokes system (3.2).

3.3.2 Global Preconditioner

It is not difficult to verify that for the discrete Stokes system (3.2), all the matrix
blocks K, B and S; are MSSS matrices. Thus we can apply Lemma 2.4 to permute
the saddle-point system (3.2) with MSSS blocks into a single MSSS system. Then,
the LU factorization for the MSSS matrices in Lemma 2.8 can be performed. The
spy plot of the matrix (3.2) before and after permutation are given by Figure 3.3.
Here, “nz” represents the number of nonzeros.
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Figure 3.3: Structure of system matrix (3.2) before and after permutation for h = 272

Due to the indefiniteness of the global preconditioner, IDR(s) is chosen as the
iterative solver. The computational results for the global preconditioner are listed
in Table 3.10. The solution of the pressure field and the streamlines are shown in
Figure 3.4.
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Table 3.10: Global preconditioner for the permuted Stokes equation

mesh size  problem size iterations preconditioning IDR(4) total

274 (4) 3.20e+03 5 0.41 0.34 0.75
275 (6) 1.25e+04 5 1.29 0.94 2.23
276 (7) 4.97e-+04 5 4.42 3.06 7.48
277 (9) 1.98e+05 4 16.47 9.01 25.48
278 (10) 7.88e+05 5 67.50 36.29  103.79

Computational results in Table 3.10 show that the computational time scales lin-
early with the problem size for both computing the preconditioner and solving
the preconditioned system. Meanwhile, the global MSSS preconditioner also gives
mesh size independent convergence.

Compare the results for the block preconditioners shown in Table 3.7 - 3.9 with
the results for the global MSSS preconditioners in Table 3.10, it is obvious that the
number of iterations for global MSSS preconditioner is much more reduced. Thus,
the time to solve the preconditioned system for the global MSSS preconditioner is
also much less than the time for the block MSSS preconditioner.

pressure field Streamlines: uniform
i -0.02
20 Q& -0.04

-0.06

-0.08

y -1

(a) Pressure distribution. (b) Streamline.

Figure 3.4: Solution of test example 3.2 for MSSS preconditioners

Remark 3.2 The global MSSS preconditioner performs much better than the
Silvester-Wathen preconditioner by the AMG method for the solution of middle
and large size discrete Stokes equation. Even though the number of iterations for
the Silvester-Wathen preconditioner by the GMG method is bigger than that for
the global MSSS preconditioner, the total time is less. The Silvester-Wathen pre-
conditioner by the GMG method seems appealing for the discrete Stokes problem.
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3.4 Navier-Stokes Problem

The last example we consider is the lid-driven cavity problem of the Navier-Stokes
equation that is given in Example 3.3, which is introduced as example 7.1.3 in [53].

Example 3.3 ([53]) Lid-driven cavity problem, enclosed flow boundary condition.

NPT 4T VT = f
V-7 = 0

in a square domain Q = {(z,y)| — 1 < x < 1,—1 <y < 1}, where the reqularized
cavity condition is imposed, i.e.,

CJ@—=a*0) on 90 =[-1, 1] x1
~ (0, 0) on AN\, '

Here, 09 denotes the boundary of the domain €.

Note that the Navier-Stokes equation is a nonlinear equation, to compute the
solution numerically, the Navier-Stokes equation needs to be linearized and dis-
cretized. Details about the linearization and finite element discretization are de-
sceribed in [53]. In this section, we use the Newton method to linearize and Q1 — Py
finite element method to discretize. At each linearized step, we need to solve a
linear system of the following form

vKy + N+ Wy, Wy BT Au, fa
(3.6) Wy vK,+N+W,, BT Auy | = [fy]

where K, K, are scalar Laplace matrices, N is the scalar convection matrix, Wy,
Way, Wy, Wy, represent weak derivatives of the velocity u, and u, in the z and
y directions, B, and B, are the divergence matrices in the x and y directions,
and S; is a stabilization matrix of the Q1 — Py type. Due to the difficulty to
compute a good enough approximation of the Schur complement for system (3.6),
preconditioning of the Navier-Stokes equation is still a big challenge and a hot topic
in research and engineering. Some efforts to compute efficient approximation of the
Schur complement for the Navier-Stokes equation can be found in [16, 53, 74, 90].

The generic form of system (3.6) can be written as

F BT u f
3.7 =
6 b s/ L]
where F, B in (3.7) satisfy some partition rules of the matrix in (3.6). One of the

standard block preconditioners for the linearized Navier-Stokes equation (3.7) is
called the pressure convection-diffusion (PCD) preconditioner, which is discussed
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in [53, 74, 90]. The PCD preconditioner can be written as

(3.8) P= E ]_3;]

where S is the approximate Schur complement and is given as
(3.9) S = Ly,A "M,

Here A, and L, are the convection-diffusion operator and Laplace operator in
the finite dimensional solution space of the pressure with some prescribed bound-
ary conditions, M, denotes the pressure mass matrix. Details of the pressure
convection-diffusion preconditioner can be found in [53, 74, 90].

We also note that all the matrix blocks in (3.6) have MSSS structure, thus we can
apply Lemma 2.4 to permute the block system (3.6) into a single MSSS system.
This gives us the global MSSS preconditioner as introduced in Section 4.2. To test
the performance of the global MSSS preconditioner, we solve the system (3.6) at
the second Newton step. For comparison, we also carry out numerical experiments
to solve Example 3.3 at the second Newton step by the PCD preconditioner (3.8).

Since the GMG method is not implemented in IFISS, only the results of the PCD
preconditioner computed by the AMG method are reported. Due to the quadratic
convergence of the Newton method, it is not quite necessary to solve the system
up to a very high accuracy at each linearized step. Thus the stop criteria is set as
the 2-norm of the residual is reduced by a factor of 10~ at each linearized step.

First, we set the viscosity parameter v to be 107!, the computational results for
the global MSSS preconditioner and PCD preconditioner by the AMG method are
given in Table 3.11 - 3.12.

Numerical results in Table 3.11 - 3.12 illustrate that both preconditioners give mesh
size independent convergence. The number of iterations is much more reduced by
the global MSSS preconditioner. Moreover, the computational time for the global
MSSS preconditioner scales linearly with the problem size. However, this linear
computational complexity property does not hold for the PCD preconditioner by
the AMG method. This is illustrated by the computational time in Table 3.12. We
can also find that the global MSSS preconditioner is much faster than the PCD
preconditioner by the AMG method.

Table 3.11: Global MSSS preconditioner for the 2nd Newton Step with v = 10~!

h problem size  #iter. precond. (sec.) IDR(4) (sec.) total (sec.)
2-4(6)  3.20e+03 3 0.43 0.22 0.65
275(7) 1.25e+04 3 1.33 0.59 1.92
276(7) 4.97e+04 3 4.51 1.88 6.39
2-7(9) 1.98e+05 3 19.47 6.75 26.22
2-8(11) 7.88e+05 3 78.84 26.63 105.17
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Table 3.12: PCD preconditioner by the AMG method for the 2nd Newton Step with v = 1071

h problem size  #iter. precond. (sec.) IDR(4) (sec.) total (sec.)

2—4 3.20e4-03 21 0.78 0.12 0.90
275 1.25e+04 24 4.30 0.25 4.55
2-6 4.97e+04 23 39.98 0.67 40.65
2-7 1.98e+05 24 631.75 2.72 634.47
2-8 7.88e+05 24 4740.51 9.48 4749.99

To study the performance of both preconditioners for bigger Reynolds number, we
decrease the viscosity parameter v to 1072. The computational results are reported
in Table 3.13 - 3.14.

Table 3.13: Global MSSS preconditioner for the 2nd Newton Step with v = 102

h problem size  #iter. precond. (sec.) IDR(4) (sec.) total (sec.)
2-4(6)  3.20e+03 3 0.39 0.14 0.53
275(6) 1.25e+04 4 1.27 0.64 1.91
276(8) 4.97e+04 3 4.41 1.83 6.24
2-7(10) 1.98e+-05 3 18.51 7.70 26.21
278(10) 7.88e+05 3 75.31 31.58 106.89

Table 3.14: PCD preconditioner by the AMG method for the 2nd Newton Step with v = 1072

h problem size  #iter.  preconditioning (sec.) IDR(4) (sec.) total (sec.)

2-4 3.20e+4-03 53 1.63 0.32 1.95
2-5 1.25e+04 49 6.29 0.65 6.94
2-6 4.97e+04 51 38.72 1.60 40.32
27 1.98e+05 50 440.82 6.31 447.13
2-8 7.88e+05 51 4561.32 26.14 4587.46

For bigger Reynolds number, both the global MSSS preconditioner and PCD pre-
conditioner gives mesh size independent convergence. This is verified by the nu-
merical results listed in Table 3.13 - 3.14. In addition, the computational time for
the global preconditioner is linear with the problem size while the PCD precondi-
tioner does not have such linear computational complexity. Table 3.13 - 3.14 show
that the global MSSS preconditioner is much faster than the PCD preconditioner
by the AMG method.

Remark 3.3 According to the computational results for different Reynolds num-
ber in Table 3.11 - 3.14, we can find that the global MSSS preconditioner not
only gives mesh size independent convergence, but also gives Reynolds number
independent convergence. However, the PCD preconditioner does not have the
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Reynolds number independent convergence property. Meanwhile, the global MSSS
preconditioner behaves the linear computational complexity with the problem size
while the PCD preconditioner does not have such linear computational complexity.
Moreover, the global MSSS preconditioner is much faster and more robust than
the PCD preconditioner by the AMG method.

3.5 Conclusions

In this chapter, we have studied a new class of preconditioners for computational
fluid dynamics (CFD) problems. This type of preconditioners exploits the multi-
level sequentially semiseparable (MSSS) structure of the system matrix. By making
use of the MSSS matrix computations, we can compute efficient preconditioners for
CFD problems in linear computational complexity. Compared with the standard
block preconditioners for the discrete Stokes equation and linearized Navier-Stokes
equation, we make use of the global MSSS structure of the system matrix. This
avoids approximating the Schur complement explicitly, which is a big advantage
over standard block preconditioners.

We apply the algebraic multigrid (AMG) method and geometric multigrid (GMG)
method to the CFD benchmark problems in IFISS to evaluate the performance of
the MSSS preconditioners. Numerical experiments show that the the global MSSS
preconditioner gives not only mesh size independent but also viscosity parameter
and Reynolds number independent convergence, while the standard precondition-
ers in IFISS do not yield viscosity parameter and Reynolds number independent
convergence. For the convection-diffusion equation, the MSSS preconditioner is
much faster and more robust than the AMG method. While the GMG method
is faster for big viscosity parameter than the MSSS preconditioner. However, the
GMG method fails to solve the convection-diffusion problem with small viscosity
parameter. For the Stokes equation, the GMG method is competitive among the
AMG method and the MSSS preconditioning technique. For the Navier-Stokes
equation, the global MSSS preconditioner is much faster and more robust than the
AMG method.
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Convergence Analysis of MSSS
Preconditioners

ultilevel sequentially semiseparable (MSSS) matrices are a class of struc-

tured matrices that have low-rank off-diagonal structure, which allows
that matrix-matrix operations can be performed in linear computational com-
plexity. MSSS preconditioners are computed via replacing the Schur comple-
ments in the block LU factorization of the global linear system by MSSS matrix
approximations with low off-diagonal rank. In this chapter, we analyze the con-
vergence properties of such preconditioners. We show that the spectrum of the
preconditioned system is contained in a circle centered at (1,0) and give an
analytic bound of the radius of this circle. This radius can be made arbitrarily
small by properly setting a parameter in the MSSS preconditioner. Our results
apply to a wide class of linear systems. The system matrix can be either sym-
metric or unsymmetric, definite or indefinite. We demonstrate our analysis by
numerical experiments.

4.1 Introduction

In this chapter, we present a full convergence analysis of the MSSS preconditioners
for a wide class of linear systems. The system matrix can be either symmetric or un-
symmetric, definite or indefinite, where saddle-point systems, discretized Helmholtz
equations, and discretized convection-diffusion equations are automatically covered.
Our analysis gives an analytic bound for the spectrum of the preconditioned sys-
tem. We show that the spectrum of the preconditioned system is contained in a
circle centered at (1,0) and give an analytic bound for the radius of this circle.
This radius can be made arbitrarily small by properly setting a parameter in the
MSSS preconditioner.

Some related work includes [11] and [87]. Both analyses apply only to symmetric
positive definite systems. The analysis for MSSS preconditioners in [87] is restricted
to 1-level MSSS matrix computations, while our analysis can be applied to 2-level
MSSS matrix computations. Our work in this chapter is closely related to [11].

69
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Our contributions include: (1) We extend the work in [11, 87] for the symmetric
positive definite case to the general linear systems. (2) Our analysis can also be
applied to block linear systems from discretization of coupled PDEs, while the
analysis in [11, 87] only applies to symmetric positive definite linear systems that
arise from discretization of scalar PDEs. (3) We give an analytic bound for the
error introduced by the model order reduction that is necessary for the MSSS
preconditioning technique. (4) The analysis for MSSS preconditioning in [87] only
concerns 1-level MSSS matrix computations, while our analysis also includes the
2-level MSSS cases. (5) For the first time, we apply this MSSS preconditioning
technique to the Helmholtz equation.

The structure of this chapter is as follows. We give a brief introduction of the MSSS
preconditioning technique in Section 4.2, and analyze its convergence in Section 4.3.
Section 4.4 studies the numerical stability of this preconditioning technique and
gives a sufficient condition to avoid breakdown. The underlying condition can be
satisfied by properly setting a parameter. We show how to choose this parameter
in Section 4.5. Numerical experiments are given in Section 4.6, while conclusions
are drawn in the final part.

4.2 MSSS Preconditioners for Discretized PDEs

Consider the following PDE
Lu = f, with u=wup on I'p,

on a square domain Q € R? with d = 2, or 3, £ is a linear differential operator, and
I'p = 09Q. Discretizing the PDE using lower order finite difference or finite element
methods and using lexicographical to order the grid points gives the following linear
system,

Kx =0,

where the stiffness matrix K is of the block tridiagonal form (4.1).

(K11 Kio
K1 Ko Kigs

s

(4.1) K= Kso Kz

Ky~

Here Kj;; is again a tridiagonal matrix for d = 2 and block tridiagonal matrix
for d = 3. When higher order finite difference or finite element methods are used
to discretize the PDE, we can reorder the grid points so that we can still get the
stiffness matrix of the form (4.1).

For discretized scalar PDEs using uniform mesh, it is quite natural to infer that
the stiffness matrix K has an MSSS matrix structure, i.e., a 2-level MSSS structure
for d = 2 and a 3-level MSSS structure for d = 3. Discretized coupled PDEs, such
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as the Stokes equation, and linearized Navier-Stokes equation yield a linear system
of saddle-point type. It is shown in Chapter 2, that all the sub-matrices in the
saddle-point matrix have an MSSS structure and can be permuted into a global
MSSS structure that has the same form as (4.1) with K; ; a 2-level SSS matrix for
d = 3 and 1-level SSS matrix for d = 2.

For a strongly regular N x N block matrix K, it admits the block factorization
that is given by K = LSU. Here we say that a matrix is strongly regular if all the
leading principle sub-matrices are nonsingular. S is a block diagonal matrix with
its i-th diagonal block given by

Ki, ifi=1
(4.2) 5 = ,1 N
Kii— K15 1Ki—1; if2<i<N

where S; is the Schur complement at the i-th step. The matrices L and U are
block bidiagonal matrices of lower-triangular form and upper-triangular form, re-
spectively. They are obtained by computing

I i 7 TR
Lij= Lo ad U =4 A
K;;S; ifi=j+1 S, Ky ifj=i+1

To compute such a factorization, one needs to compute the Schur complements
via (4.2). This is computationally expensive both in time and memory since the
Schur complement S; is a full matrix. Some earlier papers [37, 83] propose for
symmetric positive definite systems to approximate S; by using the off-diagonal
decay property of the inverse of a symmetric positive definite tridiagonal matrix.
Alternatively, an incomplete factorization can be made to reduce the fill-in within
the bandwidth for such a factorization [110]. However, these methods do not
yield satisfactory performance. In [12, 35], it is stated that the Schur complement
S; from the factorization of a discretized symmetric positive definite differential
operator has low off-diagonal rank. Therefore, .S; can be approximated by a matrix
with low off-diagonal rank, where the H-matrix and SSS matrix belong to this
class of matrices with low off-diagonal rank blocks. In this chapter, we use SSS
matrices to approximate the Schur complements in the above factorization for a
general class of linear systems. Note that H-matrix computations have mainly been
applied to approximate the Schur complements that are either symmetric positive
definite [11, 12] or unsymmetric, whose eigenvalues have positive real part [78].
Some recent efforts have been made to solve the symmetric indefinite Helmholtz
equation [54].

For the approximated Schur complement by MSSS matrix computations denoted
by S;, (i =1, 2, ---, N), we have the MSSS preconditioner K that is given by

(4.3) K =LS0.
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Here

- I ifi=j - I if j =i
Lij = K& a1’ Uij =9 a-10  ces o1
ijo; iti=7+1 S;K; ifj=i+1
and S is a block-diagonal matrix with S;, (i = 1, 2, ---, N) as its diagonal blocks.

The Schur complement always corresponds to a problem that is one dimension lower
than the linear system, i.e., for a 2D system, the Schur complement is of 1D, and
2D for a 3D system. When applying MSSS preconditioners to 3D problems, one
needs 2-level MSSS matrix computations to approximate the Schur complement.
How to reduce the off-diagonal rank of a 2-level MSSS matrix efficiently is still an
open problem [35, 40, 103]. This makes extending MSSS preconditioning technique
from 2D to 3D nontrivial, and some extra effort needs to be devoted, cf. [40, 103].
To keep the consistency of this chapter, we only focus on the convergence analysis
of the MSSS preconditioner for 2D systems.

4.3 Convergence Analysis

In this section, we analyze the convergence of the MSSS preconditioner. Some
recent work devoted to the analysis of structured preconditioners are in [11, 87].
In [87], the nested dissection method is used to order the unknowns of the dis-
cretized diffusion-reaction equation in 2D and the symmetric positive definite Schur
complements are approximated by SSS matrix and HSS matrix computations, re-
spectively. Analytic bounds of the spectrum of the preconditioned system are given.
In [11], H-matrix computations are applied to preconditioning the 2D symmetric
positive definite Helmholtz equation. Both studies focus on the symmetric positive
definite case.

In [11], it is stated that the key point for the H-matrix preconditioner for symmet-
ric positive definite systems is not how well the approximate Schur complement
denoted by S; approximates the exact Schur complement S;, but how small the
distance between Si and K;; — Ki7i,1,5~';11Ki,1,i is. This statement is denoted
by the so-called “condition €” in [11]. In this chapter, we also make use of this
condition for convergence analysis, which is given by the following definition.

Definition 4.1 (Condition ¢ [11]) For the approzimate block factorization (4.3)
of the matriz K in (4.1), there exists a constant € such that

5. s ==
(4.4)

S; — (K” - Ki,iflgiillKiflvi>

‘ <eg,
2
hold for 2 <i < N.

If condition ¢ in Definition 4.1 holds, we have the following lemma that gives the
distance between the preconditioner K and the original system K.
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Lemma 4.1 Let K be a nonsingular matriz that has the form of (4.1), suppose
Siy @ = 1,2,...,N in (4.4) are nonsingular and condition € holds. The MSSS
preconditioner is given by (4.3), and

-], =
2
Proof: Define the matrix E; (i =1, 2, ... , N) as
. S; — K if 1=1,
i S; — (K“ — Ki,iflg;llKifl,z) if 2<i<N.

This in turn gives

(K11 + E4 Ky
K271 K2,2 + E2 K2,3

(4.5) K= K3 K33+ E3

Then we have,

Given any vector = of compatible size for operations of Kz, by proper partitioning
T
v=[zf, 23, ..., 2}]", we have

N
o 2
(5 = Ral|| =D lEwil
i=1
N
2 2
< DB il -
i=1
Since the condition ¢ is satisfied, we have ||E;||, < ¢, this yields
, N N
- 2 2 2
| = Bz <" ailly = 2D anlly = <2
i=1 i=1
i.e., for the induced 2-norm, we have

|k-&| <= o
2
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Next, we introduce how to compute an MSSS preconditioner that satisfies
Lemma 4.1. Here, we assume the exact arithmetic.

Lemma 4.2 Let the lower semiseparable order and upper semiseparable order be
defined by Definition 2.3 in Chapter 2. For a nonsingular SSS matriz A with lower
semiseparable order r; and upper semiseparable order r,, the exact inverse of A
can be computed using SSS matrix computations in linear computational complexity
provided that r; and r, are much smaller than the size of A. The inverse of A is
again an SSS matrix with r; and r, as its lower and upper semiseparable order,
respectively.

Proof: This can be shown by carefully checking the arithmetic for inverting SSS
matrices described in [33, 44]. d

Lemma 4.3 Let A and B be SSS matrices with compatible sizes and properly par-
titioned blocks for matriz-matriz addition and multiplication, then A+ B and AB
can be computed exactly using SSS matriz computations in linear computational
complezxity if no model order reduction is performed.

Proof: Proof of this lemma is given by checking the algorithms for SSS matrices
introduced in [33, 46]. a

For the 2D matrix K of the form in (4.1), all its sub-blocks are SSS matrices, there-
fore we have the following corollary that shows how the condition € in Definition 4.1
can be satisfied.

Corollary 4.4 Suppose S;, Q= 1,2,..., N in (4.4) are nonsingular, then the con-
dition € can be satisfied by applying the following procedure.

1. Invert S;_; using the SSS inversion algorithm.

2. Compute K, ; —Ki,i,lg;llKi,l)i using SSS matriz computations without per-
forming the model order reduction.

3. Perform the model order reduction for K; ; — Ki,i,lg;llKi,l,i by choosing a
proper semiseparable order Ty, or a proper bound T for the discarded singular
values, which will be introduced in Section 4.5, such that the condition

S'i — (Ki’i - Ki,iflg;—llKi*Li)

‘ S ¢
2
is satisfied.

Proof: According to Lemma 4.2 and Lemma 4.3, both step 1 and 2 can be
performed exactly. By applying the Hankel blocks approximation introduced
in [33, 103], K;; — K,'J-_lg;llKi_l,,» can be approximated by an SSS matrix S;
in a prescribed accuracy € measured in the matrix 2-norm by properly chosen
parameters in the Hankel block approximations.

Details of the Hankel blocks approximation error bound control will be introduced
in Section 4.5. 0
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Remark 4.5 To satisfy condition e, we need to apply Corollary 4.4 to compute
the MSSS preconditioner. This is computationally cheaper than full matrix com-
putations and is also feasible in practice, because the semiseparable orders of Kj ;,
Si_l, K; ;-1 and K;_; ; are small. Performing step 2 in Corollary 4.4 just increases
the semiseparable order slightly and the bound for the growth of the semiseparable
order is given by Lemma 2.10 in Chapter 2. After performing the model order
reduction in step 3, the semiseparable order is reduced and bounded. This gives
the approximate Schur complements S; with small semiseparable order.

Lemma 4.1 gives the distance between the preconditioner and the original system
matrix while Corollary 4.4 illustrates how to satisfy the condition . Normally, we
do not consider this distance, but the distance between the preconditioned matrix
and the identity matrix. Next, we give an analytic bound for this distance.

Theorem 4.6 Let a nonsingular matriz K be of the form (4.1) and let the condi-
tion € in Definition 4.1 hold. If S; (i=1, 2, ... , N) are nonsingular and € < &,
then the MSSS preconditioner is given by (4.3) and

HI— f(—lKH <<
2 o — €&
Here g is the smallest singular value of K.
Proof: Since S; (i =1,2,...,N) are nonsingular, K is nonsingular. Then,
[ g e e O o [ Y e g e e
2 2 2 €0

Since € < g, we have £ < 1, then the Neumann series
€0
~ N2
I+ (I—K—1K> + (I_K—lK) R

~ \ 1 ~
converges to (I —(I- K‘lK)> = K~ !'K. This in turn gives,

&t = (1= 5 R) + (1 5R)

_ N2
<1+ HI . K—lKH2 + H (I . K—lK) TR
2
2
€ €
<14+ —+ () R
€0 €0
T eg—¢
Then, we can obtain
o, =], =t < 2w L
2 2 2

co—€ €y €9g—€
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Using Lemma 4.1 in turn yields

3

I R e N L e
2 2 2 2 gg—¢€

According to Theorem 4.6 we have the following proposition that gives the condition
number of the preconditioned matrix.

Proposition 4.7 Let a nonsingular matriz K be of the form (4.1) and let the
condition € in Definition 4.1 hold. If S; (i =1, 2, ... , N) are nonsingular and
£ < ieq, then we have the MSSS preconditioner K is of the form (4.3) and

€0

Iig(f(_lK> <

€g — 2’

Here g is the smallest singular value of K, and ka(-) represents the condition
number measured using the matrix 2-norm.

Proof: According to Theorem 4.6, we have

€

-
27 gg—¢€

associated with ¢ < %50, we get < 1. Then the Neumann series

o — €&
~ - 2
I+ (I - K*IK) + (I— K*lK) TR

. -1 .
converges to (I - (I - KﬁlK)) = K~'K. This yields

s = [ () (1= )

<t fr- g (r- A E)

2
3 3
<1+ _|_< > + e
Eop — € Eop — €

Eop — €

€0 — 2¢’
According to Theorem 4.6, we have

€0

|, = 2
27 gp—¢€

then we obtain

i) = ] o] <
2 27 gy — 2¢
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According to Theorem 4.6, we can also give an analytic bound on the spectrum of
the preconditioned matrix.

Proposition 4.8 Let a nonsingular matrizc K be of the form (4.1) and let the
condition ¢ in Definition 4.1 hold. If S; (i=1, 2, ..., N) are nonsingular, then
we have the MSSS preconditioner K is of the form (4.3). Denote the eigenvalues
of the preconditioned matriz by )\(f(_lK). If € < g9, we have

€

METIK) —1| < .
Eop— &

Here g is the smallest singular value of K.

Proof: According to Theorem 4.6, we have

3

e
27 gy—¢€

Therefore, we can obtain

e

_60*5,

owing to |\(I — K‘lK)‘ < HI - R-WH . Since M(I — K~'K) = 1 — AK'K),
2

we get

c O

‘)\(K*K)—l‘ < .
Eo — €

Remark 4.9 Proposition 4.8 states that the spectrum of the preconditioned sys-
tem is contained in a circle centered at (1,0) with a maximum radius EOE_E. There-
fore, the smaller € is, the closer the eigenvalues of the preconditioned system are
to (1,0). This in turn gives better convergence for a wide class of Krylov solvers

to solve the preconditioned system by applying the MSSS preconditioner.

According to Theorem 4.6, Proposition 4.7, and Proposition 4.8, we conclude that
the smaller the value of ¢ is, the better-conditioned the preconditioned matrix
is. For the extreme case ¢ = 0 when there is no approximation of the Schur
complement, this factorization is exact. This is in turn verified by Theorem 4.6,
Proposition 4.7, and Proposition 4.8. In Section 4.5, we will show that € can be
made arbitrarily small by setting a parameter in the MSSS preconditioner.

4.4 Breakdown Free Condition

In the previous section, we have analyzed the conditioning and spectrum of the
preconditioned matrix. In this section, we discuss how to compute the MSSS
preconditioner without breakdown, i.e., how to set the bound ¢ to compute the
nonsingular S; (i=1, 2, ..., N). To start with, we give the following lemmas
that are necessary for the analysis.
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Lemma 4.10 ([60]) Let A be an m x n matriz with, say, m > n. Sort its singular
values in a non-increasing order by

012022 2 0p.

Let A = A+ E be a perturbation of A, and sort its singular values in a non-
increasing order by
01202 2+ = 0p.

Then, we have
‘5’1—01|§HEH2, Z:L 2,,77,

Proof: For the proof of this lemma, we refer to Corollary 8.6.2 of [60]. O

By applying this lemma, we have the following lemma that gives a sufficient con-
dition for a nonsingular perturbation, i.e., for a full rank matrix A, its perturbed
analog A is still of full rank.

Lemma 4.11 Let A be an mxn full rank matriz with, say, m > n, and A = A+ E
be a perturbation of A. If
1Elly < o,

where oy, is the smallest singular value of A, then the perturbed matrix A is still of

Sfull rank.

Proof: Denote the smallest singular value of A by &,, then according to
Lemma 4.10, we have
lon = an| < [|El, -

Since || E||y < on, this yields,
|on — Gn| < on.

We can obtain
0< 6, <20,

which states that A is still of full rank. 0

With these lemmas, we can give a sufficient condition for € that guarantees non-

singular approximate Schur complements S; (i = 1, 2, ..., N), which satisfy
condition € in Definition 4.1.

Theorem 4.12 Let K, be the leading principle submatriz of K of size pM x pM
forp=1, 2, --- N, where M is the size of diagonal blocks of K. And let oy be
the minimum of all the smallest singular values of K}, forp=1, 2, --- N, which
is denoted by

AN

0o = min { min (a(Kp)) }
p=1

Here, we use the symbol “ £ 7 to represent defined to be, and min (0(K,)) denotes
the smallest singular value of K. If € satisfies the following inequality,

e <oy,
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then the condition € can be satisfied and all the approrimate Schur complements

S; (i=1, 2, ..., N) are nonsingular.

Proof: At each step j (j > 2) of the approximate factorization, we use Sj to ap-
proximate K ; — Kj,j,lgjf_llKj,Lj by performing a model order reduction accord-
ing to Corollary 4.4 to satisfy the condition . This introduces a small perturbation
E; that is given by

o [5K i =1,
iz ( 5 — K515 Jlj) if 2<j<N.

and ||Ejll, < e (2 <j < N). Since S; = K3 is an SSS matrix with small off-
diagonal rank, no model order reduction is performed at the first step, we have
E,=0.

Denote the (j — 1)-th leading principle submatrix of K by K;_1, according to (4.5)
we have

) Koy Ko, } - {K_ o
4.6 K. = |2 j—1 , K= |2 1 J—1.J
(4.6) ’ [Kj,j—l K, 7K K+ Ej

where K ; is the j-th principle leading sub-matrix of K and K ; is its approximation.
f(j is also the j-th leading principle sub-matrix of K, and f(jyj_l = [O Kj’j,l],

= 0 . . .
K 1;= [K } , where 0 is a zero vector of suitable size.
j—1,5

J

Moreover, according to (4.5) we have
Ey
Es
Ej

where || E;|l, < e (1 <1 < j). Then for any vector = of compatible size such that
Kx can be performed, we can obtain,

= = 2 2 2 2
H (KJ — KJ) (EH2 = HE1$1”2 + ||E2{L‘2H2 + -+ ||ij]‘||2

2 2 2 2 2 2
< Bl Nwally + [1B2lI5 l2lly + - - - + 1Bl 15

i
2 2
<) llznlly = € el

k=1

This in turn yields
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N — =
According to Lemma 4.11, if e < mi{l { min (U(Kj)) }, then K; (j=1, 2, ---, N)
=
is nonsingular.

Since K ; and K j—1 are nonsingular, according to (4.6), the Schur complement of
K j—1in K ; is also nonsingular and is given by

=~ = :_1 T
Sj = KjJ‘ + Ej — Kj,j—lKj—lKj—laj’

which is exactly Sj for j=2, ---, N, while §; = K 1 is also nonsingular. a

Theorem 4.12 gives a sufficient condition for e in order to compute nonsingular
approximate Schur complements for a general class of linear systems. For the
symmetric positive definite case, this sufficient condition can be simplified by the
following lemma.

Lemma 4.13 Let K be an m X m symmetric positive definite matrix of the
form (4.1) and denote its smallest eigenvalue by Amin(K). If € < Anin(K), then
all the approzimated Schur complements S; (i =1, 2, ..., N) are nonsingular.

Before giving the proof of Lemma 4.13, we first introduce the following lemma that
is necessary for the proof.

Lemma 4.14 (Corollary 8.4.6 in [19]) Let A be an m x m Hermitian matriz,
and Ag be a k X k principle sub-matriz of A with k < m. Then,

)\min(A) S )\min<AO) S )\max(AO) S )\max(A)a
and

Amin(4o) < Ax(A4).

With Lemma 4.14, we give the proof of Lemma 4.13 as follows.

N
Proof: According to Theorem 4.12, if € < mirll { min (U(Kp)) }, the approximate
p—

Schur complements S; (¢ =1, 2, ..., N) are nonsingular. For the symmetric
positive definite matrix K, its eigenvalues and singular values are identical. Then
the condition for ¢ is given by

N
€< min { min ()\(Kp)) }
According to Lemma 4.14, we have

min (A(Kp)) = Amin(K),

this in turn gives the condition for ¢, that is

e< )\min(K). O
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Theorem 4.12 gives a sufficient condition for € in order to obtain nonsingular ap-
proximate Schur complements. Next, we use a simple example to illustrate this
condition.

Example 4.1 Consider the 2D stationary Schridinger equation
VAU (2, y) + k*U(z,y) =0,

with homogeneous Dirichlet boundary condition on a unit square domain ) =
[0, 1] x [0, 1]. Using 5-point stencil finite difference discretization on a uniform
grid with gird size h = 275 gives a linear system that has a 2-level SSS structure,
here k*h? = 772/16. Factorization of the linear system by using MSSS matriz com-
putations that satisfy condition € in Definition 4.1 gives an MSSS preconditioner
K.

For different settings of €, the smallest singular value 02 of the leading principle
sub-matrix K}, of size kN x kN, the approximation error € at each step to compute
the approximate Schur complement, the bound of £; which is denoted by €pax, and
the preconditioned spectrum are plotted in Figure 4.1 - 4.3.
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(b) Preconditioned spectrum

Figure 4.1: Condition ¢ and preconditioned spectrum for € = 0(0.5)
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We start decreasing ¢ from 0.5 to 1073, this corresponds to € > o for relatively
big . For the case € > 0y, Theorem 4.12 does not hold, which means that we may
fail to get nonsingular approximate Schur complements S;. However, we succeed
in computing the nonsingular Schur complements S;. In fact, the possibility of
perturbing a matrix from nonsingularity to singularity is quite small. Although
we get nonsingular approximate Schur complements for € > ¢, our analysis is not
suited to analyzing the preconditioned spectrum for such case. This is illustrated by
the spectrum of the preconditioned system in Figure 4.1(b). The preconditioned
spectrum corresponds to ¢ = (0(0.5) is not well clustered and a portion of the
eigenvalues is far away from (1,0).
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(b) Preconditioned spectrum

Figure 4.2: Condition ¢ and preconditioned spectrum for ¢ = O(10~2)

For the cases that € is slightly bigger than o, the preconditioned spectrum is
already contained in a quite small circle, cf. Figure 4.2(b). When ¢ is of the same
order as 0y, the circle is even smaller, cf. Figure 4.2(b) and Figure 4.3(b). Continue
decreasing ¢, the radius of the circle can be made arbitrarily small. At a certain
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moment, the MSSS factorization can be used as a direct solver for small enough e.
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Figure 4.3: Condition € and preconditioned spectrum for e = O(10~3)

(b) Preconditioned spectrum

35

Remark 4.15 We observed that for the case € < op and ¢ is of the same order
as og, if € decreases by a factor 10, the radius of the circle that contains the
preconditioned spectrum is also reduced by a factor of around 10. This verifies the
statement of the radius of the circle in Proposition 4.8.

The results for different e given by Figure 4.1 - 4.3 verify our analysis of the conver-
gence property of the MSSS preconditioner and the spectrum of the preconditioned
system in Section 4.3. Both theoretical analysis and numerical experiments state
that a small € is preferred. Normally, decreasing € will increase the computational
complexity to a small extent. It is therefore favorable to choose a moderate € to
compute an MSSS factorization and use it as a preconditioner. This gives linear
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computational complexity and satisfactory convergence for a wide class of Krylov
solvers. Details will be discussed in Section 4.6.

Both theoretical analysis and numerical experiments indicate that a small € is
preferred. In the next section, we will discuss how to perform the model order
reduction to make £ up to a prescribed accuracy.

4.5 Approximation Error of Model Order Reduc-
tion

We assume by Corollary 4.4 that the condition ¢ is satisfied via a model order
reduction operation and the error of the model order reduction should be bounded
by e. To start, we use the model order reduction algorithm which is called Hankel
blocks approximation that is studied in [33]. In the following part, we will show
how to do this model order reduction to make the approximation error up to a
prescribed accuracy . In this section, we use the algorithm style notation, i.e., by
letting a = b, we assign the variable a with the value of b.

Recall from Chapter 2 that for a 4 x 4 block SSS matrix A, the Hankel blocks for
the strictly lower-triangular part are shown in Figure 4.4 by Ho, Hs and Hy,.

-
Figure 4.4: Hankel blocks of a 4 x 4 block SSS matrix

For the Hankel blocks Hj of the SSS matrix A, it has the following low-rank
factorization,
Hi = OCy,

where the low-rank factors O and Cp have a backward and forward recursion,
respectively. They are given by

Op =Py, if k=N,
Py

O, =
Ok+1 Ry

,if 2<k<N,

and
C. = Ql, if k= 2,
C = {Rk_lck_l Qk_l}, it 2<k<N.
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The rank r; of the Hankel block Hj has the following equality
rank(H) = rank(Oy) = rank(Cy) = .

The low-rank factors Oy and Cj are the observability factor and controllability
factor of a linear time-varying (LTV) system that corresponds to the SSS matrix
A. Moreover, the Hankel block Hj corresponds to the discrete Hankel map of a
LTV system. SSS matrices and their relations with LTV system are studied in [41].

The basic idea for the model order reduction of SSS matrices is to reduce the rank
of the Hankel blocks Hy from ry to 7 with 7, < ri, where 7 is the rank of the
approximated Hankel map Hj; and

rank(#},) = rank(Oy,) = rank(Cy,) = 7.

To start the model order reduction, first we need to transform C; to the form that
has orthonormal rows, which is called the right-proper form in [33]. This is obtained
by performing a singular value decomposition (SVD) on C;. For i = 2,

Co = U2 VT,

and let C; = Q; = V;I. To keep the Hankel map (block) Hz unchanged, we let
02 = OQUlZl. This gives

Py = PULY., Ry = RoULY,.

From step i to i 4+ 1, we have
Ci
Civ1=[RiC; Qi] = [Ri Qi [ I] .

Since C; has orthonormal rows, {Ci I} also has orthonormal rows. To complete

this procedure for C;1, perform the following SVD
[Ri Q] =UXS VT,

and let [Ri Qi] = V. To keep the Hankel map at step i + 1 unchanged, we let
Oir1 = 041U %;. After finishing the above procedure, we can make all the factors
C; have orthonormal rows.

The next step of the model order reduction is to transform the low-rank factors O;
to the form with orthonormal columns, which is called the left-proper form [33].
While performing the transformation to the left proper form, we reduce the rank
of the Hankel map (blocks). Since the recursion for the factor O; is performed
backward, we start from i = V.

First we approximate O by Oy using a low-rank approximation, this gives the
factor Ozlv , for the next step. Here O} ~v_1 denotes the approximated factor On_;
because of the propagation of the approximation error of Oy. Then we compute a
low-rank approximation of O} _,, which gives @]2\,_1. We continue this procedure
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till step i = 2. At step i, we use O? to approximate O}, this introduces an approx-
imation error that is bounded by 7. We use Figure 4.5 to depict this backward
recursion of approximation. The details for the backward approximation of O;
and H,; are introduced in the proof of Lemma 4.16, which are given at Section 4.8
as appendix of this chapter. For the details of the Hankel blocks approximation
algorithm, cf. [33, 103].

Oy ——Onya——Ona O
T
@N*@}Vq I612\7—1*611\7—2 I@JQ\I—Q o @%

Figure 4.5: Low-rank approximation of Oy

Here @,1 represents the approximation of Oy by considering the propagation of the
error introduced in the previous steps, and (7),1 is further approximated by @,% by
performing a low-rank approximation. Then we have the following lemma that
underlies the error between the original Hankel map and the approximate Hankel
map.

Lemma 4.16 Let A be a block N x N SSS matriz and its Hankel blocks H; be
approximated by H; using the Hankel blocks approximation described by the above
procedure, then

(4.7) H’H ~H;

<(N—i+1)71, 2<i<N.
2

where T is the upper bound for the discarded singular values that is applied in the
singular value decomposition of the Hankel factors. For the approximated Hankel
factors O; that are illustrated in Figure 4.5, we have

(4.8) HOi—@iIQS(N—i)T, 2<i<N-1
and
(4.9) [02Q1 - 00| s =i+ 2<i<w

W~

Here we use the notation to denote a factor or matriz after approximation.

Proof: For the proof of this lemma, cf. Section 4.8. O

Remark 4.17 To perform the Hankel blocks approximation to reduce the off-
diagonal rank of an SSS matrix, the reduction of the strictly lower-triangular part is
clearly covered by the analysis above. To reduce the off-diagonal rank of the strictly
upper-triangular part, we can first transpose it to the strictly lower-triangular form.
Then perform the Hankel blocks approximation to the strictly lower-triangular part
and transpose back to the strictly upper-triangular form. This gives strictly upper-
triangular part with reduced off-diagonal rank.
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In Section 4.3, we gave an analytic bound of the radius of the circle that contains
the preconditioned spectrum. This analytic bound is closely related to the approx-
imation error € by the model order reduction for SSS matrices, cf. Corollary 4.4
and Proposition 4.8. This model order reduction error £ can be made arbitrarily
small by setting a parameter in the MSSS preconditioner. Now, we have all the in-
gredients to help to compute a controllable €. Next, we will give the main theorem
of this section to show how to compute the controllable ¢.

Theorem 4.18 Let the N x N block SSS matriz A be approximated by A with
lower off-diagonal rank using the Hankel blocks approximation, then

HA - AHQ < 2VN(N - 1)r,

where T is the upper bound of the discarded singular values for the singular value
decomposition that is performed in approzimating the Hankel blocks.

Proof: To prove this theorem, we use Figure 4.6 to illustrate the column structure
of the off-diagonal blocks for an SSS matrix. Since the strictly upper-triangular
part and the strictly lower-triangular part have similar structure, here we just take
the strictly lower-triangular part for example.

(a) Hankel columns (b) Approximate Hankel columns

Figure 4.6: Lower-triangular Hankel columns before and after approximation

It is not difficult to verify that the i-th off-diagonal column of the strictly lower
triangular part of an SSS matrix, denoted by C;, can be represented by

Ci=0;4+1Q;, (i=12--- ,N-1).

After performing the Hankel blocks approximation, C; is approximated by
Ci=02,Q:; (i=1,2,---,N-1).

Denote AC; = C; — C;, then we have

IACH, = ||0:41Q: — 02,,Q1

, < (N —1i)r. (Lemma 4.16)
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We can write the SSS matrix A by A = L + D + U, where L is the strictly lower-
triangular part, D is the block diagonal part, and U is the strictly upper-triangular
part of A, respectively. Performing the Hankel blocks approximation on the strictly
lower-triangular part and the strictly upper-triangular part, we obtain

A=L+D+U,
where L and U are approximated independently. Moreover, we have

L-L=[AC1 AC; - ACn-1 0].

N-1

N-1
N—-1
S Z IACily ll2ill, < max |ACH], Y [zl

i=1

N-1
Z Aszl
-7 Z il < (N =1)7 Z il

N
2
SN =D [ ND_lzill; = VNIV = D7 2],
i=1

This yields

|2~ Da
HL LH L max —m—2 < \/N(N— 1)r.
w0 ],
Here 7 is the upper bound for the discarded singular values for the singular value
decomposition that is performed in the Hankel blocks approximation. Similarly,

we have HU - UH2 < VN(N — 1)7, this gives

Ja-4],=|e-D+w-0),
<[e-2f,+o-of, ®
<2V N(N - 1)r.

Remark 4.19 Theorem 4.18 gives an analytical bound of the error introduced by
the model order reduction. This error is only related to the maximum discarded
singular value 7 for the singular value decomposition that is performed in the
Hankel blocks approximation and the matrix dimension. This states that this
approximation error can be made arbitrarily small by setting 7 small enough. This
in turn gives a relatively bigger off-diagonal rank compared with moderate 7. A
trade-off has to be made between the computational complexity and accuracy.

Remark 4.20 The model order reduction can be also performed by setting a fixed
reduced off-diagonal rank. This is convenient in practice and makes the computa-
tional complexity and memory consumption easily predictable. The disadvantage,
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however, is that the approximation error is unpredictable. In contrast, by setting
a fixed 7 for the model order reduction, we can easily control the error bound and
get an adaptive reduced off-diagonal rank. However, the disadvantage is that the
computational complexity is difficult to estimate. In practice, we observe that for
many applications, a properly chosen 7 also gives small enough off-diagonal rank,
which in turn gives predictable computational complexity. This will be highlighted
in the numerical experiments part.

Remark 4.21 In many applications, the error introduced by the model order re-
duction using the Hankel blocks approximation is of O(7), which is quite small
compared with the bound given by Theorem 4.18. Only in some extreme cases,
the bound given by Theorem 4.18 is sharp. However, it is quite difficult to prove
for which case the error bound given by Theorem 4.18 is sharp. Normally, a small
7 still results a small reduced off-diagonal rank, which yields linear computational
complexity. This will be illustrated by numerical experiments in the next section.

Remark 4.22 The Hankel-norm approximation algorithm [125], which is more
computationally expensive than the Hankel blocks approximation [33], approxi-
mates the Hankel blocks with optimality in the Hankel norm. This makes the
Hankel-norm approximation appealing when using MSSS LU factorization as a
direct solver.

In practice, it would be desirable to estimate the semiseparable order of the Schur
complement that corresponds to a given 7. Normally, this is quite challenging since
the off-diagonal rank depends not only on the differential operator of the PDE, but
also on the coefficients of the PDE. Only some preliminary results can be found in
the literature. These results are summarized by Lemma 4.23.

Lemma 4.23 ([35]) Let the symmetric positive definite block tridiagonal system
K arise from the discretization of PDFEs with Laplacian operator, constant coef-
ficients, and Dirichlet boundary condition everywhere on the boundary. Then the
Schur complement S; has a monotonic convergence rate and the limit of S;, i.e.,
Soo 18 also symmetric positive definite. The T-rank of the Hankel blocks of So, are

bounded by
r (1 +81n* <3”D”)) :
-

where r is the mazimal Hankel block rank of K ; and K, ;_1, D is the diagonal block
of K. Here, the T-rank of a matrixz is defined by the number of singular values that
are bigger than or equal to T.

Lemma 4.23 gives an upper bound on the limit of the Schur complement for the

infinite dimensional symmetric positive definite systems. For finite dimensional

symmetric positive definite systems with constant coefficients, similar results hold.

For detailed discussion, cf. [35]. Note that this bound is not sharp because the
3D

term In* () can be much bigger than the size of K.
T
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Recall Lemma 4.13 states that for the symmetric positive definite system K, 7 can
be often chosen as 7 < Apin(K). In Example 4.1, it is shown that usually we can
choose 7 = O(Apin(K)). If | D] = O(]| K]|), then we get the bound of the rank
of the Hankel blocks is of O (7“ In* Ko (K)) Even this bound is not sharp, it states
that for ill-conditioned system, a bigger semiseparable order is needed to get a
considerably good approximation, which will be shown in Section 4.6.

For the symmetric positive definite systems from the discretization of PDEs with
variable coefficients and the indefinite systems, the analytic bound of the rank of
the Hankel blocks of the Schur complement is quite difficult to analyze. Relevant
work on analyzing the off-diagonal rank of the Schur complement of the symmetric
positive definite type by using hierarchical matrix computations is done in [12].

Remark 4.24 The 7 rank of the off-diagonal blocks of the Schur complement for
symmetric positive definite systems studied in Lemma 4.23 is not sharp. In many
applications, it can be made quite small and even bounded by a small number for
a wide class of linear systems. This will be illustrated by numerical experiments in
the next section.

4.6 Numerical Experiments

In this section, we use numerical experiments to investigate our analysis in the
previous sections. We use three types of experiments, which include unsymmet-
ric systems, symmetric indefinite systems from discretization of scalar PDEs and
saddle-point systems, to demonstrate our results. For all the numerical experi-
ments performed in this section, the induced dimension reduction (IDR(s))[127]
is used as a Krylov solver. The IDR(s) solver is terminated when the 2-norm of
the residual is reduced by a factor of 107%. The numerical experiments are imple-
mented in MATLAB 2011b on a desktop of Intel Core i5 CPU of 3.10 GHz and 16
Gb memory with the Debian GNU/Linux 8.0 system.

4.6.1 Unsymmetric System

In this subsection, we use the convection-diffusion equation as a numerical exam-
ple to demonstrate our analysis for the unsymmetric case. The convection-diffusion
problem is described by Example 4.2, which is given as the example 3.1.4 in [53].
The details of the discretization of the convection-diffusion equation can be also
found in [53]. We generate the linear system in this example using the Incompress-
ible Flow and Iterative Solver Software [117] (IFISS). To investigate the perfor-
mance of the MSSS preconditioning technique, we consider the case for a moderate
v and a small v.

Example 4.2 ([53]) Zero source term, recirculating wind, characteristic boundary
layers.

—uV2u+ﬁ~Vu:f in

(4.10)
u=up on OIS
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where @ = {(z,y)| -1 <z <1,-1<y<1}, & = (2y(1 — 2?), —2z(1 —y?)),
f = 0. Homogeneous Dirichlet boundary are imposed everywhere except thatup = 1
on [—-1,1] x 1.

We use the @1 finite element method to discretize the convection-diffusion equation.
First, we consider a moderate value for the viscosity parameter v = 1/ 200-

According to Proposition 4.8, the preconditioned spectrum is contained in a circle
centered at (1,0) and the radius of this circle is directly related to the approximation
error € introduced by the model order reduction for SSS matrix computations. In
Section 4.5, we show that € can be made arbitrarily small by setting the bound
of the discarded singular values 7 properly. We give detailed information of the
spectrum of the preconditioned matrix of dimension 1089 x 1089, which corresponds
to a mesh size h = 27%. For different values of 7, the preconditioned spectrum and
the adaptive semiseparable order are plotted in Figure 4.7. For all the numerical
results that show the adaptive semiseparable order in this chapter, we use red line
to illustrate the lower-semiseparable order r{ and blue line to indicate the upper-
semiseparable order 7} for unsymmetric linear systems while the red line is used
to indicate the semiseparable order r; for symmetric systems.
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Figure 4.7: Preconditioned spectrum and adaptive semiseparable order
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Figure 4.8(a) and Figure 4.8(b) illustrate that the error introduced by the model
order reduction at step k in computing the MSSS preconditioner, which is denoted

by € and measured by the matrix 2-norm, is of the same order as 7. Here ¢y, is
computed by

(411) L = Hgk - (Kk,k - Kk,k—lgk__llKk—l,k) H2 .

It also illustrates that by setting the approximation error of the model order re-
duction with the same order as the smallest singular value og, we can compute a
nonsingular preconditioner and get satisfactory convergence.
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Figure 4.8: Minimal singular value and e

By decreasing 7, we get a smaller approximation error, which corresponds to smaller
€. According to our analysis, the circle that contains the preconditioned spectrum
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is even smaller. This is depicted by Figure 4.7(a) and Figure 4.7(c). Moreover, it is
shown that by decreasing 7 by a factor of 10, the radius of the circle that contains
the preconditioned spectrum also decreases by a factor of about 10. This validates
our bound of the radius in Proposition 4.8. In fact, for the preconditioned spectrum
in Figure 4.7(a), only 4 iterations are needed to compute the solution by the IDR(4)
solver and only 2 iterations are needed to solve the system corresponding to the
preconditioned spectrum in Figure 4.7(c).

Figure 4.7(b) and Figure 4.7(d) give the maximum adaptive rank for the off-
diagonal blocks of the Schur complement at step k to compute the MSSS precondi-
tioner. Since we have an unsymmetric matrix, the 7-rank for the upper-triangular
part and the lower-triangular part are different from each other. Here the 7-rank
represents the number of singular values that is bigger than or equal to 7 for a
matrix. Figure 4.7(b) and Figure 4.7(d) illustrate that the upper semiseparable
order r* is bigger than the lower semiseparable order r! which states that the
upper-triangular part is more difficult to approximate. Both r! and r* are small
and this gives small average semiseparable order, which yields linear computational
complexity.

We plot the spectrum of the system without preconditioning in Figure 4.9 to com-
pare with the preconditioned spectrum in Figure 4.7(a) and Figure 4.7(c).

0.1

3

*

*
0.051
“ of
-0.05

*

*

*

0

Figure 4.9: Spectrum of the system without preconditioning
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The driving force of preconditioning is to push the eigenvalues away from 0 and
make them cluster. We have already seen that moderate or small setting of the
model reduction error give satisfactory results. Next, we use a big model order
reduction error bound by setting 7 = 10~! and test the performance of the MSSS
preconditioner. The approximation error at each step in computing the MSSS
preconditioner is plotted in Figure 4.10(a), the preconditioned spectrum is given
in Figure 4.10(b), and the adaptive semiseparable order is given in Figure 4.10(c).

Note that even this setting of the error bound is much bigger than the smallest
singular value of the leading principle sub-matrices, which is used to guarantee to
compute a nonsingular preconditioner, we still compute an MSSS preconditioner.
This is because the possibility of perturbing a nonsingular matrix to singularity is
quite small. Since we have a preconditioner that is less accurate because we use
a relatively big error bound, the radius of the circle that contains the spectrum
of the preconditioned matrix in Figure 4.10(b) is not as small as the radius in



94 Chapter 4: Convergence Analysis of MSSS Preconditioners

Figure 4.7(a) and Figure 4.7(c). However, the spectrum is away from 0 and only
a few eigenvalues are out of this cluster. IDR(4) computes the solution in just 8
iterations. Moreover, the semiseparable order for such computations is just 1 as
shown in Figure 4.10(c), which makes the computational complexity even smaller.
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Figure 4.10: Preconditioned spectrum and adaptive semiseparable order for 7 = 10!

The performance of MSSS preconditioners for different mesh sizes h and 7 are
reported in Table 4.1. For different settings of 7, the adaptive semiseparable order
is given in Figure 4.11.

The results reported in Table 4.1 and Figure 4.11 state that by choosing a proper
error bound for the model order reduction, we can compute an MSSS preconditioner
that gives satisfactory convergence. This convergence can be made independent of
the mesh size, while the adaptive semiseparable order only slightly increases with
the problem size. This is demonstrated by Figure 4.11. The average of the upper
and lower semiseparable order is still quite small and can be almost kept constant.
We can also choose a fixed semiseparable order to compute an MSSS preconditioner.
This is studied in [104]. Both ways to compute the MSSS preconditioner give
satisfactory results.
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Table 4.1: MSSS preconditioner for the convection-diffusion equation with v = 1/200

h H N2 H T ‘ 7 iter.
5x 1073 6
274 || 1.09¢ + 03
1073 3
1073 7
275 || 4.23¢ 403
5x 1074 4
107* 5
276 || 1.66e + 04
5x 107°
5x 1075 6
277 || 6.6le+ 04
1075 3
5x 1075 10
2-8 1l 2.63e 4+ 05
10~° 5
0.01 : ' ! . —o sl
——ry
151
0.0051 .
b ol . e 101
~0.0051 . 57
-0.01 . 0 : w w w : w
0.7 08 09 1 11 5 10 15 20 25 30
» k
(a) Preconditioned spectrum, 7 = 1073 (b) Adaptive semiseparable order, 7 =
1073
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Figure 4.12: Preconditioned spectrum and adaptive semiseparable order
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Next we set v = 10~ for the convection-diffusion equation, which corresponds to
the convection-dominated case. For such test case, the finite element discretiza-
tion is not stable anymore, an up-wind scheme should be applied to get a stable
discretization. Due to the ill-conditioning of the system, a bigger semiseparable
order is needed to compute the MSSS preconditioner to get better performance.
Note that for this case, the multigrid methods (both AMG and GMG) fail to solve
such system without up-wind scheme while the MSSS preconditioner can still solve
these ill-conditioned systems [104]. Here we report detailed numerical results for
the test case with mesh size h = 274, We first set 7 = 1073 and 7 = 1074, the
computational results are reported in Figure 4.12 and Figure 4.13.
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Figure 4.12(a) and Figure 4.12(c) show that by reducing 7 with a factor of 10, the
radius of the circle that contains the preconditioned spectrum is also reduced by a
factor around 10. This validates our bound of the radius of circle that contains the
preconditioned spectrum in Proposition 4.8 again. The preconditioned system can
be solved by IDR(4) using 4 iterations for 7 = 1073 and 2 iterations for 7 = 107%.

Remark 4.25 The MSSS preconditioners computed by setting 7 = 1073 and 7 =
10~* give different clustering of the spectrum, as shown in Figure 4.12(a) and
Figure 4.12(c). However, the adaptive semiseparable order for different 7 is almost
the same. This is primarily because the Schur complements in computing the
factorization are very ill-conditioned and difficult to approximate. A slight change
of the semiseparable order results in relatively big difference of the approximation
accuracy. This also explains why a bigger adaptive semiseparable order is needed
compared with the test case for v = 1/ 200-

We also test the convergence of the MSSS preconditioned system by setting 7 =
107! and 7 = 10~2. The computational results are given in Figure 4.14 - 4.15.

20 ‘ ‘ ‘ ‘ ‘ 2
* +7.‘r

157 ——ry
101
51 -

0 . pﬁ . 1
_51 * .

-10]

-15]

—20 T T T T T 0 T T T T T T
20 10 0 10 20 30 40 5 10 15 20 25 30

® k

1 1

(a) Preconditioned spectrum, 7 = 10~ (b) Adaptive semiseparable order, 7 = 10~

15 ‘ . ‘ ‘ ‘ ‘ ‘ 14
+7-1_
o L 12 —
Lt 107
0.57
.o . 8]
& 0 g+ mow e
U 3
~0.5] .
+ 4
-1 2]
15 * 0 T T T T T T
-1 0 1 2 3 4 5 6 7 5 10 15 20 25 30
R k
(c) Preconditioned spectrum, 7 = 1072 (d) Adaptive semiseparable order, 7 = 1072

Figure 4.14: Preconditioned spectrum and adaptive semiseparable order for 7 = 1071
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It is shown in Figure 4.14 - 4.15 that although the MSSS preconditioner is nonsin-
gular by choosing relatively bigger 7 compared to g, the preconditioned spectrum
is contained in a circle centered at (1,0) with a much bigger radius and (0,0) is
included in the circle. The preconditioned system for 7 = 102 is solved by IDR(4)
in 61 iterations while IDR(4) fails to solve the preconditioned system for 7 = 107!
within 80 iterations.
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Figure 4.15: Minimal singular value and e,

For different mesh sizes h and settings of 7, the computational results are reported
in Table 4.2. The adaptive semiseparable order for different mesh sizes h and
settings of 7 are plotted in Figure 4.16.
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Figure 4.16: Adaptive semiseparable order
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Table 4.2: Computational results of the MSSS preconditioner for the convection-diffusion equa-
tion with v = 1074

T > [ - [

5x 1073 23
2—4 || 1.09¢ + 03

1073 4
1073 18

25 4.23e + 03
5x 1074 11

5x 1074 20
2-6 || 1.66e + 04

104 6
1074 13

2-7 || 6.6le+ 04
5% 107° 8

5x107° 17
278 || 2.63e+ 05

1075 6

Since this convection-dominated test case is ill-conditioned, it is quite difficult
to compute its factorization (inverse). It takes more effort to compute a good
approximation compared with the case v = !/500. This is illustrated by comparing
the adaptive semiseparable order in Figure 4.16 with that in Figure 4.11. For such
case, the average of the upper and lower semiseparable order is considerably bigger.
Since the average semiseparable order may not be bounded by a small constant,
this makes the computational complexity of the MSSS preconditioning technique
slightly bigger than linear. Details and remarks on the computational complexity
for moderate semiseparable order will be discussed in Section 4.6.2.

4.6.2 Symmetric Indefinite Systems from Discretized
Helmholtz Equation

In this subsection, we study the convergence of the MSSS preconditioners for the
symmetric indefinite systems from the discretization of scalar PDEs, where the
Schrédinger equation in Example 4.1 and the Helmholtz equation belong to this
type. In this part, we mainly focus on the performance of the MSSS preconditioner
for the Helmholtz equation that is given by Example 4.3.

Example 4.3 ([91]) Consider the following Helmholtz equation,
2
()

with homogeneous Dirichlet boundary condition. Here u(x,w) represents the pres-
sure field in the frequency domain, V? is the Laplacian operator, w is the angular
frequency, and c(x), is the acoustic-wave velocity that varies with position x.

~Vu(r,w) — u(z,w) = g(z,w), = €1[0,1] x [0,1],
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Standard five-point stencil finite difference method is used to discretize the
Helmholtz equation. We use the rule of thumb that at least 10 nodes per wavelength
should be employed, which leads to the restriction

(4.12) kh < g ~ 0.628,

for the standard five-point stencil finite difference discretization [91]. Here k =
“/c(z) is the wave number. We apply the MSSS preconditioner to the Helmholtz
equation. The pulse source term g(x,w) is chosen as the scaled delta function that
is located at (Y/32,"/2).

To test the performance of the MSSS preconditioner, we first set a moderate value
for kh, say 1/ 16. The preconditioned spectrum and semiseparable order for mesh
size h = 27° and different settings of 7 are plotted in Figure 4.17 and Figure 4.18.
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Figure 4.17: Preconditioned spectrum and adaptive semiseparable order for xk = 2

For 7 = 1072, the error introduced by the model order reduction is already smaller
than og as illustrated by Figure 4.18(a), we deduce that the preconditioned spec-
trum is contained in a circle that is small enough according to Proposition 4.8.
This is well illustrated by Figure 4.17(a). If we reduce 7 to 1072, then we get
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even smaller circle that contains the preconditioned spectrum in Figure 4.17(c).
Figure 4.17(a) and Figure 4.17(c) indicate that by reducing 7 with a factor of 10,
the radius of the circle that contains the preconditioned spectrum also decreases
by a factor around 10. This again verifies our analysis on the radius of the circle
in Proposition 4.8.

Both settings of 7 give small enough circle to yield very fast convergence for Krylov
solvers. IDR(4) computes the solution in 4 iterations for 7 = 1072 and 2 iterations
for 7 = 1073. For both cases, the semiseparable order is small enough to yield
linear computational complexity of the MSSS preconditioners.

105 . . . :
+O’k
—o—EL

100-% ’

107 1

10710 -

10715 -

10720 - - -

0 10 20 30 40
k
(a) 7 =102

10°
1
—o—¢E

100-% =

107 1
10-10 4

10715
1020 ‘ ‘ ‘
0 10 20 30 40
k
(b) 7=10"3

Figure 4.18: Minimal singular value and ¢, for k = 2

For the settings of different 7 and h, the computational results are reported in
Table 4.3. The adaptive semiseparable order are plotted in Figure 4.19.
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Figure 4.19: Adaptive semiseparable order for the Helmholtz equation with kh = 1/16
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The computational results in Table 4.3 show that the number of iterations can be
kept constant by setting a proper 7. We keep xh constant for numerical experi-
ments. This makes the Helmholtz equation even more difficult to solve, and results
in a slight increase of the semiseparable order for big x in Figure 4.19. However,
the semiseparable order is still bounded by a small number.

Table 4.3: Performance of MSSS preconditioner for the Helmholtz equation with kh = 1/16

h H K H N2 H T ‘ # iter.
1072 4
275 2 1.09¢e + 03
+ 1073 2
10~2 6
2-6 4 4.23e + 03
et 103 3
10~2 8
2-7 8 1.66e + 04 g
1073 4
1073 7
278 || 16 || 6.6le + 04
+ 104 3
29 || 52 || 2.63e 05 || 20| 1
’ 104 3
10° ‘ 5
81 o
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Figure 4.20: Preconditioned spectrum and adaptive semiseparable order for k = 20
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Next, we set kh = 0.625 that almost reaches the limit of condition (4.12). We
first report the preconditioned spectrum to demonstrate our analysis. By choosing
different settings of 7, the computational results for the mesh size h = 27° are
given in Figure 4.20 - 4.21.
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Figure 4.21: Minimal singular value and ¢ for k = 20

T is first chosen as 1072, which is of O(og). This gives the computational results
in Figure 4.20. The preconditioned spectrum in Figure 4.20(a) is contained in
a circle with very small radius. By decreasing 7, we get a even smaller radius
of the circle in Figure 4.20(c). It is shown in Figure 4.20(a) and Figure 4.20(c)
that if 7 is decreased by a factor of 10, the radius of the circle that contains the
preconditioned spectrum is also reduced by a factor around 10. Both settings give
super fast convergence. Here the Helmholtz problem is solved by IDR(4) in only 3
iterations for 7 = 10~2 and 2 iterations for 7 = 1073.

We can even relax the settings of 7 and still compute an efficient MSSS precondi-
tioner. This setting gives us smaller semiseparable order that is preferable. The
computational results are shown in Figure 4.22. The preconditioned spectrum is
contained in a circle with a bigger radius compared with the case 7 = 1072, Com-
pare Figure 4.22(b) with Figure 4.20(a), we see that by increasing 7 with a factor of
10, the radius of the circle that contains the preconditioned spectrum also increases
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by a factor around 10. This is stated in Proposition 4.8. The circle that contains
the preconditioned spectrum still has a small radius for 7 = 10~!. Therefore,
IDR(4) computes the solution in only 9 iterations.
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Figure 4.22: Preconditioned spectrum and adaptive semiseparable order for 7 = 10~1

Table 4.4: Performance of MSSS preconditioner for the Helmholtz equation with xh = 0.625

h H K H N2 T ‘ # iter.

102 3

25 20 1.09e + 03
et 103 2
26 40 4.23e + 03 1075 3
' 10—4 3
0= || 80 || 1.66e4 04 || 202 8
’ 10—3 4
a-5 || 160 || 6.61¢+ 04 || 20" >
' 10—4 3
29 320 || 2.63e + 05 1073 >
' 10—4 3
2—10 640 || 1.05e + 06 1073 6
' 10—4 3
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We report the computational results of the MSSS preconditioner for different mesh
sizes h and settings of 7 in Table 4.4. The adaptive semiseparable order for the
MSSS preconditioners are plotted in Figure 4.23.
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Figure 4.23: Adaptive semiseparable order for the Helmholtz equation with kh = 0.625

Results listed in Table 4.4 illustrate that by properly setting 7, we obtain mesh size
h independent and wave number &k independent convergence. The number of itera-
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tions can be kept virtually constant. For the shifted Laplacian preconditioner [55],
which is the state-of-the-art preconditioning technique for the Helmholtz equation,
the number of iterations scales linearly with the wave number x [126]. Some re-
cent effort dedicated to reduce the dependency on wave number of the number of
iterations is carried out by making use of the deflation technique, cf. [114].

With the refinement of the mesh, the wave number & increases linearly. This makes
the Helmholtz problem difficult to solve for small mesh size, which is illustrated by
the increase of semiseparable order. Figure 4.23 shows that the semiseparable order
has a considerable increase with the refinement of the mesh and is not bounded
by a small number, but a moderate number of O(v/N). As stated in [33] that the
computational complexity for the SSS matrix computations is linear with respect
to the problem size with a prefactor r,?; provided that r; is small. Next, we analyze
the computational complexity of SSS matrix computations for big r; but rp < N,
which corresponds to the case of the Helmholtz equation for xkh = 0.625.

For an SSS matrix A of N x N with semiseparable order r, the size of its diagonal
blocks is denoted by n, then A has v /n blocks. The computational complexity
for the matrix-matrix operations and the model order reduction of SSS matrices is
bounded by

N
(4.13) O(max {n®, n’ry, rin, r}} —),
n

which can be obtained by checking the SSS matrix computations in [33]. For
small 7, we also set n small enough. This gives the computational complexity of
O(r3N), i.e., linear with respect to the problem size. For moderate 7, the term
73 becomes big. According to (4.13), the settings of n can be adjusted such that
a proper computational complexity can be reached. Usually, we choose n and rg
of the same order, say r, = n. This in turn gives the computational complexity
for SSS matrix computations of O(ri N) for moderate rj. Note that the setting of
n does not change ry, since r; is the rank of the off-diagonal blocks, which only
depends on the property of the matrix.

108 T T T

102

time (s)

10°

10'1 1 1 1
108 104 105 108 107

matrix size
Figure 4.24: MSSS preconditioning time for kh = 0.625
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For the computations of the MSSS preconditioners with moderate r;, N Schur
complements are computed while each Schur complement is computed in O(riN ).
This in turn gives the total computational complexity O(r,%N 2), where N2 is the
problem size. For the case kh = 0.625, 7} is roughly bounded by O(v/N), this
in turn results the total computational complexity bounded by O(N2)3. This is
comparable with the computational complexity of a multi-frontal solver for 2D
problems [54]. We use Figure 4.24 to show the growth factor of time to compute
the MSSS preconditioner with the mesh refinement.

Here we set n = 4, 8, 8, 16, 32, 128 with the refinement of the mesh and 7 = 1073
for all the mesh sizes except 7 = 107* for h = 272, All the time are measured in
seconds. The number over the line shows the growth factor of the time to compute
the MSSS preconditioner. It is clear that the growth factor for time is below 4% =38,
Note that we use a non-equidistant axis for Figure 4.24.

4.6.3 Saddle-Point Systems

We study the convergence property of MSSS preconditioners for the saddle-point
systems in this part. Consider the following PDE-constrained optimization problem
given by Example 4.4.

Example 4.4 ([102]) Let Q = [0, 1]? and consider the problem

i B
min 5 lu — il + 5/

st. =V2u=finQ

u=up on I'p,
where T'p = 09, B> 0, 4 =0 is the prescribed system state, and

—sin(2ry) if v=1,0<y <1,
up = ¢ sin(2my) if ©=0,0<y<1,
0 otherwise.

Discretize the cost function and the PDE constraints by using the Galerkin method
and then compute the optimality condition gives the following linear saddle-point
system to solve

26M 0 —M] [ 0
(4.14) 0 M KT||y|l=1b
-M K 0 |]|A d

Here M is the mass matrix, K is the stiffness matrix, x and y are the discrete analog
of f and u, A is the Lagrangian multiplier, b and d are obtained by discretizing the
cost function and boundary conditions, respectively.

All the sub-blocks of the saddle-point system (4.14) have an MSSS structure and
can be exploited to get a global MSSS structure. By exploiting the global MSSS
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structure of the saddle-point system, we can compute a global MSSS preconditioner.
This is discussed in great detail in [103]. Here, we use the numerical experiments
of preconditioning the saddle-point system (4.14) to demonstrate the convergence
analysis in Section 4.3.

We report the computational results for the mesh size h = 2% with a wide range
settings of # and 7. First, we test a moderate set of 7 = 1072 and 7 = 1072 for
B =10"1. The computational results are given in Figure 4.25 and Figure 4.26.

o)
10° 1 —o—ep |L
T
i
107 g
107 g
107" -
2 4 6 8 10 12 14 16
k
(a) 7=10"2
o | —a
10 ;
49*5]\7
;
107° 1
107"
1071+ : : : : : :
2 4 6 8 10 12 14 16
k
(b) =103

Figure 4.25: Minimal singular value and approximation error for h =24, 3 =10"1

Figure 4.26(a) and Figure 4.26(c) show that a moderate setting of 7 gives a small
radius of the circle that contains the preconditioned spectrum, and the smaller 7
is, the smaller the radius is. Both settings give adequately small circle and the
decrease of 7 just yields a slightly increase of the semiseparable order, which is
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shown in Figure 4.26(b) and Figure 4.26(d). The IDR(4) solves the preconditioned
system for 7 = 1072 in only 3 iterations and only 2 iterations for 7 = 1073.
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(f) Adaptive semiseparable order, 7 =

(e) Preconditioned spectrum, 7 = 107!
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Figure 4.26: Preconditioned spectrum and adaptive semiseparable order for h = 2~%4, 8 =10~
We can even set a bigger 7 to compute an MSSS preconditioner, the computational

results for 7 = 107! are plotted in Figure 4.26(e) - 4.26(f). Figure 4.26(e) illustrates
that a bigger 7 gives a bigger radius of the circle that contains the preconditioned
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spectrum. But the circle is still small and the IDR(4) solver computes the solution
of the preconditioned system in only 5 iterations. Moreover, this settings of 7 gives
a smaller semiseparable order, which is shown in Figure 4.26(f).

The smallest singular value of the saddle-point system (4.14) scales with 5. A
smaller 8 in turn gives a smaller smallest singular value. This makes the saddle-
point system (4.14) even more ill-conditioned and difficult to solve. Next, we test
the case for a moderate 8 = 1072, and a much smaller 3 = 10~°, the computational
results for 7 = 1072, and 7 = 103 are reported in Figure 4.27 - 4.30.

The computational results in Figure 4.27 - 4.30 show that a moderate settings of
T gives satisfactory clustering of the preconditioned spectrum. The IDR(4) solver
computes the solution in 2 or 3 iterations for all the settings of 7 and S that

corresponds to the test cases in Figure 4.27 - 4.30.
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Figure 4.27: Preconditioned spectrum and adaptive semiseparable order for h = 2—4, 7 = 102,
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Figure 4.28: Preconditioned spectrum and adaptive semiseparable order for h = 2—4, 7 = 1073,
B =102
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Figure 4.29: Preconditioned spectrum and adaptive semiseparable order for h = 274, 7 = 102,
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Figure 4.30: Preconditioned spectrum and adaptive semiseparable order for h = 2—4, 7 = 103,
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Table 4.5: Performance of MSSS preconditioner for the PDE-constrained optimization problem

with different 8

h N2 g=10"" B =102 B =107
T [ # iter. T [ # iter. T [ # iter.
10-1 6 10-1 6 10-1 4
—5
2 3.07e +03 |\ 5= 3 102 1 102 3
10-1 9 10—1 8 10—2 16
—6
2 1.23¢+04 | —o 1 02 1 03 3
10-1 13 10-1 16 103 6
-7
2 4.92¢ +04 | 5= 5 102 5 101 2
10—2 10 102 10
-8 —4
2 1.97e + 05 103 1 103 1 10 3
—2
279 || 7.86e+05 || 1073 6 10-3 6 1875 129
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The performance of the MSSS preconditioner for different settings of 7, 5, and the
mesh size h are given in Table 4.5. The corresponding semiseparable order are

plotted in Figure 4.31 - 4.33.
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Figure 4.31: Adaptive semiseparable order for 8 = 10~!
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The computational results in Figure 4.31 - 4.32 for the test case with 3 = 10~! and
B = 1072 show that for a constant setting of 7, the semiseparable order is bounded
by a constant 4 for the mesh size h ranges from 277 to 27°. The semiseparable order
is independent of the mesh size h and 5. Since the smallest singular value for all
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Figure 4.32: Adaptive semiseparable order for § = 102

(i) h=279 7=10"3
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the principle leading sub-matrices of the saddle-point systems also scales with mesh
size h, for a bigger test example with mesh size h = 27° and h = 278, a smaller 7
is needed to get a satisfactory radius of the circle that contains the preconditioned
spectrum according to Proposition 4.8. This is verified by the computational results
in Figure 4.31 - 4.33 and Table 4.5. The setting of a smaller 7 yields a slightly
increase of the semiseparable order from 4 to 6, which is still quite small.

For much smaller 3 = 1075, the saddle-point system is even more ill-conditioned.
The smallest singular value for all the principle leading sub-matrices is even smaller.
To solve such an ill-conditioned system, a smaller 7 is necessary to get a satisfactory
radius of the circle that contains the preconditioned spectrum, compared with the
case for moderate B. This yields a slightly increase of the semiseparable order and
the semiseparable orders for all the test cases are still bounded by a small constant,
which is illustrated by Figure 4.33.
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Figure 4.33: Adaptive semiseparable order for § = 102

Remark 4.26 According to the computational results for different regularization
parameter 5 and mesh size h in Figure 4.31 - 4.33 and Table 4.5, we show that by a
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proper setting of the parameter 7 for the MSSS preconditioner, we can compute an
efficient preconditioner that gives mesh size and regularization parameter indepen-
dent convergence. The computational complexity for the MSSS preconditioning
technique can be kept linear with the problem sizes.

4.7 Conclusions

In this chapter, we made a convergence analysis of the multilevel sequentially
semiseparable (MSSS) preconditioners for a wide class of linear systems. This
includes unsymmetric systems, symmetric indefinite systems from discretization
of scalar PDEs and saddle-point systems. We showed that the spectrum of the
preconditioned system is contained in a circle centered at (1,0) and we gave an
analytic bound for the radius. Our analysis shows that the radius of the circle
can be made arbitrarily small by properly setting a parameter in the MSSS pre-
conditioner. We also demonstrated how to select the parameter. We validate our
analysis by performing numerical experiments.

4.8 Appendix: Proof of Lemma 4.16

Before the proof, we give the following lemmas and corollaries that are necessary.
Lemma 4.27 ([120]) Let A € C™*™ be partitioned in the form
_ A
A= { AJ |
Let the singular values of A be 01 > 09 > -+ > o, and those of A1 be 71 > 10 >

- >7Tn. Then
UiZTia izl, 2,...,n.

From Lemma 4.27, we can also get the inequality between singular values of A and
As, which is stated by Proposition 4.28.

Proposition 4.28 Let the singular values of Ay in Lemma .27 be vy > vy >
- >v,. Then
o, >y, t=1,2 ..., n

Proof: It is easy to obtain
Aol |0 L] [A] |0 I, A
Al B Iq 0 A2 o Iq 0 ’

. . . . . = 1
where I, and I, are identity matrices with proper sizes. Let A = {0

P
I, 0} A, then

according to Lemma 4.27, we have

JiZl/i, Z:L 27...,TL.
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This is because that A and A have the same singular values. ]

According to Lemma 4.27 and Proposition 4.28, we have the following corollary.
Corollary 4.29 If all the factors C; are transformed to the form with orthonormal
rows, then we have

(4.15) [Rill, <1, and [|Qill, < 1.

Proof. According to the procedure to transform C; to the form with orthonormal
rows introduced in Section 4.5, at step i + 1, we perform an SVD that gives

[Ri Qi) =UX VT,
and let [Ri Ql] = VZ-T. This gives
il
According to Lemma 4.27 and Proposition 4.28, we have
ok (Vi) = ow(R]),  on(Vi) > ow(Q]).
Since 0% (R;) = ox(R]), 01(Q;) = 01(QT) and oy(V;) = 1, we have
[Rill, <1, [IQill, <1 O
With these lemmas and corollaries, we now give the proof of Lemma 4.16 in the
following part.

Proof: Since these inequalities in the lemma start from different steps, we first
give the proof at step N and then start the proof by induction from step N — 1.

For step N, perform an SVD on Oy gives

Ox =Py =[Uy AUy] [PV Yy,
NN AXy| |AVE]”
where ¥ and AXy are diagonal matrices with diagonal entries o1, o2, -+, o5y,

and o7y, ., *++, Ory With
012022 205y >T 205y 200 2 Opye
Let @N = UN and éN = ENVECN, we have

H(’)NCN - ONéNHQ = |‘AUNAENAV§CN|}2

= |[AUNASNAVY
<T.

H2 (Cy has orthonormal rows)
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This is exactly the inequality in (4.7) for i = N, i.e.,
HI:IN —HNH <T.
2
After this step, the factor Oy has orthonormal columns.

According to Cny = [RN,lCN,l QN,l] and Cn = ENVECN, we have
Ry, =SNVNRy_1, Qn-1=3INViQn-1.
Then
H@NQN—1 - ONQN—lH |AUNASNAVY Qn -1,

|
|AUNASN AV ], 1Qn—1ll;
HAUNAENAV ||2 (Corollary 4.29)

IN

I/\ IN

which gives the inequality (4.9) for ¢ = N.

Now, we start our proof from the step i = N — 1 by induction. Because of the
approximation of Oy, we have

~ Pn_
1 _ | AN-1
On-1= {ONR}vJ

and we have the following inequality hold

(4.16) HON_yf@b_42gf.

This is because

Joss =01, = | lowinss] ~ loniill,

- [ornscs- O,

= |AUNASNAVY Ry,

< ||AUNASNAVR ||, RN -1,

< HAUNAZNAVE (Corollary 4.29)
<.

I

This proves the inequality (4.8) for i = N — 1.

According to

Nt ONRN 1 On| [Ry_1]’
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~ Py_
and Oy has orthonormal columns, we perform an SVD on [ lev 1} and get
N—1

2]t s

] VN1 ]
Ry '

AZNJ {AVJ\T1

~ I ~
Let O?V—l = |: @ :| UN,1 and CN,1 = ENflng;_lCNfQ, i.e.,
N
CN'Nfl = EN,1V]$,1 [RN—QCN—Z QN—Q] )

which yields Ry, = Sn_ 1V Ry 2 and Qy_2 =YXy 1 Vi QN 2.

Then, we obtain

0% 1Cx1 = O iCna|| = [[AUN1AZN AV (Cx
(4.17) = HAUN71AEN71AVJ:€71H2

<7 (Cn—1 has orthonormal rows).

This in turn gives
HON—lcN—l — @12\/_1(?1\/—1”2 < HON—ICN—l — @}V_lcN_l"Q
ot en s ke,
N

< 2T
(Cn—1 has orthonormal rows and (4.16) (4.17)),

HHN—l - 7:[N—1H2 < 27,

which proves inequality (4.7) for i = N — 1.

Additionally,
72 A A1 I T
0% s@v-2 - Ok sana], = [T ] AUN-18BN1AVE 0
= ’|AUN71AZN71AV]%171QN72H2
(O is orthonormal)
< ||AUN-1ASN 1 AVY |
<T.

2

o> (Corollary 4.29)
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And

H@}VHQN% - ON*IQN72H2 < H@}vq - ON71H2 1QN—2l,
< H@}v_l — ON_le (Corollary 4.29)
<7. ((4.16))

This in turn yields

"@?V—lQN—? - ON—lQN—2H2 < H@12v_1(21v—2 - @le—lQN—2H2
(4.18) n H@}HQM2 N ONleN72H2

<27

)

which is exactly inequality (4.9) for i = N — 1.
Till now, we have proven that all the inequalities (4.7) (4.8) (4.9) hold fori = N—1.

Next, we suppose that at step (k+ 1), 2 < k < N — 2, the following inequalities
hold,

Hok-i-l Ok+1H (N =k -1,

H@iHQk - Ok+1QkH2 < (N —Fk)T.

Therefore, at step k, we have

HOk OkH H {@iHRJ - {Ok}:};RJ

-[6t.m-ouum],

< Hoi-&-le - Ok+1RkH2 + H@iHRk - Ok+1RkH2-

And it is easy to obtain

e I
H0i+1Rllc - OiﬂRkH = H [ 2 } AU 1 ASp 1 AV Ry
2 k+1

2
= || AU AS AV i

(02 41 has orthonormal columns)
< ’|AUk+1AEk+1AVkT+1H2 (Corollary 4.29)
<T.
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Besides
|0k R = O R | < [ OL41 = O | 1R
< H@,L_l - Ok“”g (Corollary 4.29)
<(N—-k-1)rT
This gives

H@}C—okH <t (N—k—1)7=(N—kr
2
which is exactly the inequality (4.8) for step k.

Next, we start to approximate @}C Since

o =lotim] =1 et ]
F Ol%+1R11€ 0126—0—1 Rllc 7

N P
and OF, ; has orthonormal columns, we first perform an SVD on [ R’i] that gives
k

] = o [ s [ate]

Let

[{D’f] = Uy, and C, = S, V,I .
Ry,

This yields,

H@,iék — @iCkHQ — |ATASLAVTC |,
= ||AULAZ, AV

<T.

||2 (Ck has orthonormal rows)

Therefore,
fo. -0, < e o]+ eies -,
<7+ H@,ick - OkaH2

=T+ H(’)i - OkHz (Ck, has orthonormal rows)

<(N—-k+ 1,

-] < v k4 1

which proves inequality (4.7) for step k.
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Besides,

H@iékq - Oka71H2 < H@%qu - @iquHz + H(’N)}Cqu - Oka71H2

< H@i@k_l — @iQkAHz + H@i — Ok”z' (Corollary 4.29)
It is easy to obtain that

o~ . T
|02k - Otu | =H[ 5 }AUkAzkAVkTQ“
2 k+1 2

= HAUkAEkAVkTQk,1H2 (@,%H has orthonormal columns)
< [|AURAZL AV |, 1Qk-1l,

< |aUAS, AV (Corollary 4.29)

<T.

I

Therefore,
|63@41 - OrQus||, <7+ (W =By = (W~ k4 )

This gives the proof of inequality (4.9) for step k. d
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CHAPTER

MSSS Preconditioning Technique

for Optimal In-Domain Control of

PDEs: a Wind Farm Example

n this chapter, we study the multilevel sequentially semiseparable (MSSS)
Ipreconditioning techniques for the optimal in-domain control of partial dif-
ferential equations (PDEs). In contrast to the PDE-constrained optimization
problem studied in Chapter 2, where the control inputs are distributed through-
out the domain, the control input here only acts on a few grid points in the do-
main where actuators are placed. This in turn makes the resulting generalized
saddle-point system even more difficult to solve since its Schur complement is
very difficult or even impossible to approximate. Standard block precondition-
ers do not give satisfactory performance. We evaluate the performance of the
MSSS preconditioning techniques for this type of problems by using a simplified
wind farm control example. We will show that by exploiting the multilevel se-
quentially semiseparable structure, we can compute a robust preconditioner in
linear computational complexity. We also study the performance of the state-
of-the-art preconditioning techniques and our results show the superiority of
the MSSS preconditioning techniques over standard preconditioning techniques
for this type of in-domain control problems.

5.1 Introduction

Nowadays, optimal control problems in practice are mostly solved with nonlinear
programming (NLP) methods based on some discretization strategies of the original
continuous problems in the functional space [79]. Once the optimization problem
is discretized, the optimization variable is reduced to a finite-dimensional space.
This results in a parameter optimization problem [25]. Simultaneous strategies,
explicitly perform a discretization of the PDEs that prescribe the dynamics of the

125
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system as well as the cost function, i.e., PDE simulation and the optimization pro-
cedure proceed simultaneously, cf. [21, 58, 113] and Chapter 2 of this dissertation.
Sequential strategies, on the other hand, just parameterize the control input and
employ numerical schemes in a black-box manner by utilizing the implicit func-
tion theorem (IFT) [9, 25, 71]. This approach turns out to be very efficient when
the dimension of the control variable is much smaller than the system states that
are described by the partial differential equations [25, 71], where optimal shape
design [77], boundary control of fluid dynamics [18, 56] are applications for this
type of optimization approaches. For the simultaneous approach, its high potential
in terms of efficiency and robustness turns out to be very difficult to be realized
when the sizes of the states and inputs are very large. This yields a very large
optimization problem, where the equality constraints by PDEs are appended to
the augmented cost function. The Lagrangian multipliers, the number of which is
the same as the state variables of PDEs, make the size of the optimization problem
even bigger.

As in many problems in science and engineering, the most time-consuming part for
the optimal control of PDEs is to solve a series of linear systems arising from the
simulation of PDEs [21]. With increasing improvement of computational resources
and the advancement of numerical techniques, very-large problems can be taken
into consideration [59]. An important building block for the optimal control of
PDEs is the preconditioning techniques to accelerate the simulation of PDEs. In the
last decades, many efforts have been dedicated to the development of efficient and
robust preconditioning techniques for these types of problems [4, 95, 99, 107, 121].
These research projects are devoted to preconditioning control problems of the
tracking type where the control is distributed throughout the domain. For the case
of the in-domain control where the control only acts on a few grid points where the
actuators are placed, or the boundary control case that only the boundary condition
can be controlled, preconditioning techniques for this in-domain control problems
do not give satisfactory performance. This is because the developed preconditioning
techniques highly depend on an efficient approximation of the Schur complement of
the linear system arising from the discretized optimality condition, cf. conclusion
parts of [94, 107] for a discussion. Some research for optimal in-domain control
problems focuses on developing novel computational techniques for the specific
objective [10, 79, 84] without considering efficient preconditioning techniques.

In this chapter, we focus on designing efficient and robust preconditioning tech-
niques for optimal in-domain control of the Navier-Stokes equation and use a
simplified wind farm control example to illustrate the performance of our pre-
conditioning technique. Our contributions include: (1) By formulating the optimal
in-domain control of the Navier-Stokes problem as a generalized saddle-point prob-
lem using the implicit function theorem (IFT), we can reuse the preconditioners
for the linearized Navier-Stokes equation to solve the adjoint equations for the
computations of the gradient and Hessian matrix. This reduces the computational
cost significantly. (2) We study the multilevel sequentially semiseparable (MSSS)
preconditioner for the generalized saddle-point system. In contrast to the standard
block preconditioners that require to approximate the Schur complement of the
block linear system, the MSSS preconditioner computes an approximate factoriza-
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tion of the global system matrix up to a prescribed accuracy in linear computational
complexity. This is a big advantage over the standard block preconditioners; (3)
We evaluate the performance of the MSSS preconditioner using incompressible flow
and fast iterative solver software (IFISS)! [117]. (4) Our analysis shows that the
computational cost can be further reduced by applying block-Krylov methods to
solve a linear system with multiple left-hand sides and multiple right-hand sides
for the computations of the gradient and Hessian matrix.

The structure of this chapter is organized as follows. In Section 5.2, we use a sim-
plified wind farm control example to formulate an in-domain control problem that
is governed by the stationary Navier-Stokes equation. We introduce the optimiza-
tion techniques for this type of problems as well as the preconditioning techniques
based on MSSS matrix computations in Section 5.3. In Section 5.4, we perform
numerical experiments to illustrate the performance of the MSSS preconditioning
techniques for this type of problems. We also apply the state-of-the-art precon-
ditioning techniques in Section 5.4 as a comparison for evaluation of the MSSS
preconditioning techniques. Conclusions are drawn in Section 5.5.

5.2 Problem Formulation

In this section, we use wind farm control as an example to formulate the in-domain
control problem. Due to the wake interactions in a wind farm, a reduced velocity
profile is obtained after the wind passes through turbines. This in turn reduces
the energy extracted by the turbines downstream because the energy captured by
the turbines roughly scales with the cubic power of the velocity at the turbine
location [68].

Currently, wind turbines are usually controlled by the individual controllers to
maximize their own performance. Many research activities illustrate that operat-
ing all the turbines in a wind farm at their own optimal state gives sub-optimal
performance of the overall wind farm [5, 82]. Wind farm control aims to optimize
the total power captured from the wind by taking coordinating control strategies
to the turbines in the wind farm. By appropriately choosing the computational
domain for the flow (wind farm), the wind farm control can be formulated as an
optimal flow control problem that aims to maximize the total power captured by
all the turbines in the wind farm. For the wind farm control, the control only acts
on a few parts of the domain where the turbines are located. This in turn gives
an in-domain control problem. In the next part, we aim to build a simplified wind
farm model and use this model to formulate the optimization problem.

5.2.1 Fluid Dynamics

Some efforts have been devoted to develop a suitable model to simulate the wake
effect in the wind farm, cf. [38, 112] for a general survey and [5, 57] for recent

1IFISS is a computational laboratory for experimenting with state-of-the-art preconditioned
iterative solvers for the discrete linear equation systems that arise in incompressible flow modeling.
http://www.cs.umd.edu/~elman/ifiss/index.html



128 Chapter 5: MSSS Preconditioners for In-Domain Control of PDEs

developments. In general there exist two approaches for modeling of the wake. The
one is the heuristic approach that does not solve a flow equation but uses some rules
of thumb [5, 105], a typical example is the Park model [5]. The second approach
is solving an incompressible Navier-Stokes or Euler equation, cf. [59, 122]. In this
chapter, we use the second approach to model the flow in the wind farm. Moreover,
some recent research tries to take the boundary layer and some physical behavior
into account. This in turn requires a more complicated turbulence model for the
wind farm simulation study [3, 59, 112]. In this chapter, we focus on preconditioning
techniques, and we evaluate the performance of preconditioning techniques by the
Incompressible Flow & Iterative Solver Software (IFISS). We only focus on flow
problems that can be addressed within the framework of IFISS. Numerical methods
that deal with turbulent flow are out of the scope of this dissertation.

Consider the stationary incompressible Navier-Stokes equation in ) € R? that is
given by

5.1) VA7+(7.V)7;.V§;O7

where v is the kinematic viscosity, U is the velocity field, p denotes the pressure,
is a source term. Here 2 is a bounded domain with its boundary given by
I' =00 = 00p U 9Ny, where 0Qp denotes the boundary where Dirichlet bound-
ary conditions are prescribed and 01y represents the boundary where Neumann
boundary conditions are imposed. The Reynolds number Re € R describes the
ratio of the inertial and viscous forces within the fluid [131] and is defined by

uyp L
(5.2) Re & 71,

v
where u,. € RT is the reference velocity, L,, € RT is the reference distance that the
flow travels.

In this chapter, we focus on designing efficient preconditioning techniques for the
control of laminar flow using IFISS. The Reynolds number plays an important role
in the flow equation that describes whether the flow under consideration is laminar
or turbulent. In many engineering problems, turbulent flow happens when the
Reynolds number Re > 2000 [131]. In the case of flow through a straight pipe with a
circular cross-section, at a Reynolds number below a critical value of approximately
2040, fluid motion will ultimately be laminar, whereas at larger Reynolds numbers,
the flow can be turbulent [8]. Since we focus on efficient preconditioning techniques
for optimal in-domain flow control using IFISS in this chapter and no turbulent flow
model is included in IFISS, we consider a flow with Reynolds number Re = 2000,
although this does not correspond to practical flow for wind farm control.

To study the aerodynamics of the wind farm, we cannot set an infinite dimensional
computational domain. We can prescribe suitable boundary conditions for the
flow that in turn gives a finite domain. We set a standard reference domain ) =
[—1,1] x [-1,1] for the wind farm simulation study in Figure 5.1. The reference
velocity u, is set to 1.
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Figure 5.1: Computational domain for wind farm simulation

The turbines in the wind farm are located in a line that follows the stream direction,
and the leftmost turbine is placed at the center of the domain. Such configurations
are widely used in the wind farm simulation studies [5, 59, 122]. Here the diameter
of the turbine is set to be /g4 of the reference domain in Figure 5.1. The distance
between turbines is set to be 5 times of the diameter of the turbines. The constant
inflow is imposed on the left boundary and is given by

(5.3) Up = Ue, Uy =0,
or equivalently

(5.4) U = —u.T.

Here, 7 is the unit normal vector of the boundary that points outwards. For
top, right, and bottom boundary that are far away from the turbines, the flow is
considered to be free stream and zero stress boundary condition for outflow given
by (5.5) is prescribed,

(5.5) yg% —p7 = 0.

Here, % is the Gateaux derivative at dQy in the direction of 77. By setting the
right hand side of (5.5) to 0, the average pressure on the outflow boundary is also
set to be 0. This boundary condition states that the flow can move freely across
the boundary by resolving the Navier-Stokes equation (5.1). Associated with the
prescribed boundary condition (5.4) (5.5), the resolved flow field without outer
source is shown in Figure 5.2.

I — —= —= = = = =

05— — — — — — —= —=

Figure 5.2: Resolved flow field without outer source
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5.2.2 Wind Turbines

Turbines in a wind farm capture kinetic energy from the wind and generate electri-
cal power. From the wind farm control perspective, it can be modeled as an outer
source that interacts with the flow. There are two models that are widely used to
study the turbine interaction with the flow field, one is the actuator disk method
(ADM) [85] while the other is the actuator line method [123]. The ADM method
is widely used because it is simple and can give satisfactory results in many appli-
cations [85]. The ADM models the wind turbine as a disk that can have constant,
radial, or variable force that acts on the flow. It does not consider the model of the
blades of the turbine, which reduces the computational complexity dramatically.
In contrast, the actuator line model takes finite sections of the turbine blades and
compute the lift and drag force that act on the flow [123] while the blades geom-
etry and the flow conditions should also be considered. This in turn increases the
computational complexity. In this chapter, we take the widely used actuator disk
method as the wind turbines model.

According to the classic actuator disk method [76], the thrust on the disk is given
by

(5.6) f=2pAa(l — a)u,.

Here p is the density of the air, A is the area that is swept by the blades, a is the
axial induction factor at rotor plane and is defined by,

(5.7) a:uoo—udzluoo—uw

Uso 2 Uso
Uso 18 the velocity in the free stream region (us = u.) that is shown in Figure 5.3.

stream tube
Vs

4 actuator disk

Ud

Figure 5.3: Actuator-disk model

For the idealized case, all reduced kinetic energy of the wind is captured by the
wind turbine, which can be given as

(5.8) P = %pAuioa(l —a)®

The optimal power extraction is obtained when a = !/3, which is called the Betz
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limit [27]. This in turn gives the optimal thrust force f,, in (5.6) by

4
(5.9) fm = §pAu§O.
According to (5.7), we have
(5.10) Ug = Uoso (1 — a).

For the optimal power extraction, a = !/3, therefore, we have ug = ?/3us. Then
we obtain,

(5.11) fm = pAuZ.

For modern turbines, the thrust force can be denoted by,
(5.12) f = —CrpAid,

where 14 is the average axial flow velocity at the turbine disk, C'r is the disk based
thrust coefficient that depends on the geometry and design of the turbine blades.
Nowadays, turbine blades are designed to make C'7 maximum around 1.

5.2.3 Objective Function

The operation status for wind turbines can be illustrated by Figure 5.4. In region I,
the wind speed is below the cut-in speed that triggers the start of the wind turbine,
while in region II, the wind speed is below the rated speed and the wind turbine
is set to operate in the maximum power tracking mode. This is performed by the
generator torque control to keep a constant tip-speed ratio that is independent of
the wind speed while the pitch angle is kept constant at the optimal value of Cr,
i.e, Cr = 1. In region III, the wind speed is above the rated speed and below
the cut out speed, the turbine is operated with rated power output by active yaw
control (AYC) and pitch control. This corresponds to reducing Cr to keep the
power constant with the increase of the wind speed. The wind turbine is cut out
in region IV for protection.

power output

wind speed

Figure 5.4: Operation region of wind turbine
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For wind turbines, the disk based thrust coefficient C'r can be changed from 0 to 1
by active yaw control and pitch control. For conventional wind farm control, all the
turbines are operated in their own optimal status in region I1, i.e., Cp = 1 for all the
turbines. Due to the wake interactions, the velocity downstream is reduced, this in
turn gives a sub-optimal performance for the wind farm [5]. Here we consider the
ideal case that C'p = Cp where Cp is the power coefficient and usually Cp < Crp.
The wind farm control aims to maximize the total power captured by all the wind
turbines in the wind farm, which can be represented as

N, N,
(5.13) Pr=Y_ —fyii; = pAY_ Criil,
j=1 j=1

where N, is the number of turbines in the wind farm, p is the density of air, A is
the area swept by the wind turbine blades, and 4; is the uniform disk averaged
axial flow speed of the j-th turbine.

Therefore, the wind farm control problem can be formulated as the following opti-
mization problem,

Ny
: .3
min — E Cr.us
Cr,d ; i
Jj=1

(5.14) st. —vAT +(T-V)T +Vp= f(Cr, D),
V-ud =0,
0<Cp <1, (j=1,...,N).

Here ?(CT,W) is a nonlinear function and it is of value (5.12) at the position
where turbines are placed and 0 elsewhere, and Cr = [C’T1 Cr, --- CTNt]T

5.3 Reduced Nonlinear Programming

In the previous section, we formulated an in-domain control problem (5.14) by
using a wind farm control example. The size of the control variable Ny, which is
the number of turbines, is much smaller than the size of the state variables (number
of velocity and pressure grid points). Therefore, we use the sequential approach
that is based on the implicit function theorem to solve a reduced optimization
problem.

5.3.1 Reduced Optimization Problem

Denote the equality constraints in (5.14) for the flow equation by h(Cr,¢) = 0
where ¢ = (7,1)), and the objective function by g(Cr, ¢), then the optimization
problem (5.14) can be written as
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min 9(Cr, ¢)

T,

(5.15) st. h(Cr,¢) =0,
0<Cr<1

The equality constraint in (5.14) implies that the velocity and pressure ¢ is a
function of 7 For the existence of this function, cf. [71] for a proof. Since ? is an
explicit function of Cr, ¢ is a function of Cr and denote this function by ¢ = s(Cr).
The function s(C7r) is not explicitly computed but is obtained implicitly by solving
the flow equation (5.1) using given Crp.

By using the implicit function theorem, we can re-write the optimization problem
in a reduced form,

min ¢(Cr,s(Cr))
(5.16) Or
st. 0<Op<1.

Newton-type methods, which are second order methods, are well-suited to solve
this type of nonlinear programming (NLP) problems. An alternative approach to
solve this type of problem is the (reduced) sequentially quadratic programming
((R)SQP) [88]. For the reduced optimization problem (5.16), these two types of
methods are quite similar and we refer to [71] for a detailed discussion.

In this section, we apply Newton’s method to solve the reduced NLP prob-
lem (5.16). The reason to choose the Newton’s method is that the Hessian matrix
for this problem is of small size and can be computed explicitly. Moreover, we
can reuse the information from the last Newton step of solving the nonlinear flow
equation to compute the gradient and the Hessian matrix, which makes Newton’s
method computationally competitive for this optimization problem. This will be
explained in the following part. The Newton’s method for this problem is described
by Algorithm 5.1.

In Algorithm 5.1, we denote the optimization step as the outer iteration, and at
each outer iteration, we need to solve a Navier-Stokes equation with nonlinear right-
hand side. This step is denoted by the inner iteration in line 4 of the algorithm.
From the description of Algorithm 5.1, it is clear that the most time-consuming
part for this optimization problem is the solution of the nonlinear flow equation
and the computations of the gradient and Hessian matrix. Therefore, efficient
numerical methods need to be deployed.
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Algorithm 5.1 Reduced Newton’s algorithm for (5.15)

1: procedure OpPT(Wind) > Optimization procedure for wind farm control

2: Input: Initial guess C;O), maximal optimization steps itpax, stop toler-
ance €

3 while [|Vgi| > ep && k < itpax do > outer iteration

4 solve h(C(Tk), #) = 0 to compute ¢*) > inner iteration

5 evaluate the gradient Vg at (Cgpk)7 )

6: evaluate the Hessian matrix Hy, at (CSF), ¢(®)

7 compute the update AC(Tk) = argmin ACYH,ACT + Vgl ACr

8 CF o) 4 ACt

9: Check inequality constraints by projection

10: if CTj > 1 then

11: Cr, =1 > project on boundary

12: else if Cr; <0 then

13: Cr, =0 > project on boundary

14: end if

15: k+—k+1

16: end while

17: Output: Optimal control variable Cr and corresponding solution of «

18: end procedure

5.3.2 Preconditioning Flow Equation

In this part, we introduce efficient numerical methods for Algorithm 5.1. At each
outer iteration, we need to solve a nonlinear flow equation that has a nonlinear
right-hand side at step 4 of Algorithm 5.1, we explicitly write this equation in
decomposed form as

velocity convection

o 0? 0 0 0
V(48x2 + ayz)uzc‘f'(ux%‘Fuyaiy)Ux -I—%p—fm(CT,uw,uy),
o 0? 0 0 0
(5.17) V(8x2 + 8y2)uy + (uﬁax + uy ay)uy +3yp fy(Cr,ug, uy),

velocity convection

8 —

%ux + a—yuy =0.
Equation (5.17) is a nonlinear equation where the nonlinearity is caused by both
the velocity convection operator and the nonlinear right-hand side. To solve such
a nonlinear equation (5.17), we apply Newton’s method. At each Newton iteration
of step 4 in Algorithm 5.1, we need to solve a linear system of the following type,

vK + N+ Jn + Jf, g+ Ji, BT [Au, a

(5.18) Sy + Jh, vK+N+Jp, +J], BL| |Au,| = |b],
B:L’ By 0 Ap c
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after discretizing the nonlinear partial differential equation (5.17) using mixed fi-
nite element method. Here N is the convection matrix, J{?) denote the Jacobian

matrices from the nonlinear velocity convection term, and J{ ) represent the Jaco-
bian matrices from the nonlinear right-hand side. Since only a small part of the
domain is controlled, f, and f, are zero almost everywhere in the domain except
in the vicinity where the turbines are placed. This in turn gives singular Jacobian
matrices J{).

Comparing system (5.18) with the standard linearized Navier-Stokes equation by
the Newton’s method given by

vK +N+J2, Iy BT [Au, a
(5.19) Wjs vK+N+J}' Bl| [Au,| = |b],
B, B, 0 Ap c

we see that the linearized flow equation (5.18) is a perturbed linearized Navier-
Stokes equation with singular perturbation in the matrix blocks that correspond
to the velocity. Re-write equation (5.19) in a compact form as

A BT] [Au]  [f]
(520) [B 0 } {Ap} - L}- ’
and the equation (5.18) is given by a perturbed form
A+Jr BT [Au]  [f
(5.21) { A O} {Ap} -l

The linear system (5.21) is large, sparse, and highly indefinite. Efficient precondi-
tioning techniques are needed to solve such systems using Krylov solvers. Standard
preconditioning techniques for such 2-by-2 system highly depend on efficient ap-
proximation of the Schur complement, or computing a spectrally equivalent Schur
complement as introduced in Chapter 3. For the linearized Navier-Stokes prob-
lem (5.20), there exits some well-established preconditioning techniques such as
the SIMPLE method [80], augmented Lagrangian preconditioner [17], pressure
convection-diffusion (PCD) preconditioner [74], et al. However, the aforementioned
preconditioners do not perform well to solve the perturbed linear system (5.21) be-
cause the Schur complement for the perturbed linear system is even more difficult
to approximate.

As introduced in Chapter 3, all the blocks of the matrix in (5.18) have an MSSS
structure, it is therefore natural to permute the matrix with MSSS blocks into
a global MSSS matrix by applying Lemma 2.4. With this permutation, we can
compute an approximate LU factorization using Lemma 2.1. This factorization
gives a global MSSS preconditioner for the system (5.18). We have already shown
the superiority of the MSSS preconditioning technique over state-of-the-art pre-
conditioning techniques for the computational fluid dynamics (CFD) problems in
Chapter 3. We will show the performance of the MSSS preconditioning techniques
for the flow problem described by (5.18) and compare its performance with state-
of-the-art preconditioning techniques in Section 5.4.
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5.3.3 Computations of Partial Derivatives

Next, we introduce efficient numerical methods to compute the reduced gradient
and the reduced Hessian matrix. Denote the reduced gradient of the cost function
by

) i) 0 T
(5.22) Vg=lacn9 wcnd - d0n, g] :
The gradient can be computed using
0 7] 0g Ouyg dg 0O
g= 29, 09 Ouy | Og Ouy
8CTj GCTJ. auw 8CTJ. 8uy GCT],

(5.23) G=1,2,...,N,).

Since the cost function g is an analytic function of Cr, u, and wu,, the partial

derivatives %, aaTg, and @ are trivial to compute. Next, we show how to
Z‘/

compute the partial derivatives ﬁ and d“y

Assume that u,, u,, and p are twice differentiable with respect to Cr,(j =
1,2,...,Ny), and that the first and second order derivatives have continuous second
order derivative in ), i.e.,

Ouy Ouy Op
oCr." 9Cr,” 0OCr,

J

€ C2(Q),

and
0%, 0%uy &p
oCr,0Cy,”  9Cr,0Cr,” 9CT,0CT,

for (i, 7 =1,2,...,\Ny).

€ C%(Q),

According to the flow equation (5.17), we have the first order derivative given by

(5.24)

diffusion operator convection operator linear term
——
_, H2 +372 Ouyg w(u gﬁ—u 2 Ouy n Ouy Ouy n Ouy Ouy
&EQ 8y2 8C’Tj I@x yay 6CTj Ox 8CTj 3y 8CTJ,

0 19) 0
+ a_ <p> = 7fw(CTaul‘auy)7

acC aCr,
—v 8724_872 auy + ug—i-ug % + %81@ _;’_%8”9
0xr2  Oy? oCT, ox Y oy aCT, dx JCT, dy 0CrT,
—_——
diffusion operator convection operator linear term
0 op 0
+87y (aCT7) aC fU(CT7u$)u'l/)

ﬁ Ouy n ﬁ Ouy \ 0
Oz \ OCr, oy \9Cr, e

Here the partial differential equation (5.24) is obtained by computing the first order
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derivative with respect to Cr,(j = 1,2,..., N;) for the flow equation (5.17) and
making use of the linearity of the diffusion operator and the divergence operator.

Note that equation (5.24) is a linear partial differential equation. It is often called
the adjoint equation of (5.17). Homogeneous Dirichlet boundary conditions are
imposed on the constant inflow boundary and natural boundary conditions are
prescribed for the outflow boundary for the adjoint equation (5.24). We use a
mixed-finite element method to discretize (5.24) and use the following notations

T
J— Ougy T Ouy T 9p T
X aCr, aCr, aCr,
We reuse the same notation to denote its discrete analog to get a linear system
given by

vK + N+ J2L + J1, Jn 4+ Ji, BT
(5.25) Tyt + JY, vEK + Ni+Jp 4+ Jf, BY| x; = ¢,
B, B, 0
A
where IN; is the convection matrix, Jzi, Ji't, Jpl, and Jg! are the corresponding

Jacobian matrices by linearizing the nonlinear velocity convection operator, respec-
tively. JJ,, Jg{y, JJW and ng are the associating Jacobian matrices that linearize
the nonlinear right-hand side f with respect to Cr,. They are all from the last
Newton step of the linearized flow equation (5.18). The right-hand side vector ;
is obtained by discretizing known variables in (5.24). Therefore, the matrix A is
nothing but the linear system matrix from the last Newton step for solving the
flow equation (5.18). The computed preconditioner for the last Newton step to
solve the flow equation can be reused. Therefore, the computational work is much

reduced.

By stacking x;, and {; (j =1, 2, ..., N;) as

x=[x1 x2 - xwn],andC¢=[G & ... (],

we obtain the following linear equations with multiple left-hand sides and multiple
right-hand sides

(5.26) Ax = C.

Here the size of unknowns NNV;, is much smaller than the problem size. Block
Krylov subspace methods, such as block IDR(s) [2, 43], are well-suited to solve all
the unknowns simultaneously for this type of problems.

Next, we use the same idea as above to compute the Hessian matrix H, which is
given by

acz. 9 8Cr, 001y, 9
H= :
62 2
9Cry, 007, J ooz, 9
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According to (5.23), we have

0? 9%y 0%g Ou, Ouy 0g  O%uy
0CT,0CT, 9= 9CT,0CT, Ou2 9CT, oCT, + Oug OCT,0CT,
n &g Quy, du,  dg D,
8u§ 8CTk 3CT]. 87.Ly 8CT]. (907’A '

(5.27)

Since g is an analytic function of Cr, u,, u, and we have already computed the

8“1: auu ] ] 1 Q 3 3
9Cr, a0, in the previous step, we just need to compute

. . 92w 82uy .
the second order derivatives 30, 68Tk , and 30z, 007, for the computations of the

first order derivative , and

Hessian matrix. Here we use the same idea as we used in the previous part to
compute the first order derivatives.

Compute the partial derivative with respect to Cr, using the adjoint equa-
tion (5.24), we get

diffusion operator convection operator

——— ——t
—y 872 + 872 ﬂ + (u g +u 2 ﬂ
22 92 ) \ 8Cr, 007, “0x "oy ) \9Cr,aCn,

linear term

+ % 82“‘2 +% 82uy _|_£ 82p
ax (’)CTJ. ach 8y 8CTJ.8(JT,C 81‘ ach 8CTk

known
4 Ouz 0 [ Oug . Ouy 0 ( Oug
aC'T,C 8:5 8CTj 8C’Tk 8y 80’1"].
known
Ouz 0 [ Oug Ouy 0 [ Ouy _ 02
+ (ach % <8CTk ) + aCTj 87y <8CT)€ )) - aCTjaCTk fm(CT7Ux7uy)7
2 02 82u, B d 8u,
(5.28) - (ﬁ * T?ﬂ) (aCTj ach ) * <Uz% * Uy@) (aCTjaCTk)
N———— N——
diffusion operator convection operator

+ % a2u$ +% 82uy +2 82]7
dz 9CT;0CrT, 0y 9CT;0CT, dz \ 0CT,;0CT,

linear term
n Oug 0 [ duy " Ouy 9 ( Ouy
8C’Tk oz 8CT_7. ach By 8CTJ.

known

Ouz 0 ( Juy Ouy 0 ([ Ouy _ 0?
+ (GCTj Oz (80’1%) + ach 8:{] (8CTk - 8CTJ-80T;C fy(CTyumuy)»

known
g 8%y + g 82uy —0
0z \9Cr,0Cr, ) " oy \oCr,0Cr, ) ~

We see that (5.28) is a linear partial differential equation and it is also an adjoint
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equation of the flow equation (5.17). Boundary conditions for the adjoint equa-
tion (5.28) are set by homogeneous Dirichlet boundary conditions on the constant
inflow boundary and natural boundary conditions for the outflow boundary. By
using mixed finite element method to discretize the equation (5.28), we have

VK + Ny + J0 + Jf, Jr 4+ Ji BT
(5.29) Jr+ i vK + Ny + J + J8 BT | v = &,
B, B, 0
A/

9 92 ol . ST
Here we reuse aCr, 90, U, aCr, 90T, Uy, aCr, 90, p to represent their discrete ana-

T
. 22 T 2? T 2? T
log, respectively, and v, = 9Cr, 007, Uy aCr,dCT, Uy dCr,;8CT, p :

For the linear system (5.29), Jyt, Ji, Jpi, and J;. are the corresponding Jaco-

bian matrices as introduced in (5.25). The Jacobian matrices .J f ; is obtained by
computing the second order derivatives of f,, f, with respect to Cr and using
partial differentiation rules. It is not difficult to see that J{ ; are identical to J(f )
in (5.25). Therefore, the linear system (5.29) has the same system matrix as the
linear system (5.25), i.e., A" = A. Moreover, A is just the system matrix from the
last Newton step to solve the nonlinear flow equation (5.17). The preconditioners
computed for the last Newton step can also be reused here.

The right-hand side vector &, is obtained by discretizing known variables in (5.28).
By stacking the unknowns in the following way,

y=[1m1 M2 .- ] and E=[&n &2 oo &N,

We get the following linear system with multiple left-hand and right-hand sides,
(5.30) Ay =¢.

Here the size of unknowns N7 is also much smaller than the problem size, block
Krylov methods are still well-suited to this type of problems.

5.4 Numerical Experiments

In the previous sections, we use the wind farm control example to formulate an
in-domain control problem. It is shown that this in-domain control problem can
be solved by the reduced Newton method described by Algorithm 5.1. The biggest
computational issue is to solve a nonlinear flow equation (5.17) by using the New-
ton’s method and two adjoint equations (5.25) (5.29) to compute the gradient and
the Hessian matrix. At each outer iteration step, we solve the nonlinear flow equa-
tion (5.17) with inner iterations. A preconditioned Krylov solver is performed at
each inner iteration. Efficient and robust preconditioning techniques are necessary.

In Section 5.3, we showed that the linearized flow equation (5.18) is a perturbed
linearized Navier-Stokes equation (5.19) with singular perturbation on the (1,1)
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block of the linearized Navier-Stokes system matrix. Standard preconditioning
techniques for the Navier-Stokes equation, which highly depend on efficient ap-
proximation of the Schur complement, fail to give satisfactory performance for this
problem due to this perturbation. This will be illustrated by numerical results in
the next section. Just as introduced in Chapter 2 and 3, all the blocks of (5.18)
have an MSSS structure, it is natural to permute the matrix with MSSS blocks into
a global MSSS matrix. With this permutation, we can compute an approximate
factorization with prescribed accuracy based on MSSS matrix computations which
is introduced in Chapter 4. This in turn gives a global MSSS preconditioner.

In this section, we evaluate the performance of the MSSS preconditioning tech-
niques for the in-domain control problem and compare with the pressure convec-
tion diffusion (PCD) preconditioner [53] that is implemented in IFISS. All the
numerical experiments are implemented in MATLAB 2015a on a desktop of Intel
Core i5 CPU of 3.10 GHz and 16 Gb memory with the Debian GNU/Linux 8.0
system.

5.4.1 Preconditioning Techniques

In this part, we report the performance of the MSSS preconditioner and the PCD
preconditioner for the second inner iteration of the first outer iteration. We use
the IDR(s) method [127] to solve the preconditioned system. The preconditioned
IDR(s) solver is stopped if the the 2-norm of the residual at step k, which is denoted
by [Irilly, satisfies [[rell, < 107 roll,.

The PCD preconditioner P, for the linear system (5.21) is chosen as,

f T
(5.31) sz{A” B ]

_Sp

where S, = L,A; "M, is the approximation of the Schur complement BA~'BT.
Here, A, and L, are the convection-diffusion operator and Laplace operator in
the finite dimensional solution space of the pressure with prescribed boundary
conditions, M), is the pressure mass matrix. For this PCD preconditioner, both
A+ Jf and S, are approximated by the algebraic multigrid (AMG) method that
is implemented in IFISS.

We set the Reynolds number Re = 2000 as discussed in the previous section. We
report the performance of both preconditioners in Table 5.1-5.2. Here the column
“precon.” represents the time to compute the MSSS preconditioner or the time for
the setup of the AMG method, and the column “IDR(4)” denotes the time of the
preconditioned IDR(4) solver to compute the solution up to prescribed accuracy.
Both time are measured in seconds.

It is shown in Table 5.1 the time to compute the MSSS preconditioner scales linearly
with the problem size. The number of iterations remains virtually constant with
the refinement of the mesh. The time of the preconditioned IDR(4) solver also
scales linearly with the problem size. For PCD preconditioner, the preconditioned
IDR(4) solver fails to converge to the solution of prescribed accuracy within 400
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iterations for relatively bigger mesh size. For a very fine mesh, the preconditioned
IDR(4) solver computes the solution up to the prescribed accuracy within 300
iterations. This is because the entries of perturbation by the matrix J7/ in (5.31),
which is introduced by the nonlinear right-hand side, is of O(h?). As h — 0, this
perturbation by the Jacobian matrix becomes smaller compared with A in the (1, 1)
block of (5.31). Therefore, S, approximates the perturbed Schur complement well.

Table 5.1: Computational results of the MSSS preconditioner for Re = 2000

grid problem size  # iter. precon. (sec.) IDR(4) (sec.) total (sec.)
64 x 64 1.25e 4+ 04 2 4.36 0.64 5.00
128 x 128 4.97e + 04 3 18.43 2.53 20.96
256 x 256 1.98e + 05 5 65.09 9.25 74.34
512 x 512 7.88e + 05 3 272.63 24.62 297.25

Table 5.2: Computational results of the PCD preconditioner for Re = 2000

grid problem size  # iter.  precon. (sec.) IDR(4) (sec.) total (sec.)
64 x 64 1.25e + 04 400 8.56 no convergence -
128 x 128 4.97e 4+ 04 400 70.74 no convergence -
256 x 256 1.98e + 05 266 237.68 42.93 280.61
512 x 512 7.88¢ + 05 203 1386.98 101.72 1488.70

The computational results by the MSSS preconditioner in Table 5.2 show that the
time for the setup of AMG does not scale linearly with the problem size. The
reason may be that the AMG implemented in IFISS is not optimized, or the AMG
algorithm in IFISS does not have linear computational complexity.

To compute the MSSS preconditioner, we set 7 = 107> for the 512 x 512 grid
and 10™* for the rest grids. Here 7 is the upper bound of the discarded singular
values for the model order reduction that is explained in Chapter 4. The adaptive
upper semiseparable order r; and the lower semiseparable order rfc for this set up
is plotted in Figure 5.5.

The semiseparable order in Figure 5.5 show that the upper and lower semiseparable
order is bounded by a small constant around 10 for all the computations of the
MSSS preconditioners. This in turn gives the linear computational complexity of
the MSSS preconditioning techniques, which is illustrated by Table 5.5.
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Figure 5.5: Adaptive semiseparable order to compute the MSSS preconditioner for v = 10~3

5.4.2 Optimization Algorithm

We test Algorithm 5.1 for the optimization problem (5.15) by using a 256 x 256
grid. At each outer iteration, we need to solve a series of linear equations of size
197634 x 197634 to compute the solution of the nonlinear flow equation (5.17) by
the Newton’s method. We also need to solve two adjoint equations (5.25) and (5.29)
of the same size to compute the gradient and the Hessian matrix.

We use the wind farm configuration as introduced in Section 5.2.1. With this prob-
lem settings, the rightmost turbine just operates in the maximum power tracking
mode, i.e., Cp, = 1. Therefore, we just need to optimize C'r, and Cr, for the first
two turbines. Without optimization, the turbines are operated in the mode that
corresponds to the maximal power extraction for a single turbine, i.e., Cp = 1. We
start with C(T?) = C(Tg) =1 as an initial guess for this optimization problem. Then
the (scaled) total extracted power by the wind farm at each optimization step is
given in Figure 5.6(a), while the 2-norm of the gradient at each optimization step
is shown by Figure 5.6(b). Results in Figure 5.6(a) show that the total power is
increased by around 5.5% when applying the optimal control scheme.
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Note that there is an overshoot after the second optimization step as illustrated
by Figure 5.6(a), which makes the optimization problem to converge to a local
optimum. This is primarily because of the non-convexity and highly nonlinearity
of this optimization problem. The convexity of this optimization problem is still an
open problem. Another reason that contributes to this behavior is the sensitivity
of this optimization problem. Here we measure the sensitivity of the change of the

3861‘% . We plot the magnitude

velocity in the flow direction with respect to Cr; by

Oug at the local optimum of Cr, and Cr, in Figure 5.7.
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Figure 5.7 show that there is a big gradient in the vicinity of the places where
the turbines are located. This in turn tells us that the velocity in the vicinity of
the turbines is very sensitive to the changes of Cr;. This makes this optimization

problem very sensitive.
Another reason may be the robustness and the efficiency of the optimization method

around the optimum. Since we focus on preconditioning, we leave this for the
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discussions and recommendations in the next chapter.

We also solve the optimization problem with an initial guess C”Er?) = CFEFO) =0,
although this corresponds to an impractical operation status. The scaled total
power and the gradient at each optimization step are given in Figure 5.8.
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Figure 5.8: Total power and 2-norm of the gradient

For those two cases with different initial guesses, the corresponding optimized vari-
ables Cr, and Cr, at each optimization step are given in Figure 5.9.
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Figure 5.9: Optimized Cr,, Cr, with different initial guesses

Figure 5.9(a) and 5.9(b) show that with different initial guesses, the optimized
variables (Cr,, Cr,) converge to the same point (0.729, 0.862), which corresponds
to a local optimum of the optimization problem.
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5.5 Conclusions

In this chapter, we formulate an optimal in-domain control of PDEs problem by
using a simplified wind farm example. The control input only acts on part of the
domain, which results a problem even more difficult to solve. The optimization
problem is solved by a reduced Newton’s method while the most time consuming
part for this problem is solving a nonlinear flow equation and computations of
the gradient and the Hessian matrix. We show that the gradient and the Hessian
matrix can be computed by solving an adjoint equation such that the informa-
tion from the solution of the flow equation can be reused. This in turn reduces
the computational complexity dramatically. We evaluate the performance of the
MSSS preconditioning technique for solving the flow equation by using IFISS. Nu-
merical results show the superiority of the MSSS preconditioning technique over
the standard preconditioning techniques.

Since we focus on preconditioning techniques for the optimal in-domain control
problems, we use a simplified wind farm model in IFISS to study the performance
of the MSSS preconditioning technique. The next step to extend this research shall
focus on applying the turbulent flow model for the real-world wind farm control
applications.






CHAPTER

Conclusions and Recommendations

6.1 Conclusions

This dissertation focused on developing efficient preconditioning techniques for op-
timal flow control problems using multilevel sequentially semiseparable (MSSS) ma-
trix computations. Optimal flow control problems give a generalized saddle-point
system to be solved. MSSS preconditioners compute an approximate factorization
of the global system matrix up to a prescribed accuracy in linear computational
complexity. This in turn avoids approximation of the Schur complement of the
block linear system matrix, while efficient approximation of the Schur complement
is the key and also a big challenge to block preconditioners. This is a big advantage
over standard block preconditioners.

In Chapter 2, we studied the PDE-constrained optimization problem and develop
a novel preconditioner for the saddle-point system arising from such problem using
MSSS matrix computations. This novel preconditioner exploits the global MSSS
structure of the saddle-point matrix and computes a global factorization of the
saddle-point matrix using MSSS matrix computations in linear computational com-
plexity. We also studied the block MSSS preconditioners for such problems. Model
order reduction plays a key role in keeping the computational complexity low for
such preconditioning techniques. We proposed a new model order reduction al-
gorithm for 1-level MSSS matrix computations, which is computationally cheaper
than standard algorithms. Numerical results illustrate that the global MSSS pre-
conditioner gives mesh size and regularization parameter independent convergence.

We extended MSSS preconditioning techniques to computational fluid dynamics
(CFD) problems in Chapter 3 and evaluated their performance using IFISS. For
convection-diffusion problems, the MSSS preconditioning technique is much more
robust than both the algebraic multigrid (AMG) method and geometric multigrid
(GMG) method and considerably faster than the AMG method. Block precondi-
tioners computed by the GMG method outperform for Stokes problems and global
MSSS preconditioner is competitive with block preconditioners computed by the
AMG method. All these methods give mesh size independent convergence. For
linearized Navier-Stokes equation, global MSSS preconditioner gives mesh size and
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Reynolds number independent convergence while block preconditioner computed
by the AMG method only gives mesh size independent convergence. Meanwhile,
global MSSS preconditioning technique is relative faster than the block precondi-
tioner computed by the AMG method.

To give insights into the performance of MSSS preconditioning techniques, we ana-
lyzed the convergence property of MSSS preconditioners in Chapter 4. Our analysis
showed that the preconditioned spectrum is contained in a circle centered at (1,0)
and the radius of the circle that contains the preconditioned spectrum can be
controlled arbitrarily by a proper chosen parameter in computing the MSSS pre-
conditioner. The analysis in this chapter applies to general linear systems that can
be either symmetric or unsymmetric, definite or indefinite. Related convergence
analysis only suit symmetric positive definite linear systems from the discretiza-
tion of scalar PDEs while our analysis also applies to block linear systems from the
discretization of coupled PDEs. We also studied the MSSS preconditioner for the
Helmholtz equation. Numerical results illustrate that the MSSS preconditioner is
comparable with state-of-the-art methods for such problems.

In Chapter 5, we studied the problem of optimal in-domain control of the Navier-
Stokes equation and used a simplified model of wind farm control to formulate
an optimal in-domain control problem. We applied reduced Newton’s method ac-
cording to the implicit function theorem to solve such optimization problem. This
in turn yields a series of linear systems of the generalized saddle-point type to
be solved. Standard block preconditioners did not give satisfactory performance
for such generalized saddle-point system because the Schur complement is even
more difficult or even impossible to approximate. We applied global MSSS pre-
conditioner to solve such systems and compared its performance with the standard
block preconditioner. Numerical results state the superior performance of MSSS
preconditioning techniques again.

6.2 Recommendations and Open Questions

e Model order reduction for higher level MSSS matrices.

As introduced in Chapter 2, the model order reduction for 2-level MSSS ma-
trices is still an open problem. The biggest challenge is that the model order
reduction should preserve the lower level MSSS structure. Standard model or-
der reduction algorithms for 1-level MSSS matrices rely on the singular value
decomposition (SVD) or rank revealing QR (RRQR) factorization of the Han-
kel blocks. Extending standard model order reduction algorithms to higher
level fails because neither SVD nor RRQR preserves the lower level MSSS
structure. Structure preserving model order reduction algorithms should be
developed. The model order reduction algorithm for higher level MSSS ma-
trix computations plays a vital role in distributed control and identification
of multidimensional dynamical systems, cf. [108] for further reference.

e MSSS preconditioners for PDEs discretized using topologically unstructured
grids
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The MSSS preconditioning technique is efficient and robust for linear system
from discretization of PDEs on topologically structured grid. For PDEs with
a complicated domain, unstructured grids are necessary. As introduced in
Chapter 3, it is not direct to infer the MSSS structure from an unstructured
gird while it is natural to infer an HSS structure from an unstructured grid.
Moreover, as stated in [115], the HSS structure and 1-level MSSS structured
can be transferred from one to the other. This makes it possible for MSSS ma-
trices to represent discretized PDEs on unstructured grids. Extending MSSS
preconditioning techniques to discretized PDEs with complicated geometries
is of great practical importance.

e Algebraic preconditioning techniques using structured matrix computations

To compute an MSSS preconditioner, one needs the topology of the grid
that is used to discretize the PDEs. This prohibits the MSSS preconditioner
to be used as a purely algebraic method. No grid information is needed
for HSS matrix computations and H-matrix computations. Therefore, H-
matrix and HSS matrix computations can be used to compute an algebraic
preconditioner. However, applying such algebraic methods to block linear
systems is neither natural nor direct. This is because these algebraic methods
require to permute block matrices with low rank structured blocks into global
matrices with low rank structure.

e Wind farm control

We use a simplified model of the wind farm control to formulate the problem
of optimal in-domain control of PDEs using IFISS in Chapter 5. Since no
turbulent flow model is contained in IFISS, we use a laminar flow model for
the wind farm control problem, which is not realistic. Future research could
focus on applying the MSSS preconditioning technique to the simulation of
turbulent flow in the wind farm. Moreover, the reduced Newton’s method
that is studied in Chapter 5 needs to compute an N? x N? Hessian matrix,
where N; is the number of wind turbines in a wind farm. If the number of
turbines in a wind farm is big, this optimization method is not computation-
ally feasible. Numerical optimization algorithms of the line search type or
interior point type could be employed.

e Preconditioning time-dependent PDEs using structured matrix computations

All the problems under consideration in this dissertation are stationary. Some
recent development for time-dependent PDEs that applies low-rank approx-
imation approaches in [121] can be combined with MSSS preconditioning
techniques to develop numerical algorithms to compute the solution in time
and space all at once.






A APPENDIX

MSSS Lower-Triangular
Preconditioner for Optimal
Convection-Diffusion Control

This part gives the performance of the block lower-triangular preconditioner for
optimal control of the convection-diffusion equation in Example 2.2. Take the block
lower-triangular preconditioner Py in (2.5) by the approximate balanced truncation
Algorithm 2.2 - 2.3 and the Hankel blocks approximation Algorithm 2.4, solve
the unsymmetric preconditioned system with IDR(s) method. The computational
results are shown in Table A.1 - A.10.

Table A.1: By approximate balanced truncation for § = 10~1, v = 10!

problem size  iterations preconditioning IDR(16) total

3.07¢403 (3) 12 0.34 1.09 1.43
1.23e+04 (6) 12 0.99 2.61 3.60
4.92¢+04 (6) 11 4.07 7.02 11.09
1.97e405 (10) 12 18.05 24.09  42.14

Table A.2: By Hankel blocks approximation for 8 = 10~1, v = 10~1

problem size  iterations preconditioning IDR(16)  total

3.07e+03 (3) 13 0.56 1.29 1.85
1.23e+04 (6) 9 1.77 2.01 3.78
4.92e+4-04 (6) 16 9.02 9.89 18.91
1.97e4-05 (10) 10 28.28 19.76 48.04
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Table A.3: By approximate balanced truncation for § = 1071, v = 1072

problem size  iterations preconditioning IDR(32) total
3.07e+03 (3) 15 0.26 1.20 1.46
1.23e-+04 (3) 13 0.70 2.74 3.14
4.92e+04 (4) 13 2.43 776 10.19
1.97e+05 (10) 13 25.06 30.67 55.73

Table A.4: By Hankel blocks approximation for # = 107!, v = 1072

problem size  iterations preconditioning IDR(32) total
3.07e+03 (3) 15 0.45 1.23 1.68
1.23¢-+04 (3) 17 1.29 3.39 4.68
4.92e404 (4) 17 4.77 9.97 14.74
1.97e+05 (10) 14 48.20 32.40 80.60

Table A.5: By approximate balanced truncation for 8 = 10~1, v = 10—2

problem size iterations preconditioning IDR(16)  total
3.07e+03 (3) 18 0.37 1.51 1.43
1.23e+04 (3) 16 0.68 3.17 3.85
4.92e4-04 (4) 15 2.38 7.95 10.33
1.97e+05 (8) 18 13.61 35.46 49.07

Table A.6: By Hankel blocks approximation for 8 = 10~1, v = 10~2

problem size  iterations preconditioning IDR(16)  total
3.07e+03 (4) 20 0.51 1.62 2.13
1.23e+04 (3) 27 1.24 5.44 6.68
4.92e4-04 (4) 16 4.77 8.19 12.96
1.97e+05 (8) 19 24.70 36.75 59.45

Table A.7: By approximate balanced truncation for 8 = 1072, v = 101

problem size  iterations preconditioning IDR(32) total
3.07e+03 (6) 16 0.42 1.41 1.83
1.23e+04 (6) 17 1.17 3.65 4.82
4.92e4-04 (7) 19 4.41 11.80 16.21
1.97e+05 (10) 18 25.33 41.86 67.19
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Table A.9: By approximate balanced truncation for § = 1072, v = 102

Table A.8: By Hankel blocks approximation for 8 = 1072, v = 10~}

problem size  iterations preconditioning IDR(32) total
3.07e+03 (6) 17 0.66 1.49 2.15
1.23e+04 (6) 19 2.22 4.03 6.25
4.92e404 (7) 21 9.81 12.81 22.62
1.97e+05 (10) 16 49.78 36.75 86.53

problem size iterations  preconditioning IDR(32) total
3.07e+03 (6) 30 0.39 2.65 3.04
1.23e+04 (6) 32 1.12 6.85 7.97
4.92e404 (7) 32 4.32 20.65 24.97
1.97e+05 (10) 31 25.08 71.03 96.11

Table A.10: By Hankel blocks approximation for 8 = 1072, v = 10~2

problem size  iterations preconditioning IDR(32) total
3.07e+03 (6) 30 0.68 2.59 3.27
1.23e+-04 (6) 36 2.37 7.75 10.12
4.92e+04 (7) 31 9.55 19.55 39.10
1.97e+05 (10) 32 48.78 72.58 121.36
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