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Abstract

In temporal action localization, given an input video, the
goal is to predict which actions it contains, where they begin
and where they end. Training and testing current state-of-
the-art, deep learning models is done assuming access to
large amounts of data and computational power. Gather-
ing such data is however a challenging task and access to
computational resources might be limited. This work thus
explores and measures how well one of such deep learning
models, ActionFormer, performs in settings constrained by
the amount of data or computational power. Data efficiency
was measured by training the model on a subset of the train-
ing set and testing on the test set. Although ActionFormer
showed promising results on both THUMOS’14 and Activ-
ityNet datasets, TriDet and TemporalMaxer models should
likely be chosen in favor of ActionFormer in limited data
settings as they exhibit better data efficiency. Similarly, the
TriDet model should be chosen in favor of ActionFormer in
cases where the training time is limited, as it showed bet-
ter computational efficiency during training. To test the ef-
ficiency of the model during inference, videos of different
lengths were passed through the model. Most importantly,
we find that both the inference time and the memory usage
of the model scale linearly with input video length, as pre-
dicted by the authors of the ActionFormer.

1. Introduction

Temporal action localization (TAL) is the process of
identifying actions in a video stream. This task has found
use in domains such as video summarization [19] and public
video surveillance [35,37]. More precisely, temporal action
localization consists of predicting the start and end of an ac-
tion, and recognizing the action [37]. Different algorithms
have been proposed for this task. In recent years, however,
models based on deep learning have been found to work
better than models based on hand-crafted features [37]. The
current state-of-the-art is constituted by models such as
TriDet [30], TemporalMaxer [31], and ActionFormer [39].

These deep-learning models are often trained on exten-
sive datasets, such as THUMOS’14 [13] or ActivityNet
[15]. However, creating such datasets is difficult and time-
consuming [27, 37, 38]. Following the success of Trans-
formers [33] in natural language processing (NLP) tasks
[9, 33], some models [24, 39] employ them in temporal ac-
tion localization. Transformers are, however, known to be
computationally expensive [18, 32]. It would thus be desir-
able to explore how deep learning temporal action localiza-
tion methods perform in limited data or compute settings.

Special models have been designed for the problem of
few-shot learning in the task of temporal action localization,
where only a few training videos are available per action
class [27, 38]. These proposed models use however an ar-
chitecture that is incompatible with current state-of-the-art
TAL models. Moreover, the authors of some of the current
state-of-the-art methods [30,31,39] provide a computational

complexity analysis by evaluating the model on fixed-size
videos. An experimental analysis, that would, for exam-
ple, show how these models scale with an increase in input
video length, is however not provided. It thus remains unan-
swered how the current state-of-the-art models perform in
limited data or compute settings.

Therefore, in this project, we will attempt to answer the
question of how one of such state-of-the-art models, Action-
Former [39], performs and generalizes under limited com-
puting power and data settings. ActionFormer, visualized
in Figure 1 taken from [39], is of interest, as newer state-
of-the-art models TriDet [30] and TemporalMaxer [31] are
based on its architecture. Additionally, ActionFormer was
one of the first algorithms to successfully demonstrate the
use of Transformers [33] in the task of temporal action lo-
calization. Answering the aforementioned research ques-
tion will thus help in understanding the minimum require-
ments needed by ActionFormer. It will also help in develop-
ing future, data or computationally efficient temporal action
recognition models.

The contributions of this paper are two-fold. First, a
method is designed to test the data efficiency of Action-
Former. Inspired by Ding et al. [10] and Henaff [16], the
method trains the model on a given percentage p of the
training set and tests it on the test set. The procedure is
then repeated multiple times and the mean average preci-
sions (mAP) are reported. Through this method, it was
found that the model could be trained with only around half
of the training data while still maintaining state-of-the-art
performance. Second, a method is designed to test the com-
putational efficiency of the model during both training and
inference. Training performance is measured by reporting
the training time and obtained average mAP. It is found that
the ActionFormer model should not be the model of choice
in settings where the training time is limited, as it offers
worse computational efficiency than TriDet [30]. To test the
inference performance, the approach of measuring the com-
putational complexity of the model by passing to it a video
of a specific size [30,31,39] is expanded upon. The method
thus includes evaluating the model on videos of different
lengths and reporting the number of floating point opera-
tions made, the memory consumed, and the inference time.
It is found that the model scales linearly with the length of
the input video, as predicted by the authors of [39].

2. Related work

Action recognition. Survey by Xia and Zhan [37] iden-
tifies five different tasks in video understanding: untrimmed
video classification, trimmed action recognition, temporal
action proposals, temporal action localization, and dense-
captioning events in videos. This work focuses on tem-
poral action localization due to its uses in video summa-
rization [19] and public surveillance [35]. In this task, the
goal is to predict which actions happen in a video stream,
where they begin, and where they end. The deep learn-
ing models created for this problem can be divided into
two categories [37]: two-stage and one-stage. Two-stage
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Figure 1. Visualization of the architecture of ActionFormer, taken from [39]. The model first projects input features into D-dimensional
embeddings. Using repeating Transformer blocks with downsampling between them, the embeddings are encoded into a feature pyramid.
The feature pyramid is then decoded using a convolutional decoder. The decoded features are used to perform action classification and
regression for the onset and offset times of the action.

models [12, 22, 23] attempt to first locate the actions and
then classify them. One-stage models [24, 30, 31, 39] locate
and classify the actions at the same time. This work ex-
plores the ActionFormer model [39], which is a one-stage
model. Although this work focuses on TAL, insights from
trimmed action recognition are used. Namely, features ex-
tracted from the Inflated 3D (I3D) model [4] trained on the
Kinetics dataset [17] are used as input to the model.

Learning curves. Learning curves provide a visual in-
sight into the generalizability performance of a model with
different amounts of training data available [34]. In this
work, a learning curve is used when performing experi-
ments regarding data efficiency. The performance of the
model, expressed with mean average precision, is plotted
against the amount of training data the model was trained
on. The resulting line helps in understanding the amount of
training data required by the model.

Testing for data efficiency. This problem involves as-
sessing how well a given model performs with limited train-
ing data available. Two common approaches have been
identified for this task. First, n-shot learning [27, 38], in-
volves training the model on only n samples per each class.
The second approach involves training on a given percent-
age p of the samples from the training dataset [10, 16]. We
have however identified several problems with the first ap-
proach in the task of temporal action localization. Since a
single class can be represented multiple times in a single
video [13, 15], it is unclear whether n should refer to the
number of videos the given class appears in or whether it is
the total number of instances of the class. Furthermore, rep-
resenting each class equally would be difficult as the num-
ber of instances of a class per video varies. In this work,

it was thus decided to use the approach where the model is
trained on a percentage p of the training set and tested on
the test set.

Optimizing for data efficiency. As collecting and an-
notating datasets is expensive [27, 37, 38], methods have
been developed to allow for few-shot learning in the task
of temporal action localization. A weakly-supervised algo-
rithm, that uses meta-learning with query and trimmed sup-
port videos on input has been proposed [38]. This model
was found to generalize well with as little as one train-
ing example per class. An extension of that model in a
fully supervised setting was proposed [27]. This model uses
untrimmed support videos, which are easier to obtain than
trimmed videos [27]. This method was also found to work
well with little training samples. It is to be noted however,
that the models proposed in [38] and [27] require as input all
of the support videos at once. This thus makes their archi-
tecture incompatible with the architecture of current state-
of-the-art models, which only expect a single video as in-
put [30, 31, 39]. Hence, it remains unanswered how current
state-of-the-art models perform with limited training data.
This work analyzes this problem for ActionFormer [39],
which constitutes one of the state-of-the-art models.

Testing for computational efficiency. The term ‘com-
putational efficiency‘ is often used to mean the number of
floating point operations made [14, 30–32, 39], the mem-
ory used [18, 32], or the training [20] or inference time
[30, 31, 39]. In the task of temporal action localization, the
TriDet [30], TemporalMaxer [31], and ActionFormer [39]
models all report the number of floating point operations ex-
pressed through the amount of multiply-accumulate (MAC)
operations and the time it takes to forward a single video of
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a fixed length through the model. However, no experiments
have been performed that would show how these models
scale with an increase in video length. In the case of Ac-
tionFormer, testing for different input video lengths would
be especially insightful, as the authors of the model claim
the model’s complexity and memory requirements increase
linearly with input video length [39]. Performing such ex-
periments would thus substantiate or invalidate that claim.
Thus, in this work, the inference performance of Action-
Former is measured on videos of increasing lengths. Re-
ported are the inference time, video RAM (VRAM) used,
and the number of MAC operations executed. Furthermore,
motivated by [20], this work reports the training time and
the achieved mean average precision of ActionFormer. This
is done to better understand the suitability of the model for
settings where the training time is limited.

Optimizing for computational efficiency. Both TriDet
[30] and TemporalMaxer [31] have been designed to re-
quire a lower computational cost than ActionFormer [39],
while still maintaining state-of-the-art TAL performance.
In TriDet, this was achieved by replacing the multi-head
self-attention module with an efficient Scalable-Granularity
Perception layer [30]. TemporalMaxer, on the other hand,
replaces the entire Transformer module with a max-pooling
block [31]. This work compares data and computational ef-
ficiencies of ActionFormer against other models, including
TriDet [30] and TemporalMaxer [31].

3. Methodology

The ActionFormer model. The architecture of the
model is illustrated in Figure 1, sourced from Zhang et
al. [39]. Most importantly, the model consists of a Trans-
former [33] encoder, whose structure can be seen on the
right of the figure. The encoder accepts embeddings on in-
put and produces encoded features on output. Transformer-
based methods are, however, known to be computation-
ally expensive in both training and inference [18, 32]. Fur-
thermore, multi-head self-attention modules, used in Trans-
formers [33], are known to be difficult to parallelize on
graphical units [5, 7, 39]. Both of these factors may influ-
ence the data or computational efficiency of the model.

3.1. Data efficiency
Evaluation metrics. As is common practice [2, 30, 31,

37, 39], the model was evaluated by reporting the achieved
mean average precision (mAP) on different tIoU thresholds.
Intersection over union (tIoU) is a 1-dimensional temporal
Jaccard similarity metric and is thus computed as the ratio
of the intersection of the predicted and actual durations of
an action to their union. Given a tIoU threshold µ and a
class c, correct predictions are those, whose tIoU ≥ µ and
the predicted class is the class c. Precision is then the ratio
of the number of correct predictions to the total number of
made predictions for the class c. As there can be multiple
videos for each class c, average precision is the average of
the precisions obtained in each of those videos. Finally,
mean average precision is the average AP over all of the

classes c. Thus, in general, given a fixed tIoU threshold µ,
the higher the mAP, the better is the model performing.

Testing procedure. In this setup, it is assumed that a
dataset D has a predefined split into a training set Dtrain and
a testing set Dtest. Following works by Ding et al. [10] and
Henaff [16], a percentage p of the training setDtrain was ran-
domly and uniformly sampled to create a setDs. The model
was then trained on the setDs and evaluated on the setDtest.
During the evaluation, mean average precision was calcu-
lated at different tIoU thresholds. The sampling, training,
and testing procedure was repeated 5 times [3, 10] with dif-
ferent random splits. The mAP for each threshold was then
averaged and the standard deviation was reported. The en-
tire procedure was repeated for multiple percentages p. Al-
gorithm 1 describes the exact testing procedure in the form
of pseudocode.

In the pseudocode, the function sample randomly sam-
ples videos from the training set, such that:

|Ds| = round
(
|Dtrain| ·

p

100%

)
(1)

with round rounding the value to the nearest integer. Ad-
ditionally, the function sample needs to ensure that each
action class is represented at least once in the resulting set
Ds. In practice, this was realized by repeatedly sampling
from the set Dtrain until a split, where all classes are repre-
sented, was found. The function calculate-mAP evaluates
the model, that is, it calculates the mean average precision
at different tIoU thresholds the model achieved on the test
set Dtest.

Algorithm 1 Data efficiency testing procedure

Dtrain = {(Xi, Ŷi)}Ni=1

Dtest = {(Xi, Ŷi)}Mi=1
for p = 10%, . . . , 100% do

mAPs← empty list
for i = 1, . . . , 5 do
Ds ← sample(Dtrain, p)
Train on Ds
mAP← calculate-mAP(Dtest)
mAPs.append(mAP)

Report avg(mAPs) and std(mAPs)

Algorithm 1. The data efficiency testing procedure. Assuming
Dtrain and Dtest are given, Dtrain is repeatedly subsampled with per-
centage p to create the set Ds. The model is then trained on Ds
and evaluated on Dtest. The procedure is repeated 5 times for each
percentage p, at each time reporting the averages of the mAPs and
their standard deviation.

To understand the results between different datasets, for
each percentage p the expected number of instances per
class is reported. This will help in investigating how many
instances per class the model requires. Given a datasetDtrain
containing N samples, having M action instances in total,
and C action classes, the expected number of instances per
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class for each percentage p is calculated as:

#/class =
p

100%
· N
C
· M
N

=
p

100%
· M
C

(2)

It should be noted that the value computed in Equa-
tion (2) is an estimate. The exact values would depend on
the splits Ds used in the testing procedure. Nonetheless,
this approximation was found to be useful in practice when
comparing the model on different datasets.

3.2. Computational efficiency
3.2.1 Training performance

Inspired by Li et al. [20], the training time of the Ac-
tionFormer model is reported alongside the average mAP
achieved on the test set. The training time is measured with-
out initialization, that is, only the time spent in the training
loop is measured. In this way, only the model performance
is measured, without the time taken by external methods
such as PyTorch data loaders. The training and testing
procedure is repeated 5 times using different, randomly-
selected seeds, each time measuring the time spent and the
average mAP achieved. The exact values of the used seeds
can be found in the source code of this paper.

3.2.2 Inference performance

Evaluation metrics. Following the works on TriDet
[30], TemporalMaxer [31], and ActionFormer [39] the
model was evaluated by reporting the total number of
multiply-accumulate (MAC) floating point operations and
the inference time when fed an input video. Furthermore,
the number of MACs was divided by the inference time
to obtain the number of MACs/s, which was used to cal-
culate hardware utilization information. Hardware utiliza-
tion was computed by dividing the observed number of
floating point operations per second (MACs/s) by the the-
oretical performance obtained from hardware documenta-
tion. As the theoretical maximum performance is often ex-
pressed in terms of FLOPS/s, it should be noted at this point
that a single multiply-accumulate operation corresponds to
two floating point operations (add and multiply). Finally,
as Transformer-based methods are known to require large
amounts of memory [18,32], the total amount of space used
by the algorithm was measured.

To count the number of multiply-accumulate opera-
tions, the fvcore library [29] was used. Inference tim-
ing was done using Python built-in time.time method.
Using the time.get clock info method, the resolu-
tion of that clock was found to be ± 1 ns on the used
hardware, which was precise enough for this task. As
ActionFormer runs on a GPU, it was the video memory
(VRAM) that had been reported. This was done using the
max memory allocated method from PyTorch.

Testing procedure. Given a dataset D, the Action-
Former model is parameterized by a value max seq len
indicating the maximum length of a video in D expressed

in the number of features [39]. During inference, all
videos are padded with zeros to the max seq len length,
which results in the same amount of computation done
regardless of video length. To alleviate this issue, the
value max seq len was configured to the lowest allow-
able value, which would be found through an inspection of
the code. It should be noted that the value max seq len is
only used during training and changing it during inference
does not influence the output of the model1.

The model was evaluated on randomly-generated ten-
sors, whose shapes correspond to videos of differing
lengths. To guarantee the independence of results, the ex-
periments for inference time, memory consumption, and
number of MACs were run separately for each such ten-
sor as separate operating system processes. Before each in-
ference time measurement, the random tensor was passed
through the model once as a warm-up procedure. This was
found to help in investigating the dependency of the model
on the input size. Without this procedure, the inference
time would be constant for all input sizes, most likely due
to memory allocations happening as the tensor was being
forwarded through the network. Furthermore, the experi-
ments for inference time were repeated 5 times [30]. Each
such repetition would use a different, randomly-generated
but fixed seed, whose exact value can be found in the source
code of the project.

4. Experiments

Datasets. The model was evaluated on two datasets,
commonly used to assess temporal action localization al-
gorithms [30, 39]: THUMOS’14 [13] and ActivityNet [15].
THUMOS’14 contains 413 untrimmed videos and 20 ac-
tion classes. This dataset is further split into a validation
set, containing 213 videos and a test set containing 200
videos. In total, the validation set contains 3,007 action
instances. Following the work by Zhang et al. [39], the
model is trained on the validation set and tested on the test
set. ActivityNet contains around 20,000 videos with 200
action classes. The dataset is further split into a training set
(10,024 videos), a validation set (4,926 videos), and a test
set (5,044 videos). Using the approach from [39], the model
is trained on the training set and evaluated on the validation
set. Furthermore, it is to be noted, that some of the videos
from the ActivityNet dataset have become unavailable over
time, resulting in 9,251 videos in the training set and 4,555
videos in the validation set. This training set contains a total
of 14,253 action instances.

Similarly to the paper by Zhang et al. [39], in both of
these datasets, the model uses Inflated 3D (I3D) features [4]
pre-trained on the Kinetics dataset [17]. Although Action-
Former achieved 1 percentage point higher average mAP
when using TSP features [2] on the ActivityNet dataset
[15, 39], in this work, I3D features are used for consistency

1This was verified with one of the authors of Action-
Former in the original repository: https://github.com/
happyharrycn / actionformer _ release / issues /
109
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(b) Achieved average mAP@tIoU[0.5:0.05:0.95] for the Ac-
tivityNet dataset [15] of the compared models. The x-axis for
the STALE model [26] is shifted to the left due to fewer train-
ing samples being available. Importantly, the ActionFormer
model saturates around the 20-40% mark and does not gain
from additional data.

Figure 2. Reported average mAP@tIoU for the tested models on the THUMOS’14 [13] and ActivityNet [15] datasets. For each model,
only the average mAP is shown. The width of each line corresponds to two standard deviations obtained by repeating the procedure 5
times for each p. Additionally, the expected average number of instances per class (#/class) is reported as a secondary x-axis. On both of
the graphs, the performance of ActionFormer increases with an increase in p. Furthermore, for p = 100% the results of the original paper
by Zhang et al. [39] were reproduced.

in comparison across datasets. The exact features used in
experiments are those extracted by the authors of [39].

Comparison with other models. This paper compares
the ActionFormer model against other temporal action lo-
calization models. To this end, the paper combines the re-
sults obtained for TriDet [30] by Dămăcuş [11], TadTR [24]
by Misterka [25], TemporalMaxer [31] by Oprescu [28],
and STALE [26] by Wang [36]. Although the same proce-
dures for testing data and computational efficiencies were
attempted to be followed, some small deviations might be
present between the works. This might also be a result of
the different setups required by different models.

Experimental setup. The model was trained using a
single Nvidia Tesla V100S 32GB located on the DelftBlue
cluster [8]. This was chosen as the hardware setup due
to its availability to all students of the Delft University of
Technology. All of the training and testing hyperparameters
were left unchanged from the work by Zhang et al. [39] un-
less specified otherwise in Section 4.1 or Section 4.2. This,
therefore, also includes the score fusion used by the authors
of ActionFormer on the ActivityNet dataset [39].

4.1. Data efficiency
Results on THUMOS’14. Recalling Algorithm 1,

datasets Dtrain and Dtest are required. Following [39], in this
setup, the validation set containing 213 videos is used as
Dtrain, and the test set containing 200 videos is used asDtest.

The model is then trained on 6 different percentages p of the
training set. Similarly to the paper by Zhang et al. [39], the
trained model is then evaluated on the test set by reporting
the mAP at tIoU thresholds from 0.3 to 0.7 in 0.1 incre-
ments. Additionally, the average mAP over the 5 thresholds
is reported. Figure 2a presents the results, where the width
of each line represents two standard deviations obtained by
repeating each sampling, training, and testing procedure 5
times.

As can be observed from Figure 2a, the performance of
the algorithm increases with an increasing percentage of the
training set p. At p = 100%, the model achieves an average
mAP of 66.57± 0.22 [%], which is almost within one stan-
dard deviation away from the average mAP of 66.8% from
the original paper [39]. Furthermore, it is to be noted that
at the time of the proposal of ActionFormer, state-of-the-art
average mAP for the THUMOS’14 dataset was achieved by
the AFSD model [21, 39] and was equal to 52%. As can be
observed from Figure 2a, ActionFormer achieves this per-
formance with already around 40-50% of the dataset. These
percentages correspond to about 60-75 action instances per
class.

Results on ActivityNet. In this setup, following the
work by Zhang et al. [39], the training set is used as Dtrain
and the validation set is used as Dtest. The model is once
again trained on 6 different percentages p of the training set.
Also following the work by Zhang et al. [39], the model is

5



evaluated on the test set by reporting mAP at tIoU thresh-
olds from 0.5 to 0.95 in 0.05 increments. Additionally, the
average mAP over all 11 thresholds is reported. The results
of the experiment can be found in Figure 2b. The width of
the line corresponds to two standard deviations obtained by
repeating the procedure 5 times.

Firstly, it can be seen that the performance of the model
steadily increases with an increase in p. Secondly, for p =
100%, the average mAP was found to be 35.89 ± 0.06 [%]
compared to the original 35.6% [39]. Authors of the Ac-
tionFormer [39] observed however that the performance
of the model was different when using different hardware.
This could explain the difference seen in this experiment.
Furthermore, a plateau can be observed around the 40%
mark. This shows, that the model achieves its full perfor-
mance with only around 40% of the training data, which
corresponds to around 28 action instances per class.

Comparison with other models. As can be observed
from Figure 2a, TriDet [30], TemporalMaxer [31], and Ac-
tionFormer [39] all follow a similar learning curve. The
difference between the models can be most clearly seen at
p = 10%, where the difference between ActionFormer and
TemporalMaxer is equal to 13.75 percentage points in av-
erage mAP. Interestingly, the TadTR [24] model follows a
different curve. This is caused by video slicing employed
by the model, which increases the amount of training data
available [24]. From Figure 2b, it can be observed that
the ActionFormer model outperforms the STALE model
[26, 36] on all tested percentages p.

Discussion. In both the THUMOS’14 dataset and the
ActivityNet dataset, the size of the training set could be al-
most halved while still maintaining a good average mAP.
This is indicated by the stagnation in performance around
the 50-60% mark. Additionally, on the THUMOS’14
dataset, the model would still achieve state-of-the-art per-
formance with access to only 50% of the training data
[21, 39]. Based on these results, it is difficult to put an ex-
act bound on the required number of instances per class re-
quired for the model. This value is, however, in the same
order of magnitude for both datasets. On both datasets, the
model reaches state-of-the-art performance with less than
100 instances per class. This performance is, however, still
far from one that would enable few-shot learning, where
only a few instances per class are available [27, 38]. Fol-
lowing the data efficiency results in this paper, it can be ob-
served that with little training data available, the TadTR [24]
model would work the best. Furthermore, all tested val-
ues of p suggest that the TriDet [30] and TemporalMaxer
[31] models should be chosen over the ActionFormer [39]
model. ActionFormer is, however, likely to be selected over
STALE [26] in limited data settings.

Known limitations. It should be noted that the method
used to compare the models in this work is limited as Ac-
tionFormer is the only model that is evaluated on both
datasets. A more extensive study evaluating the models on
different datasets is required to provide more insight into
the comparison between the techniques. Furthermore, the
tests on ActivityNet presented in Figure 2b could be ex-

tended with lower percentages p to test if the STALE model
[26] could outperform ActionFormer in an extremely data-
sparse setting.

4.2. Computational efficiency
Concurrent jobs on DelftBlue. By default, the GPU

nodes are shared between users in the DelftBlue cluster [8].
This setup could lead to a dependence of the training or in-
ference time on the other jobs running on the cluster. As
an attempt to alleviate this issue, the training and inference
time experiments were performed 5 times sequentially, such
that the experiment jobs did not overlap. Each of these repe-
titions would use the same random seeds, such that the exact
same experiment was repeated. In this work, an assumption
is further made, that if the observed variance in training or
inference times is low, the other, concurrent jobs likely did
not interfere with the experimental job.

4.2.1 Training performance

Results. The results obtained by ActionFormer are
compared to the results of TriDet [11, 30], TemporalMaxer
[28, 31], and TadTR [24, 25] on THUMOS’14 dataset [13],
and STALE [26, 36] on ActivityNet [15]. The training
time is reported alongside the average mAP obtained by
the model on the test set. Table 1 presents the results on
the THUMOS’14 dataset. As can be observed, the aver-
age training time is the second largest for the ActionFormer
model. Despite the long training time, the model does not
present the best average mAP. The TriDet model marks the
best performance and outperforms ActionFormer by 2.18
percentage points in average mAP. Table 2 shows the re-
sults on ActivityNet. It can be seen that the ActionFormer
requires almost five times more training time compared to
STALE, but also achieves better results.

Table 1. Training performance of ActionFormer and other com-
pared models on the THUMOS’14 dataset [13]. Both average
training time and obtained average mAP@tIoU[0.3:0.1:0.7] are
reported. As can be observed, the ActionFormer model takes the
longest amount to train while not achieving the best performance.

Model Time [s] Avg. mAP [%]
ActionFormer 886.8 ± 54.3 65.89 ± 0.09

TadTR 425.7 ± 3.5 55.3 ± 0.63
TemporalMaxer 2956.6 ± 1660 66.96 ± 0.37

TriDet 646.2 ± 26.1 68.07 ± 0.42

Table 2. Training performance of ActionFormer and STALE [26]
on the ActivityNet dataset [15]. Both average training time and
obtained average mAP@tIoU[0.5:0.05:0.95] are reported. As can
be observed, the ActionFormer model takes longer to train but also
achieves better performance.

Model Time [s] Avg. mAP [%]
ActionFormer 1944.9 ± 60.6 35.9 ± 0.14

STALE 400.7 ± 5.8 19.37 ± 0.16
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Figure 3. Results for testing the inference performance of ActionFormer [39]. Randomly generated tensors of lengths from 200 to
3000 in 200 increments were generated and passed through the model. The number of multiply-accumulate operations was calculated
using the fvcore library [29]. The video memory consumption was measured using the max memory allocated method from
PyTorch. Utilization information was measured by calculating GMACs/s and dividing that number by the official Nvidia Tesla V100S
32GB performance of 8.2 TMACs/s [6]. The width of each line in Figure 3a corresponds to two standard deviations obtained by repeating
the experiment 25 times. As the ‘steps‘ in memory consumption and the number of MACs are the same length and increase equally in
height, the model scales linearly with respect to input size. This can also be observed with inference time.

Discussion. The ActionFormer is unlikely to be cho-
sen in settings where the training time is limited. In those
scenarios, TadTR [24] would be more applicable as it was
found to offer a 2x training speed-up compared to Action-
Former. Choosing TadTR would however likely come with
a decrease in temporal action localization performance, as
was observed in Table 1. Alternatively, the TriDet [30]
model could be used, which offers a speed-up in training
time while still outperforming the ActionFormer model in
mean average precision. From Table 2 it can be observed
that the STALE model could be selected in a limited train-
ing time scenario over ActionFormer, although sacrificing
in TAL performance.

Known limitations. It should be noted that the above
procedure for testing training performance has limitations.
The models have only been so far evaluated on the THU-
MOS’14 and ActivityNet datasets. The results on different
datasets could lead to different conclusions. Furthermore,
it was assumed that if the variance in training times is low,
the other concurrent jobs on DelftBlue did not interfere with
the experiment. This assumption would not however hold if
all of the concurrent jobs would utilize hardware equally.
Finally, the TadTR model was evaluated using a different
experimental setup [25], thus the timings might not reflect
the difference between models fully accurately.

4.2.2 Inference performance

Additional experimental setup. The results were ob-

tained by creating random tensors corresponding to the
Inflated 3D (I3D) [4] features extracted from the THU-
MOS’14 dataset [13] by the authors of ActionFormer
[39]. In this setup, the minimum allowable value of
max seq len was found to be 576, which thus constitutes
the value of max seq len that was used in the configura-
tion file of the model. Due to this change, the maximum
tensor size that can be passed through the model without
any further changes to the configuration is 3456. Therefore,
in this work, the sizes of the tensor vary from 200 to 3000
in 200 increments. This exact configuration is also used be-
cause it was found to visualize the dependence of the model
on the input size well.

Results. Figure 3 presents the results, where the means
over the total 25 runs for inference time are reported along
with the obtained standard deviation. Utilization infor-
mation was calculated based on the official floating point
performance of the Nvidia V100S 32GB GPU of 16.4
TFLOPS/s [6,8] or 8.2 TMAC/s. First, as seen in Figure 3a,
the relatively small standard deviations in inference time in-
dicate that other DelftBlue jobs did not interfere with the ex-
periment. Moreover, as can be observed from Figure 3, all
the measured statistics increase with an increase in the ten-
sor size. It can be noticed, that the statistics for the number
of GMACs and memory consumption in Figure 3b increase
in ‘steps‘. This is caused by ActionFormer padding input
videos to sizes that are multiples of 576, which is required
by the architecture of the model [39]. The inference time,
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on the other hand, increases smoothly. This is caused by
the fact that even though videos are padded, the longer the
video the more predictions the model will make. Conse-
quently, this slows down the postprocessing step, where the
predictions have to be analyzed for, for example, overlaps.
Furthermore, as can be noticed, the hardware is not fully
utilized. This could be caused by the fact that self-attention
modules are known to be IO-bound and hence difficult to
efficiently parallelize on graphical units [5,7,39]. Finally, it
can be seen that inference time, memory consumption, and
the number of GMACs all increase linearly with respect to
the size of the input. This thus validates the claim made by
the authors of ActionFormer, that the model scales linearly
with an increase in input video length [39].

Comparison with other models. From the works by
Dămăcuş [11] and Oprescu [28], it can be seen that both the
TriDet [30] and the TemporalMaxer [31] models are more
efficient during inference than ActionFormer. The inference
time, as well as the number of MACs, are consistently lower
for different tensor sizes for these models. This difference
is best visualized in Fig. 4 and Fig. 5 in Appendix A. Sim-
ilarly, in the work by Misterka [25], it can be seen that the
TadTR model [24] takes around 15ms for tensor size 3000,
greatly outperforming ActionFormer, which requires over
100ms for the same video length.

Discussion. The compute efficiency results obtained in
this work can be used to provide lower bounds for hard-
ware needed to run ActionFormer [39]. It was, for example,
observed that to forward a video of a length of 5 minutes
(tensor length 2247) from the THUMOS’14 dataset [13],
the model requires a minimum of around 1,100 megabytes
of VRAM. Furthermore, given these hardware utilization
results, the inference time could be approximated for se-
tups different than the one used in these experiments. This
thus also includes hardware more limited than what is avail-
able on the DelftBlue cluster. Following the comparison
with other models, it can be deduced that either the TriDet
model [30] or the TemporalMaxer [31] model should be
chosen in favor of ActionFormer if the computational re-
sources during inference are limited.

Known limitations. It should be noted that this method
for testing inference performance is limited, as an assump-
tion was made that if the variance in inference times is
small, the concurrent DelftBlue jobs did not interfere with
the experiment. It is possible, however, that all of the jobs
interfered equally. Furthermore, RAM usage could be mea-
sured alongside VRAM to provide more insight into the
amount of memory used. Finally, it should be noted that
the results for the TadTR model were obtained using a dif-
ferent compute instance [25], thus the results might not be
fully comparable.

5. Responsible research

Various steps have been done to ensure the reproducibil-
ity of the research. First and foremost, the code as
well as the obtained results in raw format are made pub-
licly available at https://github.com/Jaswar/

bachelor-thesis. The code is licensed with an MIT
license as required by the ActionFormer repository. Sec-
ondly, the results that could differ when reproduced, are re-
ported with a mean as well as a standard deviation. This
includes metrics such as mean average precision, training
time, and inference time. Furthermore, the experiments for
compute efficiency have been constructed in such a way as
to use a fixed random seed, whose exact value can be found
in the source code. Thus, the randomly generated tensors
will always be the same. Finally, the exact splits Ds used in
the data efficiency experiments are published in the reposi-
tory.

Nonetheless, some results might still differ when using
different hardware. As noted by [39], the performance of
the ActionFormer may be different on different setups. Sim-
ilarly, the training and inference times are going to be differ-
ent depending on the exact hardware used. On the contrary,
if the same hardware is used, the inference and training time
results should still be similar, despite this work using the
DelftBlue cluster. This is thanks to the extra step taken that
repeats the experiments multiple times sequentially.

This work fulfills the five principles of research integrity
outlined in [1]: Honesty, Scrupulousness, Transparency,
Independence, and Responsibility. Honesty is achieved
through acknowledging the limitations of the work, con-
sidering alternative solutions to answer the research ques-
tion, and providing sources for claims made in the work.
Scrupulousness is realized by carefully designing a scien-
tific method to answer the research question. Trasparency
is ensured by providing the source code of the work along-
side a description of how to reproduce the results, and the
results in a raw format. Independence holds as the work is
not guided by any commercial or political motives. Finally,
Responsibility is achieved as the research is societally and
scientifically relevant and will help in devising data or com-
putationally efficient temporal action localization models.

One of the uses of temporal action localization is in the
domain of video surveillance [35]. By providing insight
into the computational efficiency of ActionFormer, it will be
better understood to what extent this model can be deployed
on embedded devices. In the future, this might thus result
in increased public video surveillance. In this paper, we
acknowledge this problem and suggest more work be done
to alleviate this issue. Perhaps laws and regulations could
be created to limit or control the use of temporal action lo-
calization models in certain tasks. Research could also be
guided to examine the sociological impacts of performing
research in data or computationally efficient algorithms in
different computer vision domains, including temporal ac-
tion localization.

6. Conclusion

This work aimed to answer the question of how the Ac-
tionFormer [39] model performs in a limited data or com-
putational power setting. To this end, a methodology was
designed for testing the model with access to only a limited
amount of training data. The method consisted of repeat-
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edly sampling a smaller set from the entire training set and
training the model on the sampled set. The performance
was then measured on the test set. It was found, that on
both THUMOS’14 [13] and ActivityNet [15] datasets, the
model performs well with only around half the training data
available, requiring less than 100 action instances per class.
Nonetheless, TriDet [30] and TemporalMaxer [31] should
be chosen in favor of ActionFormer when training data is
limited. Furthermore, a method for testing computational
efficiency during training and inference was designed. The
method for measuring training performance consisted of
training the model on both THUMOS’14 and ActivityNet
and reporting the time it took. The model was then evalu-
ated on the test set and the average mAP was noted. It was
found that the ActionFormer model is unlikely to be used in
situations where the training time is limited, as the TriDet
[30] model outperforms it in such settings. The method for
measuring performance during inference consisted of mea-
suring the number of floating point operations, video mem-
ory consumed, and the inference time of the model when
fed videos of increasing sizes. It was found that the model
scales linearly with an increase in video size. The results
for hardware utilization during inference obtained with this
method can also be used to predict inference times when
using different hardware than the one used in this paper.

As this work focused solely on the current performance
of ActionFormer in resource-constrained environments, the
next step could be to improve its performance in such set-
tings. Perhaps through hyperparameter tuning or by mod-
ifying the structure of the model, a better algorithm could
be found. Furthermore, the computational efficiency of the
model could be further evaluated. This work focused only
on the input video length as it is one of the very few param-
eters that are shared across all temporal action localization
models. Nonetheless, a study that modifies parameters spe-
cific to ActionFormer could be conducted.
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Figure 4. Comparison of the inference time of the different mod-
els. As can be seen, TriDet and TemporalMaxer both outperform
ActionFormer on all video lengths.
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Figure 5. Comparison of the number of GMACs of ActionFormer
and TriDet. As can be observed, both TriDet and TemporalMaxer
require fewer floating point operations than ActionFormer on all
tested values of video length.
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