

Improving vario-scale implementation based on
needs of Kadaster topographic data users

Technical report

GEO1101 - Synthesis Project

Freek Boersma, Shenglan Du, Pim Klaassen & Pablo Ruben
MSc Geomatics, Faculty of Architecture and the Built Environment, TU Delft

Abstract

Vario-scale is a new mapping technique which automatically generalizes maps from a base
layer of faces. Applications of vario-scale are continuous, smooth zoom in web maps,
multi-scale representation in one map and being able to generate maps at arbitrary scale. Also,
this would only require having to maintain the dataset at the highest scale level, since all other
scales are derived from it.

Potentially, vario-scale could be an alternative for current web maps and generalization
algorithms. The Dutch national mapping agency, Kadaster, currently employs its own
generalization process. However, they would like to know whether the users of their
topographic datasets are interested in vario-scale. At this moment, there is a working
implementation of vario scale (made by dr. ir. Martijn Meijers). This implementation,
however, is still lacking in, for example, cartographic quality. Therefore the research question
in this project is: ​how can the implementation of vario-scale be improved to better meet the
needs for end users of Kadaster topographic data?

This question is answered by questioning surveying users of Kadaster data on what they
would like to see improved about the existing implementation. Combining this with an
exploration of the current software leads to an attempt at improving the current
implementation. The project goal is set as enabling the road network visualization and mobile
map adaptation. Road network visualization is achieved by building the roads space scale
cube and overlay with the background area at the front-end. Mobile map adaptation is realized
by creating the touch screen interaction between the device and the user. Finally, a validation
survey is conducted to examine the difference between the original vario scale
implementation and the adapted one.

Acknowledgements

In this section we would like to express our thanks to a number of individuals who helped us
during the research project.

First of all, we would like to thank Martijn Meijers for his constant guidance and support. He
has walked us through all stages of this project. He was always willing to share his knowledge
and insights with us concerning this topic. Without his tutoring and instruction we wouldn’t
overcome those technical obstacles and this project couldn’t have reached it present form.

We would like to thank Daniël te Winkel, Alex de Jonge and Anouk Huisman from Kadaster,
for their continuous commitment towards our project. The visit to Kadaster and being able to
attend the user meeting were broadening experiences. The gatherings and feedback sessions
were very helpful contributions to our research.

Furthermore, we would like to thank Edward Verbree for his tutoring during the project. His
advice was inspiring and always motivated us to look for new challenges.

Last but not least, we also want to express our gratitude to the members of the BRT-user
group. Being allowed to assist one of the meetings was a great insight into practitioners’
world - more importantly, the participation to the surveys was essential for this project.

2

Table of contents

1. Introduction 5

2. Vario-scale and its implementation 6

2.1 Arguments for using vario-scale 6

2.2 Vario-scale concept: tGAP and SSC 6

2.3 Recent developments 10

2.4 Current implementation of vario-scale 11

2.4.1 Toolkit 12

2.4.2 Preprocessing 12

2.4.3 tGAP creation 15

2.4.4 SSC creation and visualization 18

3. Assessing vario-scale user needs 22

3.1 Vario-scale use cases 22

3.2 BRT-user survey design 25

3.3 Survey results 27

4. Selecting improvements for implementation 29

5. Process and results of technical vario-scale improvements 31

5.1 Better visualization of the road network 32

5.1.1 Input dataset 32

5.1.2 Results of do roads tGAP 33

5.1.3 Rendering lines 35

5.1.4 Creating a road space scale cube 36

5.1.5 Excluding roads from tGAP 37

5.1.6 Building the viewer which supports the visualization of road network 37

5.1.7 Double tapered approach for vario-scale road thickness 41

5.1.8 Mathematical model for double tapered approach 43

5.2. Making the viewer compatible for mobile devices 46

5.2.1 Javascript touchscreen interactions 46

5.2.2 Limitations of hardware 48

5.2.3 Differences between browsers 50

5.3 Validation survey 50

3

6. Conclusion / Discussion 53

Literature 55

4

1. Introduction

Over the last decades, geographic information has become increasingly digital (Dilo et al.,
2009). One of the most used ways to visualize geographic information is with topographic
maps. Topographic maps were always printed on paper. The digitization of GI has led to the
topographic data being processed with and maintained on computers. Along with this came
the option to visualize the digital topographic maps with online viewers. These viewers allow
users to access to all kinds of different maps.

Often, national mapping agencies (NMA’s) are tasked with the responsibility of making
topographic maps for the corresponding country. These NMA’s produce maps on different
scales. Up until recently, these maps on different scales were created apart from each other.
Over the last two decades, research in map generalization has taken a flight (Van Oosterom &
Meijers, 2011). Kadaster, the Dutch NMA, has created its own generalization algorithms in
order to create their lower scale maps. They maintain their base data on their highest scale
level (1:10 000, called TOP10NL) and create the lower scale maps (TOP50NL, TOP100NL,
etc.) with generalization algorithms. All created topographic maps are uploaded to, and can be
viewed on, the Dutch geoportal, PDOK (​https://www.pdok.nl/​).

Web viewers most often utilize a multi-scale representation, which means that they “represent
objects at different resolution levels and support modification across resolution levels”
(NCGIA, 1993). However, this solution often requires storing separate map objects for the
separate map scales with no reference between two adjacent scales, which will produce abrupt
changes during map zooming process (Meijers, 2011). Moreover, current implementations of
automatic generalization processes sometimes cause unwanted results. This, combined with
the abrupt scale changes during zooming, can lead to lack of orientation when using web
viewers.

In order to tackle these problems, the vario-scale technique has been developed. Vario-scale is
a method which aims to generate all wanted scales in a smooth way. Instead of storing
separate datasets at different scales, vario-scale structures datasets with level of details for a
whole scale range (Van Oosterom & Meijers, 2014). It avoids abruptions as much as possible,
enables smooth generalization, and, reduces the dataset redundancy as well. “Advantages of
the variable-scale approach are that only one dataset needs to be managed and that data can be
displayed at any scale” (Meijers, van Oosterom & Quak, 2009). Moreover, implemented
properly together with web cache technology, vario-scale is able to solve the problems of
losing track or losing connection, thus providing even more cartographically pleasant
experience for users.

Vario-scale visualization still stays on a research level (Van Oosterom & Meijers, 2014). It
has not been applied widely among companies or citizens. Therefore its benefits to suppliers
and users still remains unclear. The Kadaster would like to know whether the users of their
topographic datasets are interested in the vario-scale technique. This project aims to bridge
the vario-scale research with the end users. Instead of studying the vario-scale from a pure
technical view, this project will put focus on the end users side. The central question is
therefore ​how can the implementation of vario-scale be improved to better meet the needs for
end users of Kadaster topographic data?

5

https://www.pdok.nl/

In order to answer this question, we will look at this problem from the technical side and from
the user’s side. These two sides correspond with two sub-questions that need to be answered
in order for us to answer the research question. These questions are: how does the current
implementation of vario-scale work, and what are use cases for current Kadaster data users
and what can be changed in order to make vario-scale suitable for these use cases. First, we
will study the concept of map generalization and the theory behind vario-scale. Then the
current implementation of vario-scale will be explored. The users of the topographic data of
the Kadaster will be questioned on vario-scale through a survey. Based on the comprehension
of the current implementation and the needs of the users, an analysis will be made of how the
current implementation can be improved. Based on this strategy, a demo will be created.

This report is structured as follows: in chapter 2 the vario-scale concept is studied and the
current implementation will be explored. In chapter 3 the results of the user survey are
presented. In chapter 4 the results of the survey, combined with our comprehension of the
current implementation, will be used to decide on a strategy to improve the current
implementation. In chapter 5 the results of our efforts will be presented. Chapter 6 will
provide conclusions and a discussion on the methods used.

2. Vario-scale and its implementation

In this chapter the vario-scale concept will be introduced. First the theory will be explored. It
is shown that vario-scale can be an alternative to map generalization and will enable a true
smooth zoom in web mapping. After that, the current implementation of vario-scale will be
explained. This will lead to an insight in how the software works and into technical
possibilities for improvement.

2.1 Arguments for using vario-scale

National mapping agencies generate maps in different scales. One traditional method of
multi-scale map visualization is to store the datasets as separate sets of objects for different
map scales. When these maps are viewed sequentially in a web viewer, this will always
produce abrupt changes during map zooming (Meijers, 2011). Vario scale is a method to
generate maps which have a truly smooth zoom between them. This also means that for every
arbitrary scale a map can be made (if the scale is lower than that of the base layer) (TU Delft,
2018). It avoids abruptions as much as possible, enables smooth generalization, and reduces
the dataset redundancy as well. “Advantages of the variable-scale approach are that only one
dataset needs to be managed and that data can be displayed at any scale” (Meijers, van
Oosterom, Quak, 2009).

2.2 Vario-scale concept: tGAP and SSC

Vario-scale depends on two different concepts: the topological Generalised Area
Partitioning-structure (tGAP) and the Space-Scale Cube (SSC). The tGAP structure is capable
of effectively running automatic generalization on the single base dataset (Meijers, van
Oosterom, Quak, 2009). Rather than storing separate map objects at different scale, the
generalization result in each scale is stored in the tGAP tree structure. From this structure, a
3-dimensional cube can be built, where the x,y-axes represent the geographical extent of an
area and the z-axis represents the scale.

6

The main concept behind the tGAP structure is that objects are given an importance value. In
this case, objects refer to faces. The structure starts with a planar partition at the largest scale.
Importance can be computed by multiplying the area and the weight assigned to the class of
the polygon object. For every generalization step, the object with lowest importance value is
merged with the most compatible neighbor. This merged object is given a new identity and, if
the feature class of the neighbor is different, is given the feature class of the neighbor. The
importance of this object is recomputed. The hierarchy is stored in what is called the
tGAP-tree. In figure 1, a small tGAP-tree is shown, alongside a visualization of a step of the
generalization process. Aside from merging, objects may also be split and assigned to
multiple neighbors. This will not result in a tree structure, but in a directed acyclic graph
(DAG). In parallel, the boundary of the affected polygons may be simplified. This is stored in
the BLG-tree (binary line generalization). The tGAP-DAG along with the BLG-tree is
referred to as the tGAP structure (van Oosterom & Meijers, 2011).

Figure 1. tGAP structure (Meijers et al., 2012)

From this tGAP structure, we can deduce that when a spatial dataset has ​n features, there are
n-1​ steps in the generalization process, since in every generalization step one polygon
disappears until there is one left. This already gives ​n-1 representations of the same area in
different scales, in effect leading to a multi-scale representation (see figure 2 left). From this,
a space-scale cube (SSC) can be derived (figure 2 middle). The faces of the levels are
extruded to its neighboring level, leading to a three-dimensional representation of space and
scale. Faces on the map are now represented by polyhedrons. The idea of this cube is that at
any level, one can take a ‘slice’ through the cube to obtain a map at arbitrary scale.

However, when zooming out, the changes in the map will still be abrupt. Because of the
extrusion, the space between the levels is still the same and is in effect the same as an ​n-1
multi-scale representation. The ​smooth​ SSC is obtained by making the merges or splitting
operations continuous between the steps. In this case the features will disappear continuously,
see figure 2 right. This means that a small delta in scale will result in a small delta in changes
in the map (van Oosterom & Meijers, 2011).

7

Fig. 2. Space scale cube concept: multi-scale, SSC, smooth SSC (van Oosterom et al., 2014).

The main advantages of using the SSC, is that maps can be obtained at each scale level by
taking a slice. Thus it can serve as an alternative to current map generalization processes. It
also can be implemented as a smooth zoom in web mapping services. A third advantage is
that one can make non-horizontal, tilted slices through the cube to obtain multi-scale maps.
An application of this would be if one would want to make a map which is very detailed near
and less detailed far away.

The tGAP structure can be implemented and visualized, see section 2.4. However, there are
some current drawbacks with using vario-scale. First, it has not yet been implemented on a
very large dataset, like the TOP10NL topographic 1:10 000 dataset of the Netherlands.
However, Meijers et al. (2015) suggest a creating a fieldtree organization, which divides the
workload of processing. It subdivides space into different fields, and different scales. Fields
on a higher level have a shifted origin such that the borders do not overlap. Only features
completely in one field will be processed. All fields can be processed in parallel, which results
in an efficient process. Still, this has not yet been tested with the whole TOP10NL dataset, but
it shows promising results.

A big point which can be improved is the resulting cartographic representation that the
vario-scale structure offers. What objects remain at a certain scale level is entirely dependent
on the importance values assigned to the polygons. Different importance will thus result in
different maps. In the current implementation, the only thing shown is the actual slice through
the SSC. This not necessarily makes a good map. Symbols are missing, labels are missing,
main road networks do not stay connected and neighboring houses do not aggregate into a
built-up area. These, among other things, are topics that can be investigated further.

Networks, such as road networks, rail networks or hydrography networks, are important for
orientation in maps (Suba et al., 2016; Groeneveld, 2018). Ideally, at a certain scale, if a part
of the network of a certain hierarchy level is shown, all parts of the network of that hierarchy
and higher should be shown. For example, if a map shows regional roads, you want it to also
show all highways. Algorithms for road networks and hydrography networks have been
devised (Suba et al., 2016; Groeneveld, 2018). They also generalize polygons into lines at a
certain scale. Implementing these technologies in a working vario-scale environment has been
done to some extent, see section 2.4.

8

Figure 3: ​ Methodology of storing vario-scale data and the client-server architecture in three

steps (Rovers, 2016).

A better cartographic accuracy at smaller scales can also be obtained by using a constrained
tGAP. This uses a reference map of smaller scale than the base data (van Oosterom et al.,
2014). In this process, the smaller scale map serves as a target on which generalization
decisions are based. Using these constraints, more accurate intermediate maps can be devised.
However, since vario-scale can be seen as a means to replace current map generalization
processes, this might not be a good strategy. On the other hand, the constraints used could
lead to knowledge of certain parameters used for the generalization, which could be used for
future generalization purposes.

9

2.3 Recent developments

Recent years have seen some new developments in vario-scale. Most of these efforts concern
making the data transfer more efficient, or deal with visualization. Rovers (2016) has
implemented a client-server method with the goal to reach efficient communication for
vario-scale data, without too many redundant data transfers. The idea is that data that has
already been cached in the browser does not have to be loaded again. Only the data that is
newly requested will be transferred from the server to the client. To reach this objective, the
system needs to group data likely to be used together into packages on the server. After that,
the client cache is used to reuse the data already loaded. Newly requested information should
be retrieved by the client from the server using a spatial index.

Packages are created by using a space-filling curve, for example a Hilbert or Morton curve.
Centroids of the objects are used as a reference for the curve. From this a linear ordering in
the objects can be obtained. An optimal package size should be determined on the client side,
to find a balance between package size and response time. After this an index is created on the
packages using an R-tree. The index can be retrieved by the client using a HTTP GET
request. Using this index, the client can determine which packages (the majority of the data
needed) it actually has to request. Then these packages need to be filtered on geographic
location and level of detail. The process is visualized in figure 3 (Rovers, 2016).

After the wanted data from the SSC is retrieved from the server, the data needs to be rendered
on the screen. Driel (2015) has devised a method where the intersection of the SSC is
explicitly done and the result is rendered using an OpenGL based interactive application. This
model also contains subdividing data and storing in a database, in order to send chunks of data
to the client. This model, however, divides the data based on an octree-structure. Because in
an SSC the data is not uniformly distributed (more detail generally at the bottom), this
structure would be practical.

Figure 4: Pixels are projected downwards until it reaches the boundary of the polyhedron it

intersects (Driel, 2015).

10

The intersection of the SSC is made explicit by Driel (2015). A 2D raster, a representation of
the pixels, can be imagined through the cube. Instead of doing a direct point in polyhedron
test and assigning the pixels the according color, the pixel centroids are projected downwards.
Everything above the raster is not considered, it is “clipped off”. The projection downwards
(along the z-axis) then first encounters the boundary of the polyhedron the pixel is located in
(see figure 4). This method is preferred over the “simple” point in polyhedron method because
only an image is needed as an end product, which is suited to the GPU. The input data is
clipped by a box shaped clipping region. All fragments above the x,y viewing plane are
discarded. The fragments below are sorted by z value, and per pixel, the fragment closest to it
in z-value in that x,y position is kept (Driel, 2015). This visualization method is used in the
current implementation of vario-scale, see section 2.4.

Xu (2017) builds upon the above two studies to try to provide a “technology for the smooth
and timely rendering of large SSC datasets that is also applicable for the domestic consumer”.
The goal is stated as the implementation of a web-based service with a preprocessor that
scales well, enables fast transmission of data, also with “smart fetch” (no double requesting of
data). The implementation follows the user’s action on the web application using JavaScript
and uses this to fetch the needed information. The SSC is first put into an obj-file, and then
transformed into a bin-file. After, WebGL is used to create a rendering program that runs on
the GPU of the client’s computer. The process is summarized in figure 5.

Figure 5: Interaction between client, server, memory and GPU (Xu, 2017).

2.4 Current implementation of vario-scale

This section aims at providing a technical summary of the TU Delft Vario-scale Software
Development Kit (SDK). More specifically, it explains the process in which a vario-scale map

11

is created from dataset to web viewer. The process is described in a stepwise manner,
covering the toolkit, preprocessing, topological Generalized Area Partition (tGAP) creation,
space scale cube creation, binary format conversion and the implementation of a web viewer.
These terms will all be explained in the following section.

2.4.1 Toolkit
The TU Delft Vario-scale SDK consists of multiple modules. These modules are software
packages in a Python environment, each one responsible for a different task. They are
described shortly below:

● tgap module​ : ​core of the whole SDK. From here, all other modules are coordinated.
● connection​ : sets up the connection with a database, to send or retrieve data.
● sink​ : ​used to create table oriented output.
● topomap​ : ​represents data as a topological structure.
● simplegeom​ : ​represents data as geometrical objects.
● oseq​ : used to create ordered sequences for Python​.
● splitarea​ : ​splits faces in case of case of enabled network generalization.
● tri​ : ​creates a Delaunay triangulation.
● geompreds​ : ​performs orientation and incircle tests.

All of these modules are connected to each other, this is demonstrated in figure 15.
Furthermore there are some software dependencies which are all open source and freely
available:

● Python 2.7​ : ​ language of the SDK
● PostgreSQL​ : ​ database management system
● PostGIS​ : ​ provides spatial objects to PostgreSQL
● C compiler​ : ​ dependency for the SDK
● Some Python libraries​ : ​ dependencies for the SDK

These are all necessary for the SDK used to create a vario-scale map. However, theoretically
there are other ways to do this. The explanation below is tuned to the SDK used, but also
provides a conceptual description of how the process works.

2.4.2 Preprocessing
The input data has to be a table of edges and a table of faces. In this case, the dataset was
downloaded from PDOK as a GML file. This can be processed into the required topological
structure using FME or other data conversion/transformation software.

Figure 6. Face table

12

Figure 7. Edge table

The tables are demonstrated in figure 6 and 7 (faces and edges). The face table has a feature
class attribute, referring to the class of the object: building, road, water, etc. The area of the
face is calculated from the geometry. This value will be used in the generalization process.
Furthermore, the face table has two extra geometry attributes which are needed for the
generalization process and debugging: a minimum bounding rectangle geometry and a point
in polygon geometry. The string in the geometry columns is how PostGIS represents
geometries; in the face table these are of the type ‘polygon’. In the edge table, the geometry
has the type ‘linestring’. Additionally, it contains start and end node id’s and left and right
face id’s (these id’s refer to the face table). The face with id 0 is the universe face, which is
the topological face outside of the area represented. The tables as described above are in the
required format of the input data. All modern geo database management systems - open
source or proprietary - should be able to transform datasets into this format (assuming the
extra attributes are not already present in the database).

The SDK requires some extra databases to configure the settings of the process. These are
demonstrated with a user icon in figure 9. The tGAP metadata table should be created to
provide the software with some basic information and instructions. It contains the names of
some tables which have to be created later on, also the id of the universe face, SRID, initial
scale of the original dataset (e.g. 1:10 000) and instructions on how to generalize the dataset.

The fieldtree table needs only the field-size as a user input (the function of the fieldtree will
be explained). The last table which needs user input is the feature class mapping table. The
input data contains feature class information in the face table. This information is needed to
filter faces during generalization. The table contains those class values and also instructions
on how to merge/split faces of each class. This is demonstrated in figure 8. In this case, the
ranges mean ‘split this type of face from step 0 until the end’. The vario code is just a
mapping. Multiple different feature classes can be mapped to one vario code. Depending on
the input dataset, the user can decide how each feature type should be treated. More of this
will be explained in detail in the next section.

Figure 8. Feature class mapping table

13

Figure 9. Vario-scale SDK toolkit

14

2.4.3 tGAP creation
The first thing the program does is partitioning the dataset into a field tree (see figure 10).
This is implemented to process bigger datasets. The field partitions space into multiple
overlaid grids, of various sizes. Objects are inserted by storing them in the smallest field in
which they completely fit. Multiple objects can be stored in one field. By inserting data into a
field tree it can be processed in parallel. For the test dataset, this is not necessary because it is
relatively small. Therefore the minimum field size was put on ​20000 km, this far exceeds the
extents of the data set area (9000 km) and therefore all the objects are stored in one field. This
can be processed easily by a moderate computer (the model used for this project has 8 GB of
RAM).

Figure 10. Field-tree.

The generalization process is based on the importance levels of the faces. The importance
level of all the initial faces are set up as the value of their areas by default. However, the
software provides a possibility to create weighted importance values which are defined by the
feature class of a face. For instance, if two faces with equal surfaces have different feature
classes, weights are added to their importance. The importance of feature classes can be
defined by the user by adding additional metadata. All the faces are stored in an ordered
sequence in the form of a red-black tree. This is a type of binary tree which is self-balancing
during insertions and deletions. The ordered sequence can be seen as a queue of faces in
which the least important face is in the front and the most important face in the back. The
faces will be treated in that order. Once a face is processed, it will either be merged or split.

The merge operation will simply merge the face with one of its neighbours. The neighbouring
face that is chosen to merge with is the least important face of all the neighbouring faces. The
two merging faces will be stored in the tGAP table as geometries containing a ‘step low’ and
‘step high’ value. These values can be seen as the lifespan of a face. The first two merged
faces of a dataset will have a ‘step low’ of 0 and a ‘step high’ of 1. Also, there will be a newly
merged face with a ‘step low’ of 1. The geometry will be the combined geometries of the two
former faces, the importance will be the summation of the two former faces and the feature
class will be that of the most important face from which it originated. A good analogy to
understand this concept is a stack of chessboards, where the top has only one big square left.
On the second board, two squares are merged, on the third board two faces from the second
board are merged, and so on. The boards refer to the step values, and to the scale of the map.

15

The bottom board is the most detailed map, the top one is the least detailed. This is, in a
nutshell, how the merge operation works.

The edges are also stored in a tGAP table, but these act in a different way. The initial edges
have a ‘left face id’ and a right face id’, but when the generalization happens they get a ‘low
left face id’, ‘high left face id’, ‘low right face id’ and a ‘high right face id’. This is because
edges don’t necessarily have to disappear if their neighbouring faces merge with other faces
(note, not with each other). The lifespans of edges can differ very much from the lifespan of
their adjacent faces. If their adjacent faces merge with each other, the edge lifespan concludes
at that step.

Edges do not contain feature class information, however this changes when the split operation
is enabled. This operation applies to roads and water streams. By using only merge operations
without weights, all faces are merged according to their area. Thus in this case, the software
does not care about roads or water. This is what is visible in the current demo when zooming
out to certain degrees (see figure 11).

Figure 11. Equally treated merging, note the disconnected parts of road.

The software provides the possibility to take into account the roads while merging faces, as
well as defining at what scale the faces may start merging ‘over’ the roads. Let’s demonstrate
this with an example. When a road sits in front of the queue, it is ready to merge. What would
normally happen is that it would merge with its most compatible neighbour. The newly
merged face would later merge with other faces or - more importantly - the other
neighbouring face of the former road. In the latter case, there is nothing left of the road that
was there before. Other pieces of that road network might still exist, this is what is visible in
some parts of figure 11 (equally treated merging). The split operation treats this situation in a
different way. When the road is in the front of the queue, it recognizes by the feature class
that this face is a road. It then ‘splits’ the road (figure 12).

Figure 12. Road network generalization

16

The underlying operations for splitting the roads are triangulation and a baseline split. The
road is triangulated. The baseline is the line through the midpoints of all diagonal line
segments (see figure 13). The polygon split operation is done along this newly created
baseline. In the same operation the split face is merged with the two neighbouring faces. The
baseline is then added to the edge table. The feature class of the road is stored in the newly
created baseline. This means that the information of the road is maintained, but transferred
from a face to an edge. This information is used when a face adjacent to this new edge is in
the front of the queue. When that face wants to merge ‘over’ the road edge, the face will
merge with another face (the second most compatible one) to keep the edge intact. If a face is
surrounded by only road edges, it will merge over the least important road, according to the
decisions of the user. In this case the road edge will disappear and the road information is lost.
If the face is surrounded by only road edges and the universe face, the face will merge with
the universe face. This means the face will disappear. This whole functionality makes sure the
road (or water) network stays intact as long as possible. Note that this functionality is part of a
research and is not complete. Also note that maintaining the network in this manner is only
useful when line segments (1-dimensional objects) are visualized. In the current
implementation, the viewer only visualizes triangles.

Figure 13. Baseline extraction.

Another useful implementation is the simplification function. This implements the
aforementioned binary line generalization tree. The benefits from this are a smoother zoom
and less data storage for points. The implementation simplifies edges using the
Visvalingam-Whyatt line simplification algorithm. This algorithm is suited for natural lines
and deletes the points which are the least characteristic. This way, detailed information will
simplify at lower scales, which is desirable. Without this function turned on, very detailed
edges will still be visible at lower scales while they still exist. The use of this function does
result in a different type of ‘space scale cube’, this will be elaborated on in the next section.

In short, this is how the generalization works. It is notable that as the adaptability according to
the needs of the user improves, the complexity of the software increases. And even with the
additional functionalities which were discussed above, the current implementation is still
inflexible and homogeneous in character. It applies a set of rules on which the user can apply
exceptions and somewhat steer the process. To do so, a deep understanding of theory and
software is necessary. In an ideal fashion, the user would have full control over the
generalization process by only having to ‘turn the knobs’.

17

2.4.4 SSC creation and visualization
After the tGAP structure is built, the final steps of creating a vario-scale map is making a
space-scale cube and rendering it in the browser. This happens by converting the tGAP table
into a geometry definition file (OBJ file). This is a human readable file format which is
demonstrated in figure 14 (obj file example) by example of a simple cube. The first part of the
structure consists of a vertex list, which are all the lines that start with a letter ‘v’. All the lines
that start with a letter ‘f’ indicate a face, the consecutive numbers are indices of the prior
vertex list. The line that starts with a letter ‘g’ indicates that all following faces belong to that
group. Note that the second number of the group is a feature class code. This way it is
possible to assign the correct colors to groups of objects. In this example, the faces are made
out of 4 vertices. The .OBJ file that will be created from the tGAP structure will mainly
contain triangles. Also, it will be much bigger than this one. Although this depends on how
big the tGAP structure is, and that in turn depends on multiple different factors like the kind
of operation performed or the dataset used. File size will be elaborated on the chapter 5.

Figure 14. OBJ file format example of a cube

As mentioned before, all the faces are stored with a ‘step low’ and ‘step high’ value in the
tGAP structure. As the faces need to be stored in a 3-dimensional file format, these values are
used as the height component. Also, the faces will be triangulated before they are being
stored. The space scale cube is demonstrated in figure 15. It is visible that at the bottom all the
most detailed faces are are present (the original dataset). If you traverse the cube upwards
while looking down, newly merged faces will cover up the underlying faces. This action is
analogous to zooming out. Imagine sliding an orthogonal camera back and forth perpendicular
to the viewport. Objects which are closer to the front of the camera will cover up the objects
behind them. If you zoom out to a maximum there will be only one face left which covers up
all the other faces. The lower merging operation will be executed on the smallest faces, while
later on the faces become bigger and bigger. This explains the gradual increase in density
towards the top of the cube as is visible in figure 15.

18

Figure 15. Space Scale Cube in .OBJ file format

By default, the faces stored in the .OBJ file are horizontal, like a stack of paper. When the line
simplification generalization function is turned on, this is not the case. Figure 16 demonstrates
this by showing a simplified edge (from bottom to top) as it would look in 3D. Instead of
storing only horizontal faces, also connections are made between consecutive steps. This
makes the simplification of the line look smoother.

Figure 16. Line simplification in 3D (van Oosterom & Meijers, 2013)

Another possibility is to add smoothness to the .OBJ file. This would be an implementation of
the ​smooth​ SSC. This is done by varying the heights of vertices of faces. This can be seen in
the two examples of figure 17. On the right, the regular ‘horizontal’ space scale cube is
shown. Here, the face merges with another face is an abrupt fashion. On the left, the face
gradually takes over the other face. Just in the same way described above, try to imagine a
section cut sliding vertically across these faces, while looking down. It is logical that the left
example looks better, because is flows towards the surface it is going to ‘eat’.

The simplification function and the smooth space scale cube were never tested to work
together. Also, the implementation of the smooth space scale cube is still work in progress.
The usage of both methods simultaneously would be very likely to cause conflicts.

19

Figure 17. On the left: smooth space scale cube. On the right: normal

While the space scale cube in .OBJ format is a nice way to visualize it in 3D-modelling
software, it is not the final format to render it in a web viewer. This is the binary file format.
The reason to transform the .OBJ file into a binary file format (.BIN) is to reduce size and
being able to process it in an easier way. The first part of figure 18 demonstrates an overview
of the transformations.

Figure 18. SSC creation and vario-scale map visualization

The binary file records only the information necessary to be rendered. The bin file is created
by serializing the .OBJ file. The software does this by writing the triangles to file as a
consecutive stream of vertex coordinates and their corresponding RGB values as floats of 64
bits:

X, Y, Z, R, G, B, …

Note that this format is actually redundant, as it stores every point and color explicitly. Just as
the .OBJ file it could store a list of points and a list of vertices and then store the triangles as
index lists. This method is currently not implemented, which results in a big bin file. From a

20

certain threshold the bin file does even get bigger than the .OBJ file. After the transformation,
this file is stored on the server.

At the front-end, once the client sends a request and receives the bin chunk of the space-scale
polyhedron, it will render the polyhedron on the map canvas according to the current view
port. Screen grids will directly look downwards to the polyhedron. The first hit triangle will
indicate the corresponding feature which will be rendered. This is done akin to the method by
Driel (2015), explained in section 2.3. Then WebGL engine is utilized in the rendering
process. WebGL is a technology which enables users to create 3D graphics within a web
browser. Through the WebGL API the CPU of a computer is bound to its graphics card. No
specific browser plugin is required in the WebGL rendering process (Danchilla, 2012). To
make WebGL work, two types of shader programs need to be created: the vertex shader,
which is used to compute vertex positions, and the fragment shader, which is used to compute
the color for each output pixel. The work principle of WebGL is shown in figure 19.

Figure 19. WebGL work pipeline (Brandon Jones, Diego Cantor, 2012)

To render the triangles that we have in the bin file, several steps are required. First, the binary
data are read into the buffer zone. Then both the coordinate and color information of each
vertex are retrieved into the vertex shader and the fragment shader. At the same time the
transformation matrix is set so that vertices can be transformed from the world coordinate
reference system(CRS) to the local screen CRS. It is determined where the slice plane is (the
screen), and where the pixels are. Per pixel, all triangles below it are selected and sorted on
distance from the slice plane. The closest one is then rendered in that pixel. Finally, the
WebGL will draw vertices on the screen in a triangle format.

Figure 20 demonstrates the work principle of the front-end. The map module provides
functions to initialize and modify the map. The work module loads bin files to the front-end.
The draw module reads input binary data and renders it on the map canvas. The transform
module together with matrix and rect module is responsible for setting transformation CRS.
Last but not least, the mouse module enables user interactions with the map canvas such as
panning and zooming.

21

Figure 20: Front-end work principle

The above illustrates how the existing implementation of vario-scale, from input data to web
map, works. After this technical exploration, current users of Kadaster topographic data will
be surveyed on what they would like to see improved in the current vario-scale
implementation. Based on this, and the technical knowledge of the current implementation, a
decision will be made on which aspects will be improved.

3. Assessing vario-scale user needs

The objective of this paper is to improve the current vario-scale implementation based on
needs of the users of the topographic data of Kadaster. We have seen what vario-scale is and
how it is currently implemented. The goal of this chapter is to research the preferred use cases
of vario-scale of the users of Kadaster data and how they think the current implementation
could be improved to make it fit these use cases better. First we will explore some use cases
for vario-scale. These use cases will be used in the survey conducted for assessing user needs.
Thereafter the results of the survey will be presented.

3.1 Vario-scale use cases

The implementation of vario-scale is still in an early stage. Several potential applications of it
exist. Some are rather ‘traditional’ as they deal with the changes induced by the arising of
on-screen maps while others look at more innovative, new and still mainly unknown
applications. A total of five use-cases will be presented here, among which the first three try
to optimize current web-cartography and the two last give an idea of possibilities that might
still arise. Use cases are derived from van Oosterom & Meijers, 2011.

Use case #1: seamless zooming. ​Having web viewers instead of paper maps leads to new
possibilities. For example, one can zoom conveniently using the mouse scroll wheel.
However, most implementations only zoom in and out of the same picture without changing

22

the content. When the content gets adapted, it either disappears (e.g. implementation of
TOPNL maps in PDOK) or switches to another map (e.g. geoportal of IGN). Both induce an
abruption which is undesirable as the user might lose track of the observed place. This is an
aspect that might change with vario-scale as the content of the map would directly adapt to
the specific zoom-level. By applying vario-scales, negligible abruption between maps take
place. The eye does not lose track of what it is looking at. In fact, objects do not suddenly
disappear, change styles or are abruptly aggregated anymore. Vario-scale acts as a transition
animation between maps scales by showing the changes that are performed (figure 21).

Figure 21. Seamless zoom-in/out. (images: Meijers, n.d.)

Use case #2: automatic generalization at any scale​. Maps are traditionally produced at a
fixed set of scales which is often nationally specific and inherited from the past. When
automatic generalization is applied, it is custom-made for these scales and new ones require
new algorithms. By applying vario-scale one could be used for generating maps of any scale.
The number of scales becomes potentially infinite (figure 22).

Figure 22. Automatic generalization at any scale. (images: Meijers, n.d.)

Use case #3: less network usage​. Within the element rendering process, the data is usually
transferred from server to client side after the rendering. This involves transferring raster data

23

which is rather heavy. By performing the rendering (including transition animations) on the
client side, the data is transferred in a rawer stage which induces less network usage (figure
23).

Figure 23. Reduced network usage. (images: Meijers, n.d.)

Use case #4: fisheye​. Vario-scale maps are created by taking slices from the space-scale cube.
These slices don’t necessarily need to be horizontal. By letting the slice plane be a
2-dimensional parabola (e.g. z = x​2 + y​2​) one can obtain a fisheye view. More details can thus
be displayed in the center and less on the sides of the view (or vice versa if wanted), creating
the effect of a magnifier (figure 24). This could have applications in web apps.

Figure 24. Fisheye - several zoom levels in one view. Source of the pictures:
Harrie, L. (2002) & Hampe, M. (2004) as in van Oosterom, P., & Meijers, M. (2014).

Use case #5: tilted maps​. ​First applications of tilted maps have been introduced, such as the
beta version of the vector tiles of the Dutch Kadaster. An issue is that the detail level is the
same in the entire view. Using tilted slice planes through the SSC, the detail level could be
adapted to the distance from the viewer, avoiding too heavy maps (figure 25).

The above use cases were identified in order to assess the users’ potential applications of
vario-scale and what they would like to see changed in the implementation. In the next section
the survey will be discussed.

24

Figure 25. Perspective view - enhanced tilted maps with the existing version (left) and an

artist impression of the improved one (right). (Source: Kadaster.nl)

 Mean score out of 10
Disagreement

(standard deviation)

seamless zoom 8.3 0.7

automatic generalization
at any scale 7.9 0.6

reduced network usage 7.3 0.7

fisheye 5.6 2.1

perspective view 7.1 2.4

Table 1. Survey on the use-cases

A small survey with a total of 7 participants was conducted among the BRT-user group (table
1). This survey shows that all use-cases except the fisheye view are perceived as having the
highest potentials. Among these 4, the highest agreement is observed for automatic
generalization at any scale, seamless zoom and reduced network usage. For the perspective
view, the agreement between users is much smaller.

3.2 BRT-user survey design

On 22/05, we had the opportunity to hold a presentation at the BRT-user meeting of the
Kadaster in Apeldoorn. This opportunity allowed us to give a presentation providing insight
into what vario-scale is and what the potentials are. More importantly, this opportunity also
allowed us to conduct a hard-copy survey to get the opinion of the group members and learn
more about what they use to orientate between different scales of TOPNL maps.

25

Figure 26. Pictures of the presentation held at the BRT-user meeting in Apeldoorn (source:

Edward Verbree) and of the survey conducted afterwards.

The short survey contained questions about their preferred use cases, what the user misses in
the current implementation and a small orientation exercise. In this last exercise, the users are
asked to name objects they used to orient themselves during zoom. With these questions, the
user needs for vario-scale improvement can be assessed. The whole survey can be found in
appendix I.

The questionnaire showed that members of the BRT user-group see continuous, animated and
smooth zoom-in as a big potential of vario-scale within the traditional world of cartography.
When asked about suggestions for the modifications of the existing demo, two thirds of the
remarks were about the interrupted roads and buildings (which are not aggregated). Some of
the remarks could not be classified, others were out of the scope of the project (more about
the definition of the project’s scope can be found in section 3.3).

These statements were verified with a paper map assignment: a building in the outer part (A
Ge Veld 57) of a town of Mechelen (1840 inhabitants) in Limburg was shown to the user in
Top10NL (figure 27). The user then had to find back this one in TOP25Raster (which still
contains individual buildings) and in TOP50Raster where buildings are aggregated into
built-up areas (see figures below). At the same time as identifying the place, the users were
asked about which elements they think they used to identify the location on the other maps
(by circling around them). The results of this study with 13 participants were then classified
(figure 13) to draw conclusions.

Figure 27. Maps of TOP10NL, TOP25Raster and TOP50Raster used for the map orientation
survey. The participants had to place the cross on the left on the two other maps while
indicating the elements they used.

26

3.3 Survey results

The survey was conducted with 13 participants in the BRT-user meeting. Concerning the use
cases, most users indicated that their preferred application of vario-scale would be either
continuous zoom or automatic generalization. Both these use cases imply a satisfactory
cartographic result. Summarized results can be found in figure 28.

The following observations can be made with respect to the orientation exercise. Road
network elements (including crossings) were used both in TOP25Raster and TOP50Raster: by
respectively 7 and 9 out of the 13 subjects. The polygonal elements (in this case: buildings)
are often used in the TOP25Raster map: they are used by 7 out of the 13 participants. The
disappearance of these elements in the TOP50NL leads to an increase of the usage of built-up
areas and their borders: their usage grows from 5 to 8 times.

Although the name of the municipality was clearly printed on the map, it was only used by
one subject. This could be related to the fact that especially the TOP25Raster is still rather
zoomed-in and only contains this one name (the TOP50NL map contains more names).
Another reason might be that the position of the label changes with the different scales. Also,
no user indicated having used symbols such as the local church. Some of the indications could
not be classified. For one participant it seems that the assignment was not understood (he
simply circled the locations, not the elements used to find that one). All the other cases
occurred in TOP50NL where some circles were not clear enough to be assigned to one of the
categories.

Figure 28a: results of the TOP25Raster orientation exercise.

27

Figure 28b: results of the TOP50Raster orientation exercise.

This exercise shows that the subjects would use vario-scale mainly for continuous zoom and
automatic generalization. In continuous zoom, orientation is important and the users mainly
use road elements and built-up areas to orient oneself for the lower scales. If available and
thus at higher scales, the shape of buildings is strongly used too. The users were also
explicitly asked what they would like to see changed in the current implementation.
Cartographic needs that were mentioned are:

● The roads in the map shall be visible from the bottom till the highest level of detail.
● The roads shall stay continuous and connected, not be broken up at each map level.
● The built-up area in the map shall be visible from the bottom till the highest level of

detail.
● Houses at the lower map level shall be aggregated into built-up areas at higher level.
● The labels and symbols of roads and built-up areas shall be always visible.

Other technical needs also mentioned by the users were:

● The map visualization shall be made customizable.
● The web visualization framework shall establish a double-screen, which can compare

between original map and vario-scale map.
● The web visualization framework shall maintain high efficiency in data transforming.
● The systems shall be easy to update and maintain.
● The vario-scale method shall be applicable to 2D/3D vector tiles.

28

Another potential improvement was mentioned by Martijn Meijers, the main developer of the
current implementation. The demo only works on computers, not on mobile devices.
Therefore an improvement would be to adapt the implementation so that it works on all
devices.

Not all the functional needs listed above are viable to research in this project. Considering the
existing technology and skills of the team, the budget and the schedule of the project, and also
the importance of each item, we classified the functional needs into three categories (figure
29): viable, of interest (thus relevant but too broad for this project) and out of scope. Some
should be considered, others could be implemented but, while others are out of scope of the
objectives of this project and will not be considered.

Figure 29. Classification of the needs expressed by users at the BRT-user meeting into viable,

of interest (too broad but relevant) and out of scope (not relevant in this project).

Researching all four viable options is also out of scope for this project. Therefore, a choice
will be made on which research options will be pursued. In the next chapter, a SWOT analysis
will be performed on all four options. From this, a research plan will be developed.

4. Selecting improvements for implementation

We want to research what can be improved of the current implementation of vario-scale. To
answer the question, it is assessed what users of Kadaster data want to see improved, and
what we are able to provide within the scope of this research. After assessing user needs, four
viable research option were identified: networks, aggregation, symbols/labels and mobile
services. In this chapter, these research options will be submitted to a SWOT analysis. Based

29

on these analyses, the final research goals will be set. These will then be implemented in the
current demo.

Networks (roads & hydrography)

● Strengths: Networks are one of the most important features used for orientation in
maps during zooming. Improving the topological correctness of networks during the
zoom by using certain rules should quickly improve user experience of vario-scale
use.

● Weaknesses:​ Manually maintaining a certain network through the generalization
slightly undermines the concept of vario-scale.

● Opportunities​ :​ Research has already been conducted about how to generalize roads
and hydrography networks in a vario-scale setting (Groeneveld, 2018; Suba et al.,
2016). Also, for roads this has already been implemented in the current version of the
vario-scale tGAP creation software.

● Threats​ :​ The challenge in implementing lies in the visualization of line elements. This
has to be done on the client-side, writing code that instructs the GPU. No group
members have experience with this, so this will take time. Another threat is the
method of visualizing both road polygons and lines at the same time. Roads of the
same hierarchy level might at a certain zoom level be represented by both polygons
and lines. Rules need to be set to either avoid these situations, or deal with it in a
satisfactory manner.

Aggregation into built-up area

● Strengths: On smaller-scale zoom levels of the current implementation, housing
disappears and only a white area remains. Aggregating housing into built-up area will
be advantageous for orientation on smaller scale zoom levels.

● Weaknesses:​ It is unclear whether houses need to merge with each other, or that
houses should merge into the now white area that represents the space around housing.

● Opportunities​ :​ The white area that surrounds buildings in the current implementation
is already a representation of built-up area. So there already is information about how
far this area stretches.

● Threats​ :​ Aggregation of polygons into a new class will require extensive adaption of
the tGAP creation process. New rules will have to be designed about how and when
houses merge and into what other polygons, and at what zoom level the new “built-up
area” class should start to appear. In the current implementation, small buildings are
the first polygons to disappear (merge into neighboring polygons).

Placement of symbols and labels

● Strengths: Symbols and especially labels are very important for orientation purposes
if someone wants to know where they look the first time. So for inexperienced users
labels are essential.

● Weaknesses:​ Symbology and labels were only sparsely used during orientation tests.
Therefore they might not have the highest priority of implementation.

● Opportunities​ :​ Now completely lacking in the implementation. Therefore
implementing symbols and labels would be a big improvement in itself.

● Threats​ :​ Just like the representation of networks, text and symbols (representation of
point objects) will have to be visualized on the client side. Moreover, when using
labels, the decision to show what at what moment because increasingly impossible. At
increasingly smaller scale, less labels and symbols have to be represented to prevent

30

text filling the entire display. This would require something like a semantic mirror of
the tGAP structure, which is not developed yet.

Adapting for mobile services

● Strengths: Having vario-scale available would increase its availability. The current
implementation of vario-scale focuses on web services. Since mobile devices are very
much used to access web maps, having a working mobile vario-scale implementation
would improve user experience.

● Weaknesses:​ Adding mobile services will not change anything about the current
cartographical implementation.

● Opportunities​ :​ The group has (basic) knowledge about web mapping services and
mobile devices, which will be advantageous for this implementation.

● Threats​ :​ No one in the group has direct hands on experience with implementing web
services for mobile devices, so there might be a big learning curve.

Looking at the four research options, some different things can be concluded. The first three
are concerned with changing the cartography. These tasks imply big changes in how the
vario-scale structure is built or in how it is visualized. The last research option, adapting the
current service so it is compatible with mobile phones, seems like a smaller task. Because of
this, it is decided that we will research one of the three cartographic options along with
implementing mobile services.

Symbols and labels were less used in our orientation exercises. Also, visualizing point objects
and text is currently not implemented in vario-scale. So while implementation will be a big
addition to the current demo, it might be too much work due to time constraints to implement
this from scratch. The same can be said for aggregation. The lack of aggregation now may
mean that taking generalized maps at intermediate scales will give strange results, with some
buildings still present and other removed but not aggregated. However, implementing our
own aggregation algorithm will be too much work. Therefore, in this research we will try to
implement the maintaining of road networks. There have already been efforts to implement
this. Therefore there is a foundation on which can be built. Also, it was mentioned as one of
the biggest factors in map orientation. Therefore this research option was chosen.

The current implementation will be adapted in order to implement both the mobile services
and to maintain road networks throughout the scales. In the next chapter the process,
methodology and the eventual results will be discussed.

5. Process and results of technical vario-scale improvements

After exploring the current software and assessing the user needs, two research options have
been chosen: maintaining a correct road network throughout all scales and adapting the
implementation for mobile devices. In this chapter, the process of attempting to achieve this
result is documented. Since the exploration of the software (see section 2.4) and adapting it
overlapped, the methodology was not immediately clear from the beginning. Therefore this
chapter will also outline the methods used to achieve the results. The first part of this chapter
outlines the results of our attempts to improve the visualization of the road network. After, the
results of the implementation for mobile device is presented. A new demo that implemented
these changes has been sent back to the users for a review. This is done to check if they

31

experience the adaptations as actual improvements. This way we want to answer our research
question. In the end of this chapter their feedback on the new demo will presented.

5.1 Better visualization of the road network

In the current implementation of vario-scale, the roads are represented as faces. When roads
merge with adjacent faces that are of a different class, pieces of the road network disappear.
In the survey conducted with Kadaster users this came forward as one of the biggest
cartographic deficiencies. Technically, this problem was labeled as solvable within the
temporal scope of this project. This statement resulted from several technical meetings with
Martijn Meijers. The goal of this section is to explain how we attempted to solve this
problem. As stated earlier, there had been research on the maintenance of the road network in
the generalization (see section 2.4). In this case, road information is stored in edges. The
original method for maintaining road networks was to visualize these edges, combined with
road faces still remaining. After this proved too difficult, the method changed to creating a
seperate cube for just the road data. The downside of this method is that abruptions between
scales return. Therefore a method was created to create a double tapered structure for the road
polygons. The whole process is explained in the following subsections.

5.1.1 Input dataset
The first step of the project plan was to get comfortable with the software. In close
cooperation with Martijn Meijers, we tried to create the most basic tGAP structure (only the
database). The same dataset as the existing demo on the vario-scale website was used: a
seven by seven kilometer patch of the TOP10NL Kadaster data in the south of the Dutch
province of Limburg. Before creating tGAP the structure, we ran into some setup issues. As
described in the first part of section 2.4 (current implementation of vario-scale) the software
environment is extensive in its dependencies. While running the software by its most default
form, some errors occurred. These were mainly the consequences of badly defined metadata
or the lack thereof.

Within a couple of days, a default tGAP structure was created. The results could be visualized
in QGIS, see figure 30. These figures demonstrate different slices from the tGAP. The figure
on the left is a higher detail, higher scale map, the figure on the right is a lower detail, lower
scale map. The red rectangles are the minimum bounding rectangles of the faces. A slice
refers to all the content of one step value. A slice can be selected by the following query:

ELECT F ace id, Geometry W HERE S
tep high = n AND Step low S > < n

Here ​n ​ represents the step value. To browse through the slices in a comfortable fashion, a
QGIS Python script was created, which is attached in the appendix III.

32

Figure 30. Slices from first default tGAP structure

5.1.2 Results of ​do roads ​ tGAP
As mentioned, the first method was to visualize the lines generated by the split operation. To
recall the implementation of the maintenance of the road network - referred to as ​do roads in
technical terms - we summarize the current functionality briefly:

1. The user defines which feature classes are roads as metadata.
2. The user defines at what scale range the roads should stay intact.
3. When a road is at the front of the queue, it is split and not merged.
4. The feature class of that road is stored in the created baselines.
5. These feature classes are being taken into account during generalization.

The main problem of this functionality is that while the road network stays intact in the edges,
it is not visible. Also, throughout the process the road network will consist of both faces and
lines, which need to be visualized in a consistent manner. The solution to this problem would
be a step closer to our main goal. Having created a tGAP with default setting, we now aimed
at creating one with the ​do roads​ function turned on. ​To proceed, the feature classes of the
specific dataset had to be mapped. This information was taken from the TOP10NL
visualization stylesheets. This sheet is meant to assign color codes to polygons in the map.
Based on an XML file which was created by Radan Suba during his research on this
implementation, the table in figure 31 was created.

This file assigns the ranges to the vario codes, which in turn we assigned to the visualization
codes. To give as an example: the program asks, what is feature class ​10311​ ? This is then
looked up in the visualization stylesheets and the vario code is put as ​5​ , because this is an
important road. Then, the XML was used to look up the range(s) for important roads, which is
(0, -1, split)​ . This means: if an important road is at the front of the queue, and the scale is
between the initial scale and the end scale, split it​.​ Note that other ranges might instruct the
face to merge. The range could also be ​(0, 20000, merge);(20000, -1, split)​ which means:
merge this face until a scale of 1:20000, from then on, split it.

33

Figure 31. Attribute mapping table

Figure 32. Left: do roads tGAP slice. Right: background map of area

The result of the ​do roads​ tGAP, shown in figure 32, is remarkable. By looking at this slice
(low detail, low scale) it can be seen that the road network was maintained quite nicely,
comparing it to the background map. The roads are visible as edges, not as faces. Another
notable observation of this slice is that the faces at the border disappear. This happens when a
face is fully surrounded by roads and the universe. When the face is at the front of the queue,

34

it chooses the path of least resistance to merge with. The ​do roads function will make faces
only merge over road edges when anything other is not possible. Because the adjacent edge to
the universe is (most likely) not a road, it will merge with the universe. In other words, the
universe will eventually take over the whole structure. The problem with this is that the
universe is transparent, it does not contain any geometry to add to the structure. As described
before, the .OBJ file represents a stack of faces which together visualize the entire map.
Creating a space scale cube of this newly created tGAP would leave ‘holes’ in the structure.
Therefore, this is not compatible with the way the viewer works. This problem had to be
solved to be able to see the tGAP structure in the viewer. This was not a functionality to turn
on or off but had to be altered in the code. It took some days to find out what should be
changed. Eventually the software was adjusted so that faces never merge with the universe.

5.1.3 Rendering lines
It was now key to visualize the edges in the viewer. However, there were some problems we
had encountered at this stage. The first problem concerned the technical difficulty of
rendering lines by means of using WebGL. This rendering engine is a whole topic in itself and
its extents reach further than we were able to explore in a short amount of time. Next to the
already complex software we were getting acquainted with, it would be risky to start
researching this field.

The second problem was the concern about the visual quality the line rendering would
achieve. We could test this by extracting the road edges from the ​do roads tGAP structure in
QGIS. Figure 33 shows these lines with added thickness. QGIS does not have state of the art
rendering possibilities, but the combination of sloppy edges and dangling segments do not
give a good impression.

Figure 33. Lines styled in QGIS. Note the zigzags and dangling segments.

The third problem relates to the network of roads. As stated before, faces split individually.
Roads consist of multiple faces. This means that at some slices of the tGAP only parts of the
road were split. If edges would be visualized by lines and faces by triangles, this might not
look continuous. Potential solutions were more difficult than they seemed at first sight. Also
they would not fit the temporal scope of this project. Moreover, if they would succeed, the
former two problems would still be unsolved. This is why we abandoned the idea of using line

35

rendering to visualize the road network. We came up with a more lightweight and faster
solution.

5.1.4 Creating a road space scale cube
After rejecting the line rendering approach, the other option was to keep working with faces.
In search of a method to better control which roads are visible at what scale level, the idea
was suggested to create a seperate cube for just the road faces. With this seperate cube, no line
rendering is needed, the original shapes of the roads are maintained and we have control over
when we want to see which roads. A downside is that the thickness of the roads is not easily
controlled, whilst it is by using lines. However, there are possibilities that solve this, which
we explored as well, see subsection 5.1.7.

Creating a space scale cube for the road network was not difficult. A series of scripts were
created to do this. The procedure is to extract all the roads from the most detailed map, by
using the attribute mapping table. This network is then divided in different importance levels
by the user. This makes sure that all the roads of a class appear at the same time, meaning the
network stays intact (this seems like something not suited for vario-scale. This problem is also
addressed in subsection 5.1.7). Finally, the roads are triangulated and serialized to an .OBJ
file just like the normal procedure. The height values are based on the importance and scaled
according to the original SSC, which we refer to as the background SSC. Figure 34
demonstrates the newly created road space scale cube. Appendix IV and V contain the scripts
that were used to create the road space scale cube.

Just as if it were a normal space scale cube, this cube can be transformed in a binary file and
seen in the viewer. The script that was used to do this is available in appendix VI. Because the
binary file is a consecutive stream of triangles, they could be appended to the .BIN file of the
background tGAP. The results were visible in the viewer, but unfortunately there was a
trapdoor problem. The background tGAP still contained roads. Even while the newly created
road network covered up the existing roads, some of the background roads still appeared
when that class already disappeared in the road SSC. For example, all small streets disappear
when zooming out, but a couple of these streets still live in the background map (they weren’t
generalized yet at that stage in the background SSC). The solution to this problem was to
exclude the roads from the background tGAP.

Figure 34. Road space scale cube in .OBJ format.

36

5.1.5 Excluding roads from tGAP
It is not possible to exclude the roads and then create a tGAP. This leaves holes in the initial
map. The roads need to be split before the tGAP is created, but the splitting operation is
embedded in the software. Therefore, all roads of the initial map were given a really low
importance level before they were added to the queue. This resulted in a queue where all
roads are in the front. When the tGAP is created, the first thing that happens is that all the
roads are split until there are no more roads left. If at that level the SSC is ‘cut’ and
everything below it discarded, the result would be a background without roads. And when the
split function is turned on, the roads would still be maintained in the edges. This would fit
perfectly with the road space scale cube.

In order to cut off the bottom of the background tGAP, the step value ​n​ of the last road had to
be extracted first. This was done by using a simple query. A script was made to do the cutting.
The procedure for the face table was easy: delete all faces with a ‘step high’ value below ​n​ ,
update the ‘step low’ to ​n​ for all faces that have a ‘step low’ below ​n​ , finally subtract ​n​ from
every ‘step low’ and ‘step high’. The procedure for the edge table was slightly more difficult,
because the edges refer to a ‘low right face id’ and ‘low left face id’. By only performing the
same steps as with the face table, these attributes would point to faces that don’t exist
anymore. However, there is a face hierarchy table created by the software, which connects
child faces with parent faces. An iterative program was created which traverses up the face
hierarchy until it finds a face which exists in the previously created face table. This script is
attached in appendix VII.

This resulted in a road free background, while maintaining the network. Some other variations
were made to create a background as well. One used only the merge function, one other
merge and split, another merge and simplify, and the last one with merge, split and simplify.
We found that using only ‘merge’ worked best, mainly because of the relatively small file
size. However, for every combination the result seemed to be very big (100 - 500 Mb for the
.BIN file). Throughout the whole project this was a bottleneck for testing and displaying. In
appendix VIII, a full size analysis of different operations is attached.

5.1.6 Building the viewer which supports the visualization of road network
After the data structures are created, they need to be rendered on the computer. The job of the
front-end is to present the datasets in the server side to the end users in a cartographically
pleasant fashion. As mentioned, two separate binary files need to be created and overlaid in
the map canvas. In this subsection it is explained how the viewer is adapted to overlay the
binary files. Also, the Map User Interface is redesigned to better meet users’ needs. Figure 35
shows the modification made in the front-end modules to support the road network
visualization.

The first step to make the client-side work is to create the multi-scale road network space
scale cube in a form of OBJ file (figure 36). The road network is divided into four different
levels based on their class (main road, regional road, local road, street road). Based on testing,
we determined the life span for each road class on the scale dimension. The rendering color
for roads are defined in table 2.

37

Figure 35. Modification of the front-end to support roads visualization

Figure 36. Multi-Scale road network SSC structure.

class step span color

main road 0-9595 red

regional road 0-8500 orange

local road 0-6500 orange

street road 0-5000 grey

Table 2: the step span and rendering color assigned for each road class.

38

Then the OBJ file is again converted into a binary file which can be easily accessed by the
client-side. To increase the efficiency of network data transportation, only the information
necessary to be rendered in the client canvas will be recorded in the binary file. That includes
the vertex coordinate and the color information. Same as the strategy we used in creating
built-up area bin files, records in the road binary file are also structured as: Vx, Vy, Vz, R, G,
B…

The rendering principle for road network and built-up area are similar. Both the binary data of
roads and built-up area are read into the buffer zone. Both the coordinate and color
information of each vertex are retrieved into the vertex shader and the fragment shader. Also,
the rendering of roads and built-up area share the same transformation matrix from the world
system to the screen system. Finally, the WebGL will draw triangles for both the roads and
the built-up area. The overall workflow is shown in figure 37. The script that was used to
draw multiple binary files is attached in appendix IX.

Figure 37. Workflow of rendering the roads and the built-up area.

However, some slight differences exist when rendering the roads and the area. First, the roads
need to be drawn later than the area so that they won’t be overdrawn by the area polygons.
Second, we need to set two different sets of viewport. A viewport determines the visible part
within a space scale polyhedron, and, is defined by the near and far planes.

Figure 38. Viewport for built-up area and road network

39

For the background, the far plane is fixed and the near plane is lifted gradually with the mouse
zooming. As the screen grid will directly look downwards, only the first triangle hit will be
rendered. Thus only polygons which are existing in the current step level will be drawn. But
for roads, the viewport acts in reverse. The near plane is fixed while the far plane is lifted,
enabling that only corresponding road classes will be visible with one specific step range.
Figure 38 shows how the view port is determined for the area polygons and the roads.

Aside from changing the viewer, also the map user interface was adapted. Figure 39 shows
the UI of the original demo. As shown below, although this UI version achieves basic
visualization of the vario-scale map, some drawbacks still exist that might affect its
interaction with the end users. For example, the parameter sliders are placed at the bottom of
the webpage, which are not always visible for users. Besides, there is no clear description of
the demo. To make it more convenient for end users to use, the map UI is redesigned (see
figure 40).

Figure 39. User interface of the original map demo

Figure 40. New user interface design.

40

Furthermore, to make this map demo adaptable to mobile devices, Responsive Web Design
(RWD) is taken into account in the UI design. Not only the map canvas but also the setting
module and the description module are resized when loaded on a mobile device. Figure 41
shows the map UI design on mobile devices.

Figure 41. Mobile user interface design. Right image is seen when scrolled down from the left

image.

5.1.7 Double tapered approach for vario-scale road thickness
At this stage, the main goal has been realized: throughout all scales, a topologically correct is
visualized. At the highest scales, all roads are visible, and when zooming out, whole hierarchy
levels disappear at the same time. This however, has its downsides. As already mentioned,
there are two main problems with this approach. The main problem is that one of the main use
cases of vario-scale is the smooth, continuous zoom. Having big parts of the roads disappear
at once negates this purpose of vario-scale. Another is that if roads stay the same size as on
their base layer, when one zooms out they will become very small and hard to see. It would be
nice if the roads would gradually become relatively bigger in size when zooming out (on the
screen they would then stay roughly the size absolute size).

As a solution to this problem, it is proposed here that roads in the roads SSC will not merely
be represented as triangles, as is now, but as polyhedrons. More specifically, there will have a
double tapered structure, where their width continuously grows up until they should
disappear. After that, their width will gradually decrease to zero. The concept of this structure
is detailed in figure 42. In the bottom part the thickness of the road is increased by creating
displaced twins of the outer points of the original road (the plane at the bottom). In the upper
part, the thickness of the road is decreased by using exactly the same approach, but this time
displacing the planes toward the inside.

In this figure, the bottom taper is the color of the road, in this case red. The top taper is
colored with a specific color which all top tapers get, in this case dark blue. The goal of this
latter color is that it can be coded that specific colors will not be rendered. This is needed for
when the slice plane is taken through the top taper. On the sides, when looking down from the

41

pixel grid, the first triangle hit will be these dark blue ones. What one would like to render
here is what is below this part, but then in the background SSC. By telling the render program
to ignore these triangles, in the end visualization the corresponding triangles from the
background SSC will be rendered.

Figure 42. Double tapered approach concept

The result is that when the near/section plane is lifted, the dark blue part takes over (see figure
43). As the dark blue part is rendered but not filtered out in the final step, it would not be
visible on the screen. Instead, the original background map would be visible in these pixels,
which is again why we require the ‘non-render’-color. The fact that the filtering takes place
after the rendering but before the visualization is extremely important to allow the original
pixels of the background geometry to stay visible.

Figure 43. Continuous changing of the road thickness

Optimally, the geometry in the top (dark blue) part would end up being a line. However,
reliably deducing a line from polygon geometry is an extensive task, especially as the road
network contains complex crossings. A check was done as the TOP50NL dataset contains
roads as line geometry. However, the required quality for the double reversed cone approach
is high and improvements of the TOP50NL line generation algorithm would be essential (see
figure 44).

42

Figure 44. Comparison between TOP10NL polygon (green) and TOP50NL (vector) line
geometry (red), showing the impact of the generalization process.

5.1.8 Mathematical model for double tapered approach
To implement the double tapered method, a topological analysis first needs to be performed
on the input geometry of the roads. This geometry is delivered as two tables: one containing
an ordered list of vertices, their coordinates and the type of road they belong to; and another
table containing the list of triangles with the corresponding vertex indices (row numbers of
the first table). To find the vertices which are on the edge of a road network (an ‘outside
edge’), a check whether these ones have two neighbour vertices which appear in respectively
only one shared triangle needs to be performed. If a point has only neighbours which appear
in two shared triangles, this point is not on the edge of the road network geometry, see figure
45.

Furthermore, given that all triangles are oriented in the same way (clockwise or
counterclockwise), previous and next neighbor vertices can be defined with the inside of the
road network always being on the right side of the polyline ‘previous neighbor - edge vertex -
next neighbor’. This information is then stored for further processing to create the displaced
edge vertices, see also figure 45.

43

Figure 45. Topological model for the double tapered approach

With this information, the thickness of the road network can then be modified using the
following steps. First, identify the vectors between the previous neighbor and the edge vertex;
and the vector between the edge vertex and the next neighbor. Using the two first vectors,
calculate the respective normal vectors and normalize them so that they have a length of 1.
Using the desired increase/decrease of the normal vector, a displaced version of the previous
and next neighbor can be calculated. This happens by multiplying the normal vector by the
desired factor (a thickness increase of one unit requires a factor ​f = 1​ , a decrease of one unit
requires ​f = -1​). The resulting vector can then be used to displace the previous and the next
vector. One can then calculate the two line equations of the displaced lines (which are parallel
with a distance of ​f to the previous ‘neighbor - edge vertex’ and ‘edge vertex - next neighbor’
lines). The equations ​f(x) = ax + b can be set up using the vectors calculated in the first step

44

and the displaced points of the third step. The intersection’s ​x coordinate is then obtained by
the equation ​ax + b = a’x + b’ and the ​y coordinate can be found by inserting ​x into the ​f(x) of
any of the two lines.

The displaced points generated by this process can then be lifted up to the right height in order
to generate the desired geometry. The vertical triangles can be generated by connecting each
vertex to the new previous and next neighbor. Moreover, a connection to one of its previous
level neighbors and to its previous level twin is needed. The same can be done to create the
blue vertical triangles. To generate the ‘roof’, the horizontal blue triangles, not only the
displaced edge but also the inner vertices need to be moved to the new height. The new plane
can then be created by applying the same triangle topology as at the bottom level, which
requires keeping track of the number of added vertices for updating the indexes of the
triangles.

Figure 46. Modifying the thickness of roads according to the double tapered approach

Due to time constraints this model could not be implemented in the adapted demo. Still, a
further exploration of this topic was still done (by coding the intersections in sql). This
allowed us to identify the most important challenges and aims at preparing for further
research. A first point requiring attention is the generation of the flat roof (the horizontal
plane at the top of the dark blue part). When doing so one needs to make sure that a correct
topology is preserved, especially when the ‘roof’ is reduced to a less thick road than at the
initial level this can be problematic. In fact, none of the inner points (which are not displaced)
should find themselves outside the edges of the roads. It might be safest not to reduce the
‘roof’ to a lower thickness than the original geometry.

Another important point to keep a correct topology is related to the method itself. In fact,
when the interior angle (the angle ‘previous neighbor - edge vertex - next neighbor’) becomes
smaller, the distance between the original edge vertex and the displaced edge vertex increases.
This is problematic as too high displacements might create conflicts with other roads in the
neighborhood. The introduction of a maximum threshold seems to be a solution but prompts
the question of what the displacement would look like in that case. Simply moving the
displaced point closer to the original one doesn’t seem to be a solution as this might
negatively influence the user experience by creating strange variations in road thickness.

45

A third point is related to the calculation method itself. It might be noted that this method
does not work if the segments ‘previous neighbor - edge vertex’ and ‘edge vertex - next
neighbor’ are perfectly parallel (or in the prolongation of each other). When this situation
occurs, the displaced edge vertex can simply be found by applying the normal and normalized
vector to the edge vertex.

A final observation which could be done during the coding implementation is that
inaccuracies tend to appear the closer lines are to the parallel situation. However, it appears
this is not a strict tendency as there seems to be a random parameter involved too. A possible
explanation of this phenomenon is that small inaccuracies induced by finite number
representation have bigger consequences when lines are nearly parallel. For instance, a small
rounding of the a values of step 4 (the slopes of the lines) will induce bigger divergence on
the intersection if this one is far away from the original point than if it close to it.

As mentioned, this approach has not been implemented due to time constraints. However, the
theoretical model proposed here can be implemented in future research. Up until then, the
implementation has been updated by maintaining different road hierarchy levels up until
certain zoom levels by separating the roads from the background SSC and placing them in the
road SSC.

5.2. Making the viewer compatible for mobile devices

Next to maintaining the roads, it was attempted to make the implementation available for
mobile devices. The modifications to make this happen was exclusively performed on the
Javascript at the client side. The structure of the javascript snippets which were used for
developing the existing demo (and which are bundled by using node.js and watchify) were
also reused. The functions that tell the map canvas how to change what is displayed (the
extent/zooming and the location) were already present. Therefore, the task focus moved to
catching the user’s touchscreen interactions and processing them correctly.

5.2.1 Javascript touchscreen interactions
Just as for a computer’s mouse, specific events triggered by the touchscreens of mobile/tablet
devices exist and can be caught by the EventListener function of the Canvas
(canvas.addEventListener; canvas.removeEventListener). In total, there are three events. The
TouchStart event is sent as soon as a one or several fingers touch the screen. As soon as one
or several of these fingers move, the TouchMove event is sent. And as soon as some
(including one) or all of the fingers are removed from the screen, the TouchEnd event is sent.
A main challenge compared to the current implementation is that the panning (moving a
finger) and zooming (pinching with fingers) actions use the same types of events. On a
traditional desktop, the wheel (mouseWheel) and mouse clicking (mouseDown, mouseMove,
mouseUp) allow a clearer separation. The touchpads also send different events - the
separation does therefore take place at hardware level, outside of the browser.

46

Figure 47. Work principle of JavaScript touchscreen interaction

In opposition, to be able to separate touch screen moving/panning and pinching/zooming,
if-statements have to be implemented in the client-side run javascript. First, the EventListener
is created by specifying which function is created when the event occurs.

Second, the event is passed as input to the function which is triggered.

Third, the number of touches at that moment can be accessed with the evt.changedTouches.
Length object. In such way, it is possible to identify the number of fingers present.

Furthermore, the coordinates of the touches can be accessed with the following statements
(the r.left and canvas.clientLeft are used to transform screen coordinates into canvas
coordinates).

These coordinates can then be used to pan the map, ​dx​ and ​dy ​ being expressions calculating
how much the map moved since the last pan TouchMove event:

47

When two fingers are used, the coordinates can be used to send a zoom instruction as follows.
The focus point for the zoom action is defined as the mean between all the four screen
contacts (each finger, both start and end).

Finally, once one of the fingers is released and the TouchEnd event is sent, depending on the
number of fingers active, either the function doPanEnd (named doTouchEnd in the code; one
finger, panning) or doPinchEnd (two fingers) will be triggered. The doTouchEnd is
essentially a copy of the existing doMouseUp function (drag.js). The doPinchEnd function
essentially resets a number of variables and registers the time at which the fingers left the
screen.

5.2.2 Limitations of hardware
While the approach to distinguish the presence of one vs. two fingers sounds pretty simple on
paper, it is a bit more complicated in practice, which is due to hardware performance
limitations. Indeed, touchscreens have a limited reliability, especially in detecting two present
fingers. This results in having few moments where only one out of two fingers is detected
(theoretically up to 10 fingers are supported). These moments need to be filtered out. Which is
done by the touchmode variable which can only be overwritten when it is undefined.

This prevents the touchmode from switching back to one after it has been switched to two.
This filters out any potential interruptions due to losing the detection of one of the finger
when pinching. Furthermore, an attempt to detect static fingers and indicate that one as the
center position for the zoom action was done. The logical approach here seems to detect
whether one of the fingers is static. However, this is never totally the case: instead of being
really static, the fingers rather move around a fixed point. A trial to identify a finger which is
not moving was done using a threshold, comparing the current position with the very first
when the pinch started.

48

However, it appeared that the interval at which the movement of the fingers are sent to the
javascript are not stable (this might be due to the contact between the finger and the
touchscreen not being regular). Therefore, the usage of a counter is needed in order to see
whether one of the fingers is ‘rather’ moving or stable:

However, this attempt was not fruitful either as a static finger was perceived as moving just as
many times as it was static. Several thresholds were used to perform a test. While a small
threshold led to static fingers not being detected, a bigger threshold led to moving fingers
being detected as static. There seems to be no real middle in between. And even if the middle
would be found, no warranty that the same middle could be used for another device or for
different pinching speeds. Therefore, the implementation of the detection of a static finger
was dismissed.

A third aspect which was, this time successfully, explored is the appearance of interactions
shortly after the release of the fingers. In fact, the two fingers are actually never released at
the same time - often resulting in an unexpected panning when finishing the pinch. This issue
is solved by registering the time when the pinch was ended, using a function of the existing
draw.js file (in the DoPinchEnd function).

When a pan instruction might occur in the DoTouchMove function, a check was done to make
sure the last end of a pinch took place sufficiently long ago.

49

5.2.3 Differences between browsers
During the development of the support for touchscreens, it appeared that the browser and the
hardware have a high impact on the correct functioning of these interactions. Using different
phones, it appeared that the demo was only working correctly with the Firefox browser for
mobile. Chrome does offer the same functionalities, with the differences that the zoom does
only react after releasing the fingers. On Safari for iPhone, only the panning appears to work.
This shows that on top of the different touchscreen technologies and reliabilities, the browser
also needs to be taken into account.

Moreover, it was observed that depending on the hardware performance, crashes of the
browser could occur (especially on mobile devices with smaller GPUs) when interactions are
done at a quicker pace than the average ‘browsing’ user. Because, as mentioned, the binary
file that is loaded to the browser is relatively large in our adapted implementation, we clipped
the original dataset for the mobile service. In order to limit the size of the task to a doable one,
it was decided not to do a complete debugging with several browser/hardware combinations.

5.3 Validation survey

After the adaptations to the vario-scale demo were done, the same BRT-user group as for the
first survey was contacted for a validation survey. A different target sample was given for the
old and new demo and users were asked to record the time needed to find a location on a
different scale. To avoid bias of users having already explored the map, half of the
participants received the instruction to do the exercise on the new demo first (v2 on figure 48,
5 respondents), while the other ones (v1 on figure 48, 3 respondents) had to start with the old
demo.

Figure 48. Target samples of the old (left) and the new (right) demo exercise. Respectively in

blue and red on the next image.

50

Figure 49. Location of the target samples: old (blue) and new demo (red)

The conclusions that can be drawn from the relative time needed to find the target samples are
rather limited. In fact, for some users, the new demo allowed a faster finding while for other
users, the old demo appears to be quicker. The standard deviation of the results is nearly twice
as big for the new demo (128,5 seconds for the new demo, for the users that stopped before
finding the sample) than for the old demo (63 seconds). In both cases, given the average
values (101 seconds for the old demo, 190 seconds for the new one) - the standard deviations
are too big to allow solid conclusions. Also, the amount of respondents is too low to come to
any conclusion for this test. For the target sample in the new demo, two persons did abandon
before finding the sample. Two out of nine users were quicker in the new demo. They both
belonged to the v1 group. However, a third person of the v1 group did abandon before finding
the target sample in the new demo, hereby nuancing these results.

51

Figure 50. Statistic results of the validation survey

Potential conclusions being rather limited on the data itself, they should rather be drawn on
the way to conduct such surveys. In fact, several hypotheses can be made on which factors
influenced the mean results and the standard deviations. First, the fact that the survey was
conducted by e-mail implied the usage of different hardware. Especially for the new demo
which reaches the limits of some devices, the usage of different hardwares can be problematic
as user interaction might be less smooth for some users than for others, especially regarding
the size of the binary file. The influence of hardware was confirmed by some users which
reported to have issues interacting with the map or lacked smoothness. Second, given that two
target samples are never equal (in the ease to find them) it is rather hard to compare results
between them. This would require a third survey using the same sample on two identical
implementations. As about eight participants were expected (with nine respondents so this
assumption was rather correct) and a sample of four considered too small, it was therefore
decided to use different different target samples for the two demo versions.

Finally it appears that such a survey is hard to conduct with a limited number of participants
(more than 20 participants are definitely needed). This would allow the usage of a single
target sample for both old and new demo versions - hereby allowing for a more direct
comparison. However, a randomised factor might still persist as a form of ‘chance’ when
finding the target sample in the demo might still persist. Several factors such as zoom level
differences and euclidean distance between start screen and target screen play a role here. An
additional important point is that as the client side and thus hardware plays a big role, in
opposition to more classical hardware surveys. Therefore, a survey in person rather than
online, and using identical hardware should be preferred for these kind of exercise-surveys.

Concludingly, we can say that the two research options have been implemented. The road
network is now correct throughout all scales. However, our framework for continuously
resizing these roads has not yet been implemented. Mobile services have been implemented.

52

The feedback towards the users has been made. Their reaction on the implementation,
however, was hard to measure due to the survey set up and time constraints.

6. Conclusion / Discussion

Vario-scale is a new data storage and mapping technique that attempts to shift the paradigm
towards variable scale geo-information in order to automatically generalize maps and
facilitate smooth zoom while minimizing data redundancy. In this research we attempted to
bridge the gap between assessing Kadaster topographic data users’ interest in vario-scale and
trying to improve the existing implementation of vario-scale. The main research question was
how can the implementation of vario-scale be improved to better meet the needs for end users
of Kadaster topographic data?

User needs were assessed and a number of cartographic and other functional needs were
determined. From both categories, one research option was chosen, respectively the road
network and adapting the implementation for mobile devices. The latter has been
implemented without many problems. Adapting the road network was arguably more
important since the users indicated that it is very important for orientation during zooming.
First a different method was tried where road faces were split and a combination of faces and
lines were visualized as a method (Suba et al., 2016). While this method remains more true to
the vario-scale concept, the combination of rendering lines and polygons with the same
thickness through different scales proved too difficult. This caused a change of method to the
current one. Because of this, there was not enough time to fully implement the double tapered
approach of visualizing roads. However, the framework has now been developed and in future
research this can be fully implemented in the existing demo.

A nice outcome of this research is that the viewer has been adapted so it can process different
bin files, and thus different cubes, at the same time. This can lead to a greater flexibility in
overlay of different datasets. One of the main user needs was to have labels and symbols
represented in vario-scale. Having the possibility of rendering multiple cubes could help this
in the future.

A problem we encountered was the size of the background SSC binary file. The smallest bin
file we created was roughly eight times the size of the one that is loaded in the browser in the
implementation of the previous demo. Much effort was put into trying to reduce the file size
but the exact cause of the increase in size was not found. This also led to problems in trying to
load the map on the client side. Some browsers crashed trying to render the large bin file.
Research has already been conducted into how to process large datasets for vario-scale
purposes (Meijers et al., 2015; Rovers, 2016; Xu, 2017). More research can perhaps be done
in how to fully implement this in the web application.

Another point for future research is solving hardware differences that will affect the
client-side rendering. This would enable more coherent client-side performance among
different devices. Also, the demo should be adapted to not only work for Firefox but every
type of browsers. Furthermore, the assessment of the adaptations with the second survey was
not very satisfactory. It would be good if an improved validation survey with larger group of
users would be conducted. Currently the validation survey is performed in a small group and
therefore it’s hard to evaluate the survey results. Random factors such as hardware differences

53

can have a noticeable influence on the survey process. To obtain a valid evaluation survey at
least twice the number of users we had now are needed. A final future research suggestion is
that the openGL javascript can be explored more in depth. This way it can be checked
whether there are more efficient ways to render two bin files and overlay them.

Regarding the interest of Kadaster in vario-scale technology, the outcomes of this research
provide some useful information. It was found that users of geo-information do see the
benefits of vario-scale data, in different ways. Seamless zooming, map retrieval at any scale
and less network usage are some of those benefits. It became clear that users have heard about
vario-scale but still do not have a lot of knowledge about the subject. Implementing new
technologies is a leap into the dark for companies, unless those technologies are well
researched and standardized. Vario-scale is a broadly researched topic with irrefutable
benefits, but the implementation of the software can cause some headaches. The software ​as
is​ , requires a careful installation and a collaborative environment. Right now, it can not be
characterized as ‘plug and play software’. However, this project shows that a small team can
familiarize themselves with the software in a small amount of time. Based on this, it is can be
assumed that companies in the geo-information profession could reach the point of offering
vario-scale data in a reasonable amount of time, if they are willing to embrace the technology.

54

Literature

Cantor, D., & Jones, B. (2012). WebGL beginner's guide. Packt Publishing Ltd.

Danchilla, B. (2012). Beginning WebGL for HTML5. Apress.

Dilo, A., Oosterom, P. van, Hofman, A. (2009) Constrained tGAP for generalization between
scales: The case of Dutch topographic data. Computers, Environment and Urban Systems, Vol
33, pp. 388–402.

Driel, M. (2015) Real time intersections on Space Scale Cube data. MSc Thesis, Universiteit
Utrecht.

Groeneveld, IJ. (2018) Generalisation of Hydrography Networks for a Vario-Scale Basemap.
TU Delft.

Harrie, L., Sarjakoski, T., Lehto, L. (2002) A variable-scale map for small-display
cartography. Int Arch Photogrammetry Remote Sens Spat Inf Sci. Vol 34(4), pp. 237–242.

Hampe, M., Sester, M., Harrie, L. (2004) Multiple representation databases to support
visualization on mobile devices. In: Proceedings of the 20th ISPRS Congress, International
Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Istanbul,
Turkey, vol 35(6), pp 135–140.

Kadaster.nl (n.d.). Vector tiles BRT en BGT [Software]. Available from
https://geodata.nationaalgeoregister.nl/beta/topotiles-viewer/#8/52.33/5.19

Meijers, M. (2011) Variable-scale Geo-information. PhD Thesis, TU Delft.

Meijers, M., Oosterom, P. van, Quak, W. (2009). A storage and transfer efficient data
structure for variable scale vector data, in: M. Sester el al. (eds.), Advances in GIScience,
2009, Springer-Verlag.

Meijers, M., Stoter, J., Oosterom, P. van. (2012). Comparing the vario-scale approach with a
discrete multi-representation based approach for automated generalisation of topographic
data. 15th ICA Generalisation Workshop, Istanbul, Turkey, 2012

Meijers, M., Suba, R., Oosterom, P. van (2015). Parallel Creation of Vario-Scale Data
Structures for Large Datasets. 4th ISPRS International Workshop on Web Mapping and
Geoprocessing Services, 01-03 July 2015, Sardinia, Italy.

Meijers, M. (n.d.). Vario-scale Geoinformation webGL demo [Software]. Available from
http://varioscale.bk.tudelft.nl/gpudemo/2017/07/one/

NCGIA (1993) Research Initiative: Initiative 3: multiple representations, closing report.

Oosterom, P. van, Meijers, M. (2011) Towards a true vario-scale structure supporting

55

smooth-zoom, 14th ICA/ISPRS Workshop on Generalization and Multiple Representation,
2011, Paris.

Oosterom, P. van, Meijers, M. (2014) Vario-scale structures supporting smooth zoom and
progressive transfer of 2D and 3D data. International Journal of Geographical Information
Science, Vol 28(3), pp. 255-278.

Oosterom, P., Meijers, M., Stoter, J., Suba, R. (2014) Data Structures for Continuous
Generalisation: tGAP and SSC, in: D. Burghardt et al, Abstracting Geographic Information in
a Data rich World, 2014, Springer.

Rovers, A. (2016) Exploring the use of a generic spatial access method for chaching and
efficient retrieval of vario-scale data in a client-server architecture. MSc thesis in Geomatics
for the Built Environment, TU Delft.

Suba, R., Meijers, M., Oosterom, P. van. (2016) Continuous Road Network Generalization
throughout All Scales. International Journal of Geo-Information, Vol 145(5).

TU Delft (2018) Vario-scale Geo-Information. ​http://varioscale.bk.tudelft.nl/

Xu, Y. (2017) Construction of Responsive Web Service for Smooth Rendering of Large SSC
Dataset. MSc Thesis in Geomatics for the Built Environment, TU Delft.

56

http://varioscale.bk.tudelft.nl/

Appendix I
BRT user group meeting survey

Survey

1. What is the biggest potential of varioscale from your perspective?

o continuous zoom/animations
o automatic generalization
o several zoom levels in one visualization/tilted slice
o something else? ………………………………………..

2. Visually speaking, what is missing in the demo? what would you add?

3. Please make the small map orientation exercise on the A3 page!

4. Are you willing to help us for the validation of the new demonstration (about 30 minutes,
around 15-18th of June)? Please give us your contact details!

5. At your company, are there specialists in map visualization which we might contact? Or
anyone else who might be interested in varioscale?

Name E-mail

The top map shows you a location (red cross) in zoomed-in view.
Place the same cross on the smaller scale maps and circle the
elements you used for orientation on the black/white maps below.

Appendix II
2-minute online web survey

2-minute survey: Which of the following 5
varioscale use-cases sounds the most promising to
you?
This form is part of a TU-Delft MSc Geomatisc synthesis-project which is conducted in
collaboration with the Dutch Kadaster. Within this one, we aim to answer the question "How can
the implementation of varioscale visualization be improved to better meet the needs of the end-
users?".

This form contains a total of 5 use-cases and we would be very thankful if you accept to give your
opinion on them!

Thank you,
With kind regards,

Pablo, Pim, Shenglan and Freek

*Required

Fisheye: potential *

The continuous transition between the zoom levels is made possible by varioscale technology.
More detailed can thus be displayed in the center and less on the sides of the view, creating
the effect of a magnifier. Source of the pictures: http://www.gdmc.nl/publications/2014/Vario-
scale_smooth_zoom_progressive_transfer.pdf
Mark only one oval.

1 2 3 4 5 6 7 8 9 10

Low
potential

High
potential

1.

1) Fisheye: several zoom levels in one view

2) Perspective view: enhanced tilted maps

2-minute survey: Which of the following 5 varioscale use-cases sounds... https://docs.google.com/forms/d/1gXEwnLgcQ4kopd3MLrzycaCuo...

1 of 5 21/06/2018, 13:19

Perspective view: potential *

First applications of tilted maps have been introduced, such as the beta version of the vector
tiles of the Dutch kadaster. An issue is that the detail level is the same in the entire view.
Using varioscale technology, the detail level could be adapted to the distance from the viewer,
avoiding too heavy maps! Source: own gif created using the kadaster vector tile demo
(https://geodata.nationaalgeoregister.nl/beta/topotiles-viewer/) and image editing.
Mark only one oval.

1 2 3 4 5 6 7 8 9 10

Low
potential

High
potential

2.

(For the ones who attended the meeting on monday: the last
three use-cases were already mentioned there. Thus, you
can directly answer the questions)

3) Seamless zoom-in/out

2-minute survey: Which of the following 5 varioscale use-cases sounds... https://docs.google.com/forms/d/1gXEwnLgcQ4kopd3MLrzycaCuo...

2 of 5 21/06/2018, 13:19

Seamless zoom: potential *

This is an aspect that might change with varioscale as the content of the map would directly
adapt to the specific zoom-level. By applying vario-scales, no abruption between maps take
place anymore. The eye does not lose track of what it is looking at. In fact, objects do not
suddenly disappear, change styles or are abruptly aggregated anymore. Varioscale acts as a
transition animation between maps scales by showing the changes that are performed.
Source of the images: varioscale demo by Martijn Meijers (http://varioscale.bk.tudelft.nl
/gpudemo/2017/07/one/)
Mark only one oval.

1 2 3 4 5 6 7 8 9 10

Low
potential

High
potential

3.

4) Automatic generalization at any scale

2-minute survey: Which of the following 5 varioscale use-cases sounds... https://docs.google.com/forms/d/1gXEwnLgcQ4kopd3MLrzycaCuo...

3 of 5 21/06/2018, 13:19

Automatic generalization at any scale: potential *

Maps are traditionally produced at a fixed set of scales which is often nationally specific and
inherited from the past. When automatic generalization is applied, it is custom-made for these
scales and new scales require new algorithms. By applying varioscale one algorithm could be
used for generating maps of any scale. The number of scales therefore becomes potentially
infinite. Source of images: varioscale demo by Martijn Meijers
Mark only one oval.

1 2 3 4 5 6 7 8 9 10

Low
potential

High
potential

4.

Less network usage: potential *

Within the element generation - rendering - visualization process, the data is usually
transferred from server to client side after the rendering. This involves transferring raster data
which is rather heavy. By performing the rendering (including transition animations) on the
client side, the data is transferred in a rawer stage which induces less network usage. Source
of images: varioscale demo by Martijn Meijers
Mark only one oval.

1 2 3 4 5 6 7 8 9 10

Low
potential

High
potential

5.

Any remarks?6.

5) Less network usage

2-minute survey: Which of the following 5 varioscale use-cases sounds... https://docs.google.com/forms/d/1gXEwnLgcQ4kopd3MLrzycaCuo...

4 of 5 21/06/2018, 13:19

Appendix III
Python script to display slice from tGAP in QGIS.

1 from qgis.core import *
2 from qgis.utils import iface
3
4 canvas = iface.mapCanvas()
5 layers = canvas.layers()
6
7 MAIN = [10300, 10301, 10302, 10310, 10311, 10312]
8 REGIO = [10400, 10401, 10402, 10410, 10411, 10412]
9 LOCAL = [10500, 10501, 10502, 10510, 10511, 10512]

10 STREET = [10600, 10601, 10602, 10720, 10710, 10730]
11
12 ROADS = True
13
14 main = True if ROADS else False
15 regio = True if ROADS else False
16 local = True if ROADS else False
17 street = True if ROADS else False
18
19 i = 1
20
21 query = "step_high >= {0} AND step_low < {1} AND ".format(str(i), str(i))
22
23 class_query = "("
24
25 if main:
26 for n in MAIN:
27 class_query += "feature_class = " + str(n) + " OR "
28 if regio:
29 for n in REGIO:
30 class_query += "feature_class = " + str(n) + " OR "
31 if local:
32 for n in LOCAL:
33 class_query += "feature_class = " + str(n) + " OR "
34 if street:
35 for n in STREET:
36 class_query += "feature_class = " + str(n) + " OR "
37
38 if len(class_query) > 1:
39 query += class_query[:-4] + ")"
40 else:
41 query = query[:-5]
42
43 print query
44
45 for layer in layers:
46 layer.setSubsetString(query)
47 canvas.refresh()

Appendix IV
Python script to create the databases for only roads

1 # encoding: utf-8
2 from connection import connection
3
4 def main(tgap_name):
5 """Configure feature data
6 """
7
8 # Create query for road codes
9 SQL = """

10 SELECT DISTINCT
11 feature_class, vario_code
12 FROM
13 {0}_attr_map
14 WHERE
15 vario_code = 2
16 OR
17 vario_code = 3
18 OR
19 vario_code = 4
20 OR
21 vario_code = 5;
22 """.format(tgap_name)
23
24 # Set configuration roads
25 db = connection()
26 roads = [int(record[0]) for record in db.recordset(SQL)]
27 codes = [int(record[1]) for record in db.recordset(SQL)]
28 attr_map = {}
29 inv_map = {}
30 for feature, code in zip(roads, codes):
31 attr_map[feature] = code
32 inv_map[code] = feature
33
34 rds = ['10411', '10410', '10310', '10311', '10720', '10730', '10600',

'10710', '10510']
35 print inv_map
36 return
37
38 # Create query for number of steps
39 SQL = """
40 SELECT
41 max(step_high)
42 FROM
43 {0}_tgap_face;
44 """.format(tgap_name)
45
46 # Set configuration steps
47 db = connection()
48 steps = [int(record[0]) for record in db.recordset(SQL)][0]
49
50 # Create topology name query
51 SQL = """
52 SELECT
53 topology_nm
54 FROM
55 tgap_metadata
56 WHERE
57 tgap_nm = '{0}'
58 """.format(tgap_name)
59
60 # Set configuration topology name
61 db = connection()
62 topology_name = [record[0] for record in db.recordset(SQL)][0]
63
64 # Create road table
65 SQL = """
66 SET CLIENT_ENCODING TO UTF8;
67 SET STANDARD_CONFORMING_STRINGS TO ON;
68 BEGIN;

69 DROP TABLE IF EXISTS "{0}_roads_faces";
70 CREATE TABLE "{0}_roads_faces" (
71 "face_id" numeric NOT NULL,
72 "feature_class" numeric,
73 "area" numeric
74);
75 """.format(topology_name)
76
77 db = connection(True)
78 db.execute(SQL)
79
80 # Record road network
81 SQL = """
82 SELECT
83 face_id, feature_class, area, mbr_geometry, geometry,

pip_geometry
84 FROM
85 {0}_face
86 WHERE
87 feature_class = {1}
88 """.format(topology_name, roads[0])
89
90 SQL += ''.join([
91 """
92 OR
93 feature_class = {}
94 """.format(code) for code in roads[1:]])
95
96 # Save road data
97 road_data = []
98 db = connection(True)
99 for record in db.recordset(SQL):

100 road_data.append(record)
101
102 # Insert road data
103 db = connection(True)
104 db.execute("SELECT AddGeometryColumn('','{0}

_roads_faces','geometry','28992','POLYGON',2);".format(topology_name))
105 db.execute("SELECT AddGeometryColumn('','{0}

_roads_faces','pip_geometry','28992','POINT',2);".format(topology_name))
106 db.execute("SELECT AddGeometryColumn('','{0}

_roads_faces','mbr_geometry','28992','POLYGON',2);".format(topology_name))
107 for face_id, feature_class, area, mbr_geometry, geometry,

pip_geometry in road_data:
108 SQL = """INSERT INTO "{0}

_roads_faces" ("face_id","feature_class","area","mbr_geometry","geometry","pip_geometry")
VALUES ('{1}','{2}','{3}','SRID=28992;{4}','SRID=28992;{5}','SRID=28992;{6}');

109 """.format(topology_name, str(face_id), str(feature_class),
str(area), str(mbr_geometry), str(geometry), str(pip_geometry))

110 db.execute(SQL)
111 db.execute('COMMIT;')
112
113 # Record all road faces
114 SQL = """
115 SELECT
116 face_id, feature_class, area, mbr_geometry, geometry,

pip_geometry
117 FROM {0}_roads_faces
118 """.format(topology_name)
119
120 # Save road faces
121 road_data = []
122 db = connection(True)
123 for record in db.recordset(SQL):
124 road_data.append(record)
125
126 # Create tGAP roads
127 SQL = """
128 SET CLIENT_ENCODING TO UTF8;

129 SET STANDARD_CONFORMING_STRINGS TO ON;
130 BEGIN;
131 DROP TABLE IF EXISTS "{0}_tgap_roads_faces";
132 CREATE TABLE "{0}_tgap_roads_faces" (
133 "face_id" numeric NOT NULL,
134 "feature_class" numeric,
135 "area" numeric,
136 "step_low" numeric,
137 "step_high" numeric
138);
139 """.format(topology_name)
140
141 db = connection(True)
142 db.execute(SQL)
143
144 # Insert tGAP data
145 db = connection(True)
146 db.execute("SELECT AddGeometryColumn('','{0}

_tgap_roads_faces','geometry','28992','POLYGON',2);".format(topology_name))
147 db.execute("SELECT AddGeometryColumn('','{0}

_tgap_roads_faces','pip_geometry','28992','POINT',2);".format(topology_name))
148 db.execute("SELECT AddGeometryColumn('','{0}

_tgap_roads_faces','mbr_geometry','28992','POLYGON',
2);".format(topology_name))

149 step_low = 0
150 for face_id, feature_class, area, mbr_geometry, geometry,

pip_geometry in road_data:
151 step_high = int(feature_class) - 1
152 SQL = """INSERT INTO "{0}

_tgap_roads_faces" ("face_id","feature_class","area","mbr_geometry","geometry","pip_geometry",
"step_low", "step_high") VALUES ('{1}','{2}','{3}','SRID=28992;
{4}','SRID=28992;{5}','SRID=28992;{6}','{7}','{8}');

153 """.format(topology_name, str(face_id), str(feature_class),
str(area), str(mbr_geometry), str(geometry), str(pip_geometry),
str(step_low), str(step_high))

154 db.execute(SQL)
155 db.execute('COMMIT;')
156
157 # Create edge table
158 SQL = """
159 SET CLIENT_ENCODING TO UTF8;
160 SET STANDARD_CONFORMING_STRINGS TO ON;
161 BEGIN;
162 DROP TABLE IF EXISTS "{0}_tgap_roads_edges";
163 CREATE TABLE "{0}_tgap_roads_edges" (
164 "edge_id" numeric NOT NULL,
165 "left_face_id" numeric,
166 "right_face_id" numeric,
167 "end_node_id" numeric,
168 "step_low" numeric,
169 "step_high" numeric
170);
171 """.format(topology_name)
172
173 db = connection(True)
174 db.execute(SQL)
175
176 # Record road edges
177 SQL = """
178 SELECT DISTINCT
179 e.edge_id, e.left_face_id, e.right_face_id, e.end_node_id,

e.geometry, r.step_low, r.step_high
180 FROM
181 vario_edge e
182 RIGHT JOIN vario_tgap_roads_faces r ON
183 e.left_face_id = r.face_id
184 OR
185 e.right_face_id = r.face_id
186 """.format(topology_name)

187
188 # Save road edges data
189 edge_data = []
190 db = connection(True)
191 for record in db.recordset(SQL):
192 edge_data.append(record)
193
194 # Insert edge data
195 db = connection(True)
196 db.execute("SELECT AddGeometryColumn('','{0}

_tgap_roads_edges','geometry','28992','LINESTRING',2);".format(topology_name))
197 for edge_id, left_face_id, right_face_id, end_node_id, geometry,

step_low, step_high in edge_data:
198 SQL = """INSERT INTO "{0}

_tgap_roads_edges" ("edge_id","left_face_id","right_face_id","end_node_id","geometry","step_low","step_high")
VALUES ('{1}','{2}','{3}','{4}','SRID=28992;{5}','{6}','{7}');

199 """.format(topology_name, str(edge_id), str(left_face_id),
str(right_face_id) ,str(end_node_id), str(geometry), str(step_low),
str(step_high))

200 db.execute(SQL)
201 db.execute('COMMIT;')
202
203 main('result')

Appendix V
Python script to serialize the roads to a .OBJ file.

1 from connection import connection
2 from polyhedron_structure import PolyhedronStructure, serialize_obj_groups
3 from tri import ToPointsAndSegments, triangulate
4 from tri.delaunay import RegionatedTriangleIterator, TopologyViolationError
5 from itertools import groupby
6
7 def serialize(topology_name):
8 """Write road tGAP to file
9 """

10
11 # Create structure of bottom
12 structure = PolyhedronStructure(universe_id = 0)
13
14 SQL = """
15 SELECT
16 face_id, feature_class, step_low, step_high
17 FROM
18 {0}_tgap_roads_faces
19 """.format(topology_name)
20
21 # Insert faces in structure
22 db = connection(True)
23 for face_id, feature_class, step_low, step_high in db.recordset(SQL):
24 attributes = {'feature_class': feature_class, 'step_low':

step_low, 'step_high': step_high}
25 structure.add_polyhedron(face_id, attributes)
26
27 ranges = [9595 / 3 * x for x in range(0, 4)]
28 ranges[-1] = 8500
29 print ranges
30 return
31 for epoch, height in zip(range(0, 4), ranges):
32
33 SQL = """
34 SELECT
35 f.face_id, f.step_low, e.edge_id, e.step_low,

e.step_high, e.geometry
36 FROM
37 {0}_tgap_roads_faces f,
38 {0}_tgap_roads_edges e
39 WHERE
40 f.step_high > {1}
41 AND
42 (
43 f.face_id = left_face_id
44 OR
45 f.face_id = right_face_id
46)
47 ORDER BY
48 f.face_id
49 """.format(topology_name, str(epoch))
50
51 # Insert facets of all other faces
52 db = connection(True)
53 for k, v in groupby(db.recordset(SQL), key = lambda record:

record[0]):
54 pts_segs = ToPointsAndSegments()
55 for (face_id, step_low, edge_id, edge_step_low,

edge_step_high, geometry) in v:
56 for pt in geometry:
57 pts_segs.add_point(pt)
58 for i, j in zip(xrange(0, len(geometry)-1),

xrange(1, len(geometry))):
59 start, end = geometry[i], geometry[j]
60 pts_segs.add_segment(start, end)
61 assert edge_step_low <= step_low <=

edge_step_high
62 try:
63 dt = triangulate(pts_segs.points,

pts_segs.infos, pts_segs.segments)
64 for group, depth, triangle in

RegionatedTriangleIterator(dt):
65 if depth == 1:
66 tri = [(v.x, v.y, height) for

v in triangle.vertices]
67 structure.add_facet([tri],

None, face_id)
68 except TopologyViolationError:
69 raise ValueError ('Problem with face

{0}'.format(face_id))
70
71 return structure
72
73 with open('../binfile/roads.obj', 'w') as io:
74 serialize_obj_groups(serialize('vario'), io)

Appendix VI
Python script to transform a .OBJ file to a .BIN file.

1 from array import array
2
3 def lut():
4 """
5 Produce lookup table for rgb values, based on feature class (Top10NL).
6 """
7 lut = {}
8 inv_map = {2: (132, 132, 132), 3: (255, 165, 0), 4: (255, 165, 0), 5:

(255, 0, 0)}
9 fclassnew = [

10 13100, 13300, 13400, 13000, 10000, 10001, 10002, 10100, 10101, 10102,
11 10200, 10201, 10202, 10300, 10301, 10302, 10310, 10311, 10312, 10400,
12 10401, 10402, 10410, 10411, 10412, 10500, 10501, 10502, 10510, 10511,
13 10512, 10600, 10601, 10602, 10740, 10741, 10742, 10750, 10751, 10752,
14 10760, 10761, 10762, 10780, 10781, 10782, 10700, 10701, 10702, 10710,
15 10711, 10712, 10790, 10791, 10792, 10720, 10721, 10722, 10730, 10731,
16 10732, 12400, 12500, 12600, 12405, 12505, 12605, 12800, 12820, 12810,
17 12700, 14000, 14002, 14010, 14012, 14020, 14022, 14030, 14032, 14040,
18 14042, 14050, 14052, 14060, 14062, 14070, 14072, 14080, 14082, 14090,
19 14092, 14100, 14102, 14110, 14112, 14120, 14122, 14130, 14132, 14140,
20 14142, 14160, 14162, 14170, 14172, 14180, 14182, 14190, 14192]
21 rednew = [
22 168, 156, 204, 0, 204, 204, 204, 204, 204, 204,
23 153, 153, 153, 230, 230, 230, 230, 230, 230, 255, 255, 255,
24 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
25 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
26 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
27 255, 255, 255, 179, 179, 179, 156, 156, 156, 190,
28 190, 190, 190, 190, 190, 190, 190, 190, 190, 104,
29 104, 255, 255, 110, 110, 156, 156, 201, 201, 255,
30 255, 140, 140, 140, 140, 140, 140, 140, 140, 204,
31 204, 204, 204, 255, 255, 201, 201, 252, 252, 255,
32 255, 201, 201, 255, 255, 255, 255]
33 greennew = [
34 0, 156, 179, 0, 204, 204, 204, 204, 204, 204,
35 96, 96, 96, 0, 0, 0, 0, 0, 0, 170, 170, 170,
36 170, 170, 170, 255, 255, 255, 255, 255, 255, 255,
37 255, 255, 211, 211, 211, 167, 167, 167, 167, 167,
38 167, 255, 255, 255, 255, 255, 255, 255, 255, 255,
39 255, 255, 255, 179, 179, 179, 156, 156, 156, 232,
40 232, 232, 232, 232, 232, 232, 232, 232, 232, 104,
41 104, 255, 255, 110, 110, 156, 156, 235, 235, 255,
42 255, 168, 168, 168, 168, 168, 168, 168, 168, 204,
43 204, 204, 204, 255, 255, 235, 235, 179, 179, 255,
44 255, 235, 235, 255, 255, 255, 255]
45 bluenew = [
46 0, 156, 102, 0, 204, 204, 204, 204, 204, 204,
47 137, 137, 137, 0, 0, 0, 0, 0, 0, 0, 0, 0,
48 0, 0, 0, 0, 0, 0, 0, 0, 0, 255,
49 255, 255, 127, 127, 127, 127, 127, 127, 127, 127,
50 127, 255, 255, 255, 255, 255, 255, 255, 255, 255,
51 255, 255, 255, 0, 0, 0, 156, 156, 156, 255,
52 255, 255, 255, 255, 255, 255, 255, 255, 255, 104,
53 104, 222, 222, 110, 110, 156, 156, 112, 112, 190,
54 190, 0, 0, 0, 0, 0, 0, 0, 0, 204,
55 204, 204, 204, 222, 222, 112, 112, 251, 251, 255,
56 255, 112, 112, 255, 255, 115, 115]
57
58 colors = [rednew, greennew, bluenew]
59
60 for i in range(2, 6):
61 fclassnew.append(i)
62 for col, key in zip(colors, inv_map[i]):
63 col.append(key)
64
65 l = zip(fclassnew, rednew, greennew, bluenew)
66 for item in l:
67 lut[item[0]] = item[1:]
68 return lut

69
70 def main(in_name, out_name):
71
72 zero_based = lambda x: x-1
73 LUT = lut()
74 color = None
75 count = 0
76 arr = array('f')
77
78 f_in = open(in_name, 'r')
79 f_out = open(out_name, 'wb')
80
81 ct = 0
82
83 vertices = []
84
85 lines = f_in.readlines()
86
87 for line in lines:
88 if line.startswith('v'):
89 v = map(float, line.strip().split(' ')[1:])
90 vertices.append(v)
91
92 x = [_[0] for _ in vertices]
93 y = [_[1] for _ in vertices]
94 bounds = min(x), max(x), min(y), max(y)
95 deltas = [3000, -3000, 1000, -3000]
96 # deltas = [0, 0, 0, 0]
97 new_bounds = [a + b for a, b in zip(bounds, deltas)]
98 minx, maxx, miny, maxy = new_bounds
99

100 for line in lines:
101 if line.startswith('g'):
102 color = map(int, line.strip().split(' ')[1:])[1]
103
104 elif line.startswith('f'):
105 f = map(zero_based, map(int, line.strip().split(' ')

[1:]))
106
107 if len(f) == 3:
108 rgb = LUT[color]
109 check = 0
110 for vertex_indices in f:
111 if (vertices[vertex_indices][0] <

minx) or (vertices[vertex_indices][0] > maxx) or (vertices[vertex_indices][1]
> maxy) or (vertices[vertex_indices][1] < miny):

112 check += 1
113
114 if check == 3:
115 continue
116
117 for vertex_indices in f:
118 if ct > 20000000:
119 arr.tofile(f_out)
120 arr = array('f')
121 ct = 0
122
123 [arr.append(x) for x in

vertices[vertex_indices]]
124 [arr.append(c/255.) for c in rgb]
125 ct += 6
126
127 f_in.close()
128 arr.tofile(f_out)
129 f_out.close()
130
131 if __name__ == '__main__':
132 main('road_io_new.obj', 'road_io_new.bin')
133

Appendix VII
Python script to cut of the bottom of the background tGAP.

1 # encoding: utf-8
2 from connection import connection
3
4 def main(tgap_name, n):
5 """
6 tgap_name -- name of tgap
7 n -- place where to cut off
8 """
9

10 # Cut out all faces that end before/on threshold
11 SQL = """
12 DROP TABLE IF EXISTS final_tgap_face;
13 CREATE TABLE final_tgap_face AS (
14 SELECT * FROM {0}_tgap_face
15 WHERE step_high > {1}
16);
17 """.format(tgap_name, str(n))
18 db = connection(True)
19 db.execute(SQL)
20
21 # Update all step lows to threshold of faces
22 SQL = """
23 UPDATE final_tgap_face
24 SET step_low = {0}
25 WHERE step_low < {0};
26 """.format(str(n))
27 db = connection(True)
28 db.execute(SQL)
29
30 # Level all steps to normal scale
31 SQL = """
32 UPDATE final_tgap_face
33 SET step_low = step_low - {0};
34 UPDATE final_tgap_face
35 SET step_high = step_high - {0};
36 """.format(str(n))
37 db = connection(True)
38 db.execute(SQL)
39
40 print 'face table made'
41
42 # Cut out all edges that end before/on threshold
43 SQL = """
44 DROP TABLE IF EXISTS final_tgap_edge;
45 CREATE TABLE final_tgap_edge AS (
46 SELECT * FROM {0}_tgap_edge
47 WHERE step_high > {1}
48);
49 """.format(tgap_name, str(n))
50 db = connection(True)
51
52 print 'connected for edge'
53
54 db.execute(SQL)
55
56 print 'cut out edges'
57
58 # Update all step lows to threshold of edges
59 SQL = """
60 UPDATE final_tgap_edge
61 SET step_low = {0}
62 WHERE step_low < {0};
63 """.format(str(n))
64 db = connection(True)
65 db.execute(SQL)
66
67 print 'update step lows'
68
69 # Level all steps to normal scale

70 SQL = """
71 UPDATE final_tgap_edge
72 SET step_low = step_low - {0};
73 UPDATE final_tgap_edge
74 SET step_high = step_high - {0};
75 """.format(str(n))
76 db = connection(True)
77 db.execute(SQL)
78
79 print 'done'
80
81 def loop(tgap_name, n):
82
83 to_be_updated = {}
84
85 # Record face table
86 SQL = """
87 SELECT face_id
88 FROM final_tgap_face
89 """
90 db = connection(True)
91 face_table = set([x[0] for x in db.recordset(SQL)])
92 face_table.add(0)
93
94 # Record the hierarchy
95 SQL = """
96 SELECT face_id, parent_face_id
97 FROM {0}_tgap_face_hierarchy
98 """.format(tgap_name)
99 db = connection(True)

100 hier_table = {}
101 for face_id, parent_id in db.recordset(SQL):
102 hier_table[face_id] = parent_id
103
104 SQL = """
105 SELECT edge_id, left_face_id_low, right_face_id_low
106 FROM final_tgap_edge
107 WHERE step_low = 0
108 """
109 db = connection(True)
110 edge_set = list(db.recordset(SQL))
111 db.close()
112
113 # Start of loop
114 for edge_id, left_low, right_low in edge_set:
115
116 left_id = left_low
117
118 while 1:
119 if left_id in face_table:
120 break
121 else:
122 left_id = hier_table[left_id]
123
124 right_id = right_low
125 while 1:
126 if right_id in face_table:
127 break
128 else:
129 right_id = hier_table[right_id]
130
131 to_be_updated[edge_id] = left_id, right_id
132
133 ct = len(to_be_updated)
134
135 print 'start counting'
136
137 for edge_id in to_be_updated:
138 SQL = """

139 UPDATE final_tgap_edge
140 SET left_face_id_low = {1}
141 WHERE edge_id = {0};
142 UPDATE final_tgap_edge
143 SET right_face_id_low = {2}
144 WHERE edge_id = {0};
145 """.format(edge_id,
146 to_be_updated[edge_id][0],
147 to_be_updated[edge_id][1])
148
149 db = connection(True)
150 db.execute(SQL)
151 db.close()
152 print ct
153 ct -= 1
154
155 # Update face hierarchy table
156 SQL = """
157 DROP TABLE IF EXISTS final_tgap_face_hierarchy;
158 CREATE TABLE final_tgap_face_hierarchy AS (
159 SELECT * FROM {0}_tgap_face_hierarchy
160 WHERE face_id IN (SELECT face_id FROM final_tgap_face))
161 """.format(tgap_name)
162 db = connection(True)
163 db.execute(SQL)
164 db.close()
165
166 # Update face hierarchy table ranges
167 SQL = """
168 UPDATE final_tgap_face_hierarchy
169 SET step_low = step_low - {0};
170 UPDATE final_tgap_face_hierarchy
171 SET step_high = step_high - {0};
172 """.format(str(n))
173 db = connection(True)
174 db.execute(SQL)
175 db.close()
176
177 SQL = """
178 UPDATE final_tgap_face_hierarchy
179 SET step_low = 0
180 WHERE step_low < 0;
181 UPDATE final_tgap_face_hierarchy
182 SET step_high = 0
183 WHERE step_high < 0;
184 """.format(str(n))
185 db = connection(True)
186 db.execute(SQL)
187 db.close()
188
189 # VACUUM ALL TABLES
190
191 SQL = """
192 VACUUM (FULL, ANALYZE) final_tgap_face_hierarchy;
193 VACUUM (FULL, ANALYZE) final_tgap_face;
194 VACUUM (FULL, ANALYZE) final_tgap_edge;
195 """
196 db = connection(True)
197 db.execute(SQL)
198 db.close()
199
200 if __name__ == "__main__":
201 main('result', 3645)
202 loop('result', 3645)

Appendix VIII
Demonstration of disk size and number of records of all possible tGAP
structures. Sizes of .BIN files are also included.

Before operations
edge_table | 5040 kB | 26208 records
face_table | 7528 kB | 13238 records

Merge

before cutting bottom
tgap_edge | 18 MB | 37143 records
tgap_face | 49 MB | 26475 records

after cutting bottom
tgap_edge | 18 MB | 23541 records
tgap_face | 76 MB | 19189 records
bin file | ~170 MB

Merge + Simplify

before cutting bottom
tgap_edge | 18 MB | 37143 records
tgap_face | 49 MB | 26475 records

after cutting bottom
tgap_edge | 18 MB | 23541 records
tgap_face | 76 MB | 19189 records
bin file | ~170 MB

Merge + Split

before cutting bottom
tgap_edge | 40 MB | 72085 records
tgap_face | 101 MB | 40148 records

after cutting bottom
tgap_edge | 34 MB | 30376 records
tgap_face | 139 MB | 19295 records
bin file | ~340 MB

Merge + Simplify + Split

before cutting bottom
tgap_edge | 40 MB | 72091 records
tgap_face | 101 MB | 40150 records

after cutting bottom
tgap_edge | 34 MB | 30376 records
tgap_face | 138 MB | 19295 records
bin file | ~340 MB

Appendix IX
Javascript file that draws multiple layers on the viewer.

1 "use strict";
2
3 /* from mapbox-gl-js - BSD licensed? */
4 module.exports.now = (function() {
5 if (window.performance &&
6 window.performance.now) {
7 return window.performance.now.bind(window.performance);
8 } else {
9 return Date.now.bind(Date);

10 }
11 }());
12
13 const frame = window.requestAnimationFrame ||
14 window.mozRequestAnimationFrame ||
15 window.webkitRequestAnimationFrame ||
16 window.msRequestAnimationFrame;
17
18 exports.frame = function(fn) {
19 return frame(fn);
20 };
21
22 const cancel = window.cancelAnimationFrame ||
23 window.mozCancelAnimationFrame ||
24 window.webkitCancelAnimationFrame ||
25 window.msCancelAnimationFrame;
26
27 exports.cancelFrame = function(id) {
28 cancel(id);
29 };
30
31 exports.timed = function (fn, dur, ctx) {
32 if (!dur) {
33 fn.call(ctx, 1);
34 return null;
35 }
36
37 let abort = false;
38 const start = module.exports.now();
39
40 function tick(now) {
41 if (abort) return;
42 now = module.exports.now();
43
44 if (now >= start + dur) {
45 fn.call(ctx, 1);
46 } else {
47 let k = (now - start) / dur
48 fn.call(ctx, k);
49 exports.frame(tick);
50 }
51 }
52
53 exports.frame(tick);
54
55 return function() { abort = true; };
56 };
57 /* END from mapbox-gl-js */
58
59 exports.draw = function (el)
60 //new modification
61 {
62 var vertexShaderText =
63 [
64 'precision highp float;',
65 '',
66 'attribute vec3 vertexPosition_modelspace;',
67 'attribute vec4 vertexColor;',
68 'uniform mat4 M;',
69 'varying vec4 fragColor;',

70 '',
71 'void main()',
72 '{',
73 ' fragColor = vertexColor;',
74 ' gl_Position = M * vec4(vertexPosition_modelspace, 1.0);',
75 '}'
76].join('\n');
77
78 var fragmentShaderText =
79 [
80 'precision mediump float;',
81 '',
82 'varying vec4 fragColor;',
83 '',
84 'void main()',
85 '{',
86 ' gl_FragColor = vec4(fragColor);',
87 '}'
88].join('\n');
89
90 // get a WebGL program
91
92 var canvas = document.getElementById('canvas');
93 var gl = canvas.getContext('webgl', { alpha: false , antialias: true});
94
95 //test if the browser has webgl
96 //if (!gl)
97 //{
98 // //console.log('WebGL not supported, falling back on experimental-

webgl');
99 // gl = canvas.getContext('experimental-webgl');

100 //}
101 if (!gl)
102 {
103 alert('Your browser does not support WebGL');
104 }
105 //console.log('going !' + gl.getParameter(gl.MAX_VIEWPORT_DIMS));
106
107 // create vertex and fragment shader
108 var vertexShader = gl.createShader(gl.VERTEX_SHADER);
109 var fragmentShader = gl.createShader(gl.FRAGMENT_SHADER);
110
111 // vertex shader source and compile
112 gl.shaderSource(vertexShader, vertexShaderText);
113 gl.compileShader(vertexShader);
114 if (!gl.getShaderParameter(vertexShader, gl.COMPILE_STATUS))
115 {
116 console.error('ERROR compiling vertex shader!',
117 gl.getShaderInfoLog(vertexShader));
118 return;
119 }
120
121 // fragment shader source and compile
122 gl.shaderSource(fragmentShader, fragmentShaderText);
123 gl.compileShader(fragmentShader);
124 if (!gl.getShaderParameter(fragmentShader, gl.COMPILE_STATUS))
125 {
126 console.error('ERROR compiling fragment shader!',
127 gl.getShaderInfoLog(fragmentShader));
128 return;
129 }
130
131 // create program: attach, link, validate, detach, delete
132 var program = gl.createProgram();
133 gl.attachShader(program, vertexShader);
134 gl.attachShader(program, fragmentShader);
135 gl.linkProgram(program);
136 if (!gl.getProgramParameter(program, gl.LINK_STATUS)) {
137 console.error('ERROR linking program!',

138 gl.getProgramInfoLog(program));
139 return;
140 }
141 gl.validateProgram(program);
142 if (!gl.getProgramParameter(program, gl.VALIDATE_STATUS)) {
143 console.error('ERROR validating program!',
144 gl.getProgramInfoLog(program));
145 return;
146 }
147 gl.detachShader(program, vertexShader);
148 gl.detachShader(program, fragmentShader);
149 gl.deleteShader(vertexShader);
150 gl.deleteShader(fragmentShader);
151
152
153 var triangleRoadPositionBuffer = gl.createBuffer();
154 var triangleAreaPositionBuffer = gl.createBuffer();
155
156 var _loaded = false;
157
158
159 if (window.Worker) // Check if Browser supports the Worker api.
160 {
161 // Requires script name as input
162 initBuffer(triangleRoadPositionBuffer, 'out_roads.bin');
163 initBuffer(triangleAreaPositionBuffer, "out_background.bin");
164 _loaded = true;
165 }
166 else
167 {
168 alert('Worker API not supported - No data retrieval :(');
169 }
170
171 function initBuffer(buffer, filenm)
172 {
173 var myWorker = new Worker("worker.js");
174 console.log('start worker')
175 myWorker.onmessage = function (evt)
176 {
177 console.log('Message received from worker');
178 let vertices = new Float32Array(evt.data);
179 // bind buffer
180 gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
181 gl.bufferData(gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW);
182 // remember size
183 buffer.itemSize = 3;
184 buffer.numItems = (vertices.length)/6 - 1;
185 // we do not keep the worker alive
186 myWorker.terminate()
187 // inside the worker we have implemented: close();
188 };
189 myWorker.postMessage(filenm);
190 }
191
192
193 gl.useProgram(program);
194
195 function draw(matrix, near)
196 {
197 if (_loaded === true)
198 {
199 gl.clearColor(0., 0., 0., 1.0);
200 gl.clearDepth(1.0);
201 gl.clear(gl.COLOR_BUFFER_BIT | gl.GL_DEPTH_BUFFER_BIT);
202 singleDraw(triangleAreaPositionBuffer, matrix);
203
204 //start computing matrix for road
205 var matrix_road = matrix
206 var far_road = near - 3000;

207 var near_road = 9595;
208 matrix_road[10] = -2.0 / (near_road - far_road)
209 matrix_road[14] = (near_road + far_road) / (near_road - far_road)
210 singleDraw(triangleRoadPositionBuffer, matrix_road);
211 }
212 }
213
214 function singleDraw(buffer, matrix)
215 {
216 gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
217 const positionAttrib = gl.getAttribLocation(program,
218 'vertexPosition_modelspace');
219 gl.vertexAttribPointer(
220 positionAttrib,
221 3,
222 gl.FLOAT,
223 false,
224 24,
225 0
226);
227
228 const colorAttrib = gl.getAttribLocation(program, 'vertexColor');
229 gl.vertexAttribPointer(
230 colorAttrib, // * Attribute location
231 4, // * Number of elements per attribute
232 gl.FLOAT, // * Type of elements
233 false, // * Is normalized?
234 24, // * Size of an individual vertex
235 12 // * Offset from the beginning of
236 // a single vertex to this attribute
237);
238
239 gl.enableVertexAttribArray(positionAttrib);
240 gl.enableVertexAttribArray(colorAttrib);
241 {
242 let M = gl.getUniformLocation(program, 'M');
243 gl.uniformMatrix4fv(M, false, matrix)
244 }
245
246 {
247 let rect = el.getBoundingClientRect();
248 gl.viewport(0, 0, rect.width, rect.height);
249 }
250
251 //gl.clearColor(1., 1., 1., 1.0);
252 //gl.clearDepth(1.0);
253 //gl.clear(gl.COLOR_BUFFER_BIT | gl.GL_DEPTH_BUFFER_BIT);
254 gl.disable(gl.BLEND);
255 gl.disable(gl.DEPTH_TEST);
256 //gl.DepthMask(gl.TRUE);
257 //gl.DepthFunc(gl.LEQUAL);
258 //gl.DepthRange(0.0, 1.0);
259 gl.drawArrays(
260 gl.TRIANGLES,
261 0,
262 buffer.numItems
263);
264 }
265 return draw;
266 }

Appendix X
HTML for the new viewer display.

1 <!doctype html>
2 <html>
3 <head>
4 <title>Vario Scale Demo</title>
5 <meta charset='utf-8'>
6 <meta name="viewport" content="width=device-width, initial-scale=1.0">
7 <style type="text/css">
8 body {
9 background:#222;

10 position:relative;
11 font-family: 'Ubuntu', sans-serif;
12 }
13 body h1 {
14 text-align: center;
15 margin: 1.5em 0 0 0;
16 color: #fff;
17 font-size: 2.5em;
18 font-weight: 300;
19 text-transform: uppercase;
20 letter-spacing: 3px;
21 }
22 .main {
23 margin:3% auto 0;
24 text-align: center;
25 width: 70%;
26 }
27 .left {
28 float: left;
29 width: 63%;
30 padding: 0;
31 background: #000;
32 min-height: 555.5px;
33 border-style: solid;
34 border-width: 2px;
35 border-color: #fff;
36 }
37 .right {
38 width: 28%;
39 float: left;
40 padding: 1em 2em;
41 margin-left: 6px;
42 background: #08538c;
43 text-align: left;
44 height: 530px;
45 }
46 .right h3 {
47 margin: 0.5em 0 0.5em 0;
48 color: #fff;
49 font-size: 1.5em;
50 font-weight: bold;
51 letter-spacing: 1px;
52 text-transform: uppercase;
53 }
54 .setting {
55 border-bottom: 1px solid #81a9ca;
56 padding-bottom: 15px;
57 margin-bottom: 15px;
58 }
59
60 .radios {
61 position: relative;
62 line-height: 30px;
63 }
64 b {
65 margin: 1em 0 1em 0;
66 color: #fff;
67 font-size: 1em;
68 letter-spacing: 0.5px;
69 font-weight: normal;

70 }
71 .radio-btn {
72 width: 20px;
73 height: 20px;
74 }
75 .about button {
76 background-color: #f44336; /* Green */
77 border: none;
78 color: white;
79 height: 30px;
80 width:120px;
81 text-align: center;
82 text-decoration: none;
83 display: inline-block;
84 font-size: 1.2em;
85 margin: 1em 1em 1em 0;
86 -webkit-transition-duration: 0.4s; /* Safari */
87 transition-duration: 0.4s;
88 cursor: pointer;
89 }
90 .button3 {
91 background-color: #f44336;
92 color: white;
93 }
94
95 .button3:hover {
96 background-color: #4CAF50;
97 color: white;
98 }
99

100 .about {
101 border-bottom: 1px solid #81a9ca;
102 padding-bottom: 15px;
103 margin-bottom: 15px;
104 }
105
106 .adres-agileits ul li {
107 float: left;
108 list-style-type: none;
109 margin-bottom: 10px;
110 font-size: 12px;
111 line-height: 0.5em;
112 color: #999;
113 }
114 .adres-agileits li i {
115 font-size: 13px;
116 color: #fff;
117 margin-right: 10px;
118 vertical-align: middle;
119 }
120 .adres-agileits ul li a {
121 color: #999;
122 text-decoration: none;
123 }
124 .adres-agileits ul li a:hover {
125 color: #fff;
126 }
127
128 @media (max-width:1440px){
129 .main {
130 text-align: center;
131 width: 66%;
132 }
133 }
134 @media (max-width:1366px){
135 .main {
136 text-align: center;
137 width: 70%;
138 }

139 }
140 @media (max-width:1280px){
141 .main {
142 text-align: center;
143 width: 75%;
144 }
145 body h1 {
146 font-size: 2.3em;
147 }
148 }
149 @media (max-width:1028px){
150 body h1 {
151 font-size: 2.3em;
152 }
153 .main {
154 text-align: center;
155 width: 91%;
156 }
157 }
158 @media (max-width:991px){
159 .main {
160 text-align: center;
161 width: 94%;
162 }
163 body h1 {
164 font-size: 2em;
165 margin: 1em 0 0 0;
166 }
167 }
168 @media (max-width:800px){
169 .main {
170 text-align: center;
171 width: 90%;
172 }
173 .left {
174 width: 57%;
175 }
176 }
177 @media (max-width:768px){
178 .main {
179 text-align: center;
180 width: 85%;
181 }
182 body h1 {
183 font-size: 1.8em;
184 margin: 1em 0 0 0;
185 }
186 }
187 @media (max-width:736px){
188 .left {
189 width: 56%;
190 }
191 }
192 @media (max-width:667px){
193 .left {
194 width: 55%;
195 }
196
197 }
198 @media (max-width:640px){
199 .left {
200 width: 100%;
201 margin: 20px 0;
202 }
203 .right {
204 width: 85%;
205 }
206 .main {
207 width: 69%;

208 }
209 }
210 @media (max-width:568px){
211
212 .copy-right p {
213 font-size: 0.85em;
214 line-height: 1.8em;
215 }
216 body h1 {
217 font-size: 1.4em;
218 margin: 1em 0 0 0;
219 }
220 }
221 @media (max-width:480px){
222
223 .copy-right p {
224 font-size: 0.85em;
225 line-height: 1.8em;
226 padding: 0 2px;
227 }
228 .right {
229 width: 80%;
230 }
231
232 }
233 @media (max-width:414px){
234 .main {
235 text-align: center;
236 width: 81%;
237 }
238
239 .copy-right {
240 margin: 1em 0 1em 0;
241 }
242 .copy-right p {
243 padding: 0px 16px;
244 }
245 body h1 {
246 font-size: 1.4em;
247 margin: 1em 0 0 0;
248 letter-spacing: 1px;
249 }
250
251 }
252 @media (max-width:384px){
253 .right {
254 width: 78%;
255 }
256
257 }
258 @media (max-width:375px){
259
260 }
261 @media (max-width:320px){
262
263 body h1 {
264 font-size: 1.4em;
265 margin: 1em 0 0 0;
266 letter-spacing: 0px;
267 }
268 .main {
269 text-align: center;
270 width: 90%;
271 }
272 .right {
273 width: 82.5%;
274 padding: 1em 1.5em;
275 }
276

277 }
278 </style>
279 <script type="text/javascript">
280 (function(a,b){if(/(android|bb\d+|meego).+mobile|avantgo|bada\/|

blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|
kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|
palm(os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.
(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(a)||/1207|6310|6590|
3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|
amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s)|avan|be(ck|
ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|
chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|
p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|
fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|
t)|hei\-|hi(pt|ta)|hp(i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-
(20|go|ma)|i230|iac(|\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|
jbro|jemu|jigs|kddi|keji|kgt(|\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg(g|\/
(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|
m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|
v)|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|
on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|
pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-
a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|
sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|
shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v)|
sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|
to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|
vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-|)|
webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/
i.test(a.substr(0,4)))window.location=b})(navigator.userAgent||
navigator.vendor||window.opera,'\mobile'); //code snippet taken from http://
detectmobilebrowsers.com/

281 </script>
282 <script type="text/javascript" src="bundle.js"></script>
283 </head>
284
285 <body>
286 <!-- Leaving out width / height attribute makes things not work as expected --

>
287 <h1>Vario Scale Demo</h1>
288 <div class="main">
289 <div class="left">
290 <canvas id="canvas" width="660" height="555"></canvas>
291 </div>
292 <div class="right">
293 <h3>Setting</h3>
294 <div class="setting">
295 zoom speed (slow-high)
296 <div class="radios">
297 <label for="speed-025"></label>
298 <input type="radio" id="speed-025" name="speed" value="0.25"

class="radio-btn">
299 <label for="speed-05"></label>
300 <input type="radio" id="speed-05" name="speed" value="0.5"

class="radio-btn">
301 <label for="speed-1"></label>
302 <input type="radio" id="speed-1" name="speed" value="1"

checked="checked" class="radio-btn">
303 <label for="speed-2"></label>
304 <input type="radio" id="speed-2" name="speed" value="2"

class="radio-btn">
305 <label for="speed-4"></label>
306 <input type="radio" id="speed-4" name="speed" value="4"

class="radio-btn">
307 </div>
308 zoom animation (short-long)
309 <input type="range" value="1500" min="1" max="2000" id="duration">

310 pan animation (short-long)
311 <input type="range" value="1000" step="10" min="0" max="5000"

id="panduration">

312 </div>
313 <h3>About</h3>
314 <div class="about">
315 This demo was initially created by Martijn Meijers and later

adapted by Freek Boersma, Pim Klaassen, Pablo Ruben and Shenglan Du. Below
you can view the documentation. Feel free to contact us and join our user
survey.

316 <button class="button button3">Document</button>
317 <button class="button button3">User Survey</button>
318 </div>
319 <div class="adres-agileits">
320
321 <i class="fa fa-envelope-o" aria-hidden="true"></i>P.O.KLAASSEN@student.tudelft.nl</
a>

322 <i class="fa fa-phone" aria-hidden="true"></i> © 2018 TU
Delft

323
324 </div>
325 </div>
326 <ul id="output" style="float:left">
327 </div>
328 <script type="text/javascript">
329 var map = new varioscale.Map('canvas');
330 </script>
331
332 </body>
333
334 </html>

Appendix XI
SQL script which calculates displaced edge vertices.

1 ----temptative codes to calculate displaced edge vertices---
2 ---!!!known issue: inaccuracies tend to appear the closer lines are to the

parallel situation. However, it appears this is not a strict tendency as
there seems to be a random parameter involved too. A possible explanation of
this phenomenon is that small inaccuracies induced by finite number
representation have bigger consequences when lines are nearly parallel. For
instance, a small rounding of the a values of step 4 (the slopes of the
lines) will induce bigger divergence on the intersection if this one is far
away from the original point than if it close to it. !!!!----

3 ----code requires a face and vertices, can both be imported from the obj
file----

4 delete from faces where type='g';
5 create view orientation_check as select f.index_1, f.index_2, f.index_3,

((v2.coord_y - v1.coord_y)*(v3.coord_x - v2.coord_x) - (v3.coord_y -
v2.coord_y)*(v2.coord_x - v1.coord_x)) as orientation from faces f join
vertices v1 on f.index_1=v1.rowid join vertices v2 on f.index_2=v2.rowid join
vertices v3 on f.index_3=v3.rowid;

6 select count(*) from orientation_check where orientation>=0.0;
7 select count(*) from faces;
8 create view vertices_neighbors as select v.rowid, f.index_1, f.index_2,

f.index_3 from vertices v join faces f on v.rowid=f.index_1 or
v.rowid=f.index_2 or v.rowid=f.index_3;

9 drop table if exists vertice_neighb_after;
10 drop table if exists vertice_neighb_before;
11 create table vertice_neighb_after (vertice, neighbor, position);
12 insert into vertice_neighb_after select rowid, index_2, 'after' from

vertices_neighbors where rowid=index_1;
13 insert into vertice_neighb_after select rowid, index_3, 'after' from

vertices_neighbors where rowid=index_2;
14 insert into vertice_neighb_after select rowid, index_1, 'after' from

vertices_neighbors where rowid=index_3;
15 create table vertice_neighb_before (vertice, neighbor, position);
16 insert into vertice_neighb_before select rowid, index_2, 'before' from

vertices_neighbors where rowid=index_3;
17 insert into vertice_neighb_before select rowid, index_1, 'before' from

vertices_neighbors where rowid=index_2;
18 insert into vertice_neighb_before select rowid, index_3, 'before' from

vertices_neighbors where rowid=index_1;
19 create table vertice_neighb_duplicates as select v1.*, v2.*, v1.rowid as

rowid_after, v2.rowid as rowid_before from vertice_neighb_after v1 join
vertice_neighb_before v2 on v1.vertice=v2.vertice and v1.neighbor=v2.neighbor;

20 delete from vertice_neighb_after where rowid in (select rowid_after from
vertice_neighb_duplicates);

21 delete from vertice_neighb_before where rowid in (select rowid_before from
vertice_neighb_duplicates);

22 drop table if exists outer_vertie_neighb;
23 create table outer_vertice_neighb as select va.vertice as vertice,

vb.neighbor as neighbor_before, va.neighbor as neighbor_after from
vertice_neighb_after va join vertice_neighb_before vb on
va.vertice=vb.vertice;

24 select vertice, count(*) as count from outer_vertice_neighb group by vertice
having count>1;

25 select rowid, * from outer_vertice_neighb where vertice=31571;
26 delete from outer_vertice_neighb where rowid=49864;
27 create table overview_outer_vertices_vectors as select o.vertice, v1.coord_x

as vertice_x, v1.coord_y as vertice_y, o.neighbor_before, v2.coord_x as
neighbor_before_x, v2.coord_y as neighbor_before_y, o.neighbor_after,
v3.coord_x as neighbor_after_x, v3.coord_y as neighbor_after_y, (v1.coord_x -
v2.coord_x) as v_before_vertex_x, (v1.coord_y - v2.coord_y) as
v_before_vertex_y, (v3.coord_x - v1.coord_x) as v_vertex_after_x, (v3.coord_y
- v1.coord_y) as v_vertex_after_y from outer_vertice_neighb o join vertices
v1 on o.vertice = v1.rowid join vertices v2 on o.neighbor_before = v2.rowid
join vertices v3 on o.neighbor_after = v3.rowid;

28 ---- export to postgresql ----
29 alter table overview_outer_vertices_vectors add v_length_before_vertex

numeric;
30 alter table overview_outer_vertices_vectors add v_length_vertex_after numeric;
31 update overview_outer_vertices_vectors set v_length_before_vertex =

sqrt(v_before_vertex_x^2+v_before_vertex_y^2);

32 update overview_outer_vertices_vectors set v_length_vertex_after =
sqrt(v_vertex_after_x^2+v_vertex_after_y^2);

33 alter table overview_outer_vertices_vectors add v_normal_before_vertex_x
numeric;

34 alter table overview_outer_vertices_vectors add v_normal_before_vertex_y
numeric;

35 alter table overview_outer_vertices_vectors add v_normal_vertex_after_x
numeric;

36 alter table overview_outer_vertices_vectors add v_normal_vertex_after_y
numeric;

37 update overview_outer_vertices_vectors set v_normal_before_vertex_x= -
(v_before_vertex_y/v_length_before_vertex);

38 update overview_outer_vertices_vectors set v_normal_before_vertex_y=
(v_before_vertex_x/v_length_before_vertex);

39 update overview_outer_vertices_vectors set v_normal_vertex_after_x= -
(v_vertex_after_y/v_length_vertex_after);

40 update overview_outer_vertices_vectors set v_normal_vertex_after_y=
(v_vertex_after_x/v_length_vertex_after);

41
42 update overview_outer_vertices_vectors set v_before_vertex_x= (vertice_x -

neighbor_before_x);
43 update overview_outer_vertices_vectors set v_before_vertex_y= (vertice_y -

neighbor_before_y);
44 update overview_outer_vertices_vectors set v_vertex_after_x=

(neighbor_after_x - vertice_x);
45 update overview_outer_vertices_vectors set v_vertex_after_y=

(neighbor_after_y - vertice_y);
46 ---export back to sql lite----
47 drop table if exists outer_vertices_displacement_table;
48 create table outer_vertices_displacement_table as select o.*, v.coord_z from

overview_outer_vertices_vectors_enriched o join vertices v on
o.vertice=v.rowid;

49
50 create table vertices_0 as select *, rowid as idx from vertices where

coord_z=0;
51 create table vertices_1 as select *, rowid as idx from vertices where

coord_z=4412;
52 create table vertices_2 as select *, rowid as idx from vertices where

coord_z=8824;
53 create table vertices_3 as select *, rowid as idx from vertices where

coord_z=13236;
54 create table vertices_inner as select *, rowid as idx from vertices where

rowid not in (select vertice from overview_outer_vertices_vectors);
55
56 drop table faces_3;
57 create table face_categories as select f.type, f.index_1, f.index_2,

f.index_3, v.coord_z, f.rowid as idx from faces f join vertices v on
f.index_1 = v.rowid;

58 create table faces_0 as select type, index_1, index_2, index_3, idx from
face_categories where coord_z=0;

59 create table faces_1 as select type, index_1, index_2, index_3, idx from
face_categories where coord_z=4412;

60 create table faces_2 as select type, index_1, index_2, index_3, idx from
face_categories where coord_z=8824;

61 create table faces_3 as select type, index_1, index_2, index_3, idx from
face_categories where coord_z=13236;

62
63
64 drop view if exists displaced_neighbors;
65 drop table if exists pre_intersect;
66 drop table if exists displaced_vertices;
67 create view displaced_neighbors as select vertice, vertice_x, vertice_y,

coord_z, v_before_vertex_x, v_before_vertex_y, v_vertex_after_x,
v_vertex_after_y, v_normal_before_vertex_x, v_normal_before_vertex_y,
v_normal_vertex_after_x, v_normal_vertex_after_y, neighbor_before_x +
(v_normal_before_vertex_x*0.5) as displaced_before_x, neighbor_before_y +
(v_normal_before_vertex_y*0.5) as displaced_before_y, neighbor_after_x +
(v_normal_vertex_after_x*0.5) as displaced_after_x, neighbor_after_y +
(v_normal_vertex_after_y*0.5) as displaced_after_y , v_before_vertex_y/

v_before_vertex_x as a_before, v_vertex_after_y/v_vertex_after_x as a_after
from outer_vertices_displacement_table;

68 create table pre_intersect as select *, displaced_before_y-
(a_before*displaced_before_x) as b_before, displaced_after_y-
(a_after*displaced_after_x) as b_after from displaced_neighbors;

69
70 update pre_intersect set a_before=0.0, b_before=displaced_before_y where

a_before is null;
71 update pre_intersect set a_after=0.0, b_after=displaced_after_y where a_after

is null;
72
73 create table displaced_vertices as select *, ((displaced_after_y-

(a_after*displaced_after_x)) - (displaced_before_y-
(a_before*displaced_before_x)))/((v_before_vertex_y/v_before_vertex_x) -
(v_vertex_after_y/v_vertex_after_x)) as displaced_vertice_x, ((b_after -
b_before)/(a_before - a_after))*a_after+b_after as displaced_vertice_y from
pre_intersect;

74 update displaced_vertices set
displaced_vertice_x=vertice_x+v_normal_before_vertex_x*0.5,
displaced_vertice_y=vertice_y+v_normal_before_vertex_y*0.5 where (a_before-
a_after)<=0.2;

75 update displaced_vertices set displaced_vertice_x=v_normal_before_vertex_x
where displaced_vertice_x is null;

76 update displaced_vertices set displaced_vertice_y=v_normal_before_vertex_y
where displaced_vertice_y is null;

77
78 drop table if exists output_vertices;
79 create table output_vertices as select *, rowid as idx from vertices;
80 update output_vertices set coord_z=0.0;
81
82 drop table if exists output_faces;
83 create table output_faces as select type, index_1, index_2, index_3 from

faces;
84
85 drop table if exists preout_vertices;
86 create table preout_vertices as select vertice as idx, displaced_vertice_x as

coord_x, displaced_vertice_y as coord_y from displaced_vertices order by
cast(vertice as int);

87 insert into preout_vertices select idx, coord_x, coord_y from vertices_inner
order by cast(idx as int);

88 update preout_vertices set idx=idx+74472;
89 alter table preout_vertices add coord_z numeric;
90 update preout_vertices set coord_z=1000;
91 insert into output_vertices select 'v', coord_x, coord_y, coord_z, idx from

preout_vertices;
92
93 drop table if exists preout_faces;
94 create table preout_faces as select * from output_faces;
95 update preout_faces set index_1 = index_1 +74472;
96 update preout_faces set index_2 = index_2 +74472;
97 update preout_faces set index_3 = index_3 +74472;
98 insert into output_faces select * from preout_faces;
99

100 ----debugging tool---
101 select displaced_vertice_x-vertice_x, displaced_vertice_y-vertice_y,

a_before, a_after, * from displaced_vertices order by displaced_vertice_x-
vertice_x, displaced_vertice_y-vertice_y;

Appendix XII
Evaluation survey by the users about the improved vario-scale demo.

User-survey: improved vario-scale demo

This survey is consisting of two parts and will take 10-15 minutes. It
consists of two similar exercises which are similar. The frst part uses the
old demo (made by Martijn Meijers) while the second consists of a similar
test with the improved demo. There is also a third (optional) part if you
have feedback or encountered problems.

Please note: this assignment requires frefox or chrome as a browser as
well as an average internet connection.

First part:

1) Go to the website
http://varioscale.bk.tudelft.nl/gpudemo/2017/07/
one/ and before clicking on the map to
display it, write the start time (preferably
including seconds)
Start time:

2) Now try to fnd the part of the map which is
shown below (you might want to change the
zoom and pan animation settings).

3) Write down the end time and put a
screenshot of the result on the next page:
End time:

http://varioscale.bk.tudelft.nl/gpudemo/2017/07/one/
http://varioscale.bk.tudelft.nl/gpudemo/2017/07/one/

Second part:

1) Go to the website: https://geo1101.bk.tudelft.nl/
If this website does not work (even after
waiting a bit; background will display after
roads), use the following version:
https://geo1101.bk.tudelft.nl/mobile/ Once it
displays, write down the start time.
Start time:

2) Now try to fnd the part of the map which is
shown below (you might want to change the zoom
and pan animation settings)

3) Write down the end time and put a screenshot
of the result on the next page:
End time:

https://geo1101.bk.tudelft.nl/mobile/
https://geo1101.bk.tudelft.nl/

Third part:

1) Did you encounter any problems? If yes, please also
provide us your computer model (can be found by
typing ‘system’ in the start menu).

2) Do you have any comments on the demo improvement?
Are the roads displayed in the way you expected them?

3) If you have 3 more minutes you might visit the
improved demo with your phone:
https://geo1101.bk.tudelft.nl/mobile/ (works best on frefox
mobile) What is your impression of the mobile version?
(if you encountered any problems, please specify your
phone model too)

https://geo1101.bk.tudelft.nl/mobile/

Appendix XIII
Media outreach strategy.

Media Outreach Strategy

As vario-scale technology is a rather complex process in terms of data processing and graphics

computing, different media outreach strategies are required.

In a first phase, the communication should aim at the communities of practice of cartography.

Members might already be aware of the technology or might have interest in understanding

what happens behind the scenes. These ones can them become stakeholders participating in the

project: either by advising and expressing needs and potentials (such as was done during the

synthesis project) or by becoming full partners involved in developing the project.

While the current process with BRT-user group is good to build on, it might quickly become

insufficient for exploring the more innovative and exotic potentials of varioscale. Therefore, a

second phase should aim at finding other communities of practice that can similarly be

involved. Good examples would be the ones of 3D-computer modelling or simulation software.

Obviously, the good bond with the academic community of vario-scale technologies should be

treasured. Their experience in feasibility and limits would make them a valuable counselors

saving precious time in such a project.

In a more advanced phase, once the first visual results are obtained and scaled to national

coverage, aiming at a broader audience will become interesting. In order to prepare the

reception by the audience, media presence (e.g. interviews in the scientific portfolios of

national newspapers) and general advertising (e.g. on social media or websites).

In this phase it might also be interesting to combine such presence with other innovative topics

on which the Kadaster is working: good examples are cadastral blockchain and linked data.

