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Chapter 1

Introduction

1.1 Motivation

Over the last decade, a lot of research effort has been put into the understanding of the physics
of liquid sprays and atomization processes. This research field has been mainly driven and
sponsored by the automotive industry since, especially in western Europe, the environmental
regulations have imposed on the car industry over the years more and more restrictive require-
ments in terms of pollutants (NOx, CO) and particle (soot) emission. One of the key points to
achieve these requirements is to produce during injection a spray which is as homogeneous as
possible and produces as small droplets as possible, in order to obtain the greatest possible re-
acting surface for the later combustion process taking place in the piston bowl of the car engine.
For typical applications in the chemical industry, fluid atomization has to produce droplets of
uniform size with high efficiency and low maintenance costs. The fulfillment of such criteria
is most of the time achieved by designing or choosing an appropriate atomization nozzle. But
this process still requires substantial experimental work to find out the best nozzle adapted to a
particular purpose. Some of the effort spent on such process could be spared if one could under-
stand the nozzle internal flow pattern and its subsequent influence on the jet breakup behavior.
Unfortunately, even though the physics of jet breakup are in principle well understood, the noz-
zle internal flow is not and it is very often simply assumed that the flow leaving the nozzle outlet
is fully turbulent. This assumption may be justified in some cases, but it demonstrates how little
is known about the flow history before the fluid exits from nozzles to form a jet. This is often
related to the tiny dimensions of the nozzle — typically in the range of 200 to 500 micrometers —
used in practice for which a non-intrusive and detailed measurement of the flow features is very
difficult if not impossible.

On the other hand, numerical methods capable of dealing with the flow simulation involving
gas-liquid interfaces subjected to surface tension effects have also made their appearance over
the last decade. With the gradual increase of the computational power, these methods are slowly
proving that they are becoming a worthy tool for the analysis and understanding of free-surface
flows, as Finite-Element methods for structural analysis have. With the help of the numerical
methods, it is nowadays possible to accurately simulate in a reasonable amount of time, depend-
ing on the size of the computational grid, all the flow details that are currently not accessible
to measurement procedures. This does not mean that numerical simulations can replace ex-
periments, since they have to provide data to validate or invalidate the computational models.
But, the purpose of this work is to show that numerical methods based on the Navier-Stokes
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equations for fluid motion are able to complement experiments and provide better insight into
the physics of jet breakup and into the related nozzle internal flow.

1.2 Previous and related work

The understanding and control of spraying processes has always been considered to be a key
technology and a lot of effort has been put into research and development of new methods to
produce sprays with desired atomization and/or breakup properties. Among these, there has
always been a particular interest in the breakup behavior of liquid jets. Applications are numer-
ous: ink-jet printing, coating, precise dosage of liquids, to cite but a few. The first investiga-
tions on such kind of flows and their related instability date back to the work of Weber [107]
and Lord Rayleigh [84], who showed that a round laminar jet undergoes breakup if submitted
to a disturbance whose wavelength is greater than the jet circumference. His theory has been
complemented by various authors by adding further complexity in the equations describing the
instability mechanism leading to the primary jet breakup [16,33,51,89,101] and also, comple-
mented and validated by experimental observations [16,23,29,51,90]. A complete and unified
theory allowing to understand and predict the jet breakup behavior on the base of the simplified
Navier-Stokes equations appears with the work of Keller et al. [44] in which the liquid was
considered to be inviscid and the surrounding air neglected. The work was extend by Leib &
Goldstein [54] to include dependence on the velocity profile of the liquid flow. In the same
period, Reitz & Braco [85] and Lin et al. [64] proposed a unified theory based on the linearized
Navier-Stokes equations, thus including viscosity influence and possible effects due to the sur-
rounding gas, complemented by the publications of Lin et al. [60, 61, 65]. However, there is
still a lack of theoretical developments for strongly non-linear deformations of the liquid-gas
interface, although results have been achieved for planar liquid sheets [46, 70, 82, 83] and for
thin, annular liquid films [71,72,97].

At the present time theoretical constructs were established to account for the break-up behavior
of round jets which were quite successful in accurately predicting the breakup for the Rayleigh
regime, other authors also developed computational methods for tracking and predicting the de-
formations of the jet free surface. Chaudhary & Redekopp [16] used a boundary integral method
for developing procedures to control jet breakup and droplet formation for ink-jet printing appli-
cations; a similar method was used also by Mansour & Chigier [67] and Zinchenko et al. [112].
For the latter, the three-dimensional algorithm demonstrated to be able to resolve accurately
the spatial interaction of droplets colliding with each other. Nonetheless, all these methods
fail to capture droplet separation from the jet and possible droplet merging. Fromm [26] and
Mayashek & Ashgriz [69] developed a finite-element based code for the simulation of the tem-
poral behavior of jets undergoing a breakup of Rayleigh type. Both codes used the free surface
as one of the boundary conditions of the calculation and subsequently neglected the effects of
the surrounding gas. In this case also, the method cannot capture the behavior of the jet after it
breaks up into droplets.

With the advent of the so-called interface-capturing methods for the simulation of flows in-
volving a free-surface, it was then possible to handle any kind of free-surface deformation and
consider in the mean time the effects of the surrounding gas. Interface-capturing methods advect
within the computational domain an indicator function to set the position of the free surface.
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The basic principle of such methods is to consider the flow being of one single fluid with vari-
able properties which are set according to the value of the indicator function. There exist two
major classes of interface-capturing methods: the so called level-set methods [79,102, 103] and
the Volume-of-Fluid (VOF) methods [10,37]. The most popular is the VOF method mainly be-
cause they use the void-fraction as indicator function rather than a weighted distance function.
The void-fraction of one phase appears in the definition of convective fluxes in all conservation
equations and makes the method fully conservative; on the other hand, the level-set function
has no physical meaning for the conservation equations, thus requiring special measures to
ensure mass conservation. Although the VOF type methods were not designed originally to
deal with free-surface flows with surface tension effects, Brackbill et al. and, later, Lafaurie et
al. [13,50] introduced the concept of Continuum Surface Force (CSF) for representing surface
tension forces at a gas-liquid interface, which is, when using a VOF-type method, typically
smeared over two or three cell-layers. However, the application range of the simulations un-
dertaken has long remained limited to two-dimensional investigations of spatially developing
instabilities [43,49,58,111] on the jet free surface. A review of the variations on the numerical
methods used for this purpose can be found in a recent review article [91]. With the increase of
computer speed and the possibility of running simulations on massively parallel computers, it
became possible to undertake the fully three-dimensional computation of the primary breakup
of liquid jets [6,53].

1.3 Author’s contribution

The author’s contribution can be divided into two parts: The first part is devoted to the ana-
lysis of the numerical method used for the simulation of the breakup of jets (software package
comet , [15]) and to its improvement for this purpose. The second part is devoted to the vali-
dation of the numerical method concerning the capture of the flow phenomena involved in the
primary breakup of jets. For this purpose, numerous simulations of nozzle and jet flows have
been performed and the results compared with experimental data, published work relating to the
theory of the breakup of liquid jets and, when at hand, with other analysis software. The result
is an extended knowledge about the predictability of primary jet break-up and its dependence
on the nozzle internal flow.

The present work started in1998 within the framework of a German Priority Program on atom-
ization and spray processes sponsored by the German Research Foundation (DFG). The goal
of this interdisciplinary work involving researchers and scientists all over Germany was to un-
derstand and gain knowledge in the key technology of sprays and spraying systems. From
the simulation work undertaken in collaboration with various groups within the project period
1998-2004, only the part concerning the numerical simulation of jet breakup will be presented
herein. Since the major interest was to accurately capture jet breakup, droplet formation, and
interactions between droplets (such as possible merging), the numerical method has been val-
idated by the simulation of the Rayleigh breakup [3] and it was found that the VOF method
outperforms the moving grid methodology regarding the prediction of the deformations of the
gas-liquid interface. Based upon the gained knowledge, especially concerning the building of
numerical grids in order to obtain the best accuracy, the simulation of the flow found in pneu-
matic extension nozzles has been undertaken [4]. The principle of pneumatic nozzles is to make
use of a surrounding air flow to stretch a capillary jet before it undergoes Rayleigh breakup and
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finally produces droplets whose diameter is much smaller than that of the capillary tube the jet
issued from. Also, a similar methodology was used for the study of the breakup behavior of
sinusoidally forced jet with a simple actuation model [2,95]. Because of the difficulty to esti-
mate the impact of the boundary conditions on the flow, the internal nozzle flow was considered
as well and the resulting jet breakup compared to the simple actuation [3, 5]. Because of the
cylindrical symmetry of the investigated flow domain, the flow simulations have been so far
undertaken with the simplifying assumption of axisymmetric two-dimensionality. With regard
to droplet formation due to three-dimensional disturbances, the assumptions made so far were
not valid any more and, for the first time on this kind of applications, the three-dimensional
simulation of the sinusoidally forced breakup of a jet was undertaken [6]. These simulations
demonstrate the complementary features of numerical analysis relative to experiments, since in
simulations uncertainty in boundary conditions and the influence of various parameters can be
easily investigated.

Since the present work deals with the simulation of free-surface flows, it has been necessary
to develop a method for the solver G in order to setup properly the initial position of the
free-surface on a numerical grid of arbitrary topology. This method has also been successfully
applied to other type of flows involving the presence of a free-surface [11]. Also, in order to
cope with possible vortical structures passing through boundaries, a convective outlet boundary
condition for arbitrary meshes has been developed and tested on reference test cases. This new
procedure can also be applied to the outlet boundary of flows involving a free-surface.

1.4 Outline of the thesis

Chapter 2 deals first with a brief description of the numerical method as implemented into the
Navier-Stokes solver ca7&t. One of the interesting features of this solver is its free-surface
modeling capability with both interface-tracking and interface-capturing method. Since the
preferred method for free-surface treatment in the simulations presented hereafter is of the
interface-capturing type, special emphasis is laid on its description and how the initial posi-
tion of the free surface can be set within the computational domain. Since the flow phenomena
investigated in Chapter 3 are influenced by surface-tension effects, some issues about the numer-
ical modeling of surface-tension are presented and discussed. Finally, a new type of convective
outlet boundary condition is introduced, details of its implementation and application examples
are presented.

Chapter 3 deals with the simulation of flows subjected to surface tension effects. It is first
demonstrated that the numerical method described in Chapter 2 is not only able to capture
accurately jet breakup and droplet formation as it occurs for the Rayleigh breakup but also cor-
relates well with expected behavior when the imposed actuation frequency increases. For high
excitation frequencies, the obtained deformations of the jet free surface is extensively compared
with experimental data and theoretical work as found in the literature. Also, the nozzle flow is
analyzed and in this respect the influence of the fluid compressibility is taken into account.
Finally, a simulation of the air-flow sustained breakup of a capillary jet is presented. In this
particular kind of application, contrary to the other simulations, the disturbances arise solely
from the surrounding gas flow and are not imposed.
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Finally, the last chapter gives a summary of the achieved results and conclusions that can be
drawn. Also, the necessary future work is discussed.
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Chapter 2

Numerical Method

This chapter deals with the numerical method employed for the simulations presented in this
work and some aspects specific to the numerics for simulating spray breakup are outlined.
First, the underlying mathematical model — the Navier-Stokes equation for fluid motion — is
introduced and details of the numerical method implemented in the commercial solver-package
comat , that has been used as starting point for the simulations, are presented. Since the numer-
ical computations of this work involve the deformations of a free-surface, the different existing
methods for modeling free-surface flows are reviewed and a special emphasis is made on how
to set the initial position of the free-surface on arbitrary polyhedral grids as well as on model-
ing surface-tension forces within the general framework of the diffuse-interface theory. Finally,
because standard Neumann boundary conditions at outlet may influence the solution within the
computational domain, it has been judged necessary for the present simulations to implement
a convective boundary condition, for which it is shown that some improvement is achieved in
reducing the influence zone of the outlet boundary.

2.1 Outline of the Navier-Stokes solver

The mathematical model on which the numerical simulations presented in this work are based
are the Navier-Stokes equations for incompressible media. These equations sum up in a set of
two conservation equations: one conservation equation for the mass, eq. (2.1), and one vectorial
equation for the conservation of momentum, eq. (2.2):

<V,u>=0 2.1

ou

"ot

where u and p represent respectively the velocity and pressure fields, 7 the viscous stress tensor

and b the sum of body forces. Under the assumption that the fluid is Newtonian, has constant
physical properties and is incompressible, the viscous stress tensor 7 reduces to:

+pV-(u®u)=-Vp+V-T+b, (2.2)

T=f (%u + %uT) (2.3)

The conservation equations (2.1) and (2.2) can be rewritten in integral form:

// <u,dS>=0 (2.4)
av
7




8 CHAPTER 2. NUMERICAL METHOD

Figure 2.1: Example of a control volume with outwards oriented normals n.

é/‘//pudV-F// pu<u,dS>=—// pdS+// ?-dS+// bdV (2.5)
ot v Jov av av v

In equations (2.4) and (2.5), V and 0V denote respectively the volume of a control volume
and its bounding surface with the outwards-oriented surface vector dS, where dS = ndS,
n being the unit vector normal to the surface and directed outwards, and dS is the surface
element, see Fig. 2.1. These equations are discretized with a finite-volume technique using a
colocated arrangement of variables. The method has been designed to handle control volumes
of arbitrary polyhedral shape (for an example, see Fig. 2.1) and allows the use of local grid-
refinement. Discretization of volume and surface integrals is second-order in space: midpoint
rule, linear interpolation and central differences are applied [25]. On coarse grids, especially
in order to prevent oscillatory solutions, the central differencing scheme may be blended with
a certain amount of upwind differences. Time integration is fully implicit and it can be chosen
between a two-time (1st order) or a three-time-level method (2nd order), as described in [96].
Pressure-velocity coupling is solved with a SIMPLE algorithm [14]. The solution method is of
sequential type: the equations are first linearized and the resulting algebraic equation system is
solved in turn for all variables. This is repeated within each time step (outer iterations) until the
coupled, non-linear set of equations is satisfied. Linear equation systems are solved by iterative
solvers of the conjugate-gradient family — CGS for symmetric and CGSTAB for non-symmetric
matrices [25, 30].

For the purpose of achieving sufficient accuracy, the computational domain is often subdivided
by a numerical grid into several millions of control volumes. Efficient solution of the resulting
systems of linear equations involving themselves millions of unknowns can only be fulfilled on
high-performance, parallel computers. The numerical method used here has been parallelized
by domain decomposition in both space and time: the spatial domain is subdivided into sub-
domains which are assigned to individual processors, and several time steps can be processed
in parallel (by different processors on the same subdomain). The efficiency of the method has
been tested in single-fluid flows [93,94,96]. The communication between processors during the
solving process is warranted by the standard message-passing libraries PVM or MPL
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2.2 About the modeling of free-surface flows

Regarding the simulation of free-surface flow, there exist two classes of methods denoted in the
literature respectively by interface-capturing and interface-tracking methods.

2.2.1 Interface-tracking methods

Interface-tracking methods consist in deforming one or more boundaries of a given numerical
mesh according to a given boundary condition. The boundary condition is chosen so that it can
model a free surface. Typically, the pressure at the boundary is set to be the surrounding atmo-
spheric pressure - dynamic boundary condition - and the relative velocity component normal
to the free-surface is set to zero - kinematic boundary condition - since no flow is allowed to
escape through this boundary. In order to match both boundary conditions, the Navier-Stokes
equations are first solved on a given mesh using the dynamic boundary condition. The solution
thus obtained violates in general the kinematic condition — non-zero mass fluxes are obtained at
the free-surface. In the second step, the free surface is displaced in order to avoid fluid crossing
through it. An example of such a method (also implemented in (&7@¢) has been published
by Muzaferija & Peri¢ [76], where several other related methods are described. The procedure
described above implies for the computation of steady as well as for unsteady flows a regrid-
ding of the computational domain after each outer iteration during the solving process. When
regridding takes place, each control-volume deforms and an additional equation, the so-called
space conservation equation is solved in order to maintain overall volume conservation:

i/ dV—/ <u,n>dsS=0, (2.6)
dt Jy oV

where u, denotes the velocity at the surface of the control volume due to grid motion.

Interface-tracking methods are well-suited for flows for which the free-surface deformations are
not too severe. They have been successfully applied e.g. in the simulation of flow around ship
bodies of simple shape [59] or, more recently, in the simulation of thin liquid film flows [22].
Nevertheless, they are not usually able to model flows for which a breaking or a separation of
the free surface takes place. Unless a special regridding technique is devised, the mesh defor-
mations become so severe that the grid becomes locally highly skewed. As a consequence, the
numerical method fails to deliver a converged solution. Although one could apply regridding
techniques to avoid deterioration of mesh quality, such a method is even conceptually compli-
cated and — to the best of the author’s knowledge — has not yet been used for flows involving
free-surface break-up. Since the present work is involved in the simulation of flows for which
the breakup and the merging of the free surface under the influence of surface tension is es-
sential, this kind of method, although available, has not been applied due to the reasons cited
herebefore.

2.2.2 Interface-capturing methods

Interface-capturing methods on the other hand use a fixed grid and solve an additional equation
in order to set the position of the free surface. According to the nature of the variable solved
for, interface-capturing methods can be subdivided into two groups. The first group corresponds
to the classical Volume-Of-Fluid (in short VOF) methods introduced by Harlow & Welsh [35]
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and later by Hirt & Nichols [37]. For this kind of interface-capturing methods, the free-surface
separates two regions and only the Navier-Stokes equations for the fluid beneath the free surface
are solved. On the opposite, the other group solves the equations for both fluids situated on
both sides of the free-surface. The free surface is not considered any more as a surface of
discontinuity but as a smeared interface separating the different phases of the flow. This group
can be further subdivided into two major classes:

o level-set methods: Level-set methods are based on the work of Osher & Stanley [79].
They use a distribution function which can be regarded as a measure of the distance from
the free surface. The free surface itself is defined as the surface for which the value of the
level-set function is equal to zero. Both fluids, above and beneath the free-surface, are
taken into account in the level-set model and their physical properties are set according
to the value of the level-set function. Like in all models for representing a free surface,
the level-set model approximates a Heavyside function so that free-surface position as
well as physical properties are well localized in space. For approximating the Heavyside
function as closely as possible, the fluid properties are only allowed to vary rapidly over
two or three control volumes layers around the zero-level of the function. In order to
satisfy that the mass of each phase is conserved, the level-set function has to be submitted
to a renormalization procedure [79, 102].

e volume-fraction methods: The volume-fraction methods advect a void-fraction, denoted
generally by c, to set both position of the free-surface and physical properties of the
fluid phases involved in the free-surface flow. Unlike in the level-set method, for which
the level-set function can take any real value, the void-fraction is only allowed to take
values between 0 and 1. As a matter of consequence, the physical properties result from
a combination (not necessarily linear) of the physical properties of each phase and of the
void fraction. The free-surface is then set to the iso-surface for which ¢ = 0.5. Since the
fluid mixture is considered as a single effective fluid with variable properties — which are
obtained as a combination of the respective properties of the fluids involved in the free-
surface flow and the void fraction —, it is important that the values of ¢ remain bounded
between 0 and 1. For this purpose, a special interpolation practice is required. The
interpolation practice allows to have a smooth transition of the values of ¢ across the free
surface but, contrary to the level-set methods, it is not warranted that the smearing of the
interface remains limited to only few layers of cells, so special measures are needed to
ensure sharpness of the interface. However, these methods are inherently conservative.

In this work, the latter method has been employed and its specifics will be described in the next
section.

2.3 About the free-surface method used

In the following, the method used in this work for representing the free surface is presented and
its major properties are briefly outlined. It would be beyond the scope of this work to go into
all details of the model. The interested reader can refer to a very similar work of Ubbink [105]
and to the work of Muzaferija et al. [77].

The free-surface method used is of Volume-Of-Fluid (VOF) type and uses a void-fraction for
setting the physical properties of each phase within the flow. The void fraction ¢ is advected
with the following convection equation:
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ﬁ/cdv+/ c<un>dS=0 @.7)
ot Jv 1%

It is assumed that the phases do not mix, interact or react with each other. The physical prop-
erties are then determined by a linear combination of the physical properties of each phase.
Suppose there exist only two phases, a gaseous and a liquid one, and if ¢ = 1 denotes the liquid
phase £ and ¢ = 0 the gaseous phase g, one obtains for the physical properties of the resulting
effective fluid:

po= (1=c)uy+ cu (2.8)
p = (1—c)py+ coy (2.9)

The velocities and the pressure are assumed to be continuous over the free surface.

2.3.1 Boundedness of the void fraction

With this kind of advection model, it is then necessary to have meaningful values of the physi-
cal properties for the effective fluid (it is not allowable to have negative densities or viscosities).
This can only be achieved if the values taken by the void-fraction field remain bounded between
0 and 1. For this purpose, special interpolation practice has to be used. The complete interpo-
lation algorithm relies basically on the normalized variable diagram (NVD) introduced first by
Leonard [56] and Gaskell & Lau [27]. Both references make the use of a diagram introducing
the normalized variable formulation based on a one-dimensional composite flux limiter concept
to enforce boundedness of the solution [21]. The normalized variable ¢ is defined as:

:_ P—¢u
1) pra——. (2.10)
where D and U denote respectively downwind and upwind locations'. The normalized variable
value becomes very helpful to calculate variable values at a cell-face center according to the
values in cells sharing the face. With the only knowledge of ¢p at the cell center, it is possible
to set the value ¢y with the help of the NVD so that the solution of the discretized equations
describing the evolution of the variable ¢ remains bounded. For this purpose, it has been shown
in [27] that the value ¢; must remain in a bounded region of the NVD. The bounded region is
represented by the shaded area of Fig. 2.2.

As shown by Ubbink [105], the area may change its shape according to the local value of the
Courant-number Co if the time integration procedure for estimating the time variations of the
variable ¢ is explicit. In the numerical procedure used in this work, the variable ¢ corresponds
to the void-fraction and time integration of the advection equation (2.7) is implicit. The HRIC
discretization scheme [77] is used for evaluating the values of the void fraction at the cell-
face center. This scheme has the advantage to be bounded and helps the interface remaining
sharp. This scheme can be blended partly with the upwind differencing scheme?. From the
consideration that within one time step, no more fluid can be transported out of the cell than is

!Note that with this formulation, one has ¢p = 1 and ¢y = 0.
2Note that the upwind differencing scheme is always bounded according to the NVD.
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%

DOWNWIND

Figure 2.2: Normalized variable diagram (NVD) with various discretization schemes: up-
wind (UPWIND), downwind (DOWNWIND), linear upwind (LUD), central differences (CDS),
quick (QUICK) [55], high-resolution interface-capturing (HRIC) [77]. The shaded area repre-
sents the zone where the values of ¢ are bounded.

available within the cell, the value previously calculated has to be corrected with the Courant
number Co defined locally at the cell face by:

. <un >f HSf“At

Co Ay

(2.11)

Because of the high amount of the downwind scheme used when ¢p > 0.5, the authors of [77]
have found that the interface tends to align with the grid so that a correction is undertaken
according to the angle @ between the interface and the grid (Fig. 2.3).

Figure 2.3: Definition of the correction angle 6

This leads to the following algorithm for the calculation of the void fraction at the cell-face
center:
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cp cp < 0
= 2¢p 0 < e < 05
Sl 85 < & < 1
Cp 1 < ¢p
HRIC differencing scheme
Cs Co < 0.3
G=¢ ép+(G—cp)p=2 03 < Co < 07
cp 0.7 < Co

Correction according to the Courant-number Co

¢yt = Cpvcos b + Cp(1 — v/ cos )

Correction according to the angle 6 of Fig. 2.3
Finally, the cell-face value of c is obtained by evaluating:
¢ = vyep + (1 —7)ep,
where + is a blending factor defined by:

{1 — & )ep —cp

Cp —Cp

")/:

Limitations of the HRIC-scheme

The HRIC differencing scheme has two major limitations:

13

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

e The HRIC scheme is diffusive. It is much less diffusive than an upwind differencing
scheme since the HRIC scheme is of higher-order than one. This result could be demon-

strated on the convection of a square diagonally to a cartesian mesh [48].

e As pointed out in [27], because of the high amount of the downwind scheme used, for
various values of @p in the NVD, the same value of ¢ ¢ can be obtained at the cell-face
center, so that the solution is not unique. This behavior has been observed in calculations
and explains the tendency observed by the authors of [77] that the interface aligns with
the grid lines and a special correction is then necessary to avoid this phenomenon. Never-
theless, for very small slopes of the free surface, alignment of the interface with the grid

lines has been also observed.

2.3.2 Setting up initial positions of the free-surface

For most practical calculations involving interface-capturing methods like the one employed
in the Navier-Stokes solver (&met , it is necessary to initialize the volume fraction field in the
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discretized computational domain at the beginning of the numerical simulation. If the grid
lines are all aligned with the desired position of the free surface, the initialization becomes then
trivial. For instance, above the free-surface, the volume fraction value is set to zero, underneath
to one. However, initialization becomes much more complicated when the initial position of the
free surface cuts control volumes (whose shape can be arbitrary). Following the work of Kothe
et al. [47], a solution procedure is proposed here to set properly the volume fraction of a control
volume according to its shape and its position relative to the free-surface. This procedure relies
on the calculation of volumes which is itself linked to the calculation of polygon areas. As we
will see, calculation of volumes can be derived from the calculation of polygon areas. Therefore
area calculation is first introduced and followed by volume calculation. Then, it is explained
how to calculate areas and volumes truncated by the free surface. Finally, it is described how to
set volume fractions and some examples obtained with the method are shown.

Calculation of areas

There are many possibilities to evaluate the area A of a polygon. For a triangle, one can use the
well known relation corresponding to the notations of Fig. (2.4):

1
A:||A||:§“(rP2_rP1)x(rPs_rPx)Ha (217)

where A is the so-called surface vector of the triangle.

For a polygon, it becomes more complicated if its edges do not lie in the same plane. For a
quadrangle, as proposed in [47], a possibility is to make a parabolic hyperboloid go through
the edges of the oriented surface. This is unfortunately not valid any more for a figure which
has more than four edges. A solution is to decompose the polygon into triangles, which is
a convenient and simple method to implement. A description of it can be found in [25] as
well. Nevertheless, the decomposition is not always unique, depending on the vertex chosen
for building the surface vectors. The method proposed hereafter gives a unique decomposition.
In the first step, one has to find out the centroid G of the polygonal figure. An estimate of its
position is given by? (see also Fig. 2.5):

er. 1
¢ =51, (2.18)

where Ny denotes the number of vertices of the polygon.

The polygon area is then the sum of the triangles built with the centroid and two neighboring
vertices. The area vector of the polygon is then considered to be the sum of all the triangle area
vectors with the notations of Fig. 2.5:

i
A= 5 Z (I'pi_'_1 == I‘G) X (I‘p_; = rg) (219)

i=1

*This formulation does give the true centroid position of the polygon only if all its edges are of the same length.
In the opposite case, the centroid can be obtained by weighting the products of centroids of the triangulated area
and triangle area with the total calculated area. Nevertheless, eq. (2.18) gives a practical approximation of the
centroid position.
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Figure 2.4: Example of a triangular face with  Figure 2.5: Example of a polygon. G denotes
its vertices numbered from P; to P3 in coun-  the centroid of the polygon.
terclockwise order.

Finally the area A of the polygon is obtained by taking the Euclidian norm of A, ie. A =
||[A|| = v/< A, A>. For a planar polygonal face, the calculated value is then exact.

Calculation of volumes

The volume V' of the control volume 2 is obtained with the trivial identity:

Ve / / / av (2.20)
Q

As we have the identity < V ,r > = 3, one can rewrite using Gauss’ theorem:

V:///dV=%///<V,r>dV:%//<r,dS> (2.21)
o) ) 80

Discretizing eq. (2.21) on a control volume of arbitrary shape, one obtains the following ap-
proximation for the volume V:

1
Vzng:<r,s>f, (2.22)

where the index f denotes faces of the control volume. Using mid-point rule, r corresponds
to the position in space of the face centroid; S corresponds to the face surface vector pointing
outwards. The surface must be then correctly oriented. If all surface vectors are correctly
oriented, it can be then written:

1
Vz§2f2<rg,A>f. (2.23)
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ri and A are calculated for each face using the method introduced in the preceeding section.

Within the pre-processor of the Navier-Stokes solver et , each control volume is defined
by eight vertices. Thus, each control volume has basically a hexahedral form but can, in some
cases, degenerate into the following shapes, depending on the number of vertices which have
been merged (see [15] for details): tetrahedron, prism or pyramid*.

For evaluating the volume of a mesh cell, the following algorithm is used:

1. Define the type of control volume (hexahedron, tetrahedron, prism or pyramid) by check-
ing how many vertices have been merged.

2. Define the different faces for the control volume type found by correctly ordering the
vertices.

3. Loop over all faces and calculate surface vector and position of the face center of gravity
by using respectively egs. (2.19) and (2.18).

4. Calculate the cell volume using eq. (2.23).

Calculation of truncated areas

When the free surface is passing through a control volume or a boundary face, it is assumed that
the form of the free surface can be approximated by a plane. Thus, the faces which cross the
free surface are cut by a line, since the faces are assumed to be almost planar. The area under
the free surface is called truncated area. It is represented in Figs. 2.6 and 2.7 by the shaded
area.

A plane in three dimensions is given by the following relation:

<r,ngg>=po, (2'24)

where npg is the vector normal to the plane and p, is the plane constant. With these two
quantities, it is then easy to find out if vertices of a face are above, under or on the free surface.
Let’s take a vertex of the face and call it P. Then P is above the free surface if < rp ,npg >
—po > 0, under the free surface if < rp,nps > —py < 0 and lies on the free surface if
€q. (2.24) is satisfied. To find out at which locations the free surface cuts the face edges, one
has to loop over all vertices of the face (practically from P; to Pg in Fig. 2.6). If for two
consecutive vertices the value of < rp,npg > —py changes its sign — for example, on Fig
(2.6), < rp,npgs > —py is negative at vertex P; and becomes positive at vertex P, —, the free
surface cuts the edge joining the two vertices.

Let’s denote by U the vertex lying under the free surface, by O the vertex above the free surface
and F the position of the point at the intersection between the edge built by the line (UO) and
the free surface (see Fig. 2.7). The position of F is defined by:

rr = fOry + (]. = ﬁ)ro , (2.25)

“Note that the flow solver can handle cells of arbitrary polyhedral shape, but the pre-processor cannot generate
cells other than those defined by eight vertices. The procedure presented herein is designed to work with arbitrary
polyhedral cells.
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free surface

Py

Figure 2.6: Example of a truncated polygon.  Figure 2.7: Example of an edge cut by the free
The area under the free surface (in gray) isthe  surface and passing through point F. Vertex U
truncated area. The free surface cuts the poly-  is under the free surface, vertex O is above the
gon along a line passing through the points  free surface.

P34 and P45 . G’ denotes the centroid of the

truncated area.

where [ is evaluated with:
i <To,Nps > —po (2.26)
< To — Ty ,Bpg >

For evaluating the truncated area, the following algorithm is then applied:

1. Set the values of py and of the free-surface normal vector nyg for the face.
. Collect all vertices P; of the polygon and set 7 to 0.
. Increment <.

2

3

4. If : = Ny + 1 then goto 11.

5. Define xp, =< rp, ,nps > —pq.
6

. If xp, < 0, then P; lies under the free surface and is one vertex of the truncated area. Add
P; to the vertex list of the truncated area. If xp, xp,,, < 0 then goto 9.

~

If xp, > 0, then the vertex P; lies above the free surface. If xp, xp, +1 < 0 then goto 9.
8. Goto 3.

9. Calculate the position of the vertex at the intersection between the line joining P; to P;.,
and the free surface with the help of eq. (2.25). Add the new vertex to the vertex list of
the truncated area.
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10. Goto 3.
11. Define a new polygon from the vertex list of the truncated area.

12. Calculate with the algorithm for area calculations the surface of the truncated area.

Calculation of truncated volumes

In order to evaluate the volume of a mesh cell truncated by the free surface, it is necessary to
rewrite eq. (2.21). One can remark that, for a given constant vector ngs and a given constant
real value p, that:

V=///dV-—-%///<V,(r—PonFs)> dV=%//<(r—ponFS),dS> a2
- < 20

One has then to evaluate the integral of eq. (2.27) on the truncated mesh cell (see Fig. 2.8 for
an example) to get the desired volume V;,, i.e. :

W,:// dV=%//< (r — ponps) ,dS > +//< (r — ponpg) ,dS >,  (2.28)
Qer fer frs

where f;, denotes all truncated faces and frs the truncating plane representing the free surface.
If the vector npg is set to the truncating plane normal vector and pq to the corresponding plane
constant, eq. (2.24) is then satisfied for the free surface plane and the surface integral relative
to frg vanishes. One obtains then:

1 1
Vie = // dv = 5// < (r — ponpg) ,dS >~ §Z [< (ra — ponrs), S >, (2.29)
_ ur Sor For

The following algorithm can then be used for calculating the truncated volume:

1. Define the type of control volume (hexahedron, tetrahedron, prism or pyramid) by check-
ing how many vertices have been merged.

Define the different faces for the control volume type by correctly ordering the vertices.
Set the value of py and ngg for the control volume.

Collect all faces truncated by the free surface.

L -

Calculate with the algorithm for the calculation of truncated areas the surface vector and
the position of the center of gravity G’ of the truncated faces.

6. Evaluate with eq. (2.29) the truncated volume.

Calculation of volumes fractions

Volume fractions can be set for boundary faces of the numerical mesh as well as for the control
volumes. For boundary faces, the volume fraction is defined to be the truncated area of the
boundary face divided by the face area. The volume fraction for a control volume is defined as
the truncated volume divided by the cell volume, i.e. the volume fraction is equal to Vi, /V.
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8

Figure 2.8: Example of a truncated cell with eight nodes numbered from 1 to 8. Numeration
corresponds to the right-hand rule used in @@t . The volume represented in gray is the volume
under the free surface plane, i.e. the truncated volume.

Application examples

An application example is shown in Fig. 2.9. A sine wave has been initialized on a cartesian grid
of 100x40x20 control volumes. The wave has 45 degrees inclination to the largest dimension
of the numerical grid. The wave has also been rotated by 5 degrees in both other directions.
This is achieved by an appropriate rotation of the grid with respect to the direction of the wave
propagation. The spatial variations of the wave can be represented as a cylindrical surface which
is generated with a sinusoidal function of the form:

2z

h(z) = hgsin (T) , (2.30)

where hg is the wave amplitude, A the wavelength and z the position along the wave axis
of propagation. The surface generated by h(z) is used for representing the free-surface and
approximated locally by a plane going through the point defined by the triplet (z,h(x),0) in the
local coordinate system for which the z-axis is aligned with the wave direction of propagation
and the y-axis defined by the direction normal to this axis and pointing upwards. With this
definition, the normal vector ngg to the free-surface is obtained with:

g )
1 dz A A
Nps = 1 (2.31)
i (dh(x) >2
dz 0

Since the plane defining the free surface has to go through the point defined by r = (z, h(z), 0),
then the plane constant py can be easily calculated, by imposing that p, has to satisfy eq. (2.24),

ie.:
— + h(z)
po = ——3& (2.32)

14 <d’;f))2
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Figure 2.9: Application example of the initialization procedure for a rotated sine wave on a

cartesian grid. The obtained free surface is the shaded area.

N

i
L

lll%ll
i

i

Figure 2.10: Boat with a keel at a roll angle of 30 degrees. Thick line: water plane position; thin
lines: numerical grid; in color: volume fraction distribution. Application example used in [11].




2.4. SURFACE TENSION MODELING 21

Using the above expression, one obtains after initialization the free surface depicted by the
shaded area of Fig. 2.9. In this figure, the left and right rear sides also show details of the nu-
merical grid employed, whereas the left and right front sides display the distribution of the vol-
ume fraction at the corresponding boundaries. Note that the approximated free surface appears
almost perfectly smooth. This verifies that the approximations employed in the initialization
method are appropriate.

Another application example is shown in Fig. 2.10. The figure represents a boat with a keel
at a roll angle of 30 degrees. In this case, the initial free surface is the plane z = 0 and the
plane normal vector and constant are even easier to define, i.e. ngg = k and py = 0. However,
the grid is generated so that it fits the boat and is therefore not aligned with the free surface.
The volume fraction must be initialized so that the iso-surface ¢ = 0.5 coincides with the free
surface location. The result obtained with the above procedure is shown in Fig. 2.10. The white
zone corresponds to the region where the value of the volume fraction is under 0.1%. The water
plane so obtained is represented in Fig. 2.10 by the thick line.

2.4 Surface tension modeling

2.4.1 The diffuse interface theory

The diffuse interface theory is based on a free-energy model as proposed in [7-9, 39, 40, 108].
Following this theory, it is possible to develop a model consistent with the physics of surface
tension and it allows to explain why surface tension effects can be represented by the continuum
surface force (CSF) model [13,50].

The diffuse interface theory assumes that the interface between two phases has a finite thickness
in which physical properties of the fluid vary rapidly but smoothly. Thus, the interface between
two fluids is not treated as a surface of discontinuity and physical properties are smeared over a
layer of defined thickness. Variations of physical properties are linked to those of an intensive
variable ¢, which can be the density, as in [8], or the void-fraction ¢. We will now consider the
case when ¢ = c. According to the diffuse interface theory, a force, derived from a free-energy
functional, acts in the vicinity of the interface *. The free energy G is defined as a functional
over the whole integration volume as the integral of a free-energy density 7:

G = ///QndV (2.33)

The free-energy density can be modeled by various formulations which can be found in ref-
erences (7,40, 108]. It is considered in [108] in a very general sense as a Lagrangian energy
density £ depending on the intensive variable ¢ representing the void fraction of a phase in a
two-fluid flow. One can then write:

g= ///Q L(Ve,cr)dV (2.34)

For an isothermal free-energy density field, the energy functional G is independent of the space
location vector r and from equilibrium state considerations, a force acting on an arbitrary control

SWith vanishing interface thickness (i.e. in the limit of a sharp interface considered as a surface of discontinu-
ity), one recovers from the force definition the jump conditions over the interface for pressure and velocities [8].
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volume can be written as the divergence of a tensor = with components [108]:

= oL
ik = c’j% =Gy (2.35)

Considering the general expression proposed in [108] which fits the definitions of the La-
grangian energy densities found in [7, 8, 40], one has:

L=z (V) +g()] , (2.36)

N —

where  represents a surface energy density and g a bulk free energy per unit volume. The
tensor = then becomes: _ _
Z=9VcRE&+ L], (2.37)

where £ is the Cahn-Hoffman vector [108] and its components are defined with the following
relation for an arbitrary vector gq:

€ - _ag@) (238)
gi

2.4.2 The Continuum Surface Force (CSF) approach

In the CSF approach, the model for the free energy density has a very simple expression, since
Y(Vc?) = || V|| and g(c) = 0, where o denotes the surface-tension coefficient [40]. Accord-
ing to the diffuse interface theory, the surface tension force is then represented as the divergence
of a tensor T (see Eq. (2.37)):

— = Ve® Ve
m=o0||Vc||l —o————— (2.39)
Vel Kz
Taking the divergence of this 77, one obtains:
— Ve® Ve
V-m=a[v Ve —V(——)} (2.40)
(19 ell) o
Considering that || V|| %L /< Ve, Ve > and that
V(< V¢, Ve >) 1 9 [0dc dc 9 [0dc dc
_v. = -2 |22 L e
2 (VC = VC)]j 2 a:c'j Iiax, 33:1} 8£Ek |:3.'IJJ &rk] ( )
_ P s & se
N 8xjc‘9xi 8.’1:1' 87)1;31]; 8xj
dc %
" Bz 0z, oz; 240
9% dc
= — 2.43
8xk8xk Bx,- ( )

= [-<V,Ve>V,, (2.44)
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one finally obtains:

%v = V(<2|‘|7é,cﬁc >)_y. (—VHCS)JC) (2.45)

- TSR e (oo v
-V (”?10”) - (Ve® V) (2.46)
e V’HZ;C]T e . v (ﬁ) - (Ve® V) (2.47)
= - (%ZHCJ + <V (ﬁ) ,Vc>> Ve (2.48)
_ _<v,“%ﬂ> Ve (2.49)

Finally, the surface-tension force can be expressed as:

V-m = okVc (2.50)
Kk = — <V g Hg—zll> (2.51)

This is currently the expression found in the CSF-model of [13, 50] and the formulation used
for the surface tension in (ot . It is represented as a body force bsr and is evaluated using a
volume integral over an arbitrary control volume:

ke N / / / okVedV (2.52)
Qp

where & is obtained from expression (2.51). The surface-tension force is then discretized in a
non-conservative way on a control volume centered on P, assuming a constant surface-tension
coefficient:

bST ~ —OKp // VedV . (253)
Qp

Using Gauss’ theorem, the volume integral can be transformed into a surface integral and the
final expression for the surface tension force is:

(bST)p ~ —OKp // cndS ~ —UI{pZCfnfo. (2.54)
Np f

2.4.3 Parasitic currents

When convective fluxes as well as curvature radii of the interface tend to vanish, an unphysical
velocity field develops when the procedure described above is used to represent surface-tension
effects in a VOF scheme. This velocity field is known in the literature as parasitic currents
(see also [91] for a review of the problem). The reason of their existence is explained in the
following.
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Observing, as described in [20], that the Hodge decomposition of a vector field w on a bounded

domain (2 satisfies:
// <w,n>dS =0, (2.55)
80

and can be written as the sum of a divergence-free vector field w, and a pure gradient of a scalar

field ¢ [19]:
w=w,;+ V¢ with <V,wy>=0on (2.56)

This implies that following relations are satisfied:
< wyg,n >= 0 on 02 (2.57)

<V¢,n>=<w,n > ondfd (2.58)

Taking the divergence of eq. (2.56), one gets a system of differential equations that can be
summed up to:

wy = w—Vo¢ (2.59)
o¢
— = <w,n> onodf2 (2.60)
on
Vép = <V,w> (2.61)

Considering the Navier-Stokes equations, one can associate unequivocally the different terms
of the above system of differential equations to different terms of the Navier-Stokes equations
(egs. (2.1) and (2.2)) in the following way:

ou

w = —pV-(u®u)+V-T+b (2.63)
¢ = p (2.64)

This implies from the theoretical considerations introduced here that the condition of eq. (2.55)
has to be satisfied, i.e. if b represents the body forces, they have to be modeled in such a way that
they sum up with the other terms to zero on the boundary. This can be enforced automatically
by adopting a conservative formulation for the body forces. In particular, this can be the case
for the CSF-model if the formulation for representing the surface-tension force corresponds to
eq. (2.40). In this way, we must have:

w=—pV- -(u®u)+V-7+V-m (2.65)
In the case of equilibrium, the velocity vector u vanishes and eq. (2.56) degenerates in.:
V- m—-Vp=0 (2.66)

This equation corresponds exactly to the equilibrium condition found in [108], where an ener-
getic approach is used. Unfortunately, the discretization of eq. (2.66) with 7 defined by eq.
(2.50) does not lead to perfect balance of the pressure gradient and the surface tension stresses.
As a matter of consequence, an imbalance due to numerical inconsistency appears and since
the equilibrium equation is no longer satisfied, the error acts as a source term to the momentum
equations and a flow field develops. The so created flow field is called parasitic currents, be-
cause their existence is unphysical and only due to the numerical scheme used for representing
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the surface-tension forces.

Since the design of the numerical scheme influences the range of applicability of the solver
for flows with high surface-tension effects, a lot of effort has been spent by various authors to
reduce the intensity of parasitic currents. Since their first description 1992 in [13], various cures
have been proposed, which can be summarized into three main categories:

e Approaches in which a smoothing kernel is used to smooth the evaluated curvature of the
free-surface. This approach is adopted in [13,50,88,106] and is equivalent to a thickening
of the interface [7,91].

e Approaches in which the surface tension force is discretized using a special interpolation
technique [28,40,73,78,81,104] but they all rely on the knowledge of the grid topology
and the assumption that the free surface is a sharp interface so that its position must be
evaluated with the help of an interface-reconstructing method [10,57,87,109]. Two ansatz
can be distinguished between:

— a special interpolation is done for the pressure gradient relatively to the estimated
position of the free-surface obtained with an interface-reconstruction algorithm so
that the pressure jump across the normal direction to the interface is better evaluated
[73,78,81,104].

— a procedure for which the interface is considered as sharp and is approximated in
two dimensions by continuous spline curves. The coefficients of the splines are
determined by a least-square method so that the volume enclosed by the free-surface
equals the volume predicted by the advection of the void-fraction. It is argued that
better results are achieved because of the better evaluation of the interface curvature
[28]. However, this approach remains limited to two-dimensional applications.

However, the problem described by eq. (2.66) stills holds and it is necessary to find an appro-
priate, general discretization method that satisfies (2.66) at least at equilibrium.

The author spent a lot of effort in trying to find out a discretized formulation of expression
(2.40) that would allow to represent the surface tension force as the gradient of a scalar field p,
ie. V- = Vp. This implies either to use a poor approximation of eq. (2.40) like in [9] or,
alternatively, to solve the minimization problem:

// [ - 575 — Vil| ¥ = min! @.67)
Q P
Solving this problem is equivalent to satisfying the condition (see also appendix A):

<V,Vp —-V-m>=0 (2.68)

This implies for the above condition to hold the condition of eq. (2.69) at the boundaries of the
computational domain, if a solution for eq. (2.68) has to be found:

<V-mn>=0 (2.69)

The equivalent formulation of eq. (2.68) was found to lead to no satisfactory results. In par-
ticular, the error between the gradient approximation of eq. (2.68) and the discretized values




26 CHAPTER 2. NUMERICAL METHOD

of V - did not reduce with mesh refinement, so that the gradient approximation can not be
considered as a real alternate formulation of the surface tension force.

However, an interesting approach was developed by Jamet et al. in [41] which, based on an
energy approach (see also [39, 40]), considers that the pressure gradient should be evaluated in
a non-conservative manner. He proposes to replace Vp with pV . , where 1° can be seen as a
chemical potential. This approach is equivalent to the one developed in [40], where the pressure
gradient was replaced by a discretized forcing in the form ¢V ¢; ¢ representing the void fraction
and ¢ the variable to solve for instead of p.

Similar ideas can be used here to solve the problem of parasitic currents. If one uses the for-
mulation of the surface tension as the one used in &7&? , one can write for the body force term
used for representing the surface-tension force:

bsr = 0kVec =0V (kc) — 0cVk (2.70)
Setting p° = p — okc, one obtains for the equilibrium condition the new identity to hold:
Vp° +cV(ok) =0 (2.71)
Following the idea of [41], one can seek for the pressure a solution of the form:
P’ =cp’ - e? (2.72)
where: 3
e
oc
and, for the sake of generality, egc is an arbitrary function of c.

0

w0 = (2.73)

From the preceeding equation, it can be deduced very easily that:

op° o’ 0 0

3% — “Be p=cVy (2.74)
By replacing now Vp° by its non-conservative form ¢V u°, the equilibrium condition is re-
placed by:

c(Vu’+ V(ok)) =0 (2.75)

The equilibrium condition implies then that the form of e? can not be chosen arbitrarily, as
previously assumed, but has to satisfy the condition:

0
ey _

5 —0K (2.76)

According to the work of Jacqmin [40], a good candidate is the function e? = —a||V||.

This formulation ensures automatically that the equilibrium condition is satisfied. In the case
of non-equilibrium, the pressure gradient has to be replaced in the Navier-Stokes equations by
the term ¢V and the potential form of the capillary forcing has to be used, i.e. —ocVk.
Unfortunately, this has some difficult numerical issues for obtaining the numerical values of
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1°, especially in the case when the value of the void fractlon c vanishes. This problem can be
overcome by setting p° = p — ok(1 — ¢) instead of 2° = p — gke.

One has then to seek for 10 linked to p° by:
P’ =(1+c)p’ -} 2.77)
with 1° = de%/dc.

One obtains then after derivation with respect to c:

op°
Bc

and the modified equilibrium condition:

=(1+ c) f» VP’ =(14+¢c)Vu°, (2.78)

Vo +(14+¢)V(ok) =0 (2.79)
is rewritten by using (1 + ¢)V 0 instead of Vp° as:

(1+c)(VE’+ V(o)) =0 (2.80)

—a2840-14
difference [N/m]
4,0760-12

—261

Void fraction [~]
0000400

3584012
3.0620-12
2.540e~12
2.0280-12
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Figure 2.11: Residual velocity intensity due to the surface-tension forcing at equilibrium (right).
The difference between the calculated value of 1° and o« is used for the contour level. The
position of the free-surface is given by the depicted void-fraction distribution on the cylindrical
grid (left). The velocity field shown results from the standard model (as implemented in o7t ).

The formulation of eq. (2.80) has been implemented in a two-dimensional Navier-Stokes solver
in order to demonstrate that the non-conservative approach leads to the fulfillment of the equilib-
rium condition, which in turn ensures that no parasitic currents can appear due to the imbalance
between pressure gradient and surface-tension model. Figure 2.11 shows the results obtained
on a cylindrical grid on which a droplet is modeled by setting the value of the void-fraction
to 1 in all control volumes whose radius is less than Imm. This initialization and the type of
grid used ensures that the stan:ing solution corresponds to the position of the free-surface at
equ111br1um The field for p° is initialized to 0 and after convergence, the difference between
p° and ok is displayed, Fig. 2.11. The maximum level of the difference can be reduced to any
value desired, provided that the residual tolerance of the non-linear system of equations solved
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for is low enough. Here the results are shown for a residual tolerance of 10~!4. For comparison,
Fig. 2.11 shows also the velocity field obtained when the standard model corresponding to eq.
(2.54) is used. The parasitic velocity field remains located in the vicinity of the free surface and
is due only to the imbalance between the pressure gradient and the discretized surface-tension
force in the CSF-model approach.

2.4.4 Limitations of the CSF model

The CSF model for describing the surface tension as implemented in ome? cannot enforce
the balance of the discretized pressure gradient and the surface-tension force for the reasons
explained in the preceeding section. Therefore, in flows using this model of the surface-tension
force, parasitic currents have to be taken into account. This limits eventually the applicability
range of the solver. In practice, the parasitic current intensity U can be estimated using the
expression of [13]:

U~ 0.01% [m/s] (2.81)

For a given value of the liquid viscosity and the surface-tension coefficient, this value gives
the lower bound of the flow velocity for which a simulation can be undertaken. Flows with a
convective velocity of at least one order of magnitude higher than the value predicted by eq.
(2.81) will not be influenced by the presence of parasitic currents. This is the case for all the
simulations presented hereafter.

2.5 Outlet boundary conditions

2.5.1 Standard boundary conditions

Most of the time, boundary conditions at the outlet of the computational domain have to be
estimated. The most meaningful estimates are conditions on pressure and on outlet velocities.
In the first case, a Neumann boundary condition on pressure (i.e. dp/0n = 0 at the bound-
ary) is commonly used. This kind of boundary condition leads most of the time to physically
acceptable results but has two major drawbacks:

e the pressure at the boundary may begin to oscillate which is essentially the case when
the grid is coarse at the boundary and the time step size small. The correction used
to suppress oscillations on colocated grids — the so-called Rhie&Chow correction, [86]
— does not damp efficiently pressure oscillations appearing under these conditions. If
the pressure decreases too fast near the boundary, a back flow appears and the pressure
continues to decrease. As a consequence, after a while, high velocities (both incoming
and outgoing) result in cells near the outlet boundary; the solution process is then unstable
and may diverge.

e the convergence rate is slow because only the derivative of the pressure at the boundary
is known and not the pressure value itself. It means that there exists more than one
solution for the pressure equation leading to the same value of the normal derivative at
the boundary.

In the other case, setting the outlet velocities to match mass conservation allows to obtain better
convergence rates. Generally, the normal derivatives of the velocity components are set to
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zero and mass conservation is enforced by correcting the estimated velocities so that the mass
flux leaving the computational domain matches the mass flux entering it. Vanishing normal
derivatives supposes that the velocity gradients in the vicinity of the outlet boundary are small,
which is hardly the case when strong vortices leave the computational domain at that boundary.
Moreover, back flow from the boundary is not allowed.

A good alternative to these standard boundary conditions is the so-called convective bound-
ary condition, which is presented in the following section, and for which the implementations
details are given.

2.5.2 Convective boundary conditions

Convective boundary conditions are a common class of boundary conditions that are systemat-
ically employed in the simulation of turbulence, especially when vortices created by the flow
are to escape the outlet boundary. The convergence rates are comparable to the standard outlet
conditions and if special attention is paid to how velocities are corrected in order to ensure mass
conservation, back flow can also be obtained. For the present work, it has been necessary to
implement this type of boundary condition because the flows considered here often involve vor-
tices leaving through the outlet boundary. It has been found that better convergence rate could
thus be obtained during the solution procedure, saving thus a great amount of computational
time compared to the pressure boundary condition used previously. Moreover, undesirable
side effects resulting from pressure oscillations taking place near the outlet boundary can be
avoided [42].

The velocity at the boundary is set according to the following equation [12,25,45,991:

ou —0Ou
—+U—=0 2.82
5% T Us, _ (2.82)
When viscous forces are assumed to be relevant, especially in the case of a direct numerical
simulation (DNS) of turbulence, the boundary condition on the velocity (eq. (2.82)) has to

include a supplementary term according to eq. (2.83), [42,75]:

Bu —811 —
E+U%—I/V-Vu——0 (2.83)
For the transport of a scalar quantity ¢, an equivalent formulation to eq. (2.82) can be deduced:
0 =00 _
Bt +U B 0 (2.84)

The above boundary condition is consistent with the advection equation of the void fraction c,
since the flow is assumed to be incompressible.

U denotes a linearized convection velocity. There exist many choices for the convection ve-
locity. Some authors [1, 80] set the velocity to be equal to the mean velocity over the outlet
boundary:

—U:l//<u,n> ds (2.85)
SJJs

This choice is meaningful, when there exists a mean flow direction, as can be encountered in jet
or channel simulations but not when vortical structures of high intensity have to escape through
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the boundary. In this case, the convection velocity is set to the velocity at the boundary cell [42].
From the author’s point of view, in the case of a predominant flow direction, a good compromise
between both choices for U would consist in setting U equal to the local time-averaged velocity
at the boundary. In the case of a jet flow, it has the advantage to convect more rapidly vortices
that are situated on the jet axis and less rapidly vortices at the jet edge.

Space discretization

In the following, a two-dimensional control volume of quadrilateral shape will be considered
and the notations of Fig. 2.12 will be used. The locations P, B and f denote respectively the
control-volume center, the middle of the boundary face and the middle of the CV-face situated
opposite to the boundary face.

Figure 2.12: Notations used for defining locations in a control volume next to the outlet bound-
ary, on which point B is lying.

Considering the variable ¢, one can write up to the second order at the boundary:

(V)= (Vo)p+ (VV@)p- (t5 —1p), (2.86)
¢~ ¢pp+ < (V@)p,rp—rp > +% < (%V(b)}: -(rg—rp),rg—rp> . (2.87)

The desired value of < (V¢),n > p is easily obtained from the two previous relations, provided
that the direction given by the vector rp — rp is aligned with the normal to the boundary. This
is unfortunately only the case when the grid is orthogonal to the boundary. Following the idea
described in [25] when the grid is non-orthogonal and assuming that the grid non-orthogonality
at the boundary is not too severe, it is suitable to use the values and the gradients of ¢ at the
location f’ obtained by projecting the vector rg — r; onto the normal vector to the boundary
face (see also Fig. 2.12) as well as the location P’ as the point lying midway between B and f'.
Previous equations then become:

(Vo)z = (V)p + (VV)pr - (15 —Tp1), (2.88)

1 —
QSB ~ ¢P'+ < (ng)pl,I‘B —TIp > +§ < (VV¢)PI . (rB = rp:),rB —Tpr > . (2.89)
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Replacing from eq. (2.88) the term (%VQS) p - (rp — rp/) into eq. (2.89) and arguing that the
vector rp — rp is directed normal to the boundary face, it can be deduced after some rewriting:

<(V¢),n>p|[rp —rp|| = 2(¢pp — ¢5)+ < (V@)p,t5 —Tp > (2.90)

Dividing above equation by |[r5 — rp/|| = 3||rs — ry/||, one obtains:
4(pp —
< (V¢),n >px Ubr —¢5), _ (Ve),n>p . (2.91)
llrs — gl

Using central differences, the gradient of ¢ at the location P’ can be deduced with second-order
accuracy from the following equation:

< (Vé),n >pr 2B 01 (2.92)
|lrs — rp|]
One can then write® for d¢/dn:
(ﬁ) e Vn >pr s —Weid gy (2.93)
on/ g llrs —rp|l

The values of ¢ at the locations P’ an ' can be evaluated easily with second-order accuracy
with:

(bP' 1 ¢p+ < (V¢)p,l‘pl —Tp >, (294)
¢p = ¢+ < (Vo)s,rp —rs > . (2.95)

The gradient of ¢ at the location f can be obtained with usual linear interpolation practice
between cell center locations P and N. Finally, one obtains:

99\ 305 —ptds A<(Vdlp,rp —xp>+ < (V)yrp—1s >
on)y <rgp—rsn> <rgp—rsn> '

(2.96)

Time discretization

Concerning the time discretization, it has been chosen to use a three-time level fully-implicit
differencing scheme [25, 96]. Although the discretization error for this scheme is higher than
for the Crank-Nicholson scheme, this scheme is also of second-order and has been found to
be consistent with the numerical model of the employed Navier-Stokes solver et . Using a
fixed time step At, one obtains easily the following expression for the discrete time derivative:

(@ = 3¢n = 4¢n—l - ¢n—2
Y e 2At !

(2.97)

where the superscripts n, n — 1 and n — 2 denote respectively the present, the previous and the
second previous time-level.

®Expression (2.93) is equivalent to the well-known linear upwind differencing scheme [25] used in finite-
difference methods.
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Discretized boundary condition

Combining egs. (2.96) and (2.97) into (2.82), one obtains the general expression for setting the
value of ¢ at the boundary with a second order discretization error in time and space:

¢n " 4¢’}%—¢}‘+4<(V¢)’},,rp,—rp>—<(V¢)}‘,rf/—rf>
g = <rg—rsn>
205" 95 1
- = 2,
TTAC T oAt 3y 0 .
2At <rp—rsmn>

In the case that the variable ¢ corresponds to the void fraction c, it is important to ensure that the
boundary value for c at the location B remains bounded, hence 0 < cg < 1. This is achieved
by limiting the predicted value of c from the previous equation between 0 and 1:

cg = min(1, max(0, cg)) (2.99)

If the variable ¢ corresponds to one of the velocity components, an additional term has to be
included in order to take viscous effects into account according to the work of [42,75]. By
denoting u; one of the Cartesian velocity components, the boundary condition of eq. (2.83) can
be written:

Tty < ¥, Vi >=10 (2.100)

The diffusion term v < V, Vu; > is discretized explicitely in the manner described in [25] and
extrapolated from the interior domain to the boundary; it is corrected after each outer iteration
during the solving process. By denoting u!" the predicted value of u; at the m-th outer iteration,
the discretized boundary condition for the velocity component becomes:

4(ul)p— (ult); +4 < (Vw)p rp —rp > — < (Vw)fHrp —1p >
<rg-—ryfn>

2wy _ () -1
+ =3 T 9Ar +v < (V,Vu)g " >

1
3 30
2At + <rg-rj,n>

(2.101)

This expression has been used in the present work and implemented via the user defined sub-
routines for boundary conditions into the Gm@t solver.

Mass conservation

Unfortunately, the velocity profile predicted for the boundary by the convective boundary con-
dition may not ensure mass conservation. As described in [99], the predicted velocity has to be
corrected in order to match mass fluxes between inflow and outflow. We denote by up the ve-
locity vector at the boundary obtained after evaluating eq. (2.101), which may not satisfy mass
conservation. The corresponding mass flux delivered by this velocity profile at the boundary is
denoted by Q*, whereas the correct mass flux is denoted by Q. We define then the mass flux
defect by AQ = Q — Q*. Then, it is straightforward to show that the following correction gives
a velocity profile at the boundary warranties mass conservation:
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A@ < u*B, S B >

Q* <Sg,Sg > e
where S is the surface vector associated to the boundary face at location B. This type of cor-
rection algorithm allows back-flow to occur at the boundary (see also Fig. 2.14). Nevertheless,
if the mass flow entering the computational domain vanishes (i.e. Q = 0), the velocity compo-
nent normal to the boundary after correction vanishes also. This may not be desired, especially
when back-flow is expected. The problem may be tackled by defining Q7 the mass flow leaving
the outlet boundary and Q* the mass flow entering the boundary. In the case of incompressible
media, we can then define:

ugp =up + (2.102)

Q. = Y pp<up,Sp> <upSp>2>0 (2.103)
B

Q" = > pp<uySp> <upSp><0 (2.104)
/B

fB corresponds to every boundary face belonging to the outlet boundary, on which the convec-
tive boundary condition has been set. Then the modified correction algorithm allows to ensure
mass conservation as well as to avoid obtaining vanishing velocity component normal to the
boundary in case of vanishing mass flux into the computational domain:

AQ <u%,Sp>
= uj 2 I > 2.105
up UB+Q1—Q*_<SB,SB>SB, <uB)SB >_07 ( )
" AG <u*,SB> i
up = uB_Qi—Q*_<S§,SB —Sp;  <up,Sp><0. (2.106)

This correction has been implemented into the solver 7@t and shown to lead to improved re-
sults compared to the standard boundary condition at outlet. Note that the convective boundary
condition developed here is applicable to an arbitrary polyhedral, three-dimensional grid.

Application examples

In practical applications, one usually has to use long solution domains in order to avoid effects
of errors introduced at the outlet boundary on flow regions of interest. However, in many cases,
this is not practical besides the fact that larger solution domains require larger computing effort.
It was therefore of interest to see whether one can use shorter solution domains by employing
the convective boundary condition at outlet in flows that contain vortices leaving through the
outlet boundary.

Among all test calculations performed for validating the convective boundary condition accord-
ing to the theoretical developments of the preceeding sections, interesting benchmarks are the
cases 2D-2 and 2D-3 of [36]. They correspond to the unsteady flow developing around a cir-
cular cylinder in a channel (corresponding to Fig. 2.13). The velocity profile at inlet is given
by eq. (2.107) in the case 2D-2 and is modulated according to eq. (2.108) in the case 2D-3. In
the case 2D-2, the Reynolds number based on the cylinder diameter and the mean inlet velocity
is set to 100. The resulting value for U,, is then set to the same value in both cases 2D-2 and
2D-3, i.e. 1.5 m/s, and the velocity profiles are:

T (2.107)
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H - .
Uly,t) = 4Um2(H—2y) sin(rt/8) 0<t<8s. (2.108)
Note that the inlet velocity is steady in the case 2D-2 , but the flow is unsteady in the cylinder
wake due to vortex shedding.

In the case 2D-3, the inlet velocity varies within the given time interval of 8 s according to
a half-sinus wave. This implies that the inlet velocity vanishes towards the end of the time-
dependent simulation. If the standard outlet boundary condition is used for which the inlet
mass flux is used to scale the velocity normal to the boundary — so that the mass flow leaving
the computational domain through this boundary matches the incoming mass flow —, the ve-
locity normal to the boundary will also vanish. With the corrective procedure on the mass flux
proposed previously, it is still possible to obtain vortices leaving the boundary, even if the mass
flow entering the computational domain is almost zero, Fig. 2.14. In this case, the convective
velocity U was set to the velocity of the cell next to the boundary face, since the velocity U
obtained with eq.(2.85) would have vanished too and hence would have hindered any vortex
from leaving the domain at the outlet boundary.

For the case 2D-2, the contours of the time-averaged pressure obtained with the standard out-
let boundary condition — corresponding to a Neumann boundary condition i.e. for a variable
¢, 0¢/0n = 0 — and with the implemented boundary condition described above have been
calculated on a shortened computational domain for which the outlet boundary has been put
6 cylinder diameters behind the center of the cylinder. The results are presented for the con-
vective boundary condition and for the standard outlet boundary condition in Fig. 2.15 and
2.16, respectively. The results are compared with the reference solution obtained on the com-
plete computational domain represented in Fig. 2.13. The grid is identical in the overlapping
region for both sizes of the computational domain. For all the simulations, time-averaged val-
ues have been obtained after the L,-norm of the deviation from the average value had reached
the threshold value of 1%. It can be deduced from the comparison of Fig. 2.15 and 2.16 that
the convective outlet boundary condition has less influence on the mean pressure distribution
within the computational domain than the standard outlet boundary condition. Significant dif-
ferences are observed in the vicinity of the outlet boundary only whereas for the standard outlet
condition, the boundary condition influences the mean pressure distribution in the whole com-
putational domain. From the comparison of the instantaneous pressure contours obtained for
the case 2D-2 on the shortened with the convective boundary condition (Fig. 2.17) and the com-
plete (Fig. 2.18) computational domains 8s after the start of the computation, it can be observed
that the low-level pressure region near the boundary corresponds to the same low pressure re-
gion on the complete computational domain. This indicates that the vortices created by the
flow are correctly convected outside the computational domain with the convective boundary
condition. The pressure levels of Fig. 2.19 show the superiority of the convective boundary
condition (Fig. 2.17) compared to the standard outlet boundary condition. In the case of the
outlet boundary, pressure levels are different from those of the reference solution of Fig. 2.18,
the region of the solution domain near to the outlet boundary is strongly influenced by it, the
vortex detachment takes place for the same time at a different locations, which suggests that
the vortex shedding frequency is not predicted correctly. This assumption is confirmed by the
Strouhal numbers obtained with the methods on the shortened computational domain (see Tab.
2.1). For the convective boundary condition, the Strouhal number obtained (St=%9-) is identical
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2D-2 2D-2 2D-2
reference domain  short domain  short domain
convective BC  outlet BC
St 0.30037 0.30037 0.29876
ASt - 0.00% -0.536%

Table 2.1: Comparison of the Strouhal numbers obtained on various computational domains
for case 2D-2 using two types of boundary conditions for velocities: convective and standard
outlet. The end of the short domain is placed 6 diameter length behind the cylinder center.

to the one obtained on the complete computational domain, while using the standard boundary
condition, an appreciable discrepancy is noticeable.

A convective boundary condition for the pressure can also be derived from eq. (2.84) and im-
plemented to replace the standard pressure boundary condition used in @@t . This boundary
condition is identical to the convective boundary condition used in [75], excepted that the vis-
cous term is neglected, hence:

Op =0p
5 = 0 (2.109)

The above boundary condition has been implemented and applied to the flow around a square
cylinder. Geometry as well as boundary conditions applied are to be taken from Fig. 2.20.
For the inlet boundary condition, the block profile with a constant velocity U, sets the refer-
ence velocity used for the convective boundary condition of eq. (2.109). As for the preceeding
benchmark cases, the time-averaged values of the pressure were calculated on the complete
computational domain for a Reynolds number of 200, defined by the inlet velocity and the
square edge A as a reference length. Again, the calculation of the time-averaged values was
assumed to be converged when the L,-norm of the deviation had reached the threshold value of
1%. The reference data so collected could then be used to compare the time-averaged values
of the pressure obtained on a truncated mesh extending 10A behind the cylinder for two types
of boundary conditions: the standard outlet boundary condition — a boundary condition of Neu-
mann type — and the here implemented convective boundary condition on pressure.

Figures 2.21 and 2.22 show the distribution of the time-averaged pressure for the shortened
computational domain for the Neumann and for the convective boundary condition. The con-
vective boundary condition shows better agreement with the reference solution in the vicinity of
the cylinder. This is confirmed by Fig. 2.23 in which the values of the time-averaged pressure
along the centerline obtained with the convective boundary condition are closer to the reference
solution than when the standard boundary condition is used. These conclusions are very similar
to the ones in [99], where the effects of Neumann boundary conditions and convective bound-
ary condition were studied on the flow around a square at incidence at a low Reynolds number
between 100 and 200.

For the chosen Reynolds number, a vortex street develops downstream of the cylinder. The
vortex shedding frequency obtained on the reference computational domain is compared to the
values obtained for the convective and standard outlet boundary conditions on a shorter domain
in Tab. 2.2. The Strouhal number, St = %, obtained using the convective boundary condition
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shows a better agreement with the reference value than for the outlet boundary condition. The
results of these two test-simulations show clearly that the convective boundary condition has
less influence on the flow field in the upstream region than the conventional outlet boundary
condition. It was therefore used in all simulations of unsteady vortical flow.
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two-dimensional flow around a square cylinder
reference reference  short domain  short domain
[99,100] domain convective BC Neumann BC
St 0.150~0.160 0.1515 0.1504 0.1569
ASt - - -0.726% +3.56%

Table 2.2: Comparison of the Strouhal numbers obtained on various computational domains
for the flow around a square cylinder using two types of boundary conditions for pressure:

convective and of Neumann type. The end of the short domain is placed 10 square-edge length
behind the cylinder center.

/ outlet

b

22m

Figure 2.13: Geometry of benchmark cases 2D-2 and 2D-3 with boundary conditions.

Velocity (m/s)
___ 3.627e-01
___ 3.300e-01
. 2.646e-01
1.993e-01
1.339e-01
, , __ 6.854e-02
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— ] _6.218e-02
,,,,,, -1.275e-01
___-1.929e-01
___-2.583e-01
—_-3.236e-01
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Figure 2.14: Contours of the velocity component u 7.9 s after the start of the simulation for the
case 2D-3. At the outlet on the right-hand side of the computational domain, zones of negative
velocity are observed and indicate the presence of back flow at the boundary.




38 CHAPTER 2. NUMERICAL METHOD

Pressure

—__ 1.847e+00
___ 1.703e+00
1.416e+00
1.128e+00
8.405e-01
—__ 5.530e-01
— 2.655e-01
__ -2.204e-02
. —-3.096e-01
___-5.971e-01
___-8.846e-01
——1.172e+00

Figure 2.15: Superimposition of the time-averaged pressure levels for the case 2D-2 obtained
with a convective boundary condition at the outlet for the shortened and full size computational
domains. Full lines represent the reference solution obtained on the complete computational
domain; dashed lines represent the pressure levels obtained with the implemented convective
boundary condition on the shortened computational domain marked by the vertical line on the
right-hand side of the figure. Note that appreciable differences are only present near boundary
of the shortened domain — around the cylinder the solutions are almost coincident.

Pressure
___ 1.847e+00
__ 1.703e+00
__ 1.416e+00
1.128e+00
8.405e-01
___ 5.530e-01
___ 2.655e-01
___ —2.204e-02
___-3.096e-01
— -5.971e-01
___-8.846e-01
—_—1.172e+00

Figure 2.16: Superimposition of the time-averaged pressure levels for the case 2D-2 obtained
with the standard boundary condition at the outlet for the shortened and full size computational
domains. Full lines represent the reference solution obtained on the complete computational
domain; dashed lines represent the pressure levels obtained with the standard outlet boundary
condition on the shortened computational domain marked by the vertical line on the right-hand
side of the figure. Note that appreciable differences are present even in the front of the cylinder

and all around it.
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Pressure
___ 1.954e+00
—__ 1.797e+00
__ 1.484e+00
1.172e+00
8.587e-01
— 5.458e-01
— 2.329e-01
___—8.000e-02
__ —3.929e-01
___—7.058e-01
—_ —1.019e+00
—-1.332e+00

Figure 2.17: Pressure levels for the case 2D-2 on the shortened domain 8 s after the start of the
simulation with convective outlet boundary condition.

Pressure (Pa)
—_ 1.951e+00
— 1.795e+00
,,,,,, 1.483e+00
1.172¢+00
8.603e-01
— 5.489e-01
— 2.374e-01
__ -7.408e-02
__ -3.856e-01
___-6.970e-01
— —1.009e+00
— —1.320e+00

Figure 2.18: Pressure levels for the case 2D-2 on the reference domain 8 s after the start of the

simulation.

Pressure
— 1.742e+00
__ 1.591e+00
. 1.289e+00
9.876e-01
6.859e-01
. 3.842e-01
__ 8.246e-02
. —2.193e-01
__ —5.210e-01
___—8.227e-01
—-1.124e+00
———1.426e+00

Figure 2.19: Pressure levels for the case 2D-2 on the shortened domain 8 s after the start of the
simulation with standard outlet boundary condition.
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Figure 2.20: Geometry and boundary conditions used for the simulation of the flow around a
square cylinder.

Pressure
___ 5.406e-01
—_ 4.371e-01
2.300e-01
2.303e-02
-1.840e-01
_-3.910e-01
-5.980e-01
___ -8.050e-01
______ -1.012e+00
__ —1.219e+00
—_ -1.426e+00
__ -1.633e+00

Figure 2.21: Superimposition of the time-averaged pressure levels for the flow around a square
cylinder with the Neumann boundary condition on pressure. Full lines represent the reference
solution obtained on the complete computational domain; dashed lines represent the pressure
levels obtained with the outlet boundary condition of Neumann type on the shortened computa-
tional domain marked by the vertical line on the right side of the figure.
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Pressure
___ 5.406e-01
__ 4,371e-01
2.300e-01
== 2.303e-02
: W%B: ~1.840e-01
A\ : — —3.910e-01
== ___-5.980e-01
___—8.050e-01
_____ -1.012e+00
__—1.219e+00
— —1.426e+00
__-1.633e+00

Figure 2.22: Superimposition of the time-averaged pressure levels for the flow around a square
cylinder with a convective boundary condition on pressure. Full lines represent the reference
solution obtained on the complete computational domain; dashed lines represent the pressure
levels obtained with the convective boundary condition on the shortened computational domain
marked by the vertical line on the right side of the figure
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Figure 2.23: Time-averaged values of the pressure versus the position along the centerline of
the computational domain. The continuous line represents the reference solution obtained on
the complete computational domain, while symbols represent the solutions obtained on the
truncated computational domain for the Neumann (NBC) and convective (CBC) boundary con-
ditions on pressure.
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Chapter 3

Simulations of the Primary Breakup of
Laminar Jets

This chapter deals with the simulation of the primary breakup of liquids jets and its purpose
is to show that the numerical method described in the preceeding section of this thesis is able
to reproduce correctly the breakup behavior of laminar liquid jets for which surface-tension
is responsible for the generation of instabilities at the jet free-surface. Here, selected classes
of problems at different frequency ranges are presented to validate the numerical model with
experimental — when available — and theoretical data: Rayleigh breakup, medium-ranged actu-
ation of a liquid sheet, sinusoidally forced breakup of a liquid jet at high excitation frequency.
Finally, an example is shown for which the actuation arises from a naturally unsteady flow
pattern in the gaseous phase.

3.1 Rayleigh breakup

Lord Rayleigh was the first to discover by using stability analysis that round laminar jets are
unstable if the wavelength of the disturbance applied to the jet free surface exceeds a threshold
value [84]. He showed that, due to the surface tension, the waves at the free-surface of the jet,
provided that their wavelength ) is greater than the jet circumference, undergo an exponential
growth in time and space. The growth rate is related to the disturbance wavelength and reaches
a maximum in the vicinity of the normalized wavenumber k* = Z2 = 0.697, where D denotes
the initial diameter of the undisturbed jet [16]. This phenomenon is very well defined and is
observed when the jet flow is laminar at low Weber-numbers (We < 3.15 according to [54]).
Because surface tension tends to change the shape of the jet free surface in order to achieve a
surface with minimal energy, the jet breaks up after a given length, depending on both initial
amplitude of the disturbance and the growth rate; eventually, droplets are formed. The droplets
obtained are separated into two categories: the main droplets, whose diameter can be larger
than the jet diameter, and smaller ones, the so called satellite droplets (because they are found

between two consecutive main droplets), which have a diameter smaller than the jet diameter.

The Rayleigh breakup of a round laminar jet constitutes a challenge for a numerical method to
reproduce accurately the droplets formation under the action of surface tension. There has been
numerous experimental work on this topic since Lord Rayleigh’s discovery in order to study
parameters (like fluid viscosity) which may influence jet-breakup characteristics like breakup
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length and droplet sizes [23, 29, 33, 38, 74, 90, 101]. This has been complemented by theo-
retical investigations on the base of non-linear stability analysis [16, 44, 51, 54, 62,63, 85, 89].
The Rayleigh breakup of a round laminar jet is thus a very well documented flow regime for
which surface tension plays a dominant role. This is the reason why this particular kind of flow
regime was chosen to study the capability of the numerical method to reproduce correctly the
jet breakup and the generation of droplets. To the best knowledge of the author, only few nu-
merical simulations dealing with jet breakup in the Rayleigh flow regime have been reported so
far [16, 26, 68, 69]; the results presented here are among the first simulations of this flow with a
numerical method based on the Navier-Stokes equations.

For the simulations presented hereafter, the jet diameter has been set to 2.59 mm and a small
velocity disturbance of ep=1% of the mean velocity U,,=2.126 ms~! of sinusoidal shape at a
forcing frequency f; has been applied at the inlet of the computational domain according to the
following relation (in a cylindrical coordinate system aligned with the jet axis):

Uz =0,7,t) = Un{l + €0 sin(27 fot)} (3.1

In all simulations, a two-dimensional axisymmetric numerical grid corresponding to a slice of
one degree angle and the interface-capturing method based on the HRIC discretization scheme
have been used. Depending on the the wavelength of the disturbance, the jet breakup may
occur at a longer or shorter distance from the inlet of the computational domain. Also, the
size of the droplets created during breakup may exceed by twice or more the jet diameter.
Accordingly, the grid used for the simulations has to be adapted using local refinement, so that
both jet breakup and the formed droplets can be captured accurately. The grid extends 20D —
where D is the diameter of the undisturbed jet — in radial direction and from 100D to 200D
in streamwise direction, depending on the wavelength of the imposed disturbance. Thus, the
number of control volumes employed for the simulations varies from approx. 105,000 CVs (for
the disturbance wavelength corresponding to £*=0.683) to approx. 200,000 (for the disturbance
wavelength corresponding to £*=0.250). The time step was set to a fraction of the excitation
period; typically 200 hundred time steps per period have been used. The excitation period
can be deduced from the following relation, given the wavelength A and the velocity of the
undisturbed jet U,,,:

Um

~h

Given the normalized wavenumber k*!, it is possible to provide the excitation frequency which
has been varied between 65 Hz (corresponding to k*=0.250) and 180 Hz (corresponding to
k*=0.683). The physical properties used in the simulations are summarized in table 3.1 and
correspond to the fluid properties used in the experiments of [89].

A (3.2)

o[Nm™] plkgm™] plkgm's']
0.056 1120 0.004

Table 3.1: Physical properties used for the simulations of the Rayleigh breakup.

1Using eq. (3.2), k* rewrites to k* = "T]jj;f‘l. Thus, k* is equivalent to the Strouhal number of the imposed
excitation.
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Following Rutland & Jameson [89], it is possible to define a dimensionless number J = fp%

related to the Ohnesorge number, which is a measure of the surface tension effects relative
to the viscous forces. Thus, for J > 1, the effects of viscosity are negligible compared to
surface-tension effects. In our case and in order to compare the obtained drop sizes from the
computations with the experimental data from the literature, the number J has — with the phys-
ical properties of table 3.1 — a value of 4,600. This has the advantage to keep the jet-breakup
length small, resulting in a smaller computational domain and hence less computational effort;
smaller values of J would have resulted in a longer breakup length. since viscosity stabilizes
the jet deformations by damping oscillations at the jet free-surface [63].

Figure 3.1 shows predicted shapes of the jet free-surface for four k* values. This figure shows
a remarkable similarity with photographs obtained in experiments [16], as shown in Fig. 3.2.
As k* is increased, the break-up length reduces, but the number of wavelengths until breakup
increases. Also, the sizes of the satellite and main droplets correlate very well with the theo-
retical and experimental values, Fig. 3.3. For convenience, it is useful to normalize the droplet
diameter with the undisturbed jet diameter. Thus, it can be seen from Fig. 3.3 that the droplet
size so obtained can be larger than the initial jet diameter. Furthermore, as pointed out in [29],
the detached droplets in both experiments and calculations do not at once retain a spherical form
and execute series of oscillations, being alternatively compressed and elongated in the direction
of the jet axis. This can be clearly seen from Figs.3.2 and 3.1. Besides, the phenomenon de-
scribed in [16], in which the forward merging of the satellite drop with the main drop following
it takes place, could be successfully reproduced in the numerical simulations.

The results obtained for this test case demonstrate that the numerical method presented in the
preceeding chapter is capable of correctly predicting jet-breakup phenomena; this includes the
deformations of the jet free-surface as well as droplet creation and merging as they occur in the
Rayleigh breakup. This numerical method has been then applied to a range of more complex
problems where numerical simulations can serve as a supplement to experiments in trying to
better understand the physics behind jet breakup phenomena.
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Figure 3.1: Computed free-surface deformation for the Rayleigh breakup mode for various
values of the normalized wave number £*; from top to bottom:£*=0.250, 0.430, 0.533, 0.683.
Flow is from left to right.
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Figure 3.2: Free-surface deformations as observed in the experiments for the normalized wave
numbers k*=0.250 (top) and k£*=0.683. The experimental photographs have been taken from
[24].
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Figure 3.3: Drop sizes in Rayleigh break-up: comparison between calculated values and ex-
perimental data; k* is the normalized wave number, D* = D g;0p /Djet is the normalized droplet
radius.
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3.2 Medium-ranged actuation frequencies

The purpose of the simulation undertaken in this section is to demonstrate that the computa-
tional method is also able to reproduce free-surface deformations, not only for low values of the
excitation frequency (case of the Rayleigh breakup, see also the preceeding section), but also
for higher excitation-frequency values, say in the range of several kHz.

The present investigation is based on references [46, 70], in which a simplified model for the
three-dimensional breakup analysis of a thin liquid sheet is presented. The model assumes that
the liquid sheet is injected from a nozzle into a gas of negligible density with the undisturbed
velocity ug and the thickness ag. Moreover, in this model, the liquid is assumed to be inviscid,
incompressible and free of gravity forces. Two forms of free-surface deformation may then
exist and are called respectively sinuous and dilational mode. In the sinuous mode, the lower
and upper free-surfaces of the liquid sheet are in phase and antisymmetric relatively to the
plane of symmetry of the undisturbed liquid sheet. In the dilational mode, the free-surface
deformations are symmetric and out of phase (see also Fig. 3.4).

upper free—surface

Flow direction ag h liquid
_-ﬁ ________________________________________________________________________________________
w
X lower free—surface
S5
dilational mode
gas
upper free—surface
T e e Nquid

lower free—surface

sinuous mode

Figure 3.4: Dilational and sinuous modes as they occur during the breakup of a thin liquid sheet.

Dilational mode

The linear wave theory of [46, 70] developed under the assumption that the liquid sheet is
inviscid, incompressible and is ejected into a gas of negligible density, states that the free-
surface deformations obey the following equation:

kgkgul . .
hlag =1+ > [sin(ksz — wt) — sin(kyx — wt) || (3.3)

(ks — k2)
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Here, a, is the undisturbed sheet thickness, h represents the sheet thickness relative to the plane
of symmetry of the undisturbed liquid sheet and «’ is the amplitude of the disturbance applied
to the left boundary of the liquid sheet with the actuation frequency w. The wave numbers k;
and k3 are solutions of the dispersion equation [46,70]:

—w? 2k — k2 2k =0, (3.4)
where:
. o, W
w* = = 3.5
k* = kag (3.6)
1
= 3.7
¢ We 3.7

We is the Weber number calculated with the liquid sheet physical properties. The Weber number
definition to be used is the one of [46], i.e.:

2
a

We (3.8)

For a given value of w, the solutions for k, and k; are:

b = — (1— VI der) 3.9

260,0
ks = -21— (—1 +VIF 4ew*) (3.10)
€ao

The solution of the linear theory is compared here with the free-surface deformations obtained
in a numerical simulation of a viscous liquid sheet emerging from a square shaped nozzle into
quiescent air. The flow is assumed to be two-dimensional and because of the developing insta-
bilities (dilational), only the upper half of the liquid sheet has been considered. The geometry
of the solution domain as well as the applied boundary conditions are shown Fig. 3.5.

Pressure boundary
Pressure
boundary
160 a, N | 204,
e ligudshesr ; =
Inlet Symmetry plane

Figure 3.5: Geometry and boundary conditions used for the simulation of a sheet breakup with
dilational mode forcing.

The liquid sheet is forced to undergo free-surface deformations of dilational type by imposing
at the inlet boundary a fluctuating velocity of the type:

U(z =0,t) = uo(1 — € sin(wt)) (3.11)
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ap[m] wup[ms™] plkgm™@] o [Nm™'] wlrads™] Wel[-]
0.002 10 1000 0.1111 6283.185307 900

Table 3.2: Liquid physical properties and reference dimensions used for the simulation of the
sheet breakup with dilational mode forcing.

with ¢; being the disturbance amplitude, given as a fraction of the undisturbed sheet-velocity.
Here a value of €;=0.015 has been chosen. The actuation frequency w, the sheet thickness, the

value of the surface tension coefficient and the undisturbed sheet velocities are listed in Table
3.2.

The corresponding predicted deformation of the free-surface shown Fig. 3.6 was obtained at
the end of the calculation after 20,000 time steps with a non-dimensional time-step size of 0.01,
using ag as a reference length and o as a reference velocity. One period of actuation is then
resolved within 1000 time steps (where 200 times steps should be sufficient), but the limitation
on the Courant number (Co < 0.5) for the free-surface simulation with the interface-capturing
method does not allow to increase the time step any further if a sharp interface between liquid
and solid has to be obtained. From Fig. 3.6, it can be seen that seen that the obtained free-
surface deformation shows very good agreement with the linear theory up to a distance of 75 ag
downstream from the location at which the disturbance is produced: Wavelength and wave-crest
amplitudes show very little differences, though wave troughs are less pronounced. This is due
to the linear model becoming invalid when the wave amplitude compared to the wavelength
exceeds the value of 1%, which is already the case at a distance of 20 ay downstream the
inlet. Further downstream (from 75 ap up to the outlet of the computational domain), non-linear
effects make the sheet free-surface flatten, whereas the wavelength remains the same: the wave
crests flatten out and wave troughs become more peaked.
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Figure 3.6: Comparison of the sheet free-surface deformations for the dilational mode. The
dashed line represents the analytical solution from the linear wave theory; the continuous line
represents the free-surface deformation obtained in the present simulation. The Weber number
in this simulation was We = 900.
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Sinuous mode

In references [46, 70], the equations which model the free-surface deformation of an inviscid
and incompressible liquid sheet emanating into a gas with negligible density, are linearized
assuming that the sheet free-surface deformations remain small compared to the undisturbed
sheet thickness. The sheet free-surface variations are then defined by the position of the sheet
centerline y only; the position of the upper and lower sheet free-surfaces are given by an offset of
+0.5 ag and -0.5 qq respectively, whereby the sheet thickness is considered to remain unchanged.
The variation of y in space and time is then given by:

_1 v
T —

[sin(ksz — wt) — sin(ksz — wt)] . (3.12)

Here uy is the undisturbed sheet velocity and v is the amplitude of the disturbance applied at
the inlet in the direction normal to the liquid sheet plane, the actuation frequency being w. The
wave numbers ks and ks are solutions of the dispersion equation [46, 70]:

—w*? 2k — (1 -4k =0, (3.13)

where the definitions of w*, k*, and € of egs. (3.5), (3.6) and (3.7) resp. still hold.
For a given value of w, the solutions of eq. (3.13), ks and kg, are:

w

w

The solution of the linear theory is here compared with the free-surface deformations obtained
in a numerical simulation of a viscous liquid sheet emerging from a square shaped nozzle into
quiescent air. The flow is considered to be two-dimensional, but contrary to the dilational mode,
both upper and lower half of the sheet have to be taken into account. Thus, the following model
setup shown in Fig. 3.7 has to be used.

Pressure boundary

P

40 a,

50 a,

Figure 3.7: Geometry and boundary conditions used for the simulation of a sheet breakup with
sinuous mode forcing,
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The liquid sheet is forced to undergo free-surface deformations of dilational type by imposing
at the inlet boundary a fluctuating velocity of the type:

v(z = 0,t) = uo(1 + € sin(wt)) (3.16)

with ¢; being the disturbance amplitude, given as a fraction of the undisturbed sheet-velocity.
Here a value of €;=0.03 has been chosen. The actuation frequency w, the sheet thickness, the
value of the surface tension and the undisturbed sheet velocities are listed in Table 3.3. The
dimensionless time step was 0.005.

ag[m] wug[ms™] plkgm™] o[Nm™] wlrads™'] Wel[-]
0.001 10 1000 0.1111 6283.185307 1800

Table 3.3: Liquid physical properties and reference dimensions used for the simulation of the
sheet breakup with sinuous mode forcing.

Figure 3.8 shows the deformation of the free-surface obtained in the simulation. The position
of the free-surface is compared to the one predicted by linear wave theory of [46,70]. As
in the dilational case, similar tendencies are observed for this simulation. Up to a distance
of 15 ag downstream from the inlet, simulation and theory show excellent agreement in both
wavelength and amplitude. Discrepancies between the analytical solution and the calculation
become important for a distance greater than 25 ay. Then, nonlinear effects change the shape
of the free-surface which becomes more peaked at the crests and flatter at the troughs, and the
sheet thickness begins to reduce (which would further downstream lead to breakup).
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Figure 3.8: Comparison of the sheet free-surface deformation for the sinuous mode. The dashed
line represents the analytical solution from the linear wave theory; the continuous line repre-
sents the free-surface deformation obtained in the simulation. The Weber number used for the
simulation was We = 1800.

The numerical method employed here allows to capture accurately the free-surface deforma-
tions of a planar liquid sheet at medium-ranged excitation frequencies. The solution shows
good agreement with theoretical results where the latter are valid, so that the method can be
assumed to be validated for this kind of flows and for this range of actuation frequencies.
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3.3 High-frequency excitation

The physical mechanisms leading to jet breakup and finally atomization of liquid jets are unfor-
tunately not well defined and a lot of effort in the last decades has been put into experimental and
theoretical investigations in order to understand which factors influence and ameliorate spray
characteristics. A key point in these investigations plays surely the nozzle internal flow. Since
each disturbance within the nozzle may have an influence on the breakup, it has been decided in
the pioneering work of [17,95] to impose on a given nozzle geometry well-defined disturbances
at given frequencies in order to study their influence on the deformation of a round laminar jet.
In the present work, the author tried to reproduce the free-surface deformations of the jet from
the experiments of [17,95].

3.3.1 Methodology

For the undertaken numerical simulations, it was found necessary to make initially some sim-
plifying assumptions:

e The boundary layer at the nozzle internal walls may be neglected, so that the simulations
can be performed with a plug velocity profile at the nozzle exit.

e Because of the form of the deformed free-surface reported in experimental studies in [95],
it can reasonably be assumed that the flow is nearly axisymmetric.

o There is no back influence of the jet flow on the flow within the nozzle. This assumption
has been verified in the experiments of [17]. All waves on the jet free-surface, except in a
very few, well-defined marginal cases, travel in the direction of the jet mean flow. All the
computations presented later in this section remain in this flow category.

o The internal nozzle flow is not turbulent (the Reynolds number based on the nozzle exit
diameter range is approx. 2,700 for an ejection velocity of 20 m/s). This feature could be
verified for the nozzle used in [17] whose geometry has been used in the work presented
here. When no disturbances were applied to the nozzle flow, it could be observed that the
jet free-surface remained perfectly smooth. For this reason, no turbulence model has been
used in the numerical simulations. In the case of appearing fluctuations of velocity and
pressure, it has been assumed that the grid resolution was small enough to resolve them
accurately. In other words, the computations are to be considered as direct numerical
simulations (DNS).

In order to verify the first two assumptions, the simulation of the nozzle internal flow has been
performed. Based on the assumption that there exists no back influence of the jet flow on the
nozzle flow, the latter flow could be computed separately using constant pressure at nozzle outlet
as a boundary condition. The velocity profiles at the nozzle outlet gained from the unsteady
simulations of the nozzle flow have been stored after each time step and reused as the inlet
velocity profile for the jet breakup simulations. The resulting free-surface deformations of the
jet have been then compared to the ones obtained with the modulated plug profile at the same
frequency and amplitude. If the differences are small, then the two first assumptions are valid.
For all the performed simulations, the physical properties of liquid and air have been set to those
listed in Table 3.4.
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fluid plkgm™] v[m?s7!] o[kgs?]
ethanoic alcohol 789 1.52-107°  0.0225
air 1.188 1.55-10°% -

Table 3.4: High-frequency excitation: Physical properties of the fluids used for the simulations

3.3.2 Nozzle-flow simulations
Two-dimensional nozzle model

The nozzle geometry used for the numerical calculations corresponds to the description of Fig.
3.9. Ethanoic alcohol is injected from the top of the nozzle through an annular slot. It is then
accelerated in a conical nozzle before emanating into quiescent air. The distance between the
piezoelectric base, where the jet excitation is produced, and the beginning of the conical nozzle
could be shifted in experiments and has been set for all the computations to 10 mm. The other
geometrical dimensions defining the computational domain have been set to the values shown
in Fig. 3.10.

inlet
prescribed

symmetry axis

ambient pressure

Figure 3.9: Nozzle geometry and boundary  Figure 3.10: Geometrical dimensions of the
conditions used for the numerical simulations  computational domain. Dimensions are given
of forced break-up of round laminar jets. in millimeters.

For the numerical simulations, three grids with different refinement levels have been used. The
coarsest grid is shown in Fig. 3.11. The other grids have been systematically refined in all di-
rections, so that the coarsest grid had 17,579 control volumes (CVs), the next finer one 70,316
CVs and the finest one 281,264 CVs. As the nozzle geometry is axi-symmetric, all the grids are




54 CHAPTER 3. SIMULATIONS OF THE PRIMARY BREAKUP OF LAMINAR JETS

generated as a slice of one degree angle. The use of local refinement allows to achieve a better
calculation accuracy at lower computational costs. Moreover, the grid has been stretched to the
walls to resolve accurately enough the boundary layer.

Figure 3.11: Coarsest numerical mesh used for the calculation of the nozzle inner flow with
17,579 control volumes.

Computed working line

The velocity at the nozzle outlet is to be used to set boundary conditions for the jet breakup
simulations, which are to be compared with experimental data. To match the measured flow rate
in the experiments, the appropriate pressure value has to be set at the nozzle inlet. Unfortunately,
there exists no trivial relation between the mean value of the velocity at nozzle exit and the
imposed pressure value at nozzle inlet. For this reason, this relation — called here working line
—had to be computed. For this purpose, the inlet pressure has been varied and the resulting flow
rate calculated. Finally, a set of points is obtained which is fit by a parabola. It has been found
that this quadratic fit is a very good approximation of the obtained results. The calculations
have been performed on three grid levels corresponding to the grids described in the preceeding
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subsection. The motivation of this procedure was to estimate the numerical error. The working
line of the nozzle model is presented in Fig. 3.12. Fitting the points obtained to a quadratic
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Figure 3.12: Working line of the nozzle

curve gives the relation between the inlet pressure p;,; and the mean outlet velocity U, with
an overall discrepancy of less than 0.03%:

Dinlet & 419.016 U2, + 1036.98U,, — 3372.48 [Pa] (3.17)

It should be pointed out that all the calculations have been performed with 100% central differ-
ences and that the normalized residual levels have been reduced below than 10—, The iteration
errors were thus smaller than 0.01. Comparison of solutions obtained on the three grids shows
very small differences, so that the solution on the finest grid can be considered as very accurate.

Computed velocity profiles

From steady flow calculations, the actual velocity profile at the nozzle outlet is obtained. The
profiles have.some similarity with a block profile but boundary layer effects are still present,
even if limited to a small region in the wall vicinity. Moreover, the radial component of the
velocity is not negligible; to enlighten this feature, profiles of the axial and radial velocity
components at an inlet pressure of 500,000 Pa are shown in Fig. 3.13. It shows the superposition
of the velocity profiles obtained on the three systematically refined grids described above (see
also Fig. 3.11 for the numerical grid). It can be observed that the differences between the
coarsest mesh and the finest one are very small (less than 1% for the radial velocity) so that it
can be assumed that the solutions from the coarse mesh are accurate enough. For this reason,
only results obtained with the coarse grid will be presented in the following.

Varying the pressure at the nozzle inlet allows to obtain various outlet velocity profiles. The in-
fluence of the inlet pressure on the profiles of velocity components have been analyzed. These
velocity profiles obtained for various inlet pressures are plotted in Fig. 3.14. Increasing the
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pressure has the effect of increasing the outlet velocity in both axial and radial direction. At
the same time, the thickness of the boundary layer reduces, as expected when the Reynolds
number increases. This is better seen if the velocity profiles are normalized with the maximum
velocity for each component, see Fig. 3.15. From the comparison, it can be concluded that there
is obviously no trivial similarity between the velocity profiles at different inlet pressures. It is
thus necessary to compute them for each desired flow rate since all velocity profiles cannot be
deduced by a simple extrapolation from the reference one.

In the experiments of [17,95], disturbances of controlled frequency and amplitude are generated
in the nozzle through the movement of a piezoelectric base which is excited by an electronical
sine-wave generator. In order to reproduce as accurately as possible the experimental condi-
tions, the piezoelectric base has first been modeled in simulations as a moving boundary. The
imposed movement of the boundary has been set to that of a plate submitted to a uniform load-
ing, so that the displacements Z(r, t) of the piezoelectric base are assumed to obey the following
law [32]:

Z(r,t) = AZsin E (1 - %)] cos(wt + ), (3.18)

where AZ is the displacement amplitude reached on the nozzle axis of symmetry and R is
the half diameter of the piezoelectric base (R = D;/2 where D; = 17.6 mm, see Fig. 3.10).
Unfortunately, the displacement values of the moving wall boundary are so tiny — actually in
the range of one to several hundred nanometers — that the preprocessing tool of the flow solver,
which is used to redefine the grid during the boundary movement, has not enough accuracy to
capture them. Since the flow is supposed to be of laminar nature, it is then possible to redefine
the moving wall boundary as an inlet boundary with a prescribed velocity equal to the time
derivative of the wall movement. Taking the time derivative of equation (3.18), we get the
model for the inlet velocity U,(r,t) applied at the moving wall boundary:
T

U,(r,t) = AU, sin [5 (1 _ -12—)} sin(wt + @), (3.19)

where AU, is related to AZ by the following equation:
AU, = —wAZ. (3.20)

In the following, the mean nozzle outlet velocity was set to 21 m/s as for the steady flow. From
the working line of the nozzle (see also Fig. 3.12), the corresponding pressure for the nozzle
inlet boundary has been obtained and set to 203,142 Pa. For verification, a steady nozzle flow
simulation with this pressure value gives indeed the desired flow rate.

In all the calculations, the outlet boundary condition was set to be of pressure type, where
the pressure level was forced to have the value of atmospheric pressure. Also, a convective
boundary condition on pressure, as described in the preceeding chapter, has been applied in
expectancy that possibly developing convective instabilities would be better convected out the
computational domain. However, no noticeable difference on the obtained outlet velocities be-
tween the use of both conditions could be found, so that the standard pressure condition was
used for the rest of the calculations.

The excitation frequency was set to 126 kHz. The excitation amplitude has been set to various
levels by changing the value of AZ. Only the results obtained for AZ = 175 nm are presented




3.3. HIGH-FREQUENCY EXCITATION 57

0.00012 0.00012

" coame grid: 17579 CVs —o— coarse grid: 1757 CVs —e—
redium grid: 70,316 CVs ~—— mediom grid: 20316 CVs =——me
Onegrig: 281264 CVy —---- fine grid: 281 264 CVy =~+esvee
0.0001 00001
Be-05 x 8e05 D,

E E
8 6 a 6005 \
3 | \

- 405 \\

‘ \
- ¥ | \\
] 0 >
0 5 10 15 20 23 30 s 40 - -5 4 -3 -2 -1 o
axal velocky (ms] mdial velocity (m/s)

Figure 3.13: Outlet velocity profiles for different grid resolutions at an inlet pressure of 500,000
Pa.
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Figure 3.14: Profiles of axial (left) and radial (right) velocity profiles at the nozzle outlet for
different inlet pressures. Results have been obtained on the coarse grid.
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here. They are indeed typical for the other calculations that have been conducted.

In order to achieve a sufficient accuracy in time, calculations have been performed with a three
time level integration scheme, which is second order accurate in time. Moreover, it has been
found that the choice of 300 time steps per excitation period is sufficient to obtain accurate in-
tegration in time. This leads to a time step of 26.455 ns.

As expected for a simulation of an incompressible fluid, results show no phase shift between the
imposed excitation and the mean velocity profile: pressure waves propagate at infinite speed.
For the imposed excitation amplitude of AZ = 175 nm at nozzle base, we obtain the following
variation for the mean outlet velocity:

Unn(t) = 20.63575 + 5.83612sin(21 fot) [ms™!], | (3.21)

where f, stands for the excitation frequency (w = 27 fy). The preceeding expression can be
seen as a Fourier series of a time fluctuating signal which has been truncated to the first two
terms. The Fourier analysis shows that the following terms are all at least two orders of magni-
tude smaller than the second term (actually less than 0.15%). The mean value differs somewhat
from the prescribed steady flow value. This can be explained by the development of an unsteady
boundary layer in the annular slot. Because of the prescribed pressure boundary and because,
for significant excitation amplitudes, the pressure level in the nozzle may become larger than the
prescribed inlet pressure of 2 bars, some fluid flows out of the computational domain through
the annular slot, leading thus to a reduction of the flow rate at the nozzle outlet.

Figures 3.16 and 3.17 show respectively the modifications in time of the axial and the radial ve-
locity components over an excitation period. Considering control points located in wall vicinity
— corresponding approximately to the zone 0.095 mm < r < R = 0.105 mm -, they are all
influenced by the presence of an unsteady boundary layer. As a matter of fact, they are dif-
ferently accelerated or decelerated depending on their position in the boundary layer. Taking
for instance a control point on the profiles presented on Fig. 3.16, its variations in time are of
sinusoidal nature. Comparing its variations with another control point, one can observe that the
maxima of the time variations are not located at the same places.

For the radial velocity, a comparable phenomenon can be observed. But, because of incom-
pressibility, the mass conservation equation imposes to redistribute the changes on the gradient
of one velocity component to gradients of the other ones. This induces a phase change on the
radial velocity component. There are then two types of excitations of the jet for a given pertur-
bation frequency and for the given nozzle geometry: a periodical variation of the axial velocity
as well as an additional periodical variation of the radial component which has a phase shift
with the axial velocity. As the amplitude of the radial velocity component is not negligible,
the assumption that the velocity profile at the nozzle outlet could be modeled by the sinusoidal
modulation of a block profile is not valid. For this reason, it is then indispensable to calculate
for a given frequency and a given excitation level the outlet profiles for both velocity compo-
nents (radial and axial) and to store them over one period for each time step, in order to use
them as inlet boundary conditions for jet simulations.
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Figure 3.16: Axial velocity profiles at nozzle outlet vs. time over one period. AZ = 175 nm,
fo=126 kHz.
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Figure 3.17: Radial velocity profiles at nozzle outlet vs. time over one period. AZ =175 nm,
fo=126 kHz.
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Three-dimensional model

In order to verify the assumption that the flow inside the nozzle is almost two-dimensional
axi-symmetric, it has been found necessary to build a three-dimensional model of the nozzle.
Based on the results obtained for the two-dimensional simulation of the internal nozzle-flow, it
has been concluded that the mesh resolution of the coarse grid was sufficient for obtaining suf-
ficient accuracy. Therefore, the three-dimensional nozzle-model has been built using the same
mesh resolution as for the two-dimensional coarse grid. Using a finer three-dimensional grid
would have tremendously increased the computational time required for performing the calcu-
lations with no substantial gain in accuracy. Also, for reducing the computational effort, only
one half of the nozzle has been simulated, applying cyclic boundary conditions on the symmetry
plane as depicted in Fig. 3.18. The final grid used for the results presented hereafter contained
thus 1,324,862 control volumes.

All the calculations were performed with a second-order boundary extrapolation procedure and
full central-difference schemes (i.e. no blending with first order differencing schemes).

As in the two-dimensional case, the pressure at the inlet boundary of the computational domain
has been varied and the mean outlet velocity has been calculated for obtaining the steady-state
working line of the nozzle. The working line so obtained is depicted Fig. 3.19. The calculated
operating points have been compared with the quadratic fit obtained for the two-dimensional
model, eq. (3.17). Excellent agreement between the quadratic fit and the computed operational
points is found, confirming that the grid choice for the three-dimensional simulation based on
the two-dimensional coarse grid leads to accurate enough results, see Fig. 3.19.

Choosing a pressure level at the inlet boundary of 203,190 Pa gives a mean outlet velocity of
21 m/s with a deviation of less than 0.005% on the mean velocity magnitude. As in the case
of the two-dimensional simulation, the movements of the piezoelectric base of Fig. 3.9 are
imposed in order to simulate unsteady flow. The wall displacement model was chosen to corre-
spond to the one used for the two-dimensional computations, hence the wall being modeled by
an inlet boundary with a velocity profile obeying eq. (3.19). Simulations have been performed
using the displacement amplitude of 100 nm at the nozzle symmetry axis at the excitation fre-
quency of 126 kHz, starting from the converged solution obtained in a steady-state analysis. A
periodic solution in time is then obtained very rapidly after a few thousand time steps. This can
be seen from Fig. 3.20, in which the area averaged velocity at the nozzle outlet over time is
displayed. The graph allows to consider the solution being periodic after 6 excitation periods.

The same boundary layer effects as for the two-dimensional simulation are observed, see Fig.
3.21 and 3.22, even if the actuation amplitude is lower (AZ=100 nm instead of 175 nm in
the two-dimensional case): The radial velocity component cannot be neglected; both velocity
components (radial and axial) show especially in the near wall region strong phase shifts with
the imposed actuation, due to the unsteadiness of the flow field.

Once the periodic state had been reached, the velocity profiles at the nozzle outlet were stored
over one period for later use as inlet boundary condition for the jet breakup simulation. Typical
velocity profiles obtained at the nozzle outlet for are shown in Fig. 3.23.

From the results obtained from the two-dimensional and three-dimensional simulations of the
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Figure 3.18: Geometry (top) and numerical mesh (bottom) used for the 3D nozzle simulation.

The same mesh density is used as in the two-dimensional case, Fi
conditions are depicted in gray and red on the figure.

g. 3.11. Periodic boundary
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Figure 3.20: Mean velocity at the nozzle exit over time. Time is made dimensionless by using
the excitation period. Periodicity is achieved within a few excitation periods. AZ = 100 nm.
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Figure 3.21: Axial velocity profiles at nozzle outlet vs. time over one period. The velocity
profile is obtained at one cross section of the nozzle outlet. AZ = 100 nm, f,=126 kHz.
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Figure 3.22: Radial velocity profiles vs. time over one period of actuation. The velocity profile
is obtained at one cross section of the nozzle outlet. AZ = 100 nm, fy=126 kHz.
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nozzle internal flow, no noticeable difference between the results is found and it can be con-
cluded that, up to the assumption made concerning the boundary conditions and fluid properties,
the nozzle internal flow is axi-symmetric.

3.3.3 Jet-breakup simulations
Two-dimensional model

Assuming initially that the phenomena to be observed in the jet are axi-symmetric, it is mean-
ingful to reduce the problem from three to two dimensions by modeling only a slice with a
one-degree angle. For the simulations presented in this work, numerous numerical grids have
been generated. They all use the geometry with the boundary conditions of Fig. 3.24. Expe-
rience has shown that the pressure boundary condition on the top of the computational domain
allows entrainment of the background fluid in which the liquid jet is issued from the lower left
corner of the computational domain. An example of the numerical grids for this purpose used
is presented in Fig. 3.25. It uses local refinement in order to capture as accurately as possible
the deformations of the free surface at lower computational costs.

It is worth to analyze the influence of the use of a “realistic” inlet boundary condition which
has been obtained with the nozzle-flow simulation and the one with a very simple model, i.e. a
block profile modulated in time by a sine wave as:

Usr,2=0,t) = Un[l + eosin(2nfot)]; 0<r<=, (3.22)
where ¢ is a measure for the disturbance amplitude. This model — in addition to neglecting
boundary-layer effects — does not take any time variations of the radial velocity component into
account and allows only disturbances to apply in axial direction. This model is very simple
and has been used for different values of ¢;. These values have been chosen so that they are
comparable with the disturbance level on the mean outlet velocity obtained with various nozzle
simulations.

From the simulation results shown in Fig.3.27, it can be observed that the form of the velocity
profiles at nozzle exit used to set the inlet boundary conditions for the jet flow simulation have
various effects on the development of instabilities at the jet free-surface. Using on the one hand
velocity profiles emanating from the nozzle-flow simulation allows to capture some interesting
effects: waves on the jet free-surface roll-up until a certain level of the disturbance amplitude
is reached. Up to this level, one observes a forward merging of the surface waves creating
gas inclusions in the jet. Above this level, the inertia of the created waves is too large for
allowing a backward merging of the free surface and the free surface is deformed as in the
manner of the simulations made with a block profile. On the other hand, using a block profile
modulated in time with a sine wave — see eq. (3.22) — does not take into account boundary layer
effects which are caused by the nozzle walls. Moreover, the radial velocity component is totally
neglected. In that case, free surface deformations are only developing from a disturbance on the
axial velocity. Compared to the other type of inlet condition, no merging of the free surface is
observed. On the contrary, for a much smaller disturbance amplitude, the jet already develops
a typical bell-shaped form. For greater amplitudes, droplet ejection — tube ejection would be a
more appropriate term here — is also captured. Therefore, the velocity differences between the
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Figure 3.23: Typical velocity profiles in radial and axial directions obtained at the nozzle outlet.

pressure boundary

wall
boundary

20D

pressure boundary

NG

prescribed velocity

flow direction

S

D: jet diameter

Figure 3.24: Layout of the computational domain with the boundary conditions employed.
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Figure 3.25: Detail of a numerical grid with 16,960 CVs used for the two-dimensional simula-

tions of jet breakup.

Figure 3.26: Detail of the mesh used for the three-dimensional jet-breakup simulations. Cyclic

boundary conditions are used on the regions colored in red and green on the figure.
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jet core and the jet surface — because of the nozzle boundary layer — as well as radial velocity
components are responsible for the wave roll-up on the jet surface. The core velocity is only
responsible for the wave transport in downstream direction. If the inertia is high enough, the
waves are convected more rapidly than they can roll-up, which explains the development of a
bell-shaped wave form, provided that the disturbance amplitude exceeds a certain level.

Three-dimensional model

In the previous two-dimensional study of the forced jet breakup, it has been found that, depend-
ing on the actuation amplitude, rings of fluid detach from the jet free-surface. But, because of
the size of the ejected rings (in the range of several 10 pym), surface-tension effects are likely
to force the rings to undergo a Rayleigh-type breakup and eventually droplets are created. The
motivation of the present study is to use three-dimensional models in order to capture the ex-
pected jet breakup behavior and eventually the formation of droplets.

Simple actuation model

In order to check whether the same strong influence of the velocity profile imposed at the inlet
boundary of the jet flow simulation is obtained in 3D as well, or some other three-dimensional
effects will be more dominant, it has been decided to neglect initially boundary layer effects
arising from the nozzle internal flow and to assume the flow issuing the nozzle can be rep-
resented by a block profile. Hence, the velocity is represented by the sinusoidal modulation
in time according to the following equation, when considering a cylindrical coordinate system
which symmetry axis is aligned with the jet axis:
: D
Uur,0,2=0,t) =Up [l + € sin(2rfot)]; 0<r< 5> (3.23)

where ¢ is a parameter used for setting the level of actuation for the jet disturbance and is given
in percentage of the mean jet velocity U,,; fo represents the excitation frequency, which is set
to the same value as the one used in the two-dimensional investigations, hence 126 kHz. Here,
in order to compare directly the results with those obtained in the two-dimensional simulations,
the excitation level has been fixed to ¢y = 16%.

The velocity profile of eq. (3.23) has been imposed as the inlet boundary condition to the nu-
merical mesh presented on Fig. 3.26. The numerical grid has been built with the same cell
density as for the corresponding two-dimensional simulation with the same excitation level, so
that direct comparison with two-dimensional simulation results can be undertaken. Also, in or-
der to save computational effort, only one half of the complete three-dimensional computational
domain has been modeled and cyclic boundary conditions have been applied. The final mesh
involved so 1,376,862 control volumes.

Surprisingly enough, the results obtained with the forcing of eq. (3.23) — with a disturbance am-
plitude of €g = 16% — do not lead to the expected formation of droplets; the rings of liquid that
detach from the developing wave train, see Fig. 3.29, remain stable and the solution is nearly
axi-symmetric, corresponding to that obtained in two-dimensional simulations. The deforma-
tions of the jet free-surface are periodic with the same frequency as the one of the excitation
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source. Therefore, results are shown over one period.

As in the case of the Rayleigh jet-breakup mode, the fluid rings ejecting from the jet free-surface
are unstable and should break up and form droplets, provided that there exist some disturbances
along the axis of the fluid torus, i.e. in azimuthal direction. However, from Figs. 3.30 and
3.31, it can be seen that the time averaged velocity in this direction is almost zero, or at least
very small compared to the velocity components in radial and streamwise directions. The same
is also observed for the rms values of the time averaged velocity fluctuations in the azimuthal
direction. The highest values are obtained in the zone where the fluid torus detaches from the
jet free surface and free surface contracts rapidly (film collapse). Nevertheless, the observed
velocity fluctuations do not lead immediately to droplet formation.

Also from Figs. 3.30 and 3.31, it can be seen that the jet develops until the free-surface reaches
a maximum amplitude, where fluid rings detach from the jet. Beginning from this position, the
liquid and gas flow becomes more uniform: the bell-shaped free-surface travels downstream
with almost the imposed jet ejection velocity (hence, 21 m/s), the velocity fluctuations decrease
in amplitude. One can then conclude that, within a few nozzle diameters, if surface tension
effect are neglected, convection is the only driving force for the flow.

Influence of the nozzle internal flow

Considering that the imposed variation of the velocity profile (eq. (3.23)) at the inlet boundary
cannot account for any radial or azimuthal disturbances that may arise from the nozzle internal
flow, it is then necessary to investigate the jet breakup behavior when such additional distur-
bances are present. The most meaningful velocity profile to be used corresponds to the one
obtained from the three-dimensional nozzle flow simulation. Under the assumption that the
disturbances in the jet do not travel backwards but rather in downstream direction (as shown
in the experimental work of [17]), the nozzle flow simulation could be run separately and the
outlet profiles stored at every time step. The profiles were then reused as an inlet boundary
condition for the jet breakup simulation. Since the flow pattern in the nozzle is periodic, it is
then only necessary to store the velocity profiles over one period. Special care has to be taken
to determine the correct velocity at the jet inlet at any given time. In the present investigation,
the mesh density at the nozzle exit was, however, chosen to match exactly the one used at the
inlet boundary of the computational domain of the jet breakup simulation. Thus, any kind of
interpolation errors due to non-matching surface grids could be avoided. Further, any kind of
interpolation errors in time has been avoided by taking the same time step for the simulation
of the nozzle internal flow and the jet flow. Finally, the inlet conditions for the jet flow simula-
tion were obtained with an actuation amplitude matching the one of the simple excitation model.

The corresponding free-surface deformations obtained in the simulation are shown in Fig. 3.32.
Again, as in the case with the simple excitation model, the flow pattern obtained is periodic
with the period of the imposed actuation. Compared to the jet deformations obtained with the
block profile, Fig. 3.29, the free-surface deformation here undergoes a totally different be-
havior: backward breaking of the growing waves is observed, leading first to a growing wave
whose amplitude decreases after the gas-fluid interface has rolled up. The free-surface deforms
in the same way as with the two-dimensional model. And again, no droplet ejection from the
free-surface is observed.
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As in the case of the simple jet actuation, the values of the velocity fluctuations decrease as
the jet develops and it can be considered that after some distance downstream the nozzle, the
flow pattern is uniform, Fig. 3.33 and 3.34. Of course, higher fluctuations are observed in the
zone where the interactions between the liquid jet and the surrounding gas are important: near
the nozzle exit, where gas entrainment due the interfacial shear appears and where the pressure
fluctuations pinch the free-surface, but also in the regions where the free-surface experiences
backward merging. However, the intensity of the fluctuations, especially in the azimuthal di-
rection, is not high enough to supersede to the production or ejection of droplets from the jet
free-surface.

Influence of azimuthal disturbances

As no droplet creation could be observed within the computational domain during the simula-
tions with both simple actuation model and with the inlet profiles gained from the nozzle flow
simulation, one can conclude that the absence of droplet creation is due to the fact that in both
cases there exist little or no azimuthal disturbances. Such disturbances are, however, likely to
be present in the reality due to imperfect axi-symmetry of the geometry and/or forcing displace-
ments of the nozzle base.In order to investigate possible effects of azimuthal disturbances on
the jet breakup behavior, a disturbance in azimuthal direction has been superimposed onto the
block profile for the simple excitation model. The form of the disturbance has been chosen to
have the spatial and temporal divergence-free variation given by:

Ulr. @) = elUm%cos(kgé?) (3.24)
Us(r,0) = € Upnrcos(kqb) (3.25)

where kg is the disturbance wavelength in azimuthal direction and has been chosen to have a
meaningful value, here 8. The maximum amplitude of the disturbance so applied is a fraction
of the mean jet velocity, where the fraction is given by the factor ¢,. For the results presented
hereafter, €; has been set to 2%. The excitation level in streamwise direction remained fixed to
16%.

The resulting flow pattern obtained with this kind of excitation also undergoes periodicity and
therefore the free-surface deformations shown in Fig. 3.35 cover one actuation period T in
steps of 0.17". As in the case of the simple excitation, waves grow on the jet free-surface and
take a similar form as the ones of Fig. 3.29. But, because of the excitation applied in azimuthal
direction, an azimuthal wave develops on the waves crowns and leads further downstream to the
creation of droplets, from each torus in the same way as a jet undergoes a breakup of Rayleigh
type [65]. The difference is that the mean azimuthal velocity in liquid rings is equal to zero;
however, since only the disturbance around the mean is of importance for the development of
instabilities, the mechanism of droplet generation is the same as in jets with a non-zero mean
axial velocity.

Again, as observed in the previous simulation results, the velocity field becomes more uniform
with the travel distance from the nozzle inlet, see Fig. 3.36. Also, since the imposed velocity
variations in azimuthal direction are periodic in time, the resulting time averaged value must be
nearly zero, at least in the vicinity of the nozzle outlet, which correlates well with the results
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of Fig. 3.36. The root mean squared values of the obtained velocity field are shown Fig. 3.37.
From this figure, the same behavior as for the case of the simple actuation is observed for the
velocity fluctuations in radial direction, Fig. 3.31. In the azimuthal and streamwise directions,
contrary to the case of the simple actuation, since an azimuthal disturbance exists, the root
mean square values do not decrease any more and these perturbations are of a greater amplitude
where the ejection of fluid rings is produced as well as where the droplets are created. This can
be related to a Rayleigh type breakup of the liquid rings, for which the instability mechanism
described in Section 3.1 is due to an in time exponentially growing disturbance.

Influence of azimuthal disturbances superimposed onto the nozzle flow

Finally, in order to complete the investigation on the influence of azimuthal disturbances on the
jet breakup, the azimuthal disturbances of egs. (3.24) and (3.25) have been superimposed onto
the velocity profiles which were obtained with the simulation of the nozzle internal flow. Due to
the liquid compressibility — see also next section —, azimuthal disturbances can be self-created
from the forcing at the nozzle base and self-sustained because of possible resonant modes of
the nozzle cavity. The form of the applied disturbance here is similar to the one obtained with
an compressible simulation and, since the disturbances appear being of periodical nature, the
disturbance applied to the nozzle velocity profiles obtained in an incompressible simulation
model in a consistent manner disturbances which would arise from compressible simulations.
The maximum amplitude of ¢€; in egs.(3.24) and (3.25) has been set to the same level as in the
case of the simple actuation (¢;=2%), the excitation level in streamwise direction remained the
same as in the case for which the nozzle internal flow was used for delivering the inlet boundary
conditions to the jet breakup simulation. The wavelength of the azimuthal disturbance was set
to ke=8.

The deformations of the free-surface were found to undergo a periodic behavior after several
periods of excitation. Thus, Fig. 3.38 shows the deformations of the jet-free surface obtained in
the simulation over one period of actuation 7" in steps of 0.17". As in the case of the simulation
of the jet breakup using the velocity profiles gained from the nozzle flow simulation, waves are
formed, then roll up before merging with the next incoming wave. Because of the azimuthal
disturbance applied, instead of obtaining bell-shaped, axi-symmetric waves, a fingering of the
wave crown is observed. This phenomenon is amplified due to surface-tension which contracts
the liquid-gas interface and will lead eventually to the formation of droplets further downstream
the observation window.

From Fig. 3.39, it can be seen that, as found in all preceeding simulation results, the flow field
becomes more uniform with increasing distance from the nozzle outlet. The time averaged
value of the azimuthal velocity is in this case still smaller than the values of the other velocity
components (radial and axial) but shows higher variations in the zone were the free-surface un-
dergoes roll-up and backward merging with the creation of large gas inclusions. This behavior
is also found for the time-averaged root mean square (rms) value of Fig. 3.40. For all veloc-
ity components, the highest variations are obtained in the zone where breakup and backward
merging occurs, except for the radial component of the velocity, for which the rms values are
also high near the inlet of the computational domain. These values are mainly due to the gas
entrainment in this region shown by the negative values of the radial velocities on Fig. 3.39
and to the form of superimposed excitation which increases with increasing radius, see also




3.3. HIGH-FREQUENCY EXCITATION 71

egs. (3.24) and (3.25). After some distance from the nozzle orifice, the rms level of the radial
velocity becomes less important at the wave crowns compared to the splashing phenomenon,
when waves are rolling up and merging backwards.

3.3.4 Comparison of the simulation results with experimental data

One of the motivations of the numerical simulations presented so far was to allow a direct
comparison of the computations with the experimental observations in order to achieve a better
understanding of the jet breakup phenomena. Corresponding experiments have been conducted
at the IMFD (Institut fiir Mechanik und Fluiddynamik, Technical University Bergakademie
Freiberg, Germany), which involved among others the injection of ethanoic alcohol into am-
bient air at various injection pressures, disturbance amplitudes and frequencies. Some of the
experimental results have been made available for comparisons with present simulation in the
frequency range presented in this work.

The nozzle geometry described in Figs. 3.9 and 3.10 approaches the geometry of the nozzle
used in the experiments and the boundary conditions used were chosen to reproduce as ac-
curately as possible the experimental conditions. Since the disturbance applied is of periodic
nature, the observation of jet deformations under stroboscopic light has been realized. In most
cases, it has been observed that the response of the jet deformations to the periodical excitation
is also of periodic nature and that this flow feature is successfully reproducible. For this reason,
it is considered that the photographs of Fig. 3.28 are typical for the wave growth on the jet
free-surface for increasing amplitude of the imposed disturbance. Unfortunately, there is no
explicit relationship between the imposed excitation level onto the piezoelectric base and the
disturbance amplitude of the jet velocity. Therefore, excitation levels are indicated by a RMS
voltage value in Fig. 3.28 and only a qualitative comparison between simulations and experi-
ments is then possible and will be limited to the description of tendencies in the observed jet
behavior when increasing the excitation level.

Comparing the simulation results with the experimental ones, the best agreement is found for
the calculated jet deformations with the velocity profile at the inlet obtained from the nozzle-
flow simulation. As it has been found in the experiments, there exists an excitation level up to
which the jet free-surface does not develop any bell-shaped form. This corresponds approxi-
mately to the RMS value of 38 mV of Fig. 3.28. An interesting phenomenon can be pointed
out for this level of actuation: the free surface begins to deform, waves grow up before their
amplitude starts diminishing. The same behavior is observed in the simulation results of Fig.
3.27 for the excitation amplitude of 16% with the velocity profile gained from the nozzle flow
simulation. In this figure, waves start growing, but because of the jet centerline velocity being
higher than the liquid velocity at the surface, the created waves start breaking backwards and
enclose some of the surrounding gas, their amplitude being reduced as they propagate further
downstream. The same behavior is observed in the three-dimensional simulation of Fig. 3.32.
Unfortunately, this assumption could not be confirmed experimentally, since it is difficult to
observe on the stroboscopic photographs any of the aforementioned gas enclosures which result
from the wave breaking.

Concerning the simulation of the nozzle flow, no experimental results were available to the au-
thor at the time this thesis was written, so that the boundary conditions applied as well as the
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with simulated inlet velocity profile; with block profile at inlet; disturbance
disturbance amplitude ~ 8%; St = 3.96 amplitude = 8%; St =3.96

- L
L4 E]
with simulated inlet velocity profile; with block profile at inlet; disturbance

disturbance amplitude ~ 16%; St = 3.98 amplitude = 16%; St = 3.98

with simulated inlet velocity profile; with block profile at inlet; disturbance
disturbance amplitude ~ 24%; St = 4.00 amplitude = 24%; St = 4.00

with simulated inlet velocity profile; with block profile at inlet; disturbance
disturbance amplitude = 32%; St = 4.05 amplitude = 32%; St = 4.05

Figure 3.27: Cuts along the jet axis obtained for various disturbance amplitudes at nearly con-
stant Strouhal number and for distinct inlet boundary conditions: an inlet profile obtained from
the unsteady nozzle-flow simulation (left), a block profile modulated by a sine wave (right).

Fluid flow is from the right to the left. Numerical grids have the same refinement level for
capturing the free-surface position.
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Figure 3.28: Stroboscopic photographs of the free-surface deformations of a jet of ethanoic
alcohol under forced, periodical excitation art a frequency of 126 kHz (courtesy of IMFD, TU
Bergakademie Freiberg, Germany). The excitation level increases from left to right and from
left to bottom and is given by the RMS value of the input voltage. u indicates the mean nozzle
outflow velocity and the jet issues from the nozzle at the top of each photograph.
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Figure 3.29: Jet free-surface deformation with pressure contours at different instants over an
excitation period. Inlet velocity is obtained by the modulation of a block-profile. Excitation
amplitude is ¢y = 16%. Flow is from left to right.
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Figure 3.30: Time averaged velocity profile for both gas and liquid flow in the case of the
modulated block profile of eq. (3.23). <Ur>, <Utheta> and <Uz> denote respectively the
velocity components in radial, azimuthal and axial (streamwise) directions. The black line
represents the instantaneous free-surface position in the midplane of the computational domain.
Flow is from left to right.

Figure 3.31: Time averaged profiles of the velocity fluctuations for both gas and liquid flow in
the case of the modulated block profile of eq. (3.23). <u’r>, <u’theta> and <u’z> denote re-
spectively the root mean square (rms) values of the velocity components in radial, azimuthal and
axial (streamwise) directions. The black line represents the instantaneous free-surface position
in the midplane of the computational domain. Flow is from left to right.
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Figure 3.32: Jet free-surface deformation with pressure contours at different instants over an
excitation period. Inlet velocity is obtained by the simulation of the nozzle internal flow. Flow

is from left to right.
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Figure 3.33: Time averaged velocity profile for both gas and liquid flow with inflow conditions
gained from the nozzle simulation. <Ur>, <Utheta> and <Uz> denote respectively the veloc-
ity components in radial, azimuthal and axial (streamwise) directions. The black line represents
the instantaneous free-surface position in the midplane of the computational domain. Flow is
from left to right.

Figure 3.34: Time averaged profiles of the velocity fluctuations for both gas and liquid flow with
inflow conditions gained from the nozzle simulation. <u’r>, <u’theta> and <u’z> denote re-
spectively the root mean square (rms) values of the velocity components in radial, azimuthal and
axial (streamwise) directions. The black line represents the instantaneous free-surface position
in the midplane of the computational domain. Flow is from left to right.




78 CHAPTER 3. SIMULATIONS OF THE PRIMARY BREAKUP OF LAMINAR JETS

VT=0.100

Pressure
... 2000eG2
. 1810042
14200002
10480002
86672401
. 28578401

¥T=0.200

Pressure
. 20000402
. 1810002
1429002
10480002
a.0076+01
. 2057as01
... ~05240+00

¥T=0.300

Pressure

— 2000e432
1.510e¢ 02
14290402
1.0400402

YT=0.400

Pressuro
. 2000e+@2
... 1810002
142002
1.048e02
B667e+01
.. 2857a+01
....~0.5260+00
.. ~47620+01
~85671e+01
... =1238as2
e =1 8108002
—_ -200Cev (2

#T=0,500

Pressure

. 20000402

— 1810es2
1.429e+02
1.0480+ 02
8.6070+01
2057401

__~1819e+02 1 | . =1B1%er02
— -20000+02 : * =2 000002

Figure 3.35: Jet free-surface deformation with pressure contours at different instants over an
excitation period. Inlet velocity is obtained by a modulated block-profile with disturbances in
azimuthal direction. Flow is from left to right.
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Figure 3.36: Time averaged velocity profile for both gas and liquid flow in the case the mod-
ulated block-profile with disturbances in azimuthal direction. <Ur>, <Utheta> and <Uz>
denote respectively the velocity components in radial, azimuthal and axial (streamwise) direc-
tions. The black line represents the instantaneous free-surface position in the midplane of the
computational domain. Flow is from left to right.

Figure 3.37: Time averaged profiles of the velocity fluctuations for both gas and liquid flow
in the case the modulated block-profile with disturbances in azimuthal direction. <u’r>,
<u’theta> and <u’z> denote respectively the root mean square (rms) values of the velocity
components in radial, azimuthal and axial (streamwise) directions. The black line represents
the instantaneous free-surface position in the midplane of the computational domain. Flow is
from left to right.
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Figure 3.38: Jet free-surface deformation with pressure contours at different instants over an
excitation period. Inlet velocity is obtained by the velocity profiles gained from the nozzle flow
simulations with superposed disturbances in azimuthal direction. Flow is from left to right.
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e

Figure 3.39: Time averaged velocity profile for both gas and liquid flow in the case of the
nozzle flow with superimposed disturbances in azimuthal direction. <Ur>, <Utheta> and
<Uz> denote respectively the velocity components in radial, azimuthal and axial (streamwise)
directions. The black line represents the instantaneous free-surface position in the midplane of
the computational domain. Flow is from left to right.
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Figure 3.40: Time averaged profiles of the velocity fluctuations for both gas and liquid flow
in the case of the nozzle flow with superimposed disturbances in azimuthal direction. <u’r>,
<u’theta> and <u’z> denote respectively root mean square (rms) values of the velocity com-
ponents in radial, azimuthal and axial (streamwise) direction. The black line represents the
instantaneous free-surface position in the midplane of the computational domain. Flow is from
left to right.
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geometrical definition of the computational domain must be considered as closest as possible to
the experimental setup for the investigated simulations.

Defining the gas Weber number by We, = 39%3‘2 and the Ohnesorge number of the liquid flow
by Oh = —ﬁL;, the criterion for the jet breakup of Rayleigh type is not satisfied (We, =
(pe Do)

4.889 > 0.4). The flow regime studied here falls between the bounds 13 > We, > 1.2 + Oh®?,
where the numerical value of Oh =~ 0.019642 is obtained from the data of Table 3.4. For
this flow regime — the so called wind-induced regime — the gas inertia sustains the jet breakup
behavior [18,65]. This correlates very well with the simulation results obtained so far, for which
both pressure fluctuations at the jet free surface and entrained gas drive the wave formation.

3.3.5 Discussion
Comparison of two-dimensional and three-dimensional simulations

Figures 3.41 to 3.44 show the comparison of the shape of free-surface deformations obtained
in the two-dimensional and three-dimensional simulations. For all the simulations, excellent
agreement is found concerning the wavelength of the disturbance as well as for the wave am-
plitude and for breakup behavior. Differences are found in Fig. 3.41 but only in the position
and shape of the ejected fluid rings In figure 3.43, discrepancies are also found, but in this case,
the free-surface position for the three-dimensional model is given by a cut through a plane at
6=0. On this plane, one obtains size and shape of the ejected droplets, due to the nature of the
excitation, that are bigger than in the case of the simple actuation model of Fig. 3.41. The vari-
ation in size and in shape along the azimuthal direction can also be seen from Fig. 3.35. Figure
3.44 shows also discrepancies in the shape of the free-surface compared to Fig. 3.42, for which
the agreement between two-dimensional and three-dimensional simulation is excellent. As the
case of Fig. 3.43, the free-surface obtained in the three-dimensional simulation is given by a
cut through the plane at =0 and because of the fingering of the liquid-gas interface observed in
Fig. 3.38, the wave thickness in this plane is different compared the axi-symmetric simulation.
Nonetheless, the agreement between the two-dimensional simulation and the three-dimensional
one is good: the same roll-up behavior is captured, wave amplitude and form correlate very
well in the vicinity of the nozzle exit and the gas inclusions are located at the same places with
approximately the same shape in both cases.

At the light of the presented results, one can conclude that the three-dimensional approach is
only justified from the moment where disturbances in the azimuthal direction exist. In all other
cases, if the simulation conducted here may allow a generalization, the two-dimensional sim-
ulation approach is sufficient for obtaining qualitatively adequate deformations of the jet free
surface.

Comparison of numerical results with theoretical investigations

For high frequencies of the excitation, the wavelength of the disturbance at the free surface of
a round laminar jet becomes smaller than the jet circumference and according to the Rayleigh
theory (valid under the assumption of an incompressible, inviscid liquid jet in a gas of negligible
density [84,89]) the jet free surface should not experience any kind of wave growth. However,
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Figure 3.41: Comparison of the shape of the free-surface obtained with the two-dimensional
simulation (contoured shape) and the one obtained with the three-dimensional simulation (black
line). Both results use the simple actuation model from eq. (3.23).

Figure 3.42: Comparison of the shape of the free-surface obtained with the two-dimensional
simulation (contoured shape) and the one obtained with the three-dimensional (black line) sim-
ulation. Both results use the velocity profile gained from the resp. two-dimensional and three-
dimensional nozzle simulation.

Q ¢ ¢

¢ & G

Figure 3.43: Comparison of the shape of the free-surface obtained with the two-dimensional
simulation (contoured shape) and the one obtained with the three-dimensional simulation (black
line). The two-dimensional simulation uses the simple actuation model of eq. (3.23), the three-
dimensional one uses the actuation with additional disturbances of egs. (3.24) and (3.25).
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Figure 3.44: Comparison of the shape of the free-surface obtained with the two-dimensional
simulation (contoured shape) and the one obtained with the three-dimensional simulation
(black line). The two-dimensional simulation uses the velocity profiles gained from the two-
dimensional nozzle flow simulation, whereas the three-dimensional simulation uses the velocity
profiles of the 3D nozzle simulation with additional disturbances of egs. (3.24) and (3.25).

wave growth is observed in both simulations and experiments and another mechanism has to be
found in order to explain the jet free-surface behavior for wavelengths that are shorter than the
jet perimeter. According to the work of Lin & Lian [63], the instability mechanism must be of
convective nature and it must be distinguished between three major mechanisms for the onset
of jet breakup. Defining the liquid Weber number We = o /p,U?rq, where U is the jet velocity
and rp the undisturbed jet radius, the gas to liquid density ratio Q = p,/p, and the Reynolds
number Re = Ury /v, the mechanisms of breakup onset can be summarized according to Table
3.5.

Mechanism Characteristic length Parameter range
Capillary pinching To Q<K We
Pressure fluctuations (We/Q)ro Wek Q<1
Q < We
Shear waves 26180 70(vy/ve)/Re Q> We

Table 3.5: Mechanisms of onset of jet breakup, [63]

For the present simulations, with the data of Tab. 3.4, the values obtained for Q and We are
resp. 1.5057 102 and 6.898 10~4, using the jet characteristic outlet velocity of 21 m/s and di-
ameter of 0.205 mm. Both quantities Q and We have the same order of magnitude and it is
expected that, according to Table 3.5, the breakup mechanism is essentially driven by two kinds
of mechanisms: capillary pinching and pressure fluctuations. One can argue that, also according
to Table 3.5, shear waves at the gas-liquid interface must play an active role. In the latter case,
the characteristic length of the disturbance is given by 26180 ro(v,/v¢)/Re, which turns out to
have a numeric value of approx. 184.03 ry, whereas the wavelength of the imposed disturbance
is approx. 1.58737,. Therefore, the instability mechanism related to the shear waves is not
relevant.
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Figure 3.45: Time-averaged values of the gas pressure fluctuations <p’> for the four different
types of jet actuations investigated. From top to bottom: simple actuation model from eq.
(3.23), actuation with the velocity profile gained from the nozzle simulation, simple actuation
model with additional azimuthal disturbances of egs. (3.24) and (3.25), actuation with the
nozzle velocity profiles and superimposed azimuthal disturbances of egs. (3.24) and (3.25).
The black line shows the instantaneous position of the jet free surface for the corresponding
actuation level.
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In the present investigation, the instability mechanisms predicted by the theory correlate very
well with the results obtained from the numerical simulations, as depicted from Figs. 3.29, 332,
3.35 and 3.38. From these figures, it can be observed that the gas pressure fluctuations assist the
process of the capillary pinching in the vicinity of the inlet boundary and they are responsible
for the rapid growth as well as the steepness of the waves at the jet free-surface, partly due to
vortex formation at the wave edge. After some distance from the inlet boundary, convective
forces start to become the major driver of the flow pattern, the pressure fluctuations decreasing
in amplitude. This is can also be seen on Fig. 3.45, where for all kinds of actuation types used,
the rms-value of the gas pressure fluctuations are the most intense in the zone near the inlet
boundary, apart from the zones where backward merging (actuation obtained from the nozzle
flow simulation) or droplet ejection is observed. In the zone where convection dominates, the
gas pressure fluctuations decrease in intensity. Finally, it can be also observed that the gas pres-
sure fluctuations remain limited to the vicinity of the free-surface.

To the authors knowledge, this is the very first time that the theory of Lin & Lian [63] has been
complemented by a numerical simulation. The results obtained in the present investigation
validate the numerical method employed herein for this particular kind of flows where surface
tension plays an important role.

3.3.6 Influence of liquid compressibility

In the case of high-frequency actuations, acoustic effects may appear because of the liquid com-
pressibility. Very often the liquid compressibility can be neglected, because of the high value
of the fluid bulk modulus. But, in some cases, like for the flow within a cavity, the finite value
of the sound propagation velocity can lead, at some frequencies (depending also on the cavity
shape), to the accumulation and amplification of pressure waves, which corresponds to acoustic
resonance phenomena. For the nozzle flow investigated in previous sections of this chapter,
it is of relative importance to pinpoint the effects of the liquid compressibility on the nozzle
internal flow, since, at the imposed actuation frequencies, it may be resonated. The resonance
may appear not only along the nozzle axis of symmetry (which would explain that high levels
can be obtained for the axial excitation amplitude) but also in azimuthal direction (which would
sustain the creation of droplets due to the creation of azimuthal disturbances).

For a liquid, the bulk elasticity KX is a physical parameter which determines the volume decrease
of the considered substance due to a pressure increase, [34]. By definition. the following
relations hold:

_1ov 1 op

vop pop
For a liquid, assuming also that the isothermal and adiabatic values of the bulk elasticity remain
the same in the application range presented hereafter, one can obtain the sound celerity c, in the
liquid only by the knowledge of K and the fluid density. By definition:

(3.26)

er. ap
c o 2 (3.27)
And, as a matter of consequence:

op
P (3.28)
e = Ko .
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p kg m—] K [m kg“1 s?] ce[ms1]
789 1.1 10~ 1073.4

Table 3.6: Physical properties of ethanol to be used for compressibility analysis.

In the assumption of small pressure fluctuations and small density variations of a fluid for which
viscosity effects can be neglected, one can define a velocity potential ¢ for which the Navier-
Stokes equations degenerate into the form [52]:

— —CGAp=0 (3.29)

This is the wave equation for sound propagation in a fluid. Assuming that ¢ depends only on
one spatial coordinate z, the Laplacian operator A can be replaced by the second derivative in
space with respect to x and one obtains then for ¢ the following equation:

Py 2P0
2 o2

A general solution to this equation can be seen as the superposition of monochromatic waves of
the form (by decomposition of the general solution onto the Fourier space):

= % {Aei(ikz—wt)} : (3.31)

=0 (3.30)

where A is a complex argument and k is the so-called wave number related to the wavelength A
and the frequency w by:

b 2 (3.32)
A particular version of the general solution of eq. (3.31) is the standing wave of the form:
v = B cos(kz) sin(wt) (3.33)

This particular solution is obtained as the superimposition of a forward traveling (+k%z) and a
backward traveling (—kx) wave. This can happen when, due to geometrical constraints, the
forward traveling wave is reflected at some boundaries. If standing waves are, for a given cal-
culation domain, solution of the wave equation, it is very likely that this wave is going to be
amplified. In this case, the frequency w is called the resonance frequency and the spatial varia-
tion of the solution (B cos(kz)) is called the resonance mode.

A simple analysis based on the sketch depicted by Fig. 3.46 shows that a resonance frequency is
to be expected for the nozzle geometry investigated previously, with a mode in axial direction.
For the mode sketched by Fig. 3.46, the estimated wavelength of the resonance mode is one
third of the nozzle length L. Using the physical data of Table 3.6, the corresponding resonant
frequency is given by:
i Cy e 3

I=3i/%
The value so obtained lies within the range in which both experiments and simulations have
been conducted.

~ 127787 Hz (3.34)
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Because of the crude approximation made here for estimating the frequency of a particu-
lar mode, an analysis of the nozzle cavity has been performed using the program LMS Sys-
noise, [66]. The program is designed to perform acoustical analyses and allows among others
to obtain for a cavity both resonance modes and frequencies. Using the input of Table 3.6 and
looking only for the frequency range 120 to 130 kHz, one obtains among others the two solu-
tions depicted by Figs. 3.47 and 3.48. The numerical grid used for the simulations involved
30,000 control volumes which gives for the acoustical analysis performed a fairly accurate esti-
mate of the resonance modes and frequencies. Even if other resonant modes exist (there exist 17
others at lower frequencies), only the ones depicted in Figs. 3.47 and 3.48 have been retained,
since they have about the same frequency as the one used in the experiments of the IMFD and
the simulations presented here. It should be pointed out here that both frequencies captured
are narrow (126,670Hz vs. 127,368Hz) and it can be expected that both respective modes may
appear during the process of actuation at the imposed frequency of 126kHz. This will then lead
to an increase of the excitation level, so that a bell-shaped wave train can develop on the jet-free
surface, but also to an azimuthal disturbance which will be eventually responsible of droplet
ejection.

In order to check if both resonant modes of Figs. 3.47 and 3.48 can also be obtained with the
present numerical method, a coarse three-dimensional numerical grid has been built involving
223,552 control volumes, Fig.3.49. Since the working fluid is assumed to be a compressible
liquid, this feature had to be accounted for in the numerical simulation. The numerical method
implemented in the flow solver is based on a modified SIMPLE method for pressure-density-
velocity coupling when considering compressible flows, [25]. For closing the extended equation
system, it is necessary to introduce an equation of state for the fluid — p = p(p, T') — as well
as to give the variations of density according to pressure changes (i.e. the quantity dp/dp).
Considering that the fluid experiences such small variations of density and pressure that the
expansion and compression processes can be considered as isothermal, eq. (3.26) allows by
integration to obtain an equation of state for the fluid:
10p dp

K=—— = —=Kfp = p= pOeK(p_p"), (3.35)
p Op P

where p; is the reference density at the reference pressure py2. The quantity 9p/dp is then
obtained by derivation of eq. (3.35):

- poKeXFro) (3.36)

op [
This model for the density variations has been used on the computational mesh presented on
Fig. 3.49. For the simulations undertaken, the same actuation model as for the investigations
of the nozzle internal flow has been used (see also eq. (3.19)). The actuation frequency was
set again to 126kHz and 300 time-steps for one period of actuation were used. The boundary
conditions remained the same as in the case of the three-dimensional, incompressible nozzle
model. The simulation was run transient for 100,000 time steps so that a periodical flow can

2The obtained expression of eq. (3.35) degenerates to the linear variation of the density according to pressure
p/po =1+ K(p— po) if one assumes p — pg < pp and one retains terms up to the first order of the integer series
development of the exponential function, hence e® = 1 + z + O(z?). This kind of expression is widely used for
obtaining the sound velocity in fluids.
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Figure 3.46: Estimated resonance mode for the investigated nozzle geometry. The dashed lines
denote the modal lines of zero amplitude, the + signs the locations of crests and the - signs the

locations of troughs.
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Figure 3.47: Superposition of numerical mesh used for the analysis and resonance mode at the
frequency f=127.368 kHz.
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Figure 3.48: Resonance mode at frequency f=126.670 kHz: Superposition of numerical mesh
used for the analysis and modal pressure (top), cut through the nozzle midplane showing the
distribution of the modal pressures (bottom).
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Figure 3.49: Numerical grid used for the compressible simulation of the nozzle internal flow.
Only the half of the entire model is used and for recovering the complete model, a pair of
periodic boundary conditions is used, depicted in blue and magenta on the figure.

Figure 3.50: Location of the probes within the computational domain, used for registering the
time signals of pressure and velocity.
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establish in the nozzle. Because of the high amount of central-differences used for the approx-
imation of convective fluxes (100%), low-frequencies appearing at the start of the simulation
were being damped out only slowly.

After 100,000 time steps, it has been assumed from the time history of the residuals that the
flow is periodic and the time signals of pressure and velocity have been registered at 4 distinct
locations within the computational domain. These locations are given by Fig. 3.50. The num-
ber of samples taken was chosen to be big enough to capture accurately the lower part of the
frequency spectrum of the registered time signals. With a number of 32,768 samples, the power
spectra of pressure and azimuthal velocity shown in Fig. 3.51 and 3.52 have been obtained.
Unfortunately, the registered time-signal has a finite length in time and the start and ending
values may not necessarily be the same, so that it is necessary to apply a time-window to the
observed signal. Here the Welch time-window has been chosen corresponding to the definition
of eq. (3.37), because of its very good compromise between peakedness and spectral leakage in
the frequency space [98]. The resulting discrete Fourier transforms were then realized with the
software XmGrace [110].

w(t) = 0 ; t<0
w(t)=q w(t) = sin(Z); 0<t<T (3.37)
w(t) = 0 : t>T

From Fig. 3.51, it can be seen that there exits a dominant frequency centered on fy=125,749 Hz
for all pressure probes. This corresponds to the frequency of the imposed disturbance, here
126 kHz and is 0.7% off of the predicted resonance frequency for the axial mode of Fig. 3.48.
The difference in the values can be explained by the sampling frequency used during the simu-
lation. The sampling frequency is given by the inverse value of the time step size and because of
the finite precision of the computer algebra, the excitation period is not an integer value of the
time step size. This leads then to a frequency-shift after the calculation of the discrete Fourier
transform. Also, the full Navier-Stokes equations are solved here, whereas the program SYS-
NOISE performs a linear analysis. Resonant modes can then have a slightly different frequency
due to the viscous flow within the nozzle. Also, due to the non-linear nature of the Navier-
Stokes equations, energy can be transfered not only from the main excitation frequency to the
higher but also to lower-order resonant modes, which can be observed from Fig. 3.51, in which
frequency peaks are observed at 2, 3 fo ... Furthermore, considering €q. (3.29) and applying
to it a burst in time to be modeled by a Dirac function, one has then to find the solution of:

o L,0%

S — G = (1) (3.38)

Switching to the frequency space and defining by ®(z,w) the Fourier transform of ¢(z, t),
the time derivative of eq. (3.38) becomes in the frequency space —w?®(z,w) and eq. (3.38)
rewrites after some rearrangements:
. 15% 1 1
—_— = 3.39
¥ k2 8x2 w? 472 f2 A
Fromeq. (3.39), apart from the resonance phenomena, it can be deduced that at a given location,
the slope of the frequency spectrum is proportional to f~2. This is exactly the slope obtained
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on Figs. 3.51 and 3.52. It can be the concluded that the physical model introduced with eq.
(3.35) combined with the numerical solution of the Navier-Stokes equations is able to capture
the physics described by the wave equation describing sound propagation.

In order to compare the pressure fluctuations resulting from the simulation with the modal/acoustic
analysis of the SYSNOISE software, the density fluctuations at a frequency of fy=126,670 Hz
have been filtered out by calculating over the same period of time for each cell the integral value
of the density times cos(27 fot). These fluctuations are depicted by Fig. 3.53 and are in very
good agreement with the resonant mode of Fig. 3.48. Nevertheless, the position and ampli-
tude of crest and through are slightly different in Fig. 3.53, which can be inferred to the use
of a much finer mesh in the numerical flow simulation than in the acoustical analysis (223,552
control volumes for one half of the nozzle vs. 30,000 for the complete nozzle).

Surprisingly enough, even if the numerical mesh has been built in a completely symmetrical
way and the imposed excitation does not vary with the angular coordinate, disturbances in the
azimuthal velocity are obtained, see Fig. 3.52. As in the case of the registered pressure sig-
nal at the same locations, the dominant frequency is obtained for f;=125,749 Hz; also, higher
fluctuation intensities are observed at lower and higher frequencies which are an integer part or
multiple of the dominant frequency f;. Again, concerning the slope of the frequency spectrum,
the same argument as for the pressure fluctuations holds for the velocity fluctuations since they
result from the same kind of partial differential equation. By filtering out the time variations
of the azimuthal velocity at the frequency of 127,368 kHz, which corresponds to the predicted
resonance frequency of Fig. 3.48, one obtains the magnitude distribution of the azimuthal
disturbances presented Fig. 3.54. The magnitude distribution is very similar to the pressure
variations obtained for the resonant mode of Fig. 3.47. From the observed spatial distribution,
it becomes then obvious why azimuthal disturbances may appear, even if the actuation imposed
at the nozzle base is only applied in axial direction: Energy can be transfered from the mainly
axial variations of pressure to excite the azimuthal velocity component through its own axial
and radial variations.

In the section related to the jet simulation breakup, it has been shown that droplet ejection from
the jet free-surface could only be obtained if an azimuthal disturbance exists. The presence of
these azimuthal disturbances can then be explained if one takes into account the fluid compress-
ibility. Depending on the nozzle geometry, resonant modes can exist at different frequencies
and induce azimuthal variations of the velocity. Depending on the excitation frequency and the
form of the imposed actuation, the azimuthal fluctuations can be damped out but also amplified.
Therefore, it can be concluded that the liquid compressibility contributes among other phenom-
ena (like the nozzle own mechanical vibrations and the possible coupling to the fluid flow) to the
creation of azimuthal disturbances which eventually will trigger the creation of droplets after
the fluid has been ejected out of the nozzle.
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Figure 3.51: Fourier transform in frequency space of the pressure time signal registered at four
different locations within the computational domain. The probe locations are given by Fig. 3.50
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Figure 3.52: Fourier transform in frequency space of the time signal of the azimuthal velocity
registered at four different locations within the computational domain. The probe locations are
given by Fig. 3.50
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Figure 3.53: Density variation within the nozzle at a frequency of 126,670 kHz obtained for a
section passing through the nozzle midplane (top) and on the nozzle external surface (bottom).




96 CHAPTER 3. SIMULATIONS OF THE PRIMARY BREAKUP OF LAMINAR JETS

Utheta [m/s]

5.000e-04
4.524e-04

3.571e-04
2.619e-04
1.667e-04
7.143e-05
—2.381e-05
—1.190e-04
-2.143e-04
—-3.095e-04
—-4.048e-04
-5.000e-04

&

Figure 3.54: Spatial variations of the azimuthal velocity within the computational domain at a
frequency of 127,368 Hz.
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3.4 Air-flow sustained breakup of a capillary jet

The breakup of a round liquid jet can be enforced by the introduction of a well-defined distur-
bance. One possibility consists in the control of the jet velocity at the nozzle exit, as was the
case in the examples studied in the preceeding sections of this chapter. Another possibility is
to apply disturbances to the jet free-surface through the surrounding gas. In this section, the
present numerical method is tested under such conditions, i.e. using a surrounding air flow to
trigger jet instability and subsequently breakup. The results of the numerical simulations pre-
sented hereafter are aimed to reproduce the breakup of a jet issuing from a capillary tube and
submitted to elongation produced by a surrounding air flow (see also Fig. 3.55 for a schematic
principle). This technique has the advantage to produce droplets whose size is much smaller
than the diameter of the capillary tube and has been introduced first by Schmelz et al. [92].
Moreover, by forcing the jet breakup with a superimposed vibrational disturbance of given fre-
quency, almost monosized droplets can be produced. However, the numerical simulations will
remain focused on the “natural” jet breakup, i.e. without any additional forcing other than the
surrounding air flow, since the numerical method has shown to give satisfactory results in the
case of forced vibrations.

mH20

D

capillary tube
P>0

orifice plate

Direction of air flow

Figure 3.55: Pneumatic extension nozzle flow: schematic principle. Due to the pressure dif-
ference across the orifice plate, an air flow develops and strains the capillary jet that breaks up
into droplets due to the Rayleigh instability. The orifice plate is placed at a distance H from the
nozzle exit. In the present analysis: H=D.

3.4.1 Simulation approach

In this study, the liquid — whose physical properties are listed together with the ones of air
in Table 3.7 — is water and flows out of a capillary tube at a constant mass flow rate My =
25 g/min. A strong air flow is used to stretch the drop forming at the capillary tube under the
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conjugated actions of flow and surface tension into a liquid jet. The air flow is induced by a
pressure difference between a pressure chamber — separated from the surrounding air at rest
by an orifice plate — and the environment. The pressure drop has been set to Ap = 90 Pa and
corresponds to one of the values presented in the experiments of Schmelz et al., [92]. For this
pressure difference between pressure chamber and the ambient air at rest, on can assume that
the air flow speed will have a magnitude of the order given by the following relation, obtained

using Bernouilli’s second law:
2A
Uy = 4 /—pg =12.31ms™! (3.40)

fluid pkgm™3] v[m?s7!] o [kgs™?]
water 998.3 1.003 - 10°° 0.074
air 1.188 1.550 - 10~° -

Table 3.7: Air-flow assisted breakup: Physical properties of the fluids used for the simulations.

Using the orifice diameter of the capillary tube (D = 9 mm) as a reference length, the Reynolds
number for the air flow is Re, = 7216, which is quite moderate. Since the capillary tube diameter
has been chosen to be the same as the orifice opening of the plate, the reference length scale of
the water flow is then the same as for the air flow. For the given mass flow rate — 7, = 25g/min
—, the Reynolds number of the liquid flow is Re; = 59. Because of the low Reynolds number
values, it can be assumed that the flow remains laminar and therefore no turbulence model has
been used. Assuming that the flow phenomena investigated are symmetric with respect to a
rotation axis, it is meaningful to reduce to problem from three to two dimensions by modeling
only a slice with one degree angle. The resulting geometry with the boundary conditions applied
is shown in Fig. 3.56.

Because of the creeping velocity of the liquid flow through the capillary tube — Re, = 59 —,
some undesired side-effect appears, the so called parasitic currents (see also Chapter 2 for a
description). The results obtained hereafter are to the author’s opinion at the feasibility limits
of the numerical method due to this feature.

3.4.2 Analysis of the air flow

Because of the sharp orifice edge, an unsteady air flow develops downstream of it. If no special
attention is paid to the grid quality and the numerical scheme used (for example by using a first-
order differencing scheme), the velocity gradients leading to detaching vortices at the plate edge
will not be accurately enough resolved and a very smooth flow develops, showing no vortices
detaching. In order to achieve sufficiently high spatial accuracy at the critical region around the
orifice edge for capturing the onset of the vortex shedding, the use of local grid refinement is
very helpful and has been employed here, as shown in Figure 3.57 by the detail of one of the
numerical grids used in the simulations. Since vortices detaching at the orifice edge interact
with the jet free-surface and act as an external disturbance, it is important to make sure that the
distance )\ between two vortex cores — which is linked to the vortex shedding frequency by the
relation f = U, /) —is captured correctly. To this end, a coarse grid with 30,248 CVs and a fine
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Pressure P = 90 Pa

Inflow
prescribed
velocity

Figure 3.56: Computational domain used for the calculations. The distance between the nozzle

outlet and the orifice plate corresponds to one nozzle diameter. The inflow velocity profile is
the parabolic one of the Couette-Poiseuille laminar pipe flow.

Figure 3.57: Detail of a numerical grid used for the simulations using the advantage of local

refinement for resolving accurately the free-surface deformations as well as the detachment of
vortices at the orifice edge.
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grid with 125,210 CVs have been used. Therefore, results will be presented hereafter for both
grids.

The pressure has been recorded over time at a chosen location on the coarse as well as on the
fine grid. The locations have been chosen so that they experience at least the passage of one
vortex core and so that they have approximately the same position in space on the coarse and
the fine grid. A Fourier transform using a Welch filter has been applied to the recorded time
signals. The results obtained are summarized in Figs. 3.62 and 3.63. It has been considered
meaningful to normalize the frequencies of the Fourier modes so that one can easier recognize
phenomena related to the flow. For this reason, a Strouhal number St is introduced and is built
with the reference length D — the diameter of the plate orifice — and U,,, the estimated convective
velocity of the air flow from eq. (3.40). From Fig. 3.62, the dominant Strouhal number is in
the range 0.47-0.48. This frequency corresponds to the shedding frequency of the vortices
detaching from the orifice edge. The vortex detachment is not influenced by the jet free-surface
yet (no breakup) and corresponds to the situation of Fig. 3.58. The Strouhal number range
would correspond to a wavelength separating two low-pressure regions of A = D/St =0.01875—
0.01915 and is approximately the distance actually observed in the computations. Due to the
interaction of the vortices with the free surface, one observes a shift in the dominant frequency
to the lower Strouhal numbers, namely to St &~ 0.40 when the jet breaks up and droplets are
formed, Fig. 3.63. This corresponds to the situation of Fig. 3.59.

A typical pressure distribution within the computational domain can be seen in Fig. 3.58, where
the low pressure regions reveal vortex cores. Figure 3.59 shows liquid distribution with air pres-
sure in the background: liquid drops are formed after jet break up, but they are not spherical yet,
as they undergo oscillations in both axial and radial directions. Figure 3.60 shows the velocity
field for the gas flow at the same instant as in Fig. 3.59. From this figure, it can be seen that
the air is strongly accelerated towards the orifice edge and, because of the sharp angle of the
orifice, a zone of high-shear appears, leading to the formation of an unsteady air flow, charac-
terized by vortex shedding. The detached vortices eventually interact with the free-surface and
the droplets after the jet breakup has undergone breakup.

Because of the need to resolve accurately in time the air flow in order to capture the detaching
vortices at the plate edge, it is necessary to have a time step which is at least one hundredth of
the characteristic frequency of the detaching vortices but also meet the restriction on the local
Courant number due to the numerical scheme employed for modeling the free-surface flow.
This leads practically to a time step in the range of 5 - 10~° seconds for the coarse grid and of
4 - 107% seconds for the finer grid. Considering that the characteristic time for the liquid flow
to form a jet is in about 1 second, it is then necessary to calculate about 20,000 to 250,000 time
steps, depending on the grid spatial resolution. This makes this problem very tough to calculate
because of the computational effort needed, even if the geometrical model and the physics are
relatively simple.

3.4.3 Analysis of the jet breakup

Due to the pressure difference between the upside and the downside of the orifice plate, an air
flow develops. This air flow has two major features:

o The strong acceleration of the air flow through the orifice allows, with the help of viscous
shear, to strain the jet and thus reduce substantially its diameter. After Rayleigh breakup
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Figure 3.58: Instantaneous pressure distribution in the computational domain. Low pressure
regions are marked in blue and indicate the presence of vortices (Ap = 90Pa). The pressure
jump extending downward the nozzle exit (bottom left) corresponds to the actual position of the
free-surface and is mainly due to surface tension effects. Flow is from left to right.
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Figure 3.59: Instantaneous pressure distribution and free-surface deformation of the capillary jet
(in red) within the computational domain on the coarse grid. Low pressure regions are marked
in blue and indicate the presence of vortices. The vortices interact with the jet free-surface and
detaching vortices because of the air flow over a droplet is observed as well (to be seen on the

first droplet of the figure). Flow is from left to right.
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Figure 3.60: Instantaneous velocity distribution and free-surface deformation of the capillary jet
(in red) within the computational domain on the coarse grid. The air flow is accelerated towards
the orifice edge and an unsteady airflow develops downstream of it. Eventually vortices are
created which interact with the jet free-surface (in red). Flow is from left to right.
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Figure 3.61: Free-surface shape obtained in the experiments of Schmelz et al., reproduced
from [92]. Although there are no indications about the distance between nozzle exit and orifice,
it can be deduced from the experimental photographs that the ratio is H /D =~ 0.5.
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Figure 3.62: Amplitudes of the Fourier modes of the recorded time signals vs. the Strouhal
number. The measured frequencies correspond to the situation of Fig. 3.58, for which the
vortices detaching from the orifice edge do not interact with the jet free-surface (“no-breakup
condition”); the jet has not formed yet and the liquid starts to drop from the capillary nozzle.
The frequency spectrum registered is then solely due to vortices detaching from the orifice edge.
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Figure 3.63: Amplitudes of the Fourier modes of the recorded time signals vs. the Strouhal
number. The measured frequencies correspond to the situation of Fig. 3.59, for which the vor-
tices detaching from the orifice edge interact with the jet free-surface (jet breakup conditions).
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of the jet, drop sizes obtained are much smaller than the capillary tube diameter (see also
Figs. 3.59, 3.64 and 3.65).

e Vortices detach from the sharp edge of the orifice plate and produce pressure disturbances
that interact with the jet free surface. The pressure disturbances excite then the jet and
force it to break up.

The disturbances being brought to the jet free-surface are of pressure nature and surface-tension
acts against the pressure variations by minimizing the surface potential energy, which leads
ultimately to the formation of droplets. The size of the formed droplets will depend not only on
the jet diameter but also on the wavelength of the imposed disturbance (see also Section 3.1 of
this chapter). Since the disturbance is arising from the instability of the shear layer developing at
the orifice edge, the vortices will be convected at a velocity which is approximately the average
value of the air-flow velocities on each side of the shear layer. Thus, the velocity at which the
vortices detach from the orifice plate is approximately U,/2. Therefore, the Strouhal number
of the jet disturbances is about 0.8 when using U, /2 as reference velocity. As shown in Section
3.1 of this chapter, the drop sizes and wavelength computed in the simulations of the Rayleigh
breakup are in good agreement with experiments and theory. Thus, with the only knowledge of
the wavelength of the velocity disturbance and the jet radius, it is possible to deduce the drop
sizes that are obtained. Introducing the reduced wave-number k* as:
. 2mro  2mrg

k= - D St (3.41)
where 7, is the radius of the strained jet, we get from the computations £* ~ 0.27-0.34 (r; =
0.5-0.6mm). From experimental and theoretical results [51, 89], one can determine for a given
k* the sizes of the main and satellite drops. In the investigated case, the satellite drops will have
a non-dimensional diameter Dg,0,/D in the range 0.16-0.17 and the main drops in the range
0.26-0.30. However, no comparison of the above obtained values with experimental data could
be performed as no detailed experimental data was available for this case. Nonetheless, the
predicted droplet size agrees fairly accurately with the droplet sizes obtained in the simulation.

Figures 3.64 and 3.65 show the evolution in time of jet free surface as a three-dimensional view,
obtained by rotating the two-dimensional free-surface around the jet axis of symmetry. This
view gives a better appreciation of the reduction of the jet diameter under the influence of the
air flow and also in the mechanism of the droplet formation, which arises from the Rayleigh
instability. The free-surface deformations so obtained are comparable to those obtained in ex-
periments, see also Fig. 3.61. However, no direct comparison can be made since the operating
conditions of Fig. 3.61 were obtained for the ratio H/D ~ 0.5, whereas the simulations were
undertaken for the fixed ratio H/D = 1. Even though, the simulations results can be considered
as satisfactory, since they reproduce correctly the jet breakup behavior.

The results obtained for this test case and their comparison with the available information re-
ported in [92] demonstrate that the numerical method used here is capable of predicting jet
break-up due to excitation by surrounding air flow. This means that the present numerical ap-
proach — subject to a sufficient resolution in space and time — can predict primary jet breakup
driven by the three main forcing types: capillary pinching, pressure fluctuations and shear ef-
fects on the free surface. It can therefore be used to design and test procedures for droplet gen-
eration and/or atomization, and in particular to aid experimental studies by providing a detailed
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insight into flow structures and physical phenomena involved. Moreover, the results obtained
with the numerical method employed in the present study show clearly that the widely accepted
assumption for which the natural breakup of a capillary jet always occurs for the wavelength
which is the most unstable (i.e. k* ~ 0.697) is not valid, since the jet disintegration occurs for
a wavelength which is dictated solely by the air flow instabilities (k* = 0.27-0.34).
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t=140s t=145s =1.50s

Figure 3.64: Evolution in time of the free-surface of the capillary jet submitted to an external
disturbance arising from the vortex shedding of the surrounding air flow. Continuation on figure
3.65.
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Figure 3.65: Continuation of figure 3.64




Chapter 4

Concluding remarks and further work

This chapter is devoted to concluding remarks concerning the work presented in the previous
chapters. First, some remarks are made relatively to the Navier-Stoke solver used in this work.
Then, after conclusions have been drawn relatively to the results obtained in the numerical
simulations, an extension to the present work is proposed.

4.1 Concluding remarks

4.1.1 Discussion about numerical aspects

The numerical method employed, given by the commercial code @met [15], has shown to be
able to handle efficiently (concerning both observed computational times and solution accu-
racy) free-surface flows involving surface-tension effects. Nevertheless, the numerical method
has still some limitations inherent to the numerical scheme employed to discretize the surface-
tension force using the CSF method. For high surface-tension coefficients and for low Reynolds
number flows, the numerical method can also fail to predict correctly the shape of the free-
surface because of the presence of parasitic currents. In all the applications presented here,
parasitic currents are non-negligible, but, fortunately enough, they do not affect too much the
flow field, since convective forces are at least one order of magnitude higher than the residual
force occurring due to the imbalance between the pressure term and the discretized surface-
tension force. Also, in order to reduce significantly the parasitic current intensity, a novel
non-conservative discretization procedure was introduced and the results obtained so far look
Very promising.

During the creation process of the work summarized herein, it has been found necessary to
extend the standard features of the computational method of @m&t. Theses extensions have
been realized using the code facility to embed user defined functions and subroutines. This
could be used to implement both methods described in this work for setting up the level of the
free-surface and for the use of a convective outlet boundary condition.

The set-up of the free-surface level with the method described in Section 2.3.2, especially at
the start of the jet simulation and also for imposing boundary conditions during the whole
simulation, can substantially decrease the overall computational time, since the computational
grid to be used for the simulations can be of arbitrary topology and the gas-fluid interface has
not necessarily to follow the grid lines in order to obtain smooth variations of the void-fraction
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field. This initialization practice has been applied successfully to other types of flow simulations
involving a free-surface, for instance by Azcueta [11].

For investigating the effects of compressibility on the flow, it has been judged necessary to
develop on the base of literature references and implement a new type of boundary which has
been shown to have less influence on the pressure field when pressure disturbances have to
escape the computational domain trough its outlet. This boundary condition of convective type
has been extensively tested as show in Section 2.5 of the present thesis and has been also applied
to the nozzle flow simulations. Nevertheless, no noticeable differences between the standard
boundary condition (of Neumann type) and the newly implemented one could be found in this
case. However, this special kind of boundary condition has been applied to other simulations,
not reported here, also involving a free-surface, for which the convective boundary condition
allowed to convect vortical and/or waves flow patterns out of the boundary, without the need
to extend the computational domain near its outflow boundary by using coarse cells in order to
damp out artificially any kind of disturbances whose wavelength is shorter than the mesh size.

4.1.2 Discussion of the simulation results

It is no doubt that the numerical method used here, hence the software package comet [15], can
be successfully used for the simulation of the primary breakup of liquid jets at scales for which
surface tension plays a major role in the jet disintegration process.

The numerical method has been validated using experimental and theoretical results which can
be found in the literature: In the case of the Rayleigh breakup, excellent agreement has been
found with experimental data. For medium-ranged actuation frequencies, the deformations of
the jet free surface correlate very well with the results gained from the linear wave theory, at
least when the wave amplitude is not too high compared to its wavelength. Finally, for higher
excitation frequencies, again very good concordance is found with both theoretical investiga-
tions and experimental data. When the cause of excitation is due to external sources triggered
by, for instance, the presence of vortices, the wavelength of the disturbance can be used for
obtaining the droplet size which corresponds fairly well to the one obtained in the simulation.

During the simulation work presented herein, it has been found that, when the deformations
of the jet free-surface are not known a priori, the changes in the form of the free-surface are
best captured if one uses a numerical mesh for which the aspect-ratios of the control-volumes
are of the order of unity. This has also the advantage to achieve faster convergence with the
solving procedure used compared to a numerical mesh having more stretched cells (thus having
control-volumes with higher aspect-ratios). For this reason, the use of local refinement leads
to a faster and more accurate capturing of the free-surface deformations at lower computational
costs compared to a block-structured computational mesh at the same fineness level. Moreover,
local refinement allows to concentrate efficiently most of the control-volumes in the regions of
the computational domain where the deformations of the free-surface are expected, for which
the variations of all physical quantities are large, and also to coarsen rapidly the numerical mesh
in the regions where the gradients of all flow variables are small.

The use of different boundary conditions will lead to different simulation results. This is, of
course, from the mathematical point of view and from the nature of the Navier-Stokes equa-
tions, a quite obvious assumption, but it should again be emphasized here. This result has a
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quite dramatic influence on the shape of the free-surface deformation, as shown in the case of
the forced breakup of a liquid jet at high excitation frequencies. Neglecting the influence of
boundary layer effects resulting from the nozzle internal flow leads to a completely different
jet-deformation behavior. Following this argumentation, also neglecting any kind of azimuthal
disturbances explains why droplet formation within the observation window given by the com-
putational domain cannot be obtained. Only with an additional azimuthal perturbation — the
origin of which is to be found in possible acoustical resonance phenomena within the nozzle
used for the fluid injection — droplets eject from the jet free-surface.

4.2 Further work

Of course, this work has not been intended to be extensive in its approach and in its coverage of
the topic simulation of the primary breakup of liquid jets. Merely, the work presented here has
had the purpose to first validate the numerical method presented here (and, to a certain point, to
extend it) with regard to the investigated topic and, second, to set-up techniques and methods
for being able to undertake efficiently this kind of simulations.

The extension of the numerical method has been undertaken in order to provide better initial po-
sition of the free-surface on arbitrary grids as well as a better type of boundary condition in the
case of transient flows. Even if the formulation of the methods used is very general, their imple-
mentations remain limited to the cases investigated so far (and presented herein). Therefore, it
is desirable to extend the implemented method to handle arbitrary polyhedral control volumes.
Also, the implemented convective boundary condition can only be applied to laminar flows —
which fits well for direct numerical simulations — and it would be useful to extend it to turbulent
flows. Depending on the turbulence model used, an additional convective boundary condition
could be used for any additional variable solved for on the base of the work presented here.
Finally, the numerical scheme developed to tackle the problem of parasitic currents needs to be
further developed, the physical pressure needs to be reconstructed from the non-conservative
formulation employed in the novel discretization procedure.

Due to the fact that the Navier-Stokes solver used for the computations was only able to handle
incompressible media when solving for liquid/gas flows with the interface-capturing scheme, it
has not been possible to investigate the effects of any propagating acoustic waves on the behav-
ior of the jet breakup. This feature requires the modeling of the fluid media to be compressible
for the simulation of the free-surface flow. However, the numerical approach of the &7t solver
relies on the assumption of the involved media being incompressible. The fluids, gas and lig-
uid, do not mix and therefore, the gas-liquid flow is modeled as a single incompressible fluid
with variable physical properties. With these assumptions, the mass conservation equation de-
generates into the one for single-phased, incompressible media. This in turn allows to use the
standard solving procedure. On the other hand, assuming both fluids compressible, even though
weakly for being able to capture wave propagation phenomena, would have required the solver
to be fundamentally changed.

The complete system nozzle + jet has been mostly simulated by separating the nozzle flow
(for which a given velocity profile could be assumed and applied), from the jet flow. This
allowed to lower the computational effort required for the simulation of the whole system. It has
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also the advantage to study separately the respective flows, when assuming that the interaction
between both flows is weak and that effectively the nozzle flow drives the jet breakup. This
assumption is validated by experimental investigations and it is also the base of all theoretical
models found in the literature and used for describing jet-breakup mechanisms. Further work is
then needed to verify the validity of this assumption. The numerical method can then provide a
very detailed picture of the flow features. How fine the resolved scales are, depends only on the
resolution employed on the numerical grid. This is all the more important when turbulent flows
are involved. The numerical tool could be used to correlate length scales of fluctuations arising
from the wall-bounded nozzle flow and the turbulent structures responsible for the jet-breakup
and/or disintegration. This valuable data is not necessarily accessible by the experiment due to
the difficulty of measuring these flow features at scales of several 100 micrometers.
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Appendix A:
An equivalent formulation of the
minimization problem

Let’s define a functional F(v) on the set M of the locally continuous, linear functions defined

on the bounded domain 2:
Flv) = /// (Vv —Q)*dV. (A.1)
Q

Q is a vector field defined on §2 for which one desires to get an estimate through the gradient
Vu. M is a subset of C%((2), the set of functions whose square value is integrable over {2:

1

McH=LfeC*Q)/ [// ]fﬂdV} < +00 p . (A2)

A function 9 is to be found in the set M that minimizes the functional F(v). If ¥ corresponds
to a local mimimum of the functional F(v), one can write for all v in the neighborhood N (?):

Yo € N(9), F(v) > F(d) (A.3)

In this neighborhood, the Gateaux-differential vanishes from the location ¢ in every direction
71 [31]; the Gateaux-differential being defined for a given direction 7 by:

F (v + an) — F(0)

6F(b,m) = lirr%) = aeR,neN(D). (A4
One takes a subset 7 from M satisfying:
T={feC*)/f=00n80} (A5)

On takes also a chosen direction 7 from 7, that is contained in M/(?). The Gateaux-differential
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in the direction 7 is then given through the following relation:

5F(b,n) = bm— / / / (Vo +an) - QF — [Vo - QP)dV
Q

a—0 ¢

= liml

tin > [[[ < (Vo-@),avn > +a*(vaf] av
Q

_ 2///<(w-Q),Vn>dV
Q

= 2/9//n<v,(vo—Q)>dV—24)/n<(Vﬁ—Q),n>ds.(A.6)

Since 7 lies the set 7, the last surface integral vanishes and the condition that ¢ has to satisfy in
order to minimize the functional F corresponds to:

VnGT,///n<V,(V@~—Q)>dV=O. (A7)
Q

Since the set 7 is dense in H, the function ¢ must satisfy the following condition to minimize

the functional F:
<V,(Vi—-Q)>=0. (A.8)
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Allgemeine Mechanik, Warmelehre, Strémungsmechanik und Gasdynamik. Ab-
schluB als Diplom-Ingenieur.

Aufbaustudium an der Ecole Centrale de Nantes (ECN). Vorbereitung des DEA-
Diploms fiir die Zulassung zur Promotion an der ECN. Fachrichtung Turbu-
lenzmodellierung und theoretische Schiffshydrodynamik. Abschluss als Diplom-
Ingenieur (Note:,,sehr gut“) und Erhaltung des DEA-Diploms (Note: ,,sehr gut*).
Bester Student des Jahrgangs.

Assistent an der Militdrakademie der FranzGsischen Marine (Ecole Navale) im
Rahmen des Militardienstes.

DAAD-Stipendiat. Durchfiihrung eines Forschungsvorhaben zur Entwicklung
von Festigkeitsmodellen mit der Methode der Finiten-Volumina unter der Lei-
tung von Prof. Peri¢.

Wissenschaftlicher Mitarbeiter am Arbeitsbereich Fluiddynamik und Schiffs-
theorie der Technischen Universitidt Hamburg-Harburg. Durchfiihrung von Pro-
jektarbeiten mit der Thematik Simulation von Zweiphasenstromungen mit
freier Oberfliche und Oberflichenspannungseffekten im Rahmen des DFG-
Forschungsschwerpunktes ,,Fluidzerstaubung und Spriihvorgiange*.

Angestellter der Firma CD adapco. Arbeitsverhiltnis als Support-Ingenieur fiir
die von der Firma vertriebene Software, u.a. die Stromungssimulationpakete
comet und STAR-CD.

Angestellter des America’s Cup Syndikats BMW Oracle. Arbeitsverhiltnis als
Berechnungs- und Simulationsingenieur.
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