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Abstract

Biological vision adopts a coarse-to-fine information
processing pathway, from initial visual detection and bind-
ing of salient features of a visual scene, to the enhanced
and preferential processing given relevant stimuli. On the
contrary, CNNs employ a fine-to-coarse processing, mov-
ing from local, edge-detecting filters to more global ones
extracting abstract representations of the input. In the
current paper we propose the extraction of top-down net-
works, by reversing the feature extraction part of the base-
line, bottom-up architecture. This coarse-to-fine pathway,
by blurring out higher frequency information and restoring
it only at later stages, offers a line of defence against at-
tacks introducing high frequency noise. High resolution of
the final convolutional layer’s feature map can contribute to
the transparency of the network’s decision making process,
as well as favor more object-driven decisions over context
driven ones and thus provide better localized class activa-
tion maps. The paper offers empirical evidence for the ap-
plicability of the method to various existing architectures,
but also on multiple visual recognition tasks.

1. Introduction
It is well established that in human biological vision, per-

ceptual grouping of visual features takes place based on
Gestalt principles, where factors such as proximity, sim-
ilarity or good continuation of features generate a salient
percept [39]. Experimental studies in the domain of psy-
chophysics have shown that figures salient in their global
arrangement, are rapidly and robustly identified and segre-
gated from the background in what is termed the “pop-out”
effect [21]. This initial detection and binding of salient fea-
tures into a coherent percept typically leads to enhanced and
preferential processing by the visual system and is often de-
scribed as stimulus-driven or bottom-up attention [49]. For
relevant visual stimuli, the exogenously directed attention
is sustained, and results in a more detailed visual evaluation
of the object. This typical pipeline of perception and atten-
tion allocation in biological vision represents an efficient,

fine

coarse

Fine-to-coarse

Coarse-to-fine

Blur + subsample

Figure 1. A coarse-to-fine versus fine-to-coarse processing path-
way. The conventional fine-to-coarse pathway in a CNN, sacri-
fices localization for semantically richer information. Following
the opposite path, the coarsest input is suitable for capturing the
gist of the image; we can still see that this is clearly an image of a
good boy/girl. Moving to finer representations of the input, higher
frequency information is gradually restored, enabling now to carry
out more fine-grained tasks such as scene segmentation, or classi-
fying the input among different breeds of dogs. Original image is
taken from [2].

coarse-to-fine processing of information [13].
In contrast, the organization of modern CNNs (Convolu-

tional Neural Networks) do not incorporate this perspective
[22, 35, 37, 11]. Conventional CNN architectures employ
convolutional filters with a small spatial extent, which give
rise to progressively increasing receptive field sizes through
the network and thus perform hierarchical feature learning.

Starting from the high resolution input, information nat-
urally propagates in a fine-to-coarse pathway, with early
layers learning to extract local, shareable features whereas
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deeper layers learn semantically richer and increasingly in-
variant representations. Notably, such architectures gradu-
ally diminish the spatial resolution of feature maps through
pooling layers for computational efficiency.

In this paper, we propose the “reversal” of the conven-
tional feature extraction hierarchy of CNNs. Our approach
is partially motivated by biological vision and the fine-to-
coarse versus coarse-to-fine processing, as demonstrated in
figure 1. More specifically, we suggest the adoption of the
latter, a coarse-to-fine processing of the input image, which
can be interpreted as gradual focusing of visual attention.
The reversed, or TD (Top-Down) hierarchy serves the pur-
pose of first extracting the ”gist” of a visual scene, empha-
sizing a more holistic initial representation, which is subse-
quently enhanced with higher frequency information useful
for tasks requiring fine-grained, better localized information
such as object detection and semantic segmentation.

We believe this paradigm shift may provide robustness
against several different types of input noise. A grow-
ing body of literature since the seminal work of [38, 9]
have shown that adversarial perturbations, which contain
substantial high-frequency components, may cause well-
generalizing models to misclassify. Based on the idea that
suppressing higher frequencies in the input image can pro-
vide a first line of defence, we test our top-down models
against multiple adversarial attacks.

Similarly, the lack of explainability of the decision mak-
ing process of deep CNNs has recently emerged as an im-
portant concern and caveat of deep networks, with meth-
ods such as [51, 33] trying to shed some further light. We
suggest that the coarse-to-fine processing scheme, which
corresponds to feature maps with higher spatial resolution
at deeper layers, will favor object-driven decisions over
context-driven ones and provide better localized class ac-
tivation maps. Consequently, we quantify the precision of
Gradcam heatmaps of the top-down architecture in compar-
ison to the baseline, or BU (Bottom-Up) models.

Considering the advantages of the coarse-to-fine
pipeline, the current paper proposes the extraction and use
of top-down networks, extracted from conventional bottom-
up CNNs. The contributions of the current paper are: i)
the proposal of a complete pipeline, instead of a fixed net-
work model, for the extraction of TD networks correspond-
ing to various diverse BU baseline models. This means
that the proposed framework is versatile and directly ap-
plicable to existing architectures. ii) Extensive experimen-
tation justifying the design choices made for the proposal
of the pipeline. iii) Demonstration of enhanced robust-
ness against certain types of adversarial attacks. Multi-
ple attacks performed and evaluated, contributing to the
transparency of the networks. iv) Increased transparency
of the decision making process based on the fine output
feature maps, as well as potent object localization capa-

bilities. Trained models and scripts for recreating our
experiments can be found at https://github.com/
giannislelekas/topdown.

This paper principally aims to introduce a fresh perspec-
tive to the deep learning literature. We hope that the paper
will lead to an attention shift and potentially rethinking of
some design choices taken so far for granted. The remain-
der of this paper is organized as follows. Section 2 offers
an overview of related current research. Section 3 describes
in greater depth the proposed method, whereas valuable in-
sight extracted from conducted experiments is presented in
section 4. Finally, some discussion and concluding remarks
are held in sections 5 and 6 respectively.

2. Related work

Coarse-to-fine processing. The coarse-to-fine processing
is an integral part of efficient algorithms in Computer Vi-
sion. The iterative image registration by Kanade et al. [28]
gradually refines registration from coarser variants of the
original images, while in [15] a coarse-to-fine optical flow
estimation method is proposed. Coarse-to-fine face de-
tection is done by processing increasingly larger edge ar-
rangements in [7], and coarse-to-fine face alignment using
stacked auto-encoders is proposed in [47]. Efficient action
recognition by using coarse and fine features coming from
two LSTM (Long Short-Term Memory) modules is pro-
posed in [41]. In [31] coarse-to-fine kernel networks are
proposed, where a cascade of kernel networks are used with
increasing complexity. Coarse-to-fine methods have been
previously researched, both in terms of input resolution, as
well as the manner of processing the input. Here, we also
focus on coarse-to-fine image resolution, however we are
the first to do this in a single deep neural network, trained
end-to-end, rather than in an ensemble.

Bottom-up and top-down pathway. Many approaches ex-
ploit higher spatial resolution, and thus finer feature local-
ization, which is crucial to the semantic segmentation task.
The U-net [30] and FPN (Feature Pyramid Networks) [26]
merge information extracted from bottom-up and top-down
pathways, and thus combining semantically rich informa-
tion of the bottom-up and the fine localization of the top-
down. Similarly, combinations of a high-resolution branch
with a low-resolution branch were proposed for efficient ac-
tion recognition [5], for face hallucination [24], and depth
map prediction [3]. Top-down signals are also used to
model neural attention via a new backpropagation algorithm
[46], and to extract informative localization maps for the
classification task in Grad-CAM [33]. Similarly, we also
focus on only top-down pathways where we slowly inte-
grate higher levels of details, however our goal is improved
prediction and not feature-map activation analysis.
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Multi-scale networks. Merging and modulating infor-
mation extracted from multiple scales is vastly popular
[14, 20, 44, 45, 43]. In [45] the feature maps are resized
by a consistent ratio to obtain a cascade of multiple reso-
lutions. Incremental resolution changes during GAN (Gen-
erative Adversarial Network) training are proposed in [19].
Convolutional weight sharing over multiple scales is pro-
posed in [1, 44]. Similarly [6] performs convolutions over
multiple scales in combination with residual connections.
In [20] convolutions are performed over a grid of scales,
thus combining information from multiple scales in one re-
sponse. Related, [36] combines responses over multiples
scales, where filters are defined using 2D Hermite polyno-
mials with a Gaussian envelope. A spatial pyramid pooling
is proposed in [10] for aggregating information at multi-
ple scales. In this work, we also extract multi-resolution
feature maps, that restore high frequency information sup-
pressed by the original network downscaling. However, we
start from the lowest image scale and gradually add the high
resolution details.

Beneficial effects of blurring. Blurring has been used to
suppress high frequency information. A blurred input can
lead to increased robustness as shown in [40, 50]. Mod-
els trained on blurred inputs exhibit increased robustness to
distributional shift [18]. The work in [8] reveals the bias
of CNNs towards texture, and analyzes the effect of blur-
ring distortions on the proposed Stylized-ImageNet dataset.
Blurring for anti-aliasing before downsampling, contributes
to the preserving the shift invariance of CNNs [48]. By us-
ing Gaussian kernel with learnable standard deviation, [34]
adapts the receptive field size. In this work we also rely on
Gaussian blurring before downsampling the feature maps,
to avoid aliasing effects, and as a consequence we observe
improved robustness to adversarial attacks.

3. Top-down networks

Top-down (TD) networks mirror the baseline bottom-
up (BU ) networks, and reverse their feature extraction part.
Information flows in the opposite direction, moving from
lower to higher resolution feature maps. The initial input
of the network corresponds to the minimum spatial reso-
lution occurring in the BU baseline network. Downsam-
pling operations are replaced by upsampling, leading to the
coarse-to-fine information flow. By upscaling, the network
can merely “hallucinate” higher resolution features, as no
higher frequency information is available. To restore the
higher frequency information, we use resolution merges,
which combine the hallucinated features with higher fre-
quency inputs, after each upscaling operation. Figure 2
depicts the difference between the BU architecture and
our proposed TD architecture. The TD architecture relies
solely on a top-down pathway.

3.1. Input and feature map resizing

To avoid hampering the performance of the network [48]
and introducing artifacts, we perform the input downsam-
pling by first blurring the inputs. For the upsampling oper-
ation we use interpolation followed by convolution. When
upsampling, we have experimented with both nearest neigh-
bour and bilinear interpolation, and have noticed improved
robustness against adversarial attacks for the nearest neigh-
bor interpolation. We have also considered the use of trans-
pose convolutions, however we did not adopt these due to
their leading to checkerboard artifacts in the output.

3.2. Merging low and high resolution

We considered three methods of merging the high reso-
lution input with the low resolution information. The first
method upsamples the low resolution input via a 1× 1 con-
volution and uses an element-wise addition. The second
considered method, concatenates the upsampled low reso-
lution information with the high resolution information on
the channel dimension. This is followed by a 3 × 3 convo-
lution. We use 3 × 3 convolutions to expand the receptive
field of the filters. Finally, the third merging option is a
combination of the two aforementioned methods: we start
by upscaling the low resolution input and then we add this
to the high resolution input. This result is then concatenated
with the high resolution input, and we add a 3 × 3 convo-
lution at the end. Figure 3 shows these three options of
merging the low and high resolution information. Options
(2) and (3) introduce an equal number of additional para-
maters, while method (1) is more memory efficient. Ex-
perimentally, we have observed that the combined method
– option (3) – gives the best results and so adopted hence-
forth, however this comes at the cost of increased training
parameters.

3.3. Filters arrangement

The feature extraction part of the TD network mirrors
the BU : information propagates from lower to higher spa-
tial dimensions in a TD network, while the number of fil-
ters shrinks with the increase in depth. The choice of ex-
panding the number of filters at deeper layers in the BU
network is efficiency-oriented. As the feature map resolu-
tion decreases, the number of channels increases, retaining
the computational complexity roughly fixed per layer. Typ-
ically, in standard architectures the filters are doubled every
time dimensions are halved [11, 35].

In our method we consider three options for deciding the
number of filters per layer: the TD model where we apply
the exact opposite process of BU by starting with many
channels per layer and as the depth increases, we reduce the
number of channels; uniform (TDuni) where the layers
have a uniform number of filters; and reversed (TDrev)
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Figure 2. Left: The bottom-up (BU ) baseline network. Feature maps decrease in spatial resolution with the network depth. Right: The
proposed top-down (TD) network. The TD reverses the feature extraction part of the baseline network. It employs three inputs from
highest to lowest scale, starts processing from the smallest resolutions and it progressively adds high resolution information.

which reverses the filter depth of TD and thus, follows the
BU filter depth.

4. Experiments

We evaluate our top-down approach against the bottom-
up baseline. In Exp 1 we analyze the difference in perfor-
mance on the MNIST, Fashion-MNIST and CIFAR10 clas-
sification tasks. We also evaluate the three different filters
arrangement options proposed for the top-down model. In
Exp 2 we evaluate the robustness of our proposed models to
a series of adversarial attacks applied on the same datasets.
Finally, in Exp 3 we apply the top-down model on a variant
of Fashion-MNIST for segmentation.

Figure 3. Merging low and high-frequency feature maps: (1) uses
a 1 × 1 convolution followed by an element-wise addition; (2)
uses a 1 × 1 convolution followed by a concatenation of the up-
scaled low-resolution information with the high resolution input;
(3) combines the previous two options by using a 1 × 1 convolu-
tion, and an element-wise addition followed by concatenating this
result with the high resolution input. For all methods the merged
feature map is of size [2H, 2W,C].

4.1. Exp. 1: Bottom-up versus top-down

Experimental setup. We compare our TD proposal with
its respective baseline BU , with different configurations on
MNIST, Fashion-MNIST and CIFAR10. For the simpler
MNIST tasks we consider as baselines the ”LeNetFC”, a
fully-convolutional variant of LeNet [23] and a lightweight
version of the NIN (Network-In-Network) architecture [25]
with reduced filters. The original architecture was used for
the CIFAR10 task, along with the ResNet32 introduced in
[11] incorporating the pre-activation unit of [12]. Batch
Normalization [16] is used in all networks prior the non-
linearities. The corresponding TD networks are defined
based on the BU baselines. Table 1 depicts the number of
parameters of different models. For TD we consider three
variants: TD – which is mirroring the BU architecture also
in terms of filter depth; TDuni using uniform filter depth;
and TDrev where the filter depth of the TD is reversed, thus
following the filter depth of BU . There is an increase in the
number of parameters for the TD networks, because we
need additional convolutional layers for merging the high
and low resolution information.

Regarding training, we tried to abide by the setup found
in the initial publications. We performed a linear search
around these parameters1 to tune the respective ones of TD
networks. For all cases we train using SGD with momen-
tum of 0.9 and a 3-stage learning rate decay scheme, di-
viding the learning rate by 10 at 50% and 80% of the total
number of epochs. For the CIFAR10 dataset we test with
and without augmentation — employing horizontal transla-
tions and flips. Runs are repeated four times, with dataset
reshuffling and extracting new training and validation splits,
for the extraction of mean values and standard deviations.
Reported training times correspond to training on a single
GTX1080Ti GPU and we have divided the mean total train-
ing time by the number of epochs.

1learning rate, batch size, weight decay.
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Figure 4. Exp 1: Relative comparison on MNIST, Fashion-MNIST, CIFAR10, and CIFAR10 aug (with augmentation) of mean test ac-
curacies (Top) and training times (Bottom), between BU and the three different configurations of TD proposed in subsection 3.3. TD
networks exhibit on par, some times even surpassing the baseline performance of respective BU . Regarding filter depth configurations,
TDrev report highest performance coming at the cost of both increased parameters and training time. Considering the small gap in
performance and the increased cost for TDrev , we adopt the TD configurations henceforth.

Model #parameters

BU TD TDuni TDrev

LeNetFC 8,790 14,452 23,486 57,846
NIN 62,094 215,118 217,182 214,206
NINext 969,822 3,405,918 3,434,910 3,388,446
ResNet 467,946 528,042 319,626 563,274

Table 1. Exp 1: Number of trainable parameters for different con-
sidered architectures. We denote by TD the method where we
mirror the BU model, TDuni the network with uniform number
of filters per layer, and by TDrev the network reversing the fil-
ter depth of TD and thus following the BU filter depth. There
is an increase in the number of parameters for the TD networks,
because they merge the high and low resolution information using
additional convolutional layers.

Experimental analysis. Respective results are presented in
figure 4. The TD network exhibit on par, even in some cases
surpassing the corresponding baseline BU performance. As
for the different filter depth configurations, TDrev performs
best at cost though of both increased complexity and train-
ing times. We adopt the TD variants henceforth, on ac-
count of the higher cost and the small gap in performance.
The TD − TDrev accuracy gap rises for the ResNet archi-
tecture, where TD’s test accuracy is roughly 83% ( 5.7%
loss from respective BU), whereas the rotated version sur-
passes the baseline scoring higher than 89%. The decreased
performance of TD is attributed to the network’s architec-
ture; the output of the final convolutional block is fed to a
GAP layer, which then serves as input to a fully-connected
layer which performs the final classification. The final block

though has only 16 filters, thus leading to only 16 values
used for the final classification, which is a not so potent in-
put representation. By increasing the dimensionality of the
final convolutional block to 32 we immediately got an in-
creased performance of roughly 87%.

Apart from serving as a first BU vs TD crush test, Exp 1
provides empirical evidence of the applicability of the pro-
posed pipeline to different network architectures.

4.2. Exp. 2: Adversarial robustness

Experimental setup. The robustness of BU versus TD
against various attacks is evaluated, where we attack the
test set of the classifications tasks considered. We utilized
Foolbox [29] for the attack generation. We emphasized on
score-based and decision-based attacks, as they represent
more realistic scenarios, where the attacker has no access
to the gradients of the network. For all the attacks, the de-
fault parameters were used, as they led to successful attacks.
Foolbox performs a linear search on parameters space, to
find the minimal required perturbation to misclassify the in-
put. To make this bound even tighter, we repeat each attack
three times and keep the worst case for each sample2, that is
the minimum required perturbation for fooling the network.

Experimental analysis.
For the evaluation of adversarial robustness, figure 5 pro-

vides for each attack, plots of loss in test accuracy versus
the L2 distance between the original and the perturbed in-
put. TD networks are clearly more resilient against attacks
introducing uncorrelated noise, due to the coarse-to-fine

2for attacks such as ”SpatialAttack”, ”ShiftsAttack”, ”GaussianbBlu-
rAttack” and ”ContrastReductionAttack” involving no random number
generation repetition leads to the same perturbations.
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Figure 5. Exp 2: Comparison of adversarial robustness considering different datasets, models and attacks. The x-axis of each figure
corresponds to the L2 distance between the original and the perturbed image and the y-axis to the introduced loss in test accuracy (origi-
nal/unperturbed accuracy minus accuracy with the perturbed, within a given bound, images). A lower curve suggests increased robustness
and green curves corresponding to TD are underneath the respective red curves of the BU networks in most cases. The TD networks
appear to be more robust against both correlated and uncorrelated noise attacks due to the coarse-to-fine processing suppressing high fre-
quency information on earlier stages. Additionally, the blurred downsampling baked in the network architecture offers enhanced robustness
to the networks against the blurring attacks, as the network ”sees” multiple scale of the input during training, thus being more resilient
against resolution shifts. Finally, we do not measure enhanced robustness against spatial attacks.
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(refer to figure 2). Clearly, as more challenging datasets are considered highest vulnerability moves from the input of the medium to the
one with the highest scale. This is attributed to the absence of information in the high frequency region for the simpler cases (i.e. MNIST).

processing adopted, with downscaled inputs diminishing or
even eradicating the noise. Attacks introducing correlated
noise are quite interesting; considering the Single-Pixel at-
tack the perturbed pixel lies in smooth regions of the image.
Thus a 0/1 in a region of 1s/0s is essentially a Dirac delta
and based on the convolutional nature of CNNs this type of
attack ”pollutes” input with imprints of the learned filters3,
which gradually span a greater part of the input with more
convolutions applied. Due to the highly correlated nature
of the perturbation, the blurred downsampling can not erad-
icate completely the noise, but can still decrease the intro-
duced pollution. On the contrary regarding BU networks,
the noise gets propagated all the way down the network.

3in case of imperfect delta function, blurred versions of the filters are
yielded.

The S&P (Salt&Pepper) noise and the Pointwise attack [32]
are extensions to the Single-Pixel attack.

Regarding blurring attacks, the TD networks as ex-
pected are more robust, due to the blurred downsampling
being baked in the architecture. Having ”seen” multiple
scales of the input during training, the network is more
resilient against resolution changes. Anti-aliasing before
downsampling is suggested to better preserve spatial invari-
ance [48], hence we expected our networks to be more ro-
bust against Spatial [4] and Shifts attack, a variant perform-
ing only spatial shifts. However, no enhanced robustness
is reported for TD networks. A substantial difference in
robustness is reported for the ResNet architecture, which
could be due to the performance gap measured between the
TD variant and the baseline BU (please refer to section
4.1). Thus, we repeated the attacks on TDuni and TDrev
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versions of ResNet, which minimized the gap and surpassed
baseline performance respectively. Results are presented in
figure 11 in the appendix section A.a, where apart from en-
hanced robustness against spatial attacks we measured simi-
lar behaviour to the BU network regarding rest attacks, due
to the increased number of filters at greater depth of the net-
work, or equivalently higher scale maps.

For extra insight on TD robustness, we introduce the
generated attacks to a single input of the TD networks, with
results corresponding to the TD NIN architecture4 pre-
sented in figure 6. For the simpler MNIST task the medium
scale input of the network is the most vulnerable, which is
mainly attributed to the absence of information in the high
frequency region of the input’s spectrum. Moving to more
challenging Fashion-MNIST and CIFAR10 tasks, the high
frequency input clearly becomes the easiest path to fooling
the network. Perturbing multiple inputs naturally leads to
increased degradation in performance. Respective results
for perturbing two inputs are provided in section A.a and
figure 12; as expected the higher and medium scale inputs
are the most vulnerable ones.

4.3. Exp 3: Top-down for segmentation

Experimental setup. To evaluate TD performance, on the
more fine-grained task of semantic segmentation, we con-
structed a 12-class5 toy segmentation dataset based on the
Fashion-MNIST task, with the global label mapped to the
image pixels corresponding to the item. For segmenting the
objects a threshold was empirically set to t = 0.2, whereas
any pixel corresponding to values in (0, t] formed the ig-
nore class and 0 pixels constituted the background class.
To increase slightly the complexity of the task we extracted
a 2 × 2 mesh from the original images leading to a total of
15000 and 2500 training and testing images respectively. To
deal with class imbalance, weights for each class k were ex-
tracted as in (1). Finally, we trained for standard categorical
cross-entropy loss, while extracting mean IoUs.

wk =
1/pixelsk

1/pixelsk=background
(1)

Regarding the network topologies utilized for this ex-
periment a lighter FCN [27] and a U-net-like [30] network
served as the BU baselines. A TD contestant was extracted
based on the U-net-like BU , with corresponding layers and
comparable number of training parameters. There is a sub-
stantial resemblance between the proposed TD networks
and the U-net, with out network relying solely though on a
top-down pathway.

Experimental analysis. Figure 7 plots the IoU per class;

4similar conclusions are drawn for the other networks.
5original 10 classes, plus a background and an ignore class; the ignore

class is not considered in the loss and IoU computation.
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Figure 7. Exp 3: Segmentation results. TD is outperformed by
the respective BU networks and mainly by the U-net architecture
to which they have a substantial resemblance, but with small only
margins. TD networks appear to be quite potent in the segmen-
tation setting as well, thus solidifying the applicability of the pro-
posed idea to more than one visual recognition tasks. The mean
IoUs are roughly 81%, 76%, 75% for U-net, FCN and the TD
network respectively.

the TD reaches comparable performance. Thus, we have
shown that the proposed TD, are all-around networks that
can be used to more than one visual recognition task.

5. Discussion

Gradcam heatmaps. Gradcam [33] provides class-
discriminative localization maps, based on the feature maps
of a convolutional layer, highlighting the most informative
features for the classification task. The features of the ulti-
mate convolutional layer are used, but using other layers is
possible. The extracted heatmap is restored to the original
image scale, thus producing a coarse map for the case of
the BU . On the contrary, regarding a TD the correspond-
ing feature maps’ scale matches the scale of the input, hence
Gradcam outputs a finer map.

The Gradcam heatmaps corresponding to a BU and TD
network are provided in figure 8, corresponding to various
layers of a ”lighter” ResNet18 architecture [11] trained on
the Imagenette dataset [17]; for further information about
the setup please refer to appendix section A.b. TD’s follow-
ing an opposite, coarse-to-fine path is nicely demonstrated,
starting from a coarser representation and gradually enrich-
ing it with higher frequency information. Hence, TD net-
works are not mirrors to the BU solely by an architectural
point of view, but in their learning process as well.

More heatmaps, this time corresponding to the ultimate
convolutional layer of the networks are visualized in figure
9. The coarse versus fine localization maps is the first point
of the figure. Selection of the images with multiple objects
corresponding to the global classes was intentional; the TD
localized these objects more consistently than the BU .

Object localization. For a quantitative evaluation of the
localization abilities of BU and TD, we used the MNIST
and Fashion-MNIST datasets and the corresponding mod-
els trained from experiment 1. We then computed the IoU
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Figure 8. Fine-to-coarse versus coarse-to-fine processing; Gradcam heatmaps are visualized for BU ResNet18 versus its respective TD,
trained on the Imagenette dataset [17]. Higher layer index means increased depth in the architecture; layer ”1” corresponds to the input
activation of the network’s first group of convolutions, whereas layers ”2-5” to the activations of each group’s output. Top: The BU
network, employing a fine-to-coarse processing. Bottom: the respective TD network following the opposite path, firstly looking into the
image in a more holistic way and gradually adding higher frequency in deeper layers.
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pu

t
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Figure 9. Gradcam heatmaps corresponding to the network’s ultimate convolutional layer. Top: Gradcam heatmaps for the BU ResNet18.
Bottom: Gradcam heatmaps for the TD ResNet18. Contrary to the coarse output of the BU , the TD network outputs high frequency
feature maps, based on which the final classification is performed. The finer localization to the object of interest on behalf of TD, may
proved to be invaluable to other settings as well (e.g. weekly-supervised setting).

between the object and the produced Gradcam heatmaps;
for the object segmentation the threshold was empirically
set to t = 0.2. For a fair comparison the samples correctly
classified from both TD and BU are considered. Figure 10
provides the corresponding results; the TD variants con-

sistently outperforms the BU . For the NIN architecture
a 2.6%, 3.9% IoU difference is measured for MNIST and
Fashion-MNIST respectively, resulting in a roughly 10%
and 12% increase. The respective figures for the LeNetFC
architecture are 0.38% and 0.64% meaning roughly 2% in-

9



0
10
20
30
40
50

Io
U(

%
) -

 M
NI

ST

LeNet
BU
TD

NIN

0.0 0.1 0.2 0.3 0.4
Gradcam threshold

0
10
20
30
40
50

Io
U(

%
) -

 F
as

hi
on

-M
NI

ST

0.0 0.1 0.2 0.3 0.4

Figure 10. Mean IoUs reported for MNIST and Fashion-MNIST
datasets and the LeNet, NIN architectures. Higher IoUs are re-
ported for the TD networks suggesting the better localization of
the object on their behalf. TD networks consistently outperform
their BU baselines and in the case of the NIN architecture with a
quite significant gap.

crease from the BU IoU.
Considering the fine Gradcam output and the potent ob-

ject localization, the weakly supervised detection setting is
an area where TDs could shine in the future. Before pro-
ceeding to an application though, some limitations should
be firstly addressed.

Limitations. The current work mainly aimed at providing a
fresh perspective to the CNNs’ architecture which is mostly
taken for granted. The coarse-to-fine pathway is biologi-
cally inspired, but also the core paradigm in efficient, it-
erative algorithms. However, expanding dimensions in in-
creased depth leads to more convolutions thus both, higher
computational complexity and memory footprint; despite
there is no direct incompatibility, fully-connected layers
can lead to the vast increase of parameters and magnify
these limitations, hence convolutional layers should be pre-
ferred. To render TD networks directly applicable to large-
scale datasets we should first deal with this issue. An easy
workaround requiring no architectural adaptations, would
be to employ mixed-precision training, which would de-
crease the memory requirements but computational com-
plexity would still be an issue. Instead of increasing spa-
tial resolution, we could use patches of the input of fixed
dimensions; to select the most informative patch, Gradcam
heatmaps could be utilized focusing in ”hot” areas of the
heatmap, or even self-attention [42].

Understandability of TD’s processing pathway and a rel-
ative comparison with the respective BUs were the top con-
cerns for all the conducted experiments. After all, increased
transparency can eventually facilitate reaching State-of-the-
art performance, by further understanding strong and weak
points of the CNNs. After addressing the aforementioned
limitations, we will try to enhance performance of the
TD networks also aiming at some bold numbers, with the

weakly supervised setting being a promising area. Having
established the applicability of TD networks, it will be then
time to show their muscles.

6. Conclusion

In the current work we revisit the architecture of conven-
tional CNNs, aiming at shaking the waters in the field. We
empirically demonstrate the applicability of the proposed
TD networks adopting a coarse-to-fine information pro-
cessing pathway, to various existing architectures, as well as
multiple visual recognition tasks. TD networks exhibit en-
hanced robustness against certain types of attacks, attributed
to the design choices made for their architecture. Addi-
tionally the high spatial dimensions of the ultimate feature
map significantly contributes to the transparency of the net-
work’s decision making process, as well as to potent object
localization skills. Limitations do exist, providing thus ex-
cellent field for future work. The sure thing is that TD net-
works are here to stay, so start holistic and welcome to the
upside down!
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A. Appendix
A.a. Adversarial robustness

Figure 11 presents the robustness results for the CIFAR10-augmented and the ResNet architecture variants. Clearly,
TDuni and TDrev variants exhibit enhanced robustness against spatial attacks, however, they also have similar to the BU
behaviour against other attacks. This can be attributed to the increased number of filters at greater depth of the network, or
equivalently increased scale of feature maps, thus greater contribution of the finer scales to the final output. However, finer
scales are much more vulnerable against attacks. All in all, the reversal of the BU network for the extraction of the TD
variant is not solely efficiency driven, keeping a roughly fixed computational complexity across layers, but also contributes
to the network’s robustness as well. Finally, we need to mention that the respective figure for the non-augmented CIFAR10
case tels the same story.
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Figure 11. Test accuracy loss versus the L2 distance between original and perturbed input, for the CIFAR10-augmented and the ResNet
architectures. Robustness is enhanced for the spatial attacks, but in general TDuni and TDrev variants exhibit similar behaviour to the
BU baseline, which can be attributed to the increased filters at deeper layers.

Next, figure 12 presents the respective results for reintroducing the perturbation to two of the inputs of the network.
Clearly, the highest and medium scale input are the most vulnerable one, except for the simpler case of the MNIST dataset.
The absence or scarce information in the high frequency region, yields the medium and smallest scale inputs as the one with
the highest impact.

A.b. Imagenette training

Imagenette [17] is a 10-class sub-problem of Imagenet [2], allowing experimentation with a more realistic task, without
the high training times and computational costs required for training on a large scale dataset. A set of examples, along with
their corresponding labels are provided in figure 13. The datasets contains a total of 9469, 3925 training and validation
samples respectively. Training samples were resized to 156 × 156, from where random 128 × 128 crops were extracted;
validation samples were resized to 128× 128.

We utilized a lighter version6 of the ResNet18 architecture introduced in [11] for Imagenet training, as this is a 10-class
sub-problem, incorporating the pre-activation unit of [12]. Additionally, the stride s and the kernel extent k of the first
convolution for depth initialization were set to s = 1 and k = 3 respectively. Regarding training, a 128 × 128 crop is
extracted from the original image, or its horizontal flip, while subtracting the per-pixel mean [22]; the color augmentation of

6dividing the filters of the original architecture by 2.
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Figure 12. Reintroducing perturbations to two of the inputs of TD NIN. Clearly, perturbing the two highest scale inputs, ”Input 12” has
the highest impact. Regarding the case of the simpler MNIST and the information gathered in the low to mid frequency region, the medium
and the smallest scale input have the highest impact instead.

[22] is also used. For the BU network a batch size of 128 is used and the network is trained for a total of 50 epochs with a
starting learning rate of 0.1. As for the TD, increased memory footprint led to the reduction of the batch size to 64 and the
adaptation of the starting learning rate and the total epochs to 0.05 and 80. We trained with SGD with momentum of 0.9 and
a weight decay of 0.001; we also adopted a 3-stage learning rate decay scheme, where the learning rate is divided by 10 at
50% and 80% of the total epochs. Regarding performance, BU outperformed the TD variant as in the first experiment in
section 4.1, by 5%. Gradcam is finally utilized for generating class-discriminate localization maps of the most informative
features.
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1
Introduction

The pipeline of perception and attention allocation in biological vision represents an efficient coarse-to-fine
information processing pathway [8]. Starting from the initial detection and binding of salient features of a
visual scene, to the enhanced and preferential processing given relevant stimuli, driven by the bottom-up
attention [27] and leading to enhanced evaluation of the scene. In simple words, a more holistic representa-
tion of the scene is first considered in order to extract the gist, which is then enriched with higher frequency
information for carrying out more fine-grained tasks, such as scene segmentation and object detection.

However, CNNs (Convolutional Neural Networks) having reformulated State-of-the-Art in many visual
recognition tasks [7, 12, 20] employ an opposite fine-to-coarse processing pathway. Filters of earlier layers
operate as edge detectors to high resolution input. Successive pooling operations applied to the extracted
features, decrease spatial dimensions while removing redundancy and increasing the receptive field of the
filters, thus leading to global filters in deeper layers, yielding more abstract representations of the input.
Moreover, a trade-off exists between better localization of features from earlier layers, versus the semanti-
cally richer features of deeper layers.

Inspired by the biological vision, in the current work we propose the reversal of the feature extraction
part of CNNs for the extraction of TD (Top-Down) Networks; more specifically, we propose the adoption of
a coarse-to-fine processing pathway commencing from evaluation of the gist and proceeding to its gradual
refinement, by incorporating higher frequency information. The proposed paradigm-shift is a novel idea,
which can test whether CNNs can effectively follow the opposite from the conventional learning path, po-
tentially leading to more beneficial effects upon success. Coarse-to-fine processing can serve as an effective
defence against adversarial attacks [6, 23] introducing different types of noise, simply by suppressing and only
later adding back higher frequency information; removal of high frequency can effectively eradicate/decrease
uncorrelated/correlated noise. Additionally, the high spatial dimensions of output feature map of the pro-
posed TD networks can shed serious light to the decision process of CNNs [19, 28], while potentially favoring
object-driven decisions over context-driven ones and provide better localized class activation maps.

The research question we will try to answer is "Can we effectively switch to a coarse-to-fine information
processing pathway in a conventional CNN’s architecture, thus enforcing it to learn starting from more holistic
and moving to finer representations of the input?". Furthermore and upon answering our main research ques-
tion, we will try to answer the following questions; "Do the TD networks lead to enhanced robustness against
certain types of attacks?", "Can this coarse-to-fine processing pathway adopted by the TD networks lead to in-
creased transparency in the decision-making process, as well as to potent object localization skills?".

Stranger things are happening in the Computer Vision field, with the upside down having infiltrated the
universe of CNNs as well. Making an analogy based on the popular series of Netflix "Stranger things"1, a Top-
Down architecture resembles an upside-down version of the Bottom-Up baseline. So with no further ado let’s
dive into the world of Top-Down Networks; "Welcome to the Upside Down".

1the cover image is shared from the series’ content.
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Deep Learning

From hand-written digits recognition, to semantic segmentation and object detection, DNNs (Deep Neural
Networks) have reformulated State-of-the-Art in many visual recognition tasks [7, 12, 13, 20, 24]. Technolog-
ical advances in modern-hardware, as well as the abundance of excellent frameworks and readily available
datasets, have turned training of extremely deep networks to a plug-and-play task.

The central aspect of DNNs, separating them from pre-existing ML (Machine Learning) models, is the
automated feature extraction. There is no longer need for feature engineering, one simply needs to feed
the dataset of interest in a DNN and the network will automatically extract a representation of the input to
use for the visual recognition task. Therefore, a DNN may be used to extract features, on top of which a
conventional ML model can be used for classification purposes. Does this mean that hand-crafted features
and subsequently conventional machine-learning models are rendered obsolete? Absolutely not, the area
where Deep Learning models can shine though is when it is not clear how to extract informative features for
a task.

All these sounds perfect, but have the DNNs solved visual recognition? Despite having revolutionised the
field, the task of visual recognition is far from being solved. Great depth and non-linearity severely degrade
understandability, in many cases DNN’s being considered black boxes. Thus, the scientific community has
shifted its attention from State-of-the-Art and bold numbers, to enhancing transparency [19, 23, 25, 28]; after
all, a better understanding can lead to better performance, but also devise effective defences against adver-
sarial attacks1 [6, 23]. Before going any deeper, let’s try to break down these deep networks and shed some
light in their operation. Content and visual aids for the current chapter, unless stated otherwise, are based on
[5].

2.1. Convolutional Neural Networks
CNNs (Convolutional Neural Networks) are the culmination of the Deep Learning domain. As suggested by
the name, the operation of convolution lies at their very core. CNNs are cascades of convolutions, pooling
operations and non-linearities with the output of each layer serving as input to the subsequent one. Convo-
lutional filters sliding over an image extract features. Next, pooling layers decrease spatial resolution, while
enhancing the robustness of extracted features by discarding redundant information. Finally, activation func-
tions render CNNs potent function approximators. Let us now get a closer look to the building components
of a CNN.

2.1.1. Convolutions
Convolutional kernels are in essence the eyes of the network. A suitable kernel, operating on the input image
in a sliding-window fashion, can render "demanding" detection tasks to a piece of cake as shown in figure 2.1.
Thus, a neural network is trained for learning the most informative features for detecting the "Waldos" we are
interested in. What if Waldo was now moved to a different location in the image of figure 2.1, could we still use
the same kernel? Based on the shift invariance property of convolution any translations of the input has no
effect to the operation’s output, hence there is no need for another kernel. Convolutions as a design choice,

1please refer to chapter 4.
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4 2. Deep Learning

equip the network with translation invariance, in simple words meaning that the same filters can be used to
detect an object regardless of its relative position in the input image. In any different case, there would be an
explosion in the number of network’s parameters, basically rendering its training practically infeasible2.

(a) Convolution (b) Kernel

Figure 2.1: From left to right; input image, output of convolution, convolutional kernel. The "hot" circle in the north-west region of the
output reveals the location of Waldo.

To avoid any confusion between the terms convolutional kernels and filters let us give a closer look to
the later. A set of n convolutional kernels of size k ×k comprises a 3D filter. The parameters of the filter are
the size k and stride s of the sliding window. Applied now to an input of n channels, the filter yields a single
output by performing element-wise multiplication and the addition. Clearly, this is a 3D operation, but due
to the filter’s sliding over 2D (height, width) the operation is known as 2D convolution. Now for the more
general case of transition to layers with different depth, with the input and output layer having Di n and Dout

channels respectively. We need to apply Dout filters, each of them comprised by a set of Di n kernels. Each of
the filters yield a single output channel, thus leading a total of Dout channels [2].

Figure 2.2: Transition between input and output layer having Di n and Dout channels respectively by applying Dout filters. Each filter
has Di n kernels, yielding a single output channel, thus leading to a total of Dout channels [2].

There are other types of convolutions incorporated in many network architectures. Dilated convolution
is a nice example, introduced to model longer-range dependencies of the input. Transpose convolution or
deconvolution is another, where it does the opposite from a standard convolution, offering a one-to-many
relationship from the input. Finally, a strided convolution offers an alternative from the max-pooling op-
eration, the dominant option for feature maps downscaling. In the strided convolution, a stride of s > 1 is
applied, which apart from the extraction of features leads to the down-scaling of the input. For a very thor-
ough overview of the different convolutions please refer to [2].

Filters across the layers of a trained CNN learn to detect different objects. Starting from the earlier layers
and high spatial resolutions, the filters basically operate as edge detectors, looking for fine details in the im-
age. In deeper layers where resolution has shrinked, fusing these fine details and the filters now spanning a
greater part of the image, the network detects more abstract patterns (classes). It has to be noted at this point

2as any ML model, more trainable parameters mean more data needed for training or equivalently more prone to overfitting; for further
details of overfitting and methods against it please refer to section 2.3.
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that images are resized when they are propagated down the network, but the kernels’ sizes remain fixed k ×k
based on the equivalence demonstrated in figure 2.3. Resizing the image instead of the kernels, prevent from
the rise in the number of the trainable parameters.

(a) convolving with a larger kernel

(b) convolving with a smaller kernel

Figure 2.3: For both a) and b), on the left lies the input image, in the middle the convolutional kernel and on the right the output.
Convolving with a smaller image is equivalent to convolving with a larger kernel. Based on that, instead of resizing the kernel, CNNs
resize the input image.

2.1.2. Activation function
Neural Networks (NNs) are considered universal function approximators, a property which may be attributed
on great extent to the application of activation functions, or equivalently the non-linearities. With linear acti-
vation functions, simple linear mappings could only be learned with the NNs being merely a Linear regression
model. Non-linear activation functions allow learning of much more complicated mappings from input to
output data.

Why are activation functions so crucial though to the Neural Networks? For the sake of simplicity let us
consider a simple feed-forward network. Any conclusions drawn also apply to CNNs as well, after all CNNs
are just limited versions of feed-forward networks based on the equivalence between matrix multiplication
and convolution, along with the sparsity of the Toeplitz matrix. Thus, considering a feed-forward network,
each neuron computes a weighted sum of its input x as in (2.1), given learned weights W and bias b. However,
the output y can have any value in range (−∞,∞) and it is difficult to assess whether this neuron is in activate
state (should fire). So, in simple words the activation functions squash y in a given range in order to assess
the state of the neuron and what should be propagated to the children of that neuron. Some of the most
commonly used types of activation functions are presented in figure 2.4.

y =W x +b (2.1)
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Figure 2.4: Activation functions

Compatibility with the Backpropagation algorithm3 being vastly used for the end-to-end training of CNNs,
dictates differentiability of the activation functions. However, ReLU and its variant Leaky-ReLU are differen-
tiable everywhere apart from x = 0; does this mean that they are not eligible for gradient-based optimization?

3which we examine in subsection 2.2.3.
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The answer is obvious, since both these non-linearities are commonly used in various network architectures
and the reason they are still eligible is that numerical methods used for the training process are subject to
numerical error, hence the absolute zero is practically never reached.

2.1.3. Pooling
The next step in each operational stack of CNNs is the pooling operation. Pooling is employed for decreasing
spatial resolution and it is effectively capturing the "gist" over a region of the image. Localization is sacrificed
for the extraction of more robust features.

Pooling like convolution works in a sliding window fashion, where an operator T is applied over a pooling
region of size k ×k. The stride s of the pooling window determines the down-sampling ratio applied to an
image, e.g. for s = 2 the spatial resolution of an image will be reduced to half. The most common options are
max and average pooling, where T = M ax(), T = Aver ag e() respectively.

To sum up the current section with the building blocks of a CNN, the entire pipeline of a layer is visualized
in figure 2.5. The output of the layer will serve as input to the subsequent one.

Figure 2.5: Pipeline of a CNN’s layer

2.1.4. Fully-convolutional Neural Networks
CNNs have rendered the need for hand-crafted features obsolete. The representation of the input learned by
a CNN, may then be used by any conventional ML model. Typically, fully-connected layers were used for the
final classification at the cost though of vast increase in parameters, consequently affecting the generaliza-
tion abilities of the network as well4. Fully-convolutional variants have yielded competitive results in object
recognition tasks [15, 21], simply by replacing the fully-connected layers with convolutional ones. Apart from
significant decrease in the number of trainable parameters, fully-convolutional networks generate feature
maps instead of a set of values, which can also be used in the more fine-grained image segmentation setting
[15].

2.1.5. Bottom-Up hierarchy
Learned filters operate in a different way across the layers of a trained CNN. Starting from local, edge detecting
filters with their RFs (Receptive Fields) spanning only a small region of the input image, thus looking for fine
details. Based on the equivalence demonstrated in figure 2.3, extracted feature maps propagated down the
network are downscaled through successive series of pooling operations, leading to the decrease of spatial
resolution and consequently the increase of the receptive fields of the filters. Looking now at a greater part
of the input while incorporating features extracted on earlier layers, the filters are more global, extracting
abstract representations of the input. Moreover, there is a trade-off between spatial resolution and semantic
richness of the extracted features, with filters of earlier layers offering better localization due to high spatial

4for further information on overfitting please refer to section 2.3.
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resolution, while features extracted in deeper layers are of higher semantic information. All in all, this fine-to-
coarse pathway constituting the Bottom-Up hierarchy of any conventional CNN, renders feature extraction a
productive process, starting from fine details and gradually merging them into more abstract representations.

This hierarchy is visualized in figure 2.6, shared from Zeiler et. al. [25]. For each layer of a trained network,
the top nine activations corresponding to a random subset of the validation set feature maps are projected
to pixel space and visualized, along with the corresponding image patches. Regarding their method, decon-
volution, for projection to pixel space please refer to [25]. The visualization clearly demonstrates the gradual
transition of learned filters, from local, shared edge detectors, to more global and abstract patterns represen-
ters.

2.2. Training a CNN - Loss functions
Training a neural network is an intricate, iterative process which can be mainly broken down to three major
parts; the forward pass, the extraction of the loss and finally the backward pass with the parameters update.

2.2.1. Forward pass
Nothing special here, the input is modulated in a similar manner to an MLP (Multi-Layered Perceptron).
Assuming weights W and bias b, the output y of a node with input x is given as in (2.1). The output of the
node will serve as input to its children nodes and so forth till the output of the network.

2.2.2. Loss function
Training a neural network aims at learning the trainable parameters, namely weights and biases of the fil-
ters, essentially by minimizing a loss function. A forward pass is executed and a loss is measured based on
actual and predicted labels and the current network’s parameters. A typical choice for a loss function is the
CE (Cross-Entropy) loss5 LC E (2.2), where ytr ue the actual label of a sample in one-hot format for a K -class
classification problem. Next, ypr ed is the predicted label, coming from the output of the softmax function
applied to the logits z (2.3), the output of the network, in order to turn these scores into a proper probability
distribution. Equations (2.2) and (2.3) are an immediate extension from the respective equations of a binary
classification problem.

LC E (ytr ue , ypr ed ) =−
K∑

k=1
ytr ue,k log ypr ed ,k =−yT

tr ue (log ypr ed ) (2.2)

ypr ed ,n = so f tmax(z1, z2, · · · , zK ) = ezk∑K
k=1 ezk

(2.3)

Given a set of m training examples X = {x(1), x(2), · · · , x(m)}, drawn i.i.d6 from the true yet unknown dis-
tribution pd at a(x) (using the empirical distribution p̂d at a instead, drawn from training samples) and a para-
metric family of probability distributions pmodel (x;θ) corresponding to a model with parameters θ, minimiz-
ing the cross-entropy H is equivalent to minimizing negative log-likelihood (maximize maximum likelihood)
(2.4), or the KL divergence D between the two distributions (2.5).

ar g mi nθEx∼p̂d at a [l og pmodel (x)] (2.4)

D(pd at a , pmodel ) = [log
pd at a

pmodel
]

H(pd at a , pmodel ) = H(pd at a)+D(pd at a ||pmodel )

ar g mi nθEx∼p̂d at a [log pd at a(x)− log pmodel (x)].

(2.5)

2.2.3. Backpropagation
Having now completed a forward pass and computed the respective loss, it is now time to minimize that
loss. The backpropagation is an elegant algorithm based on the chain rule of calculus, allowing end-to-end
optimization of CNNs.

5besides the aforementioned LC E , there is an abundance of loss functions depending on the application itself.
6independent and identically distributed.
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Layer 2

Layer 1

Layer 3

Layer 4 Layer 5

Fig. 2. Visualization of features in a fully trained model. For layers 2-5 we show the top
9 activations in a random subset of feature maps across the validation data, projected
down to pixel space using our deconvolutional network approach. Our reconstructions
are not samples from the model: they are reconstructed patterns from the validation set
that cause high activations in a given feature map. For each feature map we also show
the corresponding image patches. Note: (i) the the strong grouping within each feature
map, (ii) greater invariance at higher layers and (iii) exaggeration of discriminative
parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in
electronic form. The compression artifacts are a consequence of the 30Mb submission
limit, not the reconstruction algorithm itself.

Figure 2.6: Bottom-up hierarchy of a trained network [25]; for each layer the top nine activations, projected to pixel space, for a random
subset of feature maps in the validation set are visualized, along with the the corresponding image patches.

The parameters of our network θ correspond to weights and biases. Adopting a simpler notation and ap-
pending the bias to the weights, the parameters are now w . To this goal, gradient descent is applied taking
smaller or larger steps along the negative gradient − ∂L

∂w ; a trivial example in an 1D scenario is demonstrated
in figure 2.7. The elegance of the backpropagation algorithm lies at refraining from recomputing gradients
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based on the chain rule, demonstrated with a simple example in (2.6) where the "̄" notation symbolises al-
ready computed gradients.

Figure 2.7: 1D gradient descent

z = w x +b, y =σ(z), L = 1

2
(y − t )2

∂L

∂y
= y − t ,

∂L

∂z
= ∂L

∂y
σ′(z),

∂L

∂w
= ∂L

∂z
x,

∂L

∂w
= ∂L

∂z

ȳ = y − t , z̄ = ȳσ′(z), w̄ = z̄x, b̄ = z̄

(2.6)

This way, starting from the final output of the network, the extracted loss is backpropagated to the entire
network through the corresponding gradients. The parameters of the network are updated during training
and the computational complexity is restrained by avoiding redundant computations.

2.2.4. Optimization
During the gradient descent, smaller or larger steps are taken along the direction of − ∂L

∂w . The magnitude of
these update steps are determined by the learning rate of the gradient descent and the actual update of the
parameters by the selected optimizer.

Learning rate
The learning rate controls the magnitude of steps, in other words how drastic we want the changes to be in the
network’s parameters. Naturally, at an early phase of training (early epochs) we want the network to be able
to explore the Rd loss space, where d the dimensionality of the feature space. As the training progresses we
want the gradual reduction of the learning rate with the training optimally converging at the global optimum.
Premature and aggressive reduction will possibly get the training stuck at a local minimum.

Tuning the learning rate is an intricate process, considering the computational complexity and the time
required for training a DNN. In fact, the burden of hyperparameters tuning is a probable reason to turn
against deep learning models.

Optimizers
Given a model with parameters θ and a set of m training examples xi with labels yi the loss is computed as
in (2.7). J (θ) is the average loss from all training samples and ∇θ J (θ) the respective gradients flowing back for
the model’s parameters update. Given the learning rate η the parameters are updated based on (2.8). Vanilla
aka batch gradient descent comes with great computational cost, since it requires the computation of loss
and respective gradients corresponding to the entire set of training samples for a single parameters update.
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J (θ) = 1

m

m∑
i=1

L(xi , yi ,θ)

∇θ J (θ) = 1

m
∇θ

m∑
i=1

L(xi , yi ,θ)

(2.7)

θ′ = θ−η∇θ J (θ) (2.8)

To cut down computational cost the SGD (Stochastic Gradient Descent), also known as mini-batch gra-
dient descent approximates gradients and performs updates for mini-batches of n training samples. Con-
vergence to the global optimum is certain regarding the batch gradient descent and convex surfaces, while
SGD combined with learning rate decay has similar convergence behaviour7[17]. The batch size is essentially
a trade-off, with a bigger size rendering a better approximation for gradients thus preventing the SGD over-
shooting. On the other hand, the bigger the batch size the higher the computational cost for the extraction of
gradients. Additionally, the batch size affects also the learning rate, with higher batch sizes enabling generally
the utilization of higher learning rates and thus the faster convergence.

SGD is undoubtedly the most common optimization algorithm used for training DNNs. There is an abun-
dance of other optimization algorithms, exploiting the first central moments of updates to improve over SGD
(reduce oscillations, align updates to the direction of the local/global minima). Momentum and RMSprop
are two examples, utilizing first and second central moments respectively, while Adam brings the best of both
worlds. We won’t go into further details, but instead refer to [17] for a very nice overview. We need to note
though, that it is a field of active research with many new algorithms being developed.

Normalization
Normalization of input features is crucial, as in any conventional ML model. Unnormalized features would
lead to unequal step lengths in the Rd loss function space, severely hampering convergence to global or even
local minima. For the sake of visualization, consider a 2D feature space and a corresponding R2 loss space
as shown in figure 2.8. Unnormalized features corresponding to the left loss space, lead to unequal contribu-
tions of features to the final loss. To prevent this, given a set of m samples each feature x of a d-dimensional
feature space, is normalized to mean µ= 0 and variance σ2 = 1 as in (2.9). In a complete similar fashion, in-
termediate features maps are also normalized to prevent the phenomenon of internal shift, with the method
of Batch Normalization of Szegedy et. al [9], which we will cover in subsection 2.3.5.

µ= 1

m

m∑
i=1

xi

σ2 = 1

m

m∑
i=1

(xi )2

X = X −µp
σ2

(2.9)

Figure 2.8: A 2D loss space and updates performed by simple SGD, for unnormalized (left) and normalized input (right). Clearly for the
unnormalized case, the 2 features have unequal variances, thus leading to unequal contributions to the final loss

7local minimum is guaranteed for non-convex surfaces.
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2.3. Regularization
Likewise to the context of ML the goal for a Deep Learning model is to generalize well on unseen data. A
model doing quite well on the training data, but on the other hand reaching poor classification performance
on test data is suffering from overfitting. Considering a learning curve as in figure 2.9, where accuracy is
plotted against the size of the training set, the gap between the training and test accuracy is the overfit.

Clearly, the most straight-forward way to reduce overfitting is to train using more data. The availability
of finite data especially in the supervised setting, along with the ability to generate models of very high com-
plexity (vast parameters), renders regularization a crucial need when training Machine Learning models in
general. The number of model’s parameters, the size of the training set and the generalization ability of the
model are correlating factors. As shown in the learning curve of figure 2.9, given more data the gap between
the apparent and true error, or just the overfit, decreases8.

Figure 2.9: A learning curve, plotting apparent and true error, ε and εA respectively versus the size of training dataset for a model of given
complexity.

Regarding now the complexity of a model, a simple model has low representational power, or equivalently
high bias and low variance. On the contrary, a complex model has high representation capabilities, thus low
bias and high variance. Higher complexity though leads to more data required for training successful models,
with limited overfitting. The impact of increased complexity on figure 2.9 is that the saturated area on the
right part of the graph, with minimal overfitting, captures less and less part of the graph.

Under normal circumstances, acquiring more data is infeasible thus reducing the complexity of the model
is the realistic alternative to reduce overfitting. Regularization penalises the complexity of the model, forcing
the extraction of a more generalizable representation and there are different techniques to this goal. Let’s now
examine the main regularization methods.

2.3.1. Early stopping
Quite an efficient and simple solution. A model is trained, while extracting the validation loss at the end of
each training epoch. As soon as the the validation loss stops decreasing training stops. After the validation
loss plateaus it will start increasing, a sign of overfitting.

2.3.2. Parameter sharing
This technique is aligned towards reducing the number of parameters of a network. We have already intro-
duced weight sharing in section 2.1.1. The same filters are applied for detecting an object, regardless of its
exact spatial location in the image. A fully-connected layer instead would lead to explosion of the number of
trainable parameters and consequently the generalization capabilities of the network.

2.3.3. Weight decay
Instead of minimizing the loss function in (2.7), we minimize a regularized loss J̃ (θ) as in (2.10), where Ω(θ)
the regularizer and α the regularization parameter, in essence the contribution of Ω to the regularized loss.
Minimizing J̃ (θ) leads to the corresponding gradients. Two of the most common options are the L1 and L2
regularizations given in (2.11) and (2.12) respectively, along with the respective gradients.

8the error on the training data constitutes the apparent error, whereas the true error corresponds to error on novel, unseen data.
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J̃ (θ; x, y) = J (θ; x, y)+αΩ(θ) (2.10)

J̃ (w ; x, y) =α||w ||1 + J (w ; x, y)

w ← wi −ε(αsi g n(w)−∇w J (w ; x, y))
(2.11)

J̃ (w ; x, y) = α

2
wT w + J (w ; x, y)

w ← w −ε(αw +∇w J (w ; x, y))
(2.12)

Both these methods penalize large weights, but there is a subtle difference. As seen in equations (2.11),
(2.12) the weight reduction is proportional to the weight for L2 regularization, but fixed for L1. Hence, regu-
larization is faster for L2 and larger weights, and vice versa for L1. Consequently, L1 regularization leads many
small weights to zero.

2.3.4. Dropout
Dropout [22] is another technique against overfitting. During each training step "jittering" is applied to the
model, by removing a random fraction p of the original nodes and performing standard backpropagation to
the remaining nodes. This leads to slightly different variations of the original model to come up during each
training step, with the final outcome being the averaged outcome of this realizations. This is quite similar to
the bagging technique, for reducing variance of Machine Learning models.

There is a discrepancy in the application of Dropout between training and test time. During training time
the aforementioned process is followed. During test time though, no nodes are dropped but the weights are
instead scaled by 1−p.

Dropout has been the prevalent option for reducing overfitting. However, the following method, namely
Batch Normalization, has significantly reduced the need for applying dropout. Finally, the compatibility be-
tween Dropout and Batch Normalization is severely questioned in [14].

2.3.5. Batch Normalization
Despite not being a method directly proposed against overfitting, we still place it here due to its unquestion-
able regularizing effects. Batch Normalization [9] is a method for addressing the phenomenon of Internal
Covariate shift, resulting in significant speed-up of the training process of DNNs. The activations of each
subsequent layer depend on the parameters of the previous layer, which are tuned during the training of the
network. This induced change in the distribution of the activations of a certain layer is introduced as Internal
Covariate Shift.

To deal with the Internal Covariate Shift, the activations distribution of each layer is fixed by scaling fea-
tures to have zero meanµ and unit varianceσ2. Complying with the mini-batch SGD optimization algorithm,
mini-batch instead of global statistics are utilized. The learnable parameters of the algorithm γ and β ensure
that the applied transform does not tamper with the representation capabilities of the network; the network
can undo the applied transform simply by setting βi =µ and γi =

p
δ+σ2. The Batch Normalizing transform

of feature x on mini-batch B of m samples is shown in (2.13). There is a debate regarding the position of Batch
Normalization, but generally it precedes activation functions and thus the output of convolutional layers are
normalized. At test time, the learned parameters γ and β are utilized, along the weighted average for mean µ
and variance σ2.

µB ← 1

m

m∑
i=1

xi

σ2
B ← 1

m

m∑
i=1

(xi −µB )2

x̂i ← xi −µB√
σ2

B +ε
yi ← γx̂i +β

(2.13)
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The applied normalization and the fixing of internal activations distributions led to multiple beneficial ef-
fects to the training of networks. A significant training speed-up was achieved, since networks incorporating
Batch Normalization facilitated the use of higher learning rates and thus faster convergence; consequently
the learning rate decay scheme is also accelerated. Moreover, due to its regularizing effects9 it decreased
the need for other regularization methods such as weight decay and Dropout [22]; regarding the latter, its
compatibility with Batch Normalization is questioned in [14].

2.3.6. Data augmentation
Starting this current section for Regularization, we mentioned that under normal circumstances more train-
ing samples, especially labelled ones, are quite hard to get. However, there is an efficient solution; data aug-
mentation performing some jittering to the already available samples, enables the artificial synthesis of addi-
tional samples, from the existent training distribution. By employing random transformations such as rota-
tions, shifts and flips, which are also expected in the test set, the training distribution is essentially expanded.
This method does not affect the complexity of the model, but rather feeds it with more data.

Augmentation during training time essentially moves us more to the right in the learning curve of figure
2.9. It adds up to the "experience", what the network has already seen and would be able to apply inference
on test time. The improvement of generalization abilities utilizing augmentation is questioned, the only sure
thing is that it provides more samples to train the model on.

9the transform essentially applies some jittering to samples, hence there is no deterministic value corresponding to each sample. Each
example is considered now in conjunction with the rest samples comprising the mini-batch[9]; eventually the applied transform de-
pends on the mini-batch itself.





3
Top-Down Networks

In the current chapter, we will give some further information regarding the proposed TD (Top-Down) net-
works that were skipped in the article. A TD network is extracted by mirroring the feature extraction part of a
conventional, BU (Bottom-Up) baseline network. The defining difference between them is that the baseline
BU sees and processes input in a fine-to-coarse pathway, whereas the proposed TD moves in the opposite
direction. Starting from coarser versions of the input and gradually incorporating higher frequency informa-
tion, through residual connectivity [7].

TD networks mainly inspired by the way human beings perceive a scene; firstly consider a more holistic
representation of it and gradually enrich it with higher information for segmentation and finer objects detec-
tion1. In fact, this reversed CNN architecture leading to a coarse-to-fine processing in the network, is a novel
approach that brings a new perspective to the field. We have thoroughly experimented with our TD networks
and demonstrated the applicability of the proposed approach to a variety of existing architectures.

3.1. How to extract a TD
A TD network is essentially a mirror to the baseline BU. Figure 3.1 provides an overview of the extraction of
a TD network. The first step is the reversal of the feature extraction part2 of the baseline BU, thus rendering
a pathway from lower to higher spatial dimensions. The input to the TD network is the original input down-
scaled by a factor 2s , where s the number of pooling operations3 in the BU network; anti-alias blurring is
performed prior any downscaling operation. Next, any pooling layers (or strided convolutions) are mapped
to nearest-neighbour upscaling layers. Finally, to restore high frequency information lost during the initial
downscaling, residual connectivity is utilized. However, a founding difference of the proposed networks, are
that contrary to existing multi-scale architectures, a higher frequency feature map of given scale is extracted
based solely on that scale4.

Input

Input

CatCat

Downscale

Conv-ReLU-Downscale

Identity

Output

Conv-ReLU

Resolution merge

Upscale

Bottom-up (BU) network Top-down (TD) network

Figure 3.1: Demonstration of the extraction of a TD network based on a baseline BU. On the left, the BU network is visualized, comprised
of 3 convolutional layers. On the right, the respective TD is the mirror to the BU, moving from lower to higher frequencies; its initial input
scale matches the minimum scale seen by the BU and gradually restoring higher frequency information through residual connectivity.

1this claim refers to the conscious process of visual perception; from a biological point of view visual receptors work as a conventional
CNN, gradually aggregating finer details extracted from earlier layers.

2the layers performing the final classification, e.g. GAP + Softmax or any other conventional classifiers remain fixed.
3or any other downscaling operations.
4no Bottom-Up pathway.
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16 3. Top-Down Networks

(a) BU ResNet (b) TD ResNet

Figure 3.2: ResNet architectures for BU and TD networks. The feature extraction part of the BU network is rotated; groups are rotated as
a unit.
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3.1.1. TD ResNet
To shed some further light to the process we will next provide a concrete example of extracting the TD network
corresponding to the ResNet architecture [7]. We are considering the ResNet34 architecture for the CIFAR10
dataset introduced in [7]. The network architecture comprises of an initial convolutional layer for depth ini-
tialization, followed by 3 groups of convolutional blocks; the output of the final group’s block is introduced to
a GAP layer, with a fully-connected layer performing the final classification. Residual connectivity as intro-
duced in [7] is used, refeeding the output of a each block to the consecutive one.

Now for the extraction of the respective TD, we first have to reverse the feature extraction part, which
corresponds to the three groups of the network. These groups are flipped as a whole, with the last group
now corresponding to the initial one of the TD. The filters of the initial convolutional layer are also adapted
to match the dimensionality of the first group. The layers corresponding to the final classification remain
intact, with the final output of the ultimate group being again introduced to a GAP layer and then to a fully-
connected one. The output of each block is fed again to the next block. In addition, higher frequency feature
maps are introduced to the first block of each group, where spatial dimensions rise. For the merging, any of
the three methods introduced in the Method section 3 of the article may be used.

Finally, the input to the TD corresponds to the input of the BU downscaled by a factor of four5. For the
extraction of the downscaled variants of the input we anti-aliased the input prior the downsampling. Result-
ing BU and TD architectures are shown in figure 3.2; for the sake of space merely 2 block in the first group are
visualized, adding more though would be trivial.

3.2. More experiments
A long path was covered till the final proposal of the TD networks, with numerous experiments-efforts that
were not eventually incorporated to the final article. We will concisely present some main efforts that are still
worth-mentioning here.

3.2.1. Downscale experiment
It all started here, chronologically as well as from an experimental point of view. Since, the TD networks would
start processing from lower resolution input and only later add higher frequency, we wanted to examine how
conventional BU performed in the setting of the blurred input. This experiment aimed at providing some
baselines regarding the performance we could expect on behalf of the TD, trying to answer the question
"What is the impact of suppressing higher frequency information in classification performance?". The setup
was identical to the respective one of the first experiment "BUvsTD" in the Experiments section 4 of the
article.

In order to extract valuable insight regarding the effect of scale we extracted multiple variants of the origi-
nal input blurred with [σ= 0.6,2σ,4σ, ...] ; figure 3.3 provides an example of the extraction of blurred variants
of an input image from the CIFAR10 dataset. To assess the impact of losing higher frequency, as well as the
generalization abilities of the networks against this resolution change we trained and tested on all cases. Cor-
responding results for matching training and test scales are presented in figure 3.4. Inspecting the figure, we
may safely conclude that the loss in classification performance is only minimal, growing higher for increased
σ. The loss is higher for Fashion-MNIST and especially CIFAR10, where the dataset contains information in
the high frequency region and blurring suppresses this information. For the ResNet a roughly 10% loss from
a baseline accuracy of 87.7% is measured; the respective figures for the NIN are 15% and 89.4%.

Next, figure 3.5 presents the complete set of results for the NIN architecture and all the datasets6. Clearly,
generalization to a different scale is a quite challenging task, with the version trained on blurred with σ input
generalizing better as suggested in [10]. The blurring, if not excessive, removes mostly noise thus proving
to be helpful to the classification task. Additionally, as expected performance scores are not symmetrical, in
essence classification performance is lower when trained on low and tested on higher scale, than vice versa.
However, we would expect this gap to be even higher as for the case of lower testing than training scale,
all required information, in fact more, had been given to the network for the completion of the task. The
other way around, this doesn’t hold with the network needed to extrapolate to unknown higher frequency
information.

5two downscaling operations present in the baseline BU.
6results from other architectures tell the same story.
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Figure 3.3: Original scale image from CIFAR10 dataset, along with blurred variants with {σ= 0.6,2σ,4σ}; the image corresponds to label
"airplane".
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Figure 3.4: Test accuracy on similar scale test set, for all datasets and networks utilized. There is no substantial loss in classification
accuracy, meaning that the networks are still able to carry out the classification task, even after the loss of higher frequency. As expected,
the impact of the loss rises as we move to the more challenging tasks.
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Figure 3.5: Test accuracies for the Network-in-Network architecture, for the three datasets when trained and tested on all scales. The x-
axis corresponds to the training scale, whereas each bar colour corresponds to a single test scale. Once more it is clear that when training
and test scale matches, there is no substantial loss in performance. When the scale changes though classification becomes harder. Trying
to classify samples of higher scale than the traning scale is harder, as expected.

Having extracted some baselines, we then repeated the experiment on the corresponding TD networks.
Similar conclusions where drawn from this, with the networks exhibiting robust performance against high
frequency loss. In fact, we observed enhanced performance comparing to the BU baselines, when there was
a mismatch between training and testing scale. The TD networks were able to perform better in face of this
distributional shift and this could be attributed to the network architecture, with the TD network "seeing"
multiple scales of the input during training, thus being more resilient to the shift. This was definitely an
interesting and encouraging result for the TD endeavours to come.
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3.2.2. Toy dataset
Trying to extract some further insight regarding perceptual differences between BU and TD and the input fre-
quency, we extracted a toy dataset with images containing a single frequency, as a 2D-cosine wave as shown in
figure 3.6. The dataset contained classes 0-4 with corresponding frequencies in {0,1,2,4,8} Hz, incorporating
rotations in (0,2π;10)7, phases in [0,2π;10) and amplitude transformations in (0,1;10]. After the extraction of
the dataset we followed a similar path with the downscale experiment in section 3.2.1, extracting downscaled
variants. Again networks were trained and tested on all versions of the input.
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Figure 3.6: Toy dataset; class indices 0-4 map to frequencies {0,1,2,4,8} Hz. Transformations in amplitude, phase and rotations are
incorporated.

This experiment was mostly a debug for how the networks react on suppressed higher frequency. Unfor-
tunately, it didn’t reveal any major differences between the networks, with the predictions gradually moving
to the DC class with more blurring applied.

3.2.3. Fourier domain filtering
This was another experiment investigating the effect of scale of the input. Based on initial input x and ap-
plying filtering in the Fourier domain, we extracted variants xlow and xhi g h as shown in (3.1) and figure 3.7.
This filtering corresponds in essence to blurring for xlow , while xhi g h is the complementary set in the Fourier
domain. We then trained on both xl ow and xhi g h and tested on the original test set.

xlow = I F T {F T {x}∗m}, m(u, v) = 1 f or u2 + v2 ≤ 1, 0 other wi se

xhi g h = I F T {F T {x}∗ (1−m)}
(3.1)
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Figure 3.7: From left to right: original image xi , mask for the filtering and xl ow,i , xhi g h,i

The crash test between the BU and TD revealed no substantial difference when the networks where
trained on the blurred variant xl ow . In fact, the networks were able to perform almost as good as when trained

7the notation (0,2π;10) symbolizes 10 transformations equidistant in range (0,2π).
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on the initial training set. This can be justified as the blurring (if not excess) suppresses mainly noise informa-
tion which can hamper classification performance. Additionally, in the tested datasets and especially MNIST
and Fashion-MNIST, a more holistic representation of the input is usually sufficient for successful classifica-
tion8.

On the contrary, when trained on the xhi g h both networks reported deteriorated performance. The loss
was higher regarding the TD, revealing a difficulty of the networks to exploit high frequency information. This
led us to increase the number of parameters of the TD networks, while using more advanced approaches for
merging than simple element-wise addition9.

Furthermore, this Fourier filtering gave us another idea for a quite different approach to the TD networks.
The coarse-to-fine processing pathway finally adopted, moves from the minimum scale extracted from the
initial input downscaled by a factor of 2s , where s the pooling operations in the initial BU, to the initial spa-
tial resolution. Instead, we tested with extracting equal number of non-overlapping concentric regions in
the Fourier domain as shown in figure 3.8, with the inner-most circle corresponding to the blurred version
of the initial input; clearly, this is equivalent to Laplacian filtering10. This was motivated by the redundancy
encountered in the original approach; there is significant overlap in the low-frequency region between the
downsampled variants, hence concatenation of low and high resolution feature maps builds up this recur-
ring region. The modified approach with the Fourier filtering vanishes this redundancy, feeding information
corresponding to separate frequency regions at each stage. This could potentially facilitate learning, by al-
lowing the network to deal with each frequency region separately. However, slightly lower performance was
measured indicating that this redundancy is actually helpful to the network’s training. The idea is still quite
interesting though and will surely return in any future ventures.
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Figure 3.8: Filtering for extracting non-overalapping regions in the frequency domain. On the top row, the original and the images
corresponding to the concentric areas are given from inner to outermost. On the bottom, the respective magnitudes of the Discrete
Fourier Transform are given. The extracted regions correspond to radiuses r = [5,10].

3.2.4. Progressive growing
Merging of high and low resolution pathways is a common concept mainly in segmentation networks (please
refer to the related work of the article). The Generative Adversarial Network (GAN) of [11] also adopted this
merging, with an interesting though adaptation. Each time higher frequency was introduced, the network’s
capacity was increased by adding extra layers to be able to handle the finer information. Sudden introduction
of new layer’s would "shock" the already trained previous layers, hence the progressive growing is proposed
in [11]. The training then incorporates two phases, namely the staging in and the fine-tuning. After each
expansion, the network is retrained while all the weights remain trainable. This way the network can adapt to
the increased capacity, whereas the second stage clearly fine-tunes the weights of the updated model.

8a blurred shirt can be easily discriminated from a blurred shoe.
9a combination of element-wise addition and concatenation on the channel dimension was finally adopted; please refer to the method

section of the article.
10difference of Gaussians.
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The main motivation behind progressive growing is to facilitate the learning process, with the network
experiencing and "learn" each scale of the input progressively, in a "divide-and-conquer" fashion. We did
adopt progressive growing for our TD networks, without a substantial impact in final classification perfor-
mance. We also tested with transfer learning, in essence the predecessor of the progressive growing, where
after each expansion the network was again retrained but with previous layers’ weights frozen this time. This
led to significant performance deterioration.

3.3. Gradcam
Despite not being a component itself of TD networks, Gradcam [19] has been extensively used in the current
graduation project. Gradcam based on CAM [28] contributes to the transparency and understandability of
CNNs, by extracting localization maps of the most informative features for the classification task. To this
goal, the feature maps A from the final convolutional layer is utilized. The class-discriminative gradient is

computed based on the output yc as ∂yc

∂Ak
i j

for feature map k. Then, these backpropagating gradients are

global-average-pooled as in (3.2). The weights αc captures the contribution for the target class c. The final
heatmap is a weighted sum of feature maps A, followed by a ReLU as in (3.3). Higher frequency visualizations
are extracted using Deconvolution and Guided Backpropagation; for further information on those please
refer to [19].

αc
K = 1

Z

∑
i

∑
j

∂yc

∂Ak
i j

(3.2)

Lc
Gr ad−C AM = ReLu(

∑
k
αc

k Ak ) (3.3)

In figure 3.9 we share a very nice visualization of [28], where class-discriminative localization maps corre-
sponding to VGG16 are visualized. The transition from more local, edge-detecting filters, to more global ones
representing abstract patters is clearly demonstrated. We advise the reader to compare this visualization with
the respective ones given in the Discussion section 5 of the article for the TD networks. The impact of the
adopted coarse-to-fine processing paradigm affects these localization maps, with later layers corresponding
to higher frequency maps. For more visualization please refer to the Discussion section of the article and of
course to [28].

Figure 3.9: Class-discriminative localization maps for VGG16. Firstly the original image is given and then heatmaps from the final to
earlier convolutional layers as we move to the right are plotted [28]. The transition from local, edge-detecting filters, to more global
representing abstract patters is clearly demonstrated.





4
Adversarial attacks

Ever since the seminal work of [6], adversarial attacks have been an active field of research in the Computer
Vision community. In the context of adversarial attacks, an adversary attacking a trained model, tries to
find the minimum required perturbations to fool a model. Interestingly, these perturbations are of small
magnitude, imperceptible to the human eye and lead a well-generalizing model to misclassify the input with
high confidence. Another interesting aspect is the transferability of those attacks, which remain agnostic to
the network topology.

A taxonomy based on the access of information regarding the model and its training process is:

• white-box attacks: the adversary has full access to the model and its parameters θ, as well as to the
training algorithm utilized. Clearly, this category leads to more powerful attacks.

• black-box attacks: require no internal knowledge of the model and/or the training algorithm, but sim-
ply for the final output of the model. These attacks can be further categorized to,

– decision-based: the final output label is sufficient for the adversary. Perturbations are then gen-
erated till the input is misclassified.

– score-based: output class scores are required by the adversary.

For our project, the main emphasis was laid on black-box attacks as they do correspond to more realistic
scenarios (e.g. autonomous self-driving cars). Before proceeding to a nice overview of some infamous attacks,
let us give some useful definitions applying in the context of adversarial attacks.

4.1. Definitions
• adversary: the attacker

• adversarial perturbation: the attack in form of noise applied to the input by the attacker, for leading the
model to misclassification,

• adversarial example/image: the adversarially perturbed input,

• adversarial distance: the distance d(x, xad v ) between the original and the adversarially perturbed in-
put; in our case d corresponds to the L2 distance,

• attack success-ratio: the ratio of adversarially perturbed images, successfully leading the attacked model
to misclassification.

4.2. White-box attacks
Clearly, transparency to the internal architecture of the model and its training algorithm enables the attacker
to devise efficient, well-tailored perturbations. The network gradients constitute the main tool used for de-
vising the attacks of this category. As mentioned in section 2.2, training a neural network is equivalent to
minimizing a loss function. Instead of moving along −∇θ J (θ) (2.7), one can simply move on the opposite

23
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direction thus maximizing the network’s loss. The effectiveness of such an attack, even of quite small magni-
tude is demonstrated in figure 4.1.

Some characteristic examples of white-box attacks are, the Fast Gradient Sign Method (FGSM)[23], the
DeepFool propose in [16] by Moosavi-Dezfooli et al. and Carlili and Wagner (C&W) attacks.

Figure 4.1: Even a perturbation of small magnitude in the direction of the loss gradient, can lead GoogleNet [24] trained on Imagenet to
misclassification [6]. Notice the imperceptibility of the perturbation and the high confidence with which the model misclassifies now
the input.

4.3. Black-box attacks

In the black-box scenario the attacker has no access to the model, or its training algorithm. Deprived of
gradients knowledge, the adversary can no longer apply perturbations maximizing the loss function. Numer-
ical methods are applied though trying to approximate the gradients. Despite generally being less powerful,
they can lead to quite universal perturbations, sometimes following a quite simple approach. Additionally,
black-box attacks are robust against a quite common defence, namely the gradient obfuscation.

We will next concisely present the attacks considered for the current project, as well as provide some
characteristic examples for each type of attack. The attacks are grouped based on the type of noise, or type of
transformations applied to the image to correlated noise, uncorrelated noise, blurring and spatial transfor-
mation attacks.

4.3.1. Correlated noise

Single-Pixel attack

As the name already suggests, the adversary simply by modifying a single pixel, manages to fool the model.
This is a particularly interesting type of attack; introducing 0s/1s in smooth areas of 1s/0s of the input image,
pollutes the input with imprints of the learned filters1, thus introducing correlated noise. A demonstration of
the introduced pollution is provided in figure 4.2, whereas figure 4.3 provides examples of adversarial images
generated by this type of attack.

The coarse-to-fine processing pathway adopted by our TD networks effectively deals with this type of
attack, as the blurred and downscaled input significantly reduces the introduced noise; uncorrelated noise
would be completely eradicated. On the contrary, regarding BU networks the polluted input gets propagated
all the way down the network, spreading out the introduced pollution.

1the perturbed pixel is essentially a delta function and convolving a function with a delta returns the function; in case of imperfect delta
blurred out version of the filters are returned instead.
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(a) Output corresponding to four masks of the first convolutional layer filter of LeNetFC to the perturbed by the Single-Pixel attack input

(b) Difference in outputs between clean and perturbed input.

Figure 4.2: Demonstration of the polluting effects of Single-Pixel attack. The perturbed pixel essentially operates as a delta function
and based on the convolutional nature of the network, imprints of the learned filters (correlated noise) are introduced. The introduced
pollution "spreads out" covering bigger region of the input as we move to deeper layers and hence more convolutions are applied.
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Figure 4.3: Adversarial images generated from Single-Pixel attack. On the top of each image the original and the perturbed label is
indicated.

Salt&Pepper

This is clearly an extension of the Single-Pixel attack as shown in figure 4.4. Some characteristic examples
of perturbed images are provided in figure 4.5. The perturbed pixels will result in learned filters imprint (or
blurred out variants), which will expand in bigger regions of the image as we move in deeper layers and more
convolutions are applied.
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(a) Output corresponding to four masks of the first convolutional layer filter of LeNetFC to the perturbed by the Salt&Pepper attack input

(b) Difference in outputs between clean and perturbed input.

Figure 4.4: Clearly the Salt&Pepper is an extension to the Single-Pixel attack, with multiple pixels perturbed and thus resulting in multiple
imprints.
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Figure 4.5: Adversarial images generated from Salt&Pepper attack. On the top of each image the original and the perturbed label is
indicated.

Pointwise attack

Pointwise attack [18] starts perturbing the input, by adding Salt&Pepper noise until the input is misclassified.
Then tries to find the minimal required perturbation, revisiting and resetting part of the perturbed pixels so
long as the input remains adversarial. Resemblance to the Salt&Pepper attack is obvious (figure 4.6) and the
impact of the attack introducing imprints of the filters is the same.
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Figure 4.6: Adversarial images generated from Pointwise attack [18]. On the top of each image the original and the perturbed label is
indicated.

4.3.2. Uncorrelated noise

Additive Noise attack

For this type of attack, additive noise is introduced in the original input. Uniform or gaussian noise is added,
gradually increasing the standard deviation until the input is misclassified. Examples are provided in figure
4.7 and 4.8 for the gaussian and uniform noise respectively. The coarse-to-fine pathway adopted in our TD
networks and the original blurring deals effectively with this uncorrelated noise introduced, thus justifying
the increased robustness of our TD models compared to the respective BU baselines.
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Figure 4.7: Adversarial images generated from Additive Gaussian attack.



28 4. Adversarial attacks

0 10 20

0

5

10

15

20

25

Original:7
 perturbed:8

0 10 20

0

5

10

15

20

25

Original:ankleboot
 perturbed:bag

0 10 20 30

0

10

20

30

Original:cat
 perturbed:frog

0 10 20

0

5

10

15

20

25

Original:2
 perturbed:4

0 10 20

0

5

10

15

20

25

Original:pullover
 perturbed:coat

0 10 20 30

0

10

20

30

Original:ship
 perturbed:airplane

0 10 20
MNIST

0

5

10

15

20

25

Original:1
 perturbed:0

0 10 20
Fashion-MNIST

0

5

10

15

20

25

Original:trouser
 perturbed:shirt

0 10 20 30
CIFAR10

0

10

20

30

Original:ship
 perturbed:automobile

Figure 4.8: Adversarial images generated from Additive Uniform attack.

Blended Uniform Noise attack
Similar to the previous category, but in this case the noise is not added to the input but rather blended in the
input as in (4.1), where ε ∈ [0,1] and n uniform noise in [xmi n , xmax ]. Yielded adversarial images are visualised
in figure 4.9. Similar to the additive Gaussian/uniform noise, the noise introduced here is uncorrelated as well
and the TD networks is able to handle it quite well.

xad v = ε∗n + (1−ε)∗x (4.1)
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Figure 4.9: Adversarial images generated from the Blended Uniform noise attack.

4.3.3. Blurring attacks
Gaussian blur attack
A very interesting type of attack, where the input is blurred with a gaussian kernel of increasingσ ∈ (0,max(H ,W )],
where H ,W the height and width of the input respectively. The attack smooths out the image as shown in fig-
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ure 4.10. The gaussian blurring baked in the TD architecture, with the network utilizing multiple scales during
training leads to increased robustness to this attack.
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Figure 4.10: Adversarial images generated from the Gaussian blur attack.

Contrast Reduction attack
The Contrast Reduction attack decreases the input contrast until misclassification is achieved. For given
bounds [0,1] of input images, the contrast reduction is performed towards the mean 0.5. Thus, the set of
values of images are driven towards 0.5 with some resulting perturbed images presented in figure 4.11.
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Figure 4.11: Adversarial images generated from Contrast Reduction attack. On the top of each image the original and the perturbed label
is indicated.

4.3.4. Spatial transforms attacks
The Spatial Attack [4] perturbs input, by performing geometrical transformations in our case rotations and
translations to it. Based on the findings of [26] regarding the beneficial effects of proper anti-aliased down-
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sampling, to the preservation of CNN’s shift invariance, we expected enhanced robustness of TD networks.
To test this we also applied a variant of the attack considering only spatial shifts.

Inspecting the perturbed images though of figures 4.12, 4.13 the applied perturbation further distorts the
image by introducing regions of 0s as a results of the applied spatial transform. This is effectively masquer-
aded in the grayscale MNIST and Fashion-MNIST datasets and the applied attack boils down to a spatial
transform.
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Figure 4.12: Adversarial images generated from Spatial Attack [4]. On the top of each image the original and the perturbed label is
indicated.
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Figure 4.13: Adversarial images generated from Spatial attack [4] variant performing only translations. On the top of each image the
original and the perturbed label is indicated.

4.4. Defences against adversarial attacks
There are various methods for defencing against adversarial attacks. The most common one is probably ad-
versarial training, which simply augments training data with similar perturbations, thus actually training the
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network to recognize these perturbations. Clearly, this method fails when the actual attack applied has not
been seen during training. Other methods are gradients obfuscation, defensive distillation, feature compres-
sion; for further information please refer to [3] and [1].

Defence methods, such as adversarial training, can enhance robustness of any network. However, in the
current project we focused on inherent robustness, investigating architectural components which could yield
enhanced robustness against certain types of attacks (e.g. blurred downsampling and coarse-to-fine pathway
of TD networks versus the uncorrelated noise attacks).
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