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Preface
Currently we are living in a global pandemic of coronavirus disease 2019 (COVID-19).
In this difficult and almost unpredictable time I have had the opportunity to write my
final thesis about the spread of this virus. During my bachelor Applied Mathematics
I have learned a lot and it was very interesting to apply these mathematical skills to
this ongoing worldwide problem. Because there are still many uncertainties about this
virus, it was a great challenge to make realistic predictions. If in the future there are
more clarities about this virus, the model I have written can be very useful to make us
better understand the coronavirus. I hope that this report will help everyone understand
the importance of mathematics for worldwide problems.
Special thanks to my supervisor, Mr Vuik, who supported me during this project.

Jurriaan Rutten
Delft, July 2020



Resume
In this report we investigate the spread of the coronavirus 2019 (COVID-19) using
mathematical models. We start with a simplified model consisting of a system of three
ordinary differential equations and expand it more and more to try to simulate reality.
We use Python’s odeint function to solve these systems numerically. Because a frac-
tion of all infected people will not develop any symptoms, it makes it easy for a virus to
spread. Therefore we look at how big the effect asymptomatic people have on spread-
ing the virus. We look at how government measures affect the spread of the virus and
thereafter we look at what happens if the government eases the taken measures. We
also use MATLAB to analyse the stability of our models and to find solutions to our
models using different numerical methods.

"All models are wrong, but some are useful", George Box
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1 Modelling an epidemic
When modelling an epidemic, we use a common technique in Epidemiology: com-
partmental models1. We divide the total population (humans) into a small number of
compartments, each containing individuals that are identical in terms of their status of
sickness. We analyse and describe the compartmental models for disease transmission.
We start with a simplified model.

1.1 The SIR model
The SIR model consist of three compartments:

1. S: Susceptible; Individuals who do not have immunity to the infectious agent
(corona in our case), so might become infected when exposed to the virus.

2. I: Infectious; Individuals who are infected and can transmit the virus to suscep-
tible individuals.

3. R: Recovered/Removed; Individuals who are recovered, immune or passed away.

Let us put these compartments in a scheme:

Figure 1

We denote the number of individuals in each compartment at time t with S(t),
I(t) and R(t), respectively. The total population size is N, which is equal to S(t) +
I(t) +R(t). The amount of individuals in a compartment must be integer but if the
total population N is sufficiently large we can treat S(t), I(t) and R(t) as continuous
variables. That means we can make a model of differential equations which expresses
the dynamics of how each compartment changes over time:

dS
dt

=−β IS
N

dI
dt

=
β IS
N
− γI

dR
dt

= γI

1Brauer, F. (2008) Compartmental Models in Epidemiology
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Now because we do not want to investigate how many individuals there are cumu-
latively in each compartment, we want each compartment to be a fraction of the total
population N. So we make some changes in the variables:

S :=
S
N
,

I :=
I
N
,

R :=
R
N

Because N is a constant, we can divide both sides of the equations to obtain the
following differential equations:

dS
dt

=−β IS

dI
dt

= β IS− γI

dR
dt

= γI

In the first equation we can see parameter β . This parameter denotes the transmis-
sion rate from compartment S to compartment I: the probability of transmission due
to interaction between a person in compartment S and a person in compartment I. In
the second equation we see parameter γ which denotes the transmission rate between I
and I. This γ has the interpretation that 1

γ
is the average amount of time an individual

spends in the infected compartment.
If we add up the differential equations, we find:

dN
dt

=
dS
dt

+
dI
dt

+
dR
dt

= 0

This means that the size of the total population stays the same over time. That is
because every individual belongs to a certain compartment and cannot leave the system.
With parameters β = 0.35 and γ = 0.2, we obtain the following graph:
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Figure 2: SIR model, with β = 0.35,γ = 0.2

What we can see is that at t = 0, S(0) = N and I(0) = R(0) = 0. Directly after t = 0
an individual gets infected by a virus. That individual infects others and those others
infect even more people around them. That is why S(t) is an exponentially decreasing
function and I(t) an exponentially increasing function. This implies that the rate of
transfer from one compartment to the other is independent of the time spent within the
compartment. At t = 100 we see that I(t)≈ 0 and that S(t)≈ 0.29 and R(t)≈ 0.71. So
again S(t)+ I(t)+R(t) = N.

1.2 Analysis of the SIR model
Let us have a look at the differential system. If we look at I as a function of S, we can
obtain useful results.

dI
dS

=
β IS− γI
−β IS

=−1+
γ

βS
Now I is only dependent on S. If we integrate the equation we obtain:

I =
γ

β
ln(S)−S+C

We can calculate constant C by using the intial values:

C = I(0)+S(0)− γ

β
ln(S(0))

To find the critical points of function I(S), we set the equation dI
dS equal to zero and

find the roots. This is when S = γ

β
. Now we want to find out whether this critical point

is a maximum, minimum or a saddle point, so we use calculate the second derivative
of I with respect to S:

d2I
dS2 =− γ

βS2
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We have that d2I
dS2 ≤ 0, because S2,γ,β ≥ 0. So the critical point S = γ

β
is a maxi-

mum. Now we can find the maximum of I by filling in the formula:

Imax =
γ

β
ln(

γ

β
)− γ

β
+ I(0)+S(0)− γ

β
ln(S(0))

= I(0)+S(0)− γ

β
+

γ

β
ln(

γ

β
S(0))

Figure 3: SIR model, with β = 0.35,γ = 0.2

Next we want to determine the stability2 of the system, so we have to find the equi-
librium points. We do this by setting the system of differential equations equal to zero.
This means that the 3 compartments do not change over time, hence we will have an
equilibrium. If we look at the differential equation we an see that we have an equilib-
rium point at I = 0 and 0≤ S≤ N.
Let us rewrite our system of differential equations in a vector form:

d
dt

x = f(x),with x :=

 S(t)
I(t)
R(t)

 .
If x∗ is an equilibrium point then f(x∗) = 0. We can then take the Taylor expansion of
our differential equation:

f(x) = f(x∗)+J(f,x∗)(x−x∗)+ · · · ,

where J(f,x∗) is the Jacobian matrix of partial derivatives, which, in this case, is deter-
mined as follows:

J(S, I,R) =

 ∂

∂S
dS
dt

∂

∂ I
dS
dt

∂

∂R
dS
dt

∂

∂S
dI
dt

∂

∂ I
dI
dt

∂

∂R
dI
dt

∂

∂S
dR
dt

∂

∂ I
dR
dt

∂

∂R
dR
dt

 .
2Khasminskii, R (2011) Stochastic Stability of Differential Equations
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Our function f(x) is now separated into a constant part, a linearized part and the rest
terms. We know that the constant part is equal to the zero vector. So now we only have
to solve:

d
dt

x = J(f,x∗)(x− x∗),

which is a linear differential equation, where the solutions depend on the eigenvalues
of the Jacobian. The solutions are a linear combination of separate eλ jt ’s. So if we have
an eigenvalue that is positive, the solutions move away from the equilibrium point and
the point is therefore unstable. If all the eigenvalues have negative real parts, then the
equilibrium point is stable.
If we look at the Jacobian of our system, we get:

J(S, I,R) =

 −β I −βS 0
β I βS− γ 0

0 γ 0

 .
By substituting the values of our equilibrium point we obtain

J(S0,0,R) =

 0 −βS 0
0 βS− γ 0
0 γ 0

 ,
where the determinant of the matrix (J(S,0,R)−λ I) is

det(J(S,0,R)−λ I) =−λ (−λ (βS− γ−λ )) = λ
2(βS− γ−λ ).

Setting the equation equal to zero gives us:

λ
2(βS− γ−λ ) = 0,

so λ1,2 = 0 or λ3 = βS− γ . We notice that we have three eigenvalues that are all real.
The third eigenvalue λ3 is positive if βS > γ and negative if βS < γ . We know now
that if an epidemic occurs, then dI

dt is greater than zero only if S > γ

β
. From this we can

determine that λ3 is positive and the equilibrium point is unstable.

1.3 The contact rate
When modelling an infectious disease, the extent to which people have contact with
each other is a very important aspect to include in your model. At meetings, supermar-
kets or sport-events a virus can easily spread among people. Therefore the government
must take action to prevent the virus from spreading. An average contact rate3 under
normal circumstances in a country is around c0 = 14. Now we can make β smaller and
c0 · β becomes the effective contact rate: There is interaction between 2 individuals,
and one infects the other.
When an epidemic is emerging, all the governments around the world will take health
measures: People who have the virus, or have symptoms go into quarantine; stay at

3Mixing Patterns Between Age Groups Using Social Networks, Research Gate, 2006
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home as much as possible, or eventually a lock down. Because of these health mea-
sures, the contact rate will decrease and will not be constant anymore. Let c(0) = c0 be
the contact rate at initial time and limt→∞ c(t) = cb be the minimum contact rate. Let r1
be the exponential decreasing rate of the contact rate. Then we can make the following
formula for the contact rate4:

c(t) = (c0− cb)e−r1t + cb

We add the contact rate to our system of differential equations, so our SIR model
will look like this:

dS
dt

=−βc(t)IS

dI
dt

= β ISc(t)− γI

dR
dt

= γI

Now we make two new plots: The SIR-model with constant contact rate, and the
SIR-model with a continuous decreasing contact rate:

Figure 4: β = 0.35,γ = 0.2

4An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov), 2020
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Figure 5: β = 0.35,γ = 0.2

We can see in figure 4 that if the government does not take any measures, so that the
contact rate remains constant, almost the whole population would get infected. This
can be seen from the fraction of the population that end up in the recovered compart-
ment, R. When the government does take measures, we can see in figure 5 that a much
smaller fraction of the population will end up in the recovered compartment. So far
fewer people would get infected.

1.4 Basic reproduction number
When we want to predict the spread of a virus, we want to find the basic reproduction
number5. This is the number of new infections induced by a single infected individual
during his/her infectious period per day. In the beginning of an epidemic this number
is above one: More people get infected than people go to the recovered compartment.
This is because there are not taken any measures yet to prevent the virus from spread-
ing. To find the formula for the basic reproduction number we just have to think log-
ically: If the people that are in the infectious compartment infect an average of βc0
people per unit time, and the time that is spent in the infectious compartment is equal
to 1

γ
, then basic reproduction number, R0 is equal to:

R0 =

(
βc0

γ

)
S0 (1)

As mentioned before, at the start of an epidemic the basic reproduction number
will be higher than one. So a single person can infect more than one other persons on
a single day. Then those newly infected individuals can also infect more people per
person. Therefore, of course, the aim is to bring R0 below one, so that on a single day
one person cannot infect more than other person.

5Dietz, K. (1993). The estimation of the basic reproduction number for infectious diseases
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We can see in formula 1 that if we let the contact rate decrease continuously, R0 will
get smaller and smaller. Now we want to be able to calculate the basic reproduction
number at any time t. This is called the effective reproduction number. We use the
continuous contact rate, c(t), and the amount of people in compartment S at time t,
S(t), to obtain the following formula for the effective reproduction number:

Rt =

(
βc(t)

γ

)
S(t)

We can see in figure 6 that by letting the contact rate decrease, the reproduction rate
will fall below 1.

Figure 6: Contact rate vs. basic reproduction number
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2 Incubation period and Asymptomatic Individuals
The incubation period is the period after being exposed to the virus and before having
symptoms. The individual does not know that he/she has the virus, but a few days be-
fore having symptoms he/she is already able to infect others. For the coronavirus the
incubation period is 7 days on average6. The last 2 days of this period an individual
becomes contagious while not knowing he/she is7. In these 2 days a person will con-
tinue with his daily life. That makes it very easy for the virus to spread.
Another easy way for a virus to spread is via asymptomatic individuals. These indi-
viduals are contagious but are not showing symptoms. If we look at the start of the
spread of the virus in Noord-Brabant there was only 1 person sick showing symptoms.
This person had to stay at home immediately. So only the last 3 days of his incuba-
tion period he was able to spread the virus. But after a while the epidemic emerged
in Noord-Brabant. In other cities and villages people started showing symptoms. But
this went so fast that it is unbelievable that this man was the only cause of the emerge.
Probably a few people without symptoms spread the virus without knowing that.
With these 2 easy ways for a virus to spread it is very important to include these in our
model. Let us expand our SIR model.

2.1 The SEPIAR model
We introduce three new compartments:

1. E: Exposed, not contagious; People exposed by the virus but not yet contagious.

2. P: Presymptomatic; People that are contagious but not yet showing symptoms.

3. A: Asymptomatic; Infectious people that passed the incubation period but will
not show any symptoms

At the next page we show what our compartmental scheme looks like after includ-
ing the new compartments:

6The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed
Cases, 2020

7The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed
Cases, 2020
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Figure 7

With this scheme we can make the following system of differential equations which
expresses the dynamics of how each compartment changes over time:

dS
dt

=−βc(t)S(I +θA+θP)

dE
dt

= βc(t)S(I +θA+θP)− εE

dP
dt

= εE−σP

dI
dt

= σρP− γII

dA
dt

= σ(1−ρ)P− γAA

dR
dt

= γII + γAA

The sum of these equations is again equal to 0 and as we can see we have a few
more parameters. Because people in the compartments A and P do not have the symp-
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toms like coughing and sneezing, it is more difficult for them to infect others. So in the
first differential equations we multiply A and P with 0 < θ ≤ 1.
The average time people spend in the E compartment is 1

ε
and the average time people

spend in the P compartment is 1
σ

.
The probability of having symptoms among infected individuals is ρ .
The time spent in the I and A compartments is 1

γI
and 1

γA
respectively.The parameter

γA will be smaller than γI because people with symptoms will take more rest and live
more healthy when they get sick.

2.2 Different initial conditions
We know that how an epidemic proceeds depends on very many things, like all the
parameters we have discussed so far: If the probability of getting infected when having
contact with somebody is very high, it will definitely be a very dangerous epidemic.
But what differences can the initial conditions make? Let us have a look at what hap-
pens in our model for different values of E at t = 0.
In figures 8 to 11 we see that increasing the fraction of exposed people at t = 0 has a
noticeable change in the behaviour of the graphs. When E(0) is smaller, the disease
will take longer to peak, but also lasts longer than for higher values of E(0). But we
can see in figure 11, that higher values for E(0) do not mean that a lot more people
get contaminated relatively. With E(0) = 0.0004 and E(0) = 0.04 differing a factor
100, the fraction of people that end up in the recovered compartment only increases by
approximately 1%. But as we can see in figures 9 and 10 is that the pandemic peaks a
lot earlier. This means the world has much less time to prepare for the peak and find a
vaccine.

Figure 8
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Figure 9

Figure 10
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Figure 11

2.3 Infections by A and P
People that are asymptomatic or are in the last days of their incubation period, com-
partments A and P respectively, can infect others without knowing. This is one of
the dangerous aspects of the spread of a virus. If we do not take into account that
asymptomatic and presymptomatic people are contagious, we would get a completely
wrong picture of how fast the virus is spreading at any moment. Let us look what
would happen in Noord-Brabant if include and exclude the possibilities of infections
by individuals without symptoms, A and P:

Figure 12
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Figure 13

We can see in figure 13 that ± 0.6 million less individuals end up in the recovered
compartment than in figure 12. This means that excluding the fact that people in these
two compartments can infect others gives us a very bad estimate of the amount of
infected people each day. The only solution to this problem is to test as many people as
possible so that we can pick out the people that asymptomatic or presymptomatic and
put them into quarantine.

2.4 Equilibrium and stability
Let us have a look at the stability8 of our model and search for the equilibrium points.
Again we have to find the values for the variables for which the system does not change
over time, so the values that give: dS

dt = dE
dt = dP

dt = dI
dt =

dA
dt = dR

dt = 0. We see that
there is an equilibrium if we have the following values for S,E,P, I,A and R:

x∗ :=


S(t)
E(t)
P(t)
I(t)
A(t)
R(t)

=


S
0
0
0
0
0

 (2)

If we fill in this values in the differential equations we see that dS
dt = dE

dt = dP
dt =

dI
dt =

dA
dt = dR

dt = 0, indeed. This means that x∗ is an equilibrium point. Now we will
look at the stability of this point. We do this in the same way as in section 2. We write

8Khasminskii, R (2011) Stochastic Stability of Differential Equations
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our system of differential equations in a vector form:

d
dt

x = f(t,y), with x :=


S(t)
E(t)
P(t)
I(t)
A(t)
R(t)


Now we take the Taylor-expansion of our system of differential equations, with the

Jacobian matrix being:

J(S,E,P, I,A,R) =



∂

∂S
dS
dt

∂

∂E
dS
dt

∂

∂P
dS
dt

∂

∂ I
dS
dt

∂

∂A
dS
dt

∂

∂R
dS
dt

∂

∂S
dE
dt

∂

∂E
dE
dt

∂

∂P
dE
dt

∂

∂ I
dE
dt

∂

∂A
dE
dt

∂

∂R
dE
dt

∂

∂S
dP
dt

∂

∂E
dP
dt

∂

∂P
dP
dt

∂

∂ I
dP
dt

∂

∂A
dP
dt

∂

∂R
dP
dt

∂

∂S
dI
dt

∂

∂E
dI
dt

∂

∂P
dI
dt

∂

∂ I
dI
dt

∂

∂A
dI
dt

∂

∂R
dI
dt

∂

∂S
dA
dt

∂

∂E
dA
dt

∂

∂P
dA
dt

∂

∂ I
dA
dt

∂

∂A
dA
dt

∂

∂R
dA
dt

∂

∂S
dR
dt

∂

∂E
dR
dt

∂

∂P
dR
dt

∂

∂ I
dR
dt

∂

∂A
dR
dt

∂

∂R
dR
dt


.

If we calculate all partial derivatives and thereafter fill in our values of the variables
for our equilibrium point x∗ in the Jacobian matrix, we obtain:

J(S,E,P, I,A,R) =


0 0 −βc0θS −βc0S −βc0θS 0
0 −ε βc0θS βc0S βc0θS 0
0 ε −σ 0 0 0
0 0 σρ −γI 0 0
0 0 σ(1−ρ) 0 −γA 0
0 0 0 γI γA 0


If we fill in the values of the parameters we can calculate the eigenvalues of the matrix.
We find 6 eigenvalues:

λ1 = 0
λ2 = 0
λ3 ≈ 0.3445
λ4 ≈−0.5334+0.2008i
λ5 ≈−0.5334−0.2008i
λ6 ≈−0.1038

We have one positive eigenvalue, λ3, hence the equilibrium point is unstable.

Let us now have a look at the same graph again, but now with each compartment
being a fraction of 1:
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Figure 14: SEIAR model, with β = 0.08, θ = 0.7, γI =
1
7 , γA = 1

7 , ε = 1
4 , σ = 1

3 ,ρ = 0.8

We can see that from t = 200 the fraction of the amount of people in each com-
partment does not vary much anymore. This means we have another equilibrium point
which seems to be stable. But this equilibrium point has other values for the com-
partments than equilibrium point x∗. We cannot solve this analytically, so we have to
approach this point numerically. We can use the function fsolve in MATLAB and use
an estimate of the equilibrium values for S(t),E(t),P(t), I(t),A(t) and R(t) to calculate
the exact values for this equilibrium point. If we look at the figure we estimate the
following values for t = 200:

y∗ =


S(t)
E(t)
P(t)
I(t)
A(t)
R(t)

≈


0.17
0.0005
0.0005
0.002

0.0005
0.81

 (3)

The function fsolve will search for the closest equilibrium point to our estimate.
We find the following values for our equilibrium point y∗:

y∗ =


S(t)
E(t)
P(t)
I(t)
A(t)
R(t)

=


0.1799

3.90 ·10−4

3.87 ·10−4

0.001
3.54 ·10−4

0.81

 (4)

Now we can fill in the values of y∗ in our Jacobian matrix and calculate the eigen-
values to look at the stability of this equilibrium point. We find the following eigenval-
ues:
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λ1 = 0
λ2 ≈−0.3304+0.0845i
λ3 ≈−0.3304−0.0845i
λ4 ≈−0.1057
λ5 ≈−0.0595
λ6 ≈−0.0006

As we can see, the real parts of all the λ ′i s are ≤ 0 which means this equilibrium
point is stable.

2.5 The reproduction number
Let us derive the basic reproduction number9 from our system of differential equations.
To do this, we need to find the so called ’next-generation matrix’. In our system we
have got 8 compartments. Five of these compartments are the ’infected’ compartments:
E,P,I and A. Now let xi, i = 1,2, ..,4 be the fraction of the population in the ith infected
compartment at time t. We can rewrite the differential equations of these 4 infected
compartments as:

dxi

dt
= Fi(x)−Vi(x), where Vi(x) =

[
V−i (x)−V+

i (x)
]

(5)

In these equations Fi(x) represents the rate of appearance of new infections in compart-
ment i. V+

i (x) represents the rate of transfer of individuals into compartment i by all
other means, and V−i (x) represents the rate of transfer of individuals out of compart-
ment i. Now we can rewrite equation 5 as:

dx
dt

= F(x)−V (x),

where

F(x) =
(
F1(x), . . . ,F4(x)

)T

and

V (x) =
(
V1(x), . . . ,V4(x)

)T

Now F and V are 4×4 matrices, defined as

F =
∂Fi

∂x j
(x0) and V =

∂Vi

∂x j
(x0)

and FV−1 is known as the next-generation matrix. The largest eigenvalue of this
matrix is equal to the basic reproduction number of our model.

9Jones, J (2007) Notes on R0
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Let us find the next-generation matrix of our model. As mentioned earlier, we only
need the following differential equations:

dE
dt

= βc(t)S(I +θA+θP)− εE

dP
dt

= εE−σP

dI
dt

= σρP− γII

dA
dt

= σ(1−ρ)P− γAA

First we derive the 4× 4 matrix F . We see that new infections only occur in the
first equation dE

dt . Infections by people that are presymptomatic (P), have symptoms (I)
or are asymptomatic (A) happen with a rate of βc(t)θ , βc(t) and βc(t)θ respectively.
We obtain:

F =


0 βc(t)θ βc(t) βc(t)θ
0 0 0 0
0 0 0 0
0 0 0 0


Second we derive the 4× 4 matrix V . When we look at the first equation dE

dt , we
see that there only is a rate of transfer of individuals going out of compartment E: ε .
(Remind that we do not look at new infections now). In the second equation, dP

dt we
see that there is a rate of transfer of individuals going into compartment P and going
out of compartment P, ε and σ respectively. We do the same for the last 2 differential
equations and obtain 4×4 matrix V :

V =


ε 0 0 0
−ε σ 0 0
0 −σρ γI 0
0 −σ(1−ρ) 0 γA


We take the inverse of V and find:

V−1 =


1
ε

0 0 0
1
σ

1
σ

0 0
ρ

γI

ρ

γI
1
γI

0
1−ρ

γA

(1−ρ)
γA

0 1
γA


We multiply F and V−1:

FV−1 =


βc(t)θ(1−ρ)

γA
+ βc(t)θ

σ
+ βc(t)ρ

γI
. . . . . . . . .

0 0 0 0
0 0 0 0
0 0 0 0


22



Now we solve the following equation for the eigenvalues of FV−1

det(FV−1−λ I) = 0

and find that the basic reproduction number of our model, which is equal to the
largest eigenvalue λ of FV−1, is

Rt = max{λi}=
βc(t)θ

σ
+

βc(t)ρ
γI

+
βc(t)θ(1−ρ)

γA

2.6 Easing the measures
In the last months, all governments around the world has taken measures to control the
spread of the virus. People had to stay at home as much as possible and many activities
were cancelled. In the most countries this had a positive effect and the reproduction
rate dropped below one. Now many countries are planning to ease the measures in
the following months. The Netherlands started taking measures in early March. People
were allowed to see a maximum of 3 persons from different households and always had
to stay 1.5 meter away from each other. The latter measure still holds but people are
now allowed to be in bigger groups, with a maximum of 10 individuals. The govern-
ment plans to ease the measures a little bit more at the first of June, so that people are
allowed to be in groups of maximum 30 individuals. At the first of July, people may be
allowed to be in groups of maximum 100 individuals and from then on the government
will look at how the progress continues.
But how do we know that there will not be a second wave of infections? And is it not
to early to ease the measures?
We already defined the contact rate as the number of contacts per person on a day in
an earlier section. We said that this rate was approximately equal to 14 under normal
circumstances. We also defined the basic/effective reproduction ratio. This is one of
the most important aspects to look at when thinking about easing the measures. We
found that in our current model the basic reproduction number is equal to:

Rt =
βc(t)θ

σ
+

βc(t)ρ
γI

+
βc(t)θ(1−ρ)

γA
, (6)

with β = 0.032, ρ = 0.78, θ = 0.1, γI =
1
7 , γA = 1

7 , σ = 1
2 , S0 ≈ 1 and c(t) the

contact rate at time t.
Let us now have a look at different scenarios about the contact rate. We put the 27’th
of February as t = 0, the day the Netherlands had her first confirmed case of COVID-
19. If we fill in the formula for the basis reproduction ratio, we find that R0 ≈ 2.68.
Two weeks later the government announced a lock-down and as a consequence of a
very fast growth of people getting infected. All people must stay 1.5 meter away from
each other. If everybody strictly adheres to the rules the contact rate will decrease from
approximately 14 to approximately 2, which is actually almost impossible. Then the
reproduction ratio, with c(t) ≈ 2, falls below 1 and is approximately equal to 0.683
which means the virus will die out. From the 11th of May, people are allowed to
go outside for certain reasons like (no contact) sports and haircuts, the contact rate
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increases a bit. From the first of June, after 94 days, the government wants to ease
some measures. People are allowed to be in groups of max. 30 people. This means the
contact rate will increases. The government has planned to ease it even more from the
first of July,to allow people to be in groups of max. 100 people. Again the contact rate
will increases. From then on the government will see how it progresses to perhaps ease
the measures even more from the first of September.
Let us fix some times at which the government took/takes measures. We know already
know the contact rates for t0 and t1:

t0 t=0 ∆t = 0 27 February c(t) = 14
t1 t=14 ∆t = 14 11 March c(t) = 2
t2 t=74 ∆t = 60 11 May
t3 t=94 ∆t = 20 1 June
t4 t=124 ∆t = 30 1 July
t5 t=184 ∆t = 60 1 September

With this being set, we can look at different contact rates for different scenarios
regarding the number of exposed people.
In the following 6 figures we can see that if the government eases the measures slowly
and everyone adheres strictly to the rules that the virus will die out. This makes sense
because with contact rate equal 2,3,4 or 5 (at any time) the effective reproduction ratio
is ≤ 1:

1. The government does not ease the measures and everybody strictly adheres the
rules.

t≤ t1 t1 < t ≤ t2 t2 < t ≤ t3 t3 < t ≤ t4 t4 < t ≤ t5 t5 < t
c(t) 14 2 2 2 2 2

Figure 15
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2. The government eases the measures a little bit only at t2.

t≤ t1 t1 < t ≤ t2 t2 < t ≤ t3 t3 < t ≤ t4 t4 < t ≤ t5 t5 < t
c(t) 14 2 3 3 3 3

Figure 16

3. The government eases the measures at t2 and at t3

t≤ t1 t1 < t ≤ t2 t2 < t ≤ t3 t3 < t ≤ t4 t4 < t ≤ t5 t5 < t
c(t) 14 2 3 4 4 4

Figure 17

4. The government eases the measures at t2, t3 and at t4
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t≤ t1 t1 < t ≤ t2 t2 < t ≤ t3 t3 < t ≤ t4 t4 < t ≤ t5 t5 < t
c(t) 14 2 3 4 5 5

Figure 18

5. The government eases the measures at t2, t3, t4 and at t5. If we adjust the scale
of the y-axis of E(t), we can see that at t5, when c(t5) = 6, the function E(t)
slowly begins to increase again. This is because the effective reproduction ratio
for c(t5) = 6 is greater than 1, namely ≈ 1.146.

t≤ t1 t1 < t ≤ t2 t2 < t ≤ t3 t3 < t ≤ t4 t4 < t ≤ t5 t5 < t
c(t) 14 2 3 4 5 6

Figure 19
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6. In the next figure (18), we can see that if the government waits with easing the
measures until t5 and everybody adheres strictly to the rules that the virus has
died out after 150 days. This means people can go back to normal life.

t≤ t1 t1 < t ≤ t2 t2 < t ≤ t3 t3 < t ≤ t4 t4 < t ≤ t5 t5 < t
c(t) 14 2 2 2 2 14

Figure 20

In the last 6 figures we saw what theoretically would have happened if the gov-
ernment would ease the measures and everybody kept 1.5 meter away from each
other. In following figures we will see examples of what possibly could go wrong
in real life.

7. The government has eased the measures too much at t2,t3 and at t4.

t≤ t1 t1 < t ≤ t2 t2 < t ≤ t3 t3 < t ≤ t4 t4 < t ≤ t5 t5 < t
c(t) 14 2 4 6 8 8
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Figure 21

8. The government says that people are allowed to be in groups of 30, but people
do not follow the rules of social distancing. After a while, measures are taken
and the country goes back into lock-down.

t≤ t1 t1 < t ≤ t2 t2 < t ≤ t3 t3 < t ≤ t4 t4 < t ≤ t5 t5 < t
c(t) 14 2 6 8 8 2

Figure 22

9. People do not follow the rules anymore and again measures are taken and every-
body must go back into lock-down.

t≤ t1 t1 < t ≤ t2 t2 < t ≤ t3 t3 < t ≤ t4 t4 < t ≤ t5 t5 < t
c(t) 14 2 6 10 12 2
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Figure 23

What we can see in figures 15-23, that we are living in a very difficult time: If the
country stays in lock-down for a very long time, the coronavirus will eventually die out,
but the economy of the Netherlands will get worse and worse. And if the governments
decides to ease, there will be a big chance that we will end up in a second wave of the
coronavirus.
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3 Expanding the model
In the Netherlands, when an individual starts developing symptoms of the coronavirus,
he/she has to be quarantined for a minimum of two weeks. When in quarantine, it is
very unlikely that this person infects many people. Only his family or roommate(s)
have the chance of getting infected. Then we also have people who have very mild
symptoms and may not even realise they have the virus. Those people do not go into
quarantine and keep going to the supermarkets etc.

3.1 The SEPIMAQR model
When in quarantine, it is very unlikely that this person infects many people. Only his
family or roommate(s) have the chance of getting infected. From now on we assume
that a person that is quarantined cannot not infect others. These persons go to a new
compartment, Q; Quarantined and cannot infect others. Because the symptoms start
small, for example with a cough or sneezing a few times, people do not immediately
think they have the virus, so keep going out and infect people without knowing that.
This means that people will not go into quarantine directly after their incubation period.
Let us introduce parameter q with 1

q being the average time a person spends in compart-
ment I before going into quarantine. Because people from the infected compartment
will not go directly to the recovered compartment anymore, we delete parameter γI and
add parameter γQ to our model so that we can use 1

γQ
for the amount of days that is

spent in quarantine.
A lot of research has been done on the virus since the start of the pandemic. Re-
searchers recently found that an individual that is in the presymptomatic compartment
has the highest amount of infectiousness10! So at first we made the probability of get-
ting infected by a presymptomatic person smaller using parameter θ , but now we have
to make all the other possible ways of getting infected smaller. This is because after
the presymptomatic stage the infectiousness of a person decreases rapidly. To make
the model more like reality, we introduce a new compartment, M. This is the com-
partment individuals go to from the presymptomatic compartment when showing mild
symptoms. These individuals probably will not go into quarantine because they may
think they are not sick. Because they only have mild symptoms, so cough and sneeze
a little bit more, researchers found that they do not infect others at a very high rate.
So we multiply the transmission rate βSM with parameter 0.1 < µ < 0.5. Researchers
found that it is very rare asymptomatic people can infect others. So we multiply the
transmission rate βSA with parameter 0 < α < 0.1. Because people with very severe
symptoms can infect others very fast but are not as infectious as in the presymptomatic
stage, we multiply the transmission rate βSI with parameter 0.5 < ι < 1
New research11 shows that the chance that an infected person will never show any
symptoms is around 15% and around 20% of the people had severe symptoms. From
now on we assume the last 65% of people has mild symptoms. All the compartments
are listed in the following table:

10WHO (2020)
11Glasziou, P (2020) Estimating the extent of asymptomatic COVID-19 and its potential for community

transmission: systematic review and meta-analysis
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Compartments
S Susceptible
E Exposed
P Presymptomatic
I People with severe symptoms
M People with mild symptoms
A People with no symptoms
Q People that are quarantined
R Recovered

Because we have a lot of parameters, we also put them in a table preventing us to
get confused:

Parameter Value Definition
β 0.04 Probability of transmission per contact
c(t) 3-14 Contact rate
ι 0.75 Probability of transmission per contact with an individual with severe symptoms
α 0.05 Probability of transmission per contact with an individual that is asymptomatic
µ 0.25 Probability of transmission per contact with an individual with mild symptoms
ε

1
4 Transition rate of exposed individuals to the presymptomatic compartment

σ
1
2 Transition rate of presymptomatic individuals to compartments I, M and A

γI
1
2 Transition rate of people with severe symptoms to compartment R

γM
1
7 Transition rate of people with mild symptoms to compartment R

γA
1
7 Transition rate of asymptomatic people to compartment R

γQ
1
14 Transition rate of quarantined people to compartment R

To make the transitions and transmissions between compartments more easy to see,
we made the following compartmental scheme:
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If we add the new compartments and parameters in our old model we obtain the
following system of differential equations:
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dS
dt

=−βc(t)S(P+ ιI +µM+αA)

dE
dt

= βc(t)S(P+ ιI +µM+αA)− εE

dP
dt

= εE−σP

dI
dt

= 0.2σP−qI

dM
dt

= 0.65σP− γMM

dA
dt

= 0.15σP− γAA

dQ
dt

= qI− γQQ

dR
dt

= γMM+ γAA+ γQQ

When we take the median of each new parameter, so µ = 0.25, α = 0.05 and
ι = 0.75, and keep the contact rate constant from t = 0: c(t) = 14. We obtain the
following graph:

Let us zoom in on this graph. We can see that the peak of M(t) is a lot higher than
the peak of P(t). This is because M(t) and P(t) are defined as the amount of people in
that compartment at time t and the total time people spend in compartment M is a lot
longer than that of P.
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Because the parameters α , µ and ι are very uncertain, especially µ and ι , we can
look at a few different scenarios. Again the contact rate is constant and equal to 14.

1. Best scenario; People with mild symptoms and and severe symptoms are not as
contagious as we thought: µ and ι are as small as possible, 0.1 and 0.5 respec-
tively. We obtain the following graph:

Figure 24: µ = 0.1, ι = 0.5

2. Worst scenario; People with mild symptoms and and severe symptoms are more
contagious than we thought: µ and ι are as big as possible, 0.5 and 1 respectively.
We obtain the following graph:
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Figure 25: µ = 0.5, ι = 1

If we compare the figures we can see that in the worst scenario the virus is already
extinct at t ≈ 150, while in the best scenario this happens ± 100 days later. Now that
we have expanded the model, it is starting to look a bit more like reality. Let us have a
look at the basic reproduction number.

3.2 Reproduction number
Let us derive the basic reproduction number for our expanded model. This time five
of the compartments are the ’infected’ compartments: E,P,I,M and A. Now let xi, i =
1,2, ..,5 be the fraction of the population in the ith infected compartment at time t. We
can rewrite the differential equations of these 5 infected compartments as:

dxi

dt
= Fi(x)−Vi(x), where Vi(x) =

[
V−i (x)−V+

i (x)
]

with Fi(x) and Vi(x) defined in the same way as section 2.5.
Let us find the next-generation matrix of our model. We only need the following dif-
ferential equations:

dE
dt

= βc(t)S(P+ ιI +µM+αA)− εE

dP
dt

= εE−σP

dI
dt

= 0.2σP−qI

dM
dt

= 0.65σP− γMM

dA
dt

= 0.15σP− γAA
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We find that F and V are equal to

F =


0 βc(t) βc(t)ι βc(t)µ βc(t)α
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 (7)

V =


ε 0 0 0 0
−ε σ 0 0 0
0 −0.2σ q 0 0
0 −0.65σ 0 γM 0
0 −0.15σ 0 0 γA

 (8)

respectively.
We take the inverse of V and find:

V−1 =


1
ε

0 0 0 0
1
σ

1
σ

0 0 0
0.2
q

0.2
q

1
q 0 0

0.65
γM

0.65
γM

0 1
γM

0
0.15
γA

0.15
γA

0 0 1
γA

 (9)

We multiply F and V−1:

FV−1 =


βc(t)

σ
+ 0.2ιβc(t)

q + 0.65µβc(t)
γM

+ 0.15αβc(t)
γA

· · · · · · · · · · · ·
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 (10)

We calculate the eigenvalues of FV−1 and find that the basic reproduction number
of our model is

Rt = max{λi}=
βc(t)

σ
+

0.2ιβc(t)
q

+
0.65µβc(t)

γM
+

0.15αβc(t)
γA

(11)

3.3 Easing the measures
In the Netherlands the government eased the measures very much. This is possible
because the have made rules about wearing face masks at busy places and also the
social distancing rule still applies. It seems to be going very well in the Netherlands
and people start living as if we the pandemic is over. We would think that the contact
rate around 10 again, but with in the previous subsection found formula for the basic
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reproduction number

Rt = max{λi}=
βc(t)

σ
+

0.2ιβc(t)
q

+
0.65µβc(t)

γM
+

0.15αβc(t)
γA

(12)

We find that Rt ≤ 1 when the contact rate, c(t), is less than 7.2. So actually the
contact rate is about factor 1.4 higher when everybody strictly follows the rules about
social distancing and wearing face masks. The past months the reproduction number
has been below one and after the first peak in the Netherlands, the virus has started to
die out. We estimated the past contact rate values and put them into a table:

t0 t=0 ∆t = 0 27 February c(t) = 14
t1 t=14 ∆t = 14 11 March c(t) = 2
t2 t=74 ∆t = 60 11 May c(t) = 4
t3 t=94 ∆t = 20 1 June c(t) = 6
t4 t=124 ∆t = 30 1 July c(t) = 6
t5 t=184 ∆t = 60 1 September

Let us now look at some real scenarios starting at July:

1. People have the feeling that the pandemic and do not follow the rules

t≤ t1 t1 < t ≤ t2 t2 < t ≤ t3 t3 < t ≤ t4 t4 < t ≤ t5 t5 < t
c(t) 14 2 4 6 6 14

Figure 26

2. The people who go on vacation this summer come in contact with many other
tourists and take the virus back to the Netherlands.

t≤ t1 t1 < t ≤ t2 t2 < t ≤ t3 t3 < t ≤ t4 t4 < t ≤ t5 t5 < t
c(t) 14 2 4 6 14 8
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Figure 27

This summer is a very dangerous time for the pandemic. Most of the people are
happy because they can go on vacation. Because the weather is nice people go more to
to cafes and other activities. This makes it very easy for a virus to spread.
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4 Other numerical methods
We have so far determined the solutions of our system by using the odeint function in
the program Python. This is a numerical method that uses the LSODA algorithm which
is a well-known method that uses switching to solve both stiff and non-stiff equations.
Because some numerical methods12 are faster than others and/or make smaller errors,
we will look in to some different methods in this section. For this section we fix the
following parameters:

Parameter Value Definition
β 0.04 Probability of transmission per contact
c 14 Contact rate
ι 0.75 Probability of transmission per contact with an individual with severe symptoms
α 0.05 Probability of transmission per contact with an individual that is asymptomatic
µ 0.25 Probability of transmission per contact with an individual with mild symptoms
ε

1
4 Transition rate of exposed individuals to the presymptomatic compartment

σ
1
2 Transition rate of presymptomatic individuals to compartments I, M and A

γI
1
2 Transition rate of people with severe symptoms to compartment R

γM
1
7 Transition rate of people with mild symptoms to compartment R

γA
1
7 Transition rate of asymptomatic people to compartment R

γQ
1
14 Transition rate of quarantined people to compartment R

We fix the following initial values:

Initial values
S(0) 0.9999
E(0) 0.0001
P(0) 0
I(0) 0
M(0) 0
A(0) 0
Q(0) 0
R(0) 0

Finally, we use ∆t = 0.025 as the size of our time steps. Using the odeint function in
Python we obtain the following graph:

12Vuik, C., Vermolen, F.J., Van Gijzen, M.B., Vuik, M.J., (2015) Numerical Methods for Ordinary Dif-
ferential Equations
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Figure 28

As you can see we only plotted the solutions of S(t), E(t) and R(t) to avoid getting
confused by the solutions of the other compartments.

Now let us consider two other numerical methods to solve our system:

1. Forward Euler Method

2. Modified Euler Method

4.1 Forward Euler method
In this subsection we will approximate a solution to our system using the Forward Euler
Method. We do this in MATLAB because it is easier in this program. At time tn+1 the
numerical approximation is given by wn+1, with:

wn+1 = wn +∆tf(tn,wn).

Our system is hereby rewritten to vector form, with f(t,y) defined as:

d
dt

y = f(t,y), met y :=



S(t)
E(t)
P(t)
I(t)

M(t)
A(t)
Q(t)
R(t)


.

We use the same values for the parameters and initial values. We also take the same
size for the time steps, ∆t = 0.025. We plot the solutions of this method and obtain the
following figure:
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Figure 29: Forward Euler Method

If we compare the two figures, we see that they hardly differ. We calculate the
maximum of E(t) for both methods and find Emax ≈ 0.07119 when we use the odeint
function in Python, and Emax ≈ 0.07124 when we use the Forward Euler Method in
MATLAB. If we compare the running time of the odeint function and the Forward
Euler Method, we find a big difference:
The running times are 0.006 and 0.174 seconds for odeint and the Forward Euler
Method respectively. The odeint function is much faster and there is barely a dif-
ference in the solutions.

4.2 Modified Euler Method
Now we will have a look at the Modified Euler Method. This is also a very useful nu-
merical method to approximate the solution of our system. At time tn+1 the numerical
approximation is given by wn+1, with

w∗n+1 = wn +∆tf(tn,wn),

wn+1 = wn +
∆t
2
(f(tn,wn)+ f(tn+1,w∗n+1)).

Our system is hereby rewritten to vector form, with f(t,y) the same as in the Forward
Euler Method:
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d
dt

y = f(t,y), met y :=



S(t)
E(t)
P(t)
I(t)

M(t)
A(t)
Q(t)
R(t)


.

We use the same values for the parameters and initial values but because this is a
second order method, we can take a greater ∆t. So for the Modified Euler Method we
use ∆t = 0.05. We find the following figure:

Figure 30: Modified Euler Method

If we compare the figures of the Forward Euler Method and the Modified Euler
Method we cannot see any difference. We calculate the maximum of E(t) for the
Modified Euler Method and find Emax ≈ 0.071203. This method has a running time of
0.0709 seconds. More than twice as fast as the Forward Euler Method.
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5 Conclusion
In this report, we look at the spread of the coronavirus from human to human. We
start with a simplified model, the SIR model, and expand this model step by step to
make it more and more mimic the real world, to the SEPIMAQR model. For every
model we calculate the formula for the basic reproduction number, R0. We saw that
this number is one of the most important aspects to look at when taking measures
and eventually easing those measures. We confirm that when a country takes strict
measures like going into lock-down, R0 falls below one and the coronavirus will die
out. Thereafter we see that the whole population needs to adhere to these measures and
be patient because when a part of a population starts to disobey the taken measures,
the contact rate will increase and the reproduction number will rise above 1 again.
Because there are still many uncertainties about the behavior of the coronavirus, the
parameters we use are also very uncertain and lay in big ranges. We look at different
scenarios when assuming different values for the parameters. We saw that the best and
worst case scenarios differed very much, what makes it very difficult to make decisions
about easing the measures. We saw that going into a lock-down for a very long time is
the best and easiest way to fight this virus. But we know that in the real world this is
not possible because the world would end up in a economic disaster. This means that
certain considerations have to be made by all governments from all over the world.
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6 Discussion
In this report we expanded the SIR-model to a model consisting of eight compartments.
But in real life there are many more compartments in which people can be at any mo-
ment. For example these are compartments that make a distinction between people
from different ages, or people that are more susceptible because they have vital profes-
sions. Also we did not include the fact that people can die in other ways too and that
babies are born during the pandemic. When modelling an epidemic, you also have to
deal with a lot of unexpected events, like the ’Black Lives Matter’ movement and the
protests that came with it. Because the consequences of these unexpected events are
so unpredictable, adjusting the model would have taken too much time. We also did
not include possible transmission by touching and holding the same things a infectious
person did.
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Appendix A

1 import numpy as np
2 from s c i p y . i n t e g r a t e import o d e i n t
3 import m a t p l o t l i b . p y p l o t a s p l t
4
5
6
7
8
9

10 b e t a = 0 . 0 4
11 s igma = 1 . 0 / 2 . 0
12 e p s i l o n = 1 / 4 . 0
13 gamma_M = 1 . 0 / 7
14 gamma_A = 1 . 0 / 7
15 gamma_Q = 1 . 0 / 2
16 gamma_i = 1 . 0 / 2
17 a l p h a = 0 . 0 5
18 mu = 0 . 2 5
19 i o t a = 0 . 7 5
20
21 # INITIAL VALUES
22 S0 = 0 .9999
23 E0 = 0 .0001
24 P0 = 0 . 0
25 I0 = 0 . 0
26 M0 = 0 . 0
27 A0 = 0 . 0
28 Q0 = 0 . 0
29 R0 = 0 . 0
30
31 t = np . a r a n g e ( 0 , 1 0 0 0 )
32
33
34 # STEPFUNCTION
35 a = np . z e r o s ( l e n ( t ) )
36 def s t e p f u n c t i o n ( t ) :
37 f o r i in range ( l e n ( a ) ) :
38
39 i f i <= 1 4 :
40 a [ i ] = 14
41
42 e l i f 14 < i <= 7 4 :
43 a [ i ] = 2
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44 e l i f 74 < i <= 9 4 :
45 a [ i ] = 4
46 e l i f 94 < i <= 124 :
47 a [ i ] =6
48 e l i f 124 < i <= 184 :
49 a [ i ] =14
50 e l s e :
51 a [ i ] =8
52 re turn a
53
54 # t i m e s t e p s
55 t 1 = 14
56 t 2 = 74
57 t 3 = 94 # 1 j u n i
58 t 4 = 124 # 1 j u l i
59 t 5 = 184 # 1 s e p t
60 # c o n t a c t a t t i m e s t e p
61 t 0 _ t 1 = 1 4 . 0
62 t 1 _ t 2 = 2
63 t 2 _ t 3 = 4
64 t 3 _ t 4 = 6
65 t 4 _ t 5 = 14
66 t 5 _ = 8
67
68 def SEPIMAQR_model ( y , t , be t a , e p s i l o n , sigma , gamma_Q , gamma_M

, gamma_A , mu , i o t a , gamma_i , a l p h a ) :
69 S , E , P , I , M, A, Q, R = y
70 i f t <= t 1 :
71 u = t 0 _ t 1
72 e l i f t 1 < t <= t 2 :
73 u = t 1 _ t 2
74 e l i f t 2 < t <= t 3 :
75 u = t 2 _ t 3
76 e l i f t 3 < t <= t 4 :
77 u = t 3 _ t 4
78 e l i f t 4 < t <= t 5 :
79 u = t 4 _ t 5
80 e l s e :
81 u = t 5 _
82 dS_dt = b e t a ∗u∗S∗ ( i o t a ∗ I + a l p h a ∗ A+P+mu∗M)
83 dE_dt = b e t a ∗u∗S∗ ( i o t a ∗ I + a l p h a ∗ A+P+mu∗M) − e p s i l o n

∗E
84 dP_dt = e p s i l o n ∗E − s igma ∗P
85 d I _ d t = 0 . 2∗ s igma ∗P −gamma_i∗ I
86 dM_dt = 0 .65∗ s igma ∗P − gamma_M∗M
87 dA_dt = 0 .15∗ s igma ∗P − gamma_A∗A
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88 dQ_dt = gamma_i∗ I − gamma_Q∗Q
89 dR_dt = gamma_Q∗Q + gamma_A∗A + gamma_M∗M
90 re turn ( [ dS_dt , dE_dt , dP_dt , d I _ d t , dM_dt , dA_dt ,

dQ_dt , dR_dt ] )
91
92 s o l u t i o n = o d e i n t ( SEPIMAQR_model , [ S0 , E0 , P0 , I0 , M0, A0 , Q0 , R0

] , t , a r g s =( be t a , e p s i l o n , sigma , gamma_Q , gamma_M , gamma_A ,
mu , i o t a , gamma_i , a l p h a ) )

93 s o l u t i o n = np . a r r a y ( s o l u t i o n )
94
95 c t = 14
96 r e p r o d u c t i o n r a t e = ( ( b e t a ∗ c t / s igma ) + ( b e t a ∗ c t ∗ i o t a ∗ 0 . 2 /

gamma_i ) + ( b e t a ∗ c t ∗ a l p h a ∗ 0 . 1 5 / gamma_A ) + ( b e t a ∗ c t ∗mu
∗ 0 . 6 5 / gamma_M) ) ∗1

97 p r i n t ( r e p r o d u c t i o n r a t e )
98
99

100 f i g , ax1 = p l t . s u b p l o t s ( )
101
102 c o l o r = ’ t a b : r e d ’
103 ax1 . s e t _ x l a b e l ( ’ Time ( days ) ’ )
104 ax1 . s e t _ y l a b e l ( ’$E ( t ) $ ’ , c o l o r = ’ r ’ , f o n t s i z e = ’ 12 ’ )
105 ax1 . p l o t ( t , s o l u t i o n [ : , 1 ] , c o l o r = ’ r ’ )
106 ax1 . t i c k _ p a r a m s ( a x i s = ’ y ’ , l a b e l c o l o r = ’ r ’ )
107 ax1 . s e t _ y l i m ( [ 0 , 0 . 0 0 1 ] )
108 ax1 . g r i d ( a x i s = ’ bo th ’ )
109
110 ax2 = ax1 . twinx ( ) # i n s t a n t i a t e a second axes t h a t

s h a r e s t h e same x−a x i s
111
112 c o l o r = ’ t a b : b l u e ’
113 ax2 . s e t _ y l a b e l ( ’ c ( t ) ’ , c o l o r = ’ b ’ , f o n t s i z e = ’ 12 ’ ) # we

a l r e a d y hand led t h e x−l a b e l w i t h ax1
114 ax2 . p l o t ( t , s t e p f u n c t i o n ( t ) , c o l o r = ’ b ’ )
115 ax2 . t i c k _ p a r a m s ( a x i s = ’ y ’ , l a b e l c o l o r = ’ b ’ )
116 ax2 . s e t _ y l i m ( [ 0 , 1 8 ] )
117 # ax2 . g r i d ( a x i s = ’ bo th ’ )
118
119 f i g . t i g h t _ l a y o u t ( ) # o t h e r w i s e t h e r i g h t y−l a b e l i s

s l i g h t l y c l i p p e d
120 p l t . x l im ( 0 , 3 0 0 )
121 p l t . y l im ( bot tom =0)
122 # p l t . g r i d ( )
123 p l t . show ( )
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Appendix B

MATLAB Codes

1 f u n c t i o n [ f ] = FunCorona ( x , y ) ;
2
3 beta = 0 . 0 4 ;
4 s igma = 1 . 0 / 2 . 0 ;
5 e p s i l o n = 1 / 4 . 0 ;
6 gamma_M = 1 . 0 / 7 ;
7 gamma_A = 1 . 0 / 7 ;
8 gamma_Q = 1 . 0 / 2 ;
9 gamma_i = 1 . 0 / 2 ;

10 a l p h a = 0 . 0 5 ;
11 mu = 0 . 2 5 ;
12 i o t a = 0 . 7 5 ;
13 c = 1 4 ;
14
15 %Sys tem d i f f e r e n t i a l e q u a t i o n s
16 S = −beta ∗c∗y ( 1 ) ∗ ( i o t a ∗y ( 4 ) + a l p h a ∗y ( 6 ) +y ( 3 ) +mu∗y ( 5 ) ) ;
17 E = beta ∗c∗y ( 1 ) ∗ ( i o t a ∗y ( 4 ) + a l p h a ∗y ( 6 ) +y ( 3 ) +mu∗y ( 5 ) )−

e p s i l o n ∗y ( 2 ) ;
18 P = e p s i l o n ∗y ( 2 ) −s igma ∗y ( 3 ) ;
19 I = 0 . 2 ∗ s igma ∗ y ( 3 ) − gamma_i∗y ( 4 ) ;
20 M = 0 . 6 5 ∗ s igma ∗y ( 3 ) − gamma_M∗y ( 5 ) ;
21 A = 0 . 1 5 ∗ s igma ∗y ( 3 ) − gamma_A∗y ( 6 ) ;
22 Q = gamma_i∗y ( 4 ) − gamma_Q∗y ( 7 ) ;
23 R = gamma_Q∗y ( 7 ) + gamma_A∗y ( 6 ) + gamma_M∗y ( 5 ) ;
24
25 f = [ S , E , P , I , M, A, Q, R ] ;
26 end
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1 c l c
2 c l e a r a l l
3 c l o s e a l l
4
5 a = 0 ; %t 0
6 b = 250 ; %t _ e n d
7 n = 5000 ; %s t e p s
8 h = ( b−a ) / n ; %s t e p s i z e
9

10 %I n i t i a l v a l u e s
11 y1 ( 1 , : ) = [ 0 . 9 9 9 9 , 0 . 0 0 0 1 , 0 , 0 , 0 , 0 , 0 , 0 ] ;
12 x ( 1 ) = a ;
13 i =0 ;
14
15 %Forward E u l e r
16 t i c
17 f o r j =a : h : b
18 i = i +1 ;
19 x ( i +1)=x ( i ) + h ;
20 y1 ( i + 1 , : ) = y1 ( i , : ) + h∗FunCorona ( x ( i ) , y1 ( i , : ) ) ;
21 xx1 ( i ) = j ;
22 end
23 t o c
24
25 %I n i t i a l v a l u e s
26 y2 ( 1 , : ) = [ 0 . 9 9 9 9 , 0 . 0 0 0 1 , 0 , 0 , 0 , 0 , 0 , 0 ] ;
27 i =0 ;
28 %M o d i f i e d E u l e r
29 t i c
30 f o r j =a : h : b
31 i = i + 1 ;
32 x ( i +1)=x ( i ) + h ;
33 we = y2 ( i , : ) + h∗FunCorona ( x ( i ) , y2 ( i , : ) ) ;
34 y2 ( i + 1 , : ) = y2 ( i , : ) + 0 . 5∗ h ∗ ( FunCorona ( x ( i ) , y2 ( i , : ) )

+ FunCorona ( x ( i +1) , we ) ) ;
35 xx2 ( i ) = j ;
36 end
37 t o c
38 f i g u r e ( 1 )
39 p l o t ( xx1 , y1 ( 1 : n +1 ,1 ) )
40 hold on
41 p l o t ( xx1 , y1 ( 1 : n +1 ,2 ) , ’ r ’ )
42 hold on
43 p l o t ( xx1 , y1 ( 1 : n +1 ,8 ) , ’ g ’ )
44 l egend ( ’S ( t ) ’ , ’E ( t ) ’ , ’R( t ) ’ )
45 y l a b e l ( [ ’ F r a c t i o n o f p o p u l a t i o n ’ ] )
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46 x l a b e l ( ’ Time ( days ) ’ )
47 yl im ( [ 0 . 0 , 1 . 0 ] )
48 xl im ( [ 0 2 5 0 ] )
49 gr id on
50 f i g u r e ( 2 )
51 p l o t ( xx1 , y1 ( 1 : n +1 ,1 ) )
52 hold on
53 p l o t ( xx1 , y1 ( 1 : n +1 ,2 ) , ’ r ’ )
54 hold on
55 p l o t ( xx1 , y1 ( 1 : n +1 ,8 ) , ’ g ’ )
56 hold o f f
57 l egend ( ’S ( t ) ’ , ’E ( t ) ’ , ’R( t ) ’ )
58 y l a b e l ( [ ’ F r a c t i o n o f p o p u l a t i o n ’ ] )
59 x l a b e l ( ’ Time ( days ) ’ )
60 yl im ( [ 0 , 1 ] )
61 xl im ( [ 0 2 5 0 ] )
62 gr id on
63 format l ong g
64 max ( y1 , [ ] , 1 ) ;
65 max ( y2 , [ ] , 1 ) ;
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