
Delft Center for Systems and Control

A Stigmergy-Based Design for
a Minimalistic Foraging Robotic
Swarm

Steven Adams

M
as

te
ro

fS
cie

nc
e

Th
es

is

A Stigmergy-Based Design for a
Minimalistic Foraging Robotic Swarm

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

Steven Adams

June 29, 2021

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright © Delft Center for Systems and Control (DCSC)
All rights reserved.

Delft University of Technology
Department of

Delft Center for Systems and Control (DCSC)

The undersigned hereby certify that they have read and recommend to the Faculty of
Mechanical, Maritime and Materials Engineering (3mE) for acceptance a thesis

entitled
A Stigmergy-Based Design for a Minimalistic Foraging Robotic Swarm

by
Steven Adams

in partial fulfillment of the requirements for the degree of
Master of Science Systems and Control

Dated: June 29, 2021

Supervisors:
Ir. D. Jarne Ornia

Dr. ir. M. Mazo Espinosa

Reader:
Dr. ir. J. Alonso Mora

Abstract
Over the last years advantages in autonomous agent systems and technology have created many
potential applications for large numbers of collaborating robots in the field of surveillance, mapping,
mining, farming and (space) exploration. The underlying principle that enables robots to collectively
solve complex tasks is that of minimal interference: the basis of swarm robotics. In nature, swarms
of insects use stigmergy, communication through environment marking, to connect individual and col
lective behavior. Many have tried to implement this stigmergic principle in swarm robotics, though it
remains a challenge to implement stigmergy in robotic systems suited for real applications.

In this thesis, we present a biologically inspired minimalistic design for a foraging robotic swarm based
on stigmergy. Our selfguiding swarm requires only very restricted robot capabilities: Robots do not
require global or relative position measurements; the swarm is fully decentralized; and the robots need
no infrastructure in place. Additionally, the system only requires onehop communication over the robot
network, we do not make any assumptions about the connectivity of the communication graph and the
transmission of information and computation is scalable versus the number of agents. All this is real
ized by letting the agents in the swarm act as foragers or as guiding (beacons).

We analyse the characteristics and performance of our swarm by our own developed so called Particle
Simulator and the realistic Webots Simulator using a swarm of Elisa3 robots. We show how the swarm
selforganizes to solve a foraging problem over an unknown environment and converges to trajectories
around the shortest path. In addition, we study directions of future improvements of the swarm design
regarding the minimisation of resources, optimality of the created paths and the convergence speed. At
last, we derive formal results regarding the reachability, coverage time and hitting times of the swarm.

i

Contents

Abstract i

1 Introduction 1
1.1 Motivation and Concepts . 1
1.2 Goals and Expectations . 2

2 Background and Problem Description 3
2.1 SelfOrganisation, Stigmergy and Path Integration . 3
2.2 Classical vs. Swarm Robotics . 4
2.3 Stigmergy in Swarm Robotics . 5
2.4 The Foraging Problem . 6
2.5 Solutions to the Foraging Problem. 6
2.6 Stigmergic Foraging Algorithm. 8
2.7 Coverage & Exploration Control . 10

2.7.1 Probabilistic Coverage . 10
2.7.2 Dynamic Coverage Control . 12

2.8 Path Planning Algorithms . 13
2.8.1 Rapidly Exploring Random Trees (RRTs) . 13

2.9 Preliminaries . 15
2.10 Problem Description . 15
2.11 Summary Concepts . 17

3 Proposal: Self Guided Swarm 19
3.1 Basic Concept . 19

3.1.1 States . 19
3.1.2 Region of Influence. 19
3.1.3 State Transitions . 20
3.1.4 Dynamics . 20

3.2 Extended Concept . 22
3.2.1 BeaconForager Switching . 22
3.2.2 Moving Beacons . 23
3.2.3 Double Updating . 24

3.3 Concept Intuition . 25
3.3.1 Conceptual Swarm Behaviour . 25
3.3.2 Discretization of the Environment by Beacons . 25
3.3.3 Local Navigation Information: Weights & Guiding Velocities 26
3.3.4 Extensions . 27
3.3.5 Abstraction Methods . 27

4 Results and Guarantees 29
4.1 Random Walk Exploration . 29
4.2 General Autoregressive Exploration . 31

5 Experimental Analysis and Results 33
5.1 Implementation . 33

5.1.1 Algorithms . 33
5.1.2 Particle Simulator. 34
5.1.3 Webots Simulator. 36
5.1.4 Parameters & Worlds. 38

iii

iv Contents

5.2 Performance Metrics . 39
5.2.1 Average Navigation Delay . 39
5.2.2 Minimum Navigation Delay. 40
5.2.3 Entropy . 40

5.3 Parametric Performance Analysis . 41
5.3.1 Setup . 41
5.3.2 Expectations . 41
5.3.3 Results . 42

5.4 Swarm Size Analyses . 45
5.4.1 Setup . 45
5.4.2 Expectation . 45
5.4.3 Results . 45

5.5 Robustness Analysis . 49
5.5.1 Setup . 49
5.5.2 Expectations . 50
5.5.3 Results . 50

5.6 Model Extension . 54
5.6.1 Setup . 54
5.6.2 Expectations . 54
5.6.3 Results . 55

5.7 Summary . 59

6 Conclusion 61
6.1 Summary of Results . 61
6.2 Applications . 62
6.3 Future Work. 64

Bibliography 65

1
Introduction

1.1. Motivation and Concepts
Over the last decades the advancements of processing power, sensor accuracy and battery sizes have
enabled the use of multiagent techniques to solve complex robotic tasks. Within multiagent control,
swarm robotics is a growing field that emphasizes the cooperation and the collectivity of a robot group.
Rather than equipping an individual robot with a control mechanism that enables it to solve a complex
task on its own, individual robots are usually controlled by simple strategies, and complex behaviours
are obtained at the colony level by exploiting the interactions among the robots, as well as between the
robots and the environment. When designing swarm robotics control algorithms, complex strategies
are generally avoided, instead principles such as locality of sensing and communication, homogeneity
and distributeness, are followed. The main benefits that one seeks when pursuing a swarm robotics
approach are scalability with the number of robots, robustness with respect to noisy conditions, and
fault tolerance in case of individual failure. These characteristics can be observed in social insects such
as ants, bees, or termites, which therefore often serve as source of inspiration. Over the years many
biological inspired swarm robotic systems have been proposed, but the application of them in reallife
is still sparse.

In this thesis we focus on the foraging problem, in which a number of agents start at a given point
in space and must find a target in an unknown environment, while converging to cycle trajectories be
tween the initialization and target region. The goal is to travel as efficiently as possible between the two
regions. The foraging problem includes online path planning as well as exploration, both interesting
problems when designing very large robotic systems. Moreover, the combination of exploration and
exploitation is nowadays a point of interest for AI related techniques.

In particular the foraging problem has been addressed by robotic antinspired swarms that use indirect
communication through some ”pheromone”. Many practical methods have been explored to implement
pheromone based robotic navigation. However, often complexities explode when designing very large
multirobot swarms, or systems include implicit assumptions that in practice prevent them from being
applied to large scenarios or real situations. Our goal in this thesis is to design a minimalistic swarm
system capable of solving the foraging task in reallife.

1

2 1. Introduction

1.2. Goals and Expectations
The main goal of this thesis is to design a minimalistic swarm system capable of solving the foraging
problem by using a form of pheromoneinspired communication, with the following restrictions:

• Minimal assumptions on the robot capabilities. All agents are supposed to have equal charac
teristics (homogeneous system), and do not have knowledge of relative (or global) positions with
respect to other agents, and only need an orientation measure (a compass).

• The system relies on onehop communication only with limited range, and does not require direc
tion or distance information on signals, nor lineofsight connectivity.

• The system is fully distributed and needs no infrastructure in place.

• Does so with robustness versus communication events or single agent failures

The process of achieving our main goal is split into the following subgoals:

• Orientate on the characteristics of swarm robotics and its general advantages over other robotic
control approaches.

• Study the proposed methods to implement stigmergy in swarm robotics, and decide on which
approach is best to use for the foraging problem.

• Study which swarm robotics solutions have been proposed for the foraging problem, classify the
solutions and relate the implied robot capabilities to the characteristics of the classes of solutions.

• Based on the insights of literature, propose a minimalistic swarm design.

• Derive formal results on the expected behaviour of the designed swarm.

• Setup an experimental framework and derive performance metrics allowing to experimentally
analyze the designed swarms behaviour.

• Experimentally analyze the parametric foraging performance of the designed swarm.

• Experimentally analyze the scalability and robustness of the designed swarm.

• Given the shortcomings of the designed swarm, propose possible extensions, adding complexity
but potentially increasing the foraging performance.

2
Background and Problem Description

In this chapter, we orientate on the characteristics of swarm robotics and its general advantages over
other robotic control approaches; investigate the proposed methods in literature to implement stig
mergy in swarm robotics and decide on which approach is best suited for the foraging problem; and
study which swarm robotic solutions have been proposed for the foraging problem and classify these
solutions.

First we will introduce in Section 2.1 some interesting biological principles employed in swarm robotics.
In Section 2.2, we will discuss the advantages of swarm robotics over classical robotics. In Section 2.3,
we will discuss how stigmergy can be implemented in (swarm) robotics, and decide which approach we
will take. In Section 2.4 and 2.5, we introduce the foraging problem and present several swarm robotic
solutions proposed in literature to tackle the foraging problem, of which we explain the most promising
in Section 2.6 in more detail. Since the foraging problem also includes efficient exploration of the envi
ronment, and the chosen direction of our potential design involves the challenge of distributing agents
optimally over an environment, we will discuss in Section 2.7 some coverage and exploration control
approaches. In Section 2.8, we discuss the connection between path planning algorithms and robotic
foraging systems. At last in Sections 2.9 and 2.10 we present the preliminaries and define the problem
description.

2.1. SelfOrganisation, Stigmergy and Path Integration
The collaborative behavior of social insects and their robust performance when fully decentralized solv
ing complex problems, while preserving adaptability and flexibility to changing circumstances, has in
spired many engineers to create collaborative artificial systems. The first step in achieving this goal is
to understand the biological mechanisms behind collaborative behavior in social insects. We will briefly
introduce the most important biological principles we will exploit: selforganisation, stigmergy and path
integration.

Bonabeau et al. [7] defined selforganisation (SO) as: ”selforganization is a set of dynamical mecha
nisms whereby structures appear at the global level of a system from interactions among its lowerlevel
components. The rules specifying the interactions among the system’s constituent units are executed
on the basis of purely local information, without reference to the global pattern, which is an emergent
property of the system rather than a property imposed upon the system by an external ordering influ
ence.” The authors define four basic elements of selforganisation: positive and negative feedback,
amplification of fluctuations and interaction.

Eighty years ago, the French entomologist PierrePaul Grassé [31] showed that some termite species
react to, as what he calls, ’significant stimuli’. He noticed that these reactions on their turn created new
stimuli for the insect itself and its fellow insects of the colony. Grassé called this form of communication,
in which agents are stimulated based on their achieved performance, ’stigmergy’ [32]. Stigmergy differs
from other types of communication by the local indirect transfer of information through the environment.

3

4 2. Background and Problem Description

Stigmergy fulfils a crucial role in the complex mechanism behind individuals coordinating complex ac
tivities: it connects individual and collective behavior by generic mechanism. Individual modifications
of the environment effects the behavior of the collective, the other individuals.

While exploring the literature on stigmergy in biology, we came across another biological phenomenon
that is often used as inspiration in swarm robotics: Path Integration (PI), used by honeybees to navigate.
PI is the process of continuous updating and integration all distance covered and all angles steered
[13]. The PI vector captures all the knowledge of an insect about its current location relatively to some
orientation point. To approximate the PI vector a honeybee makes use of the sun as orientation point
[13]. Honeybees always know the PI vector from their current location to the nest, and remember the
vector from the nest to the food source. Despite bees can fly most of the time over obstructions, the
bees sometimes cannot follow the path of their PI vector. As a workaround the bees divide their PI
vector into subvectors. Every subvector directs the bee a part of the route. The bee connects every
subvector to some landmark to ’know’ when to apply which vector [11, 14]. This extension of the PI
method creates flexibility and robustness against obstructions and changes to the environment. If the
environment changes, probably not the whole path is useless, by dividing the PI vector in subvectors,
parts of it can preserved.

Figure 2.1: Illustration of recruitment dance performed by Honey Bees. The configuration of the dance pattern on the hive relative
to the direction of the sun encodes the direction of the food sources [4].

2.2. Classical vs. Swarm Robotics
What are in general the reasons to prefer swarm robotics over single or (small size) multirobotic ap
proaches? In the previous section we explained that social insects are able to solve complex problems
because of their flexibility, robustness, decentralization and selforganisation. Similar to biology, some
engineering problems my be too complex to solve by one or a small group of robots. Additionally, build
ing, using and designing a large amount of simple robots may be cheaper, easier and more robust than
several complex powerful robots [88]. Cheaper, since the simpler a robot, the more flexible it is: the less
adaptions needed to handle different situations or tasks. Easier, since simple robots are equipped with
simpler actuators and sensors. More robust, since simple robots are interchangeable, such that failing
robots will not effect task performance. Moreover, Random behavior of individuals can increase a sys
tem’s ability to explore new solutions. And, selforganisation, decentralization and indirect, stigmergic,
communication reduce the required communication among robots dramatically. Classical direct robot
torobot communication has turned out to be untenable when increasing the number of robots. Also
central control is not robust, since failing of the controller direct results in failing of the complete system.

Swarm robotics has disadvantages too. For example, if a system lacks global knowledge it can stag
nate: the robots end up at a point where they cannot progress anymore, a deadlock. Or, the inherent
(small) heterogeneity of a swarm can result in complexities. The advantages of simple robots will disap
pear as soon as their assumed uniformness disappears: robots respond different to the same signals.

2.3. Stigmergy in Swarm Robotics 5

In this thesis we are interested in swarms based on stigmergy. As it turns out, implementing stigmergy
in reallife comes with a lot of difficulties as well.

Let us concertize the general advantages of swarm robotics for the navigation task, the foundation
of a wide range of problems considered in the robotic domain. In classical robotics, researchers often
equip robots with an explicit maplike representation of their environment [24, 58]. Such a representa
tion may be given a priori, mainly leaving a robot with the nontrivial task of selflocalization, or the map
may be constructed by the robot itself while moving in the environment. While this is already difficult
in a static environment with a single robot, it becomes increasingly complex in dynamic environments,
and in particular when multiple robot are considered. Although solutions to such problems have been
proposed, complex navigation strategies do not naturally scale with the number of robots, and require
careful engineering of the controller. When designing swarm robotics control algorithms for navigation
tasks, complex strategies are in general avoided, and instead principles such as locality of sensing and
communication, homogeneity and distribudness, are followed.

2.3. Stigmergy in Swarm Robotics
This section provides an overview of the methods proposed in engineering to implement robotic multi
agent systems based on stigmergy. One can distinguish three types of approaches to implement stig
mergy:

1. ’Real’ Pheromones: Aims to replicate biological pheromones.

2. Smart Environment: Equips the environment to simulate pheromones.

3. Beacons: Deploys beacons in the environment as pheromone depositing points.

Figure 2.2 provides an overview of all the methods to implement stigmergy, structured by their imple
mentation characteristics.

In a first attempt to replicate the biological pheromones, one tried to clone pheromones as realistic
as possible. One can distinguish four different approaches of attempts to replicate ’real’ implementa
tion of pheromones: The use of chemicals tracks [9, 25–27, 34, 70, 78, 80], thermal tracks [77, 79],
visual tracks [2, 5, 57, 72, 86] and RFID tags [50–53, 94].

Another approach to implement stigmergic communication is by a smart environment, mostly applied
for experimental purposes. We distinguish three different types of smart environments: Systems that
use a RFID grid to store local information [8, 39, 41, 44, 81]; systems that use a graphical projector to
project local information on the environment [29, 85]; and systems that apply Augmented Reality (AR),
which equips robots with virtual actuators and sensors to sense the (virtual) environment [54, 74, 87].
Since these approaches are generally easily adaptable to varying environments or swarm sizes and of
low costs, smart environments are well suited for experiments.

The most popular approach to implement stigmergy in recent literature is the use of beacons to store,
communicate and optionally process virtual pheromones. One can distinguish methods that implement
autonomously moving beacons from beacons that need to be deployed (heterogeneous beacons).
Methods that use heterogeneous beacons can be split into methods that use fixed beacons [43, 50–
53], beacons that once deployed can not be moved, or movable beacons [36, 76]. Methods that use
autonomous beacons can be categorized in methods that use homogeneous [20, 23, 62, 68, 68] or
heterogeneous [21, 22] swarms. In a homogeneous swarm all robots have equal capabilities and dy
namics. Beacons are implemented in three different ways in a homogeneous swarm:

• Robots have a fixed state: act as beacon or as worker.

• Robots can switch between two state: act as beacon or as worker.

• Robots act simultaneously as beacon and as worker.

With the worker state corresponding to contribute to the task(s) to be solved. We conclude that:

6 2. Background and Problem Description

1. The ’Real’ Pheromoneapproach is way too complex to implement in practice.

2. Although the Smart Environmentsapproach is interesting for experimental purposes, it is inher
ently not suited for real applications as it requires central control and environmental modifications.

3. In general the Beaconsapproach is the most interesting approach. Moreover, as heterogeneous
beacons require a beacon dropping and moving mechanism for the robots, it is most efficient to
use autonomous robots as beacons. In addition, as one wants to be able to optimize the beacon
infrastructure, agents should be able to switch between a beacon and ’worker’ state.

So it can be concluded that the most promising approach to implement stigmergy in swarm robotics is
by a homogeneous swarm in which robots are able to switch between a beacon and a ’worker’ state.

Figure 2.2: Methods to implement stigmergy in Swarm Robotics, structured by their implementation characteristics. Red marked
the category we will focus on.

2.4. The Foraging Problem
The most famous example of stigmergy in nature is that of foraging ants: the process of ants searching
and returning food to their nest. Ants deposit a trail of chemicals, called pheromones, while moving
from the food source location towards the nest. Other foraging ants, equipped with pheromone con
centration sensors [90], are attracted to these trails. The ants prefer to follow the trail with the highest
pheromone concentration [12]. Ants start exploring randomly the space in search for the food. As
paths are created, more ants will choose a trail with the highest concentrations pheromone, resulting
in an even higher concentration for this branch. This autocatalysis principle, trail reinforcement by ex
ploiting positive feedback, in combination with the evaporation of the pheromones over time, triggers
convergence to the shortest path. The phenomenon of foraging ants is extensively studied in literature.

From the natural pheromone of foraging ants, the abstract foraging problem is derived. The forag
ing problem is defined as the dual problem of exploration/exploitation, where a number of agents start
at a given point in space and must find a target in an unknown (possible time) varying environment,
while converging to cycle trajectories that enable them to exploit the found resources as efficiently as
possible. Foraging has been extensively studied but it is still interesting when designing very large
robotic systems since it combines exploration and online path planning, and the duality of exploration
vs. exploitation is nowadays extremely relevant in Reinforcement Learning and other AI related fields
[37, 61, 89].

2.5. Solutions to the Foraging Problem
Over the years many solutions for the foraging problem have been proposed, most of which inspired on
ants and applying the stigmergic principle. Only a few of these solutions are tested in realistic experi
ments, because many of these systems include implicit assumptions that in practice will prevent them
of being applied to large scenarios or real situations. These may be related to sensor range, memory

2.5. Solutions to the Foraging Problem 7

storage in the agents, computational capacity or reliability of communications, among others. In addi
tion, for many of these solutions the complexity will increase dramatically when designing very large
multirobot swarms, be it in terms of required number of computations, data transmissions or dynamic
couplings. Moreover, the previous work has largely been adhoc: it assumes a single ant pheromone
to help set up a gradient to the food source, plus some arbitrary a priori mechanism to return to the
nest (a light source located at the nest, a gradient produced by the nest itself, etc).

In this section we discuss the most promising proposals for decentralized robot foraging systems. Note
that these solutions do not necessarily have to rely on stigmergy or antinspired mechanisms. We are
interested in all possible decentralized multiagent solutions. Let us classify the proposed solutions into
the following categories:

• Communication Network:
Authors in [20, 23] use an antinspired swarm to solve a foraging problem on a 2D space by as
suming a connected lineofsight communication network, and having agents flood this network
with relative positions information every time step. The robots can measure their relative position
to neighbouring agents and every agents keeps a navigation table containing their relative po
sitions to other agents. Every time step all agents broadcasts their navigation table and update
their table using its own measures and the tables received by others.

• Beacon Chains:
Authors in [68] propose a multirobot system that uses IR to communicate a pheromone based
counter signal between robots in a cascade. Robots transmit and compute intensity and direction
frommultiple signals from neighbours and cascade the information through the network, such that
agents find an unknown target in space and create trajectories back and forth. These trajectories
could be used by other robots to travel between the target and nest. The authors of [62] propose
a similar system as [68] but use visual signals (LEDS) to communicate

• Stigmergic Pheromone Reinforcement:
In [36, 76], authors use a combination of agents and beacon devices to guide navigation and store
pheromone values. Authors treat pheromones as utility estimates for environmental states, and
use utility update and state transitions functions inspired on reinforcement learning. The beacons
use lineofsight communication to detect other beacons and transmit weight values to the robots,
The authors demonstrate how agents manage to find trajectories that go back and forth to the
target, with and without obstacles, having robots store, deploy (and move or delete) beacons to
ensure the feasibility. In section 2.6 we discuss the algorithm developed in [36] in more detail.

• Landmarks:
In [51, 53], authors propose beeinspired path integration algorithms on a computational setup,
where agents use landmarks to store pheromonebased information when a change in direction
is required. Agents explore until they find the goal in a 2D space, and use path integration in
combination with the landmarks to integrate their trajectory and find an efficient way back.

In Table 2.1 the most important system and agent characteristics are summarized. Note that, while
orientating on to existing concepts and designing of our concept, we pay extra attention to the assump
tions on communication capabilities. Because, it is important not to underestimate the difficulties and
limitations of implementing the assumed communication protocols, or as [66] states: Unfortunately,
learning is a challenging issue in itself, and difficulties associated with it often resulted in a simplified
approach to communication, usually neglecting costs of communication with other agents.” In Table
2.1 we also classify the type of learning, where we distinguishes team and concurrent learning. Team
learning means that a single learner is applied to search for behaviours for the entire team. Concurrent
learning means that for each team member a learner is employed.

As Table 2.1 shows, all the Communication Network, Beacon Chains and Stigmergic Pheromone
Reinforcementconcepts assume agents to communicate directly with other agents, while the Stigmer
gic Pheromone Reinforcement and Landmarkconcepts decouple this and propose an environment
based interactions where agents only write and read data into locally reachable beacons. Except for
the Landmarkconcept all reviewed concepts represent collaborative methods and require robots to

8 2. Background and Problem Description

have some form of relative position measure. Additionally, most concepts present strong requirements
on communication of information in the swarm, either requiring lineofsight communication or even
multihop routing of tables of agent data through the network.

Notice that for the Communication Networkconcepts all agents can contribute to the foraging task.
The Beacon Chainsconcept requires a fixed number of agents to create a beacon infrastructure and
the Stigmergic Pheromone Reinforcement and Landmarkconcepts require large amounts of deploy
able beacons. We conclude that the theoretical efficiency, i.e. what part of the required resources
can contribute directly to the foraging task, of the Communication Networkconcepts are higher than
the other concepts. At last, remark that all concepts require lineofsight communication and assume
that direct communication between agents implies an obstacle free path between these agents. One
can think of environments with small corridors or obstacles only blocking parts of the possible paths
between agents, in which this assumption is problematic,

System Agents

Measurement Communication

Collabora
tive Learning Absolute

Orientation
Relative
Positions Type Line of Sight Identification Routing

Communication
Network [20, 23] Yes Team Yes Yes Direct Yes Yes, global MultiHop

Beacon Chains [62, 68] Yes Team No Yes Direct Yes No MultiHop
Stigmergic Pheromone
Reinforcement [36, 76] Yes Concurrent No Yes Indirect Yes Yes, local OneHop

Landmark [51, 53] No Concurrent Yes No Indirect Yes Yes, local OneHop
Proposal Yes Concurrent Yes No Direct No No OneHop

Table 2.1: Overview of system and agent characteristics of a selection of multiagent foraging solutions in literature. Bold marked,
the characteristics of our proposed concept. The red markings indicate if a characteristics is reasonably assumed to be restrictive
and have a negative effect on the performance.

2.6. Stigmergic Foraging Algorithm
Panait and Luke [65] propose a model that handles pheromones as utility measures for local environ
ment states. The proposed robot pheromone dropping and navigation functions feature some similari
ties from state transition and utility update functions in reinforcement learning. One of the most impor
tant distinctive aspects compared to ’ordinary’ foraging algorithms is the use of multiple pheromones to
create more complex behavior. The researchers see the robots as mobile Automata, that react to and
update external states in the environment, and base their choice to update or use a certain pheromone
type on their internal state. We will refer to the model of [65] as the utility model.

The utility model is unique in the stigmergic based foraging literature. As far as we know only [83]
also proposed the use of multiple types of pheromones, be it in a biological context trying to model
the behavior of desert ants. Since robots generally only use a single pheromone, algorithms rely on
adhoc mechanisms to return to the nest and implement forms of complex behavior. In fact, most of the
contributions in literature even avoid mathematical formalisation of their approaches. The utility model
does not rely on adhoc mechanisms and is inherent mathematical correct formalized. Mainly for this
reasons, we will use a similar framework as the utility model for the design of our selfguiding swarm.
In the remainder of this section we will briefly discuss the main framework of the utility model.

Framework
Consider the environment to be captured as a grid, containing one nest location and one or more food
sources. The foraging task can be seen as a sequence of two subtasks for each robot: the food
seeking subtask; start from the nest and find the food source, and the nest seeking subtask; start
from the food source and find the nest. Which subtask a robot performs, depends on its internal state.
Executing a subtasks can be seen as creating a subsequence of state transitions: starting at the nest
state with the food source as goal state, or vice versa. The robots earn a reward for reaching the goal
state.

2.6. Stigmergic Foraging Algorithm 9

The algorithm has strong similarities to reinforcement learning; treating the pheromone values as the
utility values of specific locations in the environment, the states 𝑠. Take the current location of a robot
as its external state 𝑠. A robot earns a reward, 𝑅(𝑠), for reaching the goal state (either the food source
or the nest). The utility of a specific state, 𝑈𝑝(𝑠), is equal to the concentration of pheromone type 𝑝 at
location 𝑠. Each pheromone is related to a specific subtask. So in case of the foraging task, which
consists of two subtasks, each state has two utilities, one per pheromone type. The movements of
robots can be seen as state transitions. The state transition policy is simple: move to the adjacent
state 𝑠 with the highest value of the pheromone related to the subtask the robot is currently performing
𝑈𝑝(𝑠).

Figure 2.3: Illustration of the state transitions. The circles are beacons, the states. A robot transitioned from 𝑠 to 𝑠′, next it can
transition to all states 𝑠” [36]

To illustrate the state transitions, consider Figure 2.3, where a robot has recently transitioned from state
𝑠 to state 𝑠′ and may transition to any of the 𝑠𝑖” states. Define the set of all reachable (neighbouring)
states from 𝑠′ as 𝑆”. The update rule for each pheromone 𝑝 is a variation to the Bellman equation in
which 𝑈𝑝 does not decrease:

𝑈𝑝(𝑠′) ←max(𝑈𝑝(𝑠′), 𝑅𝑝(𝑠′) + 𝛾max
𝑖
𝑈𝑝(𝑠”𝑖)) , 𝑠”𝑖 ∈ 𝑆” (2.1)

where 𝛾 is the learning rate which is a constant between 0 and 1. Next, the robots need to choose an
action to perform. With some probability, robots choose a random action. Else, the robot transitions to
the state with the highest concentration of the relevant pheromone:

𝑠′ = argmax𝑖 (𝑈𝑝(𝑠”𝑖)) , 𝑠”𝑖 ∈ 𝑆” (2.2)

The authors assume the robots to update all pheromone types parallel, so also the ones not correspond
ing to their internal state. By this mechanism, while the robot is guided by one pheromone gradient, it
builds the gradients of the other pheromones at the same time. This has a significant impact on the
efficiency of the gradient building process. Since the robot is updating all the utilities as it moves from
the nest to the food (or vice versa), it builds up a gradient in 𝑂(𝑛) time, with 𝑛 the number of state
transitions. This is much more efficient than the gradient building efficiency of traditional reinforcement
or dynamic programming approaches, whose repeating backups need 𝑂(𝑛2) time. This performance
gain is a result of the assumed symmetry of the environment: the transition probability from state 𝑠𝑖 to
𝑠𝑗 is equal to the transition probability from 𝑠𝑗 to 𝑠𝑖. Although an environment is not always symmetric,
[65] consider it to be common in many robotics and multiagent environments. Beside the symmetry
assumption, the authors also assume the model to be deterministic: which means that choosing action
𝑎 in state 𝑠𝑖 will always result in an transition to state 𝑠𝑗. This is usually but not necessary the case.

10 2. Background and Problem Description

2.7. Coverage & Exploration Control
In this chapter we discuss methods for coverage and exploration control. Part of the foraging problem
is to explore the domain efficiently. In Section 2.7.1 we will explain a (single) coverage process named
the Probabilistic Coverage (PC)Process [91] which includes a random walk on a continuous convex
space. The authors of [91] show extensive formal results for the PCProcess which we will use in the
formal analysis of the exploration behaviour of our swarm design. In Section 2.3 we concluded that the
use of beacons is most interesting to implement stigmergy in swarm robotics. This decision brings us
to the question how to position the beacon such that an optimal infrastructure of storage points for local
information is created. Therefore, we discuss in Section 2.7.2 several approaches to realize dynamic
coverage control.

2.7.1. Probabilistic Coverage
Wagner et al. [91] present a random method for exploring a continuous unknown planar domain and
derive extensive formal results for its expected performance. The authors show that the expected cover
time is proportional to the electrical resistance of a domain, which on its turn is related to geometrical
properties of the domain. Hereby they extend similar results regarding the cover time of graphs as
derived by [10]. In this subsection we will summarize the main results, which we will use in Section 4
to derive formal results for our swarm design.

First, let us discuss some general results for the online covering problem, which is formally defined
as the problem to find a local rule of motion that will cause a robot to follow a space covering curve,
such that every point of the given region is in some prespecified 𝑟neighborhood of the robot’s trail, 𝑟
being the covering radius of the robot. Such a rule, if obeyed for a sufficient number of steps, should
lead the robot to follow a covering path which is a polygonal curve defined by the points 𝑥0, 𝑥1, … , 𝑥𝑇, that
covers a region 𝒟. Let us define ℛ𝑟(𝑥𝑖) as a disk of radius 𝑟 around 𝑥𝑖, ℛ𝑟(𝑥) ≔ {𝑥′ ∶ ‖𝑥′ − 𝑥‖2 ≤ 𝑟},
and 𝑅𝑟 as the 𝑟circle around 𝑧, 𝑅𝑟(𝑥) ≔ {𝑥′ ∶ ‖𝑥′ − 𝑥‖2 = 𝑟}. The covering path can be formalized
as,

𝒟 =
𝑇

⋃
𝑘=0

ℛ𝑟(𝑥𝑘), (2.3)

where for all 𝑖, |𝑥𝑖+1 − 𝑥𝑖| ≤ 𝑟. The shape of 𝒟 is not known in advance. The authors of [91] show a
lower bound on the length of any covering path, independent of the algorithm used to generate it.

Lemma 1. [91] The number of points in a covering sequence of 𝑟circles, say 𝑋 = 𝑥0, 𝑥1, … , 𝑧𝑇𝑐 , such
that |𝑧𝑖+1 − 𝑧𝑖| ≤ 𝑟, is bounded from below

𝑇𝑐 ≥ ⌈
6𝜋

4𝜋 + 3√3
(𝐴/𝑎) − 1⌉ (2.4)

where 𝐴 is the region’s area and 𝑎 = 𝜋𝑟2 is the area covered by the robot in a single step.

This result is combined with the work of [40], who derived the minimum number of circles to cover a
region. Define 𝑁(𝑟) as the minimum number of 𝑟circles needed to cover a region of area 𝐴. Then

lim
𝑟→0

𝑁(𝑟) = (2𝜋√3/9)(𝐴/𝑎) (2.5)

and the minimum is attained in the ”honeycomb” (hexagonal) arrangement of the circles. This result
from [40] implies that, asymptotically, the number of cover steps 𝑇𝑐 cannot go below 1.209.. × (𝐴/𝑎)
while Lemma 1 implies that for any value of 𝑟, 𝑇𝑐 ≥ 1.06... × (𝐴/𝑎)

Next, we narrow our scope to the problem of covering a 𝜇sizegrid polygon of size 𝑛, i.e. a poly
gon made of a connected set of 𝑛 unit squares on the grid. Denote the set of 𝜇sizesquares in 𝒟 by
𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛}. This partition is not known to the agents, but only serves analysis purposes.

Consider a discrete time dynamics, with time steps 𝑘 ∈ ℕ and take the location of an agent at time
step 𝑘 as 𝑥(𝑘). In the case of Probabilistic Coverage the agents move can be described as a ran
dom walk with variable step size. We will present the PCprocess as introduced by [91] in some more

2.7. Coverage & Exploration Control 11

generic formulation. Define the maximum step size by ℎ0 ∈ ℝ+ and restrict it to be always smaller than
the coverage radius: ℎ0 ≤ 𝑟. Note that, although [91] present their results taking ℎ0 = 𝑟, all the formal
results are derived only assuming ℎ0 < 𝑟. Algorithm 1 presents the generalized PCalgorithm.

Algorithm 1: Generalized PC Process [91]
1 set 𝑥(0) = 𝑥0 ;
2 for 𝑘 = 0 to 𝑇 do
3 cover ℛ𝑟(𝑥𝑘) ;
4 set ℎ =min{ℎ0,maxℛ2ℎ′ (𝑥𝑘)⊂𝒟{ℎ

′}} ;
5 choose a random point 𝑤 from 𝑅ℎ(𝑥𝑘);
6 set 𝑥𝑘+1 = 𝑤;

Let us first introduce several definitions: Take 𝑄 = {𝑞1, 𝑞2, … , 𝑞𝑛} as a collection of subsets of the
set 𝒟, then the time for visiting some point of every subset in 𝑄 is defined by 𝑇(𝑞1, 𝑞2, … , 𝑞𝑛). The
time it takes an agent to cover all 𝑛 square grids of 𝒟 is defined as the cover time, 𝑇𝑇𝐶 ∈ ℛ+. Define
the hitting time from a point 𝑥 ∈ 𝒟 to a square 𝑠𝑗, denoted by ℎ𝑗(𝑥) ∈ ℝ+, as the expected time of a
PCprocess that starts at 𝑥 and ends upon first reaching a point in square 𝑠𝑗. Also define commute
time between squares 𝑠𝑖 and 𝑠𝑗, denoted by 𝐶𝑖,𝑗 ∈ ℝ+, as the average time of a round trip from 𝑠𝑖 to 𝑠𝑗
and back, i.e. 𝐶𝑖,𝑗 = 𝐶𝑗,𝑖 =max𝑥∈𝑠𝑖 ,𝑦∈𝑠𝑗{ℎ𝑗(𝑥) + ℎ𝑖(𝑦)}

Next, observe that the (random) location of an agent at 𝑘 + 1 only depends on its previous location
𝑥𝑘, hence the PCprocess is strong Markov Process. It was proved in [56] that under such a pro
cess 𝔼[𝑇(𝑞1, 12, … , 𝑞𝑛)], the expected time for visiting some point of every subset in 𝑄 (starting from
anywhere in 𝒟), is bounded as follows:

ℎ𝑚𝑎𝑥 ≤ 𝔼[𝑇(𝑞1, 𝑞2, … , 𝑞𝑛)] ≤ ℎ𝑚𝑎𝑥
𝑛

∑
𝑖=1
1/𝑖 (2.6)

where ℎ𝑚𝑎𝑥 = max𝑥∈(𝒟\𝑄),1≤𝑖≤𝑛{ℎ𝑖(𝑥)}, and ℎ𝑖(𝑥) is the expected time to first reach subset 𝑞𝑖 upon
starting from 𝑥 ∈ 𝒟. Equation (2.6) implies that the expected cover time of 𝒟 can be bounded as:

max
𝑠𝑖 ,𝑠𝑗∈𝒟

{𝐶𝑖,𝑗} ≤ 𝔼[𝑇𝑃𝐶] ≤ 2(log𝑛) max
𝑠𝑖 ,𝑠𝑗∈𝒟

{𝐶𝑖,𝑗} (2.7)

where it is used that using ∑𝑛𝑖=1(1/𝑖) < 2 log𝑛.

In order to find the maximum commute time (𝐶𝑖,𝑗) in 𝒟, it is shown that the commute time between
any square 𝑠𝑖 , 𝑠𝑗 in 𝒟 is proportional to the product of the number of squares in 𝒟 and the electrical
resistance between 𝑠𝑖 and 𝑠𝑗. The following Lemma is derived as a continuous analog to [10].
Lemma 2. [91] 𝐶𝑖,𝑗, the commute time between squares 𝑠𝑖 and 𝑠𝑗 in 𝒟, is given by

𝐶𝑖,𝑗 =
4𝑛
𝑟2 𝜌𝑖,𝑗 (2.8)

where 𝜌 is the electrical resistance of 𝒟, assuming a material of unit sheetresistance. The sheet
resistance of a material is defined as the voltage across a square of the material caused by one unit of
current (i.e. one Ampere) that is flowing between two parallel edges of the square. The sheet resistance
is expressed in units of Ohms per square.

Combining Equation (2.7) and Lemma 2 results in Theorem 1

Theorem 1. [91] 4𝑛𝑟2 𝜌 ≤ 𝔼[𝑇
𝑃𝐶] ≤ 8𝑛

𝑟2 𝜌 log𝑛, where 𝑛 is the size of 𝑅 and 𝜌 its resistance.

The resistance 𝜌 = 𝜌(𝒟) can sometimes be bounded in terms of geometrical properties of the shape,
and can always be numerically approximated. For example, for 𝒟 an 𝑎×𝑏 rectangle with 𝑎 < 𝑏 it holds
that 𝜌 = 𝒪(𝑎/𝑏).

12 2. Background and Problem Description

Corollary 1. [91] If 𝒟 is a square 𝑎 × 𝑎 room, then

𝑐1𝑎2 log𝑎 ≤ 𝔼[𝑇𝑃𝐶] ≤ 𝑐2𝑎2 log2 𝑎 (2.9)

where 𝑐1, 𝑐2 are small constants.

The authors also shown that the variance of the cover time, denoted Var[𝑇𝑃𝐶], is also bounded from
above by:

Var[𝑇𝑃𝐶] ≤ 210 max
𝑠𝑖 ,𝑠𝑗∈𝑅

{𝐶𝑖,𝑗} ≤
212
𝑟2 𝑛𝜌 (2.10)

2.7.2. Dynamic Coverage Control
In Section 2.3 we concluded that the Beaconsapproach is the most promising approach to implement
stigmergy in swarm robotics. In Section 2.6 we discussed the utility model, from which we will borrow
several aspects for our design, among which the location dependent state and the navigation by two
types of pheromone fields. The beacons will store the local utilities, and all beacon combined create
the pheromone fields used by foraging agents to navigate. These decisions take us to the following
challenge: How do we control the beacons to cover the environment that such they create the opti
mal infrastructure to the information of the local pheromone fields? In this subsection we will evaluate
several methods by their ability to create uniform and nonuniform coverage based on some desired
density function, and the required capabilities of the beacons to achieve such performance, such as
restricted local communication and distance measures. In particular, we are interested in methods
which can perform nonuniform coverage without complete knowledge of a global density function.

The Stico (Stigmergic coverage approach) method [2, 71–73] is based on very simple rules of motion
and uses continuous pheromone trails as source of repulsion instead of attraction. The StiCo approach
shows the power of negative feedback and stigmergy based on ’real’ pheromones to perform dynamic
coverage. The IDStico (Intruder Detection StiCo) approach shows that dynamic nonuniform coverage
only requires a variable range of territory per beacon, i.e. a variable distance to other agents.

The Potential Fields approach [35, 69] applies a physical metaphor of repellent, attractive and vis
cous forces created by detected surrounding objects or robot movements, to create uniform dynamic
coverage. In principle it is not possible to adjust this approach to achieve nonuniform coverage, while
preserving the approach’s main pro of agents only requiring local distance information. If we would
want to adjust the potential field approach to create nonhomogeneous coverage, we would need to
connect the forces acting on a robot to its internal state or assume local influences on the forces, which
would result in a mechanism almost similar to VoronoiPartitioning based coverage control.

In the field of dynamic coverage control, density function are used to realise nonuniform coverage.
These density functions capture for example the change that an event happens at a subregion of the
environment. The goal is to find a control algorithm to locate the robots such that the change of a
swarm to perceive an event is maximized. As it turns out, optimal control laws enforce the robots to
create centroidal Voronoi tessellations (CVT), i.e. the optimal control law forces each robot to move
towards the center of mass of the Voronoi regions calculated using the density function. Various al
gorithms that guarantee converge to CVT have been proposed [15, 16, 48, 49, 82]. We will refer to
these control method as Voronoi Partitioning coverage control. Although some algorithms have been
developed that use distributed control actions, Voronoi Partitioning coverage control has one major
drawback: it requires knowledge of a global density function. In our case the pheromone field cre
ated by the pheromone values and stored at the beacons can act as the density function. However,
several challenges appear, such as: how do we create a continuous density function based on the
pheromone values stored in the Beacons? Linear combinations of Gaussians could do the job, though
this would require relative positional knowledge of neighbouring beacons. Another challenge: How
robust is the coverage system under fast changing pheromone concentrations? We conclude that if
we manage to implement the Voronoi Partitioning coverage control by combinations of local density
functions this method would perfectly solve the dynamic coverage control task of the beacons of our
swarm. However, as this algorithm itself would be a valuable addition to the existing literature, this is
very challenging.

2.8. Path Planning Algorithms 13

2.8. Path Planning Algorithms
The foraging problem consists of the general path planning problem. Ant Colony Algorithms have been
widely applied to path planning problems and in general as (discrete) path optimization tool [19, 28, 55],
even some of the methods discussed in Section 2.5 have been directly applied as offline path optimiza
tion tool [52].

Basic path planning algorithms find their origin in Dijkstra’s algorithm and a special case of Dijkstra’s
algorithm, the centralized A* [18, 33]. These algorithms uniformly discretize the search space and af
terwards plan an optimal path through the discrete search space. Algorithms such as Dijkstra’s and
A* show good performance in static, limitedsized and single agent path planning problems. However,
realworld problems often involve uncertainty and dynamics in a large search space. Traditional path
planning algorithms are not able to cope with such problems due to memory issues and computation
time. In order to overcome these problems, researches use heuristics to guide path planning, such as
potential field techniques [3] and decentralized algorithms [84, 92]. Note that the decentralization only
implies decoupling of the problem per agent for multiagent path planning. Although such techniques
reduce the issues, performance still suffers with increasing complexity. In general given a single agent
problemwith an environment discretized using a grid of𝑚 squares, the running time andmemory scales
by 𝒪(𝑚2). Remark that the most efficient algorithms rely on unified discretization of the environment,
mostly by a squared grid. Uncertainty or dynamical environment or discretizations will only increase
the required memory and running time.

Note that the Communication Network and Beacon Chainconcepts as discussed in 2.5 resemble
some aspects of Dijkstraalgorithms. In fact the message propagation policy as proposed by [69], is a
distributed version of the wavefrontpropagationmethod of the Dijkstra’s algorithm.

Randomized approaches such as RRTs (RapidlyExploring Random Trees) [42, 46, 47, 47] and Prob
abilistic Roadmaps [45] offer a solution to the issues occurring for the Dijkstratype path planning algo
rithms by randomly sampling points in the (continuous) search space and then grow the current solution
toward these points

As it turns out, the stigmergic concept we have been interested in up till now: deploying an infras
tructure of beacons, has much in common with the RRT algorithm. In the remainder of this section we
will shortly discuss the idea behind the RRTs and describe the algorithm of the most basic version a
RRT. We will employ the similarities between RRT and our design while deriving formal results.

2.8.1. Rapidly Exploring Random Trees (RRTs)

Figure 2.4: The extend operation of the RRT Algorithm [42]

RRTs [42, 46, 47, 47] build on ideas from optimal control theory, nonholomonic planning, and random
ized path planning. The basic idea is to incrementally grow a search tree from an initial state by applying
control inputs over short time intervals to reach new states. Each vertex in the tree represents a state,
and each directed edge represents an input that was applied to reach the new state from a previous

14 2. Background and Problem Description

state. When a vertex reaches a desired goal region, a trajectory from the initial state is represented by
the tree. The key idea is to bias the exploration toward unexplored portions of the space by sampling
points in the state space, and incrementally ”pulling” the search tree toward them.

The basic RRT construction algorithm is given by Algorithms 2 and 3. A simple iteration is performed
in which each step attempts to extend the RRT by adding a new vertex that is biased by a randomly
selected configuration. The EXTEND function, illustrated in Figure 2.4, selects the nearest vertex
already in the RRT to the given sample configuration, 𝑞. The function NEW_CONFIG makes a motion
toward 𝑞 with some fixed incremental distance 𝜖, and tests for collision. Three situations can occur:
𝑅𝑒𝑎𝑐ℎ𝑒𝑑, in which 𝑞 is directly added to the RRT because it already contains a vertex within 𝜖 of 𝑞;
𝐴𝑑𝑣𝑎𝑛𝑐𝑒𝑑, in which a new vertex 𝑞𝑛𝑒𝑠 ≠ 𝑞 is added to the RRT; and 𝑇𝑟𝑎𝑝𝑝𝑒𝑑, in which the proposed
new vertex is rejected because it does not lie in 𝐶𝑓𝑟𝑒𝑒.

Algorithm 2: [91] BUILD_RRT(𝑞𝑖𝑛𝑖𝑡)
1 𝒯.init(𝑞𝑖𝑛𝑖𝑡);
2 for 𝑘 = 1 to 𝐾 do
3 𝑞𝑟𝑎𝑛𝑑 ← 𝑅𝐴𝑁𝐷𝑂𝑀_𝑆𝑇𝐴𝑇𝐸()
4 EXTEND(𝒯, 𝑞𝑟𝑎𝑛𝑑)
5 Return 𝒯

Algorithm 3: [91] EXTEND(𝒯, 𝑥)
1 𝑞𝑛𝑒𝑎𝑟 ← NEAREST_NEIGHBOR(𝑞, 𝒯);
2 if NEW_STATE(𝑞, 𝑞𝑛𝑒𝑎𝑟 , 𝑞𝑛𝑒𝑤) then
3 𝒯.add_vertex(𝑞𝑛𝑒𝑤);
4 𝒯.add_edge(𝑞𝑛𝑒𝑎𝑟 , 𝑞𝑛𝑒𝑤);
5 if 𝑞𝑛𝑒𝑤 = 𝑞 then
6 Return 𝑅𝑒𝑎𝑐ℎ𝑒𝑑;
7 else
8 Return 𝐴𝑑𝑣𝑎𝑛𝑐𝑒𝑑;
9 Return 𝑇𝑟𝑎𝑝𝑝𝑒𝑑

2.9. Preliminaries 15

2.9. Preliminaries
We use calligraphic letters for sets (𝒜), regular letters for scalars (𝑎 ∈ ℝ) and bold letters for vectors
(a ∈ ℝ𝑛). We consider discrete time dynamics 𝑘 ∈ ℕ, and we define an intersampling time 𝜏 ∈ ℝ+
such that we keep a ”total” time measure 𝑡 = 𝜏𝑘. With vectors we use ||𝜈|| as the euclidean norm, and
⟨𝜈⟩ ≔ 𝜈

||𝜈|| .

2.10. Problem Description
Before we formally define the foraging problem and our assumptions, let us first define the swarm and
its environment. A swarm consists 𝑁 agents 𝒜 = {1, 2, ..., 𝑁} navigating in a bounded domain 𝒟 ⊂ ℝ2,
where 𝒟 is compact (possibly nonconvex). We define 𝑥𝑎(𝑘) ∈ 𝒟 as the position and 𝛼𝑎(𝑘) as the
heading direction of agent 𝑎 at time step 𝑘. Take 𝜈0 the constant speed of an agent, then, its velocity
is given by 𝑣𝑎(𝑡) = 𝜈0 (cos𝛼(𝑘) sin𝛼(𝑘))

𝑇
with 𝛼𝑎(𝑘) ∈ [−𝜋, 𝜋). We consider the dynamics of the

system to be discrete time, such that the positions of the agents evolve as

𝑥𝑎(𝑘 + 1) = 𝑥𝑎(𝑘) + 𝑣𝑎(𝑘)𝜏,

The region 𝒟 contains two subregion, 𝒮 and 𝒯 both of radius 𝛿𝑆,𝑇.
Definition 1 (Foraging Problem). A foraging problem on an unknown domain 𝒟 is the joint problem of
finding a target region 𝒯 ⊂ 𝒟 when starting from a different region 𝒮 ⊂ 𝒟, 𝒮 ∩ 𝒯 = ∅, and eventually
following (semi) optimal trajectories between 𝒮 and 𝒟.

The swarm aims to solve the foraging problem. Usually the main goal of the foraging problem is
said to be: complete trajectories between 𝒮 and 𝒟 as fast as possible (through the shortest path), back
and fourth. Since for our swarm some of the agents will facilitate the infrastructure to solve the foraging
problem, we generalize the goal to: maximize the trips between 𝒮 and 𝒟 performed by all agents of the
swarm. We consider the foraging problem to be solved if, eventually, all foraging agents in the swarm
are able to follow trajectories that are relatively close to the set of optimal trajectories.

As we have shown in Section 2.5, literature has proposed many approaches to solve the foraging
problem. With implementation in real robots as ultimate goal, the performance of a concept should be
interpreted relatively to the assumed robotic capabilities. In Table 2.1 we presented an overview of the
most interesting solutions to the foraging problem structured by assumed capabilities. We will make
the following assumptions on the swarm agents’ capabilities.

Assumption 1 (Swarm Constrains).

1. All agents have equal capabilities and dynamics, i.e. the swarm is homogeneous.

2. Agents have a small memory, enough to store scalars and vectors in ℝ2, and enough computa
tional power to perform sums and products of vectors.

3. Agents have the ability to send and receive basic signals (up to 6 scalar values), within amaximum
range 𝛿𝑠.

4. Agents have some form of collision avoidance mechanism, acting independently of the design
dynamics.

5. Agents have sensing ability to detect 𝒮, 𝒯.

6. Agents have some measure of angular orientation (e.g. a compass).

7. Agents are able to remain static.

8. Agents are able to move in any direction (holonomic or omindirectional agents)

Given these, and the assumptions made by others in the field (Table 2.1), we explicit want to em
phasize what we not assume:

• Agents do not have access to any form of global information about 𝒟.

16 2. Background and Problem Description

• The swarm does not require either any form of infrastructure in place.

• We do not assume the ability to measure directionality in the signals, nor lineofsight interactions.
Therefore, we are not restricted to use the IR or visual medium, but can use radio signals as well.

• We do not assume any form of selflocalisation capacity.

• Agents do not have unique identifiers.

• The swarm relies on onehop communication only. That is, the communication happens on a
agenttoagent basis, and agents do not cascade information through the communication network.

The challenge to be solved in this work is then the following.

Problem 1. Design a swarm of 𝑁 agents that solves a foraging problem over an unknown domain 𝒟,
while satisfying the set of Assumptions 1, and does so with guarantees.

2.11. Summary Concepts 17

2.11. Summary Concepts
In this Chapter we created the foundation for our work. We presented the main insights of literature
and discussed our decisions on the concepts to use. Let us summarize the main takeaways:

• We explained the biological principles of SelfOrganisation, Stigmergy and Path Integration, and
introduced the foraging ants phenomenon.

• We showed an overview of all different approaches to implement stigmergy in robotics. We con
cluded that it is most effective to store local information in beacons, which can either be passive
storage devices or the robots themselves. Furthermore we decided that we will implement the
Beaconapproach using a homogeneous swarm in which robots are able to switch between a
beacon and a ’worker’ state.

• We introduced the foraging problem and discussed the proposed solutions for it. In general we
observed that many of these solutions include implicit assumptions regarding the sensor range,
memory storage in the agents, computational capacity or reliability of communication. In practice
these assumptions will prevent the solutions of being applied to real situations or large scenarios.
In addition, for many of these solutions the complexity will increase dramatically when designing
very large multirobot swarms. Moreover, the previous work has largely been adhoc: it assumes
a single ant pheromone to help set up a gradient to the food source, plus some arbitrary a priori
mechanism to return to the nest

• We discussed the most promising multiagent solutions found in literature: creating a commu
nication network of beacon agents; creating beacon chains by cascading information through
trajectories of beacons; treating pheromones as utility estimates for environmental states stored
in deployable beacons; and use landmarks to apply beeinspired path integration algorithms. We
presented an overview of the system and individual agent characteristics implied by each class
of solutions (see Table 2.1). We conclude that the interpretation of the pheromones as utilities
proposed by the Stigmergic Pheromone Reinforcement is an interesting strategy which allows
for formalisation and application of reinforcement learning techniques. Moreover the Landmark
approach of storing navigation information using path integration is very interesting as it drops
the need of (relative) location measures.

• We explained the utilitymodel a Stigmergic Pheromone Reinforcement concept as proposed by
[65] in more detail.

• The use of beacons to implement stigmergy and treat pheromones as utilities took us to the next
challenge: How to control the beacons to cover the environment such that they create an optimal
global infrastructure to store the pheromone fields? We pointed out three options and concluded
that the so called Voronoi Partitioning coverage control option is most suited for purposes, al
though several challenge regarding the construction of a global density function remain.

• We discussed the concept of the Rapidly Exploring Random Trees (RRTs) which share similar
principles regarding the building process our beacon infrastructure that can be used to derive
formal results.

• At last, we present our problem description in Section 2.10.

3
Proposal: Self Guided Swarm

In this Section we present the design of a selfguided swarm that solves the foraging problem as pre
sented in Section 2.10. We will continue the work of Adams et al. [1]. In Subsection 3.1 we will first
explain the basic concept as presented in [1], after which we present in Subsection 3.2 several exten
sions to the basic selfguided swarm. At last, as the level of abstractions of the mathematical models
detracts from the intuitive interpretation of the intended systems dynamics, we describe in Section 3.3
the intended behaviour of the selfguiding swarm on the basis of a more intuitive description, using
visualizations and analogies.

3.1. Basic Concept
The design of the selfguiding swarm as presented in [1] is inspired on the dynamic task allocation of
Social Insects [6, 38, 64, 75]. Although the swarm is homogeneous, agents will fulfill different roles:
An agent can behave as ”beacon”(agent in charge of guiding others) or ”forager” (agent in charge of
travelling between 𝒮 to 𝒯). We first describe the different states of an agent, introduce the region of
influence, introduce the switching rules between states, and last define the dynamics in every mode.

3.1.1. States
Besides the distinction between agents acting as beacon and forager, we distinguish foraging agents
looking for 𝒯 and foraging agents looking for 𝒮, hereby creating in total three types of agents. We use
the state variable 𝑠𝑎(𝑘) ∈ {𝐵, 𝐹1, 𝐹2} to indicate:

𝑠𝑎(𝑘) = 𝐵 ⇒ 𝑎 is a beacon,
𝑠𝑎(𝑘) = 𝐹1 ⇒ 𝑎 is a forager searching for𝒯,
𝑠𝑎(𝑘) = 𝐹2 ⇒ 𝑎is a forager looking for𝒮.

To group the agents in timedependent subsets, we use 𝑠 to refer to the foraging states 𝐹1 and 𝐹2, and 𝑠
to refer to the inverse foraging state: 𝐹1 = 𝐹2 and 𝐹2 = 𝐹1. Then, we define ℬ(𝑘) ≔ {𝑎 ∈ 𝒜 ∶ 𝑠𝑎(𝑘) = 𝐵}
as the beacon set, ℱ(𝑘) ≔ {𝑎 ∈ 𝒜 ∶ 𝑠𝑎(𝑘) ∈ {𝐹1, 𝐹2}} as the forager set, and ℱ𝑠(𝑘) ≔ {𝑎 ∈ 𝒜 ∶ 𝑠𝑎(𝑘) =
𝑠} as the set of foragers in state 𝑠.

3.1.2. Region of Influence
We assumed that agents have the ability to send and receive signals within a maximum range 𝛿 (see
Assumption 1). We will use this maximum communication range to define the regions of influence of
every agent as𝒟𝑎(𝑘) ∶= {𝑥 ∈ 𝒟 ∶ ‖𝑥−𝑥𝑎(𝑘)‖2 ≤ 𝛿}. Let us now define the set of neighbouring beacons
to an agent, 𝑎 ∈ 𝒜 as:

ℬ𝑎(𝑘) ∶= {𝑏 ∈ ℬ(𝑘) ∶ 𝑥𝑏(𝑡) ∈ 𝒟𝑎(𝑘)}, (3.1)

the set of neighbouring foragers to a beacon 𝑏 ∈ ℬ(𝑘) as

ℱ𝑏(𝑘) ≔ {𝑓 ∈ ℱ(𝑘) ∶ 𝑥𝑓(𝑘) ∈ 𝒟𝑏(𝑘)} (3.2)

19

20 3. Proposal: Self Guided Swarm

and the set of neighbouring foragers in state 𝑠 to a beacon 𝑏 ∈ ℬ(𝑘) as

ℱ𝑠𝑏 (𝑘) ≔ {𝑓 ∈ ℱ𝑠(𝑘) ∶ 𝑥𝑓(𝑘) ∈ 𝒟𝑏(𝑘)} (3.3)

3.1.3. State Transitions
At 𝑡 = 0 all agents start at 𝒮. One of the agents is initialized as beacon, all others are initialized as
foragers looking for 𝒯:

𝑥𝑎(0) ∈ 𝒮 ∀𝑎 ∈ 𝒜, |ℬ(0)| = 1, |ℱ𝐹1(0)| = 𝑁 − 1.
Which agent starts as initial beacon is chosen at random, or by some predetermined order of deploy
ment of the swarm. As time evolves, the agents switch between states following the logic rules:

𝑠𝑎(𝑘 + 1) =
⎧⎪
⎨⎪⎩

”𝐵” if ℬ𝑎(𝑘) = ∅,
”𝐹1” if 𝑠𝑎(𝑘) = ”𝐹2” ∧ 𝑥𝑎(𝑘) ∈ 𝒮,
”𝐹2” if 𝑠𝑎(𝑘) = ”𝐹1” ∧ 𝑥𝑎(𝑘) ∈ 𝒯,
𝑠𝑎(𝑘) else,

∀𝑎 ∈ 𝒜. (3.4)

The switching rule in (3.4) is interpreted in the following way. If a forager moves to a point in the domain
where there is no other beacons around, it becomes a beacon. If a forager is looking for the set 𝒯 (state
𝐹1) and finds it, it switches to finding the starting set 𝒮 (state 𝐹2), and the other way around. For now we
will not consider transitions from beacon to forager, but we will explore in Section 3.2 how the swarm can
further optimize its resources by allowing beacons to return to forager states under certain conditions.

3.1.4. Dynamics
In Section 3.2 we will explore the option to optimize the beacon infrastructure by moving the beacons,
for now we will assume that beacons remain static while in beacon state. So,

𝑣𝑏(𝑘) = 0, 𝑥𝑏(𝑘) = 𝑥𝑏(𝑘𝑏) ∀𝑘 ≥ 𝑘𝑏 , (3.5)

where 𝑘𝑏 is the time step when agent 𝑏 switched to beacon state. Beacon agents store weight values
𝜔𝑠𝑏(𝑘) ∈ ℝ+ and guiding velocity vectors 𝜈𝑠𝑏(𝑘) ∈ ℝ2, both initialised at zero for all agents in the swarm.
At every timestep, beacons broadcast their stored values 𝜔𝑠𝑏(𝑘), 𝜈𝑠𝑏(𝑘) with a signal of radius 𝛿. At
every timestep each forager receives a set of signals from neighbouring beacons, and compute a
reward function Δ𝑠𝑓(𝑘) ∈ ℝ+:

Δ𝑠𝑓(𝑘) = 𝛾𝑠𝑓 (𝑘) + 𝜆 max
𝑏∈ℬ𝑓(𝑘)

𝜔𝑠𝑏(𝑘), (3.6)

where 𝜆 ∈ [0, 1] is a discount factor, called the diffusion rate, and,

𝛾𝑠𝑓 (𝑘) = {
𝑟 if 𝑠𝑓(𝑘) = ”𝐹1” ∧ 𝑥𝑓(𝑘) ∈ 𝒮,
𝑟 if 𝑠𝑓(𝑘) = ”𝐹2” ∧ 𝑥𝑓(𝑘) ∈ 𝒯,
0 else.

(3.7)

where 𝑟 ∈ ℝ+ is called the reward. The reward function in (3.6) should be interpreted as follows:
Foragers listen for weight signals from neighbouring beacons and broadcast back the maximum dis
counted weight plus a constant reward if they are, depending on their state, in the regions 𝒮 or 𝒯.
Observe that (3.6) depends on 𝑠, indicating that foragers listen and reinforce only the weights corre
sponding to their internal state value. After listening for a period 𝜏, the beacons update their weight
values using a discount factor 𝜌𝑤 ∈ [0, 1], called the weight’s evaporation rate, as

𝜔𝑠𝑏(𝑘 + 1) = (1 − 𝜌𝑤)𝜔𝑠𝑏(𝑘) + 𝜌𝑤
∑𝑓∈ℱ𝑠𝑏 (𝑘) Δ

𝑠
𝑓(𝑘)

|ℱ𝑠𝑏 (𝑘)|
. (3.8)

The iteration in (3.8) is only applied if there are indeed neighbouring foragers around a beacon, so
|ℱ𝑠𝑏 (𝑘)| ≥ 1. Otherwise, no iteration step is applied at that instant. The update rule of 𝜈𝑠𝑏(𝑘) is similarly:

𝜈𝑠𝑏(𝑘 + 1) = (1 − 𝜌𝑣)𝜈𝑠𝑏(𝑘) + 𝜌𝑣
∑𝑓∈ℱ𝑠𝑏 (𝑘)−𝑣𝑓(𝑘)

|ℱ𝑠𝑏 (𝑘)|
. (3.9)

3.1. Basic Concept 21

with 𝜌𝑤 ∈ [0, 1] a discount factor, called the guiding velocities evaporation rate. The update rule for
𝜈𝑠𝑏(𝑘) works as follows: at the same time that beacons update their stored weight values based on the
foragers around them, they update as well the guiding velocity vectors by adding the corresponding
velocities of the foragers around them (with an opposite sign). The logic behind this has to do with the
reward function in (3.6). Foragers looking for 𝒯 update weights and guiding velocities associated with
state 𝐹1, but to indicate that they are in fact moving out of 𝒮, we want to update the guiding velocities
based on the opposite direction that they are following.

Now we have defined the dynamics of the beacon agents: position and velocities in (3.5) and up
date rules for 𝜔𝑠𝑏(𝑘), 𝜈𝑠𝑏(𝑘) in (3.8) and (3.9), we only have to define the dynamics of the foragers. At
every step, the foragers listen for guiding velocity and weight signals from beacons around them. With
this information, they compute the guiding vector:

�̂�𝑠𝑓(𝑘) ∶= ⟨ ∑
𝑏∈ℬ𝑓(𝑘)

𝜔𝑠𝑏(𝑘)𝜈𝑠𝑏(𝑘)⟩ . (3.10)

Note that we used the inverse foraging state to compute the guiding vector. A foraging agent in state
𝐹1 reinforces the weights and guiding velocities corresponding to state 𝐹1 and uses the fields of state 𝐹2
to determine its movement. At every timestep foragers choose stochastically, for a design exploration
rate 𝜀 ∈ (0, 1), if they follow the guiding vector �̂�𝑠𝑓(𝑘) or they introduce some random noise to their
movement. Let 𝛼𝑢 be a random variable taking values (−𝜋, 𝜋), following some probability density
function 𝑝(𝛼𝑢). Then, the velocity of the foragers follows the stochastic evolution:

Pr{𝑣𝑓(𝑘 + 1) = 𝜈0(cos (𝛼𝑎(𝑘) + 𝛼𝑢) sin (𝛼𝑎(𝑘) + 𝛼𝑢))𝑇} = 𝜀,
Pr{𝑣𝑓(𝑘 + 1) = �̂�𝑠𝑓(𝑘)} = 1 − 𝜀,

(3.11)

for all 𝑓 ∈ 𝒜𝑠(𝑘). Additionally, we will add a fixed condition for an agent to turn around when switching
between foraging states. That is,

𝑣𝑓(𝑘 + 1) = −𝑣𝑓(𝑘) if 𝑠𝑓(𝑘 + 1) ≠ 𝑠𝑓(𝑘 + 1). (3.12)

With (3.11) and (3.12) the dynamics of the foragers are defined too.

22 3. Proposal: Self Guided Swarm

3.2. Extended Concept
For the basic concept we did not considered transitions from beacon to forager, and set agents to
remain static once switched to the beacon state. Once the swarm has explored the environment and
created paths between regions 𝒮 and 𝒯, this approach has two drawbacks:
1. Agents in beacon state that do not store any relevant information, i.e. store very small weight

values and guiding velocity vectors, do not contribute in solving the foraging problem: they can
not act as foragers, nor do they create the infrastructure for the paths to guide the foraging agents.

2. First, remind that the environment is randomly explored by the agents, and as a result the posi
tional configuration of the beacons is created at random. Second, realize that the configuration
of the beacons determines the set of paths that can be stored in the infrastructure. Therefore,
the optimality of the (to be) created paths is limited by the randomly created configuration of the
beacons.

In an attempt to overcome drawback 1 we introduce in Subsection 3.2.1 the BeaconForager Switch
ingextension which enables beacon agents to switch back to a foraging state. In Subsection 3.2.2 we
introduce the Moving Beaconsextension to enable beacon agents to optimize their position and solve
drawback 2.

In the basic concept, foraging agents only reinforce the weight values and guiding velocities corre
sponding to their internal state. [36] showed for a similar solution to the foraging problem an increase in
convergence if foragers in addition reinforce the tofollow pheromone. Although the approach of these
authors differs from our approach on some important aspect, which we will explain in Subsection 5.6.2,
we want to investigate experimentally if the double updating principle can improve the performance of
our swarm too. So, at last, in Subsection 3.2.3 we will introduce the DoubleUpdatingextension which
makes forager agents simultaneously reinforce the weight and guiding velocities of both foraging states.

3.2.1. BeaconForager Switching
Before we explain the conditions under which we allow an agent to switch from beacon state to forager
state, let us define the last foraging state of a beacon agent by: 𝑠−𝑎 (𝑘), formally defined as:

𝑠− (𝑘) ≔ 𝑠 (𝑘−) , with 𝑘− ≔max ({𝑘switch|𝑘switch ∈ ℕ, 𝑘switch < 𝑘, 𝑠(𝑘switch) ≠ 𝑠(𝑘)}) (3.13)

To allow for switching from beacon state back to forager state, the logic rules for state switching (see
(3.4) is updated as:

𝑠𝑎(𝑘 + 1) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

”𝐵”
”𝐹1”

”𝐹2”

𝑠𝑎(𝑘)

if
if

if

else

𝑠𝑎(𝑘 − 2) ∈ {”𝐹1”, ”𝐹2”} ∧ ℬ𝑎(𝑘) = ∅,
𝑠𝑎(𝑘) = ”𝐹2” ∧ 𝑥𝑎(𝑘) ∈ 𝒮 or
𝑠𝑎(𝑘) = ”𝐵” ∧ 𝑠−(𝑘) = 𝐹1 ∧ ∑𝑠 𝑤𝑠𝑎(𝑘) < 𝜂𝑤 ∧ ℱ𝑎 = ∅
𝑠𝑎(𝑘) = ”𝐹1” ∧ 𝑥𝑎(𝑘) ∈ 𝒯 or
𝑠𝑎(𝑘) = ”𝐵” ∧ 𝑠−(𝑘) = 𝐹2 ∧ ∑𝑠 𝑤𝑠𝑎(𝑘) < 𝜂𝑤 ∧ ℱ𝑎 = ∅

∀𝑎 ∈ 𝒜. (3.14)

with 𝜂𝑤 ∈ ℝ+. Compared to the old switching rules, two conditions for the foraging states are added,
these work as follows: A beacon agent can only switch to a foraging state if there are no foraging agents
within its region of influence and its summed stored weight values are smaller than some threshold value
𝜂𝑤.

After a beacon agent switches to a foraging state, it will always perform a random step, as by con
struction there is no other beacon within the agents range. Whether or not the agent will end up in the
region of influence of another beacon after the first step, is related to the number of former neighbouring
beacons. If the former beacon was fully surrounded by beacons, the agent will always end up in the
region of influence of a beacon after one step. Else, there is a chance of ending up in a region not
covered by a beacon after the first step. To prevent an agent from switching directly back to the beacon
state in such case, we restrict the switching from forager state to beacon state such that a forager agent
needs to be for at least 2 time steps in a foraging state before it can switch back to the beacon state.

3.2. Extended Concept 23

Hereby increasing the change that a former beacon reaches the region of influence of a beacon, and
potentially decreasing the number of stateswitches.

At last, we force an agent to ’forget’ the weight and guiding velocity values after switching from the
beacon state to a forager state, i.e. 𝜔𝑠𝑎 and 𝜈𝑠𝑎 are set to zero after a state transition. Since the in
formation stored at a beacon is location depended, preserving the former beacon information will only
disturb the system if a former beacon agent transforms to a beacon again at another location.

3.2.2. Moving Beacons
In order to optimize the beacon infrastructure we enable the beacons to move. We first derive a control
law for the beacon movement, after which we need to update the state transition rules.

Beacon Dynamics
Let us first analyze the role of a beacon in guiding the foraging agents: A beacon stores weights and
guiding velocities for both state 𝐹1 and 𝐹2. These guiding velocities provide the direction to follow in the
region of influence of a beacon, or in other words: The guiding velocity of state 𝐹1 captures a part of
the path from 𝒮 to 𝒯.

Take 𝜃𝑏 ∈ (0, 𝜋) the smallest angle between the guiding velocities, 𝜈𝐹1𝑏 and 𝜈𝐹2𝑏 , stored at some beacon
agent. Suppose that we deploy the swarm in an environment without obstacles. The optimal path is a
straight path between region 𝒮 and 𝒯. Or, from a single beacon point of view: if a beacon is located
close to the optimal path, the stored guiding velocities will point in opposite direction, i.e. 𝜃𝑏 = 𝜋.

Now consider the case of an environment with obstacles that blockade the straight path between 𝒮
and 𝒯. As we assume the agents to be able to move in any direction, the optimal path always consists
of straight lines connected by nods located at the surface of an obstacle. If the region of influence of
a beacon only captures a straight part of the optimal path, the same statement regarding 𝜃𝑏 as for the
noobstacle environment holds. However, if a beacon is located close to a nod, it is hard to make any
statement on the optimal 𝜃𝑏: Close to the nod, a beacon close to the optimal path can have a smaller
𝜃𝑏 than a beacon further from the optimal path, but closer to the obstacle.

Given a beacons limited knowledge of the environment, it is hard to control the preferred behavior
close to nods. We therefore neglect the optimality close to nods, and apply a simple control law for the
beacons velocity:

𝑣𝑏(𝑘) = {
0 if 𝒟𝑏(𝑘) ∩ 𝒮 ≠ ∅ ∨ 𝒟𝑏(𝑘) ∩ 𝒯 ≠ ∅
𝜈𝑏,0 (|𝜈𝐹1𝑏 (𝑘)| + |𝜈

𝐹2
𝑏 (𝑘)|) else

(3.15)

with 𝜈𝑏,0 ∈ ℝ+, 𝜈𝑏,0 << 𝜈0 the beacons speed. This simple Pcontroller works as follows: The summed
guiding velocities vector points in the direction in which the beacon should theoretically move to in
crease 𝜃𝑏. The size of the summed vector scales by the inverse of 𝜃𝑏, i.e. for small values of 𝜃𝑏 the
beacon will move faster than for large values of 𝜃𝑏. In addition, the beacon will remain static if it can not
move due to collision avoidance. In our experiments we experienced the need for beacons surrounding
the 𝒮 and 𝒯 regions, therefore we force beacons 𝛿 close to these regions to remain static. Although
we assume that agents can only detect the target regions if they are located within these regions (As
sumption 1), measuring if a beacon is 𝛿 close to a region can easily be implemented by detecting if a
beacon receives rewards by foragers within its region of influence.

Following the stigmergyprinciple, the stored weights and guiding velocities depend on the location
of the beacons. Moving the beacon does conflict this connection. Therefore we will choose the speed
of the beacon much smaller than the speed of the agents, such that the stored information can adjust
to the changing location of the beacon, without destroying the fields of navigational information.

24 3. Proposal: Self Guided Swarm

State Transitions
Moving the beacons can conflict the condition to remain in the beacon state, because possibly other
beacons will enter the region of influence of a beacon, conflicting the beacon state condition: ∄𝑏 ∈
ℬ(𝑘) ∶ 𝑥𝑏(𝑘) ∈ 𝒟𝑎(𝑘) (see Equation (3.4)). Therefore we will have to adjust the state transition rules.
Since we want to realize a minimalistic beacon infrastructure, each region should be covered by max
imal one beacon. If beacons are within each others region of influence, we only want to preserve the
most valuable beacon for the navigation infrastructure, or in other words, we want to preserve the bea
con with the highest stored weight values.

Furthermore, to prevent that beacons far away from the optimal area first have to move towards this
area before getting removed, the Moving Beaconsextension is always implemented in combination
with the BeaconForager Switchingextension.

Then, the state transition rules of the BeaconForager Switchingextension (see Equation 3.13) in com
bination with the preferred beaconstate transition conditions, is given by:

𝑠𝑎(𝑘 + 1) =

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

”𝐵”

”𝐹1”

”𝐹2”

𝑠𝑎(𝑘)

if

if

if

else

𝑠𝑎(𝑘 − 2) ∈ {”𝐹1”, ”𝐹2”} ∧ ℬ𝑎(𝑘) = ∅ or
𝑠𝑎(𝑘 − 2) ∈ {”𝐹1”, ”𝐹2”} ∧ ∀𝑏 ∈ ℬ𝑎(𝑘) ∶ ∑𝑠 𝑤𝑠𝑏(𝑘) < ∑𝑠 𝑤𝑠𝑎(𝑘)
𝑠𝑎(𝑘) = ”𝐹2” ∧ 𝑥𝑎(𝑘) ∈ 𝒮 or
𝑠𝑎(𝑘) = ”𝐵” ∧ 𝑠−(𝑘) = 𝐹1 ∧ ∑𝑠 𝑤𝑠𝑎(𝑘) < 𝜂𝑤 ∧ ℱ𝑎 = ∅ or
𝑠𝑎(𝑘) = ”𝐵” ∧ 𝑠−(𝑘) = 𝐹1 ∧ ∃𝑏 ∈ ℬ𝑎(𝑘) ∶ ∑𝑠 𝑤𝑠𝑏(𝑘) > ∑𝑠 𝑤𝑠𝑎(𝑘)
𝑠𝑎(𝑘) = ”𝐹1” ∧ 𝑥𝑎(𝑘) ∈ 𝒯 or
𝑠𝑎(𝑘) = ”𝐵” ∧ 𝑠−(𝑘) = 𝐹2 ∧ ∑𝑠 𝑤𝑠𝑎(𝑘) < 𝜂𝑤 ∧ ℱ𝑎 = ∅ or
𝑠𝑎(𝑘) = ”𝐵” ∧ 𝑠−(𝑘) = 𝐹2 ∧ ∃𝑏 ∈ ℬ𝑎(𝑘) ∶ ∑𝑠 𝑤𝑠𝑏(𝑘) > ∑𝑠 𝑤𝑠𝑎(𝑘)

∀𝑎 ∈ 𝒜.

(3.16)
with 𝜂𝑤 ∈ ℝ+ the threshold value. The conditions for state ”𝐵” are adjusted such that other beacons are
allowed within the region of influence of a beacon only if this beacon stores a higher amount of summed
weights than the other beacons within its region of influence (). The conditions for states 𝐹1 and 𝐹2 are
adjusted such that a former agent in beacon state will change to a foraging state if a beacon is located
within its region of influence and this beacon stores a higher amount of summed weights. Again we
force an agent to ’forget’ the weight and guiding velocity values after switching from the beacon state
to a forager state, i.e. after a transition 𝜔𝑠𝑎 and 𝜈𝑠𝑎 are reset at zero.

3.2.3. Double Updating
The Double Updatingextension is inspired on [36] who realize faster convergence for the weights in a
similar twopheromonesystem by additionally updating the tofollow pheromone. This theoretical im
provement is made possible by the symmetry of the environment in the foraging problem. The authors
discretized the environment and simulate the dynamics of the agents over a graph. For a symmetric
graph the proability of transitioning from node 𝑖 to node 𝑗 is equal to the probability of transitioning from
node 𝑗 to 𝑖. The question is if this principle is also applicable for our selfguiding swarm design.

The Double Updatingextension, in which foragers reinforce not only the fields corresponding to their
internal state, but also the fields they are following, is implemented by updating the beacon weights
and guiding velocities not only using the set of foraging agents in corresponding state (ℱ𝑠𝑏), but using
all foragers in the region of influence (ℱ𝑏). Equation (3.8) and (3.9) change to:

𝜔𝑠𝑏(𝑘 + 1) = (1 − 𝜌)𝜔𝑠𝑏(𝑘) + 𝜌
∑𝑓∈ℱ𝑏(𝑘) Δ

𝑠
𝑓(𝑘)

|ℱ𝑏(𝑘)|
. (3.17)

𝜈𝑠𝑏(𝑘 + 1) = (1 − 𝜌)𝜈𝑠𝑏(𝑘) + 𝜌
∑𝑓∈ℱ𝑏(𝑘)−𝑣𝑓(𝑘)

|ℱ𝑏(𝑘)|
. (3.18)

3.3. Concept Intuition 25

3.3. Concept Intuition
In the previous subsections we presented the mathematical frameworks of the selfguiding swarm and
its extensions. In this section we will describe the proposed system in a more intuitive way, by visual
izations and analogies between our concept and swarms of Social Insects.

We first describe the conceptual swarm behaviour, next the

3.3.1. Conceptual Swarm Behaviour
Figure 3.1 illustrates the main idea behind the selfguiding swarm. All agents of the homogeneous
swarm start at region 𝒮 in state 𝐹1, i.e. all agents start looking for the 𝒯 region, except for one agent
that starts in state 𝐵 and forms the first beacon of our navigation infrastructure (see Figure 3.1a). The
agents randomly explore the environment while creating an infrastructure of beacons and storing local
information regarding navigation to 𝒮 at the beacons (see Figures 3.1b and 3.1c). We will refer to this
phase as the explorationphase.

Once an agent reaches region 𝒯, its internal state switches to 𝐹2 and the agent tries to return to region
𝒮 using the information stored in the beacons, while storing local information regarding navigation to
region 𝒯 at the beacons. Agents in state 𝐹1 can now start using the navigation information stored at
the beacons to find region 𝒯 (see Figure 3.1d). After some time the local information will converge
such that the infrastructure stores the optimal path. All foraging agents will now travel between 𝒮 and
𝒯 using the shortest path (see Figure 3.1e). After the swarm has established a stable path, we say
the swarm entered the exploitation phase, named after the foragingantphenomenon in which ants
en masse start to exploit the food once a path is created. In the exploitation phase only a part of the
beacon infrastructure will be used. Ideally the beacon infrastructure is optimized, such that the least
amount of agents create the beacon infrastructure storing the shortest path (see Figure 3.1f).

(a) Initialization (b) Exploration Phase (c) Exploration Phase

(d) Exploration Phase (e) Exploitation Phase (f) Exploitation Phase Path Optimization

Figure 3.1: Illustration of the conceptual dynamics behaviour of the selfguiding swarm, where: the green and red marked region
represent 𝒮 and 𝒯, respectively; the red, green and black dots are agents in state 𝐹1, 𝐹2 and 𝐵, respectively; and the cells are
the Voronoi partitioning of the beacons bounded by a maximum range of 𝛿.

3.3.2. Discretization of the Environment by Beacons
Inspired by ants foraging in nature, our concept is build indirect communication via stigmergy, local
storage of information. As discussed in the Section 2.3, continuous marking of the environment, like
the ants do, is in practice hard to achieve. Hence, we choose to discretize the environment into small
regions and store the local information of a region in a beacon. For the foraging problem, and in general
for navigational tasks over discretized environments, it holds that the quality of the solutions improve
for finer discretization. However, the efficiency of an autonomous beacon solution would decrease, as
the relative amount of agents able to travel between the target regions decreases.

26 3. Proposal: Self Guided Swarm

We tried to refine the discretization grid in a smart way, using overlapping regions of influence and
different a different discretization for updating and applying local information. Figures 3.2a and 3.3b
illustrate the region of influence of a beacon and foraging agent, respectively.

A beacon agent is updated by all the foraging agents within its region of influence (see equations
3.8 and 3.9). Or from the forager agent’s perspective: a foraging agents updates all the beacon agents
within its region of influence. The update of an beacon by a foraging agent depends on whether or not
the foraging agent is located in the rewarding regions, and on the information stored in the neighbouring
beacons of the foraging agent. As a result of this mechanism, every region covered by an unique com
bination of beacons, results in an unique update of the covering beacon agents. Figure 3.3b highlights
such an unique area. The crux of our method is that a foraging agent computes the guiding velocity
using the averaged guiding velocities stored at its neighbouring beacon agents (see equation (3.10)).
In other words, every unique region stores unique local navigation information.

Obviously this does not imply that we increase the refinement of the discretization without increas
ing the number of beacons. The unique regions are connected: The information stored in an unique
area is influenced by updates from other unique regions. Hence the unique regions are not a perfect
discretization of the environment. Note however that primarily during the exploitation phase the small
discretization is required to optimize the created paths. In this phase the agents will most likely be
concentrated on a few unique areas per beacon, such that the information stored per unique area is
mainly influenced by updates from this area.

(a) Region of influence of a beacon agent. The blue colored
dashed circles represent the region of influence per beacon. The
foraging agents located within the region of influence of the lower
left located beacon are marked dark blue.

(b) Region of influence of a foraging agent. The blue colored
dashed circle represent the region of influence of the foraging
agent. The beacons within the region of influence of the foraging
agent are marked dark blue. The unique area the foraging agent
is located in is highlighted in light blue.

Figure 3.2: Discretization of the environments by the regions of influence of agents

3.3.3. Local Navigation Information: Weights & Guiding Velocities
Next, let us discuss the information stored at the beacons. The continuous dropping of pheromones
by ants creates a continuous pheromone field. The ants employ the gradient of this field to navigate.
Given a field of beacons storing weights (imitating pheromones), one could simply enable the agents
to detect the location of the beacons and make them to move in the direction of the beacon storing the
highest weight value. Or, one could enable the beacons to broadcast some signal decaying in inten
sity over traveled distance, in this way imitating a continuous pheromone field, and enabling foraging
agents to approximate the gradient of this field and move accordingly. All these kind of methods would
require advanced capabilities of the agents: detection of direction of a signal; measuring the intensity
of a signal; and broadcasting distanceintensitydecreasing signals.

For the agents in our selfguided swarm, we assume none of these advanced capabilities. We only
assume the ability of an agent to measure its global orientation (a compass). Using only the agents
knowledge of its global orientation we want to store in each region the global direction an agent should
move, so called guiding velocities. To achieve this, we use the symmetry of our system: Agents update

3.3. Concept Intuition 27

the local information regarding navigation to 𝒮 while travelling to 𝒯, and viceversa. If we reasonably
assume that the direction towards 𝒮 is opposite to the direction to 𝒯, we can use the opposite direction
of heading of an agent in state 𝐹1 to update the guiding velocities corresponding to state 𝐹1. Remark
that this method relies on the fact that agents start to explore the environment from region 𝒮 or 𝒯. In the
random exploration phase the agents will move outwards the initialization region, in this way initializing
guiding velocities pointing towards the initialization region.

Figure 3.3a illustrates the proposed dynamics. Foraging agent 8 (in state 𝐹1) is heading in the di
rection computed by summing the green guiding velocities stored at its neighbouring beacons (agents
1 and 4) weighted by their corresponding weight value. While looking for region 𝒯, agent 8 updates
the guiding velocities corresponding to state 𝐹1 of its neighbouring beacons by its opposite heading
direction, indicating the direction to region 𝒮.

One question we hope to answer in this thesis, is how the guiding velocity behave with respect to
the weights field. Will the guiding velocities behave as the gradients of the weights field? Or is the
guiding velocity field better interpreted as a map of paths, updated by the weights stored on the paths.
In other words, will the weights dictate the dynamics of the guiding velocities, do the weight dynamics
follow the guiding velocities, or do they adapt simultaneously?

(a) Basic Concept (b) Basic Concept + Moving Beaconsextension

Figure 3.3: illustration of the weight and guiding velocities field, and the dynamics of the selfguiding swarm. Red coloured
symbols correspond to state 𝐹1 and green coloured symbols correspond to state 𝐹2. Regions 𝒮 and 𝒯 are marked red and
green, respectively. Red, green and black dots correspond to agents in state 𝐹1, 𝐹2 and 𝐵, respectively. The arrows represent
the (normalized) guiding velocities stored at a beacon. The black arrow point in the heading direction of an agent. The full, three
quarter, half and quarter circles indicate the weights stored at a beacon. The dashed circles represent the region of influence
per agent.

3.3.4. Extensions
In order to optimize the beacon infrastructure we propose the BeaconForager Switching and Moving
Beaconsextension. Figure 3.3b provides an illustration of the Moving Beaconsextension in which the
beacons move in the direction of the summed guiding velocity weights. Note that this illustration shows
the normalized guiding velocities, in reality the beacon speed will be much smaller than the speed of
the foraging agents.

3.3.5. Abstraction Methods
To analyze formal properties of a stigmergic foraging systems, it is most common to describe the dy
namics using graphs. Pheromones are translated as weights assigned to the nodes or edges, and the
relative weight of an edge or the difference in weights between nodes provides the transition probabil
ities of moving from one location to another.

In our case, abstracting the system as a graph using a fixed discretization of the environment is com
plex, since the beacon configuration is randomly created. Other options, such as choosing the beacons,
or the intersections of the regions of influence, as nodes, do not seem to simplify things either, since
this framework of nodes can not directly be connected to the movements of the foraging agents.

28 3. Proposal: Self Guided Swarm

The most suitable abstraction method seems to be a graph in which each uniquely covered region
is defined as node. Observe that each unique region is at least connected to its neighbouring unique
regions. The transition probabilities between connected nodes, can be derived using the unique guiding
velocity stored in a region, a node. However, some complexities arise. First of all, to which neighbouring
region a guiding velocity will guide an agent within one step, depends on where an agents location within
this unique region. Additionally, the guiding velocity can even guide the agent to nonneighbouring re
gion, skipping over the neighbouring region. Moreover, the weights and guiding velocities related to
a node are affected by agents at (even non) neighbouring nodes, because neighbouring areas share
the same beacons. In the next Chapter we will further emphasize on the difficulties of deriving formal
guarantees or conditions on the behavior of the selfguiding swarm.

4
Results and Guarantees

In this Chapter we will try to derive formal guarantees on the behaviour of the proposed (basic) self
guided swarm given the problem description, the extensions to the basic selfguided swarm design are
disregarded.

In Section 4.1 we will assume that the probability distribution of the random noise added to an agents
movement (𝑝(𝛼𝑢), see Equation (3.11)) is uniformly distributed (for 𝛼𝑢 ∈ (−𝜋, 𝜋)), such that the agents,
while exploring or moving random in exploitation phase, in fact perform a random walk. Moreover we
will assume the domain 𝒟 to be a grid polyon. These assumptions allows us to apply the results of
Wagner et al. [91] (see Section 2.7.1) and conclude on the expected cover time, the variance of the
cover time and the commute time for travelling back and forth between two regions.

In Section 4.2 we show another approach in which we only assume the probability distribution of the ran
dom noise added to an agents movement (𝑝(𝛼𝑢), see Equation (3.11)) to be nonzero (for 𝛼𝑢 ∈ (−𝜋, 𝜋)).
We will show that under these assumptions for some nonzero probability agents will reach every region
of the domain.

4.1. Random Walk Exploration
For our analysis of the cover and commute time we will use the formal results of [91] who show that
the expected cover time of an unknown planar domain is proportional to the electrical resistance of the
domain. The approach presented in Wagner et al. [91] relies on the fact that at every step an agent
chooses a random next location from a circle around its current location. In this Section we will show
that under certain assumption the formal results for the PCalgorithm can be directly applied to the
exploration dynamics of the selfguiding swarm. Let us first state the assumptions for the following
theoretical results.

Assumption 2.

1. Each agent coves a compact disk of radius 𝑟 ∈ ℝ+ centered at the agents location. The radius is
chose such that: 𝑟 > 𝜈0𝜏.

2. Domain 𝒟 is equal to a 𝜇grid polygon of size 𝑛, i.e. a polygon made of a connected set of 𝑛
squares of size 𝜇 on the grid. The size of the squares is chosen such that: 𝑑 < 𝑟. Two squares
on the grid are considered connected if they have a common edge.

3. The probability distribution of the random noise added to an agents movement is assumed to be
uniform distributed, i.e. 𝑝(𝛼𝑢) =

1
2𝜋 for 𝛼𝑢 ∈ (−𝜋, 𝜋) in Equation (3.11).

4. An agent only performs obstaclerobot avoidance, agentagent collisions are neglected, i.e. agents
are assumed to be particles

29

30 4. Results and Guarantees

5. If during a step collision avoidance is applied, an agent will always end up at least 18𝜈0𝜏 distance
away from its previous location. In other words we assume: for 𝑎 ∈ ℱ(𝑘) it holds that ‖𝑥𝑎(𝑘) −
𝑥𝑎(𝑘 + 1)‖2 >

1
8𝜈0𝜏, ∀𝑘. Given the assumptions on 𝒟, this can, for example, be realised by

continuing the path after collision parallel to the domains boundary

Remark 1. Visiting all the 𝑛grid squares is sufficient to guarantee a full coverage of 𝒟.
Note that Remark 1 is a result of our choice of an agents cover radius 𝑟 and the grid square size 𝑑
for which holds that 𝑑 < 𝑟. If an agent is located anywhere within a grid square, the whole square is
covered (actually, some of the neighbor squares are also partially covered, but this does not make any
harm to our upper cover time bound result).

First of all, we can first derive some general results on the minimum number of steps required to cover
𝒟.

Corollary 2. If 𝑅 is an 𝑑grid polygon of size 𝑛, then at last ⌈ 6𝑑2𝑛
(4𝜋+3√3)𝑟2 ⌉ steps of an agent with covering

radius 𝑟 are necessary to cover it

Proof. We can use Lemma 1 and take 𝐴 = 𝑛𝑑2 and 𝑎 = 𝑟2𝜋.

Let us now look at the similarities of the PCprocess and the exploration dynamics of the selfguided
swarm under Assumptions 2. For our analysis we set the maximum step size of the PCprocess (ℎ0)
equal to the distance traveled per time step by foraging agents in the selfguided swarm: ℎ0 = 𝜈0𝜏.
Furthermore, take ℛ𝑟(𝑥) as a disk of radius 𝑟 around 𝑥: ℛ𝑟(𝑥) ≔ {𝑥′ ∶ ‖𝑥′ − 𝑥‖2 ≤ 𝑟}

First, one can verify that if an agent is located at 𝑥𝑘 ∈ 𝒟 such that ℛ𝑟(𝑥𝑘) ⊂ 𝒟, the dynamics as
implied by the PCProcess (See Algorithm 1) are equal to the dynamics of a foraging agent of the
selfguided swarm picking a random direction (𝜖 = 1, Equation (3.11)). In other words, for situations
in which for both the PCprocess and the selfguided swarm no obstacle avoidance is performed (i.e.
ℛ𝑟(𝑥𝑘) ⊂ 𝒟) the exploration dynamics of the selfguided swarm under Assumptions 2 and the PC
Process, both result in fact in agents performing a random walk.

Next, let us look at the situations in which one of the processes does perform collision avoidance.
For the PCProcess, if an agent is closer than 2𝜈0𝜏 to the edge of 𝒟, its stepsize will decrease to pre
serve the basic principle of the PCProcess: an agent chooses its next location uniformly from a circle
around its current location. Taking a range of 2𝜈0𝜏 avoids the change of the robot going to 𝜕𝒟. For the
selfguided swarm we applied a fixed step in combination with a continuous collision avoidance algo
rithm that prevents an agent from reaching 𝜕𝒟 by changing the heading direction (using some policy
satisfying Assumption 2). In the remainder of this section, we will refer to the process of performing a
sequence of random steps in the selfguided swarm under Assumptions 2 as the ’fixed step’approach.

It can be shown that the ’fixed step’approach always covers as least as much surface of the region 𝒟 at
two successive time steps as the PCprocess. Denote the step size of the PCprocess by ℎ𝑃𝐶(𝑥) ∈ ℝ+,
which is given by,

ℎ𝑃𝐶(𝑥𝑘) =min{𝜈0𝜏, max
ℛ2ℎ′ (𝑥𝑘)⊂𝒟

{ℎ′}} (4.1)

The maximum fixed step size of the ’fixed step’approach, without interruption of the collision avoidance
algorithm is denoted by ℎ𝑓𝑖𝑥(𝑥) ∈ ℝ+ and is equal to,

ℎ𝑓𝑖𝑥(𝑥𝑘) =min{𝜈0𝜏, max
ℛℎ′ (𝑥𝑘)⊂𝒟

{ℎ′}}

=min{𝜈0𝜏, 2ℎ𝑃𝐶(𝑥𝑘)}
(4.2)

In addition, define 𝑅𝑃𝐶(𝑥𝑘) and 𝑅𝑓𝑖𝑥(𝑥𝑘) as the set of points that are with nonzero probability reach
able from point 𝑥𝑘 using the PCprocess and fixed stepapproach, respectively. By definition 𝑅𝑃𝐶(𝑥𝑘)
is always a circle of radius ℎ𝑃𝐶(𝑥𝑘). If no collision avoidance is performed for the ’fixed step’approach,
i.e. ℎ𝑓𝑖𝑥(𝑥𝑘) = 𝜈0𝜏, then 𝑅𝑓𝑖𝑥(𝑥𝑘) is also a circle of radius 𝜈0𝜏. At last, denote by 𝑥𝑃𝐶𝑘+1 and 𝑥𝑓𝑖𝑥𝑘+1 a
sample from 𝑅𝑃𝐶(𝑥𝑘) and 𝑅𝑓𝑖𝑥(𝑥𝑘), respectively.

4.2. General Autoregressive Exploration 31

In general it holds that the larger the distance between the centers of two overlapping disks the larger
the area covered by these two disks (see Proof Lemma 1 of [91]). So, to prove that two successive
steps performed by the ’fixed step’approach result in a larger covered area than two successive steps
performed by the PCprocess, we need to guarantee that

‖𝑥𝑃𝐶𝑘+1 − 𝑥𝑃𝐶𝑘 ‖2 ≤ ‖𝑥𝑓𝑖𝑥𝑘+1 − 𝑥𝑓𝑖𝑥𝑘 ‖2 (4.3)

Or in other words, since the ’fixed step’algorithm always travels an absolute distance of 𝜈0𝜏, we need
to guarantee that the distance traveled after collision does not end up ℎ𝑃𝐶 close to 𝑥𝑘. The distance
after collision is equal to 𝜈0𝜏 − ℎ𝑓𝑖𝑥. The maximum distance from the edge of 𝒟 at which 𝑥𝑓𝑖𝑥𝑘+1 can end
up ℎ𝑃𝐶 close to 𝑥𝑘, is if an agent is 1

2𝜈0𝜏 close to the edge of 𝒟, such that ℎ𝑃𝐶 =
1
4𝜈0𝜏. The closer

we get to the edge of 𝒟, the smaller ℎ𝑃𝐶 and the larger 𝜈0𝜏 − ℎ𝑓𝑖𝑥 will become. Since, for the ’fixed
step’ approach we assumed an agent to end up at time 𝑘 + 1 at least a distance 1

4𝜈0𝜏 away 𝑥𝑘, the
constrained given by Equation (4.3) is by assumption always guaranteed.

We showed that under Assumption 2 it is guaranteed that the area covered by the disks ℛ𝑓𝑖𝑥(𝑥𝑘) ∪
ℛ𝑓𝑖𝑥(𝑥𝑘) is equal or lager than the area covered by ℛ𝑃𝐶(𝑥𝑘) ∪ ℛ𝑃𝐶(𝑥𝑘). In other words, an agent
stepping according to the fixed step approach will cover as least as much as stepping according to
the PCprocess. Therefore we conclude that the formal results as derived by Wagner et al. [91] and
discussed in Section 2.7.1, can be applied for the fixed size approach, i.e. our selfguided swarm under
Assumptions 2.

4.2. General Autoregressive Exploration
In the previous section we made some impactful assumptions to derive formal results for the explo
ration behaviour of the selfguided swarm: We only considered environments that can be represented
as gridpolygons and restricted 𝑝(𝛼𝑢) to have an uniform distribution. In this section we will try to find
more general formal results regarding the exploration of the domain under less strict assumptions. For
this, we take inspiration from the results in RRT exploration [42, 46, 47, 47] (see Section 2.8.1). This
offline path planning tool for continuous (nonconvex) domains uses a similar fixed step length explo
ration approach as the selfguided swarm. In fact the tree constructed in the RRT algorithm shows
many similarities with the beacon field created by our selfguidedswarm.

Let us first state the assumptions for the following theoretical results.

Assumption 3.

1. The probability distribution of the random noise added to an agents movement is assumed to be
nonzero, i.e. for 𝑝(𝛼𝑢) > 0 for 𝛼𝑢 ∈ (−𝜋, 𝜋).

2. The intersampling time is always chosen such that: 𝜏 < 𝛿
𝜈0
. Moreover, 𝜏 can be chosen small

enough in comparison to the diameter of the domain 𝒟.

3. The regions 𝒮 and 𝒯 are compact discs of radius, at least, 𝜏𝜈0.

Remark 2. Any forager 𝑎 is always in the region of influence of a beacon. In other words, ∃𝑏 ∈ ℬ(𝑘) ∶
𝑥𝑎(𝑘) ∈ 𝒟𝑏(𝑘) ∀𝑘, ∀𝑎 ∈ ℱ(𝑘).

Observe Remark 2 holds by construction. From the transition rule in (3.4) it follows that, whenever
𝑥𝑎(𝑡) ∉ 𝒟𝑏(𝑡) for any beacon 𝑏 ∈ ℬ(𝑡), it becomes a beacon, therefore covering a new subregion of
the space.

Proposition 1. Let 𝒟 be convex. Let some 𝑎 ∈ ℱ(𝑘0) have 𝑥𝑎(𝑘0) = 𝑥0. Then, for any convex region
𝒟𝑖 ⊂ 𝒟 of nonzero volume, there exists 𝜅𝑖 ∈ ℝ+ and finite time 𝑘𝑖 ∈ ℕ such that

Pr[𝑥𝑎(𝑘0 + 𝑘𝑖) ∈ 𝒟𝑖 | 𝑥0] ≥ 𝜀𝑘𝑖𝜅𝑖 .

32 4. Results and Guarantees

Proof. To prove the statement, we will show that the ball of reachable points includes the entire domain
𝒟 for any agent and large enough times.

We can consider from Remark 2 that a forager is always in the region of influence of at least one
beacon, and therefore will remain in foraging state. At every timestep foragers with some probability 𝜖
chooses a random heading direction: 𝛼𝑎(𝑘 + 1) = 𝛼𝑎(𝑘) + 𝛼𝑢, with 𝛼𝑢 taking values (−𝜋, 𝜋), following
some nonzero density function 𝑝(𝛼𝑢). It holds that 𝛼𝑎(𝑘 + 1) ∈ (−𝜋, 𝜋). Take 𝑝𝑎(𝑥, 𝑘|𝑥0) as the prob
ability density of forager 𝑎 being at point 𝑥 at time 𝑘 with 𝑥𝑎(𝑘0) = 𝑥0, and 𝒳(𝑘) as the set of points 𝑥
forager 𝑎 can be located at time 𝑘 with 𝑝𝑎(𝑥, 𝑘|𝑥0) > 0 probability. One can show that 𝒳(𝑘0 +1) forms
a circle of radius 𝜈0𝜏 in ℝ2 around 𝑥0:

𝒳𝑎(𝑘0 + 1) = {𝑥 ∈ 𝒟 ∶ ‖𝑥 − 𝑥0‖2 = 𝜈0𝜏},

and for 𝑘 = 𝑘0 + 2 the set 𝒳(𝑘0 + 2) forms a disk of radius 2𝜈0𝜏 around 𝑥0,

𝒳𝑎(𝑘0 + 2) = {𝑥 ∈ 𝒟 ∶ ‖𝑥 − 𝑥1‖2 = 𝜈0𝜏, 𝑥1 ∈ 𝒳𝑎(𝑘0 + 1)}
= {𝑥 ∈ 𝒟 ∶ ‖𝑥 − 𝑥0‖2 = 2𝜈0𝜏}
.

(4.4)

One can verify that 𝒳(𝑘0 + 2) forms a disk of radius 2𝜈0𝜏 around 𝑥0 as follows: Take a point 𝑥2 in
𝒳𝑎(𝑘0 + 2), then one can always find a point 𝑥1 ∈ 𝒳(𝑘0 + 1) such that (𝑥0, 𝑥1, 𝑥2) forms a triangle
where ‖𝑥0−𝑥1‖2 = 𝜈0𝜏 and ‖𝑥1−𝑥2‖2 = 𝜈0𝜏. By construction, for any point x in 𝒳(𝑘0+2) it holds that
𝑝𝑎(𝑥, 𝑘0 + 2|𝑥0) > 0, so for a subset 𝒟2 ⊆ 𝒳(𝑘0 + 2),

Pr[𝑥𝑎(𝑘0 + 2) ∈ 𝒟2 | 𝑥0] ≥ 𝜀2∫
𝒟2
𝑝𝑎(𝑥, 𝑘0 + 2|𝑥0)𝑑𝑥 ≥ 𝜀2𝜅2,

where 𝜅2 ∈ ℝ+ is a function of the set 𝒟2 and the probability density 𝑝𝑎(𝑥, 𝑘0 + 2|𝑥0). Remark that
the first inequality is due to the fact that, by choosing a nonrandom velocity, the agent could still end
up at 𝒟2. One can now see how for 𝑘 ≥ 2 the sets 𝒳𝑎(𝑘0 + 𝑘) are balls centred at 𝑥0 and radius
𝑘𝜈0𝜏. Let 𝒟𝑖 be any subset of 𝒟 with nonzero volume and take 𝑘𝑖 = min{𝑘 ∶ 𝒟𝑖 ⊂ 𝒳𝑎(𝑘)}. Then,
Pr[𝑥𝑎(𝑘0 + 𝑘𝑖) ∈ 𝒟𝑖 | 𝑥0] ≥ 𝜀𝑖𝜅𝑖 for some 𝜅𝑖 > 0.

Taking inspiration from [42], we can draw similar conclusions regarding the exploration for the case that
𝒟 is nonconvex.

Lemma 3. Let 𝒟 be a nonconvex connected domain. Let some 𝑎 ∈ ℱ(𝑘0) have 𝑥𝑎(𝑘0) = 𝑥0. Then,
for any convex region 𝒟𝑖 ⊂ 𝒟 of nonzero volume, there exists 𝜏 > 0 and 𝜅𝑖 > 0 such that we can find
a finite horizon 𝑘𝑖 ∈ ℕ,

Pr[𝑥𝑎(𝑘0 + 𝑘𝑖) ∈ 𝒟𝑖 | 𝑥0] ≥ 𝜀𝑘𝑖𝜅𝑖 .
Proof. If 𝒟 is connected, then for any two points 𝑥0, 𝑥𝑘𝑖 ∈ 𝒟, we can construct a sequence of balls
{𝒳0, 𝒳1, ..., 𝒳𝑘𝑖} of radius 𝑅 ≥ 𝜈0𝜏 centred at 𝑥0, 𝑥1, ..., 𝑥𝑘𝑖 such that the intersections 𝒳𝑘 ∩𝒳𝑘+1 ≠ ∅ and
are open sets, and 𝑥𝑘 ∈ 𝒳𝑘−1. Then, we can pick 𝜏 to be small enough such that every ball𝒳𝑘 ⊂ 𝒟 does
not intersect with the boundary of 𝒟, and we can apply now Proposition 1 recursively at every ball. If
‖𝑥𝑘−𝑥𝑘−1‖2 < 2𝜈0𝜏, then from Proposition 1 we know 𝑝(𝑥𝑘 , 𝑘+2|𝑥𝑘−1) > 0 since, for a given 𝑥𝑘−1, any
point 𝑥𝑘 has a nonzero probability density in at most 2 steps. Then, it holds that 𝑝(𝑥𝑘𝑖 , 𝑘𝑖−1+2|𝑥0) > 0
for 𝑘𝑖−1 ∈ [𝑘𝑖 , 2(𝑘𝑖 − 1)], and for a target region 𝒟𝑖: Pr[𝑥𝑎(𝑘0 + 𝑘𝑖) ∈ 𝒟𝑖 | 𝑥0] ≥ 𝜀𝑘𝑖 ∫𝒟𝑖 𝑝𝑎(𝑥, 𝑘𝑖|𝑥0)𝑑𝑥 ≥
𝜀𝑘𝑖𝜅𝑖 for some 𝜅𝑖 > 0.

It follows from Lemma 3 that for large enough 𝑘𝑖 the probability of an agent at any starting point 𝑥0 ∈ 𝒟
having visited any region 𝒟𝑘 is nonzero, and therefore every forager agent visits every region infinitely
often.

For a given initial combination of foraging agents, we have now guarantees that the entire domain
will be explored and covered by beacons as 𝑘 → ∞. We leave for future work the formal guarantees
regarding the expected weight field values 𝜔𝑠𝑏(𝑘) and guiding velocities 𝜈𝑠𝑏(𝑘).

5
Experimental Analysis and Results

In this Chapter we will perform an experimental analysis of the proposed selfguided swarm. First,
we introduce our experimental framework: In Section 5.1 we explain the experimental setups and in
Section 5.2 we introduce the performance measures used to analyse the foraging performance and
quality of the performance. Next, we discuss our experimental results for the following aspect:

• Parametric Performance
In Section 5.3 we analyse the impact of the hyperparameters, the evaporation rates and explo
ration rate, on the foraging performance. In addition we analyze the crossrelation between these
hyperparameters, and their relation to the swarm size.

• Influence of Swarm Size
In Section 5.4 we extensively analyze the impact of different swarm size on the swarms foraging
performance.

• Robustness
In Section 5.5 we investigate the robustness of the system against measurement and commu
nication noise, and temporal agent failures, and we investigate the effect of limitations on the
agents listening capacities.

• Model Extensions
In Section 5.6 we analyze the performance of the proposed BeaconForager Switching, Moving
Beacons and Double Updatingextensions.

We conclude this chapter with a summary of the obtained results in Section 5.7.

5.1. Implementation
The self guided swarm is first implemented by simulating the robots as particles. This requires relative
few computational power and allows us the analyze the performance of the swarm for broad ranges
of parameters and environmental settings. In the remainder of this chapter we refer to this simulator
as the Particle Simulator. The self guided swarm is also implemented in a realistic robot simulator
called Webots, to conclude on the actual performance in reallife settings. In this section we explain
the algorithms to implement the dynamics of the self guided swarm as covered in Chapter 3, the setup
of both simulators, the parameters, and the different environmental settings.

5.1.1. Algorithms
The dynamics of the basic self guided swarm as covered in Section 3.1 is implemented according to
Algorithms 4 and 5. Per extension the following adaptions to the standard Algorithms are made:

1. For the BeaconForager Switchingextension (See Subsection 3.2.1) line 8 of both Algorithms
changes to: ”Check transitions in (3.14)”.

33

34 5. Experimental Analysis and Results

2. For theMoving Beaconsextension (see Subsection 3.2.2) line 5 of Algorithm 4 changes to: ”Move
according to 𝑣𝑏(𝑘+1) given by (3.15)” and line 8 of both Algorithms changes to: ”Check transitions
in (3.16)”.

3. For theDouble Updatingextension (see Subsection 3.2.3) line 4 of Algorithm 4 changes to: ”Com
pute 𝜔𝑠𝑏(𝑘 + 1), 𝜈𝑠𝑏(𝑘 + 1) according to (3.17) and (3.18)”.

Algorithm 4: Behaviour of Beacons
1 while 𝑠𝑏(𝑘) = 0 do
2 Broadcast 𝜔𝑠𝑏(𝑘), 𝜈𝑠𝑏(𝑘);
3 Listen for signals during 𝜏 seconds;
4 Compute 𝜔𝑠𝑏(𝑘 + 1), 𝜈𝑠𝑏(𝑘 + 1) according to (3.8) and (3.9);
5 Move according to 𝑣𝑏(𝑘 + 1) as given by (3.5);
6 if Obstacle then
7 Do not move
8 Check transitions in (3.4);

Algorithm 5: Behaviour of Foragers
1 while 𝑠𝑓(𝑘) ≠ 0 do
2 Listen for signals during 𝜏 seconds;
3 Broadcast 𝑣𝑓(𝑘), Δ𝑠𝑓(𝑘);
4 Compute 𝑣𝑓(𝑘 + 1) from (3.11) and (3.12);
5 Move according to 𝑣𝑓(𝑘 + 1);
6 if Obstacle then
7 Move to avoid obstacle
8 Check transitions in (3.4);

5.1.2. Particle Simulator
In the Particle Simulator, Algorithms 4 and 5 are implemented, modeling the robots as particles in contin
uous space and discrete time. The time steps are equal to 𝜏. Since particles do not occupy any space,
robotrobot collisions do not occur and can be ignored. Robotobstacle avoidance is implemented us
ing the mirror law: If a particle hits an obstacle, calculate the angle of incidence to the obstacle surface.
The particle bounces with the inverse angle of incidence from the surface and continues its path. As
in reality the robots are released in batches to prevent overcrowding in the start region, the robots in
the particle simulations are also released in batches of 2. Note that we consider our robots to be capa
ble of driving in any direction (holonomic or omindirectional robots), so apart from the environmental
constraints there are no constraints on possible movements of the particles. The Particle Simulator is
written in Python, the code can be found at GITHUB particle_simulator_self_guided_swarm.

An example of the results of a particle simulation is given by Figure 5.1. The red and green high
lighted regions indicate the nest and food location. Black dots are agents acting as beacon. Green
and yellow dots are foraging agents looking for the target (in state 𝐹1) and source region (in state 𝐹2).
The size of the black dots represents the relative summed weights stored at a beacon. The black and
blue lines indicate the guiding velocity vectors corresponding to the nest and food seeking pheromone
stored at a beacon. Figure 5.1a shows a swarm in the exploration phase, i.e. the agents are searching
for the target region while building the weight and guiding velocity fields corresponding to the nest
seeking pheromone. Figure 5.1b shows the swarm in exploration phase, i.e. the swarm established a
path between the source and target region.

https://github.com/sjladams/particle_simulator_self_guided_swarm

5.1. Implementation 35

(a) Exploration phase (b) Exploitation phase

Figure 5.1: Snapshots of a particle simulation in which a selfguiding swarm consisting of 101 agents is deployed in the environ
ment with asymmetric obstacle.

36 5. Experimental Analysis and Results

5.1.3. Webots Simulator
We use theWebots [59] simulator to implement the self guiding swarm in a realistic setting. TheWebots
Simulator is able to simulate realistic robots, including the Elisa3 robot (GCTronic) (See Figure 5.2b),
in physical environments. In the future we want to use the Elisa3 robot to implement our work in real
life. The Elisa3 robot satisfies the restrictions of Assumption 1, expect that the ELisa3 robot does not
possess a global orientation measure (yet). The Webots simulations are performed using time steps
of 64 microseconds, resulting in very realistic robotics behavior.

In the Webots simulations we limit the robots to perform only four types of movement: move left or right,
or move forward or backward. By limiting the movements of the robots, we preserve the holonomic
nature of the Elisa3, but simplify the (future) controller of the robot. The Elisa3 robots is equipped with
8 IR proximity sensors (see Figure 5.2a) which are used for collision avoidance. To present our collision
avoidance algorithm, define the event of detection of an obstacle by sensor # as Trigger_Prox_#. The
very simplistic collision avoidance algorithm is given by Algorithm 6. The algorithm comes down to:
move away from the direction a object is detected.

(a) Hardware components of an Elisa3 Robot. The IR proximity
sensors are highlighted by blue boxes and tagged as ’Prox#’.

(b) Webots version of Elisa3 Robot.

Figure 5.2: Simulation of Elisa3 in Webots

Algorithm 6: Collision Avoidance Elisa3 Robot
1 if Trigger_Prox_1 then
2 Turn 10∘ left
3 else if Trigger_Prox_7 then
4 Turn 10∘ right
5 else if Trigger_Prox_0 then
6 Turn 180∘

7 else if Trigger_Prox_5 then
8 Turn 10∘ left
9 else if Trigger_Prox_3 then
10 Turn 10∘ right
11 else if Trigger_Prox_4 then
12 Turn 180∘

The agents are able to listen almostcontinuously. The incoming signals are stored in a buffer, which is
emptied every 𝜏 seconds. In Section 5.5 we analyse the performance of the system for a limited size
of this buffer. The robots are released in batches of 2 per second to prevent overcrowding. The robots

5.1. Implementation 37

are initially aligned in a square at the nest location and released in bathes of 2 per second to prevent
overcrowding at the area around the nest.

The robot controllers are written in C. For the simulations presented in this thesis we used a Supervisor
to control the communication between robots and extract measures of the system. The Supervisor
is written in Python. The code for the Webots Simulator of the selfguided swarm can be found at
GITHUB webots_simulator_self_guided_swarm. The READMEfile provides information on imple
mentation and usage of the project.

Figures 5.3a and 5.3c show snapshots of a Webots simulation. The blue colored robots are in the
beacon state (𝐵), the green colored robots are foragers in ’target region seeking’ (𝐹1) state and the red
colored robots are foragers in ’starting region seeking’ state (𝐹2). Grey colored robots are not deployed
yet. To analyze the behavior of the swarm we created similar abstraction plots as used to present the
results of the the Particle Simulator shown in Figures 5.3b and 5.3d. The colors of the points corre
spond to the same robot states as used in the Webots simulation; the blue and black lines illustrate
the stored guiding velocities (𝜈𝑠𝑏(𝑘)) corresponding to state 𝐹1 and 𝐹2, respectively, and the size of dots
illustrate the relative amount of summed weights (𝜔𝑠𝑏(𝑘)) stored at a beacon agent.

(a) Snapshot exploration phase (b) Abstraction exploration phase

(c) Snapshot exploitation phase (d) Abstraction exploitation phase

Figure 5.3: Snapshot and the corresponding abstractions of a Webots simulations in which a selfguiding swarm consisting of
101 robots is deployed in the environment with asymmetric obstacle.

https://github.com/sjladams/webots_simulator_self_guided_swarm

38 5. Experimental Analysis and Results

5.1.4. Parameters & Worlds
The default parameters used for the simulations are presented in Table 5.1. We refer to the evaporation
rates (𝜌𝑣, 𝜌𝑤) and the exploration rate (𝜖) as hyperparameters. In Section 5.3 we analyse the optimal
value of the hyperparameters for an environment with symmetric obstacle and different swarm sizes.
The hyperparameter values as presented in Table 5.1 are the optimal values as concluded in Section
5.3.

In addition to these parameters, we need to specify the probability density function 𝑝(𝛼𝑢) used by
foraging agents to add random noise to their movement if they are exploring or choose to move ran
domly (see Equation (3.11)). In the experiments we use an uniform distributed 𝑝(𝛼𝑢), i.e. the agents
perform a random walk. In addition, we also want to mention the option to bias the forager to its former
heading direction, by choosing a normal density function centred at zero and with standard deviation
𝜎𝑝, i.e. 𝛼𝑢 ∼ 𝒩(0, 𝜎2𝑝). The default value of 𝜎𝑝 is given in Table 5.1. The normal distribution is only
used for our demonstration results, as referred to in Section 5.7.

Since the optimal characteristics of an robotics swarm is directly related to the type of environment,
we use several environments to investigate the performance of the self guided swarm. Table 5.2 pro
vides an overview of the characteristics of the environments used. The location and shape of the
square obstacles are given by the coordinates of the vertices. The Webotsworld (.wbt) files of the
environments can be found in the Github repository GITHUB webots_simulator_self_guided_swarm.

Obviously, the swarm should be able to overcome obstacles. The environments with (non)symmetric
obstacles try to replicate the famous ’double bridge experiment as introduced used by [17, 30] . For
the environment with a symmetric placed obstacle it is interesting to analyse if the system converges
to one path. For the environment with nonsymmetric obstacle it is interesting to show convergence to
the optimal (shortest) path.

We want to use as less beacons for our guiding infrastructure as possible. So, it is interesting to
analyse if the system is able to converge to one (optimal) path. Since it is inherent harder to converge
if two paths are of almost equal length, than when one range of paths is more optimal than the other
due the geometry of the environment, as in the nonsymmetric case, we mostly use the environment
with symmetric obstacle in our analysis.

We also implement a clean environment without any obstacles. Such an environment seems easy
to solve, since the swarm only has to create a straight path. However, it can be challenging for the
swarm to deal with the ’freedom’ this environment provides to create paths. Since the robots are not
pushed by obstacles to choose between paths, in theory, there are many close to optimal paths possi
ble.

At last, for demonstration purpose we implement a large environment with multiple obstacles to show
the overall capabilities of the system.

𝜌𝑤 𝜌𝑣 𝜆 𝑟 𝜂𝑤 𝜀 𝜏(𝑠) 𝛿(𝑚) 𝛿𝑠,𝑡(𝑚) 𝜈0(𝑚/𝑠) 𝜈𝑏,0(𝑚/𝑠)

0.01 0.01 0.8 1 1𝑒 − 5 0.01 1 0.4 0.2 0.25 0.02

Table 5.1: Default parameters for the simulations

Environment
Reference Size Nest

Location
Food

Location Obstacle Coordinates

No Obstacle [3, 2.5] (−1, 0) (1, 0)
Symmetric obstacle [3, 2.5] (−1, 0) (1, 0) (−0.3, −0.45), (−0.3, 0.45), (0.3, 0.45), (0.3, −0.45)
Asymmetric obstacle [3, 2.5] (−1, 0) (1, 0) (−0.3, −0.75), (−0.3, 0.15), (0.3, 0.15), (0.3, −0.75)
Demonstration [10, 8] (−1, 0) (4.5, 5) (−1, 2), (−1, 4), (1, 4), (1, 2) & (3, 0), (3, 2), (5, 2), (5, 0)

Table 5.2: Characteristics of all the environments used in the simulations. Coordinates and sizes are given in meters.

https://github.com/sjladams/webots_simulator_self_guided_swarm

5.2. Performance Metrics 39

5.2. Performance Metrics
The goal of the foraging problem is to maximize the number of trips between the target regions. The
general measure for the foraging performance is the number of trips with respect to the number of
robots used and the running time (per robot) (See e.g. [23]), which we define as the navigation delay.
The navigation delay does not provide much inside in the quality of a solution. We try to solve the
foraging problem by creating (optimal) trajectories by emergent selforganized behavior. Therefore,
the accumulation of agents around trajectories should provide a measure of the quality of a solution.
We use entropy to measure the clustering of robots. Moreover, the navigation delay does not provide
any insight in the optimal systems behavior. We are in particular interested in the systems ability to
optimize the paths. Therefore we also introduce a measure for the shortest time it took agents to
complete a number of successive trips.

5.2.1. Average Navigation Delay
To measure the foraging performance, we measure the average navigation delay of the swarm. Nav
igation delay is defined as the average time it takes an agent to travel between the target regions.
To define a trip we use the state transitions ((3.4) or (3.14)), which implies that if an agent in state 𝐹1
reaches region 𝒯 it switches to state 𝐹2, and vice versa. Lets define a completed trip at time step 𝑘 as,

trip𝑎(𝑘) = {
1 if 𝑠−𝑎 (𝑘), 𝑠𝑎(𝑘) ∈ {𝐹1, 𝐹2} ∧ 𝑠−𝑎 (𝑘) ≠ 𝑠𝑎(𝑘)
0 else

∀𝑎 ∈ 𝒜. (5.1)

Note that this definition of a trip also includes potential trips of agents in beacon state switching back
to the forager state in the BeaconForager Switchingextension, since an agent in beacon state will
switch back to its previous foraging state (see (3.14)). Define all trips of a swarm over a finite horizon
𝑡 ∈ [𝑘0, 𝑇] as,

trips = ∑
𝑎∈𝒜

∑
𝑘∈[𝑡0 ,𝑇]

trip𝑎(𝑘) (5.2)

Then, the average navigation delay is given by,

𝑑 (𝑘0, 𝑇) =
|𝒜|(𝑇 − 𝑘0)

trips (5.3)

For our analysis we are often only interested in the performance of a swarm in the exploitation phase,
i.e. after a path has been created. In this context we say we measure the navigation delay after con
vergence. The convergence time is roughly defined as the point in time at which at least one agent has
travelled a full cycle: Travelled from the nest to the food and back. We always specify the convergence
time used for a measure.

In the basic selfguiding swarm method we assume a static infrastructure of beacons. In this case
it is interesting to analyze the navigation delay of the foraging agents only. The average navigation de
lay of the foraging agents is obtained by only measuring the navigation delay for the agents in forager
state, i.e. replacing 𝒜 with 𝒜𝑠 in Equation (5.2) and (5.3).

To put the foraging performance of the systems in perspective, we derive upper and lower bounds
for the navigation delays. As lower bound we take the absolute minimum traveling time, i.e. the time it
takes to travel the optimal path at maximum speed. Note that this is an extremely conservative bound
as it represents the case in which only a single robot knows and perfectly follows the optimal path. This
lower bound does not take potential robotrobot or robotenvironment collisions into account, nor the
limitations on the robot movements (turn on spot, move in straight line). To obtain the upper bound we
run simulations in which all agents start and stay in foraging state moving at all time randomly (move
according to Equation 3.11 with 𝜖 = 1).

40 5. Experimental Analysis and Results

5.2.2. Minimum Navigation Delay
To determine the optimally of the created paths, we measure the minimum times it takes an agent to
perform nconsecutive trips. Employing that the chance of successive random optimal trips decays to
zero when measuring more than one consecutive trips. The set containing the number of steps it took
agent 𝑎 to perform nconsecutive trips is given by,

𝒟𝑎(𝑛, 𝑘0, 𝑇) = {𝑙 | ∑
𝑘∈[𝑘start ,𝑘start+𝑙]

trip(𝑘) = 𝑛, 𝑘𝑠𝑡𝑎𝑟𝑡 ∈ (𝑘0, 𝑇 − 1), 𝑙 ∈ (0, 𝑇 − 𝑘start)} 𝑎 ∈ 𝒜 (5.4)

For our analysis we take as measure of optimality the average of the 10fastest nconsecutive trips
within the finite time interval [𝑘0, 𝑇], which we define as 𝑑𝑚𝑖𝑛(𝑛, 𝑘0, 𝑇) ∈ R+.

5.2.3. Entropy
We use the entropy to measure the accumulation of agents around trajectories. Entropy has often been
used to quantify forms of clustering in robots to investigate if stable selforganization arises (see i.a.
[23]). We use the hierarchic social entropy as defined by [3] applying single linkage clustering. In single
linkage clustering a robot is assigned to a cluster if the relative distance between one of the robots in
the cluster and the robot considered is smaller than ℎ. Define by 𝒞(𝑡, ℎ) the set of clusters at time 𝑡
with minimum single linkage distance ℎ and by 𝒜𝑐𝑖 the subset of agents in cluster 𝑐𝑖, with 𝑐𝑖 ∈ 𝒞(𝑡, ℎ).
The entropy of a set of robots 𝒜 is defined as

𝐻 (𝒜, ℎ) = − ∑
𝑐𝑖∈𝒞(𝑡,ℎ)

|𝒜𝑐𝑖 |
|𝒜| log2 (

|𝒜𝑐𝑖
|𝒜|) . (5.5)

Hierarchic social entropy is then defined as integrating 𝐻 (𝒜, ℎ) over all values of ℎ:

𝑆 (𝒜, ℎ𝑚𝑎𝑥) = ∫
ℎ𝑚𝑎𝑥

0
𝐻(𝒜, ℎ)𝑑ℎ (5.6)

with ℎ𝑚𝑎𝑥 = ∞. The absolute lower bound of the entropy measure can be calculated analytically. The
robots can not be closer together than the robots diameter (𝛿𝑟 ∈ ℝ+), so the hierarchic social entropy
can never be smaller then,

𝑆 (𝒜, 𝛿𝑟) = − log2 (
1
|𝒜|) 𝛿𝑟 (5.7)

The theoretical absolute maximum entropy is obtained by distributing the agents uniformly over the
environment, i.e. maximizing the average distance between the robots. The maximum entropy can be
approximated by taking the maximum entropy of a large number of sets of randomly distributed agents.

For our analysis we are only interested in the difference in entropy of simulations. Therefore, we exclude
the minimum entropy from our measure and normalize our measure by the approximated maximum
entropy. With 𝑆𝑚𝑎𝑥(𝒜) being the approximated maximum entropy of 𝑁 agents, the corrected entropy
measure is defined as:

�̄� (𝒜) = 𝑆(𝒜, 𝛿𝑟)
𝑆𝑚𝑎𝑥 (𝒜)

(5.8)

Since we are only interested in the accumulation of foraging agents around trajectories, in our analysis
we measure the entropy over the set of agents 𝒜𝑠(𝑘).

At last, note that despite the fact that agents in the particle simulator can be closer than 𝛿𝑟, for the
particle simulator too we only integrate over distances greater than 𝛿𝑟. By taking the exact same cor
rected entropy measure for both the Particle and Webots Simulator, we can compare the absolute
measures, and draw conclusions on the difference in clustering at some point in time.

5.3. Parametric Performance Analysis 41

5.3. Parametric Performance Analysis
In this section the impact of the hyperparameters, the exploration rate (𝜀), the weight and directional
vector evaporation rates (𝜌𝑤 and 𝜌𝑣), on the foraging performance of the self guiding swarm is investi
gated.

5.3.1. Setup
As we expect the three hyperparameters to be correlated, we first investigate the swarm performance
for combinations of three hyperparameters, while fixing the swarm size to 101. Next, as the swarm
size is of particular interest in our later analysis, we analyse the performance for each hyperparameter
for a range of swarm sizes. During the analysis we fix the unconsidered hyperparameter(s) at the
optimal value as derived in the crosshyperparameteranalysis (see Table 5.1). The following ranges
of hyperparameters and swarm size are evaluated:

𝜖 ∈ {0; 0.001; 0.01; 0.125; 0.25},
𝜌𝑤 ∈ {0; 0.01; 0.05; 0.1; 0.2},

𝜌𝑣 ∈ {0, 0.001, 0.01, 0.1, 0.2},
𝑁 ∈ {41; 81; 121; 161; 201}

Because of the relatively heavy computational load of the realistic Webots simulations, a choice be
tween the Webots and Particle Simulator is a choice between the executable number of simulations,
and the level of abstraction of the simulations. Since we want to investigate the performance for a
broad range of hyperparameter and swarm size values, the analysis is performed using the Particle
Simulator. Using the Particle Simulator a swarm is employed in the symmetric obstacle environment
(see Table 5.2) for 300 seconds. All (nonhyper) parameters are chosen equal to the default values as
given by Table 5.1.

For the parametric analysis it suffices to derive conclusions based on the average foraging perfor
mance of the self guiding swarm in the exploitation phase. We therefore only consider the average
foraging performance after convergence measure. In general we observe that the runs converged af
ter 150 seconds. So, the navigation delay is measured over the interval 𝑡 ∈ [150𝑠, 300𝑠]. Every data
point shown is the median of 50 independent simulation runs.

5.3.2. Expectations
Let us analyze the relation between the evaporation rates and the system behavior. For ant systems
the evaporation rate can intuitively be interpreted as the rate at which a system forgets about the past
and learns about the present. In the ant system, updating of the systems knowledge is done by contin
uous marking of the traveled paths. The system forgets about the past by evaporation of the markings.
The higher the rate, the faster the markings evaporate, but also, the more marking is dropped. In our
case updating implies rewarding for positive actions and propagating these rewards through the sys
tem. The higher the evaporating rate, the higher the impact of single positive rewards, but also, the
faster these updates will be forgotten. Note that for an evaporation rate of zero, the impact of actions
is zero, so the system will behave randomly.

So, a high or low evaporation rate is the difference between high impact of single present actions
and fast forget about the history of actions, and low single impact, but long memory. In the exploration
phase we want the system to learn fast. We want that an agent that receives a reward has a large
impact on the system, such that this action attracts other agents quickly to the area of reward. Once
the system has converged, we do not want the trails to be destroyed by single non positive (random)
actions, we want to slowly improve the paths created.

It is harder to analyze the impact of the guiding velocities’ evaporation rate. If one thinks about the guid
ing velocities as the gradients of the weight field, following the evaporation rate chosen for the weights
seems as the most logical thing to do. However, as explained in Section 3.3, The system dynamics
do not necessarily lead to this coupling between the weight and guiding velocity fields. Therefore the
choice for the rates is not that straightforward and the expected performance for different rates is hard
to predict.

Remark that, although we will only consider static environments for now, higher evaporation rates

42 5. Experimental Analysis and Results

have a positive impact on the ability of a system to adapt to environmental changes. If for example the
location of obstacles changes, possibly the possible and optimal paths change, therefore the preferred
actions change, such that we want to forget the past and learn from the present. This implies that
higher evaporation rates should result in better adaptability performance.

The impact of the exploration rate on the system behavior is easier to analyse. The higher the ex
ploration rate, the more often agents will randomly pick their movement action. The exploration rate
has a low impact on the swarms behavior in the exploration phase as the agents will move already
randomly if no pheromone field is available. The exploration rate has mainly impact on the ability to op
timize the existing paths once the food is found. Or formally said, a non zero exploration rates enables
the system to overcome local minima. The exploration rate does has a direct impact on the perfor
mance while exploiting: a system will inherently perform worse for higher exploration rate as agents
will more often not follow the created paths, and because of that not contribute to the fullest to the
exploiting task. Again whether a environment is static or not is of importance. Since agents will deviate
more often from the beaten paths for a higher exploration rate, the swarm will be able to overcome
changes to the environment more easily.

5.3.3. Results
Figures 5.4a, 5.4b and 5.5a show the performance for different combinations of the hyperparameters
(𝜖, 𝜌𝑤 and 𝜌𝑣). Figures 5.5a, 5.5b and 5.5c show the relation between the hyperparameters and the
swarm size. Given the simulation results we observe the following:

1. Figure 5.4c shows a correlation of zero between the evaporation rates. The evaporation rate of
the guiding velocity seems to dictate the performance. Only for 𝜌𝑣 equal to 0.1 a (negative) effect
on the performance for increasing 𝜌𝑤 can be observed. Figures 5.4a and 5.5a confirm that 𝜌𝑤
has relatively small impact on the performance of the system. Figures 5.4b and 5.5b confirm the
high impact of a 𝜌𝑣 on the systems performance.

This result seems to contradict with the interpretation of the guiding velocities as the gradients of
the weight fields. As it seems, the system requires the establishment of stable paths, which are
optimized over time pushed by the weight field. Besides, it is surprising that the 𝜌𝑤 has such a
low impact on the system.

2. Figures 5.4a and 5.5c show a similar pattern for the impact of the exploration rate on the per
formance: An increasing exploration rate results in a decrease in performance. However, the
performance for an exploration rate of zero differs. Figure 5.5c does not show any negative ef
fect on the performance, where Figure 5.4a does show a large negative effect. The results do not
show the expected ability for nonzero exploration rate to overcome local minima and enable the
swarm to converge to the most optimal path, the global minimum. We doubt whether the system
is able to optimize the paths after exploration.

3. Figure 5.4b confirm our observation for the need of slowly adapting guiding velocities. If 𝜌𝑣 is
increased, the only way to improve the performance is to increase the randomness, i.e. not use
the information stored in the field.

4. Figures 5.5a, 5.5b and 5.5c all show no relation between the swarm size and the choice hyper
parameters. Moreover we can already conclude that an increasing swarm size has a positive
impact on the systems performance (in case of particle simulations). We will further analyze this
relationship in Section 5.4.

5. The best performance can be achieved for 𝜌𝑤, 𝜌𝑣 and 𝜀 equal to 0.01, 0.001 and 0.01 respectively.

5.3. Parametric Performance Analysis 43

(a) exploration rate (𝜖) vs. evaporation rate of the weights (𝜌𝑤)

(b) exploration rate (𝜖) vs. evaporation rate of the directional vectors (𝜌𝑣)

(c) evaporation rate of weights (𝜌𝑤) vs. evaporation rate of the direction vectors (𝜌𝑣)

Figure 5.4: Average foraging performance, measured by the average navigation delay, of the selfguiding swarm of size 101
applying different exploration and evaporation rates and deployed in the environment with symmetric obstacle.

44 5. Experimental Analysis and Results

(a) evaporation rate weights (𝜌𝑤) vs. swarm size

(b) Evaporation rate directional vectors (𝜌𝑣)

(c) Exploration rate (𝜖)

Figure 5.5: Average foraging performance, measured by the average navigation delay, of the selfguiding swarm of different
sizes applying different exploration rates and deployed in the environment with symmetric obstacle.

5.4. Swarm Size Analyses 45

5.4. Swarm Size Analyses
In this section the impact of the swarm size (𝑁) on the foraging performance of a selfguiding swarm is
investigated, while fixing the hyperparameter values to the values derived in Section 5.3.

5.4.1. Setup
Since we are investigating the impact of the swarm size, which is inherently related to the interaction
of the agents bodies, we will run in our simulations in both the particle as the Webots simulator. For
the simulations the defaults parameters are used (as given by Table 5.1). We evaluate the systems
performance for the environment with and without symmetric obstacle (see Table 5.2) for 400 seconds.
The performance is measured both by the navigation delay and the entropy (over time). The navigation
delay is measured for all agents and for the foraging agents only, from 𝑡 = 200 to 𝑡 = 400. Each data
point includes results from 12 independent test runs. We investigate the performance for the following
swarm sizes: {41, 81, 121, 161, 201}.

5.4.2. Expectation
Increasing the number of agents has potentially positive and negative effects on the foraging perfor
mance of a swarm. The more agents, the more the system is enriched by updates from different
locations per time step, which should imply faster learning, regarding both creation and optimization of
the path. As more random moving agents simply cover more of the environment we expect a system to
explore the environment on average faster for increasing swarm size. On average, because our system
is driven by randomness, so there will always be a swarm consisting of a small number of agents that
will create a path faster. Regarding this random aspect, we also expect that increasing the swarm size
will decrease the spread in performance for a number of independent runs. The more agents, the more
the combination of all agents will move like the expected behavior of the swarm. Also, if a (whether
or not optimal) path is established, more agents would imply relatively more agents that can act as
foragers, because the number of beacons only depends on the size and shape of the environment.
This should result in a lower average navigation delay measured over all agents

In practise increasing the number of agents has one major disadvantage: The robots occupy space
and need to perform obstacle avoidance manoeuvres to not collide with eachother. The robots are
around 4cm in diameter, and start collision avoidance manoeuvres when they are close (≈ 2𝑐𝑚) to
an obstacle or another robot. The more agents the more agents need to perform collision avoidance.
While performing collision avoidance, agents are not of value to the system. Too many agents attracted
to a path can create ’traffic jams’, which could decrease the performance of the swarm overall. We will
refer to an impact on the foraging performance due to too high agent densities by the overcrowding
effect. We provided an example of expected negative impact due to overcrowding. But one could also
think of a positive effect: Overcrowding could enforce agents to speed up the exploration of an envi
ronment as they are pushed away from the area explored by others.

The question is: Up till which point will the positive effects of a larger swarm size will be undone by
the negative overcrowding effects? Note that the behavior of the system in the Particle simulations, in
which we simulate the agents as particles, is not impacted by the overcrowding effect. Therefore, the
difference in performance between the Particle and Webots simulations will provide useful insights into
the overcrowding effect.

5.4.3. Results
Figure 5.6 shows the average navigation delay and entropy measure for both Particle and Webots
simulations for the environment with symmetric obstacle. Figure 5.7 shows the same type of plots for
the environment without obstacle. Given these results we can conclude the following:

1. In terms of the average navigation delay, the selfguiding swarm performs significant better than
the fully randomly moving swarm for every situation considered. The average navigation delay of
the foraging agents of a swarm is significant larger than the most optimal navigation delay. Note
however, that this lower bound is extremely conservative (as explained in Subsection 5.2.1).

2. For all swarm sizes considered, it holds that the average navigation delay is larger for the envi

46 5. Experimental Analysis and Results

ronment with obstacle (Figure 5.6a and 5.7a), than for the environment without obstacle (Figure
Figures 5.6b and 5.7b). Which should be obvious as the optimal path without obstacle is shorter.
but confirms correct behavior of the self guiding swarm.

More surprisingly, the spread of the average navigation delay is much larger for the environ
ment without obstacle than the environment with obstacle. Given the large number of outliers
and the large sizes of the third and fourth quartiles, our hypothesis is that the paths break after
some time during the exploration phase. Analyzing abstraction plots of underperforming particle
simulations for this environment showed that the particles are not able to create one single path,
but preserve a broad range of paths. As an result, the weight and guiding velocity fields stay
relatively ’weak’ and random moving agents have much impact, resulting in death ending paths
or loops.

3. The spread of the average navigation delays is much larger for the Particle simulations (Figures
5.6a and 5.7a) than for the Webots simulations (Figures 5.6b and 5.7b). Given the amount of
outliers and the size of the third and fourth quartiles, it seems that for the particle simulator the
change of extremely bad results is much higher than for the Webots simulator. Probably the
limited room to move for the robots in the Webots simulator prevents them from choosing to
radical movements.

4. For a size of 𝑁 = 49 or smaller, too many agents are needed as beacons, hence the performance
(specially when considered the full swarm) is significantly worse than for bigger swarms. We can
see for both the numerical (Figures 5.6a and 5.7a) andWebot (Figures 5.6b and 5.7b) simulations
that, for growing swarm sizes, the performance increases and the variance in the results reduces.
For the Webots simulations this tendency reverses at a certain point (around 𝑁 = 110). Since this
phenomenon is not observed for the Particle simulations, this must be due to the overcrowding
effect. Experiments are run on a small arena, so the swarm reaches a point where there can be
too many robots in the same space.

5. The average entropy of the Particle simulations (Figures 5.6c and 5.7c) is for all situations smaller
than the entropy of the Webots simulations (Figures 5.6d and 5.7d). This observation supports
our previous explanation of the decreasing performance due to the overcrowding effect. The
entropy measure confirms that the particles are much closer clustered around the trajectories,
Remark that we also exclude the entropy measure for linkage distances smaller than 𝛿𝑟, such
that one can derive conclusions based on the absolute difference in entropy measures for the
Particle and Webots simulator.

6. At 𝑡 = 0 all agents are starting at the nest, from there the entropy start to increase, which relates to
the swarm covering the environment in search for the target region. After the exploration phase,
the entropy begins to settle to lower values as the robots accumulate over the trajectories. In
general the entropy is higher for the symmetrical obstacle environment (Figures 5.6c and 5.6d)
than no obstacle environment (Figures 5.7c and 5.7d) due to first the split of agents among the
two possible paths, and second the fact that the minimum length path is longer than without
obstacles.

7. The entropy time series of the swarm size per situation and simulator show similar shapes. In the
exploitation phase a swarm of size 41 does not have enough agents in foraging state to cover
the whole trajectory. Hence during the exploitation phase, swarms of this size show much lower
clustering than the other sizes considered.

5.4. Swarm Size Analyses 47

41 81 121 161 201

101

102

103

Swarm Size [#]

d
(t

c
o
n
v
,T

)

• Random
• All Agents
• Foragers

(a) Particle Simulations Navigation Delay

49 81 91 10
1
11
1
12
1

15
7

101

102

103

Swarm Size [#]

d
(t

c
o
n
v
,T

)
• Random
• All Agents
• Foragers

(b) Webots Simulations Navigation Delay

0 50 100 150 200 250 300
0.0

0.2

0.4

0.6

0.8

1.0

Time [s]

S̄
(A

s
)

• N = 41
• N = 81
• N = 121
• N = 161
• N = 201

(c) Particle Simulations Entropy

0 50 100 150 200 250 300
0.0

0.2

0.4

0.6

0.8

1.0

Time [s]

S̄
(A

s
)

• N = 49
• N = 81
• N = 91
• N = 101
• N = 111
• N = 121
• N = 157

(d) Webots Simulations Entropy

Figure 5.6: Average foraging performance, measured by the average navigation delay and entropy, of selfguiding swarm of
different sizes deployed in the environment with symmetric obstacle.

48 5. Experimental Analysis and Results

41 81 121 161 201

101

102

103

Swarm Size [#]

d
(t

c
o
n
v
,T

)

• Random
• All Agents
• Foragers

(a) Particle Simulations Navigation Delay

49 81 91 10
1
11
1
12
1

15
7

101

102

103

Swarm Size [#]

d
(t

c
o
n
v
,T

)
• Random
• All Agents
• Foragers

(b) Webots Simulations Navigation Delay

0 50 100 150 200 250 300
0.0

0.2

0.4

0.6

0.8

1.0

Time [s]

S̄
(A

s
)

• N = 41
• N = 81
• N = 121
• N = 161
• N = 201

(c) Particle Simulations Entropy

0 50 100 150 200 250 300
0.0

0.2

0.4

0.6

0.8

1.0

Time [s]

S̄
(A

s
)

• N = 49
• N = 81
• N = 91
• N = 101
• N = 111
• N = 121
• N = 157

(d) Webots Simulations Entropy

Figure 5.7: Average foraging performance, measured by the average navigation delay and entropy, of selfguiding swarm of
different sizes deployed in the environment without obstacle.

5.5. Robustness Analysis 49

5.5. Robustness Analysis
The results shown in the previous sections rely on perfect communication and measure capabilities of
robots. We assumed perfect continuous listening capacity; perfect storage of the received messages
of the beacons per time step; perfect heading direction measurement of robots; and perfect commu
nication of the weights, heading directions and guiding velocities between foragers and beacons. All
these assumptions are in reality impossible to achieve. In this section we investigate the robustness of
the selfguiding swarm against disturbances. The potential sources of noise, summed above, are cap
tured in three potential factors of disturbance of the system: perturbed communication, limited listening
capacity of the beacons, and temporal agent failure.

5.5.1. Setup
To simulate for the measurement and communication noise related to the communication of the weights
and guiding velocities we introduce the perturbed weights and directional vectors,

�̃�(𝑘) = 𝜔(𝑘)|𝜇𝜔𝑘 |
�̃�(𝑘) = (cos �̃�(𝑡) sin �̃�(𝑡))𝑇

�̃�(𝑡) = 𝛼(𝑡) + 𝜇𝜈𝑘
with 𝜈(𝑘) = (cos𝛼(𝑡) sin𝛼(𝑡))𝑇

𝜇𝜔𝑘 ∼ 𝒩(1, 𝜎2𝜔)
𝜇𝜈𝑘 ∼ 𝒩(0, 𝜎2𝜈)

(5.9)

Since for the weights, the relative difference in weights captures the information, the weights are mul
tiplied by a random variable. Perturbations on the guiding velocities, i.e. measurements and commu
nication noise, can best be represented as addition of a random variable, as the absolute differences
in angle captures the information. For the analysis of the robustness against measurement noise,
we assume the robots to broadcast the perturbed weights and guiding velocity, or in other words, for
the robustness analysis 𝜔𝑠𝑏(𝑡) and 𝜈𝑠𝑏(𝑡) in line 2 of Algorithm 4 are replaced by �̃�𝑠𝑏(𝑡) and �̃�𝑠𝑏(𝑡), and
𝜈𝑓(𝑡) and Δ𝑠𝑓(𝑡) in line 2 of Algorithm 5 are replaced by �̃�𝑓(𝑡) and Δ̃𝑠𝑓(𝑡). We first analyse the effect of
perturbed communication on the weight and guiding velocities separately, after which we analyse the
situation in which we apply noise on both. We run simulations for a broad range of possible standard
deviations: 𝜎𝜔 , 𝜎𝜈 ∈ {0.01, 0.05, 0.1, 1, 2.5}.

To simulate for a limited listening capacity of the beacons, we define the maximum number of mes
sages a beacon can store per 𝜏, as the maximum buffer capacity 𝑛𝑏𝑢𝑓 ∈ ℝ+. The maximum buffer
capacity is simulated by randomly filtering 𝑛𝑏𝑢𝑓 messages per time step for each beacon. In reality,
while continuous listening, one would stop listening if a beacon has received 𝑛𝑏𝑢𝑓 messages. Simula
tions are performed for a range of maximum buffer values, 𝑛𝑏𝑢𝑓 ∈ {1, 2, 5, 10, 20, 50}

Regarding the implementation of temporal agent failure we define some time span, 𝜏𝑜𝑓𝑓, during we
disable 𝑛𝑜𝑓𝑓 agents. Every 𝜏𝑜𝑓𝑓 seconds, the to disable agents are randomly sampled from the set of
all, already deployed, agents. A disabled agent does not move, nor does it receives or sends mes
sages. After 𝜏𝑜𝑓𝑓 seconds the disabled agents become again part of the swarm, and the steps repeat.
As we only want to simulate temporal failure of agents, the memory of a disabled agent is not reset, so
beacons do remember their stored weight and guiding velocity values, and foraging agents remember
their former state. Simulations are performed for different amounts of agents to disable every 𝜏𝑜𝑓𝑓 = 20
seconds, we analyze: 𝑛𝑜𝑓𝑓 ∈ {1, 5, 20, 50}

For our simulations, a swarm of 101 robots is employed in the environment with symmetric obsta
cle (see Table 5.2) for 400 seconds. The simulations in which only noise on the weight or guiding
velocities communication is applied, are only executed in the particle simulator. All the other simula
tions are performed using both the particle and the Webots simulator. The default parameter set as
provided by Table 5.1 is used. The performance is measured using the average navigation delay and
entropy. The navigation delay is measured only for the foraging agents from 𝑡 = 200 to 𝑡 = 400. Each
data point created by the Particle simulator includes results from 50 independent runs and each data
point created by the Webots simulator includes results from 10 independent runs.

50 5. Experimental Analysis and Results

5.5.2. Expectations
We expect the system to be resistant to small disturbances of guiding velocity updates, because of the
randomness already included in the movement dynamics of the robots. One could argue that swarms
of larger size should be more resistant against communication noise then smaller swarms, as the more
random local update actions per time step, the more the randomness should tend to the expected value
overall, i.e. the added communication randomness is averaged by the increased number of communi
cation actions.

Considering a limited beacon buffer, lets first refresh that the region covered by a beacon, consists of
uniquesubregions all covered by a unique combination of beacons. Therefore an update of a foraging
agents located in this unique region is unique as well. Every unique update captures some knowledge
of the environment. Especially in the exploration phase, it should hold that the more unique updates per
time step, the faster the system converges to the shortest path, the better the foraging performance.
As a consequence of a limitation on the beacon buffer, the allowed number of updates per time step is
restricted, so one would expect the performance to decrease. Note however that in reality one beacon
will dominate a region, i.e. will have the largest weight of all its neighbouring beacons, hence it is very
unlikely that each update from an unique region results in an unique update.

However, it is questionable if this effect will be visible for swarms of the sizes we consider. Since
the number of unique regions is relatively large compared to the amount of foraging agents. To put this
in perspective, assume that in the exploration phase the whole area is covered with beacons. This will
take around 35 robots, which leaves 76 foraging agents. If these agents are uniformly distributed over
the environment every beacon will on average have two agents within its region of influence, disregard
ing the change that these agents are in the same unique areas. So one can doubt if an beacon listening
cap larger than two has much impact on the performance of the system in the exploration phase.

Theoretically the maximum number of unique areas within the region of a beacon is equal to 6 (can
be shown as result of sphere packing theory in 2d with overlap). So, if the foraging agents are always
perfectly distributed over the unique areas, a beacon only requires a buffer of size 6. In reality, this is
of course not the case. Moreover, in the exploration phase the robots are clustered around the path. A
limitation on the buffer size should therefore be of direct impact on the capability of the system to opti
mize the path during this phase, especially in the particle simulations, in which there is no limitation on
the distance between the robots. For the Webots simulations we expect no difference in performance
for any 𝑛𝑏𝑢𝑓 larger than 10, as per time step only around five moving robots can occupy the region of
influence of a beacon. For this same reason, the change that several robots within the same region
of influence of a beacon, cover unique regions, should be large. So for the Webots simulations, one
would expect that 𝑛𝑏𝑢𝑓 smaller than 10 is of impact on the swarms ability to optimize the paths.

The systems resistance to beacon failure follows by construction: if a beacon temporarily fails, and
if a beacon is required in this region, the failing beacon will be replaced by a foraging agent. As a
beacon only updates if it receives updates from foragers (See (3.8) and (3.9)), disabling all foraging
agents would only pause the swarm. Temporarily failure of single foraging agents will only slow down
the creation of the weight and guiding velocity fields.

5.5.3. Results
Figure 5.8 shows the average navigation delay for different values 𝑛𝑏𝑢𝑓, while keeping 𝜎𝜔 and 𝜎𝜈 equal
to zero. Given these results we can conclude the following:

1. The Particle Simulator results (Figure 5.8a) show a significant larger spread for 𝑛𝑏𝑢𝑓 equal to one.
Surprisingly there is no difference in performance for 𝑛𝑚𝑎𝑥 chosen larger than one. Apparently,
receiving more than two (unique) updates per time step does have no performance increasing
effect on the weight and guiding velocity fields generated by the beacons.

2. The Webots results (Figure 5.8b) shows an increase in average navigation delay for 𝑛𝑏𝑢𝑓 equal
to one, similar as we saw for the particle simulator. For 𝑛𝑏𝑢𝑓 larger than one, no significant
difference in foraging performance is observed. As it turns out, the number of unique updates for
the beacons is not a limited factor for the overall performance of the system.

5.5. Robustness Analysis 51

Figure 5.10 shows the average navigation delay and entropy of the Particle and Webots simulations
for different values of 𝜎2𝑤 and 𝜎2𝑣 . Given these results we observe and conclude the following:

1. Figures 5.10c and 5.10e show the foraging performance for the particle simulations for noise
applied to both the weights as guiding velocity communication. The selfguiding swarm appears
to be resistant to high amounts of communication noise. Only for 𝜎2𝑤 and 𝜎2𝑣 larger than 1, a
significant increase in navigation delay is observed. The entropy plot clearly shows less clustering
of the agents for variance equal to 1 and 2.5.

2. Figures 5.10d and 5.10f show the foraging performance of the Webots simulations. The results
show a similar pattern as the Particle results: The system seems resistant for small values of the
variance: for a variance equal to or larger than 1 a decrease in clustering is observed; and for a
variance of 2.5 a clear increase in navigation delay is visible.

3. Figures 5.10a and 5.10b provide insights in which part of the communication, weights or guiding
velocities, affects the performance most, if noise is added. The noise on the weight communica
tion slightly increases the average navigation delay for 𝜎2𝑤 equal to and larger than 1. Perturbed
guiding velocity communication has more impact on the performance: 𝜎2𝜈 equal to 1 already has
a significant impact on the foraging performance. For very large amounts of noise, 𝜎2𝜈 equal to
2.5, the swarm’s performance is almost worse than the fully random controlled swarm (see Figure
5.6a). These observations imply that the guiding velocity field is less robust to disturbed updates
than the weight field. Probably, frequent inconsistent communication of the direction of heading
from forager to beacon results in unstable or non created paths.

It seems that our reasoning: the system already includes random steps, so it should be capable
to deal with randomness, noise, in the communicated heading directions, does not hold. Indeed,
this reasoning marginalizes the connection between the heading direction update and the location
at which this update is performed. Although an agent can move randomly, the direction it stores
does represents the direction of entrance into the region of influence of a beacon. If the stored
heading direction does not represent the direction of heading, paths seems to get destroyed eas
ier. Looking at the abstraction plots of underperforming simulations, we observed that especially
disturbances close to the food in the beginning of the exploration phase have major impact on
the system performance. In this phase the path to the food is unfinished and still brittle. A few
updates pointing towards the wrong direction repel foragers from the food. As the beacons close
to the food store relatively large amount of weights in this phase, the paths are not easily restored.

52 5. Experimental Analysis and Results

1 2 5 10 15 20 50

101

102

nbuf

d
(t

c
o
n
v
,T

)

• Foragers

(a) Particle Simulations Navigation Delay

1 2 5 10 50

101

102

nbuf

d
(t

c
o
n
v
,T

)

• Foragers

(b) Webots Simulations Navigation Delay

Figure 5.8: Average foraging performance, measured by the average navigation delay, of the selfguiding swarm with maximum
listening buffers for the beacons, deployed in the environment with symmetric obstacle.

1 5 10 20 50

101

102

103

noff

d
(t

c
o
n
v
,T

)

• Foragers

(a) Particle Simulations Average Navigation Delay

1 5 10 20 50

101

102

103

noff

d
(t

c
o
n
v
,T

)

• Foragers

(b) Webots Simulations Average Navigation Delay

Figure 5.9: Average foraging performance, measured by the average navigation delay, of the selfguiding swarm with temporal
agent failure, deployed in the environment with symmetric obstacle.

5.5. Robustness Analysis 53

0 0.01 0.05 0.1 0.5 1.0 2.5

101

102

103

σ2
w

d
(t

c
o
n
v
,T

)

• Foragers

(a) Perturbed communication of weights Particle Simulations
Navigation Delay

0.0 0.01 0.05 0.1 0.5 1.0 2.5

101

102

103

σ2
v

d
(t

c
o
n
v
,T

)

• Foragers

(b) Perturbed communication of guiding velocities Particle Simulations
 Navigation Delay

0.0 0.01 0.05 0.1 0.5 1.0 2.5

101

102

103

σ2
w, σ2

v

d
(t

c
o
n
v
,T

)

• Foragers

(c) Perturbed communication of both weights and guiding velocities
Particle Simulations Navigation Delay

0.0 0.01 0.05 0.1 1 2.5

101

102

σ2
w, σ

2
v

d
(t

c
o
n
v
,T

)

• Foragers

(d) Perturbed communication of both weights and guiding velocities
Webots Simulations Navigation Delay

0 50 100 150 200 250 300
0.0

0.2

0.4

0.6

0.8

1.0

Time [s]

S̄
(A

s
)

• σ2
ω, σ

2
ν = 0

• σ2
ω, σ

2
ν = 0.01

• σ2
ω, σ

2
ν = 0.05

• σ2
ω, σ

2
ν = 0.1

• σ2
ω, σ

2
ν = 0.5

• σ2
ω, σ

2
ν = 1.0

• σ2
ω, σ

2
ν = 2.5

(e) Perturbed communication of both weights and guiding velocities
Particle Simulations Entropy.

0 50 100 150 200 250 300
0.0

0.2

0.4

0.6

0.8

1.0

Time [s]

S̄
(A

s
)

• σ2
ω, σ

2
ν = 0

• σ2
ω, σ

2
ν = 0.01

• σ2
ω, σ

2
ν = 0.05

• σ2
ω, σ

2
ν = 0.1

• σ2
ω, σ

2
ν = 1.0

• σ2
ω, σ

2
ν = 2.5

(f) Perturbed communication of both weight as guiding velocity communi
cation Webots Simulation Entropy

Figure 5.10: Average foraging performance, measured by the average navigation delay and entropy, of the selfguiding swarm
with perturbed communication, deployed in the environment with symmetric obstacle.

54 5. Experimental Analysis and Results

5.6. Model Extension
In section 3.2 we presented extensions for the selfguiding swarm: the BeaconForager Switching and
Moving Beaconsextensions to optimize the beacon infrastructure; and Double Updatingextension to
speed up the convergence of the weight and guiding velocity fields. In this section we investigate if
these extensions result in a measurable increase of foraging performance.

5.6.1. Setup
The dynamics of the extensions are described in Section 3.2; in Section 3.3 the intended impact on
the swarms behavior is explained; and in Section 5.1.1 it is explained how the extended dynamics are
included in the robots behavior. In our analysis we consider the following combinations of extensions
(with in the brackets the abbreviation used as reference in the plots):

1. The selfguiding swarm without extension, which serves as reference for the performance to beat
(Normal).

2. Selfguiding swarm plus the BeaconForager Switchingextension (Switch).

3. Selfguiding swarm plus theBeaconForager Switching andMoving Beacons (Move)extensions.

4. Selfguiding swarm plus the BeaconForager Switching and Double Updatingextensions (Dbl.).

5. Selfguiding swarm plus the BeaconForager Switching,Moving Beacons andDouble Updating
extensions (Mov. & Dbl.).

Note that the Moving Beaconsextension is always implemented in combination with the Beacon
Forager Switchingextension, as explained in section 3.2. Because early in our simulations we found
that the BeaconForager Switching extension has a positive impact on the foraging performance, we
only analyzed theDouble Updatingextension in combination with theBeaconForager Switchingextension.

For our simulations, a swarm of 101 and 49 robots is employed in the environment with symmetric
obstacle (see Table 5.2) for 800 seconds. All simulations are both executed in the Particle and the We
bots simulator. The default parameter set as provided by Table 5.1 is used. The overall performance is
measured by the average navigation delay and entropy. The average navigation delay is measured for
all agents for 𝑡 ∈ [200s, 400s]. The minimal navigation delay for consecutive trips is used to analyse the
optimality of the converged path. We analyse the 20 smallest (𝑚 = 20) navigation delays for 2 and 3
consecutive trips (𝑛 ∈ [2, 3]) to ensure we only measure trips resulting from following the created paths
and not just trips driven by randomness. In addition, we present abstraction plots of the simulation
results to illustrate and explain the impact of the extensions on the behavior of the swarm. Compared
to our previous analysis, the difference performance for this analysis turn out to be very small, we
therefore increase the number of runs per data point: each data point of the particle simulator includes
results from 100 independent runs and each data point of the Webots simulator includes results from
15 independent runs.

5.6.2. Expectations
In the exploration phase the swarm creates a beacon infrastructure approximately covering the whole
environment. During the exploitation phase only a small part of this infrastructure is used, only the
beacons forming the path(s) used to travel between the target regions. The BeaconForaging Switch
ingextension should allow unused beacons to participate again as foragers, thereby becoming again
of value for the swarm. One can expect that the number of foraging agent increase as result of Beacon
Foraging Switching, hereby increasing the number of trips and decreasing the average navigation delay
of all agents. However, the additional number of foragers could also decrease performance due to the
overcrowding effect. In Section 5.4 we observed the overcrowding effect for a swarm of size 157.
Therefore, we expect the BeaconForaging Switching to increase foraging performance for the swarm
of 49 robots, and consolidate foraging performance for the swarm of 101 robots.

The locations of the beacons limit the possible paths. So, the performance of the selfguiding swarm
is limited by the locations of the beacons. In the standard case, in which agents randomly explore the
environment, and switch to beacon state if no beacon detected 𝛿distance close, we only control the

5.6. Model Extension 55

minimal distance between beacons. We do not guarantee any optimality of the beacon location. By
the Moving Beaconextension we try to control the beacons to optimal positions. It is doubtful if, es
pecially for the Webots simulations, the effect of the moving beacons is visible in the average foraging
performance, as also other factors limit the overall (random) performance. However, we do expect a
decrease of the minimal navigation delay for 2 and 3 consecutive trips, as this gives a measure of the
most optimal path(s) created per run.

As described in section 3.3 our concept could be abstracted as a graph by defining the unique areas
as nodes, and the weights and guiding velocities per area can be translated to the transition proba
bilities to the neighbouring nodes. The Double Updatingextension as inspired on [36] requires this
graph to be symmetric. Although the nodes and edges are independent of the weights, the transition
probabilities of the resulting graph (per pheromone type) are not necessarily symmetrical. This is partly
due to the fact that weight (and guiding velocity) updates are not only impacting one node: the update
of a forager within a specific unique area also impacts all other unique areas within the reach of the
beacons covering this specific unique area, thereby impacting transition probabilities of other nodes.
It is therefore very doubtful if doubleupdating will work in our case. The outcome depends on how
symmetric our graphs in practice are.

5.6.3. Results
Figures 5.11 and 5.12 show some abstractions of a particle simulation including the BeaconForager
Switchingextension and the Moving Beaconextension, respectively. Figure 5.11a shows that all the
foraging agents are attracted to a stable, as far as we can determine visually, close to optimal path
facilitated by the agents in beacon state. Clearly, after the creation of the path, only a small number of
beacons are needed to create the path. The BeaconForager Switchingextension enables beacons
which are not of use anymore, to switch back and participate in the exploitation of the target region
again, as shown in Figure 5.11b. Note that the location of the beacons in Figure 5.11b has not changed.

The optimality of the path is restricted by the random initialization of the beacons in the exploration
phase. Figure 5.12b shows the path created if we apply the Moving Beaconsextension. Remember
that beacons move towards the shortest angel between the two guiding velocities stored, trying to align
both vectors and thereby create a straight (without obstacles) most optimal path. Comparing Figures
5.12a and 5.12b we observe, besides the removal of beacons, that the beacons moved as close as
possible towards the obstacle resulting in a shorter path. Hence we conclude that both the Beacon
Forager Switching and Moving Beaconsextension do work as expected in the situations considered.
The question is: What is the average foraging performance gain of these extensions compared to the
normal case, which does include the sustainability and consistence of the added complexity?

(a) Particle Simulations 𝑡 = 100s (b) Particle Simulations 𝑡 = 200s

Figure 5.11: Abstraction plots of a particle simulation of the selfguiding swarm plus BeaconForager Switchingextension.

56 5. Experimental Analysis and Results

(a) Particle Simulations 𝑡 = 110s (b) Particle Simulations 𝑡 = 350s

Figure 5.12: Abstraction plots of a particle simulation of the selfguiding swarm plus MovingBeaconextension.

Figure 5.13 shows the average foraging performance results of the extended methods for both the
Particle and the Webots simulations. For our analysis we take the normalcase as reference. From
these we can conclude the following:

1. For the Particle simulations the BeaconForager Switchingextension shows a significant de
crease of average navigation delay for all agents compared to the normalcase (Figures 5.13a
and 5.13e). Figures 5.13c and 5.13g show no difference in the clustering of the agents, the en
tropy, over time. So it seems that the increased average foraging performance is simply due to
an increased number of foraging agents.

The Webots simulations for a swarm of size 49 show a similar decrease in average navigation
delay (see Figure 5.13b), hence we conclude that that the Beacon Forager Switchingextension
also enables more robots to act as foragers in a realistic setting. In reality, as we have seen
before, at some point the performance gain realized by increasing the number of foragers is nulli
fied, or even turned into a performance loss, by the overcrowding effect. This effect explains why
for a swarm of size 101 no difference in foraging performance is observed (see Figure 5.13f).

2. The Particle simulations show a significant higher spread in average navigation delay for theMov
ing Beaconsextension than the BeaconForager Switchingextension (Figure 5.13a and 5.13e).
It seems that moving the beacons using our Pcontroller (see (3.15)), can both positively and
negatively impact the guiding infrastructure.

3. Both the Particle and the Webots simulations show that the Double Updatingextension does not
result in better foraging performance (Figure 5.13a, 5.13e, 5.13b and 5.13f). The entropy plots
(Figures 5.13c, 5.13d, 5.13g and 5.14 show that up till some point during the transition from the
exploration to exploitation phase (between 200 and 400 seconds) the clustering behaviour of the
double updating cases follow a similar trajectory as the other cases. After this point the entropy
starts to increase again, which indicates that paths somehow break after creation.

5.6. Model Extension 57

Normal Switch Move Dbl. Mov. & Dbl.
101

102

103

d
(t

c
o
n
v
,T

)

• All Agents

(a) Particle Simulations 49 Agents Average Navigation Delay

Normal Switch Move Dbl. Mov. & Dbl.
101

102

103

d
(t

c
o
n
v
,T

)

• All Agents

(b) Webots Simulations 49 Agents Average Navigation Delay

0 200 400 600 800
0.0

0.2

0.4

0.6

0.8

1.0

Time [s]

S̄
(A

s
)

• Normal
• Switch
• Move
• Dbl.
• Mov. & Dbl.

(c) Particle Simulations 49 Agents Entropy

0 200 400 600 800
0.0

0.2

0.4

0.6

0.8

1.0

Time [s]

S̄
(A

s
)

• Normal
• Switch
• Move
• Dbl.
• Mov. & Dbl.

(d) Webots Simulations 49 Agents Entropy

Normal Switch Move Dbl. Mov. & Dbl.

101

102

103

d
(t

c
o
n
v
,T

)

• All Agents

(e) Particle Simulations 101 Agents Average Navigation Delay

Normal Switch Move Dbl. Mov. & Dbl.

101

102

103

d
(t

c
o
n
v
,T

)

• All Agents

(f) Webots Simulations 101 Agents Average Navigation Delay

0 200 400 600 800
0.0

0.2

0.4

0.6

0.8

1.0

Time [s]

S̄
(A

s
)

• Normal
• Switch
• Move
• Dbl.
• Mov. & Dbl.

(g) Particle Simulations 101 Agents Entropy

0 200 400 600 800
0.0

0.2

0.4

0.6

0.8

1.0

Time [s]

S̄
(A

s
)

• Normal
• Switch
• Move
• Dbl.
• Mov. & Dbl.

(h) Webots Simulations 101 Agents Entropy

Figure 5.13: Average foraging performance, measured by the average navigation delay and entropy, of the selfguiding swarm
plus extensions of swarm sizes 101 and 49, deployed in the environment with symmetric obstacle.

58 5. Experimental Analysis and Results

We use the navigation delays of 2 and 3 successive trips to measure the optimality of the path (at some
point in time). Figure 5.14 shows the optimal foraging performance results for the Webots simulations.
From these results we conclude the following:

1. Figures 5.14a and 5.14b both show slightly smaller optimal navigation delays for the Beacon
Forager Switching and Moving Beaconsextension. This observation confirms our hypothesis
that the overcrowding effect vanishes the potential performance gain for the swarm of size 101.

2. Figure 5.14a and 5.14b both show smaller optimal navigation delays for the Moving Beacon
extension compared to both the normal case and the BeaconForager Switchingextension. Al
though the Moving Beaconextension does not result in better average foraging performance, it
does seem that at some point in time the moving beacons create a more optimal path.

Normal Switch Mov. Dbl. Mov. & Dbl.

101

102

d
m

in
(t

c
o
n
v
,T

)

• All Agents - n = 2
• All Agents - n = 3

(a) Webots Simulations 49 Agents

Normal Switch Mov. Dbl. Mov. & Dbl.

101

102

d
m

in
(t

c
o
n
v
,T

)

• All Agents - n = 2
• All Agents - n = 3

(b) Webots Simulatiosn 101 Agents

Figure 5.14: Optimal foraging performance, measured by the minimal navigation delay for 2 and 3 successive trips, of the
selfguiding swarm plus extension.

5.7. Summary 59

5.7. Summary
The main insights of this section can be summarized by the following key points:

1. The proposed selfguiding swarm performs reasonable well in both small and medium scale en
vironments with and without (static) obstacles. Moreover, as the results of the Particle simula
tions can be interpreted as the expected performance for large scale environments, for which
the agents occupy a very large area, i.e. communicate over large ranges (𝛿), the results indi
cate good foraging performance for large scale environments. Hence, we may assume that the
concept is scalable.

2. Although, in theory, increasing the amount of agents of a swarm will increase its foraging per
formance, in reality the overcrowdingeffect will limit the foraging performance of the swarm for
increasing size. In our experiments, this tipping point is between the and agents per 𝑚2 (with
single Elisa3 robot capturing ... 𝑚2).

3. The agents only require a small buffer (3 ≤ 𝑛𝑏𝑢𝑓 ≤ 5) to store and receive messages every 𝜏
seconds.

4. The selfguiding swarm is resistant to realistic communication disturbances and individual tem
poral agent failures.

5. The BeaconForager Switchingextension does increase the average foraging performance of
the selfguiding swarm. Note that for large swarms the overcrowdingeffect can nullify the perfor
mance gains.

6. The Moving Beaconsextension does not increases the average foraging performance, but does
increase the optimal foraging performance.

At last, we want to remark that, as also mentioned at the particular experiments, we created some
illustrating GIFs for some of the experiments. These GIFs can be found on our Youtube channel:
YOUTUBE Stigmergy Based Swarm Robotics. In addition to the experiments discussed here, we also
included animations of a largescaleWebots simulation as presented at the ICRA Real World Swarms
Workshop at this channel. For this demonstration we released 100 Robots in a large environment with
obstacles (See ’obstacle’environment in Table 5.2. Note that we used the default parameters as given
by Table 5.1, but in contrast to the experiments presented here, we used the normal distribution for the
noise on the heading direction for the random movement.

https://www.youtube.com/channel/UCxIfoJGmM34xGPU_8T2QHlw

6
Conclusion

6.1. Summary of Results
After the explanation of the foundations in Chapter 2, the presentation of our design in Chapter 3, the
derivation of formal results in Chapter 4, and the analysis of the experimental results in Chapter 5, we
can draw several conclusions. The summary of the results of this work can be presented as follows:

• The different approaches of implementing stigmergy in swarm robotics are classified and re
viewed. It is concluded that the use of beacons that locally store, process and broadcast informa
tion is most promising. To be more specific, the use of a homogeneous swarm with autonomous
beacons, i.e. a robotic swarm in which all agents have equal capabilities and agents can switch
to a beacon mode, will result in most efficient performance.

• The foraging problem is introduced and the most promising swarm robotic solutions are dis
cussed. In general we observed that many of the swarm robotic solutions to the foraging problem
include implicit assumptions that will prevent them of being applied to real situations or large
scenarios. It is concluded that the so called Stigmergic Pheromone Reinforcementconcept in
which pheromones are treated as utility estimates for environmental states stored in beacons,
and decisionmaking functions somewhat resemble, but are not the same as, utility updates and
state transition functions in reinforcement learning, is an interesting strategy which allows for
formalisation, thereby optimization and formal analyses, and application of reinforcement learn
ing techniques. Moreover the Landmarkconcepts of storing navigation information using path
integration is interesting as it drops the need of (relative) location measures.

• We presented a foraging swarm design where robots are able to guide eachother to forage with
out the need of position measurements, infrastructure or global knowledge. Moreover, the system
relies on onehop communication only with limited range, and does not require direction or dis
tance information on signals, nor lineof sight connectivity. The system does require agents to
know their orientation and have some maximal communication range.

Our design is based on letting the agents in the swarm act as foragers or as guiding agents
(beacons) and pheromoneinspired communication. Beacons store, process and broadcast local
navigation information, which consists of two types of weights and guiding velocities, one per tar
get region. In a manner similar to reinforcement learning we cast the weights as local state utility
values, and apply formal utility update equations based loosely on value iteration and temporal
difference learning. From the perspective of the foraging agents, the beacons are a graph of
states with utility values. However, we do not let the foragers walk on this graph. We exploit the
symmetry of the foraging problem and store the inverse heading directions of agents as the local
guiding velocity corresponding to a local weight, together forming the local navigation information.
Hereby marginalizing the localization information to global directions.

• In addition to the basic concept, we proposed the BeaconForager Switching and Moving Bea
consextensions which create a dynamic beacon infrastructure and aim to increase the efficiency,

61

62 6. Conclusion

the relative amount of required agents in beacon state, of the swarm and optimize the created
paths, restricted by the locations of the beacons. Moreover. we introduced the Double Updating
extension, to enforce faster path creation and convergence.

• In Chapter 4, we tried to derive formal results on the behavior of the selfguiding swarm. In
Section 4.1, we made some restrictive assumptions regarding the domain, a grid polygon, and
the random movements of agents, random walks, such that we could apply the formal results of
the Probabilistic CoverageProcess (as presented in Subsection 2.7.1) to the selfguiding swarm
and derive bounds on the expected cover time and its variance, and the commute time between
two subregions. In Section 4.2, we tried to derive more general formal results regarding the
exploration of the domain. For this we took inspiration from the results in RRT exploration as
introduced in Subsection 2.8.1. We derived the guarantee that the entire domain will be explored
and covered by beacons as time goes to infinity.

• We introduced the average and optimal navigation delay as measures of the foraging perfor
mance. In addition we introduced the hierarchical entropy as quality measure of the solution to
the foraging problem, providing insights in the accumulation of agents around trajectories.

• In general, we conclude that the proposed selfguiding swarm implemented on Elisa3 robots
performs reasonable well in both small and medium scale environments with and without (static)
obstacles. Moreover, as the results of the Particle simulations can be interpreted as the ex
pected performance for large scale environments, for which the agents occupy a very large area,
i.e. communicate over large ranges (𝛿), the results indicate good foraging performance for large
scale environments. Hence, we may assume that the concept is scalable.

In addition, we investigated the performance for different swarm sizes, the robustness of the de
sign against disturbances and temporal agent failures, and the required agent listening buffers.
We observed that although in theory increasing the amount of agents of a swarm will increase its
foraging performance, in reality the overcrowdingeffect will limit the foraging performance of the
swarm for increasing size. Also, we verified that the selfguiding swarm is resistant to realistic
communication noise and individual temporal agent failures. Failure of foraging agents will only
(temporal) decrease, or slow down the increase of, the foraging performance. If a beacon breaks
or is removed, it is replaced by a foraging agent, therefore only temporal decreasing the foraging
performance. At last, we showed that the agents only require a small buffer (3 ≤ 𝑛𝑏𝑢𝑓 ≤ 5) to
store and receive messages every 𝜏 seconds.

• The BeaconForager Switchingextension does increase the average foraging performance of
the selfguiding swarm. Note that for large swarms the overcrowdingeffect can nullify the perfor
mance gains.

• It is observed that the optimality of the trajectories is affected by the resulting distribution of the
beacons. Although the Moving Beaconsextension does not increase the average foraging per
formance, the extension does increase the optimal foraging performance.

6.2. Applications
In our work we aimed to develop an efficient and practical implementable swarm robotic solution for the
foraging problem. Let us first conclude on the advantages of applying the selfguided swarm to tackle
the foraging problem in comparison to other proposed solutions:

• Consider the general navigation task for large amounts of robots. In general, it holds that a swarm
robotic solution is preferred over a classical robotic solution, because of its inherent scalability with
the number of robots, robustness with respect to noisy conditions, and fault tolerance in case of
individual failure. Moreover, complex navigation tasks relying on single agents will require a rep
resentation of the environment a priori, leaving a robot with the nontrivial task of selflocalization
or require agents to construct the map itself while moving in the environment, which is already
difficult in a static environment and becomes increasingly complex when multiple robots are con
sidered, or for dynamic environments.

6.2. Applications 63

• Why would you, if a covering beacon network is available, prefer an approach relying on indirect
reinforcement of pheromonefields over path planning algorithms for networks graphs, such as
the Dijkstra and A* algorithm?

Besides that, as we shortly discussed in Section 2.8, the A* and Dijkstra algorithms are not able
to cope with uncertainties and still suffer large amounts of memory for large search spaces, espe
cially for a non standardized environment discretization. In practice, theA* andDijkstra algorithms
rely on lineofsight communication or some other (visual) mechanism to confirm beacon connec
tivity. Either way, the connection mechanism will restrict the maximum distance between beacons
and increase the number of required beacons for environments with many obstacles. The self
guided swarm does not include any of these requirements, and as such can be implemented for
larger and more environmental situations.

• Consider the swarm robotic solutions as discussed in Section 2.5. An overview of the required
capabilities of the selfguided swarm and the reviewed solutions is provided by Table 2.1. Observe
that all the reviewed work requires robots to either have some form of position measurement
(global or relative), some form of infrastructure or centralised knowledge entity, or both. Therefore
our design would especially be suited for navigation in environments where any access to global
or relative positioning is not possible, and where the infrastructure is limited. Additionally, some
solutions cascade tables of agent data through the network. hereby limiting the scalability of
these methods. As confirmed by the Particle Simulator results, the selfguided swarm is scalable
up to large amount of agents.

We believe the selfguided swarm could almost immediately be applied to problems similar to the for
aging problem in the fields of swarm robotics and multiagent systems:

• In theory, the selfguided swarm should be able to deal with shifting targetregions. Therefore
we believe the selfguided swarm should be able to solve the HunterPrey problem [60], in which
multiple agents initialized in some region try to catch some shifting target. Future research should
be done on any necessary adaptions of the dynamics, and hyperparameters to deal with shifting
target regions.

• In theory, the inclusion of more internal states could allow for more sophisticated behavior than
just thereandbackagain foraging trails. For example, with additional states and pheromones,
agents could be able to achieve tours between multiple waypoints, including ones with inter
secting paths. Realisation of more sophisticated behaviour including more pheromones types is
shown by [65].

At last we present some more creative ideas for applications:

• Since the selfguided swarm does not require any positioning infrastructure in place, only needs
a single point of reference for its global orientation, and is be able to cover large environments,
our approach could be suited for space exploration or deep water mining.

• Our approach could be implemented as a (offline) path optimization tool version being amoreless
parallelized version of the RRTalgorithm. Our approach presents an alternative to the methods
designed for the RRTalgorithm to decide on the optimal created path. In addition, the Moving
Beaconsextension could potentially decouple the optimality from the sampling process.

64 6. Conclusion

6.3. Future Work
We will summarize the in our opinion most interesting and promising aspects that could be subject of
further and deeper work, ranked by concreteness:

• Our main goal was to develop a system directly applicable for swarm robotic systems. Our ex
tensive analysis of the Elisa3 robot in the realisticWebots simulator did not raise any doubts on
the changes of a successful implementation of in a real similar situations using the Elisa3 robot.
As we mentioned in Chapter 5, we hope to test our concept soon in reallife using Elisa3 robots.

• The selfguided swarm should be able to deal with dynamic environments, i.e. moving obstacles
or moving target regions. Nonzero exploration and evaporation rates force agents to keep ex
ploring the environments, even after convergence of the weight and guiding velocity fields, and
refreshes the local navigation information over time. Potentially, some small adaptions to the
selfguides swarms design are needed, such as: evaporate the store weights and guiding veloc
ities even if no update is received, and make an agent in beacon state switch to forager state
if it collides with some moving obstacle. Moreover, the values for the hyperparameters should
be investigated once more for the changed setting. Likely higher evaporation rates will result in
higher foraging performance.

• We observed how the optimality of the trajectories is affected by the positional configuration of
the beacons. Moreover, we showed in Section 5.6 the potential effect of allowing the beacons
to reconfigure. The proposed simplistic Pcontroller (see Section 3.2.2) already results in an
decrease of the optimal navigation delay. We believe that relatively easy more effect can be
obtained by applying more advanced control rules. For example, we observed that closer to the
target regions, one wants to preserve a broader network of beacons. The ratio of the stored
weights could indicate the relative distance to a target region, and thereby used to control the
allowed angels between the guiding velocities. Moreover, we force beacon agent to move very
slowly compared to the foraging agents, allowing the local navigation information to be updated to
the new location. It would be interesting to investigate if applying some adjustment of the stored
information related to the movement, could allow for faster beacon speeds, and thereby result in
faster reconfiguration.

• In particular, there is much to be gained in the exploration process. For our current concept
we apply very simplistic random exploration of the agents, assuming the agents to perform a
random walk while exploration. Even without using any information of the system, but using
alternatives for the random walk, for example the Lévy flight [93] or the improved random walk
methods proposed by [67] would already result in faster exploration. Another option is to define
a third pheromone type, some repulsive pheromone, creating a weight and guiding velocity field
pushing exploring agents away from already explored regions.

• We have experimentally verified that, over a diverse variety of setups, the weights 𝜔𝑠𝑏 converge
on average to a fixed point forming a gradient outwards the target regions, therefore guiding the
swarm to and from the goal regions. Moreover we guaranteed that for a given initial combina
tion of foraging agents, the entire domain will be explored and covered by beacons. We leave
for future work the formal guarantees regarding the expected weight field values 𝜔𝑠𝑏 and guiding
velocities 𝜈𝑠𝑏. Although our system possess an extra dynamic coupling with respect to the transi
tion probabilities between regions, we are assuming that we can apply the approach of [63] who
employed fieldtechniques to reformulate a stochastic multiagent problem into a deterministic
autonomous system.

• The agents in our system may be seen as mobile automata responding to and updating external
states in the environment. For our system, each agent checks periodically its actions to perform.
In particular for the updating actions of the foraging agents, i.e. the dropping of pheromones, an
eventtriggered scheme could potentially be implemented, using for example the sensed weights
and guiding velocities of the beacons within the agents region of influence. In this way, especially
as the paths are converged, the efficiency in the usage of system resources could be increased.

Bibliography
[1] Steven Adams, Daniel Jarne Ornia, and Manuel Mazo Jr. A selfguided approach for navigation

in a minimalistic foraging robotic swarm. arXiv preprint arXiv:2105.10331, 2021.

[2] Sjriek Alers, Karl Tuyls, Bijan RanjbarSahraei, Daniel Claes, and Gerhard Weiss. Insectinspired
robot coordination: foraging and coverage. In Artificial Life Conference Proceedings 14, pages
761–768. MIT Press, 2014.

[3] Tucker Balch. Hierarchic social entropy: An information theoretic measure of robot group diversity.
Autonomous robots, 8(3):209–238, 2000.

[4] Friedrich G Barth et al. Insects and flowers. The biology of a partnership. George Allen & Unwin,
1985.

[5] Mike Blow. ‘stigmergy’: Biologicallyinspired robotic art. Mechatronics and Animatronics in the
Creative and Entertainment Industries and Arts, page 45, 2005.

[6] Eric Bonabeau, Guy Theraulaz, and JeanLouis Deneubourg. Quantitative study of the fixed
threshold model for the regulation of division of labour in insect societies. Proceedings of the
Royal Society of London. Series B: Biological Sciences, 263(1376):1565–1569, 1996.

[7] Eric Bonabeau, Marco Dorigo, Directeur de Recherches Du Fnrs Marco, Guy Theraulaz, Guy
Théraulaz, et al. Swarm intelligence: from natural to artificial systems. Number 1. Oxford university
press, 1999.

[8] Arne Bosien, Volker Turau, and Franco Zambonelli. Approaches to fast sequential inventory and
path following in rfidenriched environments. International journal of radio frequency identification
technology and applications, 4(1):28–48, 2012.

[9] Gilles Caprari, Patrick Balmer, Ralph Piguet, and Roland Siegwart. The autonomous micro robot”
alice”: a platform for scientific and commercial applications. In MHA’98. Proceedings of the 1998
International Symposium on Micromechatronics and Human Science.Creation of New Industry
(Cat. No. 98TH8388), pages 231–235. IEEE, 1998.

[10] Ashok K Chandra, Prabhakar Raghavan, Walter L Ruzzo, Roman Smolensky, and Prasoon Ti
wari. The electrical resistance of a graph captures its commute and cover times. Computational
Complexity, 6(4):312–340, 1996.

[11] K Cheng, TS Collett, A Pickhard, and RWehner. The use of visual landmarks by honeybees: Bees
weight landmarks according to their distance from the goal. Journal of Comparative Physiology
A, 161(3):469–475, 1987.

[12] DongHwan Choe, David B Villafuerte, and Neil D Tsutsui. Trail pheromone of the argentine ant,
linepithema humile (mayr)(hymenoptera: Formicidae). PLoS One, 7(9):e45016, 2012.

[13] Matthew Collett, Thomas S Collett, Sonja Bisch, and Rüdiger Wehner. Local and global vectors
in desert ant navigation. Nature, 394(6690):269–272, 1998.

[14] Matthew Collett, Duane Harland, and Thomas S Collett. The use of landmarks and panoramic
context in the performance of local vectors by navigating honeybees. Journal of Experimental
Biology, 205(6):807–814, 2002.

[15] Jorge Cortes, Sonia Martinez, Timur Karatas, and Francesco Bullo. Coverage control for mobile
sensing networks. IEEE Transactions on robotics and Automation, 20(2):243–255, 2004.

65

66 Bibliography

[16] Jorge Cortes, Sonia Martinez, and Francesco Bullo. Spatiallydistributed coverage optimization
and control with limitedrange interactions. ESAIM: Control, Optimisation and Calculus of Varia
tions, 11(4):691–719, 2005.

[17] JL Deneubourg, Serge Aron, Simon Goss, and Jacques M Pasteels. The selforganizing ex
ploratory pattern of the argentine ant. Journal of insect behavior, 3(2):159–168, 1990.

[18] Edsger W Dijkstra et al. A note on two problems in connexion with graphs. Numerische mathe
matik, 1(1):269–271, 1959.

[19] Marco Dorigo, Mauro Birattari, and Thomas Stutzle. Ant colony optimization. IEEE computational
intelligence magazine, 1(4):28–39, 2006.

[20] Frederick Ducatelle, Alexander Förster, Gianni A Di Caro, and Luca M Gambardella. Supporting
navigation in multirobot systems through delay tolerant network communication. IFAC Proceed
ings Volumes, 42(22):25–30, 2009.

[21] Frederick Ducatelle, Gianni A Di Caro, Alexander Förster, and Luca Gambardella. Mobile stig
mergic markers for navigation in a heterogeneous robotic swarm. In International Conference on
Swarm Intelligence, pages 456–463. Springer, 2010.

[22] Frederick Ducatelle, Gianni A Di Caro, Carlo Pinciroli, and Luca M Gambardella. Selforganized
cooperation between robotic swarms. Swarm Intelligence, 5(2):73, 2011.

[23] Frederick Ducatelle, Gianni A Di Caro, Carlo Pinciroli, Francesco Mondada, and Luca Gam
bardella. Communication assisted navigation in robotic swarms: selforganization and cooper
ation. In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
4981–4988. IEEE, 2011.

[24] David Filliat and JeanArcady Meyer. Mapbased navigation in mobile robots:: I. a review of
localization strategies. Cognitive Systems Research, 4(4):243–282, 2003.

[25] Ryusuke Fujisawa, Shigeto Dobata, Daisuke Kubota, Hikaru Imamura, and Fumitoshi Matsuno.
Dependency by concentration of pheromone trail for multiple robots. In International Conference
on Ant Colony Optimization and Swarm Intelligence, pages 283–290. Springer, 2008.

[26] Ryusuke Fujisawa, Hikaru Imamura, Takashi Hashimoto, and Fumitoshi Matsuno. Communica
tion using pheromone field for multiple robots. In 2008 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 1391–1396. IEEE, 2008.

[27] Ryusuke Fujisawa, Shigeto Dobata, Ken Sugawara, and Fumitoshi Matsuno. Designing
pheromone communication in swarm robotics: Group foraging behavior mediated by chemical
substance. Swarm Intelligence, 8(3):227–246, 2014.

[28] MAPorta Garcia, Oscar Montiel, Oscar Castillo, Roberto Sepulveda, and Patricia Melin. Path plan
ning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function
evaluation. Applied Soft Computing, 9(3):1102–1110, 2009.

[29] SimonGarnier, Faben Tache, Maud Combe, AnneGrimal, and Guy Theraulaz. Alice in pheromone
land: An experimental setup for the study of antlike robots. In 2007 IEEE swarm intelligence
symposium, pages 37–44. IEEE, 2007.

[30] Simon Goss, Serge Aron, JeanLouis Deneubourg, and Jacques Marie Pasteels. Selforganized
shortcuts in the argentine ant. Naturwissenschaften, 76(12):579–581, 1989.

[31] PlerreP Grassé. Les insects dans leur univers. 1946.

[32] PlerreP Grassé. La reconstruction du nid et les coordinations interindividuelles chezbellicositer
mes natalensis etcubitermes sp. la théorie de la stigmergie: Essai d’interprétation du comporte
ment des termites constructeurs. Insectes sociaux, 6(1):41–80, 1959.

Bibliography 67

[33] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):100–107,
1968.

[34] Adam T Hayes, Alcherio Martinoli, and Rodney M Goodman. Distributed odor source localization.
IEEE Sensors Journal, 2(3):260–271, 2002.

[35] Andrew Howard, Maja J Matarić, and Gaurav S Sukhatme. Mobile sensor network deployment
using potential fields: A distributed, scalable solution to the area coverage problem. In Distributed
Autonomous Robotic Systems 5, pages 299–308. Springer, 2002.

[36] Brian Hrolenok, Sean Luke, Keith Sullivan, and Christopher Vo. Collaborative foraging using
beacons. In AAMAS, volume 10, pages 1197–1204, 2010.

[37] Shin Ishii, Wako Yoshida, and Junichiro Yoshimoto. Control of exploitation–exploration meta
parameter in reinforcement learning. Neural networks, 15(46):665–687, 2002.

[38] Robert L Jeanne. The evolution of the organization of work in social insects. Monitore Zoologico
ItalianoItalian Journal of Zoology, 20(2):119–133, 1986.

[39] Robert Johansson and Alessandro Saffiotti. Navigating by stigmergy: A realization on an rfid floor
for minimalistic robots. In 2009 IEEE International Conference on Robotics and Automation, pages
245–252. IEEE, 2009.

[40] Richard Kershner. The number of circles covering a set. American Journal of mathematics, 61
(3):665–671, 1939.

[41] Ali Abdul Khaliq, Maurizio Di Rocco, and Alessandro Saffiotti. Stigmergic algorithms for multiple
minimalistic robots on an rfid floor. Swarm Intelligence, 8(3):199–225, 2014.

[42] James J Kuffner and Steven M LaValle. Rrtconnect: An efficient approach to singlequery path
planning. In Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on
Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), volume 2, pages 995–
1001. IEEE, 2000.

[43] Daisuke Kurabayashi and Hajime Asama. Knowledge sharing and cooperation of autonomous
robots by intelligent data carrier system. In Proceedings 2000 ICRA. Millennium Conference.
IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.
00CH37065), volume 1, pages 464–469. IEEE, 2000.

[44] Daisuke Kurabayashi et al. Realization of an artificial pheromone system in random data carriers
using rfid tags for autonomous navigation. In 2009 IEEE International Conference on Robotics
and Automation, pages 2288–2293. IEEE, 2009.

[45] Lydia E Kavraki JeanClaude Latombe. Probabilistic roadmaps for robot path planning. Pratical
motion planning in robotics: current aproaches and future challenges, pages 33–53, 1998.

[46] Steven M LaValle and James J Kuffner Jr. Randomized kinodynamic planning. The international
journal of robotics research, 20(5):378–400, 2001.

[47] Steven M LaValle et al. Rapidlyexploring random trees: A new tool for path planning. 1998.

[48] Sung G Lee and Magnus Egerstedt. Controlled coverage using timevarying density functions.
IFAC Proceedings Volumes, 46(27):220–226, 2013.

[49] Sung G Lee, Yancy DiazMercado, and Magnus Egerstedt. Multirobot control using timevarying
density functions. IEEE Transactions on Robotics, 31(2):489–493, 2015.

[50] Nyree Lemmens and Karl Tuyls. Stigmergic landmarks lead the way. In The 20th BelgianDutch
Conference on Artificial Intelligence (BNAIC), pages 129–136, 2008.

68 Bibliography

[51] Nyree Lemmens and Karl Tuyls. Stigmergic landmark foraging. In Proceedings of The 8th Inter
national Conference on Autonomous Agents and Multiagent SystemsVolume 1, pages 497–504,
2009.

[52] Nyree Lemmens and Karl Tuyls. Stigmergic landmark optimization. Advances in Complex Sys
tems, 15(08):1150025, 2012.

[53] Nyree Lemmens, Steven de Jong, Karl Tuyls, and Ann Nowé. Bee system with inhibition
pheromones. In European conference on complex systems. Citeseer, 2007.

[54] Anna Font Llenas, Mohamed S Talamali, Xu Xu, James AR Marshall, and Andreagiovanni Reina.
Qualitysensitive foraging by a robot swarm through virtual pheromone trails. In International
conference on swarm intelligence, pages 135–149. Springer, 2018.

[55] Chaomin Luo, Furao Shen, Hongwei Mo, and Zhenzhong Chu. An improved antdriven approach
to navigation and map building. In International Conference on Swarm Intelligence, pages 301–
309. Springer, 2017.

[56] Peter Matthews et al. Covering problems for brownian motion on spheres. Annals of Probability,
16(1):189–199, 1988.

[57] Ralf Mayet, Jonathan Roberz, Thomas Schmickl, and Karl Crailsheim. Antbots: A feasible visual
emulation of pheromone trails for swarm robots. In International conference on swarm intelligence,
pages 84–94. Springer, 2010.

[58] JeanArcady Meyer and David Filliat. Mapbased navigation in mobile robots:: Ii. a review of
maplearning and pathplanning strategies. Cognitive Systems Research, 4(4):283–317, 2003.

[59] Olivier Michel. Cyberbotics ltd. webots™: professional mobile robot simulation. International
Journal of Advanced Robotic Systems, 1(1):5, 2004.

[60] MB NaghibiS and MR AkbarzadehT. Stigmergy for hunter prey problem. In Proceedings World
Automation Congress, 2004., volume 16, pages 169–174. IEEE, 2004.

[61] Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Over
coming exploration in reinforcement learning with demonstrations. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pages 6292–6299. IEEE, 2018.

[62] Shervin Nouyan, Alexandre Campo, and Marco Dorigo. Path formation in a robot swarm. Swarm
Intelligence, 2(1):1–23, 2008.

[63] Daniel Jarne Ornia, Pedro J Zufiria, and Manuel Mazo Jr. Mean field behaviour of collaborative
multiagent foragers. arXiv preprint arXiv:2103.07714, 2021.

[64] George F Oster and Edward O Wilson. Caste and ecology in the social insects. Princeton Uni
versity Press, 1978.

[65] Liviu Panait and Sean Luke. A pheromonebased utility model for collaborative foraging. In Pro
ceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Sys
tems, 2004. AAMAS 2004., pages 36–43. IEEE, 2004.

[66] Liviu Panait and Sean Luke. Cooperative multiagent learning: The state of the art. Autonomous
agents and multiagent systems, 11(3):387–434, 2005.

[67] Bao Pang, Yong Song, Chengjin Zhang, Hongling Wang, and Runtao Yang. A swarm robotic
exploration strategy based on an improved random walk method. Journal of Robotics, 2019,
2019.

[68] David Payton, Mike Daily, Regina Estowski, Mike Howard, and Craig Lee. Pheromone robotics.
Autonomous Robots, 11(3):319–324, 2001.

[69] David Payton, Regina Estkowski, and Mike Howard. Pheromone robotics and the logic of virtual
pheromones. In International Workshop on Swarm Robotics, pages 45–57. Springer, 2004.

Bibliography 69

[70] Anies Hannawati Purnamadjaja and R Andrew Russell. Guiding robots’ behaviors using
pheromone communication. Autonomous Robots, 23(2):113–130, 2007.

[71] Bijan RanjbarSahraei, Gerhard Weiss, and Ali Nakisaee. A multirobot coverage approach based
on stigmergic communication. In German Conference on Multiagent System Technologies, pages
126–138. Springer, 2012.

[72] Bijan RanjbarSahraei, Sjriek Alers, Karl Tuyls, and Gerhard Weiss. Stico in action. In Proceed
ings of the 2013 international conference on Autonomous agents and multiagent systems, pages
1403–1404, 2013.

[73] Bijan RanjbarSahraei, K Tuyls, I Caliskanelli, B Broeker, D Claes, S Alers, and G Weiss. Bio
inspired multirobot systems. In Biomimetic Technologies, pages 273–299. Elsevier, 2015.

[74] Andreagiovanni Reina, Alex J Cope, Eleftherios Nikolaidis, James AR Marshall, and Chelsea
Sabo. Ark: Augmented reality for kilobots. IEEE Robotics and Automation letters, 2(3):1755–
1761, 2017.

[75] Gene E Robinson. Regulation of division of labor in insect societies. Annual review of entomology,
37(1):637–665, 1992.

[76] Katherine Russell, Michael Schader, Kevin Andrea, and Sean Luke. Swarm robot foraging with
wireless sensor motes. In Proceedings of the 2015 International Conference on Autonomous
Agents and Multiagent Systems, pages 287–295. Citeseer, 2015.

[77] R Andrew Russell. Mobile robot guidance using a shortlived heat trail. Robotica, 11(5):427–431,
1993.

[78] R Andrew Russell. Laying and sensing odor markings as a strategy for assisting mobile robot
navigation tasks. IEEE Robotics & Automation Magazine, 2(3):3–9, 1995.

[79] R AndrewRussell. Heat trails as shortlived navigational markers for mobile robots. InProceedings
of International Conference on Robotics and Automation, volume 4, pages 3534–3539. IEEE,
1997.

[80] R Andrew Russell. Ant trailsan example for robots to follow? In Proceedings 1999 IEEE In
ternational Conference on Robotics and Automation (Cat. No. 99CH36288C), volume 4, pages
2698–2703. IEEE, 1999.

[81] Toshiki Sakakibara, Daisuke Kurabayashi, et al. Artificial pheromone system using rfid for navi
gation of autonomous robots. Journal of Bionic Engineering, 4(4):245–253, 2007.

[82] Mac Schwager, Daniela Rus, and JeanJacques Slotine. Decentralized, adaptive coverage control
for networked robots. The International Journal of Robotics Research, 28(3):357–375, 2009.

[83] Frank Schweitzer, Kenneth Lao, and Fereydoon Family. Active random walkers simulate trunk
trail formation by ants. BioSystems, 41(3):153–166, 1997.

[84] David Silver. Cooperative pathfinding. Aiide, 1:117–122, 2005.

[85] Ken Sugawara, Toshiya Kazama, and Toshinori Watanabe. Foraging behavior of interacting robots
with virtual pheromone. In 2004 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS)(IEEE Cat. No. 04CH37566), volume 3, pages 3074–3079. IEEE, 2004.

[86] Jonas Svennebring and Sven Koenig. Building terraincovering ant robots: A feasibility study.
Autonomous Robots, 16(3):313–332, 2004.

[87] Mohamed S Talamali, Thomas Bose, Matthew Haire, Xu Xu, James AR Marshall, and Andrea
giovanni Reina. Sophisticated collective foraging with minimalist agents: a swarm robotics test.
Swarm Intelligence, 14(1):25–56, 2020.

[88] Ying Tan and Zhongyang Zheng. Research advance in swarm robotics. Defence Technology, 9
(1):18–39, 2013.

70 Bibliography

[89] Sebastian B Thrun. Efficient exploration in reinforcement learning. 1992.

[90] Wolfhard von Thienen, Dirk Metzler, DongHwan Choe, and VolkerWitte. Pheromone communica
tion in ants: a detailed analysis of concentrationdependent decisions in three species. Behavioral
ecology and sociobiology, 68(10):1611–1627, 2014.

[91] Israel A Wagner, Michael Lindenbaum, and Alfred M Bruckstein. Robotic exploration, brownian
motion and electrical resistance. In International Workshop on Randomization and Approximation
Techniques in Computer Science, pages 116–130. Springer, 1998.

[92] KoHsin CindyWang, Adi Botea, et al. Scalable multiagent pathfinding on grid maps with tractabil
ity and completeness guarantees. In ECAI, pages 977–978, 2010.

[93] Vasily Zaburdaev, S Denisov, and J Klafter. Lévy walks. Reviews of Modern Physics, 87(2):483,
2015.

[94] Vittorio A Ziparo, Alexander Kleiner, Bernhard Nebel, and Daniele Nardi. Rfidbased exploration
for large robot teams. In Proceedings 2007 IEEE International Conference on Robotics and Au
tomation, pages 4606–4613. IEEE, 2007.

	Abstract
	Introduction
	Motivation and Concepts
	Goals and Expectations

	Background and Problem Description
	Self-Organisation, Stigmergy and Path Integration
	Classical vs. Swarm Robotics
	Stigmergy in Swarm Robotics
	The Foraging Problem
	Solutions to the Foraging Problem
	Stigmergic Foraging Algorithm
	Coverage & Exploration Control
	Probabilistic Coverage
	Dynamic Coverage Control

	Path Planning Algorithms
	Rapidly Exploring Random Trees (RRTs)

	Preliminaries
	Problem Description
	Summary Concepts

	Proposal: Self Guided Swarm
	Basic Concept
	States
	Region of Influence
	State Transitions
	Dynamics

	Extended Concept
	Beacon-Forager Switching
	Moving Beacons
	Double Updating

	Concept Intuition
	Conceptual Swarm Behaviour
	Discretization of the Environment by Beacons
	Local Navigation Information: Weights & Guiding Velocities
	Extensions
	Abstraction Methods

	Results and Guarantees
	Random Walk Exploration
	General Autoregressive Exploration

	Experimental Analysis and Results
	Implementation
	Algorithms
	Particle Simulator
	Webots Simulator
	Parameters & Worlds

	Performance Metrics
	Average Navigation Delay
	Minimum Navigation Delay
	Entropy

	Parametric Performance Analysis
	Setup
	Expectations
	Results

	Swarm Size Analyses
	Setup
	Expectation
	Results

	Robustness Analysis
	Setup
	Expectations
	Results

	Model Extension
	Setup
	Expectations
	Results

	Summary

	Conclusion
	Summary of Results
	Applications
	Future Work

	Bibliography

