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Abstract

With the increasing demand for 3D city models in various applications, providing efficient ac-

cess to 3D city models on the web has become very important and valuable. However, there is a

lack of web services in which users can directly and effectively access the city objects contained

in the 3D city models on the web. Another problem with web services related to 3D city models

is that the size of 3D city models can become very large. As a consequence, the browser will not

respond immediately until all city objects in the requested 3D city model have arrived. Addi-

tionally, although file-based systems are the easiest way of data storage, they have deficiencies

in web services that require scalability, efficiency, and flexibility in data access. To fix these is-

sues, the goal of this research is to develop the an efficient way of disseminating 3D city models

on the web, to discover the method of enabling 3D city models to be parsed incrementally and

efficiently by the browser, and to explore a proper database solution for storing 3D city models

to support the fast data access.

CityJSON has advantages in web applications over the CityGML data format, thus being

chosen as the main datasets used in this research. Inspired by OGC API – Feature, a RESTful

API for fast access to geospatial features in CityJSON has been developed. The second part of

my research is related to the data streaming. CityJSONFeature has been proposed to enable

CityJSON to be parsed incrementally on the web. To improve the overall data streaming perfor-

mance, I proposed two methods to stream the data from the database to the RESTful API so that

the RESTful API can immediately start constructing the first CityJSONFeature and sending it to

the user. The third part of my research is to explore a proper database solution for CityJSON

datasets to best support the fast data access in the RESTful API. In addition, some auxiliary data

is added into the database to improve the RESTful API’s capabilities with efficient data filtering

and streaming.

To evaluate the efficiency of the implemented methodology, a systematic benchmarking has

been performed on three aspects: 1) the database schema, 2) the two streaming methods, and

3) the performance difference between the DBMS and the file system. The results show that in

most use cases the DBMS can better support the RESTful API than the file system with the help

of the built-in query and index mechanism. In addition, the overall streaming performance is

largely improved when adding data streaming from the DBMS to the RESTful API. Lastly, based

on the benchmarks, an optimal database schema has been chosen to support the RESTful API

with fast data access, efficient data filtering and streaming.
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Chapter 1

Introduction

1.1 Motivation

Nowadays, 3D city models are used for a broad range of applications and have been widely

recognized as a potential to create social value. Biljecki et al. [2015] made a comprehensive

overview on the state of art of 3D city modelling and identified more than 29 distinct use cases

related to 3D city models (see Figure 1.1). However, compared to 2D spatial datasets, there

are more difficulties in 3D dataset acquisition, reconstruction, maintenance and dissemination

due to more complex structure and massive file sizes. Hence, the 3D city models are usually

used at local scale and the application with 3D city models is thus limited.

Figure 1.1: Applications in 3D city models (Figure from Biljecki et al. [2015]).

In the last decade, several scholars and organizations have been working on improving the

dissemination and usage of 3D city models. In 2020, the Dutch Kadaster and the 3D Geoin-

formation research group at TU Delft collaborated to generate and disseminate 3D city models
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1.1. MOTIVATION

on the web [Dukai et al., 2020]. The workflow in the collaboration covers 3D data automated

reconstruction from existing countrywide data (i.e. AHN and footprints) and enabling the 3D

city models accessible through the national governmental geoportal, PDOK (see Figure 1.2).

Figure 1.2: The access to 3D city models through the Dutch geoportal, PDOK

However, the city objects contained in these 3D city models are not directly queryable through

the geoportal, which means that users cannot directly browse them online and look into the city

objects in detail (such as city object types). Instead, the entire file needs to be downloaded by

the user and checked with other software. Moreover, these 3D city models are simply divided

into fixed-size tiles and the size of one tile with various city objects can exceed 2 GB. Due to the

lack of filtering function, the downloaded files with large sizes are difficult to process and use

in applications. In addition, there is no 3D viewer provided for users to quickly inspect the city

objects. Even if a 3D viewer is provided, the 3D visualization of a large tile cannot be performed

very well in terms of the long response time. Because the browser will not immediately start the

3D visualization until all requested city objects have arrived. Suggested by W3C Working Group

[2017], data formats should be modified or designed to enable the stream-based delivery when

handling large amounts of geospatial data. In addition, although the file-based systems are the

easiest way of data storage, they have deficiencies in some applications that require scalability,

efficiency and flexibility in data access. For these reasons, the goal of this research is to de-

velop the best way of disseminating 3D city models on the web so that users can quickly and

efficiently access 3D city models, and to explore a proper database solution to support the fast

data access.

In order to promote the interoperability and machine-readability of 3D city models, Open

Geospatial Consortium (OGC) has been developing international standards for publishing and

interoperating 3D city models in the last two decades [Van Den Brink et al., 2018]. CityGML was

proposed by the OGC as an open data model and format for 3D city models. However, CityGML
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as an XML-based exchange format is quite difficult to processed, managed and disseminated

[Pispidikis and Dimopoulou, 2018]. CityJSON, a JSON-based exchange format of 3D city models

is less verbose and more web-friendly [Ledoux et al., 2019]. Hence, CityJSON is chosen as the

main dataset used in this research to implement the efficient dissemination of 3D city models

on the web. In 2019, OGC released a multi-part standard named OGC API – Feature. The core

of this standard follows the RESTful architecture and specifies how geospatial resources are

defined in the RESTful API [Open Geospatial Consortium, 2020]. The resource-oriented data

access architecture can make the geo services more web-friendly for both users and developers.

Inspired by OGC API – Feature, I aim to develop a RESTful API for fast access to geospatial fea-

tures in CityJSON. According to the some characteristics in CityJSON datasets and my research

scope, there are some divergences between OGC API – Feature and the final implementation of

the RESTful API. The second part of my research is related to the data streaming. CityJSONFea-

ture has been proposed by Ledoux [2020] to enable CityJSON data to be parsed incrementally on

the web. To improve the overall data streaming performance, I propose two methods to stream

the data from the database to the RESTful API so that the RESTful API can start constructing the

first CityJSONFeature and sending it to the user without having to wait for all data tuples to be

transferred from the database. The third part of my research is to explore a proper database so-

lution for CityJSON datasets to best support the fast data access in the RESTful API. In addition,

some auxiliary data is also added into the database to improve the RESTful API’s capabilities

with efficient data filtering and streaming. In the end, I evaluated the design of the database

schema, two different streaming methods and the performance difference between the DBMS

and the file system regarding the efficient data access through the RESTful API.

1.2 Research challenges

3D city models consist of more complex structures and larger file sizes in comparison to 2D

datasets. Hence, there are some challenges in CityJSON storage and dissemination that have to

be solved. These challenges are formulated as followed:

• Resource mapping: Although OGC API – Feature defines the resources in the geospatial

context, the specification of mapping the 3D data in CityJSON to those resources needs to

be proposed. In CityJSON, one feature may be divided into several city objects, for exam-

ple, the multi-part building. Thus, one geospatial feature may be associated with more

than one city object. Correctly bundling the associated city objects together is necessary

during data access.

• Data filtering: As mentioned in Section 1.1, a data filtering function is necessary for effi-

cient data access and use. Regarding filtering, there are two aspects: semantic-based and

geometric-based. Although the DBMS provides the indexing mechanisms to accelerate the
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1.3. RESEARCH OBJECTIVES

filtering process, some auxiliary data is needed to support the filtering and there will be

trad-off between the storage size and query performance.

• Data streaming: The requested data can be very large, especially when dealing with 3D

datasets. The long response time is not user-friendly. In order to improve the web perfor-

mance, modifications should be implemented to enable CityJSON data to be incremen-

tally parsed by the browser. Considering that the CityJSON datasets will be hosted on the

database, correctly streaming the data from the DBMS to the RESTful API is also necessary.

• Data storage: The conventional file system is the easiest way for data storage but it usually

lacks scalability, especially when large amounts of data need to be managed. Besides, the

data processing in a file-based system is less flexible than in a DBMS. Therefore, a DBMS

is preferred for better data availability and access performance. The specific database

schema for CityJSON datasets needs to be properly designed to support the fast data ac-

cess in the RESTful API.

• CRS issues: The city objects in one CityJSON dataset share the same CRS, which is stored at

the CityJSON object level. During the data access, the CRS information should be attached

to geospatial features. However, effective data transmission should also be ensured, for

example, during a streaming process. This means, the duplicate CRS information should

be removed. Besides, different CityJSON datasets can have different CRSs and the geomet-

ric filtering process can also have different CRS issues. Therefore, proper CRS transforma-

tion is necessary.

1.3 Research objectives

The main research question for this thesis is:

• How to best develop a RESTful API for fast access to geospatial features in CityJSON and

how to properly store CityJSON in a database to support the fast data access?

To answer this question, the following sub-questions should be considered:

• How to mapping the data in CityJSON datasets to the resources defined by OGC API –

Feature?

• How to solve the CRS issues during data access?

• How to implement the efficient querying of city objects based on geometries and seman-

tics?

• How to define streaming in the geospatial context and how to stream CityJSON datasets?
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• Which database is suitable for storage of CityJSON datasets to support RESTful access and

how to design the database schema?

1.4 Research scope

The research scope concerns the following aspects:

• Datasets: The datasets used in this research are CityJSON datasets. Considering the com-

plexity, the property “extension”,“appearance”, “geometry-templates” in CityJSON objects

are out of scope for this research.

• Minimum accessible resource: By following the OGC API – Features, I defined the min-

imum accessible resource as a city object. This means that the data access and filtering

process only works at the city object level.

• REST API: This thesis focuses on the efficient access to CityJSON datasets on the web.

Other resource operations such as modification and deletion are not investigated in this

research.

• Bounding box filtering: Bounding box filtering only works on datasets with reference in-

formation. In addition, when performing bounding boxes on multiple CityJSON datasets,

the filtered city objects should have the same CRS for maintaining the performance of the

RESTful API.

• Attribute filtering: Unlike bounding box filtering, attribute filtering is only performed

on a single CityJSON dataset. Moreover, to maintain high-performance attribute filtering

in the RESTful API, attributes containing few distinct string or numeric values are only

considered as queryables.

1.5 Research outline

The rest of the thesis is organized as follows:

• Chapter 2 discusses the related work, starting from the introduction of 3D city model to

the general concepts of the RESTful API and the current database solutions for 3D city

models.

• Chapter 3 introduces the methodology for this research, which covers the two main parts:

developing a RESTful API and storing CityJSON data in a database.

• Chapter 4 covers the implementation details for prototyping the RESTful API.
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1.5. RESEARCH OUTLINE

• Chapter 5 presents the methodology used for the benchmarking. Three parts are con-

cerned: database schema, streaming method and storage system. The benchmarks are

analyzed to suggest the optimal solution for this research.

• Chapter 6 gives a conclusion of this research with the future work.
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Chapter 2

Theoretical background and related work

2.1 3D city model

3D city models can be seen as digital models that represent 3D geometric entities (e.g. build-

ings, bridges and roads) of urban areas [Billen et al., 2014]. Compared to traditional 2D maps

where city objects are represented in a symbolic way, 3D city models can display a real-realistic

urban scenarios with texturing support [Wendel et al., 2017]. Hence, 3D city models can be ben-

eficially used in urban visualization, analysis and applications. This can help urban planner and

policy makers to get a better insight of the built environment.

3D city models have initially been used for simulating the built environment. Hence, the

semantics and topology of city objects are largely ignored in the 3D city models. However, the

lacking of semantic information limits the diversity of 3D city model related applications. An-

other issue is the interoperability of 3D city models. 3D city models from heterogeneous sources

can not be directly used in the same application. To tackle these problems, OGC has defined an

international standard for 3D city models and an XML-based data exchange format, named

CityGML [Gröger et al., 2012].

2.1.1 CityGML

CityGML data model is developed to improve the interoperability by unifying the representa-

tion of the basic geometries and semantic information in a 3D city model [Gröger et al., 2012].

The geometry part stores geometrical and topological information in a consistent way. The

semantic part complies to the ISO 19100 standards to enrich the geometry model for various

use cases [Kolbe, 2009]. CityGML data model comprises 10 core semantic modules, which are

extensible to other domains using the Application Domain Extensions (ADE) (see Figure 2.1).
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2.1. 3D CITY MODEL

Figure 2.1: CityGML architecture (Source:virtualcitySYSTEMS).

2.1.2 CityJSON

CityJSON, a JSON-based encoding for the OGC CityGML 2.0.0 data model has been proposed

by Ledoux et al. [2019]. A CityJSON file contains a CityJSON object of which the type is always

“CityJSON” and the minimal valid CityJSON object must contain the properties shown in the

Listing 2.1. The CityJSON object can also contain the member “metadata”, where the reference

system and the 3D geographical extent can be stored (see Listing 2.2). The member “vertice”

stores a global list of the 3D vertex coordinates for the compression purpose, which is inspired

by the Wavefront OBJ format.

1 {
2 "type": "CityJSON",
3 "version ": "1.0" ,
4 "CityObjects ": {},
5 "vertices ": []
6 }

Listing 2.1: The minimal valid CityJSON object

1 {
2 "metadata ": {
3 "referenceSystem ": "urn:ogc:def:crs:EPSG ::7415" ,
4 "geographicalExtent ": [ 84710.1 , 446846.0 , -5.3, 84757.1 , 446944.0 ,

40.9 ]
5 }
6 }

Listing 2.2: Example of the property “metadata” at the first level of CityJSON object

A collection of city objects are stored in the property “CityObjects”. The Listing 2.3 shows an

8
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example of one city object, which contains the property “type” whose value can be “Building”,

“BuildingPart”, and other types of objects that are common in digital twins. The attributes for

this city object are stored in the property “attributes”. The properties “parent” and “children”

may exist when the city object is associated to the other city objects. The geometrical and se-

mantic data for the city object are contained in the property “geometry”. From Listing 2.4 we

can see one example of a geometry object, for which the type can be “MultiSurface”, “Solid” and

other common 3D geometry type. The boundary presentation is used for storing the geometri-

cal data and each vertex refers to the global vertex list.

1 {
2 "id -1": {
3 "type": "Building",
4 "attributes ": {
5 "measuredHeight ": 22.3,
6 "roofType ": "gable",
7 },
8 "children ": ["id -2"],
9 "geometry ": [{...}]

10 },
11 ...
12 }

Listing 2.3: Example of One city object in CityJSON

1 {
2 "type": "Solid",
3 "lod": 2,
4 "boundaries ": [[
5 [[0,3,2,1,22]],
6 [[4,5,6,7]],
7 [[0,1,5,4]],
8 [[1,2,6,5]]
9 ]],

10 "semantics ": {
11 "surfaces" : [
12 {"type": "RoofSurface" },
13 {
14 "type": "WallSurface",
15 "paint": "blue"
16 },
17 {"type": "GroundSurface" }
18 ],
19 "values ": [ [0, 1, 1, 2] ]
20 }
21 }

Listing 2.4: Example of One geometry in one city object
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2.2. REST API

To compress the CityJSON files, the 3D vertices can be transformed into integer values. The

transformation matrix for obtaining the original coordinate values can be decomposed into the

“scale” and “translate”, which are represented as arrays with 3 values and stored in the “trans-

form” property (see Listing 2.5).

1 "transform ": {
2 "scale": [0.01, 0.01, 0.01],
3 "translate ": [4424648.79 , 5482614.69 , 310.19]
4 }

Listing 2.5: Example of one "transform" object in CityJSON

Compared to CityGML exchange format, CityJSON files are on average six times more com-

pact proved by real-world datasets [Ledoux et al., 2019]. In addition to that, the JavaScript Ob-

ject Notation (JSON) encoding is derived from JavaScript and is the preferred data exchange for-

mat for web applications [Freeman, 2019]. It is also natively supported by most programming

languages, for example, Python. Due to the popularity of JSON data, some relational databases

like PostgreSQL now support JSON data for storing and querying. Therefore, CityJSON has ad-

vantages in data storage and web applications, and has been chosen as the main datasets used

in this research.

2.2 REST API

REST is acronym for Representational state transfer, which is a software architectural style that

uses a subset of HTTP [T. Fielding, 2000]. There are 6 architectural constraints that have to be

met in order to define an API as a RESTful API [Erl et al., 2012]. Those constrained are listed

below::

• Uniform Interface: This is an essential constraint to determine a RESTful API. It shows

that no matter what type of device or application, there should be a unified way of inter-

acting with the API.

• Stateless: Statelessness means that the requests sent by the client can be understood by

the RESTful API without the additional context data. The client must send all the nec-

essary information to the RESTful API, such as query parameters to satisfy the stateless

purposes.

• Cacheable: The web browser can save some resources locally. When the browser sends

the same request, there is no need to fetch the same resources from the server again. In

this way, the number of client-server interactions can be reduced, thereby improving the

scalability and performance.

• Client-Server: The client-server architecture separates the resource providers and re-

ceivers, which can be developed independently.
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• Layered System: Between the client layer and the end server layer (resources), there can

be intermediary layers. Those layers are grouped horizontally, which is similar to the IT

communication structure. Each layer has specific function, for example, a security layer

can be added to ensure the security policies in business [Richards, 2015]. The layered sys-

tem helps develop new functions and makes it easy to manage the whole RESTful service.

• Code on Demand: To meet the different demands on the client side, the RESTful API can

optionally offer the code that can be run in the client side, for example, the Python-like

expressions using Jinja or client-side scripts using JavaScript.

The key aspect in RESTful services is the resource [Jansen, 2011]. Resources can be grouped

into collections and each collection itself is also a resource and contains one type of other re-

sources in an unordered manner (see Figure 2.2). Each resource is identified by the Uniform

Resource Locator (URL) and can be manipulated using HTTP verbs. The operations include cre-

ate, read, update, and delete, which are implemented by POST, GET, PUT, and DELETE HTTP

verbs, respectively.

Figure 2.2: Resource model in REST API (Figure from Jansen [2011]).

2.3 OGC API - Features

As introduced in Chapter 1, the OGC released a multi-part standard named OGC API – Features

in 2019. Compared to previous standards like Web Feature Service (WFS) 2.0 and Web Map Ser-

vice (WMS), the core conceptual model of the OGC API – Features remained the same, enabling

access to geospatial datasets through a web service [Holmes, 2017]. Prior to February 2019, the

core part of the OGC API – Features was referred to as WFS 3.0, which uses a different approach

compared to its predecessor WFS 2.0 in specifications. Although XML exchange format is still
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2.3. OGC API - FEATURES

acceptable, JSON is prominently featured for services and the data encoding, along with HTML.

Besides, the resource-oriented data access architecture (REST) is followed, which makes it more

web-friendly for both users and developers. Therefore, it can be concluded that the OGC API –

Features is web-oriented and consistent with the good practice on the web.

The OGC API – Features contains the following parts [Open Geospatial Consortium, 2020]

and each part is discussed in details:

• Part 1: Core standard: The core of the OGC API – Features follows the RESTful architecture

[Open Geospatial Consortium, 2019]. The resources defined by the OGC API – Features are

listed in Table 2.1 and each resource provides links to the related resources[Open Geospa-

tial Consortium, 2020].

Resource Path Purpose

Landing page / This is the top-level resource, which serves as an entry point.

Conformance declaration /conformance This resource presents information about the functionality that is implemented by the server.

API definition /api This resource provides metadata about the API itself.

Feature collections /collections This resource lists the feature collections that are offered through the API.

Feature collection /collections/{collectionId} This resource describes the feature collection identified in the path.

Features /collections/{collectionId}/items This resource presents the features that are contained in the collection.

Feature /collections/{collectionId}/items/{featureId} This resource presents the feature that is identified in the path

Table 2.1: The resources defined by OGC API (Table from Open Geospatial Consortium [2020])

The Feature collections contains a list of key information about all the Feature collection

resources. The key information must includes a unique identifier for the collection in

the URL path and a list of CRSs of the geometries contained in the collection. Optionally,

the description, title, spatial extent and temporal range of this collection can be included

in the response. When a specific Collection resource is accessed, more details can be

returned. The Features contains (part of) features in the identified collection. The re-

sponse of Features also depends on the query parameters in the URL, for example, bbox

and datatime. In addition, the URL parameter limit and offset can be added to support

paged access to a large dataset without overloading the client. Each Feature can also be

separately requested by its unique identifier.

• Part 2: Coordinate Reference Systems by Reference: One unavoidable issue when dealing

with geospatial data is the CRS. The CRSs, on one hand, make geospatial data special and

valuable to many real-life applications. On the other hand, different CRSs can cause diffi-

culties in data management, filtering, integration and applications. In addition, the lack

of CRS information is problematic since the coordinates for the geospatial data will be

ambiguous, which may lead to failure in geometric and topological analysis.

The first part of the OGC API – Features only supports one CRS: WGS 84. In order to ad-

dress the CRS issue, the Part 2: Coordinate Reference Systems by Reference extends the first

part’s capabilities to use any other CRSs [Open Geospatial Consortium, 2020]. To avoid
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unnecessary duplication and ambiguousness of CRS identifiers, OGC provides a global list

of supported CRS identifiers. The CRS identifiers can be used in the spatial extent (see

Listing 2.6) and as a parameter in the URL (see Listing 2.7).

1 "extent ": {
2 "spatial ": {
3 "bbox": [
4 [
5 -180,
6 -90,
7 180,
8 90
9 ]

10 ],
11 "crs": "http ://www.opengis.net/def/crs/OGC /1.3/ CRS84"
12 }

Listing 2.6: The spatial extent information

1 .../ collections/buildings/items?crs=http :// www.opengis.net/def/crs/
EPSG /0/7415&...

Listing 2.7: Retrieving features from a collection in a supported CRS

• Part 3: Filtering and Common Query Language (CQL): This part has not been officially

published yet and only the draft version is available. It mainly works on enhancing fil-

tering capabilities using the CQL in the API. The queryables that can be used to construct

filter expressions for one collection is accessed by the URL: /collections/{collectionId}/

queryables. Apart from the queryables, a comprehensive set of operators are also defined

by OGC, which includes logical operators, comparison operators, spatial operators and

temporal operators. In the CQL, a key/value is used to express a filtering statement where

the key refers to a operator and the value contains the operands. An example of the CQL

for a BETWEEN operation is given in Listing 2.8.

1 {
2 "between ": {
3 "value": { "property ": "depth" },
4 "lower": 100.0,
5 "upper": 150.0
6 }
7 }

Listing 2.8: An example of a BETWEEN predicate

• Part 4: Simple Transactions: This part is still in a draft stage. It adds an extension to the

first part by supporting other resource operations like modification and deletion.

The OGC API – Features provides a good guidance and inspiration in the development of a

RESTful API for fast access to geospatial features in CityJSON. The first part offers a template
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2.4. DATABASE MANAGEMENT SYSTEM

for mapping CityJSON datasets to the resources in the RESTful API at geospatial context and the

second part gives ideas for solving the different CRS issue. Part 3 helps with the implementation

of data filtering for efficient data access and use while the last part is out of my research scope

since the data access is the only resource operation considered in the RESTful API for CityJSON.

However, the draft document of Part 3 is not available until most parts of my methodol-

ogy is well designed and implemented. Therefore, some of my methodology and decisions are

not fully in line with Part 3. Regarding Part 1, there is no need to return a list of CRSs of the

geometries contained in one Feature Collection because all features in one CityJSON dataset

share the same CRS. In addition, the only filterable resource specified in Part 1 is the Features,

which means that the filtering process only operates on a single CityJSON dataset. When the re-

gion of interest defined by the user covers multiple CityJSON datasets, the RESTful API can not

perform this spatial filtering task. Although Part 3 extends the filtering capability by allowing

cross-collection queries, the approach proposed in Part 3 requires the pre-selected set of col-

lections as a URL parameter (see Listing 2.9). Part 2 can handle the CRS issues by providing each

CRS with a unique URL. Another identifier can be used to simplify the expression of CRSs and

the CRS parsing in the RESTful API, for example, the EPSG code. The main divergences between

OGC API – Features and my implementation will be concluded and discussed in Section 6.1.1.

1 http ://www.someserver.com/ogcapi/search?collections=collection1 ,
collection3&filter=prop1 =10 AND prop2 >45

Listing 2.9: Multi-collection filter example

2.4 Database management system

The relational database is proposed by Codd [1970]. It uses a logical structure to allow users

to easily access specific data that is related to one another. In a relational database, data is or-

ganized into tables where each row is a record with a unique ID and each column is assigned

a specific datatype such as an integer number. With the changing requirements, the evolu-

tion of the internet and the larger variety of data types that occurred from this evolution, re-

lational databases struggles particularly with the scalability and speed demanded by users in

the mid-1990s [D. Foote, 2018]. This led to the development of Not only Structured Query Lan-

guage (NoSQL) databases [NoSQL, 2021]. NoSQL databases use different data structures (i.e. key-

value, document) and avoid the same constraints as traditional relational databases [Drake,

2019]. NoSQL databases are mostly distributed databases, which means that they scale hori-

zontally by adding more nodes in a cluster environment when the data size increases [Olivera,

2019].

Despite the more scalability and flexibility of NoSQL databases, relational databases continue

to have their place in many applications. Especially, when the reliability and consistency in the
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data transmission are required. Before a relational database can be populated and used, a strict

and thorough requirement analysis is needed to understand the real-world relations between

the entities so that the database can function correctly [Polding, 2018].

2.4.1 JSON in DBMS

The JSON files can fit naturally into NoSQL systems such as MongoDB. However, storing JSON

data in Relational Database Management System (RDBMS)s is challenging because there is no

traditional data type and operations that are suitable for the JSON data. Despite their flexibil-

ity, NoSQL systems have some major disadvantages compared to traditional RDBMSs [Chasseur

et al., 2013]. There is no standardized query language in the NoSQL systems, which hinders the

query capabilities and efficiency. Hence, NoSQL systems usually suffer from handling complex

data processing, such as filtering by multiple requirements. ACID (atomicity, consistency, iso-

lation, durability) properties in the RDBMSs help maintain the consistency during transactions

[Haerder and Reuter, 1983]. However, this is not guaranteed in NoSQL systems.

Therefore, the integration of JSON data into a RDBMS has been explored and discussed by

many scholars and organizations. Chasseur et al. [2013] proposed a mapping layer named

Argo that allows the RDBMS to support JSON data with flexibility. With the mapping layer, ACID

properties are guaranteed and complex operations on JSON data are supported, such as join

and aggregation in the RDBMS. Liu et al. [2016] presented an automatically calculated dynamic

soft schema for the JSON data, which narrowed the gap between the traditional RDBMSs and the

schemaless NoSQL DBMSs. A query-friendly and self-contained binary format for encoding JSON

has also been proposed to shrink the performance difference between the traditional data types

and schema-free JSON type.

ISO released a new international SQL standard (ISO/IEC 9075:2016) in 2016 [ISO, 2016]. This

new standard supports JSON data by storing the JSON as a string and defining the related func-

tions to interpret the string to a JSON. Some major DBMS vendors have integrated JSON into their

database schema so that the database users can freely store, query, and index JSON data. Oracle

follows the new SQL/JSON standard [ModernSQL, 2017] while PostgreSQL creates two new data

types, namely JSON and JSONB [PostgreSQL, 2021b]. There are essential discrepancies between

JSON and JSONB. In terms of storage, JSON data type stores an exact copy of the text, which is

similar to the SQL/JSON standard, while JSONB is decomposed and stored using a binary for-

mat. Regarding performance, JSON is processed much slower due to the additional reparse. In

addition, there are more operators and indexing mechanisms for JSONB in PostgreSQL. It can be

concluded that JSONB has more values in applications

2.4.2 Database for 3D city models

Despite the fact that file-based systems are the easiest way of data storage, they have deficien-

cies in some applications that require scalability, efficiency and flexibility in data access. The
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2.4. DATABASE MANAGEMENT SYSTEM

DBMS has become a popular way of data storage and has been able to provide an efficient solu-

tion for processing large amounts of data using Structured Query Language (SQL).

A 3D geo-database solution called “3D City Database (3DCityDB)” was developed to store

CityGML datasets by using a spatially-extended RDBMS [3DCityDB Team, 2019]. CityGML is an

object-oriented data model which defines a conceptual schema for the most relevant urban

entities and specifies the relationship between them [Yao et al., 2018]. Therefore, the database

solution for the CityGML data model can be abstracted to solving the problem of mapping

the object-oriented data model onto a relational data model [Stadler et al., 2009]. There are

strong reasons why a spatially-extended RDBMS is adopted in 3DCityDB. Most spatial relational

databases like PostgreSQL support spatial data types (geometry and geography) and functions,

which offers an efficient way of spatial data storage, query and analysis. Besides, the spatial

indexing mechanism helps to retrieve data faster, thereby improving data performance. In ad-

dition, the RDBMS ensures the integrity and consistency in data transactions, which are crucial

for some applications, for example, for a cadastral application. NoSQL database solutions for 3D

city models are also investigated by some researchers in recent years. Mao [2014] proposes a

3D city model management system with a NoSQL database, Mongodb, where 3D city models in

different data formats such as Collada and X3D, are maintained with CityTree.

Since CityJSON follows the CityGML 2.0.0 data model, the data in CityJSON files can be

theoretically stored into 3DCityDB. However, there are some drawbacks when using 3DCityDB

for storing CityJSON:

• Complex: The schema group of 3DCityDB is huge and each city object type has several

related tables, which increases the complexity (see Figure 2.3). Therefore, setting up the

database schema of 3DCityDB requires complicated work, and it takes a long time to get

familiar with the database schema. Those two characteristics show that 3DCityDB is not

friendly for beginners to use.

• Less flexible: To extend the CityGML data model to meet new requirements, ADE has been

proposed by Open Geospatial Consortium [2012]. The main purpose of ADE is to provide

flexibility in dealing with different use cases with newly-defined classes and attributes

[Biljecki et al., 2018]. However, in 3DCityDB, all the generic classes of city objects are

mapped into specific tables and the corresponding generic attributes are mapped into

the columns. This means that the ADE cannot directly work with 3DCityDB. New database

schema for the ADE needs to be designed.

• XML-oriented: 3DCityDB is developed to store CityGML files and the data format the

3DCityDB handles is XML. This is an essential reason why the database schema in 3DC-

ityDB is complex and verbose. As discussed in Section 2.4.1, some major DBMS vendors

have supported JSON storage with flexibility. This feature has not been integrated into

3DCityDB, and it can be seen as a waste for CityJSON datasets.
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• Out of the research scope: 3DCityDB has well-structured and fine-defined tables, like

SURFACE_GEOMETRY and THEMATIC_SURFACE. However, this research focuses on the

data access at city object level. Hence, it is not necessary to split a city object to several

sub tables. In addition, it takes longer time to construct the original city objects from

3DCityDB, which leads to a performance penalty in the RESTful API.

Figure 2.3: Building database schema in 3DCityDB (Figure from 3DCityDB Team [2019]).

Based on the above discussion, a better database solution is recommended to store CityJ-

SON instead of directly adopting 3DCityDB. Staring [2020] explores and compares the perfor-

mance of using NoSQL and SQL databases for CityJSON, and concludes that both database so-

lutions can work well on most use cases. However, there are some limitations in the NoSQL

database when handling geospatial data. Compared to the spatially-extended relational database,

for example, PostgreSQL, there are not as many spatial functions provided in the NoSQL databases.

Moreover, the CRS is currently limited to the WGS84 datum in MongoDB, which causes troubles

in handling different CRS issues. In addition, the spatial indexing mechanism in MongoDB only

supports 2D geometry types, so the data query performance for CityJSON is limited.

A more compact database schema is more efficient for data query and process, thereby fa-

cilitating better performance [Stadler et al., 2009]. In order to avoid a massive number of tables

in the relational database schema, the JSONB data type introduced in Section 2.4.1 is used in

Staring’s schema to reduce the number of tables (see Figure 2.4).
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2.5. DATA STREAMING

Figure 2.4: An overview of the relational database schema for CityJSON from [Staring, 2020].

In respect to the above, the relational database solution for the storage of CityJSON is first

investigated in this research. Note that a file-based system can be more efficient than a DBMS in

certain situations, for example, accessing a whole file. Therefore, a hybrid storage management

integrating the file-based system and DBMS could be considered.

2.5 Data streaming

The W3C working group has documented some suggestions concerning the publication of spa-

tial data on the web [W3C Working Group, 2017]. Regarding the data transmission, it is advised

that data formats should be modified or designed to enable the stream-based delivery when

handling large amounts of geospatial data.

Newline-delimited JSON (NDJSON) is a data format for JSON streaming [Long, 2021]. As the

name implies, the newline character can be used as a delimiter to distinguish each valid JSON

object, which can be parsed and processed independently without having to read the whole

file into memory [Lück, 2018]. In order to enable GeoJSON data to be parsed incrementally
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on the web, GeoJSON has been modified to GeoJSON Text Sequence by being integrated with

NDJSON [S. Gillies, 2017]. Therefore, the client application can start parsing and processing the

first received feature before the whole data transmission is completed.

CityJSON cannot work directly with NDJSON due to the global list of vertices as mentioned in

Section 2.1.2. For reconstructing the geometries for one city object, the entire file needs to be

read into memory since the geometries are represented by having references to that global list

of vertices [Ledoux et al., 2019]. In order to enable the streaming of CityJSON, CityJSONFeature

has been proposed by Ledoux [2020], whose structure is as Listing 2.10. One CityJSONFeature

contains a city object and its possible associated city objects. The indexing vertex mechanism is

still kept with a local list of vertices. Each CityJSONFeature object is independent and delimited

by a newline character, thus being streamable.

1 {
2 "type": "CityJSONFeature",
3 "id": "myid", //to identify which CityObject is the "main" one
4 "CityObjects ": {},
5 "vertices ": [],
6 "appearance ": {},
7 }

Listing 2.10: The structure of a CityJSONFeature

When the CityJSON data is hosted in the DBMS, another issue that can lead to high latency

during data transmission is when the DBMS processes and returns all data tuples to the RESTful

API at once. In this case, the RESTful API needs to wait until all the data tuples are transmitted,

and then start constructing CityJSONFeature. Hence, it may take very long time for the clients to

receive the first constructed CityJSONFeature. Therefore, how to properly stream the data from

the DBMS to the RESTful API to improve the overall streaming performance will be discussed in

Section 3.2.5.

2.6 Space filling curves

In the late 19th century, mathematicians have been interested in Space Filling Curve (SFC) [Lawder

and King, 2000]. The Peano curve is the first SFC that has been created by Peano [1890] (see Fig-

ure 2.5). After one year, the Hilbert curve is proposed by Hilbert [1891], which is a variant of the

Peano curve (see Figure 2.6). Another SFC called Morton curve (see Figure 2.7) is described by

Morton [1966], who first applied it to sorting files. Those SFCs can be used to map 2-dimensional

or multi-dimensional space to 1-dimensional space while the spatial coherence is preserved

[Orenstein and Manola, 1987]. From the figures we can see that the main difference between

these SFCs lies in the order in which they traverse multi-dimensional points [Zhou et al., 2021].

The traversal order can significantly influence the extent of spatial coherence. Compared to the

Peano curve, the Hilbert and Morton curves have less significant "jumps" between points and

can better preserve the proximity of points in multi-dimensional space.
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2.6. SPACE FILLING CURVES

Figure 2.5: Three iterations of a Peano curve construction (Source: Wikipedia).

Figure 2.6: Six iterations of a Hilbert curve construction (Source: Stack Overflow).

Therefore, a Hilbert or Morton SFC can be used to index the center points of the city ob-

jects and indicate the spatial proximity between them. The SFC index can be used during data

streaming process by sorting the query results using the SFC index. In this method, an extra col-

umn storing the index value is needed in the database schema. An alternative is to insert these

city objects into the database by the SFC index order. In the second method, there is no extra

ordering work during data query and no additional data column in the database. Another ben-

efit from the second method is that these city objects will be clustered in the storage medium.

Usually, nearby city objects are retrieved at the same time. Hence, consecutive physical blocks

in the disk will be accessed instead of random ones [Psomadaki, 2016]. Since fewer physical

blocks will be visited, the query performance can be improved. The detailed implementation

of using a SFC to index city objects in CityJSON datasets is described in Section 4.2.2.
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Figure 2.7: Four iterations of a Morton curve construction (Source: Wikipedia).
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Chapter 3

Methodology

3.1 Overview

A brief overview of the methodology I have developed is depicted in Figure 3.1 and consists of

three main parts:

• Developing and implementing a RESTful API: The API is built to allow access to geospatial

features in CityJSON. The data in CityJSON is mapped to the resources defined by the OGC

API – Features as mentioned in Section 2.3. API pagination mechanism allows the fast data

browsing in a paginated way. The filtering function is developed for efficient data access

and use. Data streaming can be used when handling large filtered data.

• Storing CityJSON in a database: A database schema is designed for CityJSON. Then the

data in CityJSON files is parsed and during CityJSON parse, auxiliary data (e.g. bounding

box & metadata of attributes) is generated to better support the API. All the data is inserted

into the database.

• Benchmarking: Three aspects are benchmarked: database schema, streaming method,

and storage system. All of them contribute to the web performance of the RESTful API. A

systematic benchmarking for these aspects will be discussed in Chapter 5.

3.2 Developing a RESTful API

As mentioned in Section 2.3, developing a RESTful API allows great flexibility of data access. In

this way the geofeatures are not tied to other resources and can be accessed in a RESTful way.

Although most parts follow the OGC API – Feature, Some divergences between OGC API – Fea-

ture and the my methodology of the RESTful API are made according to the some characteristics

in CityJSON datasets and my research scope.

23

3

M
E

T
H

O
D

O
LO

G
Y



3.2. DEVELOPING A RESTFUL API

Figure 3.1: The overview of the methodology.

3.2.1 Resource mapping

The first step of developing a RESTful API is to define the resources. Inspired by the OGC, the

resources at geospatial context can be classified into four groups: Feature collections, Feature

collection, Features, Feature. The "resource" mapping of CityJSON datasets is proposed and the

corresponding resource is listed in Table 3.1:

Resource Path CityJSON

Feature collections /collections An overview of all CityJSON objects

Feature collection /collections/{collectionId} An overview of one CityJSON object

Features /collections/{collectionId}/items One CityJSON object containing all city objects

Feature /collections/{collectionId}/items/{featureId} One CityJSONFeature

Table 3.1: The “Resource” mapping of CityJSON datasets.

• Feature collections: This resource provides an overview of all the CityJSON objects that

are offered in this API which contains the name, description, CRS and 2D bounding box in

WGS 84, attribute information for each CityJSON dataset.

• Feature collection: This resource presents an overview of the CityJSON object identified
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in this URL. The overview for this CityJSON dataset is corresponding to one in the Feature

collections

• Features: This resource lists all city objects contained in one CityJSON dataset and re-

sponses as a CityJSON object.

• Feature: This resource presents one city object identified in this URL. Note that the re-

turned resource is a CityJSONFeature, where the top level city object is identified by the

property id in the CityJSONFeature.

CityJSON data format is object-oriented, which makes it convenient for “resource” map-

ping. The value of the property “CityObjects” contains all the city objects with unique ids, which

can be directly used for routing the resource Feature. However, only one city item may be split

into several city objects in CityJSON (see Figure 3.2). Hence, when a city object at first level are

associated with other city objects at second level, extra process is needed when returning the

city object to the users.

Figure 3.2: The types of city objects in the CityGML data model (Figure from [Ledoux et al.,

2019])

Figure 3.3 shows an example of the multi-part building containing 2 building parts. The

building is represented as 3 city objects in CityJSON (see Listing 3.1). The hierarchical relation

is stored in the property “children” and “parents” and linked by the city object IDs. Therefore,

when the building feature is accessed, its building parts should also be returned for the se-

mantic reason. Additionally, from Listing 3.1 we can see that the geometrical information for

the multi-part building is stored at the building part level. Hence, building parts should be in-

cluded in the API response to reconstruct the multi-part building from a geometric perspective.
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3.2. DEVELOPING A RESTFUL API

Figure 3.3: An example of the multi-part building.

1 "CityObjects ": {
2 "GUID_8CE54418 -E2F7 -49A7 -9A8D -C3D172BA62C4 ": {
3 "type": "Building",
4 "geometry ": [],
5 "children ": [
6 "GUID_8CE54418 -E2F7 -49A7 -9A8D -C3D172BA62C4_1",
7 "GUID_8CE54418 -E2F7 -49A7 -9A8D -C3D172BA62C4_2"
8 ]
9 },

10 "GUID_8CE54418 -E2F7 -49A7 -9A8D -C3D172BA62C4_1 ": {
11 "type": "BuildingPart",
12 "geometry ": [...] ,
13 "parents ": [" GUID_8CE54418 -E2F7 -49A7 -9A8D -C3D172BA62C4 "]
14 },
15 "GUID_8CE54418 -E2F7 -49A7 -9A8D -C3D172BA62C4_2 ": {
16 "type": "BuildingPart",
17 "geometry ": [...] ,
18 "parents ": [" GUID_8CE54418 -E2F7 -49A7 -9A8D -C3D172BA62C4 "]
19 }
20 }

Listing 3.1: An example of the multi-part biulding in CityJSON
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3.2.2 API Pagination

When the user accesses the Features resource in a large CityJSON dataset, the API could return

millions of city objects, resulting in high network traffic and browser crashing. A pagination

mechanism helps in reducing the response size to make sure the API can run in a stable and

effective manner.

To implement the API pagination, two parameters limit and offset are added into the path

(see in Table 3.2). The default access follows the insertion order of city objects in a database.

Resource Path Response

Features /collections/{collectionId}/items?limit={n} &offset={n} A (sub)CityJSON object

Table 3.2: The access to Features in a paginated way

Although there are other methods to implement the pagination mechanism in a more ro-

bust way, the offset pagination is adopted in this research due to its simplicity. Additionally, the

API works with a SQL database where limit and offset are already included in the SQL SELECT

Syntax. The frequently discussed issue of offset paging is the inconsistency when new city ob-

jects are simultaneously inserted by users. But this will not be a problem in this API because the

data access is the only resource operation considered in the RESTful API for CityJSON. Thus, the

inconsistency problem of the offset pagination in this API is avoid.

3.2.3 Bounding box filtering

Bounding box filtering is necessary for efficient data access and use. Users can select a ROI

through a bounding box, and then download the filtered 3D city data for spatial processing. A

bounding box can be defined by the two corner points and represented as an array with 4 val-

ues: [MINX, MINY, MAXX, MAXY]. Usually, when handling geographical data, the CRS is essential

to connect the data to locations in the real world. Thus, a CRS should be bound to the bounding

box as a second URL parameter.

The ROI selected by the user can either be inside one CityJSON dataset or intersected with

multiple CityJSON datasets (see Figure 4.9). For this thesis, two different URLs for accessing the

filtered data have been designed.

• Filtering one CityJSON dataset: The two parameters bbox and crs are appended to the

URL for accessing the filtered Features in one specific CityJSON dataset (see Table 3.3).

When the RESTful API receives the request, the name of the CityJSON dataset, the bound-

ing box and the CRS are parsed from the URL to build the SQLs. To construct a CityJSON

object with complete information, the database will be queried twice. The first query is

to retrieve some information of the to-be-filtered CityJSON dataset, which applies to all
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3.2. DEVELOPING A RESTFUL API

(a) Filtering one CityJSON dataset (b) Filtering multiple CityJSON datasets

Figure 3.4: Two cases for the bounding box filtering.

Resource Path

Features /collections/{collectionId}/items?bbox={[minx, miny, maxx, maxy]} &epsg= {n}

Table 3.3: Features filtered by a 2D bounding box inside one CityJSON dataset

the city objects, for example, the CRS and the transform matrix for compression. The sec-

ond query is to implement the bounding box filtering. Note that the CRSs of the bounding

box and the CityJSON dataset may be different, so CRS conversion is required in this case.

Generally, CRS converting on the bounding box or on the geometries in CityJSON are both

applicable. However, considering the processing efficiency, it is better to apply CRS con-

version on the bounding box.

After the DBMS sends the filtered data tuple to the API, each city object is reconstructed and

combined into a new CityJSON dataset. To reduce the response size, unused and dupli-

cate vertices are deleted. Then the CRS and the “transform” obtained from the first query

are added into the new CityJSON object. Also, the 3D bounding box of the new CityJSON

object is calculated based on its vertex list and stored as metadata in “geographicalEx-

tent”. In the end, the new CityJSON object is sent to the user.

• Filtering multiple CityJSON datasets: When implementing the filtering on multiple CityJ-

SON datasets, no specific CityJSON object is identified in the URL. Therefore, the two pa-

rameters bbox and crs are appended to Collections (see Table 3.4).

Resource Path

Features /collections/?bbox={[minx, miny, maxx, maxy]} &epsg= {n}

Table 3.4: Features filtered by a 2D bounding box intersected with multiple CityJSON datasets

The first step is to determine CityJSON datasets which are intersected with the bound-
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ing box. Then, the city objects within those CityJSON datasets are further filtered by the

bounding box. After that, the filtered city objects from different CityJSON datasets need

to be merged into one CityJSON and sent to the user.

Note that CityJSON datasets intersected with the bounding box may have different CRSs.

As a result, city objects from different CityJSON datasets can not be directly merged into

one CityJSON object. Although CRS conversion can solve this problem, the entire process

of vertex CRS conversion is time-consuming and inefficient, which contradicts the origi-

nal goal of this research: fast data access. Thus, the bounding box filtering on multiple

CityJSON datasets is only performed when the filtered city objects share the same CRS.

Different from the first use case, the “transform” information cannot be simply inherited

from one CityJSON dataset. Therefore, a new “transform” information needs to be gener-

ated.

3.2.4 Attribute filtering

In addition to geometric data, rich semantic data is stored in CityJSON datasets. A CityJSON

dataset may contain various city objects in an area (such as buildings, bridges and water bod-

ies). However, for example, when a user only needs city objects with the building type, city

objects with other types become redundant, which can affect data access performance and

cause difficulties in data processing. Therefore, attribute filtering function is very valuable in

the RESTful API.

To obtain a better attribute filtering function through the API, the queryable attributes are

sent to users in Feature collection along with other information of the CityJSON dataset. Not

all attributes in CityJSON dataset can be queried since the query performance for some at-

tributes can be very low. This is the case for an attribute with object values. To maintain high-

performance attribute filtering in the RESTful API, attribute with string and numeric types are

only considered as queryables.

In addition to sending the attribute names, the possible values are also included in the re-

sponse. Depending on the value type and the number of different values, there are three sce-

narios for one attribute:

• Numeric type: An important feature of numeric values is that they can be well analyzed

by statistics and summarized into a small number of meaningful values. Instead of listing

each different value in the attribute, the maximum and minimum values are representa-

tively sent to the user.

• String type with few different values: When an attribute has few different values, the city

objects containing this attribute can be well categorized into a small number of groups,

which helps to filter the city objects effectively.
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3.2. DEVELOPING A RESTFUL API

• String type with many different values: The extreme case is that every city object has

a different value for this attribute. Apparently, the response size can be very large when

returning the attribute information. More essentially, these attributes are less useful and

not worthy of filtering, thus not considered as queryables.

Apart from the queryables, predicates in attribute filtering are also important. Table 3.5

shows a list of different operations. However, not all operations can be applied to every at-

tribute. For example, comparison operators only work on attributes with numeric values while

membership operator in can only be applied to attributes with string values. Note that when

the enumeration only contains one value, the operator in implicitly performs the same with the

operator = for the string-valued attributes. Logical operator and is used to connect multiple

attributes and make sure the filtered results satisfy all the conditions.

Class Operator Abbr Description

Comparison

= eq Equal to

> gt Greater than

< lt Less than

>= gt Greater than or equal to e

<= lte Less than or equal to

range Is within a range

Membership in Is present in an enumeration

Logical and All statements are true

Table 3.5: The different operations in attribute filtering

The next step is to construct the request URL for accessing Features filtered by attributes.

From Table 3.6 we can see that the parameter attrs is appended to the path /collections/

collectionId/items.

Resource Path

Features /collections/{collectionId}/items/?attrs={{}}

Table 3.6: The access to Features filtered by attributes

To facilitate the RESTful API to parse and process the request, the parameter value for attrs

should be clarifiable and simple. Based on the two requirements, a JSON encoded string is

chosen for the value. First, it is easy for the API to parse a JSON encoded string to a JSON object. In
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addition, multiple URL parameters can be avoided when combining different attribute filtering

conditions (i.e. the logical operation) by storing every attribute filtering condition as a key-value

pair. The key is the attribute name and the value stores the filtering condition. Moreover, due to

the flexibility of key-value stores, different expressions of filtering conditions can be used. For

attributes with string values, an array is used to store the enumeration values selected by the

user. For attributes with numeric values, an object is used to explicitly store three properties:

operator, operand and range and their corresponding values. Listing 3.2 shows an example of

the attrs value.

1 {
2 "type": [
3 "Building"
4 ],
5 "roofType ": [
6 "1000" ,
7 "1120"
8 ],
9 "AbsoluteEavesHeight ": {

10 "operand ": 14.43 ,
11 "operator ": "lt",
12 "range": [2 ,20]
13 }
14 }

Listing 3.2: An example of the value of attrs

After receiving the request, the RESTful API first parses the JSON encoded string and con-

verts it into an object, and then performs a loop operation on the object to construct the SQL

with whole attribute filtering conditions. The rest of the steps are similar to the bounding box

filtering section.

3.2.5 Data streaming

Sending a large volume of filtered data at once causes long periods of latency, which is unde-

sirable for some applications (e.g. fast visualization). Instead, the data should be chunked into

smaller ones and sent to the user in a streamed way. As mentioned in Section 2.5, CityJSON

datasets cannot be parsed incrementally on the web due to the global list of vertices. To over-

come this problem, CityJSON is decomposed into city objects as a series of CityJSONFeatures,

which are then stored in a NDJSON where each CityJSONFeature object is independent and de-

limited by a newline character.

From Figure 3.5 we can see how the data is transmitted through the RESTful API. After the

DBMS finishes data filtering, data tuples are sent to the API. Instead of constructing a large CityJ-

SON object, the RESTful API asynchronously generates and sends a set of CityJSONFeatures to

the user.
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Figure 3.5: The data transmission in the RESTful API.

Some important information is stored at CityJSON level (such as the CRS and the transform

matrix for integerization) and applies to all city objects. However, repeatedly storing these data

in each CityJSONFeature will increase the response size and reduce the web performance. To

fix this issue, a metadata object is generated and sent to the user before streaming city objects.

The metadata object contains the important information and has a “type” property with the

value of “MetadataCityJSONFeature”, which can be used to differentiate the metadata object

from CityJSONFeatures (see Listing 3.3).

1 {"type ":" MetadataCityJSONFeature ","metadata ":{" referenceSystem ":"..."} ,"
transform ":{}}

2 {"type ":" CityJSONFeature ","id":" id_0"," CityObjects ":{}," vertices ":[]}
3 {"type ":" CityJSONFeature ","id":" id_1"," CityObjects ":{}," vertices ":[]}
4 {"type ":" CityJSONFeature ","id":" id_2"," CityObjects ":{}," vertices ":[]}
5 {"type ":" CityJSONFeature ","id":" id_3."," CityObjects ":{}," vertices ":[]}

Listing 3.3: An example of the streamed data in http response

Another issue that can lead to high latency and Internet overload is when the DBMS pro-

cesses and return all filtered data tuples to the RESTful API at once. To solve this issue I proposed

two methods for chunking the data from DBMS to the RESTful API in this thesis:

• Paginating the query: This method works similar to the API pagination as described in

Section 3.2.2. The difference is that in API pagination the user needs to sent multiple re-

quests to the RESTful API to browser all Features in one CityJSON dataset while in the data

filtering case the RESTful API only receives one request, then paginates the query and

sends requests to the DBMS multiple times (see Figure 3.6).

• Streaming the query results: The main difference from the first method is that the REST-

ful API only accesses the database once and all query results are generated on the database

side (see Figure 3.7). Apparently, the query results should be chunked into smaller ones

and streamed to the RESTful API.

Theoretically speaking, both methods can reduce the throughout and avoid network con-

gestion to a certain extent during the data transmission from the DBMS to the RESTful API. How-

ever, both methods have advantages and disadvantages. When the query process is compli-

cated, using the paging method, the RESTful API can receive the initial query result faster than
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Figure 3.6: The workflow of paginating the query.

Figure 3.7: The workflow of streaming the query results.

using the second method, thereby providing the faster first response to the user. However, when

the time for the DBMS to retrieve all the query results is insignificant, the second method is

preferable because the database query is a time-consuming process. Multiple queries in the

first method will cause performance degradation and it will take longer time for a user to re-

ceive a complete response. Anyhow, a systematic benchmarking for these two methods will be

described in Chapter 5.

3.3 Storing CityJSON data in a database

Considering that the spatially-extended relational databases are still far superior to NoSQL databases

when handling spatial datasets as concluded in Section 2.4.2, storing CityJSON data in a rela-

tional database has been investigated in this thesis. As mentioned in Section 2.4, a relational

database schema for CityJSON is proposed by Staring [2020]. From Figure 2.4 we can see that

city objects are fragmented into 3D surfaces, which are stored as 3D geometry type. Storing

surfaces separately can be helpful for certain researches and applications where the smallest

geometric unit is a surface (e.g. building energy modelling). However, the fragmentation is not

necessary in this thesis since the minimal resource in the RESTful API is a city object. Addition-

ally, it is difficult and time-consuming to reconstruct the city object from 3D surfaces. The 3D

coordinates in the surfaces need to be extracted and then assembled according to the original

hierarchical order. After that, these vertices will be converted to index representation and inte-

gerized. The entire process is complicated and will reduce the performance of the RESTful API.

To better support fast data access and streaming in the RESTful API, I propose a new database
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schema and the following aspects are considered during the database schema design:

• Access to resources: The database should support the RESTful and fast access to the re-

sources listed in Table 3.1. Note that CityJSON is based on JSON, which can not fit in a

traditional data type. To flexibly store CityJSON datasets in a relational database, special

data types should be considered.

• Parent-child relation: The database should provide efficient query of associated city ob-

jects to help construct a complete Feature, in which a city object at the first level and its

(possible) associated city objects at the second level are assembled together. This is very

important for data stream processing, because a series of CityJSONFeatures needs to be

generated quickly and correctly.

• Bounding box filtering: To achieve effective bounding box filtering in a database, auxil-

iary data can be added in the schema. Additionally, an appropriate index can be applied

to the data to better support fast filtering.

• Attribute filtering: The semantic information contained in different city objects can be

largely varied. Therefore, storing semantics in the database should have great flexibility,

and can also effectively support attribute filtering. Additionally, an overview of attribute

information for each CityJSON datasets should be generated and stored in the database

to support the RESTful API.

3.3.1 Access to resources

The CityJSON object contains multiple properties: type, version, metadata, Cityobjects, vertices

and transform. As can be seen from Figure 3.8, when accessing Feature collections and Feature

collections, version and metadata are needed for the response. In the case of accessing Features

and Feature, Cityobjects, vertices and transform along with version and metadata are required.

Each Feature collection is identified by a CityJSON ID which is set to the CityJSON file name, and

each Feature is differentiated by city object ID which is the key name in property Cityobjects.

Figure 3.8: The mapping of data in CityJSON to resources in the RESTful API.
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Based on the above analysis above, my proposal is to use two tables to store the CityJSON

datasets. In this respect, one table named Cityobject that will be used for city objects, and the

other table named CityJSON for other properties except the Cityobjects in CityJSON.

The next step is to determine how to store those properties in the tables. Most databases

have a rich set of data types, such as serial, int, varchar. However, some properties are JSON

objects and cannot be well supported by traditional data types. A text datatype is able to store

the data presentation in the JSON object, but it lacks key/value querying and indexing capabil-

ities. To overcome this problem, a JSONB datatype can be used, which is inspired by Staring

[2020]. JSONB provides great flexibility in schemaless data storage. In addition, it is a binary

storage format which helps reduce database size and data transmission time from the DBMS to

the RESTful API. More essentially, JSONB supports the select operation on the single key/value

pair and offers multiple options to index the JSON data.

When the database can support CityJSON storage, another issue that needs to be discussed

is access efficiency. To avoid internet overload, API pagination mechanism is applied when ac-

cessing Features. However, the large list of vertices stored in the CityJSON table contradicts the

pagination mechanism and may reduce the paging performance. This is because most irrele-

vant vertices will be queried from the database and sent to the RESTful API. Instead, the global

indexing mechanism can be divided into local indexes at the city object level. To achieve this,

a column called vertices is added into the Cityobject table. In addition, the vertex indices in the

boundary presentation for each city object has been updated to the local list of vertices.

According to the above discussion, the database schema is initially designed and given in

Figure 3.9.

Figure 3.9: The database schema for supporting access to resources listed in Table 3.1.
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3.3.2 Parent-child relation

The data contained in CityJSON objects is mapped to an entity-relational model (see Figure 3.10).

CityJSON and city objects are the two entities, which are associated by the belonging relation.

The entities are mapped to two tables in the database schema and the belonging relation is

reserved by a foreign key in Cityobject table (see Figure 3.9).

Figure 3.10: The defined entity-relational model.

However, the way to map the hierarchy relation between city objects to the database schema

is not solved yet. To enable efficient query of associated city objects, three solutions have been

proposed in this thesis :

• Adding a parent_id foreign column: The traditional way to map the associations in entity-

relational model to database schema is to add a foreign key or an associative table. Al-

though the parent and children properties in city object are represented as two arrays,

which indicates a many-to-many relation, they are one-to-many relation in reality. Thus,

adding a parent_id foreign column with text type in the Cityobject table is sufficient to

map the hierarchy relation (see Figure 3.11).

Figure 3.11: The Cityobject table with a parent_id column.

• Adding an extra column: Considering that a more compact database schema may help

improve the querying efficiency [Stadler et al., 2009], a children column can be added
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in Cityobject table to replace the parent_child table. The value of children data is repre-

sented as a text array, which is supported by the array type, text[] in the database. There-

fore, it becomes easier to query the children’s IDs. Another option is to store the children

as JSONB type. When the array operation is required, JSONB can be cast to array type first.

Figure 3.12 shows the modified Cityobject table with a children column

Figure 3.12: The Cityobject table with a children column.

However, obtaining children’s IDs is not sufficient in most use cases. Instead, the com-

plete child objects should be retrieved by querying Cityobject table with a list of children’s

IDs. One arising issue from the array type is that the query result of the children’s IDs is

a list of arrays in which the IN operator in the WHERE clause can not work. To solve this

problem, unnest(anyarray, ...) function has been used to flatten multiple arrays to a set

of values.

• Storing complete Features: The query of associated city objects is mainly to help con-

struct complete Features, which is of great importance in data streaming. Hierarchical

relationships can be implicitly stored in Features, so that additional columns or tables are

not needed.

From Figure 3.13 we can see that a feature column is added to Cityobject table while object

and vertices columns are removed to avoid redundancy at the same row.

Figure 3.13: The Cityobject table with a feature column.
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In theory, storing complete Features in database can reduce the response time, thereby im-

proving the web performance of the RESTful API. The (possible) associated city objects are

stored in Features, so there is no need to query child city objects. Moreover, when adopting

the first two solutions, an additional process of clustering city objects by the parent_id to gen-

erate correct Features is required, for which, ORDER BY main_id is appended to the end of SQL.

However, the third solution may lead to a larger database size compared to the first two. It is

because that Features for city objects at the second level are also stored, which is redundant to

the corresponding city objects at the first level. However, there is always trade-off between stor-

age size and performance. When performance is stressed, it should be less strict on avoiding

redundancy. Anyhow, the storage size and query performance will be measured, and a system-

atic benchmarking will be described in Chapter 5.

3.3.3 Bounding box filtering

The geometric information in city objects is complex. One city object may contain multiple ge-

ometry objects with different types and Level of Detail (LoD)s. To simplify the process of bound-

ing box filtering, the spatial operation will be performed on the bounding box of the filter and

the bounding boxes of the city objects. Therefore, the 2D bounding boxes of the city objects

can be calculated in advance and stored in Cityobject table using an auxiliary column named

bbox. Note that when filtering multiple CityJSON datasets, the first step is to determine which

CityJSON datasets are intersected with the bounding box of the filter. Hence, a bbox column will

also be added into CityJSON table. The database schema with bounding box data is depicted in

Figure 3.14, where the data type for the bounding boxes are not determined yet.

Figure 3.14: The database schema with bounding box data.

The next step is to decide how to store objects in the database. To better support the bound-
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ing box filtering, three different data types are considered:

• geometry: is a spatial data type provided by the extension, PostGIS. The bounding box

can be represented as a WKT, which is ISO/IEC-compliant and was originally defined by

the OGC [OGC, 2021]. The bounding box is a special geometry shape, for which, two corner

points are sufficient for geometric representation. Instead of using ST_GeomFromText(text

WKT, integer srid), ST_MakeEnvelope(float xmin, float ymin, float xmax, float ymax, integer

srid=unknown) is a better choice to simplify the expression of insertion SQL.

To construct the SQL for bounding box filtering, the bounding box of the filter is also con-

verted to the geometry type by ST_MakeEnvelope function, and the && operator is used to

check whether the two bounding boxes are intersected (see Listing 3.4).

bbox&& ST_Envelope(’SRID =4326; LINESTRING (4.3743 51.8351 ,4.6077
51.9671) ’::geometry)

Listing 3.4: Bounding box filtering with geometry type.

• box: is a built-in geometric type in PostgreSQL, which can be represented by a pair of

corner points. The value of the box type can be specified by the syntax: ((MINX, MINY), (

MAXX, MAXY)).

Similar to geometry type, && operator can be applied to box type and the bounding box of

the filter should also be converted to the box type (see Listing 3.5).

bbox&&box ’((4.3743 ,51.8351) ,(4.6077 ,51.9671))’

Listing 3.5: Bounding box filtering with box type.

• array: is a traditional data type, with which the bounding box can be represented as [MINX

, MINY, MAXX, MAXY].

Different from the first two data types, && operator is not applicably in the array data type.

Instead, the intersection judgement needs to be explicitly expressed by the four values

(see Listing 3.6).

not (bbox [1] >4.6077 or bbox [3] <4.3743 or bbox [2] >51.9671 or bbox
[4] <51.8351)

Listing 3.6: Bounding box filtering with array type.

An indexing mechanism can help in improving the query speed. Therefore, GiST indexes

are applied to the bounding boxes with geometry and box types, and B-tree index is used in the

ones with array type.

Another important aspect related to bounding box filtering is the CRS. The CRS can be at-

tached to the bounding boxes with geometry type by assigning SRID, while other two data types

cannot store the CRS information. Two options are available for the box and array types:

39

3

M
E

T
H

O
D

O
LO

G
Y



3.3. STORING CITYJSON DATA IN A DATABASE

• Same with the related CityJSON: The bounding boxes are computed from a list of ver-

tices, so the CRS of these bounding boxes are initially the same with the related CityJSON.

In this case, the CRS is unknown to the RESTful API. Therefore, before the bounding box fil-

tering is performed, the CRS of the CityJSON need to be queried first and then CRS conver-

sion on the filter’s bounding box may be preformed to insure that the filter and CityJSON

have the same CRS.

• WGS84: A CRS can be pre-defined and applied to all the bounding boxes in different CityJ-

SON datasets, for example, using WGS84. To achieve this, the bounding boxes with other

CRSs need to be transformed before being inserted into the database. In this case, the

RESTful API is confirmed that the CRS of the bounding boxes in the database is WGS84

and there is no need to query the CRS from the database. Still, CRS conversion on the

filter’s bounding box are needed when its CRS is not WGS84.

Considering that the to-be-filtered CityJSON datasets are undetermined when implement-

ing the bounding box filtering on multiple CityJSON datasets. Therefore, the CRS information

can not be retrieved before start bounding boxes on city objects. For the convenience of bound-

ing box filtering on multiple CityJSON datasets, storing bounding boxes with WGS84 is prefer-

able when using box and array types.

3.3.4 Attribute filtering

The semantic information at city object level is only considered in this research, which contains

type and attributes properties. The type property is compulsory for each city object, thus can

be stored in a static column in Cityobject table. However, the schema of attributes property in

different city objects can largely vary. Thus, a JSONB column is chosen for flexibly storing the

attributes property. In theory, the type property can also be added into the attributes property

as a key/value pair, rather than storing it separately. Based on the above, there are two options

for storing the type property:

• In separate column: The static column with text data type is used for storing the type

property. To effectively support attribute filtering, B-tree index is applied.

• In JSONB column: The type property is stored in a JSONB column together with other

attributes. The JSONB data type also supports indexing mechanism. However, if the entire

JSONB column is indexed by B-tree, the indexing mechanism does not work with single

key/value operations. Instead, B-tree expression index can be used to point a property, in

this case, the type (see Listing 3.7).

CREATE INDEX btree_type ON cityobject USING BTREE ((( attributes ->>’
type ’)));

Listing 3.7: Expression index on a JSONB column.

40

3



3.3. STORING CITYJSON DATA IN A DATABASE

When storing type in JSONB column, the semantic information can be stored in one bi-

nary column, which provides a more compact table schema. However, PostgreSQL does not

maintain statistics (such as most common values) for the column with JSONB data type, thus

the query planner cannot decide which join algorithms and scan types to use for better query

[Robinson, 2016]. Besides, the indexing performance on JSON column is unknown and needs to

be benchmarked.

To obtain a better attribute filtering service, an overview of attribute information which con-

tains the queryable attributes and corresponding values are sent to users through the RESTful

API. To reduce the process time in the RESTful API, the information of the attributes for each

CityJSON can be prepared in advance and stored in CityJSON table using an auxiliary column

named attribute_info (see Figure 3.15).

Figure 3.15: The CityJSON table with attribute_info column.
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Chapter 4

Implementation

4.1 Tools and Datasets used

4.1.1 Tools

A brief overview of tools, programming languages and necessary libraries used for the proposed

methodology is depicted in Figure 4.1. PostgreSQL is chosen for the database solution and ma-

nipulated by SQL. Flask is a light web framework, which can be adopted for fast prototyping a

RESTful API. Jinja is a web template engine for the Flask framework, which is also a developer-

friendly templating language for Python. Additionally, JavaScript is used for developing more

functions (such as 3D visualization and bounding box selection) in the front end. Libraries and

extension are accordingly added for the implementation.

Figure 4.1: The overview of tools used.

43

4

IM
P

LE
M

E
N

TA
T

IO
N



4.2. IMPLEMENTED PROTOTYPE

4.1.2 Datasets

To develop and test the RESTful API, CityJSON datasets are selected from [CityJSON, 2021]. The

sizes of these datasets range from 2.6 MB to 292.9 MB. To further prove the scalability of the

DBMS and robustness of the RESTful API, more CityJSON datasets are collected from [PDOK,

2021], which covers the whole Netherlands and divides the CityJSON data into tiles.

4.2 Implemented prototype

The most important implementation details are described in this section which include prop-

erly storing CityJSON in database and developing a RESTful API for CityJSON datasets. The

source code of the full implementation is available in GitHub.

4.2.1 Storing CityJSON in a database

Figure 4.2 shows the workflow of storing one CityJSON dataset into the database. The CityJSON

file is parsed to a Python dictionary object. The properties version, metadata, tansform are

stored into CityJSON table, and the vertices and CityObects are stored into Cityobject table. In

addition, 2D bounding boxes and attribute information have been added to better support the

RESTful API, which will be explained below.

Figure 4.2: The workflow of storing CityJSON in a database.
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• Bounding boxes: The bounding boxes for CityJSON and city objects and computed to

assist with bounding box filtering. The bounding box for CityJSON can be directly com-

puted from the property vertices. However, there may be some unused vertices (noises)

in the global vertex list, resulting in an incorrect bounding box. To solve this problem,

these vertices are removed before calculating the bounding box.

A local list of vertices is tied to each city object, which is derived from the global vertex

list. Similarly, the bounding boxes for city objects can be obtained by the local vertex lists.

For some city objects, whose geometry information is stored in associated city objects,

the bounding boxes are computed from the child’ bounding boxes.

• Attribute information: The attribute information for one CityJSON dataset is generated

and stored in the database. The overflow of the process is given in Figure 4.3 and consists

of two steps:

– Collection of attribute information: An empty object named attr_info is initialised

to collect attribute information. During the iteration of city objects, the property

type and attributes are added into the attr_info. When adding new attribute data,

the data will be appended to the corresponding attribute in case the attribute exists

in attr_info. If the attribute is not a key in attr_info, a new key/value pair will added.

– Filtering and simplification of attribute information: According to the rule discussed

in Section 3.2.4, only attributes with numeric and string types are kept in the col-

lected attribute information. In this respect, if the attribute is a numeric type, the

minimum and maximum values will be computed to replace the collected value.

For attributes with a string type, the duplicate items in the collected values will first

be removed. When the number of the unique values exceed 25, the attribute will be

discarded.

In the end, the attribute information is added into the attribute_info column in CityJSON

table.

4.2.2 Spatial coherence enhancement

The city objects are indexed by the Hilbert SFC and are inserted into the database by the in-

dex order to enhance the spatial coherence. The workflow of spatially indexing city objects are

depicted in Figure 4.4 and contains two main steps:

• Creation of a SFC for CityJSON: A grid is generated based on the bounding box of CityJSON

dataset to cover all city objects. The cell size is set to be logarithmic to the number of city

objects. Then centroids of cells are indexed by Hilbert curve.

• Indexation of city objects based on the SFC: The centroids of city objects are computed

from the bounding boxes. To rapidly look up the nearest cell for each city object, a KDTree
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Figure 4.3: The workflow of generating the attribute information for one CityJSON dataset.

Figure 4.4: The workflow of indexing city objects by Hilbert space filling curve.

has been generated to index centroids of all cells. After querying the closest cell for each

city object, the Hilbert index of the cell is assigned to the city object.

In the end, city objects are inserted into the database based on the Hilbert index order.

4.2.3 Access data through REST API

The overview of the implemented RESTful API is given in Figure 4.5. The resources listed in

Table 3.1 have corresponding URLs with different URL parameters. The response type can be a

HyperText Markup Language (HTML) web page (in default) or a JSON string that can be toggled

by the parameter f. Next, the parameter limit and offset are for API pagination, which has been

described in detail in Section 3.2.2. Filtering functions are served by appending bbox, epsg and

attrs parameters to URLs for one or multiple CityJSON datasets.
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Figure 4.5: The overview of the implemented RESTful API.

Data access with JSON response

When the parameter f is set to json, the response will be a JSON string. The RESTful API is de-

veloped based on the loose coupling concept, which provides great flexibility for other appli-

cations to create the customised web services. The implementation details for each resource is

described as follows:

• Collections: The path /collections?f=json returns a list of CityJSON overviews that con-

tains the identifier, title, description, reference system, 3D geographic extent with its own

CRS and 2D extent in WGS 84. The CityJSON table is queried and each row in the results

is used to construct a CityJSON overview. An example is given in Figure 4.6. The name

from the query result is assigned to the id and title. Description, reference system, 3D

geographic extent are parsed from the metadata. The 2D extent in WGS 84 is generated

from bbox column.

To implement the bounding boxes filtering on multiple CityJSON datasets, two parame-

ters bbox and epsg are appended to the path /collections. The workflow of bounding box

filtering on multiple CityJSON datasets is depicted in Figure 4.7. Since the auxiliary data

bbox in the database is stored with CRS of WGS84, a CRS conversion is performed on the

filter bounding box using Python package pyproj if the value of epsg is not 4326.

The bounding box filtering is first carried out on CityJSON table. The cityjson_id, version,

metadata, reference system and transform of the filtered CityJSON are collected. Note

that only when the filtered CityJSON objects have the same CRS, the filtering process will

continue. Then, the CRS is assigned to the metadata property of a new CityJSON object.

Before constructing the transformation matrix for the new CityJSON object, the real ver-
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4.2. IMPLEMENTED PROTOTYPE

Figure 4.6: An example of constructing a CityJSON overview.

Figure 4.7: The workflow of bounding box filtering on multiple CityJSON datasets.
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tices of city objects are firstly obtained from the original transformation matrices by the

following equation:

V newi = Vi × tr ans f or m.scalei + tr ans f or m.tr ansl atei i ∈ (0,1,2) . (4.1)

Iterating through the list of vertices to transform each vertex can lead to a lot of over-

head. Hence, it is recommended to use the vectorization ability within the Python pack-

age NumPy to replace explicit loops with array expressions [McKinney, 2017]. Under the

same transformation rule, these vertices are transformed back to integer values and the

new transformation matrix is stored in the new CityJSON object. The way of generating

the new transformation matrix discussed above is based on the global list of vertices when

all city objects are added into the new CityJSON object. It can be seen that this method

is contradictory to the data streaming process. To better support data streaming, the new

transformation matrix can be constructed based on the filter’s bounding box, which has

already indicated the spatial extent of the filtered results. The transform generation pro-

cess for the second method consists of two steps:

– CRS conversion on filter’s bounding box: The CRS of filter’s bounding box can either

be WGS84 or converted to WGS84 before the bounding box filtering is performed in

the database. However, the spatial extent should have the same CRS with the CityJ-

SON object. Hence, a second conversion is needed to insure that the filter’s bound-

ing box has the same CRS with the new CityJSON object.

– Construction of the properties "scale" and "translate": The scale is set to 0.001,

which means that the 3 decimals will be reserved during integerization. The first

two values for the "translate" property are set to the lower left corner point while

the last value for Z is set to 0, since the filter’s bounding box is unable to provide a

vertical range.

After the new transformation matrix is prepared, the vertices for each feature is first de-

compressed by its previous transformation matrix and then compressed with the new

transformation rule.

• Collection: The resource returns an overview of the CityJSON dataset identified in the

path. Different from the CityJSON overview listed in the resource Collections, attribute

information queried from the meta_attr column in CityJSON table is also added to the

response.

• Features: Offset pagination is used to avoid long latency and internet overflow when large

amounts of data are returned. Given that the response contains a complete CityJSON ob-

ject instead of a list of city objects, CityJSON table is first queried to retrieve some neces-

sary information in order to construct a new CityJSON object (see Listing 4.1).
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1 SELECT id, version , metadata , transform
2 FROM cityjson
3 WHERE name=%s

Listing 4.1: Querying data in CityJSON table

The parameter limit and offset are parsed from the request URL and added to the SQL

when querying features in a paging way (see Listing 4.2). Note that the type is limited to

TOPLEVEL to avoid duplicate child city objects in the response.

1 SELECT feature
2 FROM cityobject
3 WHERE cityjson_id =%s and type In (

TOPLEVEL)
4 LIMIT %s OFFSET %s

Listing 4.2: Querying features in a paging way

The workflow of the bounding box filtering on one specific CityJSON dataset is similar to

bounding box filtering on multiple CityJSON datasets, and the main difference lies in the

property transform. There is no need to construct new transform and modify the vertices

when implementing bounding box filtering on one specific CityJSON dataset because all

filtered city objects are under the same integerization rule.

Unlike the parameter bbox and epsg, which have static data structure, the parameter attrs

is a JSON-based string and its content largely varies from case to case. The parameter attrs

is first parsed and converted to a Python object using json.loads(), where each key/value

pair represents a attribute filtering condition. Thus, a loop operation is performed on

the Python object attrs to construct a complete SQL for attribute filtering. The filtering

syntax in SQL can be different according to the attribute name, type and operation (see

Figure 4.8). When the filtered data is retrieved from the database, the remaining steps are

similar to the bounding box filtering.

• Feature: The name of the CityJSON dataset and feature id are specified in the request

path. As mentioned in Section 3.3.2, features of city objects at the first and second lev-

els are both constructed and stored in Cityobject table. Therefore, there is no additional

operation in SQL to query the associated city objects (see Listing 4.3).

1 SELECT feature
2 FROM cityobject
3 WHERE cityjson_id =%s AND obj_id =%s

Listing 4.3: Querying one feature

Data access with HTML response

An interactive working demo is developed to show the applicability of the RESTful API. Data

transmitted from the RESTful API is filled onto the web page by Jinja template Engine. Spectre.css
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Figure 4.8: An example of constructing a CityJSON overview.

CSS Framework is employed to provide better web page rendering effect. Additionally, leaflet.js

and Three.js are used to visualize 2D and 3D objects, respectively. Three additional functions

have been added into the demo to improve the user experience:

• 2D bounding box: When accessing the resource Collections and Collection, 2D bounding

boxes are visualized under the CRS of WGS84. To enhance the spatial perception, Open-

StreetMap tiles are added into the map as base layer (see Figure 4.9).

Users can request bounding box filtering on one or multiple CityJSON datasets by typing

coordinates of two corner points of the bounding box, and epsg value into the table. An-

other option is to select a ROI by drawing a rectangle over the data layer (see Figure 4.10).

Once the ROI is selected, the coordinates of two corner points will be automatically filled

into the table and the epsg value is set to 4326, which offers great convenience for users

to request bounding box filtering.

• 3D city model: The browser-based visualization of 3D city models can provide a clear and

direct data overview to users and does not require users to download specific software

or plug-ins. ThreeJS is an easy-to-use 3D library, which can be used to visualize 3D city
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(a) 2D bounding boxes in the resource Collections (b) 2D bounding box in the resource Collection

Figure 4.9: Visualization of 2D bounding boxes.

Figure 4.10: The drawing tool for selecting a ROI.

models on a web page. Each city object is added to the viewer as a triangulated Mesh,

where the type of city object is indicated by the material color (Figure 4.11).

• Attribute: To provide a clear overview of attributes contained in one CityJSON dataset,

components in Spectre CSS Framework are used to display the attribute information on

the web page. In addition, graphical attribute filtering operations are also offered in the

web page to relieve the effort for the user to construct a JSON string with attribute filtering

conditions. An example is given in Figure 4.12. When the user presses the confirmation

button of attribute filtering, the JSON string is constructed using jQuery and sent to the

RESTful API.
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Figure 4.11: The 3D viewer for 3D city models in the RESTful API.

Figure 4.12: An example of constructing attribute filtering conditions.

4.2.4 Data streaming

The large amounts of filtered data are chunked into small ones and sent to the user in a streamed

way. Data transmission experiences two phases: from the DBMS to the RESTful API and from the

RESTful API to the web browser. Both phases need extra process to implement the data stream-

ing.
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DBMS solution

Two methods of chunking data in the filtered tuples are proposed in Chapter 3 and the imple-

mentation details are discussed below:

• Paginating the query: The two parameters limit and offset are used for paginating the

query. The limit is equal to the chunk size and offset is set to 0 for the first query. After

the RESTful API constructs the data based on the first query result, the value of offset is

added by the chunk size and then the RESTful API queries the database again. The whole

process is repeated until there is no data queried from the database.

• Streaming the query results: Different from the first method, all the filtered tuples are

generated on the database side by one query. The next step is to fetch a small part of data

in succession until all filtered tuples are transmitted to the RESTful API. To implement

this, the cursor size is set to the chunk size. Then a while loop is used to continuously

fetch a limited amount of data from the database (see Listing 4.4).

1 cur.arraysize = CHUNK_SIZE
2 while True:
3 rows = cur.fetchmany ()
4 if not rows:
5 break
6 ...

Listing 4.4: Streaming the query results

REST API solution

When a small portion of filtered tuples arrives at the RESTful API, the API immediately constructs

a set of CityJSONFeatures. To provide a faster first response, once a CityJSONFeature is gener-

ated, it will be asynchronously sent to the user through the Generator function in Python. Note

that the basic information including reference system and transformation matrix are sent to the

user before CityJSONFeatures.

4.2.5 Visualization with streaming

When the features are streamed to the browser, they are added to the 3D Web viewer separately.

However, individual visualization of each feature will result in incorrect visualization (see Fig-

ure 4.13). This is because the coordinates of the newly added object are first normalized to fit

the position of the camera. In this case, each feature is normalized based on its own shape,

which causes the mixed topological relation between features.

To solve the above problem, a unified transformation matrix for normalization should be

constructed before adding feature into the scene. The transformation matrix can be calculated
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(a) Adding features as a whole (CityJSON) (b) Adding features individually

Figure 4.13: The incorrect visualization when adding features individually

from the spatial extent. Let max and mi n are the two corner points of the spatial extent. Then

the transformation matrix can be obtained by the following equation:

centeri = (maxi −mi ni )/2 i ∈ (0,1,2) ,

scale = 1/M ax(centerx ,centery ,centerz).
(4.2)

The spatial extent can be accurately calculated from the global vertex list. However, the

global vertex list cannot be obtained during data streaming. To overcome this, the spatial extent

is obtained directly from the "geographicalExtent" property in "metadata", which is sent along

with other basic information before streaming features. The "geographicalExtent" property can

be inferred from the filter’s bounding box when filtering multiple CityJSON datasets, which is

the similar process of constructing "transform" property when filtering on multiple CityJSON

datasets.

When the browser receives the "MetadataCityJSONFeature" object, the transformation ma-

trix for normalization is computed before visualization. Note that the filter’s bounding box does

not provide the vertical extent. Thus, the vertical value in the "geographicalExtent" property is

set artificially and not correct. Therefore, when determining the scale value, the Z-value of the

center is ignored to avoid the inaccurate normalization.

From Figure 4.14 we can see that features are visualized correctly during steaming. In ad-

dition, storing city objects by the order of SFC enhances the spacial coherence and makes the

visualization better, especially for visualization with data streaming.
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Figure 4.14: The visualization with streaming
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Chapter 5

Benchmarking and analysis

This chapter evaluates the design of the database schema, the performance of the streaming

methods and the difference between DBMS and a file system regarding the efficient data access

through the RESTful API. The benchmarking concerning the topics above have been performed

and the results are discussed in this chapter.

5.1 Tools and Datasets

5.1.1 Software

JMeter is a load testing tool for measuring service performance and is especially useful for web

applications [Apache JMeter™, 2021]. It can be used to assess the performance of database

schema by JDBC database connections and to evaluate the performance of the RESTful API by

HTTP Requests. In addition, JMeter supports clearing cache after each HTTP request and throt-

tling outgoing bandwidth to simulate the other network speed, thereby making the benchmark

results more reliable.

The throttling is implemented by modifying the .properties file of JMeter (see Listing 5.1)

and the cps (bytes/s) is set to 6912000 (equal to 54 Mbit/s), which is the same bandwidth with

WIFI 802.11a/g.

1 httpclient.socket.http.cps =6912000
2 httpclient.socket.https.cps =6912000

Listing 5.1: Simulating the WIFI network speed in JMeter

5.1.2 Hardware

Table 5.1 gives the specifications of the used server for the benchmarking. The specification will

also influence the web performance, especially the CPU and memory when processing large

amounts of data.
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5.2. OVERVIEW OF BENCHMARKING METHODOLOGY

Processor Intel® Core™ i5-8400 CPU

Memory 8 GB

Storage 500 GB SSD

OS Windows 10 Home 64-bit

Table 5.1: Specification of the computer used for benchmarking.

5.1.3 Datasets used

The benchmarks on very small datasets (less than 20 MB) are trivial and are susceptible to

unexpected factors. Thus, only CityJSON dataset of Zurich_Building_LoD2_V10 has been se-

lected from [CityJSON, 2021]. Additionally, the developed RESTful API should be able to serve

as many CityJSON datasets as possible. Therefore, another 62 CityJSON datasets are collected

from [PDOK, 2021], in which 5 are containing various city objects, and the others only contain

buildings (see Figure 5.1) . The overview of the chosen CityJSON datasets is summarized in Ta-

ble 5.2. All the chosen CityJSON datasets are inserted into database for benchmarking, which

contains 2106663 city objects in total.

(a) CityJSON containing only buildings (b) CityJSON containing various city objects

Figure 5.1: The CityJSON datasets downloaded from [PDOK, 2021].

File name File size (MB) City objects Characteristics Source

Zurich_Building_LoD2_V10 286.1 198699 Multi-part buildings CityJSON [2021]

37en1 ... (57) 20.2 - 133.8 10585 - 63386 Single part buildings PDOK [2021]

37en1_volledig ... (5) 438.4.5 - 2218.9 19239 - 106417 Various city objects PDOK [2021]

Table 5.2: The overview of CityJSON datasets used in the benchmarking.

5.2 Overview of benchmarking methodology

A brief overview of benchmarking methodology is depicted in Figure 5.2 and consists of three

main aspects:
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Figure 5.2: An overview of benchmarking methodology.

• Database schema: Different ways of storing the type and 2D bounding boxes of city ob-

jects, and the hierarchical relation are benchmarked to determine the trade-off between

storage size and query speed.

• Storage system: Database solution can provide better scalability, but it takes extra time

for the RESTful API to assemble city objects retrieved from the database the to a new CityJ-

SON object. Four use cases are designed to comprehensively test which storage solution

is suitable for which use case.

• Streaming method: Compared to streaming the query results, paginating the query is

expected to serve a quicker first response but require a longer time to load all the data.

The performance of two data streaming methods is measured with different fetch sizes

from the database.

59

5

B
E

N
C

H
M

A
R

K
IN

G
A

N
D

A
N

A
LY

SI
S
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5.3 Database schema

Database schema plays an important role in data access efficiency. To better support the data

filtering and streaming process, the type value, 2D bounding box and parent_child relation are

derived from the CityJSON dataset and explicitly added into database schema. Different ways

of storage for the three parts are proposed in Chapter 3 and the performance is benchmarked

and discussed, respectively.

5.3.1 Metrics

An important step in benchmarking is to define the quantitative metrics. Different storage

schema will lead to different data storage sizes and query performance. Regarding the storage

size, it also consists of three aspects:

• Schema size: This refers to the sum of all table sizes. Hence, the ways of storing CityJSON

in the database directly influence the schema size.

• Database size before extra indexes: The database size includes information other than the

pure data in tables, including all associated indexes, TOAST space, free space map, and

visibility map [PostgreSQL, 2021c].

• Database size after extra indexes: The different index choices depend on the column types

(e.g. array or JSONB), which have an indirect impact on database size and query perfor-

mance.

In addition to the data types, certain constraints in the database schema design also plays

an important role in the storage size and query performance. For example, normalization con-

strain is used to reduce redundancy and improve consistency. However, this may increase the

number of tables and reduce the performance of data queries.

Hence, it can be seen that there are usually trade-offs between storage size and query time.

Therefore, these two factors are chosen to indicate the quality of the database schema.

5.3.2 Semantics

The property "attribute" and "type" store the semantic information at the city object level,

which will be use during attribute filtering process. The property "attribute" is stored in a JSONB

column, which is explained in Section 2.4.1. The type value can either be stored in the JSONB

column as an additional key/value pair or it can be separately stored in a text column. Two

database schema are created and different indexing types are used to improve the efficiency of

data queries (see Listing 5.2). Note that only the type member in the JSONB column is indexed.

-- index type in JSONB column
CREATE INDEX ON schema1.cityobject USING BTREE ((( attributes ->>’type ’)));
-- index type in a separate column
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CREATE INDEX ON schema2.cityobject USING BTREE (type);

Listing 5.2: Indexing type values in PostgreSQL.

Storage size

From Figure 5.3 we can see that the schema size is smaller (6.8%) when storing property "type"

in a JSONB column than in a separate text column. The results prove the compression ability of

JSONB data type. Before extra indexes are added to improve the type query, the database size is

slightly larger when using JSONB, which indicates that additional mechanisms and information

are stored in PostgreSQL to support the JSONB data type. By computing the difference between

the schema size and the database size before indexing, using JSONB needs 10% more extra space

than using text. After indexing the type, the database size with a separate text column exceeds

the one with JSONB column. This can be caused by a more complicated indexing mechanism

used in the text type.

To conclude, the difference in storage size between the two schema is trivial and does not

reveal that one is much superior to the other one.
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Figure 5.3: The different storage sizes of storing property "type" in a JSONB column or in a sepa-

rate text column.

Query performance

Two use cases are designed to test the query performance: retrieving all the city objects with

"BuildingPart" type and retrieving all the city objects at the first level. Additionally, the EXPLAIN

PLAN SQL syntax is used to check the detailed information of the execution plan.
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Figure 5.4 illustrates the difference of query time for finding all the city objects with "Build-

ingPart" type. Although a separate column offers quicker query time, the difference is insignif-

icant and both query performance is acceptable (less than 3%).

Case 1 find all building parts

JSONB column
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Figure 5.4: Use case 1: Retrieving all the city objects with "BuildingPart" type.

As discussed in Chapter 4, to avoid duplicate sub-city objects, the first-level city objects will

be retrieved first. Hence, the second use case is created to test whether the database schema

can better support the RESTful API when a small part of city objects are randomly selected or

bounding box filtering is performed.

The results of query time are given in Figure 5.5. We can see that the database schema

with a separate column performs much better than the database schema with a JSONB column

(shrinking 40.7% of the time). To find the reason, the detailed execution plans are inspected,

which show that the indexing mechanism was not executed on the database with a separate

text column. Instead, each row is sequentially scanned until the end row when the SQL syntax

LIMIT is not used. This is because the indexing mechanism requires an extra time of seeking

and most city objects are at the first level. As a result, the query planner for the database with

a separate text column abandon the indexing mechanism. However, the query planner for the

database with a JSONB column still applies the Bitmap heap scan for a large subset of the city

objects, resulting in poor query performance.

The reason why the query planner can make a better choice with traditional data types such

as the text is that PostgreSQL stores statistics about the distribution of values with traditional

data types in each column, such as the most common values [PostgreSQL, 2021a]. However,

JSONB type lacks statistical information, as a consequence, the query planner cannot decide

which join algorithms, join orders and scan types to use for better query [Robinson, 2016].
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Case 2 find all city objects at TOPLEVEL

JSONB column
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Figure 5.5: Use case 2: Retrieving all the city objects at the first level.

All in all, the traditional data types offer better query performance and do not obviously in-

crease the database size. Therefore, storing the "type” value in a separate text column is a better

choice. Additionally, the results from the first case present the good performance of JSONB data

type when a small subset of city objects are queried. This indicate that storing the other seman-

tic information in a JSONB column can support the attribute filtering function in the RESTful

API.

5.3.3 Bounding box

An extra column is added into the database schema for storing the 2D bounding boxes. Three

data types are proposed and the corresponding storage occupancy is theoretically analyzed as

follows:

• geometry: The function ST_MakeEnvelope() returns a geometry represented by a WKT with

double-precision (see Listing 5.3). Therefore, one bounding box requires 10 x 8 80 bytes.

1 POLYGON ((84840.6220026873 437417.294006594 ,
2 84840.6220026873 443799.077006594 ,
3 90208.2200026873 443799.077006594 ,
4 90208.2200026873 437417.294006594 ,
5 84840.6220026873 437417.294006594))

Listing 5.3: A 2D bounding box represented by a WKT with double-precision

• box: The box type store 2 sets of coordinate data with double-precision. Hence, it also

requires 4 X 8 32 bytes to store a 2D bounding box.
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5.3. DATABASE SCHEMA

• array: An numeric array with four values is created and the precision is user-specified.

To maintain the same precision with the first two types, double-precision is chosen. The

expected storage occupancy is 4 X 8 32 bytes.

In conclusion, the schema size with the geometry type is expected to be much larger than

with the other two types.

Storage size

Figure 5.6 presents the different storage sizes of storing 2D bounding boxes in a column with

geometry or array or box types. When storing 2D bounding boxes with geometry data type, the

schema size is noticeably smaller than with the other two types, which is contradictory to the

prediction. This is because the storage is optimised by the in-built compression mechanism

in PostgreSQL with large geometries [Baston, 2018]. Instead of storing a WKT in the schema, a

Well-known binary (WKB) is used to compress the schema size.
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Figure 5.6: The different storage sizes of storing 2D bounding boxes in a column with geometry

or array or box types.

After indexing 2D bounding boxes, the database size with 2D bounding boxes stored in an

array column exceeds the other two. The possible reason is that the spatial indexing is per-

formed on the 2D bounding boxes with geometry and box type. However, the intersection

judgement for 2D bounding box with the array type needs to be explicitly expressed by the four

values. Therefore, four separate indexes are created, which increase the storage overhead.

64

5



5.3. DATABASE SCHEMA

Query performance

The use case in this query performance measurement is to filter the city objects outside of the

area shown in Figure 5.7. Figure 5.8 represents the results of query performance. Compared

with the other two types, the query speed of the box type is almost twice as fast. The array

and geometry types serve the similar query performance. The difference between the database

size and schema size with geometry type is more obvious than with the other two, which indi-

cates that performing operations on data with geometry type is complex, and more additional

mechanisms are used to support the query. The box can be regarded as a special and simple

geometric type, so the operations on the box data can be simplified.

To conclude, although storing 2D bounding boxes in a column with box type has the largest

schema size, the total database size is the lowest. More essentially, the query performance is far

better than the other two types. Hence, box type is chosen to store 2D bounding boxes.

Figure 5.7: The selected area of bounding box filtering.

5.3.4 Parent-child relation

Four different methods of storing parent-child relation are proposed in Section 3.3.2. Three

methods explicitly store the hierarchical relation by a parent_id column (foreign key) or an array

column or a JSONB column. The forth method is to construct and store features in advance.

Then the parent-child relation is indirectly reserved in those features.

One possible issue related to the fourth method is that the city objects at second level are

redundantly stored in the database, which may result in a larger storage size. On the other hand,

there is no additional operation to query the associated city objects in DBMS and to construct
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Case bounding box filtering
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Figure 5.8: The results of query performance related to 2D bounding boxes.

the features in the RESTful API. Hence, the fourth method can theoretically serve better query

and web performance.

Storage size

From Figure 5.9 we can see that the fourth method (feature) has unexpectedly lowest schema

size while other three methods have similar schema sizes. Note that the JSONB solution simply

stores the array as a JSON using JSON.dumps() during data insertion process and there is almost

no size difference between the array solution and JSONB solution. This indicates that the JSONB

does not apply compression on every kind of data.

Indexes are according added to improve the efficiency of querying associated city objects

in the three explicit solutions and the database sizes slightly increase by the indexes. It is no-

ticeable that the feature solution has the largest database size even without any extra indexes.

However, the results are contradictory to the previous prediction about the fourth method.

One possible reason of the insignificant redundancy influence on storage size is that only one

(out of 62) CityJSON dataset has sub-city objects. To better inspect the redundancy influence,

only Zurich dataset is inserted into the database. The result is given in Figure 5.10. When using

the fourth method, the database size increases by 37% compared to the foreign column method.

It shows that the fourth method will lead to great storage burden when most city objects have

associated city objects.
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Figure 5.9: The different storage sizes of storing parent-child relation in several ways.
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Figure 5.10: The different storage sizes of storing parent-child using Zurich dataset.

Query performance

Theoretically speaking, it is very easy to find the sub-city object ids when the parent-child rela-

tion is stored in the database using the three explicit methods, while the feature method strug-

gles to accomplish this task. However, finding sub-city objects are not the ultimate goal for the

RESTful API. Instead, the RESTful API should be able to return the complete sub-city objects in

an efficient way. Additionally, during the data streaming process, the sub-city objects should be
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clustered with their parents. Thus, a sorting operation by the parent_id is necessary to perform

the clustering task.

Based on the above discussion, the use case used in this performance measurement is to

retrieve all city objects in the Zurich dataset since it is the only dataset that contains multi-

part buildings. In addition, an extra column indicating the main id needs to be appended in

the query results for the RESTful API to differentiate the features. Moreover, the associated city

objects should be assembled together using a sort operation on the main id to support data

streaming process.

The results of query performance measurement is given in Figure 5.11. The feature so-

lution provides the best query performance while the JSONB solution has the poorest perfor-

mance. The significant difference between the feature solution and the other three solutions is

mainly caused by the sort operation. Sorting the query results is a resource-intensive and time-

consuming process [Winand, 2021], because the complete query results must be read before a

sort operation starts. Thus, the sorting can not be implemented in a pipelined way, which is

contradictory to data streaming and problematic when handling a large amount of data. The

array and JSONB solutions perform worse than the parent_is solution. This is because that unnest

() and jsonb_array_elements_text() functions are respectively used to flatten multiple arrays or

JSONB to a set of values in the array and JSONB column. This extra process leads to a performance

penalty.

Case construct feature order by main id
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Figure 5.11: The results of query performance related to parent-child relation.

All in all, pre-constructing and storing features has the best query performance. However,

the redundancy issue will become obvious when handling city objects that have associated city
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objects at the second level. In addition, some future work may still require the explicit parent-

child relation, for example, returning parent city objects according to the city objects at the

second level. Hence, adding a parent_id column with text type can be the most conservative

and reliable way.

5.4 Storage system

The benchmarking performed in this section aims to prove the better scalability, efficiency and

flexibility of data access in the DBMS over the file-based system. The designed use cases can be

grouped into two categories: data access without filtering and data access with filtering. 7 (out

of 63) datasets with different sizes are used in the first group, and 30dz2 and Zurich datasets are

used in the filtering use cases based on the bounding box and attribute, respectively. To com-

prehensively measure the filtering performance, several HTTP requests with various filtering

ranges are designed for the data access with filtering.

5.4.1 Metrics

The response time is the performance indicator for checking which storage solution can better

support the use cases in the RESTful API. The response includes several phrases, which depends

on the storage system type:

• DBMS: After the RESTful API receives the HTTP request, SQLs are constructed to retrieve

data from the database. Then the query results on the database side are sent to the REST-

ful API. After new CityJSON object is generated, it is sent to the user.

• File system: After the RESTful API receives the HTTP request, the whole CityJSON file in

the file system is read into the RESTful API. After data processing, new CityJSON object is

generated and sent to the user.

5.4.2 Use case: access to one specific city object

The CityJSON ID and feature ID are identified in the request URL to access a specific Feature. The

benchmarking results are illustrated in Figure 5.12. As the dataset size increases, the response

time of accessing data from the file system greatly increases. Unlike DBMS, data irrelevant to

the final result is also read to REST API from the file system, resulting in a waste of memory in

API. With a larger dataset, memory waste becomes more serious. Moreover, due to the lack of

an indexing mechanism, a loop operation is used in the API to find the specific city object. This

lays a great burden to the CPU and takes a longer time to complete this task.
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All in all, with the help of the built-in query and index mechanism, the database system is

better than the file system in querying specific city objects.
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Figure 5.12: The benchmarks of access to one specific city object

5.4.3 Use case: access to 10 random city objects

The use case is to assess the performance of API pagination mechanism when using different

storage systems. The parameter limit is set to 10, and offset is 0 by default. From Figure 5.13

we can see that the database system provides a superior and stable performance, while the

performance of the file system is poor when dealing with large CityJSON datasets. When the

dataset size ranges from 20 to 600 MB, the response time slightly fluctuates between 10 to 120

milliseconds with a database system. However, the response time with a file system increases

from 600 milliseconds to 1 minute. This will become unacceptable from a user perspective,

when the dataset size further increases.

Briefly to conclude, due to the lack of scalability, the file system cannot well support the API

paging mechanism during data access. Thus, a database system is preferred to handle this use

case.

5.4.4 Use case: access to a whole CityJSON dataset

In this use case, there is no extra data process for the file system. The CityJSON dataset is read

by the RESTful API, and then directly sent to the user. However, for DBMS, city objects from

the original CityJSON file need to be retrieved and then assembled to a CityJSON object in the

RESTful API.
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Figure 5.13: The benchmarks for access to 10 random city objects

The benchmarking results are given in Figure 5.14. When the dataset size increases, the

response time takes longer due to the limited network bandwidth. It can be seen that accessing

a whole CityJSON dataset from the DBMS has a higher growth rate of response time than the file

system. This is because the CityJSON object is split into individual city objects with the local

vertex lists. Thus, it needs extra time for the RESTful API to combine those city objects into a

CityJSON dataset.

As the dataset size reaches 100 MB, the difference start enlarging. For example, when the

dataset size is 286 MB, the response time (130 seconds) with DBMS is 1.38 times that (94 sec-

onds) of the file system and when the dataset size is 600 MB, it becomes 1.70 times (404 and

238 seconds, respectively). This is because of the CPU and memory limitation. The database

connection and query is also a resource intensive process, which requires high CPU and mem-

ory usage. In addition, the redundant vertices are stored in the memory before the redundant

removal process. The redundant vertices occupy additional memory space and the removal

process also requires CPU consumption.

5.4.5 Use case: bounding box filtering

The 30dz2 dataset of size 130 MB is used in this use case. 7 HTTP requests with different filter

bounding boxes are designed to evaluate the filtering performance of the DBMS and file system.

Figure 5.15 represents the benchmarking results. As the filtering range increases, a larger

dataset will be returned to the user. Therefore, the response time increases accordingly. It is
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Figure 5.14: The benchmarks of access to a whole CityJSON dataset

noticeable that the database solution provides better performance. The main reason for this is

that the spatial index mechanism is applied to support fast data query in DBMS. On the contrary,

each city object is scanned when using the file system, which will cause performance degrada-

tion. However, as the filter range increases, the difference shrinks because the performance of

indexing mechanism becomes trivial when a large portion of city objects are selected from one

CityJSON dataset.

It can be concluded that accessing a whole CityJSON dataset from the file system has better

performance that from the DBMS.

5.4.6 Use case: attribute filtering

The attribute filtering is based on the attribute "class" in the Zurich dataset. To utilize the in-

dexing mechanism in the DBMS, the attribute "class" is indexes as follows:

CREATE INDEX ON api.cityobject USING BTREE ((( attributes ->>’class ’)));

The benchmarking results shown in Figure 5.16 are quite similar to the use case of bound-

ing box filtering. With the help of the index, the DBMS is able to quickly find the expected city

objects. Around 80% city objects (about 230 MB) in Zurich dataset is retrieved in the final HTTP

request. Thus, we can expect that when more city objects are selected, the file system will have

a better performance over the DBMS according to the trend.
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Figure 5.15: The benchmarks of bounding box filtering using two storage systems.
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Figure 5.16: The benchmarks of attribute filtering using two storage systems.

5.5 Streaming method

Paginating the query and chunking the query results are the two methods proposed in Sec-

tion 3.2.5 to implement data streaming from the DBMS to the RESTful API. Bounding box fil-

tering on Zurich dataset and attribute filtering on 37en2_volledig dataset are the two use cases

designed for benchmarking and comparing the streaming performance of the two methods.

In addition, the performance of not streaming data from the DBMS to the RESTful API is also
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benchmarked as the baseline.

5.5.1 Metrics

The metrics used for measuring streaming performance is different from the database schema,

and consists of three aspects:

• The first response time: This refers to the time when the user firstly receives a CityJSON-

Feature. A well-known statistic shows that 53% of web users will abandon a web page if it

takes more than 3 seconds to start loading [Kirkpatrick, 2016]. Hence, the first response

time is chosen as an important performance indicator.

• The total response time: This refers to the time when the user receives all the requested

data. The total response time includes the data retrieval time in the DBMS, the process

time in the RESTful API and data transmission time.

• The correctness rate of the returned data: The correctness rate refers to the rate between

the number of non-divided CityJSONFeatures and the ideal number of CityJSONFeatures.

One CityJSONFeature may be divided into two when the associated city objects are not

fetched from the database at the same time (see Figure 5.17). The splitting issue is avoided

in the pagination method because every paginated query collects the complete associ-

ated city objects. However, in the second method, all the city objects are selected on the

database side, then chunked into small groups with a fixed number.

Figure 5.17: The phenomenon of divided CityJSONFeature .

5.5.2 Use case : bounding box filtering on Zurich dataset

The use case is to filter the city objects outside of the region shown in Figure 5.18. The ex-

pected results contain 34267 CityJSONFeatures and 136418 city objects in total. The HTTP

request sent by JMeter is http://127.0.0.1:5000/collections/Zurich_Building_LoD2_V10/items/

?bbox=8.47424,47.36766,8.60916,47.41647&epsg=4326.
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Figure 5.18: The selected area (in pink) of bounding box filtering for measuring data streaming

performance.

Baseline results

Figure 5.19 shows the baseline results for this use case. When the data is not streamed from

the DBMS, the RESTful API needs to wait until all the filtered tuples are transmitted, and then

start constructing CityJSONFeature. Hence, it takes very long time (around 16 seconds) for the

clients to receive the first CityJSONFeature. The client will receive all the CityJSONFeature with

a size of 199.4 MB after about 1 minute (the total response time).

Method 1: Paginating the query

Figure 5.20 represents the data streaming performance during bounding box filtering with the

method of paginating the query. The first response time stays below 400 ms when the fetch size

is smaller than 1000 and starts dramatically increasing when the fetch size is larger than 1000.

However, the total response time shows the opposite pattern. When the fetch size is set to a

small value, the total response time is extremely long. This is because the database is connected

and queried too many times, which is a time-consuming and resource-intensive process. When

the fetch size is larger than 200, the total response time becomes acceptable. Note that the fetch

size here refers to the number of city objects at the first level, and all the associated city objects

at the second level will be queried and sent along to the RESTful API. Hence, the correctness

rate is always 100%.

Method 2: Streaming the query results

The streaming performance is illustrated in Figure 5.21. Even when the fetch size is very small,

the first response time is around 4.5 seconds. This is due to that fact that the database is con-

nected and queried only once, and all the filtered results are retrieved on the database side.

Therefore, if the SQL is complex or the filtered results contain large amounts of data, it will take
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Figure 5.19: The performance during bounding box filtering without streaming from the DBMS

to the RESTful API.
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Figure 5.20: The data streaming performance during bounding box filtering with the method of

paginating the query.

long time before the database starts transmitting data. In terms of total response time, it has a

relatively stable mode, about 1 minute, no matter how large the fetch size is. One issue related

to this streaming method is that the number of returned CityJSONFeatures is uncontrollable. It

is because the fetch size here refers to the number of city objects. When fetching 5 city objects,
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we may only get one CityJSONFeature when 4 city objects are the children of the other one city

object. Another problem is that associated city objects may be not completely queried during

one data fetch process. As a result, one CityJSONFeature may be divided into two, resulting

more CityJSONFeatures in the end. But the correctness rate increases sharply as the fetch size

increases, and approaching to 100% when the fetch size is larger than 100.
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Figure 5.21: The data streaming performance during bounding box filtering with the method of

streaming the query results

Comparison

The definitions of fetch sizes are different in the two streaming methods. One refers to the num-

ber of CityJSONFeatures, and the other refers to the number of city objects. According to the

fact that all city objects in Zurich dataset are multi-part buildings and the number ratio between

city objects and CityJSONFeatures is around 4, we can assume that there is 1 CityJSONFeature

when 4 city objects are fetched by the second method.
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Based on this assumption, the benchmarking results from the two methods can be displayed

together using the same horizontal axis. From the Figure 5.22 we can see that with data stream-

ing from the DBMS to the RESTful API, the first response time is largely reduced while there is

not much difference between streaming using the second method and non streaming in terms

of total response time. The first streaming method provides much better performance related

to receiving the first response, and more acceptable from a user perspective. However, the total

response time of the first method is quite long when the fetch size is set to a small value, while

the total response time of the second value has a relatively stable mode. Nevertheless, the total

response time of the first method improves dramatically as the fetch size increase, and gradu-

ally approaching the total response time of the second method. Regarding to the correctness

rate, the first method offers total correct result, while the second method depends on the fetch

size.

To conclude, the first method is a better option when the fetch size is set between 200 to

2000 in this use case. However, when applying the first method, the optimal fetch size can vary

from case to case. The optimal fetch size can be determined based on the total number of the

returned CityJSONFeatures, which is unknown before all the data is streamed to the browser.

This causes difficulties in applying the first method. on the contrary, the performance of the

second method is less affected by the fetch size, so a uniform fetch size can be determined in

advance and applied to all use cases. Additionally, the main reason of the poor performance

in the second method is that all the city objects in Zurich dataset are multi-part buildings. The

process of sub-city objects searching and ordering consumes a lot of time. In theory, when the

use case is not too complicated, the performance of the second method can be improved.

5.5.3 Use case: attribute filtering on 37en2_volledig dataset

The overview of city objects with different types in 37en2_volledig dataset is given in Table 5.3.

The use case is to find buildings in this dataset, which occupy 19.0% of all the city objects.

The HTTP request sent by JMeter is http://127.0.0.1:5000/collections/37en2_volledig/items/

?attrs={"type":["Building"]}. Note that all buildings are single-part buildings in 37en2_volledig

dataset, so the correctness rates for both streaming methods stay 100%.

Baseline results

Figure 5.23 shows the baseline results for this use case. From the results we can see that it takes

almost half of the total response time for the clients to receive the first CityJSONFeature if the

data is not streamed from the DBMS to the RESTful API. It is clear that only streaming data from

the RESTful API to the client is not enough for the overall performance. Properly streaming data

from the DBMS to the RESTful API is necessary to reduce the first response time, especially when

the DBMS is not hosted in the same place (IP) with the RESTful API.
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Figure 5.22: The comparison of data streaming performance of bounding box filtering.

Type Number Percentage

LandUse 45822 43.1%

Road 20190 19.0%

Building 20053 18.8%

PlantCover 12527 11.8%

WaterBody 4126 3.9%

GenericCityObject 2337 2.2%

Bridge 1362 1.3%

Table 5.3: The overview of city objects with different types in 37en2_volledig dataset.

Method 1: Paginating the query

From Figure 5.24 we can see that the changing patterns are similar to the first use case. As the

fetch size increases, the first response will gradually take longer, but all the first responses are
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Figure 5.23: The performance during attribute filtering without streaming from the DBMS to the

RESTful API .

within 1 second. On the other hand, the total response time decrease dramatically at first, then

stays relatively stable. We can also notice that the total response time slightly increases when

the fetch size changes from 500 to 5000. This is because the Internet overload occurs due to the

limited bandwidth when a large amount of data is fetched from the database at one time.

Method 2: Streaming the query results

Figure 5.25 represents the streaming performance of the second method. The first response

time goes up as the fetch size increases, but the difference is less than 400 millisecond. Regard-

less of fetch size, the total response time has a stable pattern, and slight fluctuates between 9350

and 9800 milliseconds.

Comparison

Figure 5.26 represents the comparison of data streaming performance of attribute filtering be-

tween the two methods. Although the first method still offers better performance in first re-

sponse performance, the difference between the two methods is much reduced when com-

pared with the first use case. This is because the process of querying all results in the database

is simpler than in the first case, so it takes less time for the second method to start transmitting

data from the DBMS to the RESTful API. On the other hand, the second method has advantages
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Figure 5.24: The data streaming performance of attribute box filtering with the method of pag-

inating the query.
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Figure 5.25: The data streaming performance of attribute box filtering with the method of

streaming the query results.

in terms of total response time, especially when the fetch size is set to a small value.

Another observation in the second use case is that without data streaming from the DBMS to

the RESTful API, the total response time is longer than using the second streaming method. As

the fetch size increases from 1000 to 5000, the difference gradually shrinks between not using

streaming and using the second streaming method. The possible reason is that when using data

streaming, there exist paralleled processes: transmitting the CityJSONFeature to the client and

fetching data from the DBMS. However, this speculation can not explain the first use case in

terms of the total response time because the difference between not using streaming and using

the second streaming method is not significant in the first use case. The possible reason could
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Figure 5.26: The comparison of data streaming performance of attribute filtering between two

methods.

be related to the response size. However, more accurate reasoning for this observation can be

analysed in the future work.

All in all, the first method is not dominant in this use case. Only when the fetch size is

about 50, the first method is better than the second method in terms of the first response time

and the total response time. When dealing with different use cases, it is difficult to accurately

determine the optimal fetch size for the first method. As a result, streaming performance may

not be satisfactory. Therefore, when considering the overall performance and various use cases,

the second method can be a better choice to perform data streaming when dealing with less

complex CityJSON datasets where most city objects are at the first level. However, one issue with

the second method is that one CityJSONFeature may be divided into two CityJSONFeatures.

Given the fact that the split only occurs in the two consecutive data fetches from the DBMS, this

issue becomes solvable and the detailed solution will be discussed in Section 6.3.

Regarding the first streaming method, the main challenge lies in the determination of the

optimal fetch size from case to case. The total number of returned CityJSONfeatures could pro-

vide an indication to the optimal fetch size. However, the query in the first streaming method

is paginated and the total number of returned CityJSONfeatures can only be known after the

streaming process. Even if a total number of the to-be-returned city objects is known, it is still

challenging to determine the optimal fetch size because this value not only directly affects the

first response time but also has a great impact on the total response time. Because the times of

database queries are equal to the total number of the to-be-returned city objects divided by the

fetch size. Large times of database queries will lead to poor total response performance. Hence,

there is always trade-off between the first response time and the total response time.

Another important observation in the benchmarking results can be used to solve this prob-
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lem in theory. From Figure 5.20b and Figure 5.24b we can see that the turning point is a more

significant feature than a specific optimal point. Because when the fetch size is larger than the

turning point, the total response time becomes relatively stable. We can also observe that the

acceptable range of fetch size for the first response time is quite large. For example, even if the

fetch size is set to 5000, the first response time in the first use case is still less than 2 seconds

and less than 700 milliseconds in the second use case.

Based on the above observation, to enable the first method to perform well in various situ-

ations, our goal is to find the maximum value of the turning point for the total response time

in most use cases. This speculation can be roughly illustrated by the benchmarking results in

this research. The values of the turning points are around 200 and 50 separately in the first and

second use cases. Hence, the maximum value of the turning points is 200. When we apply 200

as the fetch size in the second use case, the overall performance of the first method is still satis-

fying (see Figure 5.27). Considering that in the first use case, the total response size is 199.4 MB

and the response contains 136418 city objects in total, the value of the turning point in the first

use case is sufficient to regard as the maximum value of the turning points in most use cases.

Through the theoretical analysis and two benchmarks, a fixed fetch size of 200 can be applied to

various use cases when using the first streaming method. However, this speculation still needs

to be verified by more use cases with different response sizes. In addition, it is recommended

that more work is carried out in the future to find solutions to dynamically determine the fetch

size of a specific case.
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Figure 5.27: Applying the maximum value of the turning points (200) to the second use case.
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Chapter 6

Conclusion and future work

In this chapter, a research overview is described and discussed in Section 6.1. The research

questions introduced in Section 1.3 are then answered in Section 6.2. In the end, due to some

limitations in my methodology, some future work is recommended in Section 6.3.

6.1 Research overview

With the increasing demand for 3D city models in various applications, providing efficient ac-

cess to 3D city models has become very important and valuable. CityJSON has advantages in

data storage and web applications over CityGML data format, thus being chosen as the main

datasets used in this research to implement the efficient dissemination of 3D city models on

the web.

6.1.1 Developing a RESTful API

Inspired by the OGC API – Features, a RESTful API can be developed to disseminate CityJSON

datasets with efficiency and scalability. However, there are some divergences between the OGC

API – Features and my proposed methodology of implementing a RESTful API for CityJSON

datasets:

• Return CRS information: When the Collection resource is accessed, OGC API – Features

requires to return a list of CRSs used in all the geometries while my methodology returns

a simple key/value pair (e.g. "referenceSystem": "urn:ogc:def:crs:EPSG::7415"). This is

because all geometries in a CityJSON dataset share the same CRS. Thus, a list of CRSs is

replaced by a single string in my methodology.

• Return spatial extent: When returning a spatial extent of a Collection resource, OGC API

– Features needs to specify the bounding box and the related CRS (see Listing 2.6). Hence,

the spatial extent will be represented by an object with two members, "bbox" and "crs".

However, in my proposal, the spatial extent can be simply expressed by an array with 6
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6.1. RESEARCH OVERVIEW

elements (e.g. "geographicalExtent": [ 84710.1, 446846.0, -5.3, 84757.1, 446944.0, 40.9 ]).

This is also the same expression for the spatial extent in a CityJSON object.

• Return attribute information: In the OGC API – Features, the spatial extent and temporal

range of a collection can be optionally contained in the response of accessing the Collec-

tion resource. However, the other attribute information is neglected. In Section 3.2.4, I

propose to include overall information of attributes in the response. The attribute names

along with the possible value enumerations or ranges will be sent to the clients when the

Collection resource is requested.

• Return queryables OGC API – Features supports to provide queryables by adding the sub

directory to the URL for the Collection resource: /collections/{collectionId}/queryables.

This URL of a GET request will return a list of names that can be used in data filtering

process. In my proposal, the queryables are already included in the overall informa-

tion of attributes. Apart from the attribute names, my proposal also includes the value

ranges, which can offer a more comprehensive understanding of the CityJSON dataset to

the users. However, the downside of my proposal is that it increases the response size

when accessing the Collection resource.

• Handle different CRSs issues: The OGC API – Features Part 2 extends the core part’s capa-

bilities to use any other CRSs by offering a global list of supported CRS identifiers. A simpler

identifier, the EPSG code, is adopted in my methodology to specify the CRS of the filter’s

bounding box. When returning the CRS information of one Collection, the CRS expression

is the same with the one stored in CityJSON dataset.

• Filter on multiple CityJSON datasets: The core part of OGC API – Features only supports

filtering operations on a single Collection resource. As described in Section 3.2.3, I pro-

pose to append two parameters bbox and crs to the URL path for the Collections resource to

implement the bounding box filtering on multiple CityJSON datasets. In theory, attribute

filtering on multiple CityJSON datasets can also be simply implemented by adding other

parameters in the Collections URL. However, this use case is less commonly requested

than the bounding box filtering on multiple CityJSON datasets, thus not being imple-

mented in my research.

• Handel filtered results: The filtered results may contain large amounts of data, which

brings the challenge to the RESTful API. The solution in the OGC API – Features is to of-

fer paginated filtered results by adding limit and offset parameters in the HTTP request

path. This means the users need to proactively browser the next 10 filtered features (if

the limit is set to 10) by sending a new request to the RESTful API again. My solution is

to stream all the filtered data. In this way, the user only needs to send the HTTP request

to the RESTful API once and then the browser will incrementally receive and parse all the

filtered results. Data streaming allows the user to view the overall filtered results on one

page instead of the divided results on multiple pages. However, one downside about data
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streaming is that the browser needs to accommodate all the data on one page at the end

of the streaming process, which may exceed its capacity and cause the browser to crash.

• Construct filtering expressions: The draft version of OGC API – Features Part 3 introduces

a Common Query Language for constructing filtering expressions. Each filter expression

consists of a key/value pair where the key refers to the operator (see Listing 2.8). However,

in my proposal, the key refers to the attribute name (see Listing 3.2).

The draft version of OGC API – Features Part 3 provides comprehensive guidance for con-

structing filtering expressions. Due to the limited time and the unavailability of the offi-

cial OGC API – Features Part 3 document, only the most commonly used operations are

implemented in my own methodology (see Table 6.1). The intersection is the only spatial

operation in my research because this is meant for the bounding box filtering process.

Additionally, the filtering expressions used in my work do not follow the Common Query

Language. More future work can be added to enrich the filtering capabilities in my REST-

ful API with a consistent rule of filtering expressions.

Class Operator OGC API – Features Own methodology

Comparison

equal to 3 3

greater than 3 3

less than 3 3

greater than or equal to 3 3

less than or equal to 3 3

between 3 3

like 3 7

is NULL 3 7

in 3 3

Logical

and 3 3

or 3 7

not 3 7

Spatial

intersects 3 3

equals 3 7

... (6 more) 3 7

Temporal
anyinteracts 3 7

... (14 more) 3 7

Table 6.1: The set of operators considered in OGC API – Features and my own methodology

6.1.2 Data streaming

CityJSONFeature enables CityJSON data to be parsed incrementally on the web. Another issue

that may cause high latency for users to receive the first CityJSONFeature is the data process-

ing and transmission from the DBMS to the RESTful API. To improve the overall data streaming
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performance, I proposed two methods in Section 3.2.5 to stream the data from the DBMS to the

RESTful API so that the RESTful API can start constructing the first CityJSONFeature and send-

ing it to the user without having to wait for all data tuples to be transferred from DBMS. The

most challenging part of data streaming from the DBMS to the RESTful API is to correctly bun-

dle together the city objects at the second level with their parent city objects. My solution is to

append an extra column that indicates the main id in the query results for the RESTful API to

differentiate the features, and then sort the query results by the main id so that the RESTful API

can construct the CityJSONFeatures in a streamed way.

The benchmarking results show that if the data is not streamed from the DBMS to the RESTful

API, it takes around 16 seconds for the user to receive the first CityJSONFeature in the first use

case and takes almost half of the total response time in the second use case. Both of these

streaming methods have shown to largely reduce the first response time. However, there are

some performance differences between the two methods:

• First response: The first method performs better than the second method, especially

when the query is complex and result is large. In the first use case for benchmarking the

data streaming performance, users will receive the first CityJSONFeature after 4.5 second

when the second method is used. This is because the Zurich dataset only contains the

multi-part building and the filtered result (about 200 MB) accounts for 85% of the Zurich

dataset. When the query process is less complex, for example, in the second use case, the

performance of the second method becomes much acceptable (less than 1 second) and

close to the first method.

Theoretically speaking, although the second method does not perform well in terms of

the first response, it can provide better performance in the rest of responses, such as

the second one. This is because there is no need to query database again in the second

method. The speculation can also be proven by the mathematical principles since the

second method provides less (or same) total response time than the first method. How-

ever, this speculation still needs future work to verify.

• Total response: As discussed above, the second method has advantages in the total re-

sponse in comparison to the first method. This is because the database query is a time-

consuming and resource-intensive process. When the fetch size is set to a small value,

there may be thousands of database queries in the first method to retrieve all the data.

Generally, the second method is less sensitive to the fetch size while a proper fetch size

should be determined to avoid a long total response time in the first method. On the

other hand, the fetch size can not be set to a very large value (e.g. 10000) since it will

dramatically increase the first response time in both methods.

• Correctness: In the first method, the fetch size directly limit the number of city object at

the top level, and then the associated city objects are queried and sent along with their

parent city objects to the RESTful API. However, in the second method, the fetch size refers
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to the total number of city objects the RESTful API will retrieve at one time. Although the

sort operation in the SQL ensures that the city objects at the second level are bundled

together with their parent city objects, city objects contained in a CityJSONFeature may

not be fetched together at one time in the second method. This will cause the split of the

CityJSONFeature.

As mentioned in Section 5.5.3, considering that the split only occurs in the two consecu-

tive data fetches from the DBMS in the second method, this issue becomes solvable with-

out breaking the data streaming rule, and the detailed proposal for fixing this issue will be

discussed in Section 6.3.

• Adaptability to various use cases: A normal fetch size like 10, 100 and 500 can be applied

in the second method for various use cases. However, the fetch size should be carefully

picked for the first streaming method because inappropriate fetch sizes will lead to a very

long total response time. The total number of returned city objects could indicate the

optimal fetch size but this value is unknown until the entire data streaming process is

finished in the first method.

As discussed in Section 5.5.3, the turning point of the total response time is a significant

feature and can be used to replace the optimal point. Based on the theoretical specula-

tion, the research goal becomes to find the maximum value of the turning point values

among most use cases. Considering that the first use case is already much more com-

plex and challenging than normal use cases, its value of the turning point (200) is large

enough to be the fixed fetch size for various use cases. However, more use cases need

to be benchmarked to verify this speculation. In addition, it is recommended that more

work is carried out in the future to find solutions to dynamically determine the fetch size

of a specific case when using the first streaming method.

When applying my proposed streaming methods to CityJSON-related web applications, the

first streaming method with a fixed fetch size of 200 is recommended since it offers a fast first

response time, acceptable total response time, and entirely correct results. If the requirement

of bundling child city objects together with their parent city objects is removed from the web

application, the second streaming method is better than the first one because the SQL can be

largely simplified and the time-consuming sort operation is not needed anymore. In addition,

the fixed fetch size of 200 for the first method has not been systematically verified yet and there

is no solution proposed for the the first method to dynamically determine the fetch size on a

case-by-case basis before the data streaming process starts.

6.1.3 Storing CityJSON in a database

Despite the fact that file-based systems are the easiest way of data storage, they have deficien-

cies in some applications that require scalability, efficiency and flexibility in data access. There-

fore, a database solution for storing CityJSON is studied in my research. The drawbacks of stor-
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ing CityJSON using 3DCityDB are discussed in Section 2.4.2, so 3DCityDB is not adopted to

store CityJSON and a new database solution is designed and implemented in PostgreSQL.

DBMS vs file system

To comprehensively compare the performance between the DBMS and file system, 5 use cases

in the RESTful API are designed and the web performance is discussed in Section 5.4. A summa-

rized benchmarking result is given in Table 6.2.

Use case Description Preferred

Access to one

specific city

object

When the dataset size reaches 100 MB, it takes around 20 seconds for the file sys-

tem to response while the response time for the DBMS is around 10 milliseconds
even with a dataset size of 450 MB.

DBMS

Access to 10 ran-

dom city objects

When a dataset with size of 450 MB is accessed, the file system needs 6 minutes
while the response time with the DBMS is constantly below 100 milliseconds

DBMS

Access to a whole

CityJSON dataset

The file system constantly responses faster than the DBMS and the difference start

enlarging as the dataset size reaches 100 MB. The difference is 1.70 times with a

size of 600 MB and 1.38 times with a size of 286 MB, respectively.

File-

based

system

Bounding box

filtering

When the filtering range is small, the DBMS performs much better than the file sys-

tem, and the advantage will be weakened as the range increases. For example, when

there are only 0.1% city objects in the filtering range, the time taken by the file sys-

tem is 85 times that of DBMS. When the range reaches 50%, the time is only 1.25
times that of DBMS.

DBMS

Attribute filter-

ing

Similar pattern with the bounding box filtering DBMS

Table 6.2: A summarized benchmarking result for the storage system.

From the summarized results we can conclude that with the help of the built-in query and

index mechanism, the DBMS performs better than the file system in most use cases. However,

when a whole CityJSON dataset is requested, the file system has a faster response than the DBMS.

Therefore, a hybrid storage management solution integrating the file-based system and DBMS

is recommended to support the fast access in the RESTful API.

Database schema design

In the database schema proposed by Staring [2020], city objects are fragmented into 3D sur-

faces, which is not necessary in my research. By following the OGC API – Features, I defined

the minimum accessible resource as a city object. This means that the data access and filtering

process in my research scope only works at the city object level. Additionally, it is difficult and

time-consuming to reconstruct the city object from 3D surfaces, and the reconstruction pro-

cess will lead to a performance penalty in the RESTful API. To better support the RESTful API,
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I proposed a different database schema, where there are only two tables CityJSON and Cityob-

ject. Cityobject table stores each city object in a row with a local list of vertices to support the

efficient access to the Feature resource and data streaming. JSONB data type is used in many

columns to give a compact database schema that includes flexible storage.

To support data streaming and filtering in the RESTful API, the type value, 2D bounding

box and parent_child relation are derived from the CityJSON dataset and explicitly added into

database schema. Different ways of storage for the three parts are proposed in Section 3.3.

To search for the best way to support the RESTful API, the advantages and disadvantages of

the different ways of storing the type value (2D bounding box and parent_child relation) are

summarized according to the benchmarks and analysis in Section 5.3:

• Semantics (type): According to the Table 6.3, adding an extra text column is better than

storing the type value in the JSONB column along with other attributes. Because the tradi-

tional text data type has better query planner and there is no big difference in the overall

storage occupation compared to the JSONB data type.

Method Pros Cons

Text 1) better query performance on normal use

cases (3% faster); 2) better query planner; 3)

much faster query performance on special cases

(1.7 times faster)

1) higher storage occupation for pure data (6.7%

more); 2) more overall storage (0.8% more but

neglectable

JSONB 1) less storage occupation for pure data; 2) more

compact schema by reducing one column in

Citybject table

1) worse query performance; 2) more compli-

cated indexing mechanism; 3) lacking statistics

data for better query planner; 4) extra space

needed (10% more)

Table 6.3: Summarized pros-and-cons analysis on type value storage

• 2D bounding box: Based on Table 6.4, Box type has the lowest overall storage size and

significantly better query performance, thus being chosen to store 2D bounding boxes.

• Parent-child relation: From Table A.1 we can conclude adding a parent_id column with

text type is the best solution. Because it has acceptable query performance, does not

cause severe redundancy issue and provides flexibility in searching parent ID from the

child city objects.

Based on the benchmarks and analysis, the optimal database schema for supporting the

RESTful API is given in Figure 6.1. Although the color-marked columns will increase the database

storage, they can help extend the capabilities of the RESTful API with data streaming, bounding

box filtering, and attribute filtering.

Apart from the above research results, my contribution also lies in the implementation of

storing CityJSON in a database with spatial coherence by SFC indexing (Section 4.2.2) and the
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Method Pros Cons

Geometry 1) related CRS storage supported; 2) more built-

in spatial function (ST_Transform, &&); 3) spa-

tial index support 4) 3D supported

1) worse query performance; 2) complex data

expression

Box 1) built-in spatial function supported (&&); 2)

lowest overall storage size; 3) best query perfor-

mance (2 times faster)

1) no CRS support; 2) not 3D extensible

Array 1) simple value expression; 2) 3D extensible 1) worse query performance; 2) no CRS support;

3) no built-in spatial function and index

Table 6.4: Summarized pros-and-cons analysis on 2D bounding box storage.

Method Pros Cons

Array &

JSONB

(Array)

1) easy query of child IDs 1) bad query performance; 2) difficult in search-

ing parent ID from child city objects (single-

direction of searching)

Text 1) second best query performance; 2) flexible in

data query (double-direction of searching)

Feature

(JSONB)

1) best query performance 1) severe redundancy with Zurich dataset; 2)

single-direction of searching

Table 6.5: Summarized pros-and-cons analysis on parent-child relation storage.

Figure 6.1: The final database schema for storing CityJSON.
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design of a dynamic normalization method to support the streaming with visualization (Sec-

tion 4.2.5).

6.2 Research question

Main question: How to best develop a RESTful API for fast access to geospatial features in
CityJSON and how to properly store CityJSON in a database to support the RESTful access? is

addressed by giving answers to the sub-questions below and combining those answers with the

the discussion and conclusion in Section 6.1.

Sub question 1: How to mapping the data in CityJSON datasets to the resources defined by
OGC API – Feature?

• The resource mapping is discussed in Section 3.2.1. Each city object is mapped to a Fea-

ture resource. Collection resource only contains the higher level properties such as the

CRS and spatial extent.

• The child city objects will be bundled together with their parent city objects when their

parent city objects are accessed. However, a child city object can be independently send

to the client as a Feature if requested.

• Some divergences between the OGC API – Features and my proposed methodology are

made to better work with CityJSON datasets and extend the capabilities of the RESTful

API. These divergences are discussed and concluded in Section 6.1.1.

Sub question 2: How to solve the CRS issues during data access?

• The CRS for each CityJSON dataset is store in CityJSON table. Thus, the CRS for each city

object can refer to the associated CityJSON by the foreign key cityjson_id.

• To avoid the ambiguous CRS during the bounding box filtering process, users are required

to provide the EPSG code along with the 2D bounding box to the RESTful API. Considering

that Box data type is chosen to store 2D bounding boxes, ST_Transform is not applicable for

this data type in PostgreSQL. Hence, a CRS conversion in the RESTful API is needed when

the filter’s CRS is different to the 2D bounding boxes in the database.

Sub question 3: How to implement the efficient querying of city objects based on geometries
and semantics?

• To support the efficient data filtering on city objects, 2D bounding boxes, type, attributes

are respectively stored in Box, text and JSONB columns in Cityobject table.
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• The geometric filtering is simplified to the bounding box filtering. The spatial intersect

operation && and spatial indexing mechanism in PostgreSQL can work on the Box column.

Additionally, the indexing mechanism can also be applied on the JSONB column.

Sub question 4: How to define streaming in the geospatial context and how to stream
CityJSON datasets?

• Data streaming in the geospatial context means that the browser can parse and proceed

geospatial data incrementally without having to receive the entire dataset.

• In order to implement data streaming on CityJSON dataset, the city objects are modified

to CityJSONFeatures so that each city object can be processed independently.

• Data streaming also involves the data transmission process from the DBMS to the REST-

ful API. I proposed two methods to handle this issue and the performance differences

between the two methods are concluded in Section 6.1.2.

Sub question 5: Which database is suitable for storage of CityJSON datasets to support
RESTful access and how to design the database schema?

• As discussed in Section 2.4.2, due to the availability of spatial data types, functions and

indexing mechanisms, a spatially-extended relational database is chosen in this research,

more specifically PostgreSQL with PostGIS extension.

• The database schema design is discussed and concluded in Section 6.1.3.

6.3 Future work

Due to some limitations in my methodology, several future work ideas to further improve the

API are discussed and recommended in this section:

• Data compression in database systems: The network bandwidth sets a bottleneck to the

efficiency of the data transmission on the web. To find the best method to compress

CityJSON files, Van Liempt [2020] compares the performance improvement using differ-

ent compression methods and concludes that CBOR, zlib, or a combination of these two

can best compress CityJSON files. This research result can be integrated to the RESTful

API for better efficiency when a whole CityJSON file is requested.

In my research, a database solution has been proposed for the storage of CityJSON datasets.

Compression on the database can also contribute to the overall performance. Some pre-

liminary compression work on PostgreSQL has already been investigated by some schol-

ars and organizations. For instance, Postgres 9.5 released a new setting called "wal_compression",

which is able to reduce the IO load [Moppel, 2016]. In addition, Aya [2019] introduced the
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columnar compression in Zedstore. The author’s benchmarks showed a good improve-

ment in terms of loading time and disk footprint. Those research results and methodolo-

gies can be implemented in my model to further improve the database performance.

• Eliminating the split of CityJSONFeature in the second streaming method: One criti-

cism of the second streaming method is that the split of CityJSONFeature could happen

when the associated city objects are not fetched at the same time. However, there are two

useful characteristics in the split. First is that the split only occurs in the two consecutive

data fetches from the DBMS and the other one is that the parent city object will always be

in the first split part. Based on those two characteristics, this issue becomes solvable and

my solution is suggested as follows.

The last constructed CityJSONFeature during one data fetch can be temporarily stored in

the memory using a variable. When the new city objects are fetched to the RESTful API, a

comparison can be made to check whether the first city object in the new data fetch is a

parent city object. This is done by comparing the main id and the the city object id. If the

main id is the same with the the city object id, it can be determined that the city object

is a parent. Hence, if the first city object in the new data fetch is a parent city object, this

means that the temporarily stored CityJSONFeature contains all the associated child city

objects and can be sent to the client immediately. If not, the temporarily stored CityJ-

SONFeature needs to add some child city objects from the new data fetch until the first

parent city object in the new data fetch shows up.

• Determining optimal fetch size in the first streaming method: The observation and the-

oretical analysis in Section 5.5 suggests that the maximum value of the turning point for

the total response time in most use cases is applicable to a random use case. This spec-

ulation needs to be verified by more use cases with different total number of returned

CityJSONFeatures.

It is also recommended that more work should be carried out to find solutions to dynam-

ically determine the fetch size on a case-by-case basis before the data streaming process

starts. Theoretically, the total number of returned CityJSONfeatures is a great indication

of the optimal fetch size. However, this value in the first method can only be known af-

ter the streaming process. To fix this issue, I propose to have an additional query before

the real data retrieval process. The additional query is meant to get the count value from

the database by the simple SQL syntax COUNT(*). Although this will unavoidably increase

the first response time, the count operation in the database does not need to inspect the

actual data in rows and is supposed to be much faster than normal query. However, this

speculation needs to be benchmarked.

There is always trade-off between the first response time and the total response time.

I propose to add more experiments to find the maximum fetch size boundary for the

first response time and the maximum total fetch times for the total response time. Let

Tot alM ax f etch and Si zeM ax f etch be the boundary values for the maximum total fetch
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6.3. FUTURE WORK

times and maximum fetch size. Once the total number of the to-be-returned CityJSON-

Features (Tot alCi t yOb j ect ) is determined, the reasonable fetch size (Si ze f etch) can be de-

cided by the equation below (see Equation 6.1).

Tot alCi t yOb j ect

Tot alM ax f etch
< Si ze f etch < Si zeM ax f etch (6.1)

• Extending 2D bounding box to 3D: Currently, the bounding box filtering only works in

2D. To extend to 3D, the recommended Box type is not applicable anymore. Although

Geometry type supports the 3D objects, it can only store a 3D surface instead of a 3D

bounding box (solid). To address this problem, the 3D bounding box can be simplified

to a 3D surface (see Figure 6.2). Another option is to explicitly store each 3D surfaces in

CityJSON datasets. In this case, the bounding box filtering can directly work on the those

3D surfaces without the auxiliary bounding box column.

Figure 6.2: The 3D bounding box represented by a 3D surface (bounded by blue lines).

• Extending the minimum accessible resource: Since the database schema I proposed

has been specifically designed for supporting RESTful access to geofeatures in CityJSON

datasets, this schema is not applicable to other applications that require more detailed

resources in CityJSON such as LoD. However, the database schema is extendable to meet

the new requirements by adding extra Geometry table or columns.

• Complying to the CQL: Due to the time limitation, only the most commonly used oper-

ations are implemented in my research. Since OGC API – Features Part 3 provides com-

prehensive guidance for constructing filtering expressions, the filtering expressions in my

research can be modified by following the unified CQL rule and more operations can be

added.

• Fixing the issue of having too large single city objects: In a CityJSON dataset, there may

exist vary large city objects (e.g. Land use). Although only one CityJSONFeature is sent to

the browser, the data streaming performance is still degraded by a very large city object.

More future work is recommended to stream data at lower level (e.g. geometry) or some

pre-process work can be done to fix this issue.
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Appendix A

Reproducibility self-assessment

A.1 Marks for each of the criteria

Figure A.1: Reproducibility criteria to be assessed.
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A.1. MARKS FOR EACH OF THE CRITERIA

Criteria Score Comments

Input data 3 All the CityJSON datasets are collected from open websites.

Preprocessing 2 No specific preprocessing is needed. Once the data is downloaded, it

can be inserted into the database by the online source code.

Methods 2 Source code is hosted on GitHub.

Computational

environment

3 Only Python and related packages are required.

Results 2 Benchmarks are accssile on GitHub.

Table A.1: The score according to the reproducibility criteria. The source code and benchmarks

are available in GitHub.
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