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Numerical methods for bifurcation analysis in geomechanics *

R. de Borst, Delft

Summary: A numerical approach to bifurcation problemsin soil plasticity is outlined. While previously publi-
shed results have been obtained using non-associated plasticity models, results are now presented for strain-
softening plasticity. Attention is focused on a biaxial test, for which results have been obtained starting
from a perfectly homogeneous sample and for a sample that contains imperfections, It is shown that the
mere introduction of an imperfection not always transfers a bifurcation problem into a limit problem. This
observation illustrates the need for an option in a finite element program that carries out a bifurcation
analysis.

Numerische Methoden zur Verzweigungsanalyse in der Bodenmechanik

Ubersicht: Skizziert wird eine numerische Behandlung von Verzweigungsproblemen in der Plastizitit von
Béden. Wihrend frihere Ergebnisse fiir nicht-assozilertes plastisches Verhalten gewonnen wurden, werden
hier solche fiir entfestigendes Verhalten dargestellt. Das Hauptaugenmerk ist auf einen zweiachsigen Ver-
such gerichtet. Fiir ihn werden Ergebnisse beschrieben in den Fillen, dafl von einer vollstindig homogenen
Probe bzw. einer Probe mit Imperfektionen ausgegangen wird. Es wird gezeigt, daB die alleinige Einfiihrung
von Imperfektionen nicht immer ein Verzweigungsproblem in ein Grenzlastproblem iiberfiilhrt. Diese Be-
obachtung zeigt die Notwendigkeit, dall Finite-Element-Programme eine Option zur Durchfithrung von
Verzweigungsanalysen enthalten sollten.

1 Introduetion

Failure in soil masses is often accompanied by a sudden transition of a smoothly varying de-
formation field into a number of highly localized deformation bands. These so-called shear bands
oceur virtually at the peak of the load-displacement diagram and a drop in this diagram is
usually observed once the shear bands start propagating.

Some ten years ago it was recognized that this problem must be formulated as a bifurcation
problem [1—4]. Within this framework it proved possible to analytically derive formulae for the
critical hardening modulus at which bifurcation into a localized deformation band is first possible
and for the angle between the deformation band and the prineipal stress axes. Computation of
the post-bifurcation behavior, however, is not possible using analytical tools, and it is here that a
numerical approach offers new possibilities. In metal plasticity this approach was pioneered by
Needleman and Tvergaard (e.g. [5, 6]), who analyzed a wide variety of problems involving
necking and shear banding. The extension to soil plasticity was made by Prévost [7, 8] and de
Borst and Vermeer [9—11], while applications to crack problems in concrete have also been
published recently [12—14].

Within the context of soil plasticity, it seems natural to first consider the biaxial test, since
much analytical work has been devoted to this type of experiment. A profound understanding of
the phenomena that are observed in this experiment has been gained, which allows a careful
examination of the numerical results. This was done in a previous publication for a material
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model that assumed strain-hardening, non-associated Mohr-Coulomb plasticity. This analysis
yielded a good qualitative agreement with test results, but a number of questions remained. The
inability to give a rigorous answer to these qquestions partly relates to the non-symmetric character
of the tangential stiffness matrix that is generated by a non-associated plasticity mocel. In the
present paper attention is therefore devoted to a somewhat simpler material model. By using a
strain-softening von Mises plasticity model the problems signalled in [11] can be unraveled
somewhat further.

A further point that is addressed in this contribution is whether the ability to recognize and
pass bifurcation points in discrete mechanical models is indeed necessary or whether it suffices to
simply put some weak spots (imperfections) in the model. It will be shown that relying on imper-
fections to remove to bifurcation point, i.e. transferring the bifurcation problem into a limit
problem, may be dangerous.

2  TUniqueness of discretized mechanical systoms

Incremental equilibrium of a structure requires that a stress rate distribution, say &,, satisfies

fSe’*"c‘sA dV = SaTf¥ (1
i

for all kinematically admissible virtual strain vectors Se. Here T is the rate at which the external
forces vary and 8a is the virtual displacement vector. At a bifurcation point there must exist
yet another stress rate distribution, say 65, that satisfies incremental equilibrium. Consequently,
6 must also satisfy (1) and subtraction of both equilibrium equations results in

[3eT a6 dV =0 (2)
V

with A& as difference between both stress rate distributions.
We next define B as the strain-nodal displacement matrix that relates the strain rate vector €
to the nodal velocities a, i.e.

¢=Ba 3

and suppose that both stress rate distributions are related to strain rates € by the same tangential
relation D:

& = Dé. (4)
Using (3) and (4), (2) can be rewritten as
sa? [ BTDB AV 44 =0 (3)
v

or, defining the tangential stiffnes matrix K
K = [ B7DB AV 6)
v

we get
SaTK Ja =0 (7)

where 44 is the difference between hoth velocity distributions. Since (7) must hold for any virtual
displacement, the following set of equations is to be valid at bifurcation point:

K44 =0. (8)
We next write 44 as a linear combination of the n right eigenvectors v; and the n left eigen-

vectors w; of the matrix K:

n
e
1=

da = ¥ (w! da) v;. 1))
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Then (8) can be recast in the form

n
¥ (wf da) Av; =0 (10)
i=1
since Kv; = 2;v; (no summation implied). Assuming that K is not defect, the right eigenvectors v;
and the left eigenvectors w; each constitute a set of n linearly independent eigenvectors. Conse-
quently, (w} Aa) 2; must vanish for each 7. Since 4a can not be orthogonal to each left eigenvector
Ww;, this means that at least one eigenvalue, say 1;, must vanish at a bifurcation point.

In practical numerical analyses a point where the tangential stiffness has exactly one or more
vanishing eigenvalues will never be encountered. Instead it is assumed that a bifurcation point
has been passed when at least one (slightly) negative eigenvalue is extracted on a monotonically
rising part of the load-deflection curve or when two or more negative eigenvalues have been
calculated on a descending branch of this curve.

It is emphasized that this derivation has been carried out under the agsumption that both
stress rates are related to strain rate by the same tangential stress-strain matrix D. Strictly
speaking, we have to investigate all combinations of loading and unloading, since, in particular
for elastic-plastic solids with a non-associated flow rule, it is not sufficient to investigate only the
case that all plastic points remain on the loading branch because of the loss of the variational
structure of the field equations.

3 Techniques for analyzing post-failure and post-bifurcation behavior

When a bifurcation point has been detected according to the procedure outlined in the preceding
section, the incremental solution 4a can be perturbed by adding a part of the right eigenvector vy,
which corresponds to the lowest eigenvalue A,. Note that the 4 symbol now stands for an incre-
ment and no longer for the difference between two quantities. In consideration of (9) we obtain for
the perturbed displacement increment

Aa* = Aa + p(w! Aa) v, (11)

with g a kind of dampingfamplification factor. A value of 0.01 for this factor appeared to
yield satisfactory results in numerical experiments.

The tangent stiffness matrix not only possesses zero eigenvalues at bifurcation points, but
also ab limit points. Both types of behavior may be encountered in a numerical analysis. For
instance, in the case of the biaxial test to be discussed in the next sections the limit and bifur-
cation points are clustered very closely. The most elegant procedure for overcoming limit points is
indirect displacement control, which method will be summarized hereafter.

In a non-linear finite element analysis, the load is applied in a number of small increments.
Within each load inerement, equilibrium iterations are applied and in iteration number 7 the
iterative improvement da; to the displacement increment Aa,;_, is given by

da; = K7 (Aziq* + 24* — [ BTo;, dV) (12)
V

where K;_, is the possibly updated stiffness matrix, q* is the normalized load vector, A2, is the
value of the load increment which may change from iteration to iteration and 2, is the value of the
load parameter at the beginning of the current increment.

The essence of indirect displacement control is that da; is thought to be composed of two
contributions

da; = da} + AJ; salt (13)
with
dar

-

= K7, (loq* — [ B0y, dV), (14)
v

dalt = Kitq*. (15)
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After calculating da; and daf’, A4; is determined from a constraint equation on the displacement
increments and 4a; is subsequently caleulated from

da; = da;_y + oaf 4 A2 dalt. (16)

In this paper & linearized constraint equation has been adopted (see [10—12, 17]) which results in
the following expression for 42;:
Aal.

", oaf
[Mi — i—1 Yy

Ay da; 17
Jal, ball (1)

For problems that involve localization of deformation the method fails, since then only a few
nodes contribute to the norm of displacement increments. Consequently, failure is not sensed
accurately by a global norm. The constraint equation is therefore amended by letting it operate
only on a subspace of the n-dimensional displacement space. Then (17) changes intu

T I
_ duj_, ou;

Mgy = LN O
' Au | duf

(18)
where Ju; contains only a limited number of the degrees-of-freedom of those of Ada,;.

In the example of a biaxial test to be discussed in the subsequent sections, the load has been
applied to the top of the sample while the magnitude of the load increment was determined by
constraining the vertical displacement increment of the top of the sample. Hence, u contains the
vertical displacement of one node at the top of the sample as degree-of-freedom, i.e. w = [0, ...,
Ugops -+ +» O]F, and A4; is simply computed from

II

1 g
Al = —Buyep[Suygy,

Constraint equations, also named dependence relations in the sequel, in which the other vertical
displacements of the top of the sample are forced to follow du,,, the vertical displacement of the
master degree-of-freedom, have been added to the system of equations so as to ensure that all the
vertical displacements of the nodes at the top were equal.

4 Connections with previous work

Let us proceed by reviewing some results that have been the subject of the previous publications
(10, 11]. In these publications, a biaxial test was also analyzed, but a cohesionless sand was
considered. The material model adopted was a Mohr-Coulomb plasticity model with a non-
associated flow rule. Such a model results in a non-gymmetric tangential stress-strain relation,
which is numerically inconvenient when decomposing the tangent stiffness matrix and even
more when calculating eigenvalues.

The calculations started from a strain-free sample with an isotropie initial stress state. Sub-
gequently, the axial load was increased until a (slightly) negative eigenvalue was extracted for the
tangent stiffness matrix, or in other words, when the tangent stiffness matrix ceased to be
positive definite. The solution was then perturbed according to the procedure described in the
preceding section.

The eigenmode that corresponds to the lowest eigenvalue at the bifurcation point has been
plotted in Fig. 1. This eigenmode raises some questions. First, the eigenmode bears similarity
with a diffuse bifurcation mode with an avbitrarily short wavelength, but it certainly does not
resemble a localized shear band mode, which should theoretically also be available at this point
[18, 19]. Secondly, the wavepattern that is displayed by this mode neither shows symmetry nor
does it show antisymmetry. A possible explanation suggested in [11] is that the round-off error,
which is difficult to avoid when calculating eigenvectors for non-symmetric matrices with many
degrees-of-freedom, prevents the computation of an aceurate eigenvector. Another explanation
suggested in [11] is that there exist more (slightly) negative eigenvalues at this point, because
several bifurcation points are clustered very closely along the ecuilibrium path. In fact, Needle-
man [20] hag pointed out that symmetric and antisymmetric modes with an arbitrarily short
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Fig. 1. Bigenmode that belongs to the lowest eigen-
]:LE value at bifurcation for biaxial test on dry sand

(Mohr-Coulomb plasticity with a non-associated flow
rule)

wavelength are both available within the hyperbolic regime. Since, for small deformation gra-
dients as considered here, such modes first become available at the elliptic-hyperbolic boundary,
symmetric and antisymmetric eigenmodes are available at this point. Combinations of symmetric
and antisymmetric modes are then also eigenvectors, and an eigenvalue analysis of the stiffness
matrix at such a point results in an eigenvector which is an arbitrary linear combination of
symmetric and antisymmetric modes. A definite answer could not be provided to this question,
since the lowest eigenvalue of this non-symmetric matrix has been extracted using a power
method. This procedure can only extract the lowest eigenvalue and corresponding eigenvector.
For symmetric matrices, more accurate methods exist which, in addition, can simultaneously
extract several eigenvalues [21].

5 Material model used in present analyses

In the analyses to be deseribed in the following sections, a simple von Mises strain-softening
plasticity model with an associated flow rule has been used. The yield function is given by

[ =V37, — o,(x) (19)

with J, the second invariant of the deviatoric stress tensor and ¢, the current yield stress which is
a function of the strain hardening parameter ». In view of the fact that the von Mises yield
function has been used, the choice of the expression for » becomes irrelevant. While in the analysis
that was recalled in the preceding section, loss of ellipticity of the governing field equations was
caused by the use of a non-associated flow rule, this is now achieved by making o, a descending
function of the hardening parameter » (Fig. 2). The problems that are generated by using a non-
agsociated flow rule or by applying strain-softening are very similar, which is not surprising
since both models cause loss of ellipticity above some threshold stress level, but strain-softening
is somewhat more tractable from a numerical point of view, since the governing tangential stiffness
matrix remains symmetric.

O'y A

Fig. 2. Hardening diagram for strain-softening
—»  plasticity
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The von Mises yield function is very convenient from a computational point of view, because
the integration of the differential stress-strain relations over a finite loading step becomes ap-
pealingly simple and accurate for the Ruler backward integration algorithm advocated in [10,
15, 16]. As demonstrated in [10], the Euler backward integration rule then reduces to the so-
called elastic predictor-radial return method. We obtain for the new stress o' after integrating
over a finite loading step

ol = gt — ~—-———3'u 11— —-—-—Gy_(_}i)_ gt (20)
b+ 3u EXE

in which 8 contains the deviatoric stresses and the superscript ¢ refers to the trial stress state,
and where % is the plastic hardening modulus (negative in a strain-softening model) and u is the
elastic shear modulus. The elasto-plastic tangent operator that is consistent with this integration
rule has first been given by Simo and Taylor [22] and reads

w* geT

D=Dt-—~£ 7
1 h*|(3u*) J,

(21)

with D* an elasticity matrix in which the shear modulus g and Poisson’s ratio » are modified
according to
E
2(1 4 v) + 3E Ax[Y3J,

y + % E Ax[Y37,
¥ = : (23)

1+ B dnfV3J,

with Young’s modulus E and the increase Ax of the hardening parameter. The modified hardening
modulus A* is given by

h* — L (24)
1 — K Ax[y3J,

The so-called consistent tangent operator, as defined by (21)—(24), has been employed in all the
analyses described in the sequel.

Tt is noted that the von Mises yield function has been used rather than the Tresca model. Thig
is partly because the von Mises yield function is smooth (note however, that angular yield surfaces
need not present such numerical difficulties as is sometimes suggested in the literature, provided
that proper procedures are employed [10, 16]), and partly because use of the von Miges yield
function allows comparison with some other analyses in the literature |7, 8, 23].

6 Bifureation analysis of a biaxial test on strain-softening soil

In consideration of the questions posed in the analysis of the biaxial test on dry sand that has
been described succinetly in the foregoing, a similar test will now be analyzed for the strain-
softening von Mises plasticity model outlined in the preceding section. Two different discreti-
zations have been used (Fig. 3) and 8-noded plane strain elements with a 9-point (aussian inte-
gration rule have been employed. As in the analysis for the dry sand, the load has been applied
by incrementing the force at the top of the sample, while dependence relations have been applie
80 as to ensure that all the nodes at the top undergo the same vertical displacement. All the
points at the hottom as well ag at the top of the specimen were free to move horizontally (perfectly
smooth) except for the center node at the bottom which wag fixed. Inerementation of the axial
load was now started from a strain-free and stress-free state, since the cohesion of the material
obviates the need for application of a confining stress. In all the analyses the shear modulus
wag taken as y = 0.625 N/mm?2. The initial yield stress was assumed to be ¢, = 0.07 N/mm?,
while linear softening was adopted thereafter,
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Fig. 3a and b. Quadrilateral elements; a coarse mesh of 72 8-noded clements, b fine mesh of
288 8-noded elements
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Iig. 4. Load versus vertical displacement of top nodes

After passing the peak of the load-deflection curve (Fig. 4) using indirect displacement control,
an eigenvalue analysis has been carried out using a Jacobi-subspace method (e.g. |21]). The re-
sults have been plotted in Fig. 5 for » = 0.49 and A/u = —0.1. A total of 9 negative eigenvalues
has been computed for this discretization and choice of material parameters. It iy observed
from Fig. 5, that eigenmodes that are symmetric with regard to the vertical centerline as well as
eigenmodles that are unsymmetric with regard to this line are present. Furthermore, eigenmoces
with a half wavelength as well as eigenmodes that show several wavelengths are observed.
Effectively, the number of eigenmodes that is found is limited by the number of waves that can
be accommodated within the finite element mesh. For the finer mesh of Fig. 3b 13 negative eigen-
values are found at this point, the additional eigenmodes showing a higher number of waves.
A salient observation is, that a shear band mode is not foundl in either of the analyses.
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Shear band modes were also not found when the material parameters were varied. Taking 0.4 for
Poisson’s ratio instead of 0.49 yielded more negative eigenvalues, namely 13, but a shear band mode
could not be identified. The same is true when]a steeper softening slope wasgused;(h/,u = —0.2).
Again, 18 negative eigenvalues were extracted, but all the modes displayed a wave-pattern.

©
o

g

Fig. 5a—i. Bigenmodes for coarse mesh just beyond peak (» = 0.49 and hjp = —0.1)
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Additional eigenstates arve also generated when the boundary conditions put less restraint on
the sample. For example, 10 negative eigenvalues are computed instead of 9 when the upper
loading platen is allowed to rotate. Increasing the degree of kinematic restraint on the other
hand decreases the number of negative eigenvalues. When analyzing the mesh of Fig. 3b with
axisymmetric instead of plane strain elements, only 2 negative eigenvalues were calculated. One
of the eigenvectors was a uniform extension mode, the obher was a long-wave barrelling mode.

After the eigenvalue extraction, the incremental displacement vector was perturbed by one
of the eigenvectors of Fig. 5. This resulted in a load-deflection path that runs much steeper than
the reference curve for continuing homogeneous deformations, which was obtained on a single
element (curve 4 in Fig. 4). Here, it made a major difference whether a symmetric or whether
an asymmetric eigenmode was selected. When the eigenmode of Fig. 5i was used to perturb the
golution with continuing homogeneous digplacements, the curve that is labelled with €' in Fig. 4
was obtained. Upon perturbation of the solution with the symmetric eigenmode of Fig. 5e
the shallower curve B was obtained. A similar procedure for the uniformly refined mesh of
Fig. 3b resulted in the curves D and K. Concentrating now on the results for the finer mesh,
we observe that curve D is not the lowest branch and the tangent stiffness matrix on this path
must therefore have at least two negative eigenvalues, one being related to the limit point, the
other being related to the alternative (asymmetric) equilibrium state. On the other hand, the
tangent stiffness matrix on path F should only have one negative eigenvalue. Both assertions
were confirmed in eigenvalue analyses. It is interesting that one of the eigenmodes of the tangent
stiffnex matrix is completely symmetric, while the other is asymmetric and thus related to the
alternative equilibrium state.

7 Imperfection sensitivity

Inasmuch as symmetric eigenmodes can not trigger an asymmetric failure mode, so are sym-
metrically located imperfections unable to force a structure to fail asymmetrically. Consequently,
a symmetrie imperfection pattern will not cause that the steepest descending branch is com-
puted after passing the limit point. Moreover, the purpose of inserting imperfections in a specimen,
namely to transfer the limit problem into a bifurcation problem, may be missed altogether if no
eigenvalue analyses are carried out. For instance, those analyses of Needleman and Tvergaard
[6, 6], Prévost and Hughes [7, 8] and Leroy and Ortiz [24] in which symmetric imperfection
patterns are applied, are basically still bifurcation analyses in which the lowest branch is not
obtained. And if, ag in some cases, an asymmetric failure mode is obtained in the calculation,
this ig gimply caunsed by round-off error. Such a case should be treated with utmost care, since the
resnlts may then be unreproducable in the sense that on another computer, with for instance
another machine precision, different results may be obtained.

The conclusions stated above can be drawn even further, since all plasticity models with a
negative hardening modulus (& < 0), or even more generally all problems in which ellipticity is
lost at some generic stage in the loading process, possess non-symumetric eigenmodes and failure
will ultimately be asymmetric. So, making use of symmetry, but also of antisymmetry [14] or
axisymmetry {26, 33], is pointless if we want to compute the post-peak behavior. Indeed, even
for an ideally-plastic material (A = 0) the failure mode will eventually be non-symmetric, but the
upper and lower bound theorems then guarantee that the limit load is unique, at least under the
assumption of small displacement gradients [25]. A nice example is Prandtl’s problem, where the
Hill and the Prandtl mechanisms results in the same failure load.

To further analyze the role of imperfections, some additional analyses have been carried out
for the finer mesh. In the first calculation two weak elements, that were located symmeotrically
with respeet to the vertical centerline, were introduced in the finite element mesh. The initial
yield stress of these elements was reduced by 1 percent. As the load was incremented, strain
localization gradually progressed from the weak elements. After passing the limit point with
increments of approximately 0.0005 N/mm? an eigenvalue analysis was carried out for the tangent
stiffness matrix. This resulted in two negative eigenvalues. The corresponding eigenmodes are
shown in Fig. 6a and b. We observe a symmetric and an unsymmetric eigenmode. The symmetric
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mode obviously corresponds to the limit behavior, while the unsymmetric: mode relates to the
bifurcation point that has been passed in the same small load increment. In order to substantiate
this assertion further, an additional analysis has been undertaken for the same data and geometry,
but with direct displacement control, i.e. in which all the vertical displacements of the top of
the specimen were directly preseribed rather than applying a force and controlling the displace-
ments by means of constraint equations. This analysis yielded a single negative eigenvalue for
the stiffness matrix just beyond the maximum load level. Figure 6c¢ shows that this eigenmode
is unsymmetric and relates to the bifurcation point that has been passed. Note, however, that the
displacements in both analyses remain completely symmetric with respect to the vertical center-
line. This is shown in Fig. 7a, which shows the incremental displacements slightly beyond the
maximum load. A third calculation with only one weak element yielded one negative eigenvalue
for the stiffness matrix just beyond the peak load and resulted in the failure mode of Fig. 7h.
The terminology symmetrically located deserves some further explanation. It is implied that
for an arbitrary structure, there must not exist a line with respect to which there is symmetry.
For the example of a biaxial test two such lines exist, namely the vertical and the horizontal
centerlines. Since the number of elements is even in the vertical direction, inserting weak elements
automatically removes the symmetry with regard to the horizontal centerline. When we insert
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Fig. 6a—¢. Eigenmodes for fine mesh after perturbation (» = 0.49 and L/p = —0.1);

a first eigenmode, b second eigenmode, ¢ eigenmode for direct displacement control
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Fig. 7a—¢. Incremental displacement field just beyond the limit point of curves in Iig. 4;
a for fine mesh, and curve D, b for fine mesh and curve &, ¢ for coarse mesh and curve C
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twao imperfection that are symmetrically located with respect to the vertical center line, we obtain a
symmetric failure pattern that consists of two crossed shear bands, but when we insert an agym-
metric imperfection, we get an asymmetric failure mode with a single shear band. Note that if
the weak spots had been distributed such that vertical symmetry had not been disturbed either,
a failure pattern of at least four crossed shear bands would have been computed. The number of
negative eigenvalues on this branch would have been three and the load-deflection curve would,
taking the coarse mesh as an example, have been approximately twice as shallow as curve B
of Fig. 4.

The eigenmodes of Fig. 6 are also interesting in another respect. They show that finite elements
can simulate highly localized deformation bands. Consequently, the fact that bifurcation modes
which exhibit localized deformation bands were not found just beyond the peak load is not caused
by an inability of finite elements to resolve such eigenmodes. We must rather conclude that
they are simply not present in the model at that point. The reason for the discrepancy between
the absence of localizations in the present numerjcal simulation and the prediction of them by
the theoretical analysis of Rudnicki and Rice (1, 2], Vardoulakis et al. [3, 4], Vermeer [18] and
Mande] (19], lies in the assumption of these authors that the discontinuity develops in an infinite
medium. In a finite specimen shear bands need some time to develop because of the boundary
conditions. This is evidenced by the observation that the plastic strains first accumulate in one
corner which acts as a nucleus for the development of the deformation band. Depending on the
precige formulation of the model the deformation band develops more or less gradually after
passing the bifurcation point at which the diffuse modes become available.

It is finally noted that the very fact that eigenvalue analyses of the tangent stiffness matrix
are necessary to verify that the lowest load-deflection branch has been calculated, casts some
doubts on the usefulness of elastic stiffness approaches. The elastic stiffness method can not
recognize eigenstates and simply picks a solution, but the analyst has no possibility to check
whether it is the lowest branch.

8 Mesh sensitivity

Mesh refinement has a pathological influence on the results when strain-softening is incorporated
in the employed constitutive model. This becomes apparent in three different ways, namely via
the number of waves that can be resolved by the finite element mesh, through the load-deflection
curve and in the failure mode.

The incremental displacement field at failure is probably the most striking example of the
influence of the mesh refinement. Comparing the failure mode of the fine mesh with that of the
coarser mesh (Fig. 7b, c), we observe that in both cases the width of the shear zone is completely
determined by the design of the finite element mesh and is approximately one element wide.
Similar results have been found when studying shear band formation in metals [5, 6] and crack
propagation in concrete [12—14, 26, 27].

The influence of mesh refinement on the load-deflection curve is depicted in Fig. 4, where a
uniformly refined mesh yields a load-deflection curve that is roughly twice as steep as the original
mesh. Interestingly, a load-deflection curve that is approximately twice as steep is also obtained
when an asymmefric failure mode, with a gingle shear layer, is enforced instead of two crossed
shear layers. Indeed, the curves C and D of Fig. 4 virtually coincide. Observations like this form
the basis of energy approaches {26 —28] that set out to achieve mesh-objectivity by controlling
the amount of energy that is released in strain-softening solids. Such solutions, however, do not
remedy the above mentioned excessive dependence of the failure mode on the mesh. Actually,
thig is not surprising, since the governing differential equations of the continuum are not chan-
ged by these models. Recently, there have been some attempts to enhance the continuum des-
cription, either via nonlocal approaches [29, 30], consideration of couple stresses [31] or inclusion
of strain rate effects [32], so that the shear band thickness is embedded in the continuum des-
cription. Although some solutions have been published for these models, it does not seem possible
ag yet to indicate which approach will be most successful.
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9 Strip-footing on strain-softening soil

The biaxial test that has been discussed in the preceding sections lends itself for a critical eva-
Iuation of the numerical procedures because much is known about the problem and because it is
also analytically tractable. This is not true for another classical soil mechanics problem, namely
the problem of a strip-footing on an infinite half-space. Finite element solutions of this problem
have been generated before for elastic-plastic models with and without hardening and with
associated and non-associated flow rules, e.g. [8, 15]. Solutions for strain-softening materials,
however, are rare [34, 35], and invariably consider a symmetric part of the half-space. As suggested
by the example of the biaxial test, restriction to a symmetric part of the half-space neglects the
latent asymmetric solution and does not compute the lowest equilibrium branch.

In this section finite element solutions for the strip-footing problem are described in which
no use has been made of possible symmetries in the finite element mesh (Fig. 8). The same material
parameters that have been used in the analysis of the biaxial test have also been adopted in this
analysis except for the fact that a shallower softening curve has been used: i/fu = —0.01. The
load has been applied to the center node of the footing (which is located on the line of symmetry)
and dependence relations have been applied s0 as to ensure that the footing plate remains rigid.
Note that this type of loading augmented with the constraint conditions will initially cause a
uniform vertical displacement of the footing. Yet, the constraint conditions are such that rotation
of the footing is not prevented. Furthermore, horizontal displacements of the nodes of the footing
are allowed which implies that the footing is perfectly smooth.

The analysis resulted in a stable solution up.to thelimit point of the load-settlement diagram
of Fig. 9. Immediately beyond the: limit point, two negat,lve pivots were found upon factorizing
the tangent stiffness matrix. A subsequenh eigenvalue analysis yielded a symmetric (Fig. 10a),
and an asymmetric eigenmode (Fig. 10b), which ¢learly. invdlves a rotation of the footing plate.
Next, the incremental solution was perturbed by a part of the asymmetric eigenmode. A properly
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Fig. 8. Finite element mesh for strip-footing problem
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Pig. 9. Load-settlement curve for symmetric and asymmetric deformations
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Fig. 10a and b. Eigenmodes at limit/bifurcation point for strip-footing problem (only a part
of the mesh is shown); a symmetric eigenmode, b asymmetric eigenmode

converged solution was again obtained and resulted in the steeper post-peak curve of Fig. 9.
The failure moce appeared to resemble the asymmetric eigenmode closely although the locali-
zation wag even more pronounced.

In addition to the analysis for the full mesh an analysis for a symmetric half of the mesh has
been undertaken. This resulted in the shallower post-peak curve. If the solution had not been
perturbed by the asymmetric eigenmode at the peak load, this response would also have been
obtained for the full mesh and two negative eigenvalues would have been extracted for the tangent
stiffness matrix in the post-peak regime. The analysis for the strip footing therefore underscores
the observations of the preceding sections, namely that making use of symmetries, or inserting
symmetrically located imperfection patterns, does not transfer the bifurcation point into a limit
point.

10 Concluding remarks

When carrying out a finite element analysis of a structure that is composed of a material that
may, at a generic stage in the loading process, cause loss of ellipticity of the equations that
describe the structural behavior, it is necessary to continuously check the lowest eigenvalues of
the tangent stiffness matrix. When the lowest eigenvalue becomes negative on a monotonically
rising branch of the load-deflection curve, or when multiple negative eigenvalues are extracted on
a descending branch, a bifurcation point has been passed and the currently computed equilibrium
state no longer corresponds to the lowest equilibrium branch. To return to this branch the current
displacement increment must be perturbed by a portion of the eigenvector that corresponds to
the lowest eigenvalue. The selection of how much the displacement increment must be perturbed
is problem dependent and may be rather critical for some classes of problems. When a bifurcation
oceurs on & descending branch or near peak load, it may be difficult to reach the lower equilibrium
state. This is particularly true for solids that display different behavior in loading and unloading,
since the numerical procedure will then easily return to the unloading branch rather than result
in an equilibrium state on the lower loading branch.

Inasmuch as keeping track of the stability of the equilibrium state requires computation of
the current tangent stiffness matrix, we must continuously calculate this matrix already for
this reason alone. Tterative procedures that circumvent caleulation of the tangent stiffness, such
as elastic stiffness methods, therefore seem misused in analyses which set out to compute the
post-peak behavior of a soil mass.
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The developed procedures are applied in a finite element analysis of a biaxial test on a strain-
softening elasto-plastic solid. A wholeset of eigenvalues and corresponding eigenvectors is calcu-
lated, The spectrum of eigenvectors features symmetric as well ag unsymmetric eigenvectors.
Only perturbation with an unsymmetric eigenvector will eventually lead to a non-symmetric
failure mode with a single shear layer. Since this failure mode corresponds to the lowest post-peak
equilibrium branch, it is evident that when symmetrically distributed imperfection patterns are
used to trigger localization, only symmetric, crossed shear band patterns will be obtained. These
failure modes do not correspond to the lowest equilibrium branch. To trace the lowest equilibrium
branch, no symmetry, antisymmetry, or axisymmetry should be present in a model. Consequently,
we can never make use of symmetry, antisymmetry, or axisymmetry when loss of ellipticity is to
be expected at some stage of the loading process. This illustrates that it is necessary to have a
possibility in a numerical code that can carry out a bifurcation analysis, since it is not always
easy to a priori model a structure such that symmetry and antisymmetry are completely avoided.

The calculated eigenvectors show a number of diffuse bifurcation modes. Nonethelesse, a
localized shear band mode is not obtained. This is because we have analyzed a finite specimen.
The shear band analyses which predict shear band type instabilities at this point have been
derived under the assumption of an infinitely thin shear band in an infinite medium, thus by-
passing the effect that the boundary conditions have on postponing localization. In the numerical
simulation it appears that prior to localization, plastic strains accumulate at some point of
structure which acts as a starting point from which the shear bands propagate.
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