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Numerical Simulation of a Turbulent Magnetic Dynamo
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We present numerical simulations of a turbulent magnetic dynamo mimicking closely the Riga-dynamo
experiment at Re =~ 3.5 X 10° and 15 < Re,, = 20. The Reynolds-averaged Navier-Stokes equations for
the fluid flow and turbulence field are solved simultaneously with the direct numerical solution of the
magnetic field equations. The fully integrated two-way-coupled simulations reproduced all features of the
magnetic self-excitation detected by the Riga experiment, with frequencies and amplitudes of the self-
generated magnetic field in good agreement with the experimental records, and provided full insight into
the unsteady magnetic and velocity fields and the mechanisms of the dynamo action.
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Complex interactions between turbulent flow of electri-
cally conductive fluids and electromagnetic fields play the
key role in many physical phenomena in nature and tech-
nology. Of particular interest is the conversion of the
mechanical energy of a moving electrically conductive
medium into the magnetic energy, known as the magnetic
dynamo. It is believed that the magnetic dynamo effects are
responsible for the creation of magnetic fields in spiral
galaxies, stars, and planets (including Earth’s magnetic
field), e.g., [1]. In order to create the favorable conditions
for possible self-excitation of a magnetic field, it is neces-
sary to achieve regimes where stretching of the magnetic
field will overcome its resistive damping. This condition is
defined by the critical magnetic Reynolds number Re,, =
UL/A > 1 (where U and L are typical velocity and length
scale, respectively, and A is magnetic diffusivity). In order
to reach such conditions, one needs relatively large length
scales and high velocities—even for the best electrically
conductive fluids (e.g., liquid sodium, A = 1/u o =
0.1 m?/s), where u, and o are the magnetic permeability
and electric conductivity. For such configurations, the hy-
drodynamical Reynolds number (Re = UL /v) will be also
very high (Re = 10°-10°), making the flow highly turbu-
lent. Experimental studies of magnetic fluid dynamos face
many practical problems associated with large dimensions
of setups and potentially hazardous working fluids (so-
dium). This explains why it was not until late 1999 when
two experimental groups in Riga ([2—6]) and Karlsruhe
([7-9]) finally and independently succeeded in detecting
the self-excitation and subsequent sustenance of a mag-
netic field for the very first time. Although this is an
important step towards understanding and explaining the
Earth’s magnetic field from the magnetic dynamo effect,
both experiments were not designed to actually mimic the
Geo-Dynamo (Earth-like) conditions, but rather to provide
experimental proof of the magnetic field self-amplification.

Despite their remarkable success, the experimental stud-
ies provided only the time records of the magnetic field
components at particular locations—so information ad-
dressing the detailed spatial distribution of the magnetic
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field and its dynamics is still missing. Numerical simula-
tion, if proven reliable, is the only way to provide detailed
information on the complex physics of the time-dependent
fluid flow, turbulence, and electromagnetic fields and their
interactions. In this Letter, we present numerical simula-
tions of the dynamo action in the Riga-dynamo experimen-
tal setup, Fig. 1. The characteristic hydrodynamical Re is
very high (Re = 3.5 X 10°) and the magnetic Re,, (15 <
Re,, = 20) should be sufficient to potentially trigger a self-
excitation of the magnetic field. For these regimes, the
magnetic Prandtl number is very low, Pr, = v/A =
(n./mp)*? = 6.5 X 107, implying that the magnetic dif-
fusive length scale gz = (A3/€)'/* is much larger than the
velocity viscous scale 1, = (v*/g)"/4.

The governing momentum and magnetic induction
equations (for incompressible fluid) are

FIG. 1 (color online). The Riga-dynamo experimental setup
[3]: 1-propeller; 2-inner cylinder with strong helical flow; 3-
outer passage with back flow; 4-surrounding ring of sodium
initially at rest; 5-thermal insulation; Below—a 3D view of a
part of the numerical mesh used for simulations.
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with the solenoidal conditions 0U;/dx; =0 and
dB;/dx; = 0. The most exact numerical approach is to
directly solve these equations in space and time (direct
numerical simulation, DNS) but due to formidable compu-
tational requirements, this approach can be applied only to
flows in relatively simple geometries and for low Re num-
ber, [10—13]. In order to overcome these limitations, the
numerical schemes using hyperviscosity and hyperdiffu-
sivity have been introduced (aimed at extending the inertial
subrange and consequently to reduce the dissipative sub-
range) [14], but such approaches provide no account for
turbulence, which strongly affects the velocity field and its
interaction with the magnetic field.

Here, we introduce a hybrid approach where the velocity
and turbulence fields are solved by the transient Reynolds-
Averaged Navier-Stokes (RANS) method and the electro-
magnetic variables are resolved directly (DNS). Such a
combined method, as well as the use of the RANS ap-
proach for treating the velocity field and turbulence prop-
erties (which is the only approximation involved in the
simulations), is regarded as justified because of the men-
tioned disparity in scales, characterized by the low Pr,,. A
similar hybrid merging is applied in [11] where the
Lagrangian-averaged MHD equations are introduced (al-
beit for relatively simple Taylor-Green vortex and Re =
1.5 X 10%). In the RANS approach, the instantaneous fields
are decomposed into their time- or ensemble-averaged
values and the fluctuations, i.e., U; = U; + u;, B; = B; +
b;. As a result of this averaging, additional unknown
correlations appear, u;u;, ?bj, fbj, etc., [15-19]. In order
to close this system, additional equations for these corre-
lations must be introduced, what constitutes a turbulence
closure model. The starting point in our analysis is the
second-moment (Reynolds stress) u;u; — & model with the
newly included additional MHD effects (the source/sink
and the redistributive terms are taken into account), [17],
which was validated in a range of generic situations for
5% 10> =Re = 10° and 0=Ha=1000—where Ha =
ByL./o/pv is Hartmann number) showing in all cases
good agreement with the available experiments, DNS and
large eddy simulations (LES) studies, [17]. For the high Re
Riga-dynamo with the specific solid-body-like strong ini-
tial swirl, we opted for a simplified model and solved the
transport equation for the turbulence kinetic energy k =
0.5u;u; instead of for all six turbulent-stress components
u;u;. A justification came from our prior simulations of the
1:2 scale-down water experimental setup (for which de-
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tailed laser Doppler anemometry (LDA) measurements are
available), which demonstrated good agreement between
the full second-moment closure and its simplified two-
equation k — g variant. In this model, we have wu; =
2/3ké;; — v,(dU;/dx; + dU;/dx;), where the turbulent
viscosity is calculated as v, = ¢ Mkz /& and additional tur-
bulent “MHD” contributions in k and & are modeled as

SM = —g/pBikexp(—CYa/pB3k/e), S¥ = S¥e/k, re-
spectively (By = /B + B3 + B?). This simplified version
of the model given in [16,20] has been extensively vali-
dated and applied to a variety of flows such as flow and
turbulence reorganization in turbulent thermal convection
subjected to external magnetic fields of different orienta-
tions and strength [21], turbulent magneto-aerodynamics
[22], free surface flows in fusion engineering [23], solar
wind turbulence [24], etc.

The closed system of equations U; — B; — k — € is dis-
cretized by a finite-volume integrated solver for the struc-
tured multiblock nonorthogonal geometries with a local
(block specified) grid refinement. The diffusive terms are
disretized by the second-order central difference scheme
(CDS). The monotonicity preserving total variation dimin-
ishing (TVD) scheme is used for the convective terms. The
time integration is performed by a fully implicit second-
order scheme with three-consecutive time steps. Typical
time-step values are specified to be 1/100 from the experi-
mentally observed periodic time intervals of the self-
excited magnetic field components, ie., Ar = 1/100 s.
The numerical grid distribution used for simulations is
shown in Fig. 1. Note that the complete geometry of the
experimental configuration is generated (including inner
cylinder, outer annular passage, and surrounding ring with
sodium initially at rest) since it is necessary to solve the
magnetic induction equation over the entire domain—not
only in domains with active fluid motion. In total, 80
structured blocks are used with approximately 4 X 10°
control volumes. The parallel code execution with 64
CPUs resulted in almost ideal load balancing between
processors at the SGI Origin 3800 system with 1024
CPUs [25].

In simulations, the swirl generation is mimicked by
imposing the experimentally determined axial and tangen-
tial velocity components in the propeller exit plane.
Because of the highly turbulent flow regime, the wall
functions are used for providing the wall boundary con-
ditions for hydrodynamical variables. The vertical mag-
netic field boundary condition is imposed for the magnetic
field components at the outer side of the surrounding ring
of the sodium initially at rest, [6,26]. The very first step in
numerical simulation was to obtain the fully developed
(statistically steady) RANS solutions for the fluid flow
and turbulence field (without electromagnetic effects).
Then, the electromagnetic field is activated and the time-
dependent integration is performed. Through the earlier
extensive testing of the solver in the kinematic mode (with
no backreaction of the generated magnetic field on the fluid
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flow) it was proved that the vertical magnetic field condi-
tion ([6,26]) provided reasonable predictions of the theo-
retically estimated (based on the convective instabilities of
the Ponomarenko dynamo, [4,6], ReS, = 17.7) critical
thresholds, 15 = Rej, = 20.

The numerically obtained frequencies of the axial com-
ponent of the self-induced magnetic field as a function of
the rotation rates, Fig. 2, show good agreement with ex-
periments. The next step was to activate the two-way
coupling, i.e., to simultaneously solve the entire system
with the backreaction of the Lorentz force on both the
momentum (U;) and turbulence parameters equations
(k, €). After the initial exponential growth of the self-
excited magnetic field in the kinematic regime, the
Lorentz force increases to the level which is strong enough
to significantly affect the underlying fluid flow. Essentially,
the Lorentz force begins to brake the fluid flow causing the
significant reduction in the magnetic field growth rate.
Now, through the backreaction mechanism, the original
intensity of the Lorentz force will be reduced, creating
again favorable conditions for the increase in the magnetic
field. This balance is characterized by the eventual zero-
growth rate of the induced magnetic field when the system
reaches the saturation regime. The effects of the two-way
coupling between the fluid flow and electromagnetic field
can be viewed in Fig. 3 where the situations with and
without backreaction have been considered in parallel
(under identical initial flow and electromagnetic condition,
defined by Re = 3.5 X 10, Re,, = 18). For the case with-
out backreaction, magnetic field components exhibit an
exponential growth (Fig. 3-top and bottom left)—as ex-
pected. The backreaction mechanism reduced this expo-
nential growth, and the saturation regime is finally
achieved. The simulations show the strongest amplification
of the axial magnetic field component ( — —) in the middle
part of the setup (MON2, B,) as observed in [3], confirm-
ing a strong criticality dependence on the underlying fluid
flow and turbulence conditions, Fig. 3-middle. The direct
comparison of the time-recorded experimental and numeri-
cal axial magnetic field signal (B,) at the middle height of
the outer passage is shown in Fig. 3-bottom right. It can be
concluded that the numerical simulations predicted ampli-
tudes of the axial magnetic field component in very good
agreement with experiments, while the frequency is
slightly underpredicted. The detailed information about
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FIG. 2 (color online). Frequencies of the self-induced mag-
netic field as a function of the rotational rates: comparison with
experiments in kinematic and saturation regimes. Experimental
data by Gailitis .

the 4-dimensional (spatial-temporal) variations of the tur-
bulence statistics, velocity, turbulence, and magnetic
field—generated by the simulations—makes it possible
to go much further in analyzing the complex interactions
and the mechanisms of a turbulent magnetic dynamo. In
order to provide insights into the dynamo core turbulence
(still inaccessible to measurements), the time evolutions of
the turbulent kinetic energy (TKE = 0.5ii?) at character-
istic locations in the inner cylinder and the outer passage
are shown in Fig. 4. The initial state corresponds to the
fully developed steady turbulent flow conditions prior to
the activation of the magnetic induction equations. The
relatively short initial period (0-2 sec) is characterized by
the low-magnitude Lorentz force and weak or totally ab-
sent disturbances of the TKE. Then, after reaching satura-
tion levels of the Lorentz force, the period with intensive
disturbances occurs (>3 sec). In this stage, an interesting
flow and turbulence reorganization takes place. The self-
generated Lorentz force significantly suppresses intensity
of turbulence in the inner cylinder with strongest suppres-
sion in its lower part. The TKE in the outer passage is
initially suppressed too, but after a short recovery period,
its intensity is increased due to the fading of the Lorentz
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FIG. 3 (color online). Time evolution (in s) of magnetic field
components (in 7) at characteristic monitoring locations
(MON1-MON3) without and with backreaction (two-way cou-
pling) in the Riga-dynamo experiment, Re = 3.5 X 10°, Re,, =
18. The monitoring locations are defined at MON1(0.16,1,0),
MONZ2(0.16,0,0.), MON3(0.16, —1., 0.). The right figures are at
the MON2 location (central part of the outer passage).

104501-3



PRL 98, 104501 (2007)

PHYSICAL REVIEW LETTERS

week ending
9 MARCH 2007

P — T T T T T T T T T T T T

J ST T

MON: TKE
-

TKE

MON:

FIG. 4 (color online). Time evolution (in s) of the turbulent
kinetic energy (in m?/s?) at the characteristic monitoring points
distributed along the inner cylinder (MONO1-MONOS) and outer
passage (MON11-MON15)—as sketched in Fig. 1.

force effect, and the initial values are clearly surpassed. It
is interesting to observe periodic outbursts of TKE in the
upper part of the outer passage with a double frequency of
the recorded self-generated axial magnetic field at the same
locations.

The dynamics of the spatial evolution of the created
magnetic field is illustrated in Fig. 5. The magnetic flux
lines (generated from the instantaneous magnetic field
components) portray nicely the organized double-helix
magnetic structures at the later growth stage. The isosur-
faces (red and blue indicate identical values of the opposite
poles) of the axial magnetic field are superimposed in order
to identify regions or locations with the strongest self-
amplification. The animations of the numerical results
show slowly rotating asymmetric magnetic field oscillating
in axial direction with a frequency of =1 Hz (compared
with eigenfrequency of the driving propeller =30 Hz). Itis
interesting to note that numerical simulation revealed ex-
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FIG. 5 (color online). Spatial distributions of growing mag-
netic field in the Riga-dynamo experiment: isosurfaces of the
axial magnetic field component (B, = 0.02—dark/red; B, =
—0.02 (in T)—Tlight/blue) with magnetic flux lines: above—a
side view; below—a view from below. Time = 2, 2.5, and 5 s,
respectively—as marked in Fig. 4.

perimentally observed mechanism of the upward shift of
the magnetic field intensity when saturation regime is
finally reached. This is a consequence of the flow reorgan-
ization due to simultaneous reduction of both the axial and
tangential velocity components in the inner cylinder due to
the self-generated Lorentz force. More detailed analysis of
the flow and magnetic fields, their interactions and energy
exchange, and of the kinematic and magnetic vortical
structure and their interaction, is currently underway and
will be reported in a subsequent publication.
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