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Abstract: Macro X-ray fluorescence (MA-XRF) is a recently developed technol-
ogy allowing to obtain elemental information from cultural heritage objects. This
information can, for example, be used to identify pigments used in a painting. Yet,
the extended period of time it takes to scan an object is a major issue within MA-
XRf. For instance, it took about 60 days to scan the Ghent Altarpiece. The long
scanning time is a consequence of the necessary dwell time per pixel to create a
robustly interpretable spectrum: the higher the dwell time, the higher the signal-
to-noise ratio (SNR), hence, the easier to detect elements. This thesis explores a
possible solution for this problem using a denoising algorithm that increases the
signal-to-noise ratio post-acquisition by exploiting the similarity between neigh-
bouring pixels and spectra. To this end, a customized method of wavelet filter
bank denoising is proposed. Current thresholding methods used in wavelet filter
bank denoising are not suitable for filtering MA-XRF data, therefore, a novel
thresholding method is introduced. Here, the widely used universal thresholding
method is used as a basis, for which the formula for calculating the standard
deviation of the detail coefficients of a channel is altered. Several design parame-
ters of wavelet filter bank denoising were evaluated using a synthetic dataset, for
which the performance quality indicators root mean square error (RMSE), mean
absolute error (MAE) and SNR were determined. The parameters for which we
optimized were the mother wavelet, the number of decomposition levels, and the
number of neighbouring channels used for determining the standard deviation σ
for thresholding. Good performance was obtained with the haar, db2, and coif1
wavelets, all at 3 levels of decomposition. A suitable number of neighbouring
channels depended on the decomposition level and was determined to be 3 (on
each side of the channel). Herewith, the signal-to-noise ratio was improved for
both the average pixel spectra and the sum spectrum. The filtered synthetic
dataset simulated to have a dwell time of 0.5 seconds had a SNR approximately
equal to the raw synthetic dataset simulated to have a dwell time of 0.75 seconds.
Hence, the algorithm succeeded in lowering the necessary dwell time. A case
study of a daguerreotype was used to test the proposed denoising algorithm.
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1 Introduction
Investigating art objects and archaeological artefacts dates back to the fifteenth
century. [1] More than a century ago, this endeavour was extended by investigating
these objects with technological means. [2] Cultural heritage objects were researched
with a variety of technologies, such as X-ray radiography, ultraviolet fluorescence,
and infrared radiography. In 2007, a new technique, known as macroscopic X-
ray fluorescence (MA-XRF), was developed specifically for the research of art. [3]

With this novel and non-destructive method of investigation, elements present in
a sample can be detected over a large surface, [4] instead of just one point, as was
already possible using X-ray fluorescence (XRF). Herewith, elemental distribution
images can be made, which, when compared to a visual light image of the sample,
can result in the identification of pigments used within the sample. [5]

A problem faced in MA-XRF is that scanning a sample often takes up a
lot of time. For example, in 2016, it took 60 days to scan The Ghent Altarpiece
by the van Eyck brothers, which covered 8 m2. [6] The limited amount of time a
cultural heritage object is available for research, but also the desire to minimize
the exposure of an object to X-rays, creates the demand to reduce the amount of
necessary scanning time. [7]

The reason that scanning takes up so much time is the fact that, during
MA-XRF, each pixel on a painting is scanned individually; taking up tenths of a
second per pixel. [7] When more than 16 million pixels have to be scanned, as was
the case with The Ghent Altarpiece, [8] the scanning time per pixel a.k.a. the dwell
time, becomes significant.

One way to reduce the overall scanning time is to minimize the dwell time.
However, low dwell times result in low signal-to-noise ratios (SNR) and are, there-
fore, accompanied by problems with accurate signal interpretation. In other words,
there is a trade-off between dwell time and the detectability of elements. This re-
search aims to reduce the dwell time, without compromising the detectability by
increasing the spectral signal-to-noise ratio of macroscopic X-ray fluorescence data
after it is collected but before it is evaluated.

At the moment, there are several methods used for processing MA-XRF
data. Still, most procedures that are applied do not address the issue of denoising
to improve a low SNR. The processing methods focus, above all, on fitting the
individual pixel spectra to find the sample’s elemental composition. This seems
to be a consequence of the fact that MA-XRF has been developed from XRF. In
the latter, the SNR was not much of an issue, since an XRF measurement could
easily take up several seconds for it was merely one point that had to be measured.
Chopp et al. [9] mention the problem of limited denoising being done in the field of
MA-XRF. Moreover, besides stating the problem, they gave the recommendation
to apply image-denoising methods to denoise the MA-XRF data. Therefore, the
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aim of this research, which is to increase the spectral signal-to-noise ratio, will
be attained by exploiting both spatial relations between neighbouring pixels and
spectral relations between neighbouring channels. For this purpose, a customized
wavelet filter bank denoising method is proposed.

This thesis is built up as follows: As an extension of this brief introduc-
tion, the working principle of MA-XRF and the data characteristics are explained.
Then, the state-of-the-art methods for noise reduction and data fitting are dis-
cussed, resulting in the identification of the research gap and a research proposal.
Hereafter, an explanation of the proposed denoising method, wavelet filter bank
denoising, is given; including a description of a customized thresholding method.
Furthermore, a qualitative analysis of MA-XRF data is performed to clarify how
the proposed denoising method can be applied. Then, the method for testing the
filter designs and a case study of a daguerreotype is discussed. This is followed
by the results and discussion of the experiments and the case study. The thesis
is finalised with the conclusion where we summarize the findings on whether the
proposed denoising method improves the signal-to-noise ratio and in effect lowers
the necessary dwell time for MA-XRF scanning.

1.1 MA-XRF
MA-XRF owes its name to the fact that large areas are being scanned using XRF.
The surface is scanned pixel by pixel, obtaining thousands of point spectra. In this
section, first the working principle of XRF, from which MA-XRF is developed, [5]

will be explained after which a brief explanation of the resulting spectra follows.
Subsequently, MA-XRF and its possibilities will be discussed.

1.1.1 X-ray Fluorescence (XRF)

XRF is a non-destructive method that provides insight into the elemental compo-
sition of a sample. During a measurement, X-rays are emitted by an X-ray tube
after which they hit the material. Atoms present in the material become excited
and fluoresce X-ray photons, which can be detected by a silicon drift detector
(SDD). The energies of the photons are characteristic of the elements they origi-
nate from and, therefore, signify elements present in the sample. The process of
creating fluorescing X-ray radiation is visualised at the atomic level in Figure 1.
When X-rays are incident on the atom, electrons, which absorb the energy of the
X-ray photons, are ejected from their shell; this action is shown by the red arrows.
The ejected electron can be neglected for data-evaluative purposes since the elec-
tron is absorbed either within the sample or in the air between the sample and
the detector due to its mean free path in air being too short to reach the SDD. [10]

However, through ejecting the electron, the atom has become ionized. The atom
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Figure 1: Characteristic X-ray production. [11]

seeks to be in equilibrium, and therefore, electrons from outer shells fall back to fill
the vacancies in the inner energy shells. During this process, the energy difference
between the outer and the inner shells is emitted in the form of X-rays. These
emitted X-rays, visualised in blue and green, are the characteristic energies that
are measured.

1.1.2 Spectrum

X-rays emitted from the sample are detected by an SDD and, subsequently, pro-
cessed in order to obtain a spectrum. An X-ray spectrum is usually plotted having
the intensity (photon counts) on the vertical axis and energy channels in keV on
the horizontal axis. An example of a spectrum is given in Figure 2. The char-
acteristic energy that originates from atoms within the sample hits the SDD and
ionizes atoms in the semi-conductor crystal. The resulting charge is then con-
verted to a voltage of similar proportions after which the voltage is binned by a
pulse processor, obtaining the spectrum. [12] The more photons of a certain energy
are detected, the higher the peak. In the spectrum in Figure 2, several peaks are
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Figure 2: Sum spectrum extracted from the forehead of the virgin from the panelled
vault in the church of Le Quillio. [13]

identified as being the characteristic radiation for certain elements such as lead
(Pb) and calcium (Ca). In this manner, a spectrum can be analyzed and the ele-
mental composition of the sample determined.

1.1.3 Macroscopic X-Ray Fluorescence (MA-XRF)

As was already mentioned in the introduction, MA-XRF is a technique for scanning
an entire surface instead of just a point. The surface is scanned pixel by pixel,
adopting a stepsize of typically 100-1000 µm. [14]. From every pixel a spectrum
is obtained resulting in a hyperspectral datacube, visualised in Figure 3. The x
and y axes represent the spatial pixel position, while the z-axis represents the
energy channels in which the photon counts are stored per pixel, in other words,
the spectrum. The brown bar represents how the photon counts per channel,
obtained for every pixel, are stored in the datacube. On the side of the z-axis, the
spectrum of that pixel is visualised. The advantage of a MA-XRF scan over an
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XRF measurement is dual. For example, the spectra can be visualised together,
as a sum of individual spectra, called a sum spectrum, as is done in Figure 2. By
summing spectra from a specific part of a painting, for example, where the colour
is identical, the elemental composition of that part, and as such, possible pigments
used, could be more accurately determined. Moreover, looking at an entire region
instead of just one point helps reduce the effect of noise. Besides looking at a
specific region to find its elemental composition — the spectrum on the z-axis —
it is also possible to visualise where in the sample a specific element is present and
in which concentration, which, in this research, will be referred to as peak intensity
maps. A peak intensity map is generated by summing channel maps covering an
elemental peak. Such a channel map is visualised on the x, y axes as the beige
rectangle in Figure 3. The peak intensity maps are grey-level images in which
pixels with a higher photon count in a specific channel are depicted lighter and
pixels with a lower photon count are shown darker.
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Figure 3: Schematic overview of a hyperspectral datacube. The x and y axes
represent the spatial pixel position, while the z-axis represents the energy channels.
The brown beam represents the spectrum of one pixel, this spectrum is visualised
on the side of the cube. The beige rectangle represents the pixel values of all the
pixels in one channel.
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1.2 MA-XRF Data
The hyperspectral datacube that is obtained during scanning does not instantly
provide us with knowledge of elemental compositions of certain regions or ele-
mental distribution images; the spectrum has to be interpreted first. There are,
however, aspects that complicate the interpretation of these spectra: the signal of
the characteristic radiation is disturbed by noise.

The subject of data acquisition was discussed in a simplified manner in
subsection 1.1. However, it is necessary to consider the procedure in more detail
in order to understand the problems faced during data-evaluation. In this chapter,
an overview will be given of the major factors that contribute to the spectrum,
first discussing the characteristic radiation, after which different kinds of noise are
addressed. Finally, the detection limit is discussed.

1.2.1 Characteristic Radiation

In section 1.1.1 it was explained how incident X-rays resulted in the emittance
of X-ray photons from elements in the sample. In this section, we explain more
in-depth how the characteristic energy patterns are obtained.

The amount of energy that is emitted by the atom depends on the energy
differences between the electron shells from which the electrons are ejected and
the shells that supply the electrons that fill the vacancies; these differ per element.
When regarding the schematic depiction of an atom in Figure 1, the three shells
closest to the nucleus have been depicted, called the K, L, and M shells. Next,
the straight green and blue arrows represent electrons from an outer shell filling
the vacancy in the inner shell. When an electron from the L shell fills the vacancy
in the K shell (green arrow), it is called Kα radiation and when an electron from
the M shell fills the vacancy in the K shell (blue arrow) it is called Kβ radiation.
Also, electrons from the L shell and M shell can be ejected from their shell and
filled by electrons from outer shells, which is indicated with similar nomenclature
as can be seen in Figure 4.

Besides the photon-energies, the relative photon counts are characteristic
as well. In the iron spectrum of Figure 4, it can be seen that the Kα peak is
much larger than the Kβ peak. The difference in counts has to do with the fact
that some electrons in certain shells are more prone to becoming ejected than
others. Moreover, some vacancy transfers (Coster-Kronig transitions) are more
likely to happen. The subsequent emission probabilities per element are constant
and properly quantified. In the end, the peak pattern of an element consists of
peaks at characteristic energies, having alternating but proportional photon counts
with respect to one another.
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Figure 4: Spectra of the Characteristic Radiation of Lead(Pb) and Iron(Fe). [15]
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1.2.2 Noise

The data that is obtained is not a perfect accumulation of elemental spectra com-
ing from the sample; the data is perturbed by various kinds of noise. The MA-XRF
scanner itself, for example, influences the data. Aspects such as detector flaws,
dwell time variations, and background radiation all contribute to unwanted vari-
ations within the spectrum. Also, absorption can change the expected radiation
pattern of the characteristic radiation or cause elements not to be detected at
all. Finally, shot noise, which is inherent to photon-imaging, results in intensity
variations following a Poisson distribution.

Background Radiation. When looking at Figure 2, a volume underneath the
peaks can be perceived. This is the scattered bremsstrahlung, which is made up
of photons created by electrons being decelerated by the anode in the X-ray tube.
Another feature of the spectrum that also originates in the X-ray tube is a peak
from the anode material; in the case of the Bruker M6-jetstream, this is a rhodium
peak. [16] Elastically and inelastically scattered bremsstrahlung and characteristic
rhodium radiation form the background radiation.

Dwell Time Variations. Dwell time variations are unintended variations in the
time that a pixel is being scanned. When a pixel is scanned for a longer time than
another pixel, the amount of photons that are detected can be higher for one pixel
than for the other. If only one pixel would be analysed, a difference in photon
counts does not matter significantly since the proportions of characteristic line
intensities remain intact. However, when two pixels are compared over a certain
characteristic line, it may look like the concentration of an element in the pixel
with a longer dwell time is higher than the concentration of that same element
in the other pixel. Hence, dwell time variations cause photon counts to not be
comparable and hence obstruct the visualisation of elemental distribution images.

Detector Flaws. The detector electronics are not capable of recording more
than one event at once. Hence, when the detector is measuring an event, it becomes
insensitive for a short amount of time, called dead time. Therefore, photons that
are detected too close to one another are rejected by the detector electronics.
Sometimes, however, when the time window is too narrow between the two (around
100 ns), the photons can be detected as a single event, hereby creating a pile-
up peak in the spectrum. These peaks are equal to the summed energy of the
characteristic radiation of the individual photons. The higher the count rate,
the bigger the issue of pile-up peaks. [9] It is also possible that an X-ray photon
coming from a silicon atom — created when incident X-rays ionize the silicon
atoms in the SDD — escapes the detector measurement. The measured charge at

11 of 144



Master Thesis Maartje Huijbrechts

the anode is then the energy of characteristic radiation minus the energy of the
silicon photon (1.74 keV), resulting in an escape peak. [17] Another issue with the
SDD is incomplete charge collection; when not all electrons that are generated by
an incoming X-ray reach the anode, the FET measures lower energy than that
of the X-ray, this results in tailing in the spectrum. For low energy X-rays this
problem is more significant since they have a small penetration depth in the SDD
and therefore already a poor charge collection at the front contact. [12] Incomplete
charge collection also results in the so-called zero strobe peak or zero peak, which
appears at the zero-energy channel in the spectrum. [17] This zero peak is often
advantageously used for normalizing and calibrating the spectrum.

Absorption. In the process of creating fluorescence radiation, an incident X-
ray creates a series of events that results in another X-ray becoming emitted from
the atom. Naturally, this emitted X-ray could also excite other atoms in the
sample instead of becoming detected by the SDD. When this happens, it is called
absorption. Due to the absorption of X-rays in the sample, elemental ratios of
fluorescence lines, for example the Kα and Kβ, change. This complicates the
interpretation of the spectra, as the ratios between lines are characteristic for each
element. Moreover, due to the fact that the investigated radiation has low energy
- less than 30 keV - covering layers consisting of heavy elements could even prevent
the detection of lighter elements in sub-surface layers. [18]

Absorption of photons does not only take place in the sample itself. Since,
MA-XRF is not performed in a vacuum, X-rays are absorbed in the air between
the painting and the detector as well. Hence, not all elements can be detected.
This is, however, mainly a problem for lower excitation/fluorescence energies and,
therefore, light elements cannot be detected outside a vacuum. [17]

Photon Shot Noise. Shot noise is inherent to imaging, being a result of the
discrete nature of light over time. When scanning a pixel, photons are emitted
at random, resulting in a non-uniform spread of photon counts in time, which
can be modelled as a Poisson process. When scanning a pixel for a long time,
this discontinuity averages out and the detected photons accurately represent the
material composition of the pixel. However, when a pixel is scanned for a shorter
time, the random intensity fluctuations start to dominate the signal, making it
difficult to interpret the data.

1.2.3 Limits of Detection

It was mentioned in 1.2.2 that low-energy X-rays are absorbed in the air. As
such, elements with a low atomic number are not detected outside a vacuum.
Meanwhile, there is also an upper limit to the elements that can be detected due
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to the maximum voltage of 50 kV within the X-ray tube. The limit of detection
for element i is described by the following equation: [16]

LODi = 3×
√
Nback

Nsignal

× ci ×
√
t (1)

Here, Nsignal is the net intensity (the area of the peak minus the background) of
element i, Nback is the intensity of the background below the peak that is analysed,
ci is the mass percentage of element i, and t is the dwell time. The lower the limit
of detection, the better low-abundant signals can be discerned. Note that ci and√
t are normalization factors for, naturally, a longer dwell time and higher mass

percentage would result in improved detectability.
Alfeld et al. determined the range of detectable elements by their K-lines.

The Bruker M6 Jetstream was able to detect elements between Ti (Z=22) and Mo
(Z=42), for which they defined the detectability as 100 ppm for measurements of 1
second. [16] However, there is no clear limit in terms of lowest or highest detectable
element since it depends highly on the weight fraction of the element, the noise,
and the dwell time. It depends, moreover, on the hardware. For example, the
choice of having a polycapillary lens to define the beam that is excited from the
X-ray tube, results in a lower transmission for high energy X-rays originating from
the tube.

The importance of the dwell time for the detectability of an element be-
comes apparent from Equation 1. Hence, although the mechanics of a Bruker M6
Jetstream allow for a pixel to be scanned in 1 ms, [19] an accurate spectrum can
only be obtained when a pixel is scanned with a longer dwell time. Still, as was
mentioned before, the dwell time cannot be too high, for then the scanning of a
painting would take unpractically long. Therefore, an optimum between scanning
time and proper limits of detection needs to be chosen. Past research with the
Bruker M6 Jetstream used dwell times between 70 and 90 ms/pixel. [20] [21] [22] [23]

However, the dwell time can differ a lot per investigation. Sometimes, smaller
areas are scanned to obtain more detail; scanning each pixel for a few seconds. For
example, in the case of the research of Caravaggio’s painting Supper at Emmaus,
Alfeld and Janssens decided to apply a longer dwell time (0.42 s) to certain areas
for visualizing the elements K and Mn which were more difficult to detect. Mean-
while, areas in which there were elements for which the MA-XRF scanner was
more sensitive or areas in which elements were abundantly present, were scanned
with lower dwell times (below 10 ms). [24]

13 of 144



Master Thesis Maartje Huijbrechts

2 Data Processing
In subsection 1.2 the aspects that contribute to the spectrum were shown. Not
only did it become apparent that not every element in the sample can be detected,
but MA-XRF is also more sensitive to certain elements than to others. In combina-
tion with the present noise, the process of data evaluation demands scrutiny. The
evaluation of obtained data allows us to transform the hyperspectral datacube into
meaningful elemental distribution maps and/or elemental compositions of individ-
ual pixels that give insight into the material composition of the object. Currently,
the process of data evaluation is often done using the software PyMCA and/or
Datamuncher. In this chapter, methods for data evaluation will be discussed,
starting with explaining the difference between pre-processing, processing, and
post-processing. Hereafter, the research gap, considering pre-processing methods,
will be stated. This chapter concludes with my research proposal.

2.1 Pre-processing, Processing and Post-processing
The methods discussed in this section can be divided into pre-processing, process-
ing, and post-processing methods. The distinction is important to make, for it will
explain the research gap that is investigated in this thesis. During data processing,
the data is transformed from photon counts per energy channel into information
on relative amounts of elements/compounds within the sample. Preliminary to
processing, the data can be made more reliable for processing. Increasing the
SNR, normalizing the data or correcting for dwell time variations can be referred
to as pre-processing. During pre-processing no interpretation of the data is done,
merely the signal is changed. Post-processing is done after the data has already
been fitted in order to correct measurement issues or make the data more legible.

First, processing methods will be discussed. The main processing methods
that are currently used for MA-XRF are iterative least squares fitting and matrix
factorization, which will be discussed in section 2.1.1 and section 2.1.2, respectively.
Subsequently, examples of pre-processing methods currently used in MA-XRF are
given in section 2.1.3. Finally, post-processing methods are treated in section
2.1.5. Note that often a single method can be used for pre-processing as well
as processing and post-processing. For example, background correction is either
done before fitting the spectra or during the fitting of the spectra; hence, it can be
regarded as a pre-processing or processing step. Moroever, the clustering methods
that are used for processing purposes can be applied to denoise MA-XRF data as
well, as is explained in section 2.1.2.

14 of 144



Master Thesis Maartje Huijbrechts

2.1.1 Iterative Least Squares Fitting
Processing

Most data-evaluation procedures that are applied to MA-XRF data use a form of
least squares fitting. Herein, the measured spectrum S is approximated mathe-
matically by a function f and the difference between the two is minimized. This
process can be described with the following formula:

χ2
r = 1

n−m

n∑
i=0

wi(Si − fi(a0, a1, ..., p0, p1, ...))2 (2)

Where χ2
r is the reduced weighted squared difference, n−m signify the degrees of

freedom where n is the number of channels and m the number of parameters. The
variable wi = 1/fi is the weight added per channel that ensures that elements with
a high intensity do not dominate the fit and a and p are the linear and nonlinear
parameters respectively that ensure χ2

r is minimized. Note that once nonlinear
parameters are involved we are talking about a Non-Linear Least Squares fitting
(NL-LS). NL-LS is the processing method adopted in the PyMCA software. [25]

Alfeld and Janssens noted two limitations of NL-LS: one being the signal-to-
noise ratio not being good enough to improve the nonlinear parameters p, the other
being that the procedure takes too long due to its iterative nature. They remark
that the former can be dealt with by starting the fit of each individual spectrum
with the same non-linear parameters p to prevent the drifting of these parameters
during processing. The latter could be solved by optimizing for linear variables
only, hence finding χ2

r in a Linear Least Squares (L-LS) procedure. In this case, the
values for p are determined beforehand by fitting a spectrum that is representative
for the entire set, most commonly the sum spectrum. The parameters p remain
fixed during L-LS. [24]

2.1.2 Matrix Factorization
Processing

Matrix factorization methods are much faster in fitting the data than the previ-
ously discussed iterative least squares procedures. Here the measured hyperspec-
tral datacube C ∈ ZH×W ×C is approximated by a matrix multiplication of two
matrices A ∈ RH×W ×M and F ∈ RM×C :

C ≈ AF (3)

where F is the feature matrix and A the abundance matrix. The AF approxi-
mation of the datacube C is in most cases optimized using a least squares fit. [7]

There are various kinds of optimisation procedures that use matrix factorization.

15 of 144



Master Thesis Maartje Huijbrechts

In this section I will touch upon a few that are used in MA-XRF data processing
and how they differ from one another.

Dynamic Analysis. Dynamic Analysis (DA) has been developed for MA-XRF
data evaluation as a response to the relatively slow iterative least squares pro-
cedures. This matrix factorization method uses an unrestricted L-LS procedure,
where the abundance matrix A can be calculated as follows:

A = CΓ (4)

Here Γ can be seen as the right inverse of the feature matrix F when comparing the
DA method to the general matrix factorization formula given in Equation 3. The
DA matrix Γ ∈C×M consists of M pre-defined elemental spectra. DA is therefore
a supervised matrix factorization method, where the dictionary is given and the
only factor that needs to be determined is the abundance matrix. However, before
evaluation, it is not known which elements are exactly present. By investigating
the sum spectrum, either manually or automatically, elements that are present in
the painting can be examined and implemented in the DA matrix. Using the sum
spectrum limits the influence of noise, however, care has to be taken since elements
that are not abundantly present in the painting can be overlooked as well. There-
fore, the DA matrix has to be often manually adjusted several times before the Γ
and A matrices are accepted as proper decomposition matrices for the datacube
C. Since the matrix Γ is physically meaningful, representing the elements, the
abundance matrix A becomes a direct representation for the intensity per element
per pixel; allowing us to visualise elemental distribution maps instantly. DA is the
processing method adopted in Datamuncher. [9] [24]

The spectra provided by the DA matrix include contributions from bremsstrahlung,
moreover, they correct for overlapping peaks by adding negative values to certain
elemental profiles. A downside to the method is that it assumes fixed ratios be-
tween the fluorescence lines of each element. This complicates the detection of
elements whose photons are partly absorbed. [24] Yet, this downside is negligible
with the advantage DA has over iterative least squares procedures when it comes
to processing speed. [24]
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Figure 5: Schematic overview dynamic analysis. Here block A represents the
abundance matrix, block C represents the hyperspectral datacube and block Γ
represents the DA matrix. The inversed spectra visible on block Γ obtained from
the 2015 work of Alfeld and Janssens. [24]

Unsupervised Matrix Factorization. Unsupervised matrix factorization dif-
fers from DA by not using a predefined feature matrix that represents the elements
present in the painting. The feature matrix F and the abundance matrix A are
formed simultaneously. Every feature in F is obtained by finding similar elemen-
tal compositions within the data. This implies that the features in F represent a
combination of elements rather than a spectrum of one element. These kinds of
methods highlight elemental correlations within a sample, instead of distinguishing
between elements. It is important to mention that the merit of matrix factoriza-
tion for pre-processing purposes is often omitted in previous research. This was
pointed out by the recently published work by Chopp et al., who stated that the
spectral denoising capacities of these factorization methods seem to be largely
unexplored. [9]

Initially, Principal Component Analysis (PCA) was often used as a factor-
ization method for MA-XRF data. The method decomposes the data based on
finding eigenvectors that cover the highest variance within the data. However, it
is not always easy to interpret these vectors, which formed the feature matrix F .
The components of PCA consist of negative values as well, while the datacube
is entirely non-negative. Hence, the results of PCA are difficult to interpret and,
moreover, do not point directly to the presence of certain elements. [26]

To solve for negative values, it was determined that both the feature matrix
and the abundance matrix had to be constrained, consisting solely of positive
values. The solution took the shape of non-negative matrix factorization (NMF),
its implementation for MA-XRF data analyses being proposed by Alfeld et al. [26]

Where in PCA, the datacube is decomposed in such a way that the datacube can
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be reconstructed in its entirety by multiplication of the feature and abundance
matrix, for NMF, like for DA, this is not the case. Due to the linearity constraints
in DA and the positivity constraints in NMF, the matrix factorization of F and A
will always be an approximation of the datacube C. However, where in DA only the
abundance matrix could be optimised, in NMF, the least-squares approximations
optimize the loss function for the feature matrix F as well as for the optimum
abundance matrix A. A loss function that is frequently used for NMF is the Fast
Non-Negative Least Squares (FNNLS), which solves the loss function for A and F
as follows: [27]

Ak+1 ←− arg min
Ak≥0

∥C − AkF k∥2
F (5)

F k+1 ←− arg min
F k≥0

∥C − Ak+1F k∥2
F (6)

In Equation 5, the abundance matrix A is optimized while feature matrix F is
held constant, similarly, in Equation 6, the feature matrix F is optimized while
abundance matrix A is held constant. NMF, like PCA, can be used to denoise the
dataset. [9]NMF has, moreover, been used as a post-processing method to study
Rembrandt’s Saul and David. [26]

The process of obtaining the feature matrix F , in both PCA and NMF,
is entirely data-driven. Another method called Simplex Volume Maximisation
(SiVM), [28] uses a set of archetypes for the feature matrix instead. The measured
datacube C is then approximated by a linear combination of actual data points
within the set, representing the extremes. [4] SiVM has been applied to Hans Mem-
ling’s Portrait of a Man, possibly from the Lespinette Family. This study is also
one of the limited accounts of showing the denoising characteristics of factorization
methods. [29]

Multivariate Curve Resolution Alternating Least Squares (MCR-ALS).
MCR-ALS is a version of the NMF method that allowes for various constraints
to be included. Chopp et al. mentioned that an often-used constraint for this
method was that the feature matrix F should be a combination of individual
elemental spectra. They formulated the resulting loss function as follows: [9]

B∗A∗ = arg min
B,Ak≥0

∥C − A(MB)∥2
F (7)

where the feature matrix F = MB and B ∈ RM×N
+ is the mixing matrix that

describes the linear combination of elemental spectra present in matrix M . Hence,
M is in this case actually similar to the feature matrix used during dictionary
learning. As such, MCR-ALS also requires a preliminary estimate of the number
of elements in the painting and their corresponding spectra. When not focused on
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elemental decomposition, but rather on pure components, an initial estimate for
the number of pure components present in the painting could be made by using
PCA or singular value decomposition (SVD). [20] MCR-ALS has been applied to the
study of Mondriaan’s Broadway Boogie Woogie, [22] and Jackson Pollock’s Number
1A, 1948. [20]. In the latter case, both the identification of elements as finding how
those elements were combined in the paint was done using MCR-ALS.

2.1.3 Preliminary Denoising
Pre-Processing

Determining the state-of-the-art in denoising is not trivial, for not much is written
on the subject. Still, in the evaluation of MA-XRF data, denoising methods are
used. [9] In this section, I will touch upon these methods.

Poisson Scaling. MA-XRF data has a Poisson nature and, hence, Poisson scal-
ing has been used to pre-process datasets. Data having a Poisson nature is charac-
terized by noise proportional to the square root of the signal. Therefore, Poisson
scaling is done so that the level of noise for each variable is equal to one another.
This is done by giving each element in the dataset a weight which is consistent
with its uncertainty.

Martins et al. mentioned that they used Poisson scaling to improve the
signal-to-noise ratio when investigating Jackson Pollock’s Number 1A, 1948. [20] A
formulation of what happens during Poisson scaling can be written as follows:

C̃ = G(C− µ1s̄T )H (8)
Here, C̃ is the scaled data, s̄ is the mean spectrum and 1 is a vector of ones that is
multiplied by µ which is either 0 or 1 depending whether the data is mean-centered
or not. Furhter, G and H are diagonal matrices that scale the rows and columns
of C, respectively. The pixel data is scaled by making G equal to the inverse of
the row sums of C and making H an identity matrix. During Poisson scaling, the
diagonals of G and H are the inverse square roots of the mean image and mean
spectrum, respectively. In other words, each column of the spectral data matrix
is divided by the square root of the mean image and, further, dividing each row of
the matrix by the square root of the mean spectrum. [30]

Dwell Time Variations solver. Dwell time variations were explained in sec-
tion 1.2.2. Only recently this kind of noise was addressed as a distinct form of noise
and tackled distinct from general noise. Dwell time variations can be corrected
by normalizing for live time per pixel, which has been done by Alfeld et al. [23]

They use the zero peak of a spectrum to determine how long a pixel is scanned.
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Subsequently, by integrating over this peak, the intensity can be found, which is
used as a reference for the normalization procedure.

Pre-treatment by Kogou et al. As mentioned, denoising steps are often used,
yet rarely specified in MA-XRF. However, Kogou et al. [31] did elaborate on their
pre-treatment of the XRF data. They applied several denoising steps before they
started evaluating the data, namely a spatial median filter, using a kernel of 3
by 3, and they, furthermore, reduced the number of channels by including only
the sum of five channels around each channel. These preliminary steps allowed
the reduction of data, which would optimise processing efficiency,increasing the
signal-to-noise ratio.

2.1.4 Background Correction
Pre-Processing or Processing

Unlike with preliminary denoising, a lot has been written about background cor-
rection. As mentioned in section 1.2.2, the background consists of bremsstrahlung
and scattered primary radiation. This noise, which is clearly visible in the spec-
trum, can be removed in various ways. Alfeld and Janssens mentioned in 2015
that there are three ways to remove the background radiation. The first method
regards the shape of the background of the sum spectrum as continuous through-
out the scan and removes this shape from every spectrum. The second method
finds the background through filtering procedures and removes the background on
a spectrum by spectrum basis before data evaluation (processing) takes place. The
third method models the background during the processing. [24] Below, the three
methods are discussed in more detail.

Background Shape of the Sum Spectrum. Removing the background based
on the shape of the sum spectrum is an easy and quick method to get rid of the
background. However, it does require the sample to have little or homogeneous
scattering. When, for example, a canvas painting is scanned having a wooden
stretcher, the amount of scattering differs quite significantly between the areas
with and without the stretcher behind it. In that case, this kind of background
correction would not suffice. [25]

Estimating the Background on Spectrum by Spectrum Basis. One can
also estimate the background and consequently subtract the background of each
individual spectrum before fitting. Statistics-sensitive Non-linear Iterative Peak-
clipping (SNIP) is a method that finds the background through the cutting of the
peaks. [32] This is done by iteratively comparing the channel value Bi to the average
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of two channel values that are n steps to the left and right of Bi. The minimum
value is then substituted for the original value:

Bi = min[Bi,
B(i+n) +Bi−n)

2 ] (9)

The initial value of n is often set as twice the full width at half maximum of the
peaks. Every iteration this value becomes smaller and, as a result, the background
can be found. This method is good to estimate irregular background shapes,
however, is slow due to all the iterations that need to be performed. [24]

Background Modelling. By background modelling, we refer to the practice
of background being included during the fitting of individual spectra. Typically
linear or exponential polynomials are used. Linear background modelling can be
described by the following formula:

(Bi =
d∑

d=0
ad(i− i0)d) (10)

And exponential background modelling:

(Bi = exp(
d∑

d=0
bd(i− i0)d)) (11)

Where Bi is the background at channel i, d stands for the degree of the poly-
nomial, ad and bd are the linear and exponential parameters, respectively, and i0
is the central channel of the fitted region. Alfeld and Janssens mention that, al-
though modelling the background is faster and less affected by a low SNR than
SNIP, the increase of parameters makes it a less robust method for background de-
termination. Exponential polynomials are better in finding complex background
shapes than linear polynomials, [33] however, polynomials with exponential vari-
ables should, according to Alfeld and Janssens solely be used for spectra with
good signal-to-noise ratio. Linear variables could be used for determining the
background of individual spectra, with somewhat lower statistics as well; although
the statistics of these spectra still determined how high the degree of the polyno-
mial could be. A balance has to be found between the degree being too low, not
correctly rendering the background shape, or the degree being too high, resulting
in the fitting model being not robust. [24] Today, removing the background is gen-
erally done during processing with the DA-method. Here, the feature matrix takes
into account background contributions by using the background shape of the sum
spectrum to fit each individual spectrum.
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2.1.5 Absorption Correction
Post-Processing

In 1.2.2, we discussed the causes and effects of absorption. In this section, we will
explain the current methods that are used to correct for artefacts that arise due
to absorption.

Most MA-XRF research that focuses on removing artefacts due to absorp-
tion uses a fundamental parameter approach. In this approach, the detected
photon intensity is mathematically corrected to account for factors that might
influence the amount of radiation that is emitted. This entails correcting for self-
absorption Aijk and absorption in covering layers A′

ijk. The intensity R of element
i, shell j and line k (for example α or β) is then formulated as:

Rijk = mi · Yijk(E0) · Aijk(E0) · A′
ijk(E0) (12)

where mi denotes the mass of element i present in the volume, Yijk the fluorescence
yield, and E0 the energy of the incident beam. A′

ijk can be formulated as follows:

A′
ijk(E0) = exp(−χ(E0, Eijk)ρd) (13)

with
χ(E0, Eijk) = µ(E0)

1
sin(α) + µ(Eijk) 1

sin(β) (14)

Here χ is the value for the geometrically corrected mass attenuation coefficient µ,
Eijk is the fluorescent energy of element i, shell j and line k, and ρdabs is the areal
density of the absorbing layers. In Figure 6, the geometrical dependence of the
absorption is visualised: the depth of the layer and angle of incidence/take-off angle
determines the amount of absorption that occurs. Note that in these simplified
formulas, an assumption is made that the layers are homogeneous. [18] [25] [34] A more
detailed description of the fundamental parameter approach can be found in the
work by Janssens et al. [34]

An example of the fundamental parameter approach being used to correct
for absorption-affected data is the 2013 research by Alfeld et al. [18] Wróbel et al.
followed up on this research in 2016 by adapting these methods to allow absorption
correction for polychromatic excitation. Next to that, they adapted the process
of parameter selection by Alfeld et al. in order to reduce human input. [35] Re-
cently a study by Alfeld et al. focussed on another absorption-affiliated problem,
where they used the fundamental parameter approach in order to correct for vary-
ing distances between the measurement head and the sample. They combined
the fundamental parameter approach with information of the Ar signal, which is
proportional to the working distance.

Yet, absorption remains a difficult aspect to correct for. Since, as was the
case in the above-stated examples, fitting of the data is done first.
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α β

d

DetectorIncident Radiation

Sample

Figure 6: Detection Geometry used for Calculating the Absorption Corrected Pho-
ton Intensity. Here α is the angle of incidence for the primary radiation, β is the
take-off angle of the emitted radiation and d the sample thickness.
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2.2 Research Gap
In the previous chapters, I described the working principle of MA-XRF and the
state of the art in data processing. What is striking is that little attention is given
to the spatial relations within the dataset. Recently, however, more research on the
use of spatiality in MA-XRF is being published. In this chapter, a quick overview
of these methods will be given, after which an evaluation of these methods is made;
herewith introducing the research gap that will be the basis for my research.

2.2.1 Current Research on the use of Spatiality in MA-XRF Processing

In 2022, Chopp et al. published an article that reviews image processing methods
that could be applied to MA-XRF data to improve data evaluation. These image
processing methods differ from current MA-XRF processing procedures by taking
spatial relations between pixels into account. Chopp et al. ascribed the limited
use of spatial information when fitting or denoising MA-XRF data to the fact that
MA-XRF data has been seen as a collection of spectra rather than a collection
of images. [9] Therefore, Chopp et al. aimed to bring knowledge on methods that
use spatiality to a wider audience in order to instigate further research into MA-
XRF image processing. In this section, a short overview of the discussed methods
is given, complemented by two additional sections on spatial processing methods
used in MA-XRF. One that discusses neural networks and the other discussing a
second work by Chopp et al.

PCA with k-means Clustering. Vekemans et al. developed one of the first
data evaluation methods that used spatial as well as spectral information on MA-
XRF data by combining PCA with k-means clustering. [36] PCA was used to gen-
erate eigenimages describing the data and k-means clustering was used afterwards
to find pixels with similarities in order to find distinct regions with similar elemen-
tal composition. By generating the sum spectrum of these distinct regions, trace
elements were more likely to be detected than when the sum spectrum of a sample
in its entirety was used.

Neural Network Clustering. In more recent years, neural networks are be-
ing used for data evaluation. Kogou et al. developed an unsupervised machine
learning algorithm, based on the Self Organising Map (SOM) method, which uses
spectral as well as spatial information in order to find clusters consisting of sim-
ilar spectra. [31] After the clusters have been formed, just as the PCA method by
Vekemans et al., the sum spectra of those clusters could be used to improve the
identification of elements, particularly trace elements.
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Neural network clustering is a method where in consecutive lines of neurons,
the redundant input is transformed into a sparse cluster representation. For every
consecutive line, the number of neurons is less than the number in the previous line.
The input layer of neurons is formed by the pixels and their respective spectra,
while the output consists of the clusters. The algorithm is trained from the dataset
at hand, hence, no reference is necessary. The only input that was required for the
algorithm by Kogou et al. was the number of clusters.

The advantage of this method over current data-evaluation methods, as
described in section 2, is the fact that a larger number of elements and/or complex
material compositions can be evaluated as well. Moreover, trace elements can be
more easily detected.

Richardson-Lucy Deblurring. The Richardson-Lucy method, a super-resolution
method based on the Fourier transform, super-resolves the elemental distribution
map Z by convolving the acquired elemental map L with a known point spread
function (PSF) P . This method can iteratively deblur distribution images by con-
verging at the maximum likelihood solution. The updated distribution map can
be determined as follows:

Zk+1 = Zk · (P̂ ∗ L

P ∗ Zk
) (15)

Here, P̂ is the flipped matrix P which is obtained by reversing the order of the ele-
ments in the rows and columns of P . Contradictory, the Richardson-Lucy method,
being notably used to deblur shot noise-polluted images, is according to the au-
thors only useful for deblurring elemental distribution maps of elements with high
photon counts. [37]

Super-Resolution. Super-resolution uses spatial coherency between pixels to
improve the spatial resolution of the data. This method allows fewer pixels to be
scanned by estimating sub-pixels.

Dai et al. used a high-resolution RGB image R ∈ [0, 1]3×Hs×Ws to improve
the transformation from low-resolution data X ∈C×Hl,Wl into super-resolved data
Y ∈C×Hs×Ws . [38] They separated the MA-XRF data in visual v and non-visual nv
components so that the visual component could be directly linked to the RGB
image. The matrix decomposition they applied was as follows:

Yv = F xrf
v Av (16)

Ynv = F xrf
nv Anv (17)

R = F rgbAv (18)
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Where F is the feature matrix and A the abundance matrix. Furthermore, the
abundance matrix Av is the same for the RGB decomposition as for the visual
component of MA-XRF. Low-resolution data X and super-resolved data Y are
related to one another by:

Xv = Yv · S Xnv = Ynv · S (19)

where S ∈ {0, 1}1×Hs×Ws is a binary sampling matrix. The optimization problem
then becomes:

arg min
Θ≥0, ∥A∥0≤s

∥X−(F xrf
v Av)·S−(F xrf

nv Anv)·S∥2
F +∥R−DrgbAv∥2

F +λT V TV (Dxrf
nv Anv)

(20)
with Θ = {Dxrf

v , Dxrf
nv .D

rgb, Av, Anv}, A = Av + Anv. It can be seen that a total
variation (TV) regulizer is used which exploit neighbouring pixel correlations.

Inpainting. Inpainting is similar to super-resolution. However, it differs from
super-resolution because the scanning grid for inpainting is not uniform.

Dai.et al. adapted their super-resolution method to be applicable in inpaint-
ing procedures as well, for inpainting allows the creation of an optimal sampling
strategy. [39] Their adaptation to inpainting was achieved by adding an optimiza-
tion constraint saying that the gradient of the RGB image should be the same as
the gradient for the MA-XRF image. A further improvement was achieved by Yan
et al. who separated the data in common and uncommon features rather than
visible and not-visible, herein also the RGB data was decomposed. [14]

Multi-Modal Dictionary Learning with a Poisson Noise Model. Where
one paper by Chopp et al. generated an overview of currently existing image
processing techniques that could be applied to evaluate MA-XRF data, another
paper by the same research group applied some of these methods. Their work
aims to increase the signal-to-noise ratio of scans that were obtained by using a
low dwell time by applying a dictionary learning method with a Poisson noise
model together with comparing the MA-XRF data to a RGB-image. [7]

In the process of fitting a dictionary, usually, a least squares approach is
used as an objective function, as became apparent from section 2. Chopp et al.,
however, apply the Poisson negative log likelihood (PNLL) as a loss function. This
method is particularly convenient for data with a low photon count since the least
squares approach assumes a Gaussian distribution of the data. The PNLL can be
described as follows:

P(F,A) =
C∑

c=1

N∑
n=1

(FA)c,n −Cc,n · ln(FA)c,n (21)
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where P is the data fidelity term, C is the obtained datacube, F the (predeter-
mined) feature matrix and A the abundance matrix. The PNLL being the objective
function, minimizes the Poisson negative log likelihood estimation.

Chopp et al., furthermore, used a TV regularizer to smooth the data. Their
TV regularizer was variable with the RGB image; making use of the fact that local
areas having similar colours, most likely also have similar elemental profiles, and
vice versa. With the addition of a sparsity constraint ℓ0, the combined denoising
and fitting procedure could be written as follows:

F ∗, A∗ = arg min
F,A≥0

P(F,A) + λT V TV (A) + λl0∥A∥0 (22)

Where λT V is a positive scalar.
This method uses the information of neighbouring pixels by implement-

ing the TV regularizer which eventually resulted in outperforming the MCR-ALS
method in denoising. Moreover, better detection of elements that are little present
in the painting was possible. [9]

In the consequently published review paper by Chopp et al., the TV reg-
ularizer as applied in Equation 22 was incorporated in the future outlook, being
proposed as a spatial denoising method that could not merely combine RGB im-
ages with neighbouring pixel information, but any kind of prior information. [9]

2.3 Research Proposal
This literature review started by stating the problem of MA-XRF requiring long
scanning times. The hypothesis was that the long scanning time, being a result
of the long dwell time per pixel, could be resolved by increasing the signal-to-
noise ratio. After the state-of-the-art data evaluation methods were discussed
in section 2, it became clear that few researchers have discussed pre-processing
methods for MA-XRF. The only widely applied method to increase the SNR is
Poisson scaling, meanwhile, all the other processing steps are mainly focused on
fitting the data. Chopp et al., [9] commented in their recent work that taking into
account the Poisson nature of the data and upping the SNR should become a
higher priority, pointing out that there are two main ways to limit the effects of
noise: either increasing the dwell time, or apply pre-processing methods. Following
this statement, Chopp et al. opted for using spatiality in order to improve data-
evaluation. Hence, by applying pre-processing methods, furthermore using local
spatial relations, the dwell time, and herewith the overall scanning time, could be
reduced.

In the previous section, several methods which exploit spatial relations to
improve the evaluation of XRF spectra were discussed. Here, the clustering meth-
ods described in 2.2.1 were used to improve the data-evaluation by regarding sum

27 of 144



Master Thesis Maartje Huijbrechts

spectra of clusters instead of the entire painting. These clusters, having more sim-
ilarities, allowed for more precise detection of the elements and detection of trace
elements. Although the denoising strategies were quite successful, PCA remains
a method that creates an output that has no physical significance and, therefore,
is hard to interpret. [26] Furthermore, neural network denoising is not ideal for
MA-XRF data, since there is limited training data. [9]

Except for Multi-modal dictionary learning with a Poisson noise model,
other methods discussed in section 2.2.1 do not focus on improving the SNR.
The Richardson-Lucy method seeks to compensate for a larger beam size, which
might improve the spatial resolution of elemental distribution images but does not
do so much to improve the spectral resolution in the process. Super-resolution
and inpainting allow for longer dwell times since fewer pixels have to be scanned,
hence, spectra with better statistics can be obtained. However, a downside to
these methods is that it is mostly based on RGB imaging. Therefore, merely
improvements in spectral decomposition are made for the visible layers, while the
MA-XRF signal has a significant sub-surface contribution.

It is essential for the goal of reducing the scanning time that the Poisson
nature of the data is taken into account; for shot noise is the most prominent
kind of noise in data that is scanned with low dwell times. Multi-model dictionary
learning with a Poisson noise model is one of the first denoising strategies taking
into account shot noise and applies spatial denoising strategies to improve the
spectral SNR. A downside, however, is that also this procedure uses RGB images.

Hence, although spatial relations could be used to improve the data-evaluation
and even account for shot noise, not all spatial denoising methods increase the spec-
tral SNR and, the few that do, depend on prior knowledge such as RGB images
or require training data.

Like the work by Chopp et al., [7] our research focuses on removing shot noise
from MA-XRF data, using the information of neighbouring pixels. Moreover, we
use the information of neighbouring channels. The necessity of RGB images is
circumvented by creating a filter that needs no prior information. To this extent,
wavelet filter bank denoising is proposed as a suitable method. This research will
fill the gap in the application of denoising methods in MA-XRF, moreover, it will
use the, in MA-XRF relatively unexplored but vast field of image processing for
increasing the SNR.
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3 Wavelet Filter bank Denoising
The research objective of reducing the necessary dwell time to attain a specific SNR
has been translated into the goal of finding a denoising method that reduces the
noise floor by exploiting local spatial relations within the MA-XRF data. There
are a lot of different denoising methods that spatially denoise data, however, not
all of these methods are suited for MA-XRF data denoising. In order to find a
proper denoising method, MA-XRF-specific data characteristics need to be taken
into account. In this chapter, those data characteristics are explained and wavelet
filter bank denoising is proposed and explained as a suitable method to denoise
MA-XRF data. First, the choice of wavelets as a suitable tool for denoising is
substantiated. Hereafter, the mathematical background of wavelet filter bank de-
noising is described. Finally, the design for a wavelet filter suitable for MA-XRF
denoising is explained.

3.1 Why Wavelet Denoising?
In this section the signal properties of MA-XRF data are described, after which
the choice for wavelet denoising is explained.

3.1.1 Signal Properties

Heterogeneous Signal Structure. The objects scanned with MA-XRF have
a wide variety of material compositions. Also, between similar objects large dif-
ferences in material composition can be found. You can even find, for example,
painters that within their own oeuvre change materials as they and others ex-
periment. [40] Therefore, a denoising method suitable to denoise the wide variety of
MA-XRF data cannot lean on too much prior information on the expected content
of the signal and thus, the denoising should be as data-driven as possible.

Localized Signal. The spatial data from objects scanned by a MA-XRF scan-
ner has a localized nature, where elemental distributions are most of the time local
to a specific area and discontinuous at the edge with neighbouring areas. These
local distributions tend to be smooth internally and their edges are described by
abrupt changes in photon intensity. Therefore, a denoising method that denoises
MA-XRF data should avoid removing these high-frequency edge-describing com-
ponents. In this respect, denoising methods that are applied in denoising visual
light photographs, as those mentioned by Chopp et al., [9] could be used.

29 of 144



Master Thesis Maartje Huijbrechts

Spatial and Spectral Relationship. Although methods that are commonly
used for image denoising would do reasonably well in denoising the elemental
distribution images, this is not the objective of this research. Here, the reason
for exploiting spatial relations within the hyperspectral datacube is to improve
the spectral SNR (i.e., the SNR along the spectral axis). The difference between
denoising a single gray-level image and spatially denoising a MA-XRF dataset is
that the absolute values of the intensity of the pixels have a physical meaning. It
is not relevant to simply smooth out the dataset on an image-by-image basis since
then the spectral signal, covering many channel images, would change significantly.
It is, therefore, necessary to find a spatial denoising method that nevertheless does
not distort the spectral signal in the process.

Photon Shot Noise. The aim of this research is to improve the SNR by lowering
the noise in order to lower the necessary dwell time by requiring less signal for the
same SNR. For this purpose, it is important to know what kind of noise is most
prominent in the case of low dwell times. In section 1.2.2, various kinds of noise
that are present in a MA-XRF scan were discussed. Noise, such as the background
radiation, escape peaks, and pile-up peaks will always be there, no matter if you
apply a long or short dwell time. These kinds of noise are, furthermore, already
well accounted for in standard MA-XRF processing procedures. However, the noise
that constitutes the main limitation when the dwell time is shorter, the photon
shot noise, is often not taken into account. As explained in 1.2.2, photon shot noise
is a result of the discontinuous flow of photons, which, when you scan for a short
time, might result in strongly fluctuating measurements. These fluctuations make
it difficult to interpret the data and, therefore, it is necessary that the denoising
algorithm reduces the effect of shot noise.

3.1.2 Choosing for Wavelet Denoising

Based on the data characteristics above, a customized wavelet-based denoising
algorithm was proposed, more specifically based on perfect reconstruction wavelet
filter banks. [41]

Wavelet filtering, unlike the currently popular neural networks, does not
require a priori training information. The data itself can be used to find proper
thresholding values for denoising. [42] Moreover, wavelets have been commonly ap-
plied in image denoising. Wavelets have both a high spatial and high frequency
resolution, through which they are well suited to detect local signal features within
an image, such as abrupt intensity changes. Furthermore, wavelets are generally
well-suited to filter out noise while keeping the important edge-describing high-
frequency components of images intact. [43]
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As previously mentioned, in MA-XRF data every spatial intensity value is
also a spectral one, and we cannot smooth the data in space without impacting the
spectral dimension as well. Wavelet decomposition does not smooth the data but
instead redistributes the data, hence, the number of photons within every channel
remains constant; this prevents the distortion of the spectral signal. In the gen-
eral wavelet filterbank decomposition, the spatial signal is approximated using a
decomposition into approximation coefficients and detail coefficients. The approx-
imation coefficients represent the average signal of neighbouring pixels and, if only
these would be stored, some information from the spatial signal would be lost. The
detail coefficients contain the values of the deviation from the signal approximation
encoded by approximation coefficients. By summing the approximation signal and
detail signal, encoded by the approximation and detail coefficients respectively, the
signal can be completely reconstructed. In other words, using wavelet filter bank
decomposition, a measured signal can be decomposed into an approximation part
and a details part, while maintaining the ability to reconstruct the original mea-
surement. This makes it quite suitable as a spatial denoising method for MA-XRF
data. However, please note in its traditional form wavelet filterbank decomposition
is only aware of the spatial domain and the spectral dimension is largely ignored.
Awareness of the latter requires building spectral awareness into the thresholding
function, a customization developed in this thesis.

After the signal is decomposed, it is possible to threshold the detail co-
efficients since eliminating detailed variation in the measurement can amount to
removing small detail noise. A lot of different threshold determination methods
have been developed. Most of them assume Gaussian noise in the measurement.
There are some threshold determination methods that do account for shot noise,
however, they also apply filters before the signal is decomposed into approxima-
tion and detail coefficients. This tends to nullify the advantageous properties of
wavelets in the preservation of all the important MA-XRF signal properties during
decomposition. Since existing thresholding methods did not provide the necessary
aspects for MA-XRF denoising, e.g. in terms of spectral awareness, a novel pro-
cedure needed to be designed to remove the Poisson noise by thresholding wavelet
coefficients in a spectrum-aware manner.

3.2 Wavelet Filter Bank Denoising, Theory
Wavelet filter bank denoising is done in three consecutive steps:

1. The signal is decomposed in a pre-specified number of levels, using the dis-
crete wavelet transform. For each level, detail and approximation coefficients
are obtained through decomposing the signal (which is the measurement at
level 1 and the approximation signal in subsequent levels) with a high- and
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low-pass filter respectively.

2. The detail coefficients of every level, are thresholded to remove the small
detail noise variation. The thresholding procedure entails retaining detail
coefficients above the threshold as-is, while detail coefficients that fall below
are replaced by zeros.

3. The signal is reconstructed, using the inverse discrete wavelet transform. The
thresholded denoised detail coefficients and the approximation coefficient are
transformed back and summed in order to obtain the denoised version of the
original measurement.

In this section, an overview of the theory behind wavelet filter bank denoising is
provided.

3.2.1 Signal Analysis & Synthesis

In the first step of wavelet filter bank denoising, the signal of interest is decom-
posed. The decomposition procedure is similar to that of the Fourier transform,
where a signal is decomposed into its complex exponential components.Yet, where
the Fourier transform decomposes the signal in (continuous) functions on an infi-
nite support, the wavelet transform can decompose a signal into (discontinuous)
signals on a finite support. The finite support basis of the decomposition allows
the accurate localization of signals not only in the frequency domain, but also in
the time/space domain.

The Wavelet. As previously mentioned, wavelets are able to accurately analyse
localized signals on a finite support. Moreover, since there are various different
shapes of wavelets, a broad range of signals can be analysed and approximated
efficiently. Examples of wavelets are shown in Figure 7.
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Figure 7: Examples of wavelets (a) Haar (b) Daubechies-2 (c) Coiflet-1 (d) Meyer
(e) Morlet (f) Mexican Hat. [44]

Wavelets are signals on a finite support that can be scaled and translated. Through
scaling, high and low frequencies can be captured and through translation, the
correlation of the signal with the wavelet at any time/space instance can be de-
termined. Every wavelet represented in Figure 7 can be seen as a mother wavelet
ψ(x) from which the scaled and translated functions are derived as follows:

ψa,b(x) = 1√
a
ψ(x− b

a
) (23)

Here, a is the scaling coefficient and b is the translation coefficient.

The Wavelet Transform. The set of coefficients that are obtained by taking
the inner product of the signal f(x) with wavelet ψa,b for a varying a and b is
called the wavelet transform. By transforming the signal f(x) to another domain,
it becomes easier to analyse the signal. The wavelet transform can be written as
follows:

C(a, b) = 1√
a

∫ ∞

−∞
f(x)Ψ(x− b

a
)dx (24)
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Taking the inner product of the signal with daughter wavelets with different scales
and translations, varying with nearly infinitesimal stepsize, allows the signal to be
represented with very high accuracy. However, doing this for a very small step-size
is often computationally heavy due to an enormous number of coefficients being
produced. Therefore, in practice, often a discrete version of the wavelet transform
is used, where scaling and translating are done at specific intervals. [45] The discrete
wavelet transform can be written as follows:

D[a, b] = 1√
a

∑
n∈Z

f [xn]ψ[xn − b
a

] (25)

The interval used is often dyadic; here the scaling and translation coefficients are
scaled with a power of two:

a = 2j for j = 1, 2, 3...m (26)

b = 2jk for j = 1, 2, 3...m and k = 1, 2, 3, ...h (27)
Equation 23 can thus be rewritten as:

ψj,k(x) = 1√
2j
ψ(x− 2jk

2j
) = 1√

2j
ψ(2−jx− k). (28)

Here, j is the level, 2j is the scale and 2jk is the shift along the time/space axis.
By scaling the translation coefficient and the scaling coefficient by a factor of two,
it is possible to create an orthonormal wavelet basis. [46] Orthonormality allows for
a sparse representation of the signal, where the information that is stored in each
wavelet coefficient is unique.

Wavelet Filter bank. In wavelet filter bank analysis, an orthonormal wavelet
basis is used to decompose a signal into high-frequency and low-frequency compo-
nents, whereafter both high-frequency and low-frequency components are down-
sampled by two-fold. Then, the low-frequency component can be filtered once
more into a low- and high-frequency component. This can be done for several con-
secutive levels. Each time, the resulting low- and high-frequency components are
downsized by a factor two, in doing so, applying dyadic scaling. This is visualised
in Figure 8.
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Figure 8: Wavelet Filter bank Analysis for a 2 Level Decomposition. Here, a0
denotes the input signal, h̄ and ḡ are the decomposition low-pass and high-pass
filters, respectively. a1 and a2 denote the approximation coefficients of the first
and second decomposition level, respectively. Similarly, d1 and d2 denote the detail
coefficients of the first and second decomposition level. j indicates the level.

The working principle of wavelet filter banks is derived from the multiresolution
theory of Mallat and Meyer. In order to apply multiresolution analysis, a new
function has to be introduced, the scaling function ϕj,k. Similarly to the wavelet
functions in Equation 28, scaling functions can be defined as a family of functions
that are generated from a father function by scaling and translating: [47]

ϕj,k(x) = 1√
2j
ϕ(2−jx− k) (29)

Then, the low-frequency components of each level j are represented by approx-
imation coefficients aj,k, which are obtained by taking the inner product of the
original signal a0 with the scaling function ϕj,k. The high-frequency components
are represented by detail coefficients dj,k, which are obtained by taking the inner
product of the original signal a0 with the wavelet function ψj,k. Here, the scaling
function functions as a low-pass filter and the wavelet function as a band-pass
filter: [48]

aj,k = ⟨a0, ϕj,k⟩; dj,k = ⟨a0, ψj,k⟩ (30)
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A property of the multiresolution approximation is that each coarser resolution
level space is contained within the higher resolution spaces, Vj+1 ⊂ Vj. Where
Vj = Spank[ϕj,k(x)]. This entails that the scaling and wavelet functions of the
lower resolution level can be derived from the scaling function at a higher resolution
level, which is called the two scale-relation:

ϕj =
∑
n∈Z

hn ϕj−1,n (31)

ψj =
∑
n∈Z

gn ϕj−1,n (32)

Here, n is the integer index, hn and gn are the scaling/low-pass filter and wavelet/high-
pass filter, respectively. One can rewrite Equation 31 and Equation 32 to incor-
porate the dyadic scaling and translation coefficients: [49]

ϕ(x) =
∑
n∈Z

h(n)
√

2ϕ(2x− n) (33)

ψ(x) =
∑
n∈Z

g(n)
√

2ϕ(2x− n) (34)

The derivation of the lower-resolution wavelet and scaling functions can be visu-
alised easily using the Haar wavelet. The Haar low-pass filter h and high-pass
filter g can be denoted as:

h = 1√
2

[1 1]; g = 1√
2

[1 − 1]. (35)

By substituting the Equations from 35 in Equation 33 and Equation 34, it can
be seen how the scaling function ϕ(x) and the wavelet function ψ(x) of a lower
resolution level can be reconstructed by the scaling functions of a higher resolution
level:

ϕ(x) =
√

2
∑
n∈Z

hnϕ(2x− n) =
√

2( 1√
2
ϕ(2x) + 1√

2
ϕ(2x− 1)) = ϕ(2x) + ϕ(2x− 1)

(36)
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Figure 9: Constructing the Haar scaling function ϕ(x) of a lower resolution from
the Haar scaling function of a higher resolution (dyadically scaled) according to
the two scale-relation.

ψ(x) =
√

2
∑
n∈Z

gkϕ(2x− n) =
√

2( 1√
2
ϕ(2x)− 1√

2
ϕ(2x− 1)) = ϕ(2x)− ϕ(2x− 1)

(37)

1

10 1
2

1

10 1
2

φ(2x) φ(2x – 1)
1

–1

10 1
2

ψ(x)

x x x

Figure 10: Constructing the Haar wavelet function ψ(x) of a lower resolution from
the Haar scaling function of a higher resolution (dyadically scaled) according to
the two scale-relation.

In order to find the approximation and detail coefficients of each consecutive level,
it is possible to rewrite Equations 30 in terms of the scaling and wavelet filters h
and g.
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Recall Equation 34:
ψ(x) =

∑
n∈Z

gn

√
2ϕ(2x− n)

Scaling and translating the time variable gives us:

ψ(2−jx− k) =
∑
n∈Z

gn

√
2ϕ(2(2−jx− k)− n)

=
∑
n∈Z

gn

√
2ϕ(2−j+1x− 2k − n)

(38)

Recall Equation 28:
ψj,k = 2−j/2ψ(2−jx− k)

We can rewrite Equation 28 in terms of Equation 38:

ψj,k = 2−j/2 ∑
n∈Z

gn

√
2ϕ(2−j+1x− 2k − n)

Take m = 2k + n,

ψj,k = 2−j/2 ∑
m∈Z

gm−2k

√
2ϕ(2−j+1x−m)

=
∑
m∈Z

gm−2k2(−j+1)/2ϕ(2−j+1x−m)

(39)

Notice that Equation 28 is similar for the father wavelet ϕ and, for j − 1 can be

denoted as:
ϕj−1,m = 2−(j−1)/2ϕ(2−(j−1)x−m)

= 2(−j+1)/2ϕ(2−j+1x−m)
(40)

Then, substituting Equation 40 in Equation 39 results in:

ψj,k =
∑
m∈Z

gm−2kϕj−1,m (41)

Recall the formula for the detail coefficients from Equation 30:

dj,k = ⟨a0, ψj,k⟩

=
∫
a0(x)ψj,k(x)dx

Substituting Equation 41 in the formula for the detail coefficients from Equation 30
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we obtain:
dj,k =

∑
m∈Z

gm−2k

∫
a0ϕj−1,m (42)

It can be recognised that the integral is the scaling function from Equation 30 at
level j − 1, hence, the formula from which the detail coefficients of the following
level can be determined becomes:

dj,k =
∑
m∈Z

gm−2kaj−1,m (43)

Similarly, for the approximation coefficients:

aj,k =
∑
m∈Z

hm−2kaj−1,m (44)

This derivation has been obtained by regarding Ten Lectures of Wavelets by Ingrid
Daubechies and Introduction to Wavelets and Wavelet Transforms, A Primer by
Burrus et al. [49] [47] Note that the notation of Daubechies is used in which higher
values for j indicate an increasingly coarser resolution.

The main advantage of wavelet filter bank denoising is the possibility of
perfect reconstruction of the original signal. Perfect reconstruction is obtained
when no aliasing and no distortion happens throughout the filtering of the sig-
nal. [50] This is achieved by using conjugate quadrature filters (CQF), h[n] and
g[n], where:

g[n] = (−1)nh[n] (45)
Here, g[n] and h[n] are the reconstruction high-pass and low-pass filters, respec-
tively. The decomposition filters relate to them as:

h̄[n] = h[−n]; ḡ[n] = g[−n] (46)
Through combining the theory of multi-resolution with conjugate quadrature fil-
ters, a perfect reconstruction wavelet filter bank, as shown in Figure 11, is obtained.
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Figure 11: Analysis and Synthesis Filter bank for 2 Decomposition Levels. Here,
a0 denotes the input signal, h̄ and ḡ are the decomposition low-pass and high-
pass filters, respectively. a1 and a2 denote the approximation coefficients of the
first and second decomposition level, respectively. Similarly, d1 and d2 denote the
detail coefficients of the first and second decomposition level. The T stands for
thresholding. Furthermore, d̃1 and d̃2 are the detail coefficients after thresholding.
h and g are the reconstruction low-pass and high-pass filters, respectively. ã1 is
the reconstructed approximation coefficient of the first level and ã0 is the output
signal.
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Example of a Perfect Reconstruction Haar Wavelet Filter bank

To illustrate the theory above, here, an example is given of the decompo-
sition and reconstruction of a signal a0 using a perfect reconstruction filter
bank with the Haar wavelet.

The vector representation of the signal a0 is:

[
4 2 3 1 4 2 3 2 9 8 9 7 9 7 8 8

]
The first stage of signal decomposition in the filter bank is as follows:

2

2

h
–

g–

a0 a1

d1

Figure 12: First Level Decomposition Filter bank.

Hence, to determine the approximation coefficients a1 and detail coefficients d1
we need the high-pass and low-pass decomposition filters of the Haar wavelet, h̄
and ḡ respectively. Recall Equation 35:

h = 1√
2

[1 1]; g = 1√
2

[1 − 1],

which are the Haar reconstruction filters. By substituting these into Equation 46,
the haar decomposition filters can be derived:

h̄ = 1√
2

[1 1]; ḡ = 1√
2

[−1 1]

Now recall Equation 44 and Equation 43:

aj,k =
∑
m∈Z

hm−2kaj−1,m, dj,k =
∑
m∈Z

gm−2kaj−1,m
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Continuation: Example of a Perfect Reconstruction Haar Wavelet
Filter bank

These equations are equivalent to downsizing by a factor two the convolution
of the finite impulse response filters with the approximation coefficients of a
higher resolution level: [50]

aj,k = (↓ 2)[aj−1,m ∗ h−m] (47)

dj,k = (↓ 2)[aj−1,m ∗ g−m] (48)
Note that h̄ and ḡ are functions of −m so the signal is actually convoluted
with the inverse of the decomposition filters:

h̄inv
m = h−m = 1√

2
[1 1]; (49)

ḡinv
m = g−m = 1√

2
[1 − 1]; (50)

Hence, the approximation coefficients of the first level, a1, are calculated as
follows:

a1 = (↓ 2)[
[
4 2 3 1 4 2 3 2 9 8 9 7 9 7 8 8

]
∗ 1√

2

[
1 1

]
]

a1 = (↓ 2)[ 1√
2

[
4 6 5 4 5 6 5 5 11 17 17 16 16 16 15 16 8

]
]

a1 = 1√
2

[
6 4 6 5 17 16 16 16

]

And the detail coefficients of the first level, d1, can be written as:

d1 = (↓ 2)[
[
4 2 3 1 4 2 3 2 9 8 9 7 9 7 8 8

]
∗ 1√

2

[
1 − 1

]
]

d1 = (↓ 2)[ 1√
2

[
-4 2 -1 2 -3 2 -1 1 -7 1 -1 2 -2 2 -1 0 8

]
]

d1 = 1√
2

[
2 2 2 1 1 2 2 0

]
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Continuation: Example of a Perfect Reconstruction Haar Wavelet
Filter bank

This can be done for a2 en d2 as well:

a2,k = a1,m ∗ h̄inv
m , d2,k = a1,m ∗ ḡinv

m

a2 = (↓ 2)[ 1√
2

[
6 4 6 5 17 16 16 16

]
∗ 1√

2

[
1 1

]
]

a2 = 1√
4

[
10 11 33 32

]

d2 = (↓ 2)[ 1√
2

[
6 4 6 5 17 16 16 16

]
∗ 1√

2

[
1 − 1

]
]

d2 = 1√
4

[
2 1 1 0

]

And for a3 and d3:

a3 = (↓ 2)[ 1√
4

[
10 11 33 32

]
∗ 1√

2

[
1 1

]
]

a3 = 1√
8

[
21 65

]

d3 = (↓ 2)[ 1√
4

[
10 11 33 32

]
∗ 1√

2

[
1 − 1

]
]

d3 = 1√
8

[
−1 1

]

Now we have decomposed signal a0 into three consecutive levels.
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Continuation: Example of a Perfect Reconstruction Haar Wavelet
Filter bank

If we then want to reconstruct the signal, we start at the highest decomposition
level and work our way back. First, we upscale a3 and d3 by inserting zeros
and then, we convolute with the reconstruction filters h and g respectively.
We obtain a2 by summing the upscaled and convoluted a3 and d3 coefficients.
Recall that we are convoluting with the inverse of the filters, hence:

hinv
m = h−m = 1√

2
[1 1]; (51)

ginv
m = g−m = 1√

2
[−1 1]; (52)

As such a2 can be calculated:

ã3 = 1√
8

[
0 21 0 65

]
∗ 1√

2

[
1 1

]

ã3 = 1√
16

[
0 21 21 65 65

]

d̃3 = 1√
8

[
0 − 1 0 1

]
∗ 1√

2

[
−1 1

]

d̃3 = 1√
16

[
0 -1 1 1 -1

]

γ2 = ã3 + d̃3 = 1√
16

[
0 20 22 66 64

]

γ2 = ã3 + d̃3 = 1√
4

[
0 10 11 33 32

]
Note that the reconstructed signal is shifted, therefore, in order to get perfect
reconstruction γ2 has to be shifted: [51]

a2[m] = γ2[m− 1]

a2 = 1√
4

[
10 11 33 32

]
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Continuation: Example of a Perfect Reconstruction Haar Wavelet
Filter bank

Similarly we obtain a1 from summing upscaled and convoluted a2 and d2:

ã2 = 1√
4

[
0 10 0 11 0 33 0 32

]
∗ 1√

2

[
1 1

]

ã2 = 1√
8

[
0 10 10 11 11 33 33 32 32

]

d̃2 = 1√
4

[
0 2 0 1 0 1 0 0

]
∗ 1√

2

[
−1 1

]

d̃2 = 1√
8

[
0 2 -2 1 -1 1 -1 0 0

]
a1[m] = γ1[m− 1] = ã2 + d̃2

a1 = 1√
2

[
6 4 6 5 17 16 16 16

]
Finally, the - perfectly reconstructed - signal can be obtained:

ã1 = 1√
2

[
0 6 0 4 0 6 0 5 0 17 0 16 0 16 0 16

]
∗ 1√

2

[
1 1

]

ã1 = 1√
4

[
0 6 6 4 4 6 6 5 5 17 17 16 16 16 16 16 16

]

d̃1 = 1√
2

[
0 2 0 2 0 2 0 1 0 1 0 2 0 2 0 0

]
∗ 1√

2

[
−1 1

]

d̃1 = 1√
4

[
0 2 -2 2 -2 2 -2 1 -1 1 -1 2 -2 2 -2 0 0

]
a0[m] = γ0[m− 1] = ã1 + d̃1

a0 = 1√
4

[
8 4 6 2 8 4 6 4 18 16 18 14 18 14 16 16

]
a0 =

[
4 2 3 1 4 2 3 2 9 8 9 7 9 7 8 8

]
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3.2.2 Thresholding

When a signal has been decomposed in approximation and detail coefficients, the
noise can be removed by thresholding certain detail coefficients. As mentioned,
the detail coefficients represent the deviation of the signal from the approximation
coefficients. Large detail coefficients may indicate a sudden intensity change in the
actual signal, while small detail coefficients are more likely to be the result of small
noise variation. Based on this wavelet coefficient property, a thresholding method
was proposed by Donoho and Johnstone, [42] who opted to threshold a signal in its
wavelet-decomposed state. The threshold can, furthermore, be determined from
the data itself, which makes wavelet denoising well-suited for MA-XRF data were
often no a priori information is known.

There are various methods to determine the threshold value for the wavelet
coefficients, such as universal thresholding, [42] SURE (Stein’s Unbiased Risk Esti-
mate) thresholding, [52] Minimax thresholding, [53] and Bayesian thresholding. [54]These
different thresholding methods are each optimal for specific cases.

The universal threshold is taken as an example, being the most widely
used, [55] to explain the principle of thresholding. The formula for the universal
threshold is as follows:

λ = σ
√

2ln(N). (53)
Here, σ is the average variance of the noise and N is the signal length. The value
of the average variance σ is determined by the following equation:

σ = Median(|Wj|)
0.6745 , (54)

where Wj represents the detail coefficients at level j.
Once the thresholding value λ has been established, there are two often-used

procedures to threshold the detail coefficients, called hard thresholding and soft
thresholding. In hard thresholding, the detail coefficients whose absolute values
are below the value of the threshold λ are set to zero, while the detail coefficients
whose absolute value is above the threshold λ remain unchanged as follows:

Ŵj,k =
Wj,k if |Wj,k| ≥ λ

0 if |Wj,k| < λ
. (55)

Here, the subscript k indicates each individual detail coefficient. For soft thresh-
olding, the values of the detail coefficients for which their absolute value is lower
than the threshold are similarly set to zero. The values of the detail coefficients, for
which their absolute value is higher than the threshold value, are shrunk towards
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zero by the same amount as the threshold value. Therefore, the soft thresholding
function can be denoted as follows:

Ŵj,k =
sgn(Wj,k)(|Wj,k| − λ) if |Wj,k| ≥ λ

0 if |Wj,k| < λ
(56)

Equation 55 and Equation 56 are visualised in Figure 13.

Figure 13: (a) Hard thresholding and (b) soft thresholding. [55]

3.2.3 2D-Signal Denoising

Until now, the basics of wavelet filter bank denoising have been explained for
a one-dimensional signal. However, for the purpose of spatially denoising MA-
XRF data, the method of wavelet filter bank denoising will be applied to a two-
dimensional signal. Therefore, in this section wavelet filter bank denoising for a
two-dimensional signal is explained.

For two-dimensional signals, such as images, the tree-like structure of wavelet
filter banks as shown in Figure 8 is expanded. Instead of just one set of detail co-
efficients, there are three sets of detail coefficients per decomposition level, called
horizontal, vertical, and diagonal detail coefficients, see Figure 14a. As their name
implies, the horizontal detail coefficients capture horizontal details, the vertical de-
tail coefficients capture vertical details, and the diagonal detail coefficients capture
diagonal details.

To obtain all these coefficients, the signal is filtered two consecutive times
instead of one time per level. First, the rows are filtered, in which each row can be
seen as a one-dimensional signal. After filtering, the rows are each decimated by
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a factor of two, hence, the number of columns becomes twice as small. Hereafter,
the columns are filtered and consequently decimated, reducing the number of rows
by a factor of two as well, hence, the ratio between rows and columns stays equal.
The process of the two-dimensional signal decomposition can be seen in Figure 14.
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Figure 14: a) 2D analysis filter bank of 1 decomposition level. b) Visualisation
of the data geometry during 2D signal decomposition. S0 is the two-dimensional
input signal and the decomposition level is denoted by j. h̄ and ḡ are the low-pass
and high-pass decomposition filters, respectively. 2C implies the downsizing of the
columns by a factor of two, similarly, 2R implies the downsizing of the rows by
a factor of two. Sh

0 and Sg
0 represent the row-filtered signal of the low-pass filter

and the high-pass filter, respectively. S1 represent the approximation coefficients,
W h

1 represents the horizontal detail coefficients, W v
1 represents the vertical detail

coefficients, and W d
1 represents the diagonal detail coefficients. Furthermore, p

denotes the number of rows and q the number of columns of the input signal.
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For deriving the formulas of the approximation coefficients and the three sets of
detail coefficients, we recall Equation 44 and Equation 43. The first filter bank
step results in Sh

0 and Sg
0 :

Sh
0,p =

∑
m∈Z

hm−2kS0,m,p (57)

Sg
0,p =

∑
m∈Z

gm−2kS0,m,p (58)

Here, p is the row number. The approximation coefficients are obtained by filtering
the two-dimensional signal both horizontally and vertically with low-pass filter h:

S1,q =
∑
m∈Z

hm−2kS
h
0,m,q (59)

Here, q is the column number. The horizontal detail coefficients are obtained by
filtering the 2D-signal horizontally with a low-pass h filter and vertically with a
high-pass filter g:

W h
1,q =

∑
m∈Z

gm−2kS
h
0,m,q (60)

The vertical detail coefficients are obtained by filtering the signal horizontally with
a high-pass g filter and vertically with a low-pass filter h:

W v
1,q =

∑
m∈Z

hm−2kS
g
0,m,q (61)

The diagonal detail coefficients are obtained by filtering the signal horizontally
and vertically with a high pass filter g:

W d
1,q =

∑
m∈Z

gm−2kS
g
0,m,q (62)

After the 2D-signal is decomposed, the detail coefficients are thresholded as ex-
plained in section 3.2.2 and subsequently the signal can be reconstructed.

3.3 Wavelet Filter bank Denoising: a Procedure for Spa-
tially Denoising MA-XRF Data

In the previous sections, the reason for choosing wavelet denoising for MA-XRF
data denoising was justified and the working principle of wavelet filter banks was
explained. In this section, that knowledge is used for design considerations in
order to create a wavelet denoising procedure that is suitable for MA-XRF data
denoising.
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3.3.1 Choosing an Appropriate Wavelet

Not all wavelets can be used for perfect reconstruction filter bank denoising. It is
necessary for the wavelets to be able to construct an orthonormal basis and for their
transform to have compact support. The latter is achieved when the transform
has zero values outside a bounded interval in the frequency domain. [46] This leaves
us the Haar wavelet, the Daubechies wavelet family, Symlets, and Coiflets.

Still, within these wavelet families, there are large differences between wavelets
as well; for example, their number of vanishing moments. A wavelet ψ has p van-
ishing moments if: ∫ ∞

−∞
ψ(x)xkdx = 0 for 0 ≤ k < p. (63)

Polynomials having a degree from 0 until p−1 can be accurately represented by the
scaling functions. The higher the number of vanishing moments, the more complex
signals can be represented, or, the more small detail coefficients are obtained,
making a sparser representation of the signal possible.

The factors that influence the shape of ψ are, besides its number of vanishing
moments, the support size and regularity. [46] Where regularity is a measure of the
smoothness of the wavelet function. The more vanishing moments, the higher the
regularity. Which wavelet ψ is best suited for denoising, depends on the signal.
For example, if the signal is mainly regular (smooth) and has but a few isolated
singularities, a wavelet with many vanishing points is desired since it will generate
a lot of small detail coefficients. If singularities are close to one another, a wavelet
with a small support is optimal. However, it is not possible to have both a small
support and many vanishing moments for there is a trade-off between the two.

The regularity of ψ does not influence the amplitude of the detail coefficients
in the way the support size and amount of vanishing moments do, the regularity is
mainly an issue for the visual appeal of the denoised signal. Namely, when a signal
is reconstructed after thresholding, the error which is added to a detail coefficient
will result in a smooth error if the wavelet function is smooth, and in an irregular
error if the wavelet function is irregular. The reconstructed signal will consequently
appear smooth if the added error is smooth and vice versa, even though the errors
are of similar magnitude. [46] Therefore, images are often denoised using wavelets
with high regularity.

Since the objective of denoising the MA-XRF data is more focused on im-
proving the process of evaluating spectral data than obtaining aesthetically pleas-
ing peak intensity maps, regularity is not a factor of great importance in our case.
What is important is the ability to denoise while refraining from smoothing out im-
portant features within the data. Since the spatial MA-XRF signal is characterised
by quite some intensity fluctuations, a relatively low number of vanishing moments
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is required. Still, considering there is no exact method for pre-determining the op-
timal number of vanishing moments, a subset of the wavelet families stated above
is going to be tested for their performance in the denoising of MA-XRF data. The
wavelets chosen for testing the perfect reconstruction filter bank are the Haar,
Db2-Db6, Sym2-Sym6, and Coif1-Coif2.

3.3.2 Choosing Thresholding Method

Since there are various wavelets that each have their own advantages for denoising
different signal types, there are also various thresholding selection procedures, as
has been discussed in section 3.2.2.

Choosing the right threshold selection procedure is critical for correctly
denoising MA-XRF data. Signals can be distorted when a threshold value is too
high. However, data can remain polluted with noise when a threshold value is too
low.

In the case of MA-XRF, the threshold selection procedure is, furthermore,
bound to some constraints, as was stated in section 3.1.1. In the first place, it is
essential that no prior information is needed for determining the threshold and,
next to that, it is important that the absolute value of the signal intensity is not
substantially compromised. Finally, the goal is to eliminate shot noise, while most
methods for determining the threshold value assume Gaussian noise. [56]

This set of constraints limits the amount of possible threshold selection
procedures significantly. For example, thresholding methods that do account for
shot noise are often not purely data-driven or need processing in the image domain,
which nullifies the wavelet property of maintaining the absolute values of the data
intact.

Luisier et al. [57] described a data-driven threshold selection procedure for
shot noise-polluted data, called PURE-LET. However, in order to calculate the
Mean-Squared-Error (MSE), used to optimize the threshold, still a statistical es-
timate has to be constructed beforehand. This is fine when dealing with medical
images, having large amounts of similar samples, but in the case of MA-XRF data,
this is not ideal.

Being the most widely used thresholding function and being both data-
driven and able to maintain the absolute value of the data, universal thresholding
has been used as our base procedure for determining the threshold values. Unlike
the common use of the universal threshold, the threshold is determined for each
level instead of taking one value for every level. Furthermore, in order to maintain
the absolute value of the data, hard thresholding is applied.

Nevertheless, this procedure is insufficient for our purposes, and it fails to
account for shot noise and has no awareness of MA-XRF’s spectral domain. In
our work, we prepare a solution for this problem by exploiting the 3-dimensional
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nature of MA-XRF datasets. To accomplish this, Equation 54 is expanded by
calculating the variance σ not using the detail coefficients of one channel, but using
its neighbouring channels as well, as can be seen in Figure 15. Recall Equation 54:

σ = Median(|Wj|)
0.6745

Then, the σj,i for the detail coefficients of channel i is determined for the averaged
sum Ω of the detail coefficients at channel i and its neighbouring channels as
follows:

Ωj,i =
∑i+s

i−s Wj,i

2s+ 1 (64)

σj,i = Median(|Ωj,i|)
0.6745 (65)

where s stands for the number of neighbouring channels on the left and on the
right of channel i. The advantage of using the average detail coefficients of a
channel and its neighbouring channels to base the standard deviation on is the
fact that the effect of shot noise is reduced. By averaging the detail coefficients,
large intensity fluctuations due to shot noise are largely minimized. This results
in the standard deviation being lower, hence, the threshold being lower.

When one bases the standard deviation on one channel alone, the threshold
would be too high and too many detail coefficients would be set to zero. Therefore,
it is necessary to lower the standard deviation. Moreover, by lowering the standard
deviation on a per-channel basis, we automatically set higher thresholds at higher-
intensity peaks and lower thresholds at lower-intensity peaks. This ensures the
removal of noise at high-intensity peaks while retaining the signal of low-intensity
peaks, even though the noise of the high-intensity peak might be of a higher
magnitude than the signal of the low-intensity peak.

The optimal number s for MA-XRF wavelet denoising is unknown, but can
only be found through testing. An initial estimation, however, allows the quicker
evaluation of other filter design factors. Then, after a selection of well-performing
filters has been made, the optimal value of s can be determined.
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Figure 15: Schematic overview of neighbouring channels of channel i within a
hyperspectral datacube. The x and y axes represent the spatial pixel position,
while the z axis represents the channels. Here the case of s = 3, i.e. 3 neighbouring
channels on each side, is depicted.

3.3.3 Choosing the Number of Decomposition Levels

The amount of denoising of the dataset is not only dependent on the threshold,
but also on the resolution in which the data is thresholded. Every increasing level
j, the resolution becomes coarser. Hence, at lower j, fluctuations of the detail
coefficients are more likely noise inflicted, while at higher j fluctuations of the
detail coefficients are more likely to include signal features as well. It is important
to choose the right amount of decomposition levels where the noise is thresholded
and the important features are not. There is, however, no clear procedure to pre-
determine the optimal amount of decomposition levels. Therefore, just like with
the different mother wavelets, the optimal amount of decomposition levels for
denoising the MA-XRF data is going to be tested. The amount of decomposition
levels that is chosen to be tested is 6, scaling the mother wavelets until a factor
26 = 64.
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4 Method and Case study
In this chapter, the method for testing the wavelet filter described in section 3.3
is outlined. The different filter design combinations are explained and the quality
measures that indicate the performance of respective filters are introduced. There-
after, a case study of a daguerreotype, on which several filters will be tested, is
specified.

4.1 Method
Wavelet filter bank denoising is proposed as a method suitable to denoise MA-XRF
data. Spatially denoising MA-XRF data has not yet become standard practice,
hence, there are few methods to compare this new method with. Yet, as mentioned
in section 2.1.3, Kogou et al. used a 3 by 3 kernel for spatial median filtering of
the data. Therefore, the proposed wavelet filter bank denoising method will be
compared to a median filtering algorithm. Furthermore, the filter bank design de-
scribed in section 3.3 left some options open with respect to what mother wavelet
suits best, what level of decomposition should be applied, and how many neigh-
bouring channels should be used to determine σ. Accordingly, several different
combinations for wavelet filter bank design options will be tested. As was men-
tioned in section 3.3.2, an initial estimation of s allows us to first optimize for the
mother wavelet and the number of levels. Then, with a specific selection of filters,
we optimize for s.

The evaluation of the different filters is done by means of different quality
measures: Signal-to-Noise Ratio (SNR), Root Mean Square Error (RMSE), and
Mean Absolute Error (MAE) of the filtered noisy data with respect to ground
truth data. Both quality measures of individual spectra and more broad quality
measures of summed spectra are determined. Moreover, a visual inspection of the
error distribution images, pixel spectra, sum spectra, and peak intensity maps will
be done for the various filters. Finally, every filter will be evaluated for various
simulated dwell times, which correspond to various noise levels.

4.1.1 Filter Designs

A wavelet filter bank consists of a lot of different design parameters. These pa-
rameters were described in section 3 and argumentation for the choice of certain
parameters was given in section 3.3. The choice of the design parameters was nar-
rowed down based on literature indicating that certain properties would be suitable
for MA-XRF data denoising. The final choice for the parameters was not as self-
evident and, therefore, these parameter choices are instead determined based on
quality indicators, namely SNR, MAE, and RMSE. However, not all optimizable
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parameters are tested, so has the threshold method been chosen. The optimizable
parameters used for the wavelet filter bank and whether they are optimized or
adopted are indicated in Table 1.

Here it can be seen that the preliminary estimation for the number of neigh-
bouring channels is 5 channels on each side. To obtain this initial estimation for
s, testing was done with a 3-level db3 decomposition. The different performance
of the filter using s = 0. s = 5, and s = 10 neighbouring channels were analysed,
and the best performance was achieved with s = 5.

Table 1: Optimizable Design Parameters

Parameter Specification
Optimized Mother Wavelet Haar, db(2-6), sym(2-6), coif(1,2)
Optimized Decomposition levels level 1 until 6
Estimated/
Optimized

Number of Neighbouring
Channels s

Preliminary Assumption: s = 5

Adopted Threshold Universal Threshold

4.1.2 Quality Measures

For assessing the quality of the filters, the SNR, RMSE, and MAE of the filtered
signal will be determined using a synthetic dataset, where the ground truth signal
is available.

Signal-to-Noise Ratio (SNR)
The signal-to-noise ratio (SNR) is an indicator that characterizes the quality of
noise suppression during filtering. [58] At the beginning of this research, we stated
that the signal-to-noise ratio should become optimized for lower dwell times.
Therefore, to determine which method for spatially denoising MA-XRF data is
best suited towards this objective, the SNR of the filtered data is calculated.

SNR =
∑N

i=1 si∑N
i=1 |xi − si|

(66)

Here, xi is the filtered data consisting of noise and signal, and in the filtered case
hopefully less noise than originally. si is the ground truth signal. s and x will
be vectors when calculating the spectral SNR and matrices when calculating the
spatial SNR, i.e., si is the ground truth value of channel i when calculating the
spectral SNR and si is the ground truth value of pixel i when calculating the
spatial SNR.

56 of 144



Master Thesis Maartje Huijbrechts

Root Mean Square Error (RMSE)
The RMSE is calculated to determine how large the error is between the filtered
data and the ground truth. The larger the deviation from the ground truth, the
larger the error is penalized (quadratically).

RMSE =
√∑N

i=1 ||xi − si||2
N

(67)

Here, xi is the filtered signal, si is the ground truth, and N is the amount of values
in the signal.

Mean Absolute Error (MAE)
Through the proportionally larger weighting of large deviations from the ground
truth, the RMSE is biased towards elements with high photon counts. The MAE
uses a weighting that is linearly proportional to the error rather than quadratically
and, therefore, does not have that problem.

MAE = 1
N

N∑
i=1
|xi − si| (68)

Here, xi is the filtered signal, si is the ground truth, and N is the amount of values
in the signal.

Together, for our synthetic dataset, these three quality measures give an accurate
indication of the suitability of a certain filter for denoising MA-XRF data. Ideally,
both RMSE, and MAE are low, since this would indicate a higher resemblance
between the ground truth and the filtered data. Meanwhile, it is important that
the SNR is high, for that indicates how resistant the signal is to noise.

4.1.3 Synthetic Datasets

To properly assess filters with the quality measures described in section 4.1.2, a
ground truth signal is necessary. To this end, we created a synthetic dataset. The
synthetic dataset was created by assigning real-world MA-XRF pixel spectra to
the spatial pattern covering a 780×780 binary image retrieved from a 1951 USAF
resolution test chart of 96 dpi, as shown in Figure 16. These spectra were obtained
from an actual MA-XRF scan of a daguerreotype, which will be elaborated upon
in section 4.2.1. This scan was made with a dwell time of 100 milliseconds and
a step size of 50 micrometres. In doing so, a scan of 376 by 260 pixels and 4096
channels was obtained. For now, it is important to clarify that the brighter areas
in the daguerreotype are rich in mercury and the darker areas are poor in mercury.
Hence, the mercury-rich pixel spectrum was created by taking the sum average of a
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mercury-rich area of the daguerreotype, indicated by the blue squares in Figure 17.
Similarly, the mercury-poor pixel spectrum was created by taking the sum average
of a mercury-poor area, indicated by the red square in Figure 17. The mercury-
rich and mercury-poor pixel spectra are plotted in Figure 18 and the difference
between the spectra is plotted in Figure 19. The green bar represents the area
of the Hg L3 peak. In the synthetic dataset, a mercury-poor pixel spectrum was
assigned to the darker areas, while a mercury-rich pixel spectrum was assigned to
the brigher areas of the 1951 USAF Resolution Test chart. A peak intensity map
of the Hg L3 peak of the synthetic dataset is shown in Figure 20.

Figure 16: 1951 USAF Resolution Test Chart used for creating the spatial distri-
bution of mercury for the synthetic dataset by assigning MA-XRF spectra to it
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Figure 17: Peak intensity map of the Hg L3 peak of a daguerreotype. In a peak
intensity map, the relative intensity of photon counts per fluorescence line per
pixel is visualised. This is done by summing several channels covering the peak
created by the fluorescence line of an element. The brighter areas represent pixels
with more Hg L3 photon counts, while the darker areas represent pixels with less
Hg L3 photon counts. Hence, the blue areas are rich in mercury and the red area
is poor in mercury
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Figure 18: Average pixel spectra of the black area and white area pointed out by
the red and blue boxes respectively in Figure 17

Figure 19: Difference between the average spectra of the black and white areas
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Figure 20: Hg L3 peak intensity map of the synthetic dataset. Created by summing
the channels covering the Hg L3 peak.

From the original clean synthetic dataset, other datasets have been derived each
with increasingly more noise. This has been done by artificially reducing the dwell
time per pixel, which comes down to reducing the photon counts within the pixel
spectra simply by multiplying it by 0.75 and 0.5 to obtain a dwell time of 0.75
s and 0.5 s, respectively. After the reduction of the dwell time, shot noise is
applied, using the numpy.random.poisson command in Python. Due to the lesser
amount of photons, shot noise becomes more prominent at low dwell times. In
this manner, three datasets have been obtained having varying noise levels. These
three datasets, shown in Table 2, are used to test how well the filters described in
section 4.1.1 perform for different degrees of noise. The noisy Hg L3 peak intensity
maps of the three noise-perturbed datasets are shown in Figure 21.

Table 2: Testing Data

Test
Nr.

Dwell times

T. 1 1.0 s
T. 2 0.75 s
T. 3 0.5 s
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Figure 21: Hg L3 peak intensity maps of a synthetic MA-XRF dataset perturbed
with different levels of noise, Left: Poisson noise at a dwell time of 1 sec. Middle:
Poisson noise at a dwell time of 0.75 sec. Right: Poisson noise at a dwell time of
0.5 sec.

4.1.4 Tests

The synthetic dataset is used to determine the performance quality of wavelet
filters for different parameters. In order to prevent large homogeneous areas from
influencing the outcome of the test, the performance quality is not determined for
the entire dataset, but on a subset of the data which is indicated by the blue square
in Figure 22. By doing so, rewarding performance on small detailed variation, while
penalizing over-smoothing.

Figure 22: Subset of the Hg L3 peak intensity map of the synthetic dataset
indicated by the blue square
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First Testing Round

As mentioned, the amount of neighbouring channels for determining σ is initially
set at s = 5. Hence, in the first testround, only the effect of the mother wavelet
and the number of decomposition levels will be evaluated, using SNR, MAE, and
RMSE as performance quality indicators.

The various options for the parameters mother wavelet and decomposition
level result in 78 possible filter combinations. These filters are shown in Table 3.

Mother Wavelets
Levels 1 2 3 4 5 6

Haar F.1 F.2 F.3 F.4 F.5 F.6
DB2 F.7 F.8 F.9 F.10 F.11 F.12
DB3 F.13 F.14 F.15 F.16 F.17 F.18
DB4 F.19 F.20 F.21 F.22 F.23 F.24
DB5 F.25 F.26 F.27 F.28 F.29 F.30
DB6 F.31 F.32 F.33 F.34 F.35 F.36

SYM2 F.37 F.38 F.39 F.40 F.41 F.42
SYM3 F.43 F.44 F.45 F.46 F.47 F.48
SYM4 F.49 F.50 F.51 F.52 F.53 F.54
SYM5 F.55 F.56 F.57 F.58 F.59 F.60
SYM6 F.61 F.62 F.63 F.64 F.65 F.66
COIF1 F.67 F.68 F.69 F.70 F.71 F.72
COIF2 F.73 F.74 F.75 F.76 F.77 F.78

Table 3: Tested Filter Designs in First Round with s = 5

Second Testing Round

Using a selection of 9 filters obtained from the previous testing round, the effect of
the number of neighbouring channels used for the universal threshold calculation,
i.e. parameter s, will be studied. As mentioned, for obtaining the initial assump-
tion of s = 5, a rough comparison between filters, having s = 0, s = 5, and s = 10,
was made. Now, in this second testing round, for every value of s between 0 and
10, the filter quality is going to be assessed based on the same quality measures
used in the first testing round, namely visual analysis, SNR, RMSE and MAE.

Third Testing Round
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After having determined the optimal design parameters for the wavelet filter, and
the optimal number of neighbouring channels, the filter will be compared to two
median filters, one having a 3× 3 kernel and the other having a 5× 5 kernel. This
evaluation will be done by applying the same quality measures as were used in
the first and second testing round: SNR, RMSE, and MAE. Moreover, the perfor-
mance quality of the filters will be compared for synthetic data subject to different
degrees of noise as shown in Table 2.

4.2 Case study
In this section, a case study is described that validates the proposed wavelet filter
for use on real-world (non-synthetic) MA-XRF data. The study considers a MA-
XRF dataset, obtained from a daguerreotype, shown in Figure 23. First, the
daguerreotype and its physical properties will be explained and, thereafter, the
settings for obtaining the data and how the data is treated will be elaborated
upon.

Figure 23: Left: Daguerreotype of a woman, from private collection. Right: MA-
XRF scanned area.

4.2.1 The Daguerreotype

A daguerreotype is the result of a chemical photographing process invented by
Louis Daguerre. Being introduced to the world in 1839, the daguerreotype became
the first commercially available method of photography and was used till the early
1860s. [59]
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A cross-section of a daguerreotype is shown in Figure 24. The base of a
daguerreotype is formed by a copper (Cu) plate that is coated with a silver (Ag)
layer and subsequently polished. The polished metal plate then becomes exposed
to halogens (often iodide (I) is used), making it responsive to light exposure. At
this point, it can be used to make a photograph. When the plate is exposed to
light, salts are formed by the halogen reacting with the silver. The more light
hits the plate, the more salt particles are formed, hence, the higher the particle
density. To visualise the photograph, it has to be developed, which is done using
mercury (Hg) fumes. During the developing process, silver particles amalgamate
and silver-mercury nano-particles are formed. The photo then becomes visible
through the property of mercury particles which, through their high density, re-
flect light diffusely. The places with high silver-mercury particle density appear
as light, while those with low silver-mercury particle density appear as dark. As
such, a grey-scale image is obtained. [60] In order to prevent the image from fur-
ther developing due to extended light exposure, the remaining salts (silver-iodide)
are then removed from the plate. Hereafter, the photo is often gilded with gold
(Au). [61]

Figure 24: Anatomy of a daguerreotype. [61]

Several factors make the daguerreotype ideal as a case study to test the
wavelet filters: in the first place, its simple and largely predictable material com-
position, and secondly, the homogeneous support material. Moreover, the mercury
distribution being an exact match with the visual image allows for direct visual
comparison between the elemental mercury/gold distribution map and the photo-
graph. Testing the filter would come down to evaluating to what extent the visual
image can be recovered from the MA-XRF data.
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4.2.2 The MA-XRF Data of a Daguerreotype

The daguerreotype from Figure 23 has been scanned with a Bruker M6 Jetstream,
using a dwell time of 30 milliseconds and a step size of 50 micrometres. A scan of
376 by 260 pixels and 4096 channels was obtained.

The first step of data treatment involves multiplying each spectrum by a
factor 1000

30 to simulate a dwelltime of 1 s. Also, the channels covering the zero
peak are determined through visual inspection of the sum spectrum and the data
is normalized as such that every zero peak has an intensity of 10,000. Herewith,
intensity fluctuations due to dwell time variations are corrected, as described in
section 2.1.3. Thereafter, the data is cropped from 4096 channels to 2500 channels
in order to reduce the amount of data. Finally, the data is filtered with a selection
of the tested wavelet filters and a median filter.
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5 Results and Discussion
In this chapter, the results from evaluating the filters, as described in 4.1, are
presented and discussed. We begin with addressing the results of the first testing
round. After the first testing round, 9 wavelet filters are selected that are used
in the second testing round. From the second testing round, the optimal amount
of neighbouring channels to determine the standard deviation σ for the universal
thresholding is obtained. Subsequently, a selection of optimal wavelet filter designs
is made by combining the results from the first and second testing round. Here-
after, the performance quality of these designs is compared to that of two median
filters for different amounts of noise. Then, the applicability of the wavelet filter is
considered through filtering an actual MA-XRF dataset. The chapter ends with a
general discussion on the applicability of the wavelet filter, taking the three testing
rounds and the case study into account.

5.1 Testing Round 1
In the first testing round, a set of 78 different wavelet filters is evaluated. Here, the
value of s is set as 5 and optimization is focussed on finding the optimal mother
wavelet and decomposition level. In Figure 25, the performance quality (MAE,
RMSE, and SNR) of these filters is visualised.

5.1.1 Observations Testing Round 1

Explaining and Observing the Performance Quality Graph. The perfor-
mance quality plotted in Figure 25 is based on the entire dataset. The spectral
average (avg) performance quality, refers to the performance quality of every in-
dividual spectrum. Here, the performance quality is first calculated per spectrum
and then these values are averaged. This is similar to the spatial average (avg)
performance quality, where the performance quality of every individual channel
is calculated before averaging. With the spectral sum performance quality, first
all the spectra are summed and, then, the performance quality is determined.
Similarly, the spatial sum performance quality is determined.

The MAE, RMSE, and SNR are plotted against the number of levels for the
13 different mother wavelets: haar, db2, db3, db4, db5, db6, sym2, sym3, sym4,
sym5, sym6, coif1, and coif2. The performance quality at x = 0, indicates the
MAE, RMSE, and SNR of the unfiltered data.

Both spectral and spatial performance quality seem to increase with increas-
ing decomposition level for every mother wavelet, However, most improvement is
made in the first few levels, after which the graphs flatten. When looking at the
spectral performance quality, particularly the haar, but also the sym2, db2, and
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coif1 are performing very well. These 4 mother wavelets have the best spatial
average performance quality as well. And although the haar wavelet has a high
spatial sum performance quality, sym2, db2 and coif1 actually perform the worst.

Visualising Spatial Performance. The spatial performance quality is an indi-
cation of how well the filtered channels resemble the ground truth channels. Hence,
the spatial similarity between the ground truth data and the filtered data can also
be visualised by a peak intensity map. In Figure 26, the mercury L3 peak inten-
sity distribution is mapped for the haar and the db2 filtered data. Despite their
difference in spatial performance quality, here, not a clear distinction between the
two can be seen. Remarkable, however, is the fact that for both wavelets, the peak
intensity maps seem to be subject to artifacting at level 6.

Plotting the Average Spectral and Spatial Performance Quality of the
Mercury L3 Peak. To verify how the spatial performance seemed to get worse
after a certain level when regarding the peak intensity maps, while this did not ap-
pear to be the the case when regarding Figure 25, the average spectral and spatial
performance quality of the mercury peak is investigated. So, instead of calculating
the performance quality of the entire dataset, the performance quality of an area
of 50 channels, which approximately covers the mercury peak, is determined for
every pixel/channel and then averaged. In Figure 27 and Figure 28, it is clearly
visible that for each wavelet the performance quality seems optimal at level 4.
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Figure 25: Filter performance, indicated by MAE, RMSE, and SNR for various
mother wavelets, plotted against the number of decomposition levels



Figure 26: Peak Intensity Maps of the haar and db2 Wavelet for Different Decom-
position Levels.



Figure 27: Average Spectral Performance Quality of Mercury L3 Peak for various
wavelets against decomposition level.



Figure 28: Average Spatial Performance Quality Mercury L3 Peak for various
wavelets against decomposition level.
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5.1.2 Discussion Testing Round 1

From Figure 25 it could be seen that in most cases the sym2, db2, coif1 and haar
wavelets performed best. A common denominator is the small amount of vanishing
moments. The haar wavelet only has the zeroth vanishing moment, while coif1,
sym2 and db2 all have 2 vanishing moments. Although the support size also lowers
with the amount of vanishing moments, the support size does not distinguish the
above wavelets necessarily, since coif1 has a support of 6 and, therefore, has the
same support size as the db3 and sym3 wavelets. What could be concluded is
that not the density of singularities within the signal, but the irregularity of the
signal might be decisive for the optimal wavelet choice. In section 3.3.1 we saw
that a higher number of vanishing moments is preferred to create more small-detail
coefficients, however, this is only optimal for regular signals. Since the MA-XRF
signal is not regular, it is better captured with irregular wavelets, having a low
number of vanishing moments.

This is at least the case for the spectral performance quality and the spatial
average performance quality. For the spatial sum performance quality, the db2,
sym2 and coif1 perform the worst. This is not surprising since the summation of the
channels results in a generally more regular signal, where the irregularities that can
be captured with the wavelets having low vanishing points become superfluous and
wavelets with more vanishing moments and larger support appear to be optimal.
Contrarily, the Haar wavelet does perform really well in the case of spatial average
performance quality. A very plausible reason for this is the binary nature of the
synthetic dataset, having sharp transitions, which is easy to capture with the haar
wavelet.

When visualising the filtered data by mapping the Hg L3 peak intensity
distribution of the dataset, artefacting could be seen when the signal was decom-
posed and thresholded across 6 levels. Indeed, when plotting the spectral average
performance quality of the mercury peak, it became clear that the performance
quality actually decreased after 4 decomposition levels. This discrepancy with
Figure 27 is logically explained by the fact that the synthetic dataset is created
from a very homogeneous dataset. In other words, in most channels, there is not
a clear distinguishable pattern in photon intensity. When decomposing the signal
into approximation and detail coefficients, in the first level there is still noise in
the approximation coefficients present, while at the sixth level, part of the signal is
present in the detail coefficients. When the channel is smooth, the approximation
coefficients hold practically all the signal, because there is no deviation from the
approximation, hence, an increased decomposition level only makes the channel
signal more smoothed out and the performance quality improves. Nevertheless,
in the case that there is a pattern within the channel, an extra decomposition
level could cause important details to be filtered out. Hence, since Figure 25 con-
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tains the performance quality of all the channels, of which a lot are smooth, the
higher decomposition level seemed to perform better. While, actually, in order to
distinguish important features of the dataset, four levels appear to be optimal.

Recall that the objective of this research is to improve the spectral signal-
to-noise ratio. Therefore, the mother wavelets are chosen based on performing op-
timally for spectral SNR. The best-performing mother wavelets in this regard are
the haar, db2, sym2 and coif1 wavelet. Furthermore, for the purpose of identifying
important features within the dataset, a four-level decomposition seems optimal.

Based on our findings, 9 wavelet filters are chosen to determine the optimal
amount of neighbouring channels in the second testing round. Since the mother
wavelets haar, db2, sym2, and coif1 performed well, it is logical to choose out of
them. since sym2 and db2 are similar, only db2, haar and coif1 will be tested.
These will, furthermore, not only be tested for decomposition level 4 but for de-
composition level 2 and 6 as well in order to test ideal s for different quality wavelet
filters. This comes down to filters F.2, F.4, F.6, F.8, F.10, F.12, F.68, F.70 and
F.72, in Table 3.

5.2 Testing Round 2
In the second testing round, a set of 9 different wavelet filters is evaluated for 11
different values of s, ranging from 0 to 10. Hence, 99 filters are tested, shown in
Figure 29.

5.2.1 Observations Testing Round 2

Explaining and Observing the Performance Quality Graph. Similar to
the first testing round, the performance quality is based on the entire dataset.
The performance quality is measured in the same way as in the first round as well.
Yet, instead of plotting the performance quality against the number of decom-
position levels for various mother wavelets and a fixed number of neighbouring
channels s = 5, now, the performance quality is plotted against s for various
mother wavelet/level-decomposition combinations. The performance quality at
x = 0 represents the quality of the filtered data when no neighbouring channels
are used to determine the standard deviation.

A clear trend is visible in Figure 29, the more neighbouring channels are used
to determine the standard deviation, the worse the performance quality, except for
the spectral sum performance quality, where it is the other way around. What also
can be seen is that the haar and db2 wavelet at level 2 perform worse than the
haar and db2 at level 6, following the same trend as in Figure 25.
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Visualising Spatial Performance. Again, similar to the first testing round,
peak intensity distribution maps of Hg L3 are plotted to verify the spatial per-
formance. Remarkably, the trend in Figure 30,Figure 31, and Figure 32 seems to
be directly opposite to that of Figure 29. Significant artifacting is visible for low
values of s.

Plotting the Average Spectral and Spatial Performance Quality of the
Mercury L3 Peak. To verify why the visual spatial performance seems worse
with low values of s in Figure 30, Figure 31, and Figure 32 while this was not
the case when regarding Figure 29, the average spectral and spatial performance
quality of the mercury peak is investigated. This is done similarly to the first test-
ing round, determining the performance quality of an area of 50 channels covering
the mercury L3 peak, yet, now the performance quality is plotted against s. The
spectral performance quality is visualised in Figure 33 and the spatial performance
quality is visualised in Figure 34.

It can be seen that the average spectral and spatial performance of the
mercury area is in accordance with Figure 29 and contradicts the visual spatial
performance of Figure 30, Figure 31, and Figure 32.

Plotting Detail and Approximation Coefficients. Since the numerical val-
ues of the average performance quality contradict the visual analysis, it could be
the case that the filter is filtering out signal values as well as noise, over-smoothing
the data. Therefore, it is interesting to regard the approximation and detail coeffi-
cients for different values of s. The approximation and horizontal detail coefficients
at channel 1080 (center of the mercury L3 peak) of the row indicated by the red
line in Figure 36 of the db2 lev4 wavelet filter are plotted in Figure 35.

It can be seen that indeed, at s = 0 the detail coefficients have been thresh-
olded out. While, starting around s = 4, the detail coefficients represent the
intensity changes of the red line in Figure 36 better.

Plotting the Summed Spectral and Spatial Performance Quality of the
Mercury L3 Peak. Since determining the performance quality per pixel or
channel within the mercury area is not in accordance with the visual representa-
tion, the spatial and spectral performance quality of the summated Hg L3 area is
determined. The spectral performance quality of the summated Hg area is visu-
alised in Figure 37 and the spatial performance quality of the summated Hg area
is visualised in Figure 38. These graphs seem to be in accordance with the visual
spatial performance in Figure 30, Figure 31, and Figure 32.

It can be seen that the spectral performance stays the same or increases with
more neighbouring channels. The spatial performance quality is more hyperbolical
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and initially strongly increases after it slightly decreases with increasing s. In
both spectral and spatial performance quality, it can be seen that the higher the
decomposition level, the higher the optimal value of s.

Explaining and Observing the Performance Quality Sheet for Varying s.
In Figure 39, Figure 40, and Figure 41, the performance quality of filters with a
db2 wavelet and a 4-level decomposition, for three different values of s are plotted.
Every sheet has a similar layout. In the top row, from left to right the ground
truth mercury L3 peak intensity map is shown (as a reference), next to that is the
peak intensity map of the filtered data. At the top right corner, there is a small
table where the performance quality of the summed data is presented. Here the
spectral sum performance quality is determined by first summing all the spectra
of the filtered data and then comparing that to the sum spectrum of the ground
truth data. Similarly, the spatial sum performance quality is determined by first
summing all the channels of the filtered data and then, comparing that to the sum
of channels of the ground truth data.

In the leftmost column, the spectral performance quality is plotted for every
pixel. Similarly, the spatial performance is plotted for every channel in the middle
column, giving an overview of the spectral performance quality per pixel and the
spatial performance quality per channel, respectively. In the right column, the
spectral performance for the mercury L3 peak is plotted, based on 50 channels
covering the peak.

Above all nine performance quality plots, the average performance is indi-
cated (AVG). For the spectral performance quality plots also the standard devia-
tion is indicated (SIG).

When regarding the numerical values in the figures, it can be seen that the
spectral performance quality for the summed data remains constant for different
s. Meanwhile, the spatial performance quality for the summated data and the
spectral and spatial performance for the average data get worse with increasing
s. Hence, the numerical values are in agreement with Figure 29, Figure 33, and
Figure 34. Yet, when regarding the spectral performance for the mercury L3 peak,
in the rightmost column, a possible explanation is given as to why the numerical
error values are not in agreement with Figure 30, Figure 31, and Figure 32. In
Figure 39, where s = 0, the performance quality is very high in the homogeneous
areas of the mercury distribution pattern, yet, it is significantly worse at its edges.
The standard deviation of the error values is also significantly higher for s = 0
than for s = 5 and s = 10.
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Figure 29: Filter performance, indicated by MAE, RMSE, and SNR for the haar,
db2, and coif1 wavelet at decomposition level 2,4, and 6 for increasing number of
neighbouring channels.



Figure 30: Peak Intensity Maps of the haar wavelet at level 4 for increasing number
of neighbouring channels



Figure 31: Peak Intensity Maps of the db2 wavelet at level 4 for increasing number
of neighbouring channels



Figure 32: Peak Intensity Maps of the coif1 wavelet at level 4 for increasing number
of neighbouring channels



Figure 33: Average Spectral Performance Quality of the Hg L3 Area For different
decomposition levels plotted against s



Figure 34: Average Spatial Performance Quality of the Hg L3 Area For different
decomposition levels plotted against s



Figure 35: Approximation and Horizontal Detail Coefficients of a pixel row (see
Figure 36 at channel 1080 obtained with db2 at level 4 for various s
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Figure 36: Row in red from which the detail and approximation coefficients are
visualised in Figure 35.
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Figure 37: Summated Spectral Performance Quality of the Hg L3 Area For differ-
ent decomposition levels plotted against s



Figure 38: Summated Spatial Performance Quality of the Hg L3 Area For different
decomposition levels plotted against s



Figure 39: Performance Quality of filter applying a db2 wavelet at decomposition
level 4 with s = 0



Figure 40: Performance Quality of filter applying a db2 wavelet at decomposition
level 4 with s = 5



Figure 41: Performance Quality of filter applying a db2 wavelet at decomposition
level 4 with s = 10
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5.2.2 Discussion Testing Round 2

A clear trend stood out regarding the numerical performance quality indicators.
Figure 29, Figure 33, and Figure 34: all seemed to indicate better performance at
lower values of s. However, a visual inspection of the mercury L3 peak intensity
maps from Figure 30, Figure 31, and Figure 32 indicated exactly the opposite.

A probable explanation can be found in the nature of the MA-XRF data and
the height of the threshold values. The Poisson distribution of the data causes large
intensity fluctuations. When the standard deviation of a channel is determined
only on the data of that single channel, which has a small amount of counts, the
standard deviation will be large. A large standard deviation results in a large
threshold and, therefore, also detail coefficients with higher values will be set to
zero. Figure 35 shows that indeed, for lower values of s, more detail coefficients are
set to zero. When removing all the detail coefficients, we are basically averaging
the data. This gives good numerical performance quality, however, often results
in failing to capture important singularities within the signal.

Starting with Figure 29, it can indeed be seen that both the average spectral
and spatial performance quality decrease with increasing s. The effect of shot
noise is, however, less prominent and actual intensity differences from the signal
within the data become more prominent when first summing the data spatially or
spectrally before calculating the performance quality. Accordingly, with higher s
the spectral sum performance quality decreases. The reason why this is not the
case for the spatial sum performance quality probably has to do with the fact that
outside the mercury distribution peak, most elemental distributions are largely
homogeneous. Hence, over-averaging does not have a negative influence on the
spatial performance quality indicators.

Just like the first testing round, we zoomed in on the mercury peak to en-
large the effect the filter has on areas with a higher amount of singularities. Where
in the first testing round a clear difference was obtained between the average per-
formance quality of the entire dataset and the average performance quality of the
mercury L3 area, this was not the case in the second testing round. Figure 33
and Figure 34 show similar behaviour as the first and third row of Figure 29 re-
spectively. While both a high decomposition level and low s cause averaging to
occur, the nature of the averaging is different, which explains why the performance
quality of Figure 27 and Figure 28 drops at a certain point when too much is av-
eraged, while this is not the case for low s as seen in Figure 33 and Figure 34:
At higher level decomposition, the scaling and wavelet functions become larger,
hence, the approximation coefficients and detail coefficients represent larger ar-
eas. Consequently, in the process of reconstruction, not only small deviations are
filtered out, but also part of the signal gets redistributed. The latter can cause
the performance quality to drop. When s is low, in other words, the threshold is
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high and the detail coefficients are almost all set to zero, the only thing left is the
approximation coefficients. Hence, only local averaging occurs and we see that the
redistribution depends on the decomposition level alone.

Still, a low s does result in artefacts as was clear from Figure 30, Figure 31,
and Figure 32. In order to capture this numerically, the summated spectral and
spatial performance quality of the Hg area was determined and visualised in Fig-
ure 37 and Figure 38. The spectral performance increases or stays constant with
increasing s, while the spatial performance first strongly increases after it slightly
decreases with increasing s. The most likely reason for the behaviour of the lat-
ter has to do with the increasingly lower threshold with increasing s. When the
threshold decreases, initially, important details of the signal are being preserved
instead of discarded, however, after a certain point, the threshold becomes so low
that also noise is preserved. Another observation was that, the higher the decom-
position level, the higher the s for optimal performance. To this end, a testing
round 2b was initiated, giving insight into the codependence of level decomposition
and neighbouring channels.

The effects of different s were, moreover, clarified by plotting the error values
spatially and spectrally for the db2 wavelet filter with a 4-level decomposition for
varying s in Figure 39, Figure 40, and Figure 41. Here, the spectral performance
quality distributions of the mercury area indicated how the average performance
could be good, while the images were distorted for low s, showing large error
differences at the edges of the mercury distribution pattern. It is visible that the
performance quality is very high for the homogeneous areas, in accordance with
the over-averaging that occurs at low s. Another observation is that there is a
large visual improvement of the peak intensity maps and the rightmost column
and a significant decrease in the standard deviation σ between s = 0 and s = 5.
However, between s = 5 and s = 10, these improvements are not as obvious,
meanwhile, the numerical performance indicators become worse. When regarding
Figure 38, it can indeed be seen that the significant improvements are till s = 3
and then it flattens out. As previously mentioned, this probably has to do with
noise not being discarded when the threshold is too low.
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5.3 Testing Round 2b: On the Interaction of Decomposi-
tion Levels and Neighbouring Channels

From Figure 38 it became clear that the optimal value for s depends on the number
of decomposition levels. Therefore, in order to check that our outcome of the first
testing round is not biased by initially taking s = 5, again the spectral and spatial
performance quality of the Hg area is plotted against the number of decomposition
levels. Yet, instead of filters having various mother wavelets, now filters have
varying s values. Moreover, peak intensity maps for different combinations of
level decompositions and values s are plotted. Finally, detail and approximation
coefficients are plotted for various s and decomposition levels.

5.3.1 Observations Testing Round 2b

Plotting the Average Spectral and Spatial Performance against Decom-
position Level for the Hg L3 Area. The average spectral and spatial per-
formance of the Hg L3 area was plotted against the number of decomposition
levels for haar, db,2 and coif1 with various s, shown in Figure 42, Figure 43, Fig-
ure 44, Figure 45, Figure 46, and Figure 47. It can be seen that, generally, optimal
performance is still achieved at level 4, the one outlier being for s=0.

Plotting the Summated Spectral and Spatial Performance against De-
composition Level for the Hg L3 Area. When plotting the performance
quality against the number of neighbouring channels, more insight was provided
by regarding the performance quality of the summed Hg area instead of looking
at the average performance quality of individual spectra or channels. Therefore,
also the summed performance quality is plotted against increasing levels for func-
tions having various values of s. The summated spectral performance quality is
visualised in Figure 48, Figure 49, and Figure 50 and the summated spatial per-
formance quality is visualised in Figure 51, Figure 52, and Figure 53.

The consistency of level 4 being optimal, which seemed to be the case
when determining the average performance quality of the Hg L3 area does not
apply to the summated performance quality. The summated spectral performance
quality is optimized by applying a higher-level decomposition, while the summated
spatial performance quality, is optimized by applying a lower-level decomposition.
Moreover, it can be seen that for coif1 the optimal summated spectral performance
for low s is at a lower level decomposition and an optimal performance for high
s is at a higher level decomposition, this is not the case for the haar and db2
summated spectral performance where an optimum for almost every number of
neighbouring channels is obtained at a level 5 and 4 decomposition respectively.
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Plotting the Peak Intensity Maps of the db2 Wavelet for Varying Com-
binations of Levels and Number of Neighbouring Channels of the Hg
L3 Peak. From the performance quality graphs of the summated Hg areas, Fig-
ure 37, Figure 38, Figure 53, and Figure 52, it seems that the optimal number of
decomposition level depends on the number s and vice versa. The peak intensity
maps shown in Figure 54 indeed show that a higher number of s is preferred for
a higher decomposition level. Another observation is that for s = 0 the visual
performance is not satisfactory for any decomposition level. Similarly for a 6-level
decomposition no amount of s results in a peak intensity map without artefacting.
The blue line circles the peak intensity maps that do obtain visually appealing
results.

Plotting Detail and Approximation Coefficients. The relation between
neighbouring channels and decomposition levels can not only be visualised in peak
intensity maps, but also by plotting the detail and approximation coefficients. This
might give more insight into the proportion of noise in the approximation coeffi-
cients and the proportion of signal in the detail coefficients at different levels and
what s suits best to remove that noise. The approximation and horizontal detail
coefficients at channel 1080 (centre of the mercury L3 peak) of the row indicated
by the red line in Figure 36 of the db2 wavelet filter are plotted in Figure 55. It
can be seen that at level 2, still a lot of noise is present in the the approximation
coefficient, while at level 4 the approximation coefficient is cleaner, but part of the
signal is already present in the detail coefficients. At level 6, not much is left of
the original shape of the data within the approximation coefficients. The detail
coefficients are all thresholded out for every level at s = 0, the higher the s, the
more detail coefficients are contained. Which at level 2 results in more noise being
kept in, and, at level 4 and level 6 seems to result in aspects of the signal being
preserved.
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Zooming in

From Figure 55, it could be seen that between a level 2 and level 4 decomposi-
tion, the decomposition went from approximation coefficients including noise
to detail coefficients containing signal. Therefore, it is interesting to regard
a level 3 decomposition as well. Moreover, from Figure 39, Figure 40 and
Figure 41 it could be seen that significant improvements were made between
s = 0 and = 5, unlike between s = 5 and s = 10, where, the high-frequency
aspects of the spatial signal were preserved, yet the noise was not discarded.
Therefore, it is interesting to regard filter outcomes applying s = 1, s = 3
and s = 5. To this end, three extra graphs have been made, applying a db2
wavelet.

Plotting Detail and Approximation Coefficients: Zoomed In. The
zoomed-in version of Figure 55, Figure 56 shows the detail and approximation
coefficients of a level 2,3 and 4 decomposition, each combined with values of s
between 0 and 5. It can be seen that for a level 3 decomposition, the ground
truth (blue graph) approximation coefficients are still in accordance with the
horizontal pattern in Figure 36. At the same time, less noise is contained in
the filtered noisy data (orange graph) than in the case with level 2.

Plotting Summated Spatial Performance against Number of Neigh-
bouring Channels for the Hg L3 Area: Zoomed In. Although, Fig-
ure 56 gives a clear indication of what decomposition level is suitable for
wavelet denoising, a proper number of neighbouring channels cannot be in-
stantly inferred. Therefore, the spatial performance for the summated mer-
cury area is plotted against the number of neighbouring channels for levels 2,3
and 4, visualised in Figure 57. The minima lie between s = 1 and s = 5, with
the strongest improvements between s = 0 and s = 2. For a level 3 wavelet
decomposition, the choice for s = 3 seems suitable.

Plotting the Peak Intensity Maps of the db2 Wavelet for Varying
Combinations of Levels and Number of Neighbouring Channels of
the Hg L3 peak: Zoomed In. To check the observations from Figure 56
and Figure 57, the peak intensity maps of the level 2,3, and 4 with an s
between 0 and 5 are visualised in Figure 58. It can be seen that the maps are
largely free from spatial artefacting within the blue area.
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Figure 42: Average spectral performance quality of the Hg L3 Area for haar at
different s plotted against the number of decomposition levels



Figure 43: Average spectral performance quality of the Hg L3 Area for db2 at
different s plotted against the number of decomposition levels



Figure 44: Average spectral performance quality of the Hg L3 Area for coif1 at
different s plotted against the number of decomposition levels



Figure 45: Average spatial performance quality of the Hg L3 Area for haar at
different s plotted against the number of decomposition levels



Figure 46: Average spatial performance quality of the Hg L3 Area for db2 at
different s plotted against the number of decomposition levels



Figure 47: Average spatial performance quality of the Hg L3 Area for coif1 at
different s plotted against the number of decomposition levels



Figure 48: Summated spectral performance quality of the Hg L3 Area for haar at
different s plotted against the number of decomposition levels



Figure 49: Summated spectral performance quality of the Hg L3 Area for db2 at
different s plotted against the number of decomposition levels



Figure 50: Summated spectral performance quality of the Hg L3 Area for coif1 at
different s plotted against the number of decomposition levels



Figure 51: Summated spatial performance quality of the Hg L3 Area for haar at
different s plotted against the number of decomposition levels



Figure 52: Summated spatial performance quality of the Hg L3 Area for db2 at
different s plotted against the number of decomposition levels



Figure 53: Summated spatial performance quality of the Hg L3 Area for coif1 at
different s plotted against the number of decomposition levels
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Figure 54: Peak Intensity maps of the db2 wavelet for combinations of number of
neighbouring channels and levels



Figure 55: Approximation and Horizontal Detail Coefficients of a pixel row (see
Figure 36) at channel 1080 obtained with db2 at level 2,4 and 6 for various s



Figure 56: Approximation and Horizontal Detail Coefficients of a pixel row (see
Figure 36) at channel 1080 obtained with db2 at level 2,3 and 4 for s between 0
and 5



Figure 57: Summated spectral performance quality of the Hg L3 Area for DB2 at
level 2,3, and 4 plotted against the number of neighbouring channels (s between 0
and 5)
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Figure 58: Peak Intensity maps of db2 at decomposition level 2,3 and 4 for s
between 0 and 5. The blue line surrounds the peak intensity maps that are largely
free from spatial artefacting.
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5.3.2 Discussion Testing Round 2b

In testing round 2, Figure 38 showed a clear level dependency for the optimal value
for s. The higher the decomposition level, the higher the optimal value for s and
vice versa. This can be explained by the fact that in low decomposition levels al-
most all detail coefficients represent noise, while in high decomposition levels it is
more likely detail coefficients contain part of the signal and, as such, the threshold
should be low enough not to discard that part of the signal. This is visible when
looking at Figure 55, where we can compare the ground truth decomposition with
the raw data decomposition coefficients. The higher the level, the more signal is
found in the detail coefficients and the lower the s, the more detail is thresholded
out.

When the average spectral and spatial performance quality was plotted for
the Hg L3 area in Figure 43, Figure 42, Figure 44, Figure 45, Figure 46, and Fig-
ure 47, it could be seen that, despite the various number of neighbouring channels,
almost every optimal performance was achieved at level 4. For the summated
spectral and spatial performance quality plotted in Figure 48 Figure 49,Figure 50,
Figure 51, Figure 52, and Figure 53, however, this was not the case. It could be
seen that the summated spectral performance quality was better for somewhat
higher levels than the summated spatial performance. A plausible reason is due
to the fact that the data is denoised spatially and not spectrally. During higher-
level decomposition, there is more redistribution of photons and more signal being
present in the detail coefficients. Where this does change the spatial make-up of
the signal, spectrally it comes down to mere averaging. Due to the perfect re-
construction principle of wavelet filter banks, namely, the amount of photons in
every channel remains nearly constant. Another interesting observation was the
difference between Figure 48, Figure 49 and Figure 50, where for the haar wavelet
level 5 seemed optimal and for the db2 wavelet level 4 seemed optimal for all s, the
coif1 wavelet had an s-dependend optimal level. This is most likely due to the sup-
port size of coif1 being larger. When the irregular MA-XRF data is filtered with
a wavelet having larger support, more large detail coefficients are obtained. For
lower-level decomposition, where mainly noise is present in the detail coefficients,
it is then important to heighten the threshold, while for higher-level decomposi-
tion, where more signal is present in the detail coefficients, it becomes important
to lower the threshold.

When looking at Figure 54, it becomes clear that there is not necessarily an
optimal s or decomposition level, but rather an optimal combination of the two. It
can, furthermore, be seen that both too low s and too high a level-decomposition
are suboptimal. What does not necessarily become clear from Figure 54, but does
become clear when regarding Figure 39, Figure 40, Figure 41, and Figure 55, is
that the choice of s is like finding the balance between over-averaging (low s) and
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barely removing noise (high s).
A clear optimal combination of s and the number of decomposition levels

is hard to make. Despite level 4 performing best in the first testing round as
well as the second testing round for the average performance quality, it could be
seen that for the summated Hg L3 area this was not the case. Here, lower-level
decomposition resulted in higher spatial performance quality, while higher-level
decomposition resulted in higher spectral performance quality. It is important
to recall that this higher-level decomposition caused spatial artefacting. Further-
more, the significant performance quality improvements were generally until level
3. Similarly, for the neighbouring channels, major improvements were made by
increasing the number of neighbouring channels from s = 0 to s = 5, but after
that, between s = 5 and s = 10, no significant improvements were made and more
noise was contained in the data.

Therefore, an optimal level/neighbouring channel combination was nar-
rowed down to be between decomposition levels 2 and 4 and between s = 0 and
s = 5. In Figure 56 it could be seen that for level 3, the approximation coefficients
of the ground truth were in accordance with the spatial pattern of the synthetic
dataset and noise was effectively removed when comparing the coefficients to the
approximation coefficients of level 2. when looking at Figure 57 a suitable number
of neighbouring channels seems to be at s = 3. Also, the peak intensity maps in
Figure 58 show visually well-performing results at the level 3 s = 3 combination.

Due to the support size of the coif1 wavelet resulting in more high detail
coefficients, we will continue the third testing round with the haar and db2 wavelet.
Furthermore, a suitable combination of a level-3 decomposition with s = 3 will be
used.
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5.4 Testing Round 3
From previous testing rounds, we obtained a suitable combination of filter bank
denoising parameters. For the mother wavelet, this resulted in two good design
choices: the haar and db2 wavelet. For the amount of decomposition levels, 3 was
found satisfactory. Furthermore, we determined a proper value for s to equal 3.
We will proceed to refer to the two different filters as ’haar lev3 s3’ and ’db2 lev3
s3’. These filter designs are now compared to two median filters, one with a 3× 3
kernel and the other with a 5×5 kernel. Moreover, the synthetic dataset has been
simulated with three different degrees of noise, in other words, three different well
times – of 1, 0.75, and 0.5 seconds – on which the filters are tested.

5.4.1 Observations Testing Round 3

Explaining and Observing the Performance Quality Sheet. Following,
the performance quality of the raw data, the median filters, the haar lev3 s3,
and the db2 lev3 s3 are plotted. Every sheet has a similar make-up. In the top
row, from left to right the ground truth Hg L3 peak intensity map is shown (as a
reference), next to that is the peak intensity map of the filtered data. At the top
right corner, there is a small table where the performance quality of the summated
data is presented. Here, the spectral sum performance quality is determined by
first summing all the spectra of the filtered data and then comparing that to the
sum spectrum of the ground truth data. Similarly, the spatial sum performance
quality is determined by first summing all the channels of the filtered data and
then, comparing that to the sum of channels of the ground truth data.

In the leftmost column, the spectral performance quality is plotted for ev-
ery pixel. Similarly, the spatial performance is plotted for every channel in the
middle column, giving an overview of the spectral performance quality per pixel
and the spatial performance quality per channel, respectively. In the right col-
umn, the spectral performance for the mercury L3 peak is plotted, based on 50
channels covering the peak. Above all nine performance quality plots, the average
performance is indicated (AVG). For the spectral performance quality plots also
the standard deviation is indicated (SIG).

The raw data is plotted in Figure 62, the 3×3 median filtered data is plotted
in Figure 63, the 5× 5 median filtered data is plotted in Figure 64, the haar lev4
s5 filtered data is plotted in Figure 65, and the db2 lev4 s5 filter data is plotted
in Figure 66. When regarding the figures, it can be seen that the values for the
wavelet-filtered data lie close to one another. For the average spatial and spectral
performance quality, both median and wavelet-filtered data obtain better results
than when the data is not filtered. The median filtered data, however, has better
average performance quality than the wavelet filtered data. Yet, the summated
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spatial and spectral performance quality is significantly worse for the median fil-
tered data than for the raw and wavelet filtered data. Moreover, the median 5x5
filtered data has a RMSE of the spectral sum significantly lower than that of the
wavelet-filtered and median 3x3 filtered data.

The standard deviation for the MAE and RMSE of the spectra of the median
filtered data is smaller than that of the wavelet filtered data. Still, both wavelet-
filtered data and median-filtered data have a smaller standard deviation than the
raw shot noise-polluted data. Both the average SNR and the standard deviation
of SNR become bigger when filtered.

A visual inspection of the spectral performance quality of the Hg L3 area
of the median filters shows the heightening of the errors at the edges of intensity
changes. This is more prominent in the 5× 5 median filtered data than the 3× 3
median filtered data. In Figure 64 the Hg L3 peak intensity map even becomes
visible when plotting the overview for the entire dataset (lower left) of the spectral
SNR.

When comparing the raw, shot noise-polluted data from Figure 62 with the
haar lev3 s3 filtered data from Figure 65, the wavelet filter generally results in data
being closer to the ground truth. However, the summated spectral performance is
higher for the raw data.

Also, the performance quality of filters for a higher amount of noise is
determined. The performance is visualised for the median 3× 3 filter in Figure 68
and Figure 72, the haar lev3 s3 filter in Figure 69 and Figure 73, and the db2 lev3
s3 filter in Figure 70 and Figure 74. For reference, the raw shot noise-polluted
data is shown in Figure 67 and Figure 71. It can be seen that the performance
quality is worse than in the case of a higher dwell time. The average performance
quality of the median filter is still better than the average performance quality
of the wavelets. On the other hand, the sum performance quality of the wavelet
filters is also still better than that of the median filter.

Plotting the Sum Spectra. When plotting the sum spectra of the ground
truth data, the raw data, the median filtered data and the wavelet filtered data
in Figure 59 it can be seen that the wavelet filtered data and raw data follow
the ground truth sum spectrum and the 3x3 median filtered data diverges from
the ground truth. When increasing the amount of noise, the sum spectra visible
inFigure 60 and Figure 61 are obtained. The wavelets still follow the ground truth
sum spectrum, while the median filtered data performs increasingly worse than in
Figure 59.

Plotting the Performance Quality against Various amounts of Noise.
In Figure 75, it can be seen that the higher the amount of noise, the lower the
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performance quality, both for the median filter and the wavelet filters. It can
be seen that the median filter has the best average performance quality, while it
has the worst sum performance quality. Moreover, the spectral sum performance
quality of the wavelet filter is nearly identical to that of the raw data. Both the
wavelet and the median filter succeed in reducing the level of noise on average.
But only the wavelet has a good sum performance quality as well.

The purple dotted line is plotted to show what dwell time is necessary for
the raw data to achieve the same performance quality as the filtered data. What
can be seen is that the performance quality of the wavelet-filtered data obtained
with a dwell time of 0.5 seconds is approximately equal to unfiltered data obtained
with a dwell time of 0.75 seconds.

Figure 59: Averaged Sum Spectrum of Ground Truth, 3x3 Median filter, haar lev3
s3 filter and db2 lev3 s3 filter for a dwell time of 1 s.
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Figure 60: Averaged Sum Spectrum of Ground Truth,3x3 Median filter, haar lev3
s3 filter and db2 lev3 s3 filter for a dwell time of 0.75 s.

Figure 61: Averaged Sum Spectrum of Ground Truth, 3x3 Median filter, haar lev3
s3 filter and db2 lev3 s3 filter for a dwell time of 0.5 s.
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Figure 62: Performance Quality of Shot Noise-Polluted Data with a Dwell Time
of 1 s.



Figure 63: Performance Quality of 3x3 Median Filtered Data with a Dwell Time
of 1 s.



Figure 64: Performance Quality of 5x5 Median Filtered Data with a Dwell Time
of 1 s.



Figure 65: Performance Quality of haar Lev3 s3 Filtered Data with a dwell time
of 1 s.



Figure 66: Performance Quality of db2 Lev3 s3 Filtered Data with a dwell time of
1 s.



Figure 67: Performance Quality of Shot Noise-Polluted Data with a Dwell Time
of 0.75 s.



Figure 68: Performance Quality of 3x3 Median Filtered Data with a Dwell Time
of 0.75 s.



Figure 69: Performance Quality of Haar Lev3 s3 Filtered Data with a dwell time
of 0.75 s.



Figure 70: Performance Quality of db2 Lev 3 s3 Filtered Data with a Dwell Time
of 0.75 s.



Figure 71: Performance Quality of Shot Noise-Polluted Data with a Dwell Time
of 0.5 s.



Figure 72: Performance Quality of 3x3 Median Filtered Data with a Dwell Time
of 0.5 s.



Figure 73: Performance Quality of haar Lev 3 s3 Filtered Data with a Dwell Time
of 0.5 s.



Figure 74: Performance Quality of db2 Lev 3 s3 Filtered Data with a Dwell Time
of 0.5 s.



Figure 75: Performance quality of noisy data, median 3x3 filtered data, haar lev3
s3 filtered data and db2 Lev 3 s3 filtered data for dwell times 1, 0.75, and 0.5 sec.
The intersection of the purple dotted line with the graph of the noisy data shows
at what dwell time equal performance quality is obtained between the unfiltered
data and the wavelet filtered data that was obtained with a dwell time of 0.5 sec.
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5.4.2 Discussion Testing Round 3

In Figure 62, Figure 63, Figure 64, Figure 65, and Figure 66 it could be seen
that the average performance quality of the median filters was better than that
of the wavelets, however, their sum performance quality was significantly worse.
Even worse than the sum of the raw data. When plotting the sum spectra in
Figure 59, Figure 60, and Figure 61 of the filtered data it could indeed be seen
that the median filtered data did not follow the ground truth, while the wavelet
filtered data did. This probably has to do with the median filter altering the signal
through over-averaging.

With more noise, median filtering still had a higher average performance
quality than wavelet filtering. Similarly, the wavelets still had a higher sum per-
formance quality. When regarding the sum spectra in Figure 59, Figure 60, and
Figure 61, it was visible that with higher noise levels, median filtering becomes
less reliable than wavelets in maintaining the original signal. The latter was reaf-
firmed by regarding Figure 75, where the spectral sum performance quality is
nearly identical for the raw data and the wavelet filtered data.

In other words, similar to testing round 1 and 2, it could be seen that av-
eraging, this time by median filters, resulted in good average performance quality.
Yet, when summating the data, it becomes clear that wavelet denoising is a method
that is better suited to stay true to the original signal.

Moreover, in Figure 75, it also became clear that the average performance
quality of filtered data obtained with a dwell time of 0.5 seconds was approximately
equal to the average performance quality of unfiltered data obtained with a dwell
time of 0.75 seconds. Hence, the wavelet filter achieves the goal of lowering the
necessary dwell time.
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5.5 Real-world Case Study
Three of the filters that were compared in the third testing round are used on an
actual MA-XRF dataset. We apply the haar lev3 s3, the db2 lev3 s3, and the 3×3
median filter to the daguerreotype shown in Figure 23. The daguerreotype has
been scanned both with a dwell time of 30 ms and a dwell time of 100 ms. The
unfiltered Hg L3 peak intensity maps are shown in Figure 76.

Figure 76: Unfiltered Hg L3 peak intensity maps. Left: scan with 30 ms dwell
time, Right: scan with 100 ms dwell time

As expected, the scan of 30 ms looks grainier than the scan of 100 ms.
In Figure 77 and Figure 78, the data, which was obtained with a dwell

time of 30 ms, after filtering is visualised. When comparing the median filtered
to the wavelet-filtered data, it can be seen that the wavelet-filtered data retains
the resolution of the data better. Comparing the two wavelet filters, it can be seen
that the haar filtered peak intensity map is less smooth than the db2 map.
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Figure 77: Unfiltered Hg L3 peak intensity maps (data obtained with 30 ms dwell
time). Left: raw data, Right: median filtered data

Figure 78: Filtered Hg L3 peak intensity maps (data obtained with 30 ms dwell
time). Left: raw data, Middle: haar lev3 s3 filtered, Right: db2 lev3 s3 filtered

5.6 General Discussion and Future Work
Although the performed tests resulted in a well-considered choice of wavelet design
parameters, still, care must be taken for a lot of the results are dataset dependent
and cannot be assumed definitive for MA-XRF data in general.
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On the methodology. The numerical results obtained within this thesis were
not self-evident which has partly to do with the methodology. The synthetic
dataset used for testing the filters is binary and has large patches of similar el-
emental distributions. Moreover, the difference between the photon counts of
mercury-rich and mercury-poor areas was minor. Therefore, the numerical perfor-
mance quality indicators are not able to properly capture and consequently put a
penalty on over-smoothing,

On the Wavelet Filter bank Design. When it comes to the optimal sup-
port size or amount of decomposition levels, different values could be optimal
based on the step size used for obtaining the data and the density of singularities
within the data. There is also a trade-off between high level-decomposition and
low level-decomposition. Too low decomposition levels will capture noise in the
approximation coefficients while too high decomposition levels will capture signal
in the detail coefficients.

In a similar manner, it could be seen how well the haar wavelet performed
with respect to the other wavelet families. This probably had to do with the
binary nature of the spatial pattern in the synthetic dataset that could be captured
perfectly using flat haar wavelets. When looking at Figure 78, for the real-world
dataset the db2 filter seems to get better results, visually at least. Also the optimal
mother wavelet is not universal for every MA-XRF dataset.

We do hypothesize that the amount of vanishing moments that appeared to
be optimal in this research is generally speaking a good fit for MA-XRF datasets,
since the MA-XRF datasets in need of denoising are generally irregular and, hence,
will need few vanishing moments. Besides, in section 5.1.2 it could be seen that the
amount of vanishing points was more important than the support size (coif1 had
good performance as well). So even for changes in the above-mentioned density of
singularities and step size, the amount of vanishing moments should be small.

On the Thresholding Design. The fact that the universal thresholding method
has been adopted allows for further improvement of the thresholding algorithm.
The Poisson nature of the data and the need for spectral dimension awareness have
been addressed by using neighbouring channels. However, there are most likely
more advanced approaches possible.

Whether the number of neighbouring channels that were rendered optimal
for this synthetic dataset is also optimal for other MA-XRF datasets is not likely.
It strongly depends on the width of the elemental peaks, more specifically, the
elemental peaks of interest. This also means that it is very important to take into
account that these tests have been performed with data that was normalized to
a zero peak intensity of 10,000. Moreover, the optimal number of neighbouring

135 of 144



Master Thesis Maartje Huijbrechts

channels depends on the amount of shot noise as well. Similar to the number of
applied decomposition levels, there is a trade-off between high and low s. Too
high values for s do not remove the noise and too low values for s over-average the
data.

On the Co-Dependance of Decomposition Levels and Neighbouring Chan-
nels. In the second testing round, it was found that the optimal number of
neighbouring channels depended on the decomposition level. Low levels of decom-
position required low s for optimal performance and high levels of decomposition
required high s for optimal performance. The optimal combination of the two
is probably data-dependent and careful consideration is necessary for achieving
denoising while abstaining from averaging.

On the Use of Wavelet Denoising for MA-XRF Data, Outlook. At the
moment, not a lot can be said about the general applicability of the wavelet filter
to filter MA-XRF data, to this end further testing is needed. Still, the wavelet
denoising algorithm gives promising results that could be investigated further in
future research.

One of the promising results could be seen in section 5.4, where the sum
spectrum of the wavelet filtered data was equal to the sum spectrum of the un-
filtered data. Hence, the signal is maintained, contrary to median filters, where
the sum spectrum is significantly altered. So, despite the better performance of
median filtering on average pixel and channel basis, the wavelet filter is better at
preserving the signal while filtering.

For future research, I would recommend doing more experiments. Experi-
ments in which the objects of research have different elemental compositions and
various singularity densities. Moreover, experiments where the settings of the MA-
XRF scanner differ in stepsize and dwell time. Furthermore, besides applying the
method of this research to various datasets, it would also be interesting to experi-
ment with different thresholding methods. For example, expanding upon the idea
mentioned by Louisier et al., who proposed linking detail coefficients to approxi-
mation coefficients in order to determine a better threshold for shot noise-polluted
data, [57], by circumventing the need of prior information.

6 Conclusion
This research aimed to address the problem of long scanning times for MA-XRF.
The scanning time could be reduced by lowering the dwell time, however, this
would result in a low SNR. Therefore, it was proposed to increase the SNR post-
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measurement by denoising. More specifically, this research sought to increase the
spectral SNR using local spectral and spatial relations within the dataset.

By carefully evaluating the MA-XRF data characteristics, it was concluded
that wavelet filter bank denoising would be a suitable method to denoise MA-
XRF data. The four main data characteristics that were taken into account were
the heterogeneous signal structure, the fact that the spatial signal has a localized
nature, the spatial and spectral relation within the hyperspectral datacube, and
the main source of noise in case of low dwell times: photon shot noise.

The wavelet filter bank denoising method does not require a priori informa-
tion in order to filter the data, hence, the difficulty of the fact that every dataset is
unique is overcome. Besides that, wavelets are able to capture the local and discon-
tinuous signal characteristics of MA-XRF data: wavelets capture high-frequency
signal features, while also achieving to denoise the data without losing these fea-
tures. Moreover, spatial wavelet filtering succeeds in keeping the photon counts
per channel intact through the perfect reconstruction principle.

Most thresholding methods used in wavelet filter bank denoising assume
Gaussian noise and the ones that do take into account shot noise have properties
that counteract one of the other three demands for a MA-XRF denoising algorithm.
Therefore, a novel procedure was proposed in this work where use was made of
neighbouring channels to determine a proper threshold value. Here, the effects
of shot noise were counteracted by determining the standard deviation on more
counts, Herewith lowering the standard deviation of the detail coefficients on a
per-channel basis, allowing the threshold to be determined based on the measured
average photon intensity fluctuations of the channel and its neighbouring channels.

There are different design parameters of the wavelet filter that could be
optimized. In this research, universal thresholding as a threshold method has
been adopted. However, we did optimize the number of neighbouring channels to
determine the standard deviation of the detail coefficients used to calculate the
universal threshold. Furthermore, we optimized for the type of mother wavelet
and the number of decomposition levels.

The wavelet filters were tested on a synthetic MA-XRF dataset where
mercury-rich and mercury-poor pixel spectra were distributed according to a 1951
USAF resolution test chart, using MAE, RMSE and SNR as performance indica-
tors. Eventually, a mother wavelet having little vanishing moments was shown to
be optimal for MA-XRF data, at least in the examined case studies. To this end
the haar, db2, sym2, and coif1 wavelet can be used. Less evident is the optimal
choice for the number of decomposition levels and neighbouring channels. It was,
moreover found that the two are co-dependent. The higher the decomposition
level, the higher the number of neighbouring channels and vice versa. The reason
for this is that both a high decomposition level and a low number of neighbouring
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channels result in over-smoothing, while a low number of decomposition levels and
a high number of neighbouring channels result in noise not being removed. Hence,
they need to be in balance. A clear optimal combination of the two could not
readily be determined based on the performance quality indicators. This has most
likely to do with the binary nature of the synthetic dataset, having large patches
of similar elemental distributions, not penalizing over-smoothing. Moreover, the
difference between the photon counts of mercury-rich and mercury-poor areas was
minor. Still, by combining visual analyses with performance quality indicators de-
termined on summated areas within the synthetic dataset, a suitable combination
was found of 3 decomposition levels with s = 3 neighbouring channels. Applying
the haar and db2 wavelet with a 3-level decomposition and s = 3 both resulted in
data simulated to have a dwell time of 0.5 seconds to have approximately equal
SNR to unfiltered data simulated to have a dwell time of 0.75 seconds. Herewith
the wavelet filters adhere to the objective of lowering the dwell time.

For a generally applicable design of a wavelet filter for MA-XRF data,
further testing is needed. It could be seen, for example, in the real-world da-
guerreotype case study that the spatial shape of the signal influenced the optimal
mother wavelet. Furthermore, the singularity density and the stepsize influence
the optimal support size of the wavelet and the optimal number of decomposition
levels of the wavelet filter bank.
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