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Abstract

Recent advancements in research technology have enabled the analysis of matter at the atomic level, allow-
ing for the investigation of peculiar quantum mechanical phenomena, such as the time evolution of coherent
quantum states [8]. This thesis takes the initial steps towards modelling the decoherence of magnetic atoms
on a conducting surface, considering the coupling between the atoms and the surface leading to the decoher-
ence of the spin state in a chain of atoms.

To characterise the relaxation and decoherence of a spin chain, the Lindblad equation is employed to describe
the Kondo interaction with the surface. Two models are presented: one that considers interactions at the level
of individual atoms, and another that incorporates the impact of the environment on the collective state of the
chain. These models provide insight into the dynamic behaviour and decoherence of various adatom chain
configurations. The analysis reveals a steady decrease in coherence time with an increasing chain length. Fur-
thermore, it is demonstrated that the decay rate scales linearly with temperature for a chain of two atoms.

In addition, this thesis explores the scenario of asymmetric coupling, where only one atom is coupled to the
surface. The results show that, for a two-atom chain, the coherence time is doubled in the asymmetric case.
However, conclusive findings could not be drawn for longer chains. These results hold promise for future
research and improvement of the model.
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Chapter 1

Introduction

Quantum information processing has emerged as a promising field with the potential to revolutionise comput-
ing, communication, and cryptography. Central to the development of quantum technologies is the requisite
to effectively control and manipulate quantum states. However, quantum systems are fragile and susceptible
to decoherence [5], which refers to the loss of coherence and entanglement due to unwanted interactions with
the surrounding environment. Understanding and mitigating decoherence effects are fundamental challenges
in the realisation of practical quantum devices.

In recent years, one-dimensional spin chains have attracted considerable attention as potential candidates for
quantum information processing [15]. These spin chains serve as excellent platforms for studying the intricate
interplay between quantum coherence and environmental interactions. A crucial aspect in this context is the
coupling of the spin chain to an electron bath, which can significantly affect the coherence properties of the
system [5]. In figure 1.1 a one-dimensional spin chain coupled to an electron bath is depicted.

The primary objective of this thesis is to investigate the decoherence and dynamics of magnetic adatoms which
form a spin chain coupled to an electron bath. By employing the Lindblad equation as the theoretical frame-
work for our analysis, our aim is to unravel the dynamics of the system and the scaling of the decoherence with
respect to the chain length and it’s interaction with the bath.

Figure 1.1: One dimensional spin chain of five atoms coupled by a surface coupling Jsurf (red arrow) to an electron bath. The atoms
experience a coupling with one another (blue arrow) in the form of exchange coupling J , and dipolar coupling D . The magnetic adatoms
are in an external magnetic field B⃗ , and the black arrows pointing upwards represent their respective spin states.

The models constructed using the Lindblad equation are intended to enhance and support experimental ob-
servations, including those obtained through techniques such as scanning tunnelling microscopy (STM). An
STM uses a fine needle-shaped probe to scan the surface of a material. When a voltage is applied between
the probe and the material, a tunnelling current flows, which is highly sensitive to the distance between the
probe and the surface. This current is measured and used to create a topographic map of the material’s sur-
face with exceptional resolution, even down to the atomic level. For studying magnetisation of atoms, the most
well-known is spin-polarised STM (SP-STM), where different magnetisation orientations of the spins result in
different conductance values [13]. Using STM, various configurations of magnetic adatoms can be created by
bringing the tip close to weakly coupled atoms and dragging them across the surface. Figure 1.2 shows the
construction of a chain of atoms enabled by an STM.

A significant discovery has recently emerged, sparking rapid advancements in this field. Baumann et al. [1]
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Figure 1.2: STM images showing the construction of a chain of atoms (each approximately 5 nm wide). Source: Ottelab [12]

.

revealed that the STM can now be modified to perform electron spin resonance, allowing for both high spatial
resolution and high energy resolution simultaneously. Additionally, the ESR enables coherent spin manipu-
lation. In ESR-STM (electron spin resonance-STM), a radio frequency signal is sent down the STM tip. This
causes the atom beneath the tip to respond with a Rabi rotation, resulting in a change in the spin-polarised
conductance only when the drive signal is in resonance with the procession of the spin [1]. This technique
gives very precise information in terms of energy transitions. Additionally, advanced techniques can be em-
ployed, like ultrafast pump-probe spectroscopy, for snapshot measurements of the system’s time evolution on
the nanosecond timescale. The pump-probe technique involves the interaction of two laser pulses: a "pump"
pulse and a "probe" pulse. The pump pulse initiates an excitation or perturbation in the quantum system,
while the probe pulse measures the system’s response after a certain time delay [8].

Figure 1.3: ESR measurement of a Ti atom on an MgO lattice structure, in two different spatial orientations with respect to the magnetic
field. On the left a radio frequency signal is sent down the STM tip, resulting in a Rabi rotation of the atom. On the right it can be seen that
the two spatial orientations of the Ti atom result in a different energy peak. This illustrates the tremendous resolution in terms of energy
provided by ESR-STM. Source: Veldman et al. [15]

.

A suitable spin- 1
2 system that will be considered consists of Ti-adatoms on a bilayer MgO substrate atop an

Ag[100] crystal [15]. Here Kondo interaction plays the most significant role in spin decoherence [5]. The re-
laxation (T1) and decoherence (T2) time scale with the coupling strength of the Ti atom to the surface. This
coupling strength is relatively weak due to the insulating bilayer of MgO [15]. Two models based on the Lind-
blad equation will be explored: one considering interactions on individual atoms and the other incorporating
the effect of the environment on the chain’s energy eigenstates. These models will allow us to predict the dy-
namic behaviour and decoherence of any adatom chain configuration.

The thesis is organised as follows: it begins by providing the necessary theoretical foundations to describe our
quantum system (Ch. 2). Then, the system Hamiltonian is introduced that governs our adatom spin chain (Ch.
3). In Chapter 4, the aforementioned models based on the Lindblad equation will be derived. Subsequently,
an analytical solution of the model is presented (Ch. 5) to serve as a reference for verifying our numerical im-
plementation, the results of which will be discussed in chapter 6. Finally, conclusions are drawn and avenues
for further research are suggested in the concluding chapter (Ch. 7).
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Chapter 2

Theory

This chapter introduces the mathematical formalism used to describe spin operators and spin states. Subse-
quently, the construction of the Hamiltonian and the derivation of the equations governing the time evolution
of the system are discussed. Finally, decoherence and it’s primary cause in our system, namely the Kondo
interaction, are introduced.

2.1. Operators
Observables in quantum mechanics, such as position, momentum, energy, and spin, are associated with spe-
cific operators. These operators have eigenvalues and corresponding eigenvectors that represent the possible
measurement outcomes and the corresponding states of the system. This section establishes the formalism
and definitions concerning operators and states that will be employed throughout this thesis.

2.1.1. Spin Operators
The Pauli matrices span the space of observables of the complex 2-dimensional Hilbert space. They represent
the component of the spin in the x̂, ŷ , and ẑ-direction [11].

σ̂x =
(

0 1
1 0

)
(2.1)

σ̂y =
(

0 −i
i 0

)
(2.2)

σ̂z =
(

1 0
0 −1

)
(2.3)

Using the Pauli matrices the Spin operators for spin- 1
2 particles are defined:

Ŝx = ħ
2
σ̂x , Ŝy = ħ

2
σ̂y , Ŝz = ħ

2
σ̂z . (2.4)

For convention the eigenvectors of Ŝz are chosen as basis. The factor ħ is left out for simplicity. The eigenstates
of Ŝz are our basis vectors: [11]:

|0〉 = |↓〉 =
(

1
0

)
, and |1〉 = |↑〉 =

(
0
1

)
. (2.5)

The raising and lowering operator, also known as ladder operators are:

Ŝ± = 1

2
(Ŝx ∓ i Ŝy ). (2.6)

2.1.2. Tensor Product
When working with multiple particles, in order to describe the system, a product space needs to be defined us-
ing the tensor product. The tensor product of two vector spaces V and W is denoted as: V ⊗W . The operation
⊗ sends ordered pairs of the Cartesian product V ×W to V ⊗W .

3



Basis states of a two spin- 1
2 particle system

The basis states of a two spin- 1
2 particle system are (ranging from lowest to highest eigenvalue):

|↓↓〉 = |↓〉⊗ |↓〉 =


1
0
0
0

 , |↓↑〉 = |↓〉⊗ |↑〉 =


0
1
0
0

 , |↑↓〉 = |↑〉⊗ |↓〉 =


0
0
1
0

 , |↑↑〉 = |↑〉⊗ |↑〉 =


0
0
0
1

 . (2.7)

Using the tensor product, these basis states can be extended to the basis states of an N -particle system.

Extending operators to N -particle systems
In order to work with N -particle systems, the operators need to be expanded so that they act on the larger
Hilbert space. Taking an initial operator T̂ , the aim is to describe the operator acting solely on the k th particle.
This is achieved by taking the tensor product of N matrices of which the k th matrix is the operator T̂ and the
other matrices are identity matrices of the same dimensions:

T̂ (k) = I ⊗ I ⊗ ...⊗ T̂ ⊗ ...⊗ I . (2.8)

The corresponding operator for the whole system is the sum of the individual operators [11]:

T̂N =
N∑

k=1
T̂ (k). (2.9)

2.2. System Hamiltonian
The Hamiltonian Ĥ of a system consisting of N spin- 1

2 particles, where the the exchange coupling J , the dipolar
coupling D , and a global magnetic field B are considered, is given by:

Ĥ =
N−1∑

i

(
(J +2D)Ŝ(i )

z Ŝ(i+1)
z + (J −D)(Ŝ(i )

x Ŝ(i+1)
x + Ŝ(i )

y Ŝ(i+1)
y )

)
+

N∑
i

(
gµBB · Ŝ(i )

)
. (2.10)

In this expression S is the spin magnitude, g the g-factor, and µB the Bohr magneton.

2.2.1. Zeeman Interaction
The Zeeman effect arises from the interaction between the magnetic moment of a particle or system and an
external magnetic field. Spin- 1

2 particles have magnetic moment along the direction of their spin [14]. The
interaction between the magnetic moment and the field leads to the splitting of energy levels. The energy
levels with parallel alignment experience a lower energy, while the energy levels with antiparallel alignment
have a higher energy. The energy difference between these levels is proportional to the strength of the external
magnetic field. To incorporate the Zeeman effect into the Hamiltonian, a term of the form:

ĤZeeman =
N∑
i

(
gµBB · Ŝ(i )

)
(2.11)

is introduced. Here, N represents the number of particles in the system, g is the gyromagnetic ratio, µB is
the Bohr magneton, B is the external magnetic field vector, and Ŝ(i ) represents the spin operator of the i -th
particle. This term captures the interaction energy between the magnetic moment of each particle and the
external magnetic field. The dot product between the magnetic field and the spin operator accounts for the
alignment or anti-alignment of the spin with respect to the field, determining the splitting and shifts in energy
levels.

2.2.2. Dipolar Interaction
In addition to the interaction with the external magnetic field, the spins also interact with each other via dipo-
lar interaction. Following the classical description of the dipole-dipole interaction, the corresponding term in
the Hamiltonian is defined as [16]:

ĤDipolar = D0

N−1∑
i

[
Ŝ(i ) · Ŝ(i+1) −3(Ŝ(i ) · n̂)(Ŝ(i+1) · n̂)

]
. (2.12)
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Here n̂ is the inter-atomic unit vector, and D0 is the dipolar constant. The dipolar constant decreases rapidly
with inter-atomic distance r :

D0 = µ0γ1γ2ħ2

4πr 3 ,
where µ0 is the permeability of vacuum, and γi are the gyromagnetic ratios of the corresponding atoms. This
rapid decrease with r explains why only nearest-neighbour dipolar interaction is considered. Furthermore,
for high magnetic fields the secular approximation can be used which amounts to neglecting the coupling
terms between states of different energies [4]. In the presence of a high magnetic field, the energy differences
between states become significant, causing rapid oscillations in coherences. The secular approximation takes
advantage of this rapid oscillation to neglect terms that average out to zero over time. By employing the secular
approximation, the dipolar interaction Hamiltonian can be simplified to a Heisenberg-like spin Hamiltonian
with distinct prefactors for the z − z interaction and the x −x, y − y interactions [4]:

ĤDipolar = D
N−1∑

i

[
2Ŝ(i )

z Ŝ(i+1)
z − Ŝ(i )

x Ŝ(i+1)
x − Ŝ(i )

y Ŝ(i+1)
y

]
. (2.13)

It is important to note that the secular approximation is valid when the energy differences between different
terms in the dipolar interaction are much larger than the characteristic frequencies of the system. In eq. 2.13,
D is the dipolar coupling constant. The relation between the dipolar coupling of two atoms subject to an in
plane magnetic field (Bz in the [1,1,0]− direction) and the interatomic distance r is [16] [2]:

D = µ0µ
2
i (1−3cos2θ)

2πr 3 = 1

2
D0(1−3cos2θ), (2.14)

where θ is the angle between the connecting vector r̂ and the direction of the applied magnetic field, µi is the
magnetic moment of the atom, and µ0 is the permeability of vacuum.

2.2.3. Exchange Interaction
Another important interaction between the atoms is the exchange interaction. This is a quantum mechanical
effect that occurs between identical particles. When the wavefunctions of indistinguishable particles overlap,
they are subject to exchange symmetry. For fermions, this results in the increase of the expectation value of
the distance, and is therefore sometimes referred to as Pauli repulsion. Since by the Pauli exclusion principle
two fermions cannot occupy the same state, the overall quantum state is required to be antisymmetric. As a
result, electrons are so to speak "exchanged" between atoms. If this happens directly the effect is known as co-
valent bonding; if it is mediated through a non-magnetic atom it is known as superexchange. Both interactions
are isotropic and decay exponentially with the distance between particles. Therefore, only nearest-neighbour
exchange interaction is considered, allowing for it to be modelled by a Heisenberg spin Hamiltonian:

ĤExchange = J
N−1∑

i
Ŝ(i ) · Ŝ(i+1). (2.15)

In this equation J is the coupling strength.

Combining the equations for the Zeeman interaction (Eq. 2.11), the dipolar interaction (Eq. 2.13), and the
exchange interaction (Eq. 2.15), to obtain the the system Hamiltonian that was previously stated in Eq. 2.10.

2.3. Density Matrix
Density matrices are powerful tools for representing quantum states, particularly in cases where the state is
mixed and cannot be fully described by a wave function or a pure state vector. In such scenarios, the density
matrix provides the optimal specification of the system. It is defined as:

ρ̂ =∑
i

pi |φi 〉〈φi | . (2.16)

Here pi represents the probability of finding the system in the state |φi 〉. The states |φi 〉 form a complete and
orthonormal set, and the sum of the probabilities should equal one, i.e.

∑
i pi = 1.

In any basis, the diagonal entries are known as occupations, and represent the probabilities to finding the
system in each of its basis states. Shifts in occupations are called relaxations (decrease of total energy) or exci-
titations (increase of total energy). The off-diagonal entries are the coherences, which represent the possibility
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of finding a system in a superposition of basis states. The density matrix is useful for calculating the expecta-
tion value of an operator. The expected value of an operator a certain in state (eq. 2.16) is given by;

〈T̂ 〉 = tr (ρ̂T̂ ) =
n∑
i

pi Tr(|φi 〉〈φi | T̂ ) =
n∑
i

pi 〈φi | T̂ |φi 〉 . (2.17)

In this equation, Tr(ρ̂T̂ ) denotes the trace, meaning the sum of the diagonal elements. Consequently, observe
that 〈T̂ 〉 is the average of the expectation values for the pure states |φi 〉.

2.4. Time Evolution
The time dependent state of a quantum system is of interest. The Schrödinger equation describes the time-
evolution of the wave function:

d

dt
|φ(t )〉 =− i

ħ Ĥ |φ(t )〉 . (2.18)

The Von Neumann equation is equivalent to the Schrödinger equation, except it describes the time evolution
of the density matrix:

dρ̂

dt
=− i

ħ [Ĥ , ρ̂]. (2.19)

2.5. Decoherence
In quantum mechanics, particles can exist in a superposition of states, where they can be in multiple states
simultaneously. As long as there is a definite phase relation between the different states, the system is said
to be coherent. If a quantum system would be perfectly isolated, it would remain coherent. However, due to
entanglement with the environment, the system will dissipate information and therefore lose it’s coherence.
This decay of coherence is called decoherence, and it has a characteristic decoherence rate. For a two level
system, the total system decoherence time is denoted T2.

Relaxation, also known as dissipation, is a specific type of decoherence process that involves the loss of energy
or population from a quantum system. In relaxation, the system tends to approach a state of thermal equilib-
rium with its surroundings. This process occurs when a system interacts with a heat bath or a reservoir and
exchanges energy, causing the system to transition to lower or higher energy states (depending on the temper-
ature of the heat bath). Relaxation leads to the decay of excited states and the thermalisation of the system. It
is associated with the relaxation time or characteristic time scale over which the system returns to equilibrium.
For a two level system, the characteristic time of evolution towards the equilibrium state is T1.

Pure dephasing is another type of decoherence process that affects the coherence of a quantum system. In
pure dephasing, the loss of coherence occurs without any loss of energy or population. It is specifically as-
sociated with the loss of phase coherence in a superposition state. Pure dephasing arises from interactions
between the system and its environment, which introduce random fluctuations in the phase of the quantum
state. These fluctuations cause the different components of the superposition to accumulate different phase
factors, resulting in the loss of interference effects. Pure dephasing is often characterised by a dephasing time,
which represents the timescale over which the phase coherence is lost. For a two level system, the characteris-
tic time of pure dephasing is Tφ.

As can be derived through for example Bloch Redfield T1, T2 and Tφ are related as follows [5]:

1

T2
= 1

2T1
+ 1

Tφ
. (2.20)

2.5.1. Kondo Interaction
The Kondo interaction has been found to be the most prominent interaction between magnetic adatoms and
the surface [17]. It arises from the interaction between s-wave electrons of the conducting surface and d-shell
electrons in the adatoms. This interaction can be modelled as Heisenberg point-point contact interactions
between the spins, as it originates from the exchange interaction and diminishes with distance. Notably, at

6



low temperatures, the interaction is centred around the Fermi wave number, allowing for an approximate
independence from the wave number. For magnetic adatoms on a surface the Kondo exchange interaction
Hamiltonian is [5] [2]:

ĤKondo = ∑
n,a

JnS(n)
a ⊗ s(n)

a . (2.21)

In this equation, n is the sum over the adatoms, and a = {x, y, z}. S(n)
a is the nth adatom spin projection in the

a-direction, s(n)
a the surface spin projection density at the position of adatom n, and J the spin-spin Heisen-

berg interaction strength.

In the study by Loth et al. [9], the interaction between the adatom’s and surface electrons is incorporated into
the Pauli rates. The conventional model for inelastic electron tunnelling is employed to describe the transition
rate from the system’s eigenstate |i 〉 to | j 〉 [7] [2]:

ri→ j =GS

e2 Pi→ j

∫ +∞

−∞
f (E)

[
1− f

(
E −E j +Ei

)]
dE

=GS

e2 Pi→ j
ϵi j

e
ϵi j

kB T −1

, if Ei ̸= E j ,

=GS

e2 Pi→ j kB T, if Ei = E j .

(2.22)

Here, f represents the Fermi function f (E) =
(
1+e

− ϵi j
kB T

)−1

. Ei and E j are the eigenenergies of the initial and

final states, respectively, and ϵi j denotes their energy difference. The prefactor Gs (the surface-atom-surface
conductance) characterises the strength of the spontaneous relaxation and is governed by conduction through
the thin insulating layer of MgO. The transmission coefficients Pi→ j relate the probability of spin scattering
through Kondo interaction per unit time to the quantum mechanical transition intensities:

Pi→ j = 1

P0

∑
σk ,σk′

| 〈iσk | σ̂ · Ŝ | jσk ′〉 |2 . (2.23)

In the above equation, σk and σk ′ represent the initial and final spin states of the scattering electron, respec-
tively. Thus, |iσk〉 corresponds to the product state of the atom’s spin and the scattering electron spin. P0 is
a normalisation factor. This transition intensity is based on the exchange interaction between the scattering
electron and the adatom’s spin [9]. Transitions within the same eigenstate |i 〉 (i.e., i = j ) are considered to
account for pure dephasing.

2.6. The Lindblad Equation
In order to model coupling of a quantum system to its environment, an approximation is needed of the deco-
herence of this quantum system. If Lk is any jump operator (multiplied by the correct weighing factor) that
describes the decoherence is acting on the particle k (e.g. the spin lowering operator, eq. 2.6), the Liouvillian
is given by [10]:

L̂k ρ̂L̂†
k −

1

2
L̂†

k L̂k ρ̂−
1

2
ρ̂L̂†

k L̂k . (2.24)

Then, under strong approximations, the Lindblad equation is obtained from the Von Neumann equation by
adding the Liouvillian, and summing over all particles [10]:

dρ̂

dt
=− i

ħ [Ĥ , ρ̂]+∑
k

L̂k ρ̂L̂†
k −

1

2

∑
k

{L̂†
k L̂k , ρ̂}. (2.25)

The transformation from the Von Neumann equation to the Lindblad equation involves a series of approxima-
tions:

• Second-order perturbation theory
Assuming a weak coupling between the system and its environment, the interaction with the environ-
ment can be estimated as as a second order perturbation on the unperturbed system evolution. For
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the system of Ti-atoms that under consideration this assumption is justified by the insulating bilayer of
MgO.

• Markov approximation
The Markov approximation assumes that the environment acts as a Markovian bath and that the mem-
ory effects of the environment are negligible. It implies that the system’s dynamics only depend on its
instantaneous state and not its past history. It is valid when the environment correlation time is much
smaller than the system’s time scale. This assumption is plausible for the relatively large MgO surface
that is involved.

• Born approximation
The Born approximation assumes that because of the weak coupling to a large environment, the envi-
ronment state hardly differs from the uncoupled thermal equilibrium state. In this way, the spin chain
state and the environment state are always separable; and the environment is always in thermal equilib-
rium.

• Strong secular approximation
As previously mentioned in section 2.2.2, terms that oscillate rapidly average out to zero over time, and
can therefore be neglected. In the case of a slower system evolution, these are approximately only the
constant terms. As a result of considering only these terms, there is no coupling between coherences
and occupations. This is only valid for weak interactions [3].

Furthermore, since the perturbed Von Neumann equation is usually solved via time integration, the requisite
for the integration step must be that the collective spin state of the chain does not evolve in it. Meaning the
system evolution time must be much larger than the integration time step.

2.7. Thermal Equilibrium
If there is no symmetry that prevents the change of occupations, the Boltzmann thermal equilibrium equation
provides a description of the occupation probabilities of energy levels in a system. The occupation of energy

level Ei is as follows: pi = e−Ei /kB T

Z , where kB is the Boltzmann constant, T the temperature, and Z =∑
i e−Ei /kB T

the normalisation factor. Therefore, the density matrix of the equilibrium state is given by [5]:

ρ(t →∞) = ρ =∑
i
|Ei 〉〈Ei | e−Ei /kB T

Z

=e−H/kB T

Z
.

(2.26)

where the summation is over the possible energy states i . Notice that the second part of the expression is
justified since H |Ei 〉 = Ei |Ei 〉.

2.7.1. High and Low Temperature Limits
At low temperatures, when T is small, the exponential term e−Ei /kB T becomes significant for energy levels
with lower values of Ei . Since the exponential term decreases rapidly with decreasing Ei , the probability pi is
highest for the energy levels with the lowest values. In other words, the lower energy levels are the preferred
occupation. This behaviour is commonly observed in systems at low temperatures and is known as the Bose-
Einstein condensation (in the case of bosons) or Fermi-Dirac distribution (in the case of fermions).

However, as the temperature increases, the exponential term e−Ei /kB T becomes less significant, and the oc-
cupation probabilities are no longer strongly dependent on the energy levels. In the high-temperature limit,
when T is large, the exponential term tends to approach unity (e−Ei /kB T → 1) for all energy levels Ei . Conse-
quently, the occupation probabilities pi become approximately equal for all energy levels. The reason behind
this behaviour lies in the relative magnitudes of thermal energy (kB T ) and the energy differences between the
levels. At high temperatures, the thermal energy is comparable to or larger than the energy spacing between
different energy levels. As a result, the system has sufficient energy to access a wide range of energy levels, and
the probabilities of occupation become more evenly distributed.
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Chapter 3

System Hamiltonian for Multiple Atoms

The goal of this chapter is to understand the dynamic behaviour of spin particle chains. The first section
explains how the Hamiltonian is constructed, including the influence of a global magnetic field on the eigen-
states. In the second section, the time-evolution governed by the Hamiltonian is studied.

3.1. Construction of the Time-Independent Hamiltonian
Recall the Hamiltonian given previously by equation 2.10:

Ĥ =
N−1∑

i

(
(J +2D)Ŝ(i )

z Ŝ(i+1)
z + (J −D)(Ŝ(i )

x Ŝ(i+1)
x + Ŝ(i )

y Ŝ(i+1)
y )

)
+

N∑
i

(
gµBB · Ŝ(i )

)
. (3.1)

To explain how the multi-particle operators act on the Hilbert space, each term starts with a tensor product
N∏

n=1
1(Sn), where 1(Sn) are the identity matrices of dimension (2Sn + 1). After that, the i th identity matrix is

replaced with a spin operator to find the operator working on the i th particle. All the terms are added together
to get our final expression for the Hamiltonian. Using the package QuTip the systems eigenstates and corre-
sponding eigenenergies can easily be calculated [6] . Figure 3.1 depicts the Zeeman splitting of a three spin- 1

2
particle system where the global magnetic field has a magnitude of 10 mT in the z-direction (and the dipolar
and exchange coupling were set to zero, and g = 1.98).
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Figure 3.1: Zeeman splitting: The eigenenergies of a spin- 1
2 particle vs the global magnetic field. For a field along the z-axis, the eigenstates

are |↑〉 and |↓〉
.
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3.2. Evolution of the Time-Dependent Hamiltonian
Consider a spin- 1

2 particle in a magnetic field of 100 mT in the z-direction. Our system is prepared in the spin
up state and the corresponding density matrix is defined according to equation 2.16. Then the Von Neumann
equation eq. 2.19 is solved using the QuTip function sesolve [6]. In figure 3.2 the time evolution of the spin
expectation value can be seen, with Larmor precession in the x and y directions.
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Figure 3.2: Time evolution of the expectation value of the three components of the spin vector of a spin- 1
2 particle in a magnetic field of

100 mT, initially in spin up. The z-component is constant.

3.3. Modelling Ti-atoms on a Surface
It has been found using ESR measurement and tunnel spectroscopy that Ti adatoms on a bilayer of MgO sub-
ject to an in plane magnetic field often have an effective spin 1

2 [16]. In order to model a chain of Ti-atoms,
realistic values for the exchange coupling strength J , the dipolar coupling strength D , and the g-factor g are
needed.

Figure 3.3: Schematic of a MgO lattice with Ti adatoms. (a) Oxygen bound Ti, (b) Ti bound to bridge site of two oxygen atoms, (c) different
spatial orientation of Ti atom bound to a bridge site

The Ti-atoms can either be bound to an oxygen atom or on the bridge site between two oxygen atoms as is
depicted in figure 3.3, and as a result they have different gyromagnetic ratios [15]. For the dipolar coupling
strength D , as given by eq. 2.14, the value of D0 = 78±17 MHz at r0 (three lattice constants, r0 = 8.64 Å) [16].

The following relation for exchange coupling strength of oxygen bound Ti atoms J with respect to interatomic
distance r has been found [16]:
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J = J0e
−(r−r0)

dex (3.2)

Where the decay constant was found to be dex = 0.40±0.02 Å, and a coupling strength of J0 = 0.97±0.03 GHz
at r0 = 8.64 Å (three lattice constants).
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Chapter 4

The Lindblad Equation

This chapter explores two models which use the Lindblad equation for the decoherence of a multiple particle
spin chain coupled to an electron bath. Recall the Lindblad equation:

dρ̂

dt
=− i

ħ [Ĥ , ρ̂]+∑
k

L̂k ρ̂L̂†
k −

1

2

∑
k

{L̂†
k L̂k , ρ̂}. (4.1)

The specific interaction with the environment is not required as the Lindblad equation incorporates all in-
teractions in ladder operators. The first model uses the spin eigenbasis of the chain where the spin ladder
operators act on individual atoms. The second model considers the effect of the environment on the energy
eigenstates of the entire chain. To this end, energy ladder operators are used which act on the collective energy
eigenstate. Note that the use of hats is dropped as notation for operators.

4.1. Model 1: Single Particle Decay
This chapter will derive the jump operators of a single atom based on the Pauli rate equations. The model uses
the spin eigenbasis of the chain where the spin jump operators act on individual atoms. The jump operators
of a single atom can be expanded to multiple atoms. A single spin- 1

2 adatom subject to a magnetic field relaxes
to the thermal equilibrium state in time T1. Under certain approximations this can be modelled by the Pauli
rate equations [9]. The following jump operators for the general Lindblad equation are such that they equal
the Pauli rate equations:

L+ =
√

k+S+, (4.2)

L− =
√

k−S−. (4.3)

Here, S+ and S− are the spin jump operators; k+ and k− are the k-rates from the Pauli equations (derived
previously in section 2.5.1), which can be expressed in terms of T1 and other quantities:

k+ = 1

1+e
ħω

kB T

1

T1
, (4.4)

k− = 1

1+e
−ħω
kB T

1

T1
. (4.5)

Also, ω is the Zeeman splitting (gµB B), T the temperature and T1 the relaxation time. T1 can be rewritten in
terms of other physical quantities (G , the surface conductance and q the electric charge) as follows:

1

T1
= Għω

q2

sinh ħω
kB T

cosh( ħω
kB T )−1

(
= Għω

q2

cosh( ħω
kB T )+1

sinh ħω
kB T

)
. (4.6)

The jump operators include the decoherence as a result of energy loss. To include decoherence due to pure
dephasing, a Lindblad term with pure dephasing operator is needed, given by:
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Lφ =
√

1

2Tφ
Sz , (4.7)

with Tφ = 2T1T2
2T1−T2

, where T2 is the characteristic time of the total system decoherence, and T1 is again the char-
acteristic time of evolution to the equilibrium state.

Figure 4.1 depicts the exponential decay of the expectation value of Sx and Sz as a result of decoherence for
one Ti atom. The Ti atom was initially in perfect superposition at T = 1.2 K and B = 0.9 T. The operators used
in the Lindblad equation were as in Eqs. 4.2, 4.3, and 4.7, where the values used for T1 and T2 were 190±50 ns
and 95±15 ≈ 100 ns, respectively (found by Yang et al. [16]).
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Figure 4.1: Time evolution of the expectation values of Sx and Sz for a Ti-atom initially in perfect superposition.

As a preliminary model for the flip-flop interaction of a spin chain coupled to an electron bath, the Lindblad
equation with local jump operators is used. The local interaction strength is assumed the same as for a single
atom. The local jump operators can be calculated by applying the tensor product (eq. 2.8) to the jump oper-
ators found above (eq. 4.3, 4.2, 4.7). The model is only realistic for very weakly coupled spin chains, since for
strongly coupled spin chains the assumption of only local interaction is not valid. An important advantage of
this model is that it easily scales up to multiple particle spin chains without increasing the computation time
drastically. Note that it is necessary to know T1 and T2 from experiment. An advantage of the formulation of
the ladder operators using T1 and T2 is that the exponential dependence on T of the jump operators is made
clear (see eq. 4.4, 4.5) where T1 acts as just a scaling factor.

Another way to express the Lindblad operators is by using the scaling factor Jsurf, which represents the coupling
strength of the Ti atom to the surface. In this way, a more insightful notation of the ladder operators is obtained
since our second model will also depend on Jsurf. The value of Jsurf can be found through experiment, or in the
case of Ti atoms at B = 0.9T and T = 1.2 K it’s value can be found by letting the decoherence time correspond
to T2 that was found by Yang et al. [16]. Consider the following prefactor for the spin raising/lowering operator
for a 2 atom system:

L(n)
± = k(n)

± S(n)
± . (4.8)

The index (n) of L(n)
± indicates that this spin operator works on the nth atom. This is again determined by

its position in the tensor product. For the dephasing operator, Sz , an extra factor of 1
2 is introduced. For the

prefactors we find:

k(n)
±,z = J 2

surf

1

2N−1

∑
i , j

ϵi j

e
ϵi j

kB T −1

| 〈i |S(n)
±,z | j 〉 |2, if Ei ̸= E j ,

= kB T J 2
surf

1

2N−1

∑
i , j

| 〈i |S(n)
±,z | j 〉 |2, if Ei = E j .

(4.9)
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The factor Jsurf is the coupling strength of the atoms to the surface. The prefactor of the Lindblad operator
depends on the different eigenstates |i 〉 and | j 〉, the energy differences, and the Boltzmann factor. The factor
2N−1 to accounts for double counting.

4.2. Model 2: Collective Spin Chain Decoherence
The second model considers the effect of the environment on the energy eigenstates of the entire chain. The
environment interacts with the chain by means of a spin-scattering electron from the substrate that inter-
acts with the adatoms, and returns to the substrate. [9] By making a diagonalization of the Hamiltonian:
H = PDP †, with D a diagonal matrix of the energy eigenvalues, a density matrix in the spin eigenbasis (ρ̂S )
can be expressed in the energy eigenbasis (ρ̂E ) by using ρ̂E = P †ρ̂S P , and vice versa: ρ̂S = P ρ̂E P †. In this en-
ergy eigenbasis the eigenstates are the standard basis vectors, and n times degenerate eigenvalues appear n
times on the diagonal matrix D , meaning different spin eigenstates are still distinct eigenstates in the energy
basis. The convention that will be used is that the eigenvectors are assigned the lowest to highest eigenvalue
respectively as: 

1
0
...
0

 ,


0
1
...
0

 , . . . ,


0
...
1
0




0
...
0
1

 .

This means the energy ladder operators are 2N ×2N matrices with a single nonzero entry of value 1 (N is the
amount of particles in the system; for spin-1/2 particles this implies a 2N dimension of the eigenstates). For
example, the ladder operator used to jump from the lowest to second lowest energy eigenstate is:

E0→1 =


0 0 . . . 0
1 0 0
0 0 0
...

. . . 0
0 0 . . . 0

 .

The energy jump operators need the correct prefactor in the Lindblad equation:

Li→ j =
√

ki→ j Ei→ j , (4.10)

where the notation i → j is used to indicate the transition between energy eigenstate |i 〉 to | j 〉. The transition
rate ki→ j in this jump operator, as derived in section 2.5.1, is given as [9]:

ki→ j =
ϵi j

e
ϵi j

kB T −1

J 2
surf

∑
σk ,σk′

N∑
n=1

| 〈iσk |σ ·S(n) | jσk ′〉 |2, if Ei ̸= E j ,

= kB T J 2
surf

∑
σk ,σk′

N∑
n=1

| 〈iσk |σ ·S(n) | jσk ′〉 |2, if Ei = E j .

(4.11)

The composition of this transition rate can be viewed as follows. It starts with a Boltzmann factor depending
on the temperature T and the difference in energy of the eigenstates ϵi j . Then the summation is over all the
possible spin states of the scattering electron (σk and σk ′ ). The operator σ̂ · Ŝ is a dot product of the Pauli spin
matrices and the spin operators in the x̂, ŷ and ẑ direction. Then the projection of the joint state of the eigen-
states |i 〉 and | j 〉 with all possible electron spin states are calculated. The factor Jsurf is the coupling strength
between the atoms and the substrate. Note that although ki→ j is a transition rate between two energy eigen-
states, the states in the sum are calculated in the spin basis.

It is important to note that pure dephasing in this form of the Lindblad operators is not captured since it only
considers energy jumps (relaxations and excitations). A pure dephasing operator would require a negative sign
on the diagonal (recall from the Sz operator), which is not possible here.
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Chapter 5

Analytical Solution

This chapter will delve into the analytical solution of the Lindblad equation for a system of two atoms. It will
begin with an illustrative example which examines the relatively simple case of two atoms where the only in-
teractions are decay and dephasing. Subsequently, an additional layer of complexity will be introduced by
incorporating exchange interaction into the system. This will show how solving such equations becomes in-
creasingly difficult as the system becomes more intricate.
Recall the Lindblad equation (eq. 2.25):

d

d t
ρ = −i

ħ [H ,ρ]+L[ρ]. (5.1)

In which H is the total Hamiltonian, and L is the Lindblad superoperator:

L[ρ] =∑
k LkρL†

k − 1
2

∑
k {L†

k Lk ,ρ}.

When considering the jump operators and the dephasing operator separately (spin basis, see Section 4.1),
it is possible to divide this master equation into two differential equations for the diagonal and off-diagonal
elements [10]:

d

d t
ρnn(t ) = −i

ħ [H ,ρ(t )]nn + (L±[ρ])nn ,

d

d t
ρnm(t ) = −i

ħ [H ,ρ(t )]nm + (L±[ρ])nm −γρnm , if n ̸= m.
(5.2)

With γ the prefactor as in eq. 4.9, and Lk in L±[ρ] the jump operators for individual atoms as defined in eq.
4.8. The term γρnm for n ̸= m comes from the pure dephasing operator.

5.1. Two Particle System limited to Dephasing and Decay
Consider a system of two atoms where there is no exchange or dipolar interaction and no magnetic field. This
illustrative example considers only interaction with the environment in the form of the dephasing operator Lφ
and the decay operators L(n)− . The L(n)

+ operator is intentionally omitted in order to obtain a relatively straight-
forward manual solution for the system. By doing so, this will help us understand the next example which is
significantly more complex, while also providing us with preliminary insights into the general properties of the
time-dependent solution. The system is considered in the high temperature limit, where all the prefactors of
the Lindblad operators are the same and are denoted as γ. This will result in the following set of differential
equations: 

ρ̇11 ρ̇12 ρ̇13 ρ̇14

ρ̇21 ρ̇22 ρ̇23 ρ̇24

ρ̇31 ρ̇32 ρ̇33 ρ̇34

ρ̇41 ρ̇42 ρ̇43 ρ̇44

= γ


ρ22 +ρ33 −ρ12 +ρ34 −ρ13 +ρ24 −2ρ44

−ρ21 +ρ43 −ρ22 +ρ44 −2ρ23 −2ρ24

−ρ31 +ρ42 −2ρ32 −ρ33 +ρ44 −2ρ34

−2ρ41 −2ρ42 −2ρ43 −2ρ44

 . (5.3)

Note that the dephasing operator Lφ causes only off-diagonal terms according to equation 5.2 where ρ̇nm =
−γρnm . These entries in the density matrix where ρ̇nm =−γρnm are easily solved as ρnm(t ) = ρnm(0)e−γt . Now
for the following subsystem of differential equations of the diagonal elements:
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˙ρ11 = γ(ρ22 +ρ33),

ρ̇22 = γ(−ρ22 +ρ44),

ρ̇33 = γ(−ρ33 +ρ44),

ρ̇44 = γ(−2ρ44).

(5.4)

By substituting the solution ρ44(t ) = ρ44(0)e−2γt , and using an integrating factor we obtain:

ρ22(t ) =−ρ44(0)e−2γt + (
ρ22(0)+ρ44(0)

)
e−γt ,

ρ33(t ) =−ρ44(0)e−2γt + (
ρ33(0)+ρ44(0)

)
e−γt .

(5.5)

These solutions can be used to obtain an expression for ρ11(t ) = ρ44(0)e−2γt − (
ρ22(0)+ρ33(0)+2ρ44(0)

)
e−γt +

ρ11(0)+ρ22(0)+ρ33(0)+ρ44(0). The final subsystem of equations that need to be solved is given by:

˙ρ12

˙ρ13

˙ρ21

˙ρ31

˙ρ24

˙ρ34

˙ρ42

˙ρ43


= γ



−1 0 0 0 0 1 0 0
−1 0 0 1 0 0 0 0
−1 0 0 0 0 0 0 1
−1 0 0 0 0 0 1 0
−2 0 0 0 0 0 0 0
−2 0 0 0 0 0 0 0
−2 0 0 0 0 0 0 0
−2 0 0 0 0 0 0 0





ρ12

ρ13

ρ21

ρ31

ρ24

ρ34

ρ42

ρ43


. (5.6)

Given the many zero entries of this matrix it is straightforward to compute the eigenvectors vi with corre-
sponding eigenvalues λi , and then construct the solution as:

ρ12

ρ13

ρ21

ρ31

ρ24

ρ34

ρ42

ρ43


=

8∑
i=1

=Ci e−λi t vi . (5.7)

Where the coefficients Ci are given by the initial conditions of the system. From this example, the exponential
nature of the decoherence of a quantum system becomes evident. Notice also that if λi is complex, that is,
where the oscillating terms in the density matrix originate from.

5.2. Decoherence of a Two Particle System with Exchange Interaction
Consider a dimer in the high temperature limit, where only the exchange interaction of both spins is consid-
ered. Our Hamiltonian is given by eq. 2.15. In the high temperature limit, all spin Lindblad operators have the
same prefactor γ. These Lindblad spin- 1

2 operators are given by:

L(n)
a = γS(n)

a . (5.8)

With a = {x, y, z}, n denoting the atom on which the operator acts, and γ the prefactor. After substitution of
these operators and writing out the matrix products in eq. 5.1, this can be rewritten as a system of differential
equations:

iħ d

d t
ρv =Uρv . (5.9)

Here U is the evolution matrix, and ρv is the density matrix reshaped as a vector (see 5.6 for an example). This
system of ODE’s can be solved by finding the eigenvalues and eigenvectors of U , and using the general solution
given by:

ρv = ∑
i=1

=Ci e−λi t vi . (5.10)
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Where the sum is applied to all eigenvalues vi . λi are the corresponding eigenvalues, and Ci constants to be
determined by the initial conditions. The Python module SymPy can be used to solve for the exact solutions.
Alternatively, since we are in the weak coupling limit where the prefactor is much smaller than the exchange
coupling strength, i.e. γ<< J , a leading order expression can be obtained for the solution by first-order Taylor
expansion of λi and vi around γ

J = 0 (again using SymPy). The full evolution matrix is given in the appendix
Eq. A.

Initialising in up-down state gives the following evolution matrix (Energy basis):

ρ(t ) = 1

4


1−e−2γt 0 0 0

0 1+e−2γt −2e−
3
2γcos(J t ) 0

0 −2e−
3
2γt cos(J t ) 1+e−2γt 0

0 0 0 1−e−2γt

 . (5.11)

In this expression, γ= 1
2 kB T J 2

sur f and J is the exchange coupling strength. In figure 5.1, the coherence ρ23(t ) =
ρ32(t ) =− 1

2 e−1.5γt cos(J t ) is plotted for multiple values of temperature T .

Analytical Solution of Coherence for Different Temperatures
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Figure 5.1: Analytical solution of the coherence: ρ23(t ) = ρ32(t ) = − 1
2 e−1.5γt cos(J t ). The analytical solution shown is obtained for two

atoms initially in the up-down state.
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Chapter 6

Results

In this chapter, the results obtained from the numerical implementation of the Lindblad equation are pre-
sented. These results show the outcomes for various scenarios using the two models of decoherence. The first
model (Sec. 4.1) considers decay operators acting on individual spins. The second model (Sec. 4.2) uses Lind-
blad operators that act on the collective energy level of the spin chain. The alignment of these models with the
findings of Yang et al. [16] for a single atom (Sec. 6.1) is demonstrated. Next, the analysis is extended to encom-
pass two atoms, enabling a comparison of the models and uncovering similarities and differences, particularly
with regard to exchange coupling. Following that, we delve into a current area of research that explores asym-
metric coupling to the surface (Sec. 6.2). In this case, only one atom is subject to coupling with the surface.
Our investigation will focus on understanding the temperature dependence of this system. Subsequently, the
focus shifts to situations where our model demonstrates its greatest effectiveness: modelling configurations
involving more than two spins. Specifically, the flip-flop oscillation of a chain of multiple atoms in section 6.3
is examined, triggered by flipping a single spin.Lastly, the combined situation of a multiple atom spin chain
with asymmetric coupling, where only the first atom experiences coupling with the bath, is explored to con-
sider the behaviour and properties of such configurations (Sec. 6.4).

6.1. Comparing both Models
In this first section, the alignment of the two models with the findings of Yang et al. [16] for a single atom
is demonstrated. The variables employed by Yang include a magnetic field B = 0.9 T in the [1,1,0]-direction
of the MgO crystal layer, a temperature T = 1.2 K, and a g-factor of g = 1.98. Subsequently, the situation is
expanded to two atoms, where exchange interaction comes into play and results in some differences between
the two models.

6.1.1. A Single Ti Atom
The time evolution of the Ti atom initially in perfect superposition of the magnetisation singlet and triplet
states (therefore resulting in up-down initial state) was done for the first model with operators in the spin basis
according to the analytic method of section 4.1, and for the second model in the energy basis with the method
of section 4.2. Recall that the variable Jsurf represents the atom’s coupling to the surface, and functions as a
scaling factor for the decoherence. The larger the coupling with the surface, the faster the system decoheres.

In figure In figure 6.1, the time evolution of the density matrix is depicted. The graphs of the second model
are shown since no significant difference is observed for both models in this case. An exponential decay rela-
tion AeB t +C (where A, B, and C are constants to be determined according to the fit) is fitted to the diagonal
element. A decoherence time corresponding to Yang et al. [16] of 1

B = 190 ns is obtained when using a surface
coupling of 2 ·10−2 MHz = 20 kHz.

6.1.2. Two Ti Atoms
The setup of the two atom system is depicted in figure 6.2. The oxygen bound Ti atoms are separated by a
separation vector r⃗ , which has a length of three lattice constants (8.64 Å). The strength of the exchange cou-
pling with respect to the interactomic distance, deduced using eq. 3.2, is J = 970 MHz. The magnetic field,
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Single Ti atom on a Surface
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Figure 6.1: Time evolution of the density matrix for a Ti-atom initially in perfect superposition. (a): Occupations of energy eigenstates, (b):
Coherences, where ρ12 = ρ∗21, and the timescale is shortened to show the oscillations.

as mentioned before, has a direction of [1,1,0] and forms an angle of θ = 1
4π with r⃗ . This results in a dipolar

coupling strength of D = 20 MHz, as given by eq. 2.14, with D0 ≈ 80 MHz [16].

Visualisation of Two Ti Atoms on a Surface

Figure 6.2: Two Ti atoms on the MgO lattice represented by the grid (the lattice constant is 2.88Å). r⃗ is the separation vector, B⃗ the magnetic
field and θ is the angle between them.

In figure 6.3 the results of the two models for the decoherence are shown for two atoms initially in the state
up-down. Where figure (a) used an exchange coupling of 970 MHz, and figure (b) used an exchange coupling
a factor 10 larger (J = 9700 MHz). It was verified that the final state of both models equals the Boltzmann equi-
librium state in figure (a), and also for the full-chain decoherence model in figure (b). The density matrix is
shown in the energy basis.

When comparing figures (a) and (b) from Fig. 6.3, the distinction between both models becomes evident as
the time evolution of the diagonal entries of the density matrix is not identical for the large value of J . Model
1 incorporates spin ladder and dephasing operators in the Lindblad equation, reflecting the influence of the
environment on atoms through spin flipping in the Kondo interaction. This process is captured by individual
spin ladder and dephasing operators that act on the atom’s spin state (as discussed in Section 4.2). However, in
the presence of exchange interaction, the assumption of individual interactions is not entirely valid due to the
coupling between the atoms. In contrast, Model 2 employs energy ladder operators that act on the collective
state, thus not assuming this individual interaction. Hence, it should be noted that for very large exchange
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coupling, the single-atom decoherence model might be less reliable.

Comparing both Models w.r.t Exchange Coupling J for a Ti dimer
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Figure 6.3: Time evolution for two Ti-atoms initially in the up-down state. The density matrix is represented in the energy basis for both
figures, where ρi i is the occupation of energy eigenstate |i 〉 and (1), (2) denote the single particle decoherence model (solid line) and
collective spin-chain decoherence (dashed line), respectively. For a large exchange coupling in figure (b), the distinction between both
models can be seen. Model 2, which considers Lindblad operators acting on the energy levels, was validated to still approach the thermal
equilibrium state.

6.2. Asymmetric Coupling to the Surface
A current field of research involves situations where only one atom of a dimer experiences coupling with the
surface while the other atom does not. The focus is on studying the coherences of this system, specifically
the temperature dependency of their decoherence process, as there is no analytical solution available in this
situation. In Section 5.2, the analytical solution was derived for a two atom system initially in the up-down
state under the assumption of high temperature limit and considering only exchange interaction. The time
evolution of the coherence between the second and third eigenstate (the triplet and singlet states) was deduced
as follows:

ρ23(t ) = ρ32(t ) =−1

2
e−1.5γt cos(J t ). (6.1)

In this equation, J is the exchange coupling strength andγ= 1
2 kB T J 2

surf. This solution was obtained analytically
in the high temperature limit as the prefactors γ in the Lindblad operators are all the same in this case. Now,
our model comes into play when considering lower temperature situations where the prefactors will differ.
The analytical model considered only exchange coupling, hence a magnetic field of 10 mT and an exchange
coupling of 100 MHz were used, ensuring that the Zeeman splitting (gµB B) is much smaller than J . This pro-
vides a sufficiently large splitting of the eigenvalues while still allowing the utilisation of the obtained equation.

In Figure 6.4(a), the time evolution of the density matrix element ρ23 (in the energy basis) is presented for
multiple temperature values (T = 0.3,1.2,5 K) using the full-chain decoherence model (Model 2). The results
from the single-atom decoherence model yield nearly identical outcomes, as anticipated from Section 6.1.2.
Both symmetric coupling (where both atoms experience the same surface coupling Jsurf) and asymmetric cou-
pling (where only one atom is coupled to the surface with strength Jsurf) are shown. The oscillatory behaviour
characterised by a cosine function combined with exponential decay is clearly observed. Additionally, when
comparing symmetric and asymmetric coupling at the same temperature, it is evident that the asymmetric
dimer exhibits a lower decay rate. This can be attributed to the realisation that the Kondo interaction with the
surface is the underlying cause of decoherence for both systems, with only one atom in the asymmetric dimer
experiencing this interaction, this explains the reduced decay rate

In figure 6.4(b), the results of fitting ρ23 to the relation yfit = Ae−B t cos(C t )+D are presented, and the value of
the exponential decay rate (denoted as B) is divided by 1

2 kB T J 2
surf. It has been verified that for all temperature
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Asymmetric and Symmetric Coupling vs. Analytical Solution
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Figure 6.4: Figure (a): Results for the time evolution of the density matrix element ρ23 (Energy basis) from the full-chain decoherence
model (Model 2) for multiple values of temperature T (T = 0.3, 1.2, 5 K). The two Ti-atoms were initially in the up-down state, and have
J = 100 MHz, D = 0, Bz = 10 mT. Both symmetric coupling (where both atoms experience the same surface coupling Jsurf), and asymmetric
coupling (where only one atom is coupled to the surface with strength Jsurf) are considered. Figure (b): Results for fitting ρ23 to eq. 6.1 for
both models (single-atom decoherence model (1) and full-chain decoherence model (2)), for multiple values of temperature T (T = 0.1,
0.3, 0.5, 0.8, 1.2, 2, 3.5, 5 K). This graph shows a linear dependence of the decay rate with temperature.

values T , A is approximately 0.5, C is approximately 100 (equal to J ), and D is approximately 0, thereby con-
forming to our analytical model described in eq. 6.1. In the case of the symmetric model, a decay rate of 1.5γ
is observed, which also aligns with our analytical model. In the case of the asymmetric model, the decay rate
is half of that, specifically 0.75γ

Now, attention is turned to lower temperature values, where the analytical model might not be applicable as
the approximation of nearly equal prefactors in the Lindblad equation no longer holds. A logarithmic scale
with 10 steps was used to consider temperatures ranging from 0.1 mK to 100 mK. The same initial state and
initial values as before were used, and both models for symmetric and asymmetric coupling were considered.
Results are shown in figure 6.5. In figure 6.5, it can be seen that the behaviour of the density matrix element
ρ23 no longer follows the analytical solution given by eq. 6.1. Namely, for very small temperatures, the de-
cay rate far exceeds 1.5γ. Note that in Figure 6.5, the y-axis is restricted to get a more detailed view of the
temperature-dependent behaviour. It can be seen for a temperature less than roughly 20 mK, the analytical
model breaks down. Also, for those temperatures, there are slight differences between model 1 and 2. This
might be explained since the decay rate for small temperatures is so little, that fitting the results to the rela-
tion γfit = Ae−B t cos(C t )+D induces a small-scale error since the decay term is almost constant, hence small
differences between both models are amplified. Also, for lower temperatures, the exchange coupling becomes
relatively large in comparison, hence resulting in the same dissimilarities previously seen in Sec. 6.1.2 caused
by assumption of individual interaction in the first model.

6.3. Flip-Flop Oscillation for a Multiple Atom Chain
This section will analyse the flip-flop oscillation of a multiple particle chain. When considering a chain of
atoms in an external magnetic field, flipping a single atom will result in a flip-flop oscillation of the spin ex-
pectation values. The flip-flop oscillation refers to the oscillatory exchange of spin states between adjacent
particles in the chain.

Under certain conditions, the particles’ spins can undergo a periodic flipping motion, where the spin state of
one particle changes while the spin state of its neighbouring particle simultaneously flips in the opposite di-
rection (in the case of antiferromagnetic coupling). This exchange of spin states continues to propagate along
the chain, leading to a collective oscillation that can persist for a certain period. The underlying mechanism
behind the flip-flop oscillation lies in the coupling between the spins of neighbouring particles and their inter-
action with the external magnetic field. The magnetic field acts as a driving force that induces a predilection
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Asymmetric and Symmetric Coupling for Small Temperatures

Figure 6.5: Results for fitting ρ23 to eq. 6.1 for both models (single-atom decoherence model (1) and full-chain decoherence model (2)),
for multiple values of temperature T (T ranging from 0.1 mK to 100 mK on a logarithmic scale with 10 steps).

of the spin orientations, while the interactions such as dipolar and exchange coupling between adjacent spins
provide a means for spin transfer. In figure 6.6, an illustration of this behaviour is depicted.

The flip flop oscillation of spin-1/2 chains has attracted significant interest due to its potential applications in
various fields. It holds promise for applications in quantum computing, where spin chains can be harnessed
for quantum information processing and quantum gate operations. Moreover, the phenomenon is relevant
for studying quantum magnetism and many-body physics, shedding light on the fundamental quantum me-
chanical properties [15].

Flip-Flop Oscillation for a Chain of Four Atoms

(a) Initial state (b)

(c) (d) Final state

Figure 6.6: Flip-flop Oscillation of a chain consisting of 4 particles. The (strong) magnetic field is pointing upwards, meaning the spin
of the atoms will have a preferred upward direction as well. The surface the atoms reside on represents the MgO lattice. The atoms are
coupled with exchange coupling J . Figure (a): The initial state, where the first spin is flipped antiparallel to the magnetic field. Figure (b):
Flipping the first atom causes the second atom to oscillate. For simplicity, the (smaller) oscillations of the other atoms are not depicted.
Figure (c): Flip-flop oscillation of the third atom caused by exchange coupling between the neighbouring left atom. Figure (d): The chain
has returned to it’s equilibrium state.

There are certain conditions for this so-called flip-flop oscillation to occur. First of all, there needs to be a
coupling between the atoms. In the case of a chain of Ti atoms, this is realised by the exchange and dipolar
interaction. Also, the atoms need to have almost the same level splitting and thus Larmor frequency. To this
end, all Ti atoms are considered oxygen-bound in this model, resulting in the same g-factor. Furthermore, the
initial state must be an entangled state for the flip-flop evolution to occur. Lastly, the characteristic time of the
system must be larger than the period of the oscillation.

To realise the conditions mentioned above, our system is prepared in an initial state where only the first atom
has a spin orientation antiparallel to the magnetic field (spin down). The magnetic field is strong, namely a
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value of 0.9 T such that the final state will be almost equal to all spins parallel to the magnetic field (spin up).
The temperature of the heat bath considered is a low value of 300 mK. The exchange coupling is chosen to be
12 MHz (corresponding to an interatomic distance of 3 lattice constants (8.64 Å) in the x-direction and 2 lattice
constants (5.76 Å) in the y-direction, see eq. 3.2). This exchange coupling results in only nearest-neighbour
spin flipping. Furthermore, if the magnetic field is approximately parallel to the spin chain, the dipolar cou-
pling is negligible (eq. 2.14).

In figure 6.7, results are shown for chain lengths varying from 2 to 7 atoms. As can be seen in all graphs, the
initial expectation value of Sz is − 1

2 for only the first atom (spin down) and + 1
2 for all the other atoms (spin

up). Then, consecutively, the other spins in the chains are also flipped. The decaying nature of the chain can
be observed, where due to the interaction with the heat bath, it returns to the equilibrium state after a certain
time.

In the appendix figure A.1, results are shown for both models. There are some minor distinctions between both
models, the most notable being that a result of the individual interactions in the first model might be visible.
Namely, in the full-chain decoherence model, the graphs for the atoms further off in the chain are more sloped
at the start. This could mean that because our ladder operators are acting on the spin chain as a whole, the
other atoms experience the flipping simultaneously. Whereas on the other hand, in the single-atom decoher-
ence model, flipping happens individually and in a subsequent manner.

Another interesting observation is that for all chain lengths, the last atom in the chain experiences more os-
cillation than the atom before it (mostly visible in N = 3,4,5,6). An explanation for this could be that, since
it is the last atom in the chain, it is only coupled to one other atom, hence resulting in more oscillation freedom.

Also, for the full chain decoherence model up to a chain length of 8 atoms, some oscillating coherences were
plotted (see Appendix A.2) and fitted to the relation yfit = Ae−B t cos(C t )+D , which reflects the exponential
nature of the decay and oscillating term of the flip-flop interaction. The characteristic times ( 1

B ) are plotted
in figure 6.8. There is an almost steady decline in decoherence time with increased length of the chain. It was
also verified that for higher values of exchange coupling, there was no significant difference in the chain length
vs. decoherence time (within the uncertainty margin).

In the single particle decay model, the relation mentioned above for yfit was found to be inadequate in ac-
curately describing the system. This is because the oscillation of atoms higher up in the chain initiates at a
later time, which is not considered in the cosine term. As a result, the graph displayed increased dispersion in
decoherence time. However, despite this limitation, the system did exhibit similar behaviour.
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Flip-Flop Oscillation for a Range of Particle Chain Lengths
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(b) N=3
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(c) N=4
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(d) N=5
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(e) N=6
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Figure 6.7: Flip-flop Oscillation in Sz expectation value for a multiple atom chain with lengths ranging from 2 to 7 atoms (denoted by
the number of atoms N ). The magnetic field considered is 0.9 T, directed along the chain. The exchange coupling J is 12 MHz, and
temperature T = 300 mK. Each time, only the first atom has orientation antiparallel to the magnetic field (spin down). The final state is all
spins directed along the magnetic field. The results were obtained using the second model with collective spin chain decoherence.
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Chain Length vs. Decoherence Time
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Figure 6.8: Relation between the decoherence time and length of the chain in number of atoms for the flip-flop oscillation (J = 12 MHz,
B = 0.9 T, T = 0.3 K). Results were obtained using the second model with collective spin chain decoherence.

6.3.1. Higher Exchange Coupling for Three Atoms
The final flip-flop oscillation with symmetric coupling will be analysed is a case involving three atoms with a
higher exchange coupling strength (J = 100 MHz). The three initial states under consideration are |↑↓↓〉, |↓↑↓〉,
and |↓↓↑〉, as shown in figure 6.9. It is interesting to observe that the modes of oscillation differ depending on
which atom undergoes a spin flip.

When the middle atom is flipped, the situation becomes symmetric, resulting in both outer atoms exhibiting
the same sinusoidal time evolution. However, when one of the outer atoms is flipped, the time evolution
becomes more complex and is characterised by the presence of two distinct modes. The first mode being
when the first atom flips only the second one, and the second mode being when the first atom causes the
second and third atom to flip simultaneously.

Flip-Flop Oscillation with Different Oscillation Modes
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(a) Initial State |↑↓↓〉
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(b) Initial State |↓↑↓〉
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(c) Initial State |↓↓↑〉

Figure 6.9: For a higher exchange coupling of J = 100 MHz, multiple oscillation modes are visible (a superposition of cosines) depending
on the initial state. (B = 0.9 T, T = 0.3 K)

6.4. Flip-Flop Oscillation for a Chain of Atoms with Asymmetric Coupling
In this final section, the behaviour of a multiple atom spin chain is investigated, where only the first atom is
coupled to the bath. It focuses on flip-flop oscillation, which occurs when the first atom (the one coupled to
the bath) flips anti-parallel to the direction of the magnetic field. The magnetic field has a strength of 0.9 T, and
the heat bath temperature is 300 mK. To ensure one mode of spin flipping without other oscillation modes, the
exchange coupling is set to 12 MHz.
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Flip-Flop Oscillation for a Range of Particle Chain Lengths for Asymmetric Coupling
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(b) N=3

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time ( s)

0.4

0.2

0.0

0.2

0.4

S z
 E

xp
ec

ta
tio

n 
Va

lu
e

n = 4
n = 3
n = 2
n = 1

(c) N=4
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(d) N=5
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(e) N=6
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Figure 6.10: Flip-flop Oscillation in Sz expectation value for a multiple atom chain with lengths ranging from 2 to 7 atoms (denoted by the
number of atoms N ). Only the first atom experiences coupling with the bath. The magnetic field considered is 0.9 T, directed along the
chain. The exchange coupling J is 12 MHz, and temperature T = 300 mK. Each time, only the first atom has orientation antiparallel to the
magnetic field (spin down). The final state is all spins directed along the magnetic field.
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To implement asymmetric coupling in the model, prefactor of the Lindblad operators are modified (eq. 4.11)
by summing only over the first atom instead of all N atoms. Figure 6.10 illustrates the results for chain lengths
ranging from 2 to 7 atoms. In all the graphs, the initial expectation value of Sz is indeed − 1

2 for the first atom
(spin down) and + 1

2 for the remaining atoms (spin up). As a result of this initialisation, the other spins in the
chain are flipped consecutively. The graphs also exhibit the decaying nature of the chain, where it returns to
the equilibrium state over time due to interaction with the heat bath. It was verified that the chain returns to
the Boltzmann equilibrium state.

Comparing these results with those obtained from symmetric coupling, a similar behaviour but with less de-
coherence in the case of asymmetric coupling can be observed. For two atoms, the coherence time in the
asymmetric case is twice as long as the symmetric coupling situation (Sec. 6.2). This can be attributed to the
fact that only the first atom in the chain introduces decoherence, whereas in the symmetric case, adding an
atom to the chain introduces an additional source of decoherence. Additionally, notice that the outer atoms
of the chain experience more pronounced oscillations. Regarding the decoherence time, there was a notable
dispersion in the values across different coherences, hence a definite conclusion about the relation between
decoherence time and chain length cannot be drawn. One notable observation is that the decay rate of the
chain does not notably decrease as the length increases.

However, it is crucial to acknowledge that the use of the secular approximation likely introduces a significant
error in the case of asymmetric coupling. It has been demonstrated by Broekhoven [2] for a dimer that the
largest discrepancy occurs when the two atoms have unequal coupling strengths to the surface. This mis-
match causes the interaction to become too strong for the secular approximation to remain valid.

The implementation of asymmetric coupling to a chain with more than two atoms for the first model with
single spin decay poses an ongoing challenge. One initial solution that comes to mind is to focus solely on the
ladder operators that act on the first atom. However, it was verified that the chain does not evolve back to the
Boltzmann equilibrium state in this approach. This method is likely to result in miscalculations since it fails to
account for the influence of exchange coupling that is reflected in the prefactors of these operators. Obtaining
results using the first model, which utilises individual spin operators, would be valuable since the interaction
with the bath also occurs at the first individual atom. For this same reason, it is also questionable whether the
collective spin chain decoherence model is the right approach for asymmetric coupling.
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Chapter 7

Conclusions and Discussion

This thesis marks the initial steps towards modelling the decoherence process of a multi-atom chain on a con-
ducting surface. Two models based on the Lindblad equation were employed: one considering decay operators
acting on individual spins, and the other utilising operators acting on the collective state of the spin chain.

The primary focus of this study was on Ti atoms on MgO on Ag[001], which are bound to oxygen atoms and
exhibit an effective spin- 1

2 . The Kondo interaction with the surface was identified as the main source of deco-
herence. The initial investigations involved a single atom, with the results compared to the findings of Yang
et al. [17], including experimental values of decoherence and relaxation times. The subsequent step involved
implementing a model for the surface scattering electrons mediating the Kondo interaction, as proposed by
Loth et al. [9]. This model incorporated a scaling factor, Jsurf, to account for the decoherence based on ex-
perimental data. While this rescaling provided a reasonable estimation for the total dimer evolution since the
interaction with the STM tip is also of the Kondo interaction type, a significant improvement could be achieved
by considering the interaction with the STM tip atom (thereby eliminating the need for rescaling).

7.1. Comparing the two Models for a Ti Dimer
The next stage involved comparing the two models for various exchange coupling strengths. The first model,
employing individual spin operators, considers the interaction of the environment with the system as individ-
ual atom interactions. On the contrary, the second model employs collective spin chain operators, rendering
it more reliable in the case of relatively high exchange coupling. This was verified by observing that the second
model still converges to the Boltzmann equilibrium state in this case.

Another distinction between the models is the absence of pure dephasing in the collective spin chain decoher-
ence model. The formulation of the prefactors for energy-level jump operators prevents their representation
as pure dephasing operators. One possible solution could involve multiplying Ei→i by the sign of 〈i |S(n)

z |i 〉.
However, this approach may necessitate rescaling or additional adjustments, and its feasibility has not yet
been established.

7.1.1. Asymmetric vs. Symmetric Coupling to the Surface
Continuing the analysis, a Ti dimer was examined and the results were compared with the analytical solution
presented in Ch.5 across a range of temperatures. The analytical solution relied on the high temperature limit,
where all Lindblad prefactors could be approximated as identical. It was observed that both models (with
exchange coupling in the range where the assumption of individual interaction of the first model is applicable)
were in agreement with this analytical solution, except for very low temperatures, where the analytical solution
was not applicable. This analytical solution included a linear dependence of the decay rate with temperature.
Additionally, asymmetric coupling, where only one atom experiences interaction with the surface, resulted in
a coherence time twice as long as that of the symmetric coupling case.

7.2. Flip-Flop Oscillation of a Multiple Spin Chain
To explore the more extensive applications of the models, the flip-flop oscillation of a multi-particle chain was
investigated. Sequential flip-flop oscillation of atoms within the chain was observed by initiating the process
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with the first atom. The relationship between the decoherence time and the length of the chain was plot-
ted, showing a steady decline in decoherence time with an increased chain length, although the limited data
points prevented drawing a definitive conclusion about the exact relation. Further research is necessary, either
by utilising more computational power or improving the code to accommodate calculations for more atoms.
Additionally, enhancing the accuracy of the models by incorporating more interactions and reducing approx-
imations is also recommended. Namely, both models rely on the secular approximation. It has been demon-
strated by Broekhoven [2] that the largest discrepancy occurs for a dimer when the two atoms have unequal
coupling strengths to the surface. This mismatch causes the interaction to become too strong for the secu-
lar approximation to remain valid. Nonetheless, this effect is only significant in cases of substantial mismatch.
Therefore, it can be assumed that the secular approximation holds in the scenario of symmetric coupling to the
surface. However, it is important to note that the use of secular approximation likely introduces a significant
error in the case of asymmetric coupling.

7.2.1. Asymmetric Coupling
For the case where only the first atom was coupled with the surface (using the second model with collective
spin chain decay) a similar time evolution was observed as in the symmetric flip-flop case but with larger
coherence time. Adding atoms to the chain did not seem to decrease coherence time. This is attributed to the
fact that only the first atom introduces decoherence, whereas adding atoms in the symmetric case introduces
additional sources of decoherence. Implementing asymmetric coupling to chains with more than two atoms
remains a challenge, especially for the first model with individual spin decay, and alternative approaches are
necessary to accurately model asymmetric coupling effects. Since the effect of decoherence from the bath is
isolated to the first atom, it would be particularly interesting to explore the model with individual spin decay.

7.3. Further Research and Recommendations
As previously mentioned, extending the chain length is essential for drawing conclusions about the relation-
ship between decoherence time and chain length. Furthermore, the current model should be expanded to
include the interaction of the STM’s tip atom, as well as the consideration of a time-dependent magnetic field
caused by ESR-STM. Another improvement could involve employing the Bloch-Redfield equation, which as-
sumes slightly weaker approximations than the Lindblad equation. Especially for the asymmetric coupling
case, Bloch-Redfield offers a potential solution for mitigating the error caused by the strong secular approxi-
mation. Exploring different atom configurations would also be an interesting avenue for future research.
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Chapter A

Appendix
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Comparison between Model 1 and 2 for the Flip-Flop Oscillation
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(a) N=2 (Model 2)
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(b) N=2 (Model 1)
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(c) N=3 (Model 2)
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(d) N=3 (Model 1)
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(e) N=4 (Model 2)
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(f) N=4 (Model 1)
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(g) N=5 (Model 2)
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(h) N=5 (Model 1)

Figure A.1: Comparison of Model 1 (Single Particle Decoherence) and Model 2 (Collective Particle Decoherence) for the flip-flop oscillation
in Sz expectation value for a range of chain lengths (N=2 to N=5).
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Flip-flop Oscillation Coherences
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(c) N=5
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(d) N=6
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(e) N=7
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Figure A.2: Coherences for the flip-flop oscillation in the collective chain decoherence model (model 2) for chain lengths ranging from
N=3 to N=8.
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