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Stellingen
behorende bij het proefschrift
‘Multicast in Network and Application Layer’
Milena Jani¢

1. Hoewel de random graph geen goed model is voor de topologie van het Internet,
is de kortste-pad-boom afgeleid van die graph een redelijke benadering voor de
structuur van multicastbomen in het Internet. (dit proefschrift)

2. Indien de onderliggende topologie van het Internet volledig onbekend is voor de
eindgebruikers, is de implementatie van applicatielaag multicast zinloos. (dit
proefschrift)

3. Men moet voorzichtig zijn met het trekken van conclusies op basis van een
onvolmaakt instrument als fraceroute. (dit proefschrift)

4. Het model voor multicast bomen voorgesteld in dit proefschrift, en de

berekeningen op basis daarvan, duiden aan dat netwerklaag multicast, voor de
redelijk breedbandige applicaties, al bij een beperkte aantal gebruikers voor ISPs
voordeliger dan unicast wordt. (dit proefschrift)
5. Zolang er geen “killer applicatie” voor netwerklaag multicast bestaat, wordt
netwerklaag multicast niet door ISPs ingevoerd. En zolang die niet wordt
ingevoerd is er geen bodem voor het onstaan van zo’n applicatie. Dit kip-en-ei
probleem van netwerklaag multicast wordt met applicatielaag multicast opgelost.
Het probleem met terrorisme is dat zelfs mislukte pogingen zijn gelukt.
Onverschilligheid moet niet met tolerantie worden verward.
‘Humanitaire interventies’ kunnen het verantwoordelijkheidsgevoel aflossen,
maar kunnen meer schade dan goed aan de lijdende burgers brengen.
9. Het zou de democratie ten goede kunnen komen als een stem gewogen kon
worden met de kennis van de kiezer van waarop hij stemt.
10. Elektrotechnisch onderzoek heeft in Nederland dezelfde aantrekkingskracht als
schoonmaakwerk. Het wordt vooral door buitenlanders verricht.
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Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als zodanig
goedgekeurd door de promotor,

Prof.dr.ir. P. F.A. Van Mieghem




Propositions
accompanying the thesis
‘Multicast in Network and Application Layer’
Milena Janié

1. Although the random graph is not a good model for the topology of the Internet,
the shortest path tree derived from such graph seems to be a reasonable
approximation for the structure of multicast trees in the Internet. (this thesis)

2. If the underlying topology is unknown to the end-users, the implementation of
application layer multicast is useless. (this thesis)

3. One must be extremely careful when drawing conclusions based on such an
imperfect utility as fraceroute. (this thesis)

4. The model for multicast we propose, and the calculations based on it, indicate
that for reasonably bandwidth-demanding applications, already for a limited
number of users multicast becomes more beneficial than unicast for IPSs. (this
thesis)

5. As long as there is no “killer application” for network layer multicast, network
layer multicast will not be deployed by the ISPs. And as long as it is not
deployed, there will be no basis to develop such an application. This chicken-
and-egg problem of network layer multicast will be solved by application layer
multicast.

6. The problem with terrorism is that even failed attempts are successful.
7. Indifference must not be mistaken for tolerance.
8. ‘Humanitarian interventions’ can relieve the sense of responsibility, but could

bring more harm than good to the suffering nations.

9. The democracy could benefit if the votes could be weighted by the knowledge of
the voter about what is being voted on.

10. The research in the field of electrical engineering has the same attraction as
cleaning work. In the Netherlands they are both being performed mainly by
foreigners.

These propositions are considered opposable and defendable and as such have been
approved by the supervisor,

Prof.dr.ir. P. F.A. Van Mieghem
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Chapter 1

Introduction

1.1 Internet: past, present, future

A few technologies so far, if any, have had such a tremendous impact on the society
as the Internet did. The Internet, the network of networks, that complex structure
of interconnected routers, has its roots in the seventh decade of the previous century.
The vision of a network that would connect machines and people worldwide has been
first articulated by JCR Licklider, the head of the computer research department at
the Advanced Research Projects Agency (ARPA), in 1963. In the mid-1960s, ARPA
recognized the need to connect university and government research centers into a na-
tionwide network that would allow a wide variety of computers to exchange information
and share resources. By the end of 1969, four host computers were connected together
into the initial ARPAnet (Figure 1.1). This network was about to form the foundation
of the Internet.

Universities and research organizations were among the first to join that network in
order to exchange information. However, many changes needed to be undergone, for In-
ternet to become what it is today. In 1972 electronic mail was introduced, which turned
out to be a killer application. The original communications protocol NCP was substi-
tuted by a new communications protocol pair — Transmission Control Protocol/Internet
Protocol (TCP/IP), created in 1973. It was accepted by the U.S. government in 1978,
and became the networking standard in 1983.

More networks began to emerge in the 1980s. Evermore educational and commer-
cial organizations wanted to use the same packet-switching technologies. The system
became known as the Internet in this period. It had far exceeded its original purpose,
and was providing the impetus for a vast technological revolution.

Additional changes were necessary before the Internet could function as a global
information utility. In 1989 the World Wide Web project was proposed, as well as a
new language for linked computers known as HTML (Hyper-Text Markup Language).

1




2 CHAPTER 1. INTRODUCTION

Figure 1.1: ARPAnet, 1969.

Region Population Internet | Usage growth | Penetr. | World
Usage | (2000 —2005) | (in %) Users
Africa 900.465.411 12.937.100 186.6 % 1.4 % 1.6 %
Asia 3.612.363.165 266.742.420 133.4 % 7.4 % 326 %
Europe 730.991.138 230.923.361 124.0 % 31.6 % 28.3 %
Middle East 259.499.772 17.325.900 227.8 % 6.7 % 21 %
North America 328.387.059 218.400.380 102.0 % 66.5 % 26.7 %
South America / 546.917.192 55.279.770 205.9 % 10.1 % 6.8 %
Latin America
Oceania / Australia 33.443.448 15.838.216 107.9 % 474 % 1.9 %
World Total 6.412.067.185 817.447.147 126.4 % 12.7 % 100.0 %
Table 1.1: Internet Usage Statistics, February 3, 2005; (source

http://www.internetworldstats.com/stats.htm)

Simple tools to retrieve information from the Web and to communicate have become the
focus of much activity in the next few years. In the spring of 1993, a group of graduate
students at the University of Illinois created a “browser” program called Mosaic, and
distributed it free of charge. Netscape, followed by Microsoft, developed browsers that
greatly simplified the ability to search the Internet for information.

Today, the Internet has grown into a low-cost technology, a gateway to a vast wealth
of knowledge and information, dramatically changing the world. It is available to people
at homes and offices, at schools and universities, and in public libraries and “cyber
cafes.” Some statistics on the penetration of the Internet are given in Table 1.1.

How do the computers on the Internet communicate with each other? They com-
municate by exchanging the packets containing the desired information. The Internet
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Router = User 1

> ' User 2

——-_> User 1000

Figure 1.2: Unicasting a movie to 1000 users.

as we know it today is based on unicast (point-to-point) type of communication. In
unicast, a packet containing the information is transmitted through the network from a
source toward the destination on a hop-by-hop basis. That is, each router on the path
between the source and destination selects the next router (hop) for a given packet such
that the path between a source and destination contains a minimum number of hops
(routers traversed). This shortest path across a network can be found with the use of a
Shortest Path algorithm (e.g. Dijkstra’s algorithm [33]). Shortest Path algorithms will
be explained in more detail in Chapter 2. Most of the traditional TP applications, such
as Web browsing and e-mail, employ unicasting. Whenever each user has unique needs
- browsing a different Web site, receiving a particular message - unicasting is justified
(there is no wasteful duplication of data).

In the last couple of years, we have witnessed the proliferation of multimedia appli-
cations that involve simultaneous participation of several users. These applications in-
clude one-to-many, and many-to-many type of communications. One-to-many applica-
tions have a single sender, and multiple simultaneous receivers. They include scheduled
audio/video distribution, push media, file distribution and caching. In many-to-many
applications, two or more of the receivers also act as senders. Some applications of
this type are multimedia conferencing, concurrent processing, distributed interactive
simulations (DIS), multiplayer interactive games, distance learning, and many more.

Most of these applications are unable to run on today’s Internet, due to high band-
width demands. To illustrate this point, let us assume that a video server wants to
transmit a movie via unicast to 1000 recipients (Figure 1.2). The server needs to em-
ploy 1000 separate point-to-point connections, and to send 1000 copies of the movie over
a network. This is apparently a waste of network capacity, as it is the same information
that is contained in each of the packets. Moreover, it is a waste of server capacity as
well. For example, suppose that a server is offering a live video stream that requires 1
Mb/s for each client. With a 100 Mb/s network card on the server, its interface would
be completely saturated after more than 90 clients connected to it. In order to resolve
these problems, multicast was invented.
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Server

User 2

User 1000

Figure 1.3: Multicasting a movie to 1000 users.

1.2 Multicasting: Network (IP) Layer

Multimedia application deployment can be greatly facilitated by the use of multicast
communication. As long as there is an overlap in paths toward several destinations,
only one copy of a data packet will be sent over any network link on that path. When
paths divert, packets are duplicated in the router and sent out to the appropriate links.
As Figure 1.3 illustrates, each packet stream is replicated in the network there where
needed.

The benefits of multicast usage are twofold. Multicast reduces the load on the
server, since the server has to send only one packet per link, instead of multiple packets
to different receivers. In addition, it reduces the overall network load, as only one copy
of data packet is transmitted wherever possible. This dramatically reduces the overall
bandwidth consumption, as can be intuitively concluded when comparing Figure 1.2
and Figure 1.3.

The standard multicast model has been introduced and described by Steven Deering
in 1988 [35]. The Network Layer (IP) multicast model proposed by Deering is based on a
notion of a group: hosts that are interested in a particular application form a multicast
group. Each multicast group is identified with a special class-D multicast address.
To receive data from a multicast group, hosts must join the group by contacting the
routers they are attached to, using the Internet Group Management Protocol version 3
(IGMPv3) [21]. Once a host joins a group, it receives all data sent to the group address
regardless of the sender’s source address. Hosts can send to a multicast group without
becoming a receiver; such hosts are often referred to as non-member senders.

The IP multicast group model is an open service model. No mechanism restricts the
hosts or users from creating a multicast group, receiving data from a group, or sending
data to a group. Multiple senders may share the same multicast address. Senders
cannot reserve addresses nor prevent another sender from choosing the same address.
The notion of group membership is only a reachability notion for receivers and is not
meant to provide any kind of access control. As a result, an IP multicast group is not
easily managed.




1.2. MULTICASTING: NETWORK (IP) LAYER )

The multicast routing problem, the problem of finding an optimal (shortest) path,
is more complicated than that of unicast. Whereas in unicast a shortest path should
be found connecting a source to the destination (a path F; connects server to user ¢ in
Figure 1.2), in order to perform multicast, all nodes belonging to the multicast group
must be interconnected by a tree (the server is connected to all users 1 to 1000 in Figure
1.3). Such a tree is called a multicast tree and is indicated in Figure 1.3 with thick
arrows. Multicast packets are then forwarded along this tree from the sender to all
multicast group members.

Several approaches have been adopted for determining the multicast tree. The
simplest way to build a routing tree is to add one participant at a time, using a shortest
path algorithm. New participants are connected along a shortest path to the nearest
node in the existing tree. While the Shortest Path Tree between the source node and
each destination node guarantees that multicast packets will be delivered as fast as
possible, it does not necessarily result in a tree that economizes on network resources.
The second approach is to construct a single tree to distribute the traffic from all senders
in the group, regardless of the sender’s location, and to minimize the total weight of
the tree. Hence, it optimizes the use of network resources. The problem of finding
a minimum weight tree that spans all multicast users is known as the Steiner Tree
problem in networks [45]. Both Shortest Path Trees and Steiner Trees will be explained
and discussed in more detail in Chapter 2.

Multicast routing trees are created and maintained by a multicast routing protocol.
Many such protocols have been proposed to this end. The deployed architecture has
however converged toward just a few of them. None of them, for the reasons that will
be explained later, exploits Steiner Trees. Instead, they are all based on a version of
the Shortest Path Tree (84, 105, 38].

Even though the first multicast deployment took place in 1992, multicast is still not
widely deployed. Recent data show that only 3—5% of the total number of Autonomous
Systems! are capable of providing multicast. Various technical and non-technical issues
have stalled its wide-spread use (security, scalable address allocation, reliability, in-
frastructure, management). For years, those issues have been a subject of research, and
some solutions have been proposed. We will discuss most of these issues in Chapter 3.

1 Autonomous System is a collection of networks under a common administration sharing a common
routing strategy (Cisco Systems technical definition).
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Application
Layer

Network Layer

Figure 1.4: The overlay network formed by end users 1 to 5 and the corresponding
underlying network-layer infrastructure. The application layer multicast tree is indicated
with thick lines. The packets follow unicast paths in the underlying network, as indicated
with arrows.

1.3 Multicasting: Application Layer

The most efficient way to provide multicast is to implement it in the network layer?,
as discussed above. However, the slow deployment of IP multicast and the rising need
to support multiuser applications have provided impetus for the emergence of Appli-
cation Layer multicast [109, 112, 86, 31, 11, 40, 12, 68, 110]. In Application Layer
(AL) multicast, as the name implies, packet replication and routing are handled by the
participating end-hosts, instead of by the network routers as is the case in IP multicast.
The end-hosts form an overlay network, in which each overlay link corresponds to a di-
rect unicast path between two group members. All the data packets are sent as unicast
packets and forwarded from one member in the overlay network to another according
to some defined rules. The concept of Application Layer multicasting is illustrated in
Figure 1.4.

As can be seen from Figure 1.4, AL multicast does not require additional network

2The network layer refers to the network layer (layer 3) in the Open Systems Interconnection (OSI)
model. The OSI model defines a networking framework for implementing protocols in seven layers.
Control is passed from one layer to the next, starting at the application layer (layer 7) in one station,
proceeding to the bottom layer, over the channel to the next station and back up the hierarchy.
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support or changes in the infrastructure. This enables rapid and seamless deployment
of multicast applications. This triggered some to believe that if AL multicast would
become more widely deployed, it might enhance a further creation of multicast appli-
cations, which might in turn speed up the deployment of IP Multicast.

1.4 Thesis Objectives and Research Questions

In this thesis, we focus on multicast in both network and application layer. Our research
on network layer multicast has been driven by one significant and yet unresolved reason
for the slow wide-scale deployment of IP multicast, which is the lack of a business
incentive for network providers. IP multicast is namely more complex than unicast.
The computational and administrational overhead of multicast group management and
routing increases the deployment cost compared to the cost of unicast. Clearly, the
deployment of multicast can only be justified if the savings offered by multicast exceed
the cost of its deployment. We take the standpoint that the deployment of multicast
on larger scale would be encouraged if we could reliably estimate the savings and costs
that multicast deployment brings to network providers. In order to establish multicast
business scenarios, the savings and costs of multicast over unicast have to be determined.
First, they need to be defined. The savings in network resources that multicast provides
can be expressed in terms of the number of hops (links among each pair of routers) in
the tree rooted at a particular source to m randomly chosen receivers, compared to
the total number of hops (links) when the message is separately routed to each of the
receivers. The cost of multicast on the other side is composed out of several factors,
such as the cost of deployment and management. Once defined, the savings and cost
should be determined analytically. In order to do so, the behavior and properties of
multicast routing trees must be understood. Finally, the theoretical findings should be
supported by measurements on the Internet itself. Hence,

our objective regarding network-layer multicast is

e To identify, analyze and quantify the factors that impact
the cost of multicast over unicast, and to verify them via
measurements on the Internet.

AL multicast has emerged as an interim solution to the deployment problems of
IP multicast. The reduced complexity of AL multicast with respect to IP multicast
comes however at the expense of efficiency, since in AL multicast packets may traverse
the same link several times (as depicted in Figure 1.4). AL multicast can obviously
only make sense if it outperforms unicast. Therefore, one of the crucial questions to be
answered is “how efficient is AL multicast?” All AL multicast algorithms proposed so
far claim to be more efficient than unicast, and slightly less efficient than IP multicast.
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These claims are usually supported by few simulation results. In most cases, different
algorithms are not compared under the equal conditions, which complicates drawing
conclusions. We believe that understanding the performance of existing AL multicast
protocols will teach us how to optimize and improve the best among them.

One critical issue for efficient application layer routing is the quality of the match
between the overlay and the underlying network topology. Namely, the end nodes do
not possess the topological information available to routers. Hence, when connecting
to each other into an overlay, often they do not take the underlying topology into
account. As a result, the two neighboring nodes in the overlay may be separated by
many hops on the IP layer, leading to high delays and unnecessary traffic. Overlay
performance, in terms of delay penalty and the number of duplicate packets, could be
improved if the connectivity between the nodes in the overlay would be congruent with
their connectivity in the underlying network.

Gathering topological information in a manner that is both practical and scalable
is not a trivial task. In addition to gathering, the effective incorporation of this in-
formation into the design of overlay networks is just as challenging. Several methods
for obtaining and incorporating topological information have been developed thus far.
Nevertheless, none of them leads to a complete congruence of overlay with its under-
lying substrate. Some researchers argue that AL multicast applications do not require
exact topological information and can instead use sufficiently informative hints about
the relative positions of Internet hosts. Triggered by this statement, we investigate the
influence that the knowledge of topology has to AL multicast performance. We consider
two extreme cases. In one extreme the end users possess no information on the under-
lying topology, and they are connected to each other in a random manner. The other
extreme is the optimal situation in which the complete knowledge of the underlying
substrate is attained and used by the end users for the creation of the overlay (or for
routing). In both scenarios we compare the efficiency of AL multicast schemes to IP
multicast, unicast and mutually among the schemes themselves. To summarize,

our objectives with respect to Application Layer multicast are

o To evaluate the efficiency of three prominent application
layer multicast algorithms.

e To investigate the impact the topology awareness has on
the efficiency of application layer multicast algorithms.
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1.5 Thesis Outline

The schematic overview of this thesis is given in Figure 1.5. This thesis is organized in
two parts. The first part is dedicated to Network (IP) Layer multicast, whereas in the
second part, the focus is on Application Layer multicast. Prior to Part I, there are two
introductory chapters. Chapter 1 introduces and discusses different ways of performing
multicast communication, as well as our motivation and research objectives.

Chapter 2 contains some background information needed to follow the material
discussed in the rest of the thesis. It covers the basic definitions of graph theory and
further focuses on different algorithms used for building the multicast routing trees,
namely Shortest Path Tree and Steiner Minimum Tree. It also introduces and defines
the Uniform Recursive Tree.

Part I starts with Chapter 3, which explains the mechanisms of IP multicast in
more detail. Further, Chapter 3 discusses the current IP multicast “best practice”
architecture, as well as the deployment problems and challenges.

Chapter 4 analyzes the properties of multicast routing trees. Understanding and
quantifying these properties, such as the gain, the cost and the stability of multicast
routing trees, has a direct impact on the multicast business scenario. Implications of
our theoretical findings for the business model are covered in the same chapter.

Network providers can only be persuaded to consider the business model that is
based on the mathematical expressions we propose if they hold for the graph of Internet
as well. Therefore, in Chapter 5 we verify our theoretical results on multicast trees via
extensive Internet measurements. In addition to multicast trees, maps of Internet have
been analyzed, based on various measurements and measurement sources. The same
chapter discusses the significant issues regarding Internet traceroute-based sampling,
and ambiguities that emerge from these methods.

Chapter 6 is the first chapter of Part II, and it presents a classification and a
detailed overview of seventeen different Application Layer multicast protocols. From
them, we analyze the three that we believe have most potential, in terms of scalability
and efficiency. The results of our analyses of efficiency and sensitivity to underlying
topology are presented and discussed in Chapter 7.

Finally, Chapter 8 articulates the main conclusions and outlines the thesis contri-
butions.
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Chapter 2

Trees: Definitions and Properties

Each (communication) network can be viewed as a set of nodes connected with a set
of links. Therefore, each network topology can be represented in the form of a graph.
A graph G(V, E) is a structure consisting of a set of vertices V' and set of edges F
connecting them. In networking terminology, a set of vertices is referred to as a set of
nodes V' = {1...N}, and a set of edges as a set of links £ = {1...L}, where N = dim (\)
and L = dim (£) are the number of nodes and links in the network, respectively. Hence,
instead of G(V, E), the notation G(N, L) is used. Graphs can be visually depicted as
a set of points (nodes) connected by lines (links) (see Figure 2.1). In this chapter we
provide some basic theory on graphs and algorithms, needed for a better comprehension
of the rest of material treated in this thesis.

We begin by providing several definitions that we will rely on and refer to in the
sequel. These definitions follow the notation given in the book of Harary [54].

Definition 1 Walk: A walk from node u to node v is an alternating finite sequence
no,l1,n1,... Ik, M, of nodes n; and links l;, where I; is a link connecting node n;_; and n;,

Figure 2.1: An example of a graph with N = 8 nodes and L = 13 links.

11
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ng =u and ny = v.

Definition 2 Path: A path is a walk in which all nodes ng to ny, are distinct (n; # n;
for every index i,7)

Definition 3 Connected: A graph is connected if there exists a path between each pair
of nodes in the graph.

Definition 4 Degree: A degree deg,, of a node n represents the number of nodes ad-
jacent to node n (the number of nodes to which node n is directly connected with a
link).

Definition 5 Cycle: A cycle is a walk for which all nodes except the first and last are
distinct. If a graph contains no cycles it is called acyclic.

Definition 6 Tree: A tree is a connected acyclic graph.

Graphs can be represented in the form of an adjacency matrix, or alternatively,
adjacency list. The adjacency matrix A is a N x N matrix, whose elements a;; are
filled in the following way: if there is a link between nodes ¢ and j, element a;; will
take a value of 1, otherwise a;; = 0. An adjacency matrix is an efficient way of graph
representation from the memory point of view in case of dense graphs (large number of
links). For sparse graphs, adjacency lists should be used instead.

A graph is however not only defined by its topological structure, the link weight
information is just as relevant. One common mistake many network researchers make
when modeling communication networks is neglecting the fact that not all the links in
the network are the same. Some links have higher capacity than others, some links are
longer than others and some links are more expensive than others. Hence, in addition
to the node connectivity information embodied in the adjacency matrix/adjacency list,
the information on the diversity of links must be included as well. This can be achieved
by associating a weight vector w (i — j) to each network link. A link weight vector
w(i — j) contains [ positive elements, each of which reflecting a QoS measure, such as
delay, available capacity, physical distance, cost, jitter, etc. In the sequel, we confine to
the single link weight case, with only one additive link metric (I = 1). If each element
a;; # 0 in the adjacency matrix A is substituted by its corresponding link weight value
w(i — j), a topology matrix T is obtained.

Often symmetry in both directions is assumed, i.e. w(i — j) = w(j — i), leading
to undirected graphs, where each pair of nodes linked in one direction is also linked
in the other. By convention, links in the undirected graph are represented with a line
without an arrow, as illustrated in Figure 2.1. This assumption seems trivial, however,
in telecommunications, the up-link and down-link transfer of information is usually
asymmetrical. In [79], Paxson has discovered that half of the paths in the Internet (in
1995) from a source A to a destination B have been different than paths from B to A.

Some classes of graphs that will be treated in this thesis are:
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1. A random graph: A random graph, denoted by G,(NV), is a graph consisting of
N nodes, where the probability that any two nodes are connected equals p. The
class of random graphs has been studied in detail by Bollobas [18] and later by
Janson et al. [63]. We use the term RGU to refer to the random graphs G, (V)
with uniformly on [0, 1] (or exponentially) distributed link weights w.

One of the characteristics of the random graph is that its node degree distribution

(i.e. the probability that each node has i adjacent nodes), is a binomial, Pr[deg =

i = (Ni_l)pi (1 —p)V™'*, with the average degree d, = p(N — 1). For large N,

the binomial distribution can be represented as a Poisson distribution in the form
al

2. A complete graph: A complete graph is attained when p = 1 in the random
graph. In that case each node is connected to all the other nodes in the graph. A
complete graph consisting of N nodes (and consequently of ( ) links) is denoted

asKN.

Our interest in random graphs lies in the fact that they represent a good model for
some types of realistic networks, such as Ad-Hoc wireless networks [55] and certain peer-
to-peer networks. However, as we will discuss in Chapter 5, the topology of Internet
seems not to be one of them. From measurements in the Internet, it has been observed
[46] that the node degrees of the Internet nodes are not binomially, but polynomlally
distributed, i.e. Pr[deg = i] = ¢i™®", where ¢ is a constant such that SN e = 1.
Nevertheless, in Chapter 5 we will demonstrate that these conclusions for the topology
of Internet have been drawn based on unreliable data. Moreover, in the same chapter
we will further show that the class of random graphs, although not a good model for the
Internet itself, seems to represent a reasonable model for multicast trees in the Internet.

If we assume that a graph models a telecommunication network, a next question
that arises is how a message in such a network is routed, i.e. which path the message
follows from a source to the destination. This problem is known as the routing problem
in telecommunication networks. In case of unicast, the routing problem is translated to
a problem of finding a shortest path between a source and a destination. In multicast
however, there are multiple destinations, hence a message should be delivered along the
tree, spanning all the multicast members interested in the particular message.

In the remainder of this chapter we will describe different algorithms for building
multicast routing trees, and we will briefly discuss some properties of these trees.

2.1 Shortest Path Tree

The Shortest Path Tree spanning a source and m destinations, is a tree rooted at the
source, and composed as the union of shortest paths between the source and each of
the destinations. Hence, the tree constructing problem reduces to finding the shortest
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D1IKSTRA(G, s,t)

1. INITIALIZE(G, 5,8, 7)
2. queue Q — N

3. while Q #£ 0

4 EXTRACT-MIN(Q)— u

5 ifu=t

6. stop and return path
7 else

8 for each v € adj[u]

9 RELAX(u, v, w, 8, )

Figure 2.2: The pseudocode of the Dijkstra shortest path algorithm.

paths between the source and each of the destinations respectively, and then assembling
them together. The Shortest Path Tree for the graph depicted in Figure 2.1 is shown
in Figure 2.6 (node 1 is the source, nodes 5, 6 and 7 are destinations).

The shortest path problem can be rewritten formally in the following way: Consider
a directed and strongly connected graph G with N nodes and L links, where each
link between node ¢ and a node j is specified by a link weight w(i — j). Assume
further that the single link weight is additive, which means that the weight of a path
P =ng — ny,— ... = ng, equals the sum of the weights of its constituent links:

k-1
w(P) = w(n; —nyp)

Jj=1

The shortest path between node s and ¢ is such a path Py, that minimizes w{Pr_,),
i.e. for any path P,_,; it holds that w(Pr,,) < w(Ps_s).

Several algorithms [14][64] for the discovery of the shortest paths have been pro-
posed. Pioneering work has been performed by Edsger Wybe Dijkstra, who in 1959
proposed an algorithm today referred to as the Dijkstra algorithm [37]. It is a greedy
algorithm that relies on both the principle of relaxation and the fact that the subsec-
tions of shortest paths are shortest paths. This algorithm associates an “attribute”
6 (v) to each node v in the graph G. At each step, the value of the attribute is the
value of the sum of the weights on the shortest path from source s to node v that far.
Further, the Dijkstra algorithm maintains the list of predecessor nodes 7(v), which is
either another node, its predecessor in the path backward to the source, or N/L. The
pseudocode of the Dijkstra algorithm is given in Figure 2.2,

In line 1 the initialization of attributes ¢ [v] and predecessors 7 [v] for all the nodes v
in the graph is performed, according to INITIALIZE procedure shown in Figure 2.3. As
can be seen from Figure 2.3, for all nodes in the graph the values of attributes are set
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INITIALIZE(G, 8, 6, T)
l. forve N

2.  [v] — o0

3. m[v] «— NIL
4. §[s] —0

Figure 2.3: The Initialization procedure.

RELAX (u, v, w, 4, )

1. if 8[v] > o] + w(u — v)
2. O[] <= o]+ wlu —v)
3. 7] —u

Figure 2.4: The Relaxation procedure.

to infinity (line 2), and the values of predecessors to NIL (line 3). Only the attribute
d [s] of the source s is set to zero in line 4. Line 2 in the Dijkstra algorithm inserts all
nodes of the graph G to the queue @. The main algorithm begins with line 3. In line
4 node u with the shortest weight (ie. §(u) <{é(v),v € Q, v # u ) is found in the
queue and removed from it. Node u can be seen as a new searching node toward the
destination ¢. Line 5 verifies if the searching node u is the same as the destination ¢, in
case of which the algorithm stops and returns the path (line 6). Lines 7 to 9 in Dijkstra
perform for each neighbor v of the searching node u the relaxation process, described
in Figure 2.4. Line 1 in RELAX procedure verifies whether the current distance 6[v]
from source s to node v can be decreased by reaching node v through the searching
node u. In that case, the value of attribute §[v] is updated to the new, decreased value
(line 2 in RELAX). Also, the predecessor of node v is updated to u (line 3 in RELAX).
The shortest path returned in line 6 is represented with a predecessor list 7 running
backwards from the destination node ¢ to the source node s. The algorithm stops when
either queue @ is empty (the shortest paths to all the other nodes have been found), or
when the searching node u is equal to the destination node ¢.

It should be noted that lines 5 and 6 are optional, they are used only when a path
between source s and a single destination ¢ needs to be found. The original Dijkstra
algorithm does not include lines 5 and 6, and it returns the shortest paths to all the
other nodes in the graph G, i.e. the shortest path tree rooted at source s. Similarly,
the Dijkstra algorithm can be used for finding a shortest path tree from source s to a
set of m destinations 7. In that case, lines 5 and 6 in DIJKSTRA need to be substituted
with lines 5a to 9a, given in Figure 2.5. Line 5a checks whether the searching node u is
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Sa. ifueT

6a. if dest _found=m —1

7a. stop and return paths

8a. else

9a. dest__found = dest_ found + 1

Figure 2.5: The modifications of the Dijkstra algorithm.

Figure 2.6: Shortest Path Tree connecting node 1 to nodes 5,6 and 7.

the same as any of the m destinations from the destination set 7 . If so, the algorithm
checks in line 6a whether all the other m — 1 destinations have been found previously,
in which case the algorithm stops and returns the paths in line 7a. Otherwise, if the
searching node u is the same as one of the destination nodes, but it is not the last
destination node to be found, the counter dest found, that maintains the number of
destinations found that far, needs to be incremented. The algorithm further proceeds
in the same manner as the original one (line 9a is followed by lines 7 to 9 in Figure 2.2).
In addition to these modifications, the counter dest found has to be initialized to the
value of zero in INITIALIZATION procedure.

The worst-case complexity of the Dijkstra algorithm (when using Fibonacci heaps)
equals Cpijkstra = O (N log N + L). The proof that the Dijkstra algorithm is exact can
be found in [33].

2.2 Steiner Minimum Tree

The classical optimization problem in multicast routing is called the Steiner Tree prob-
lem in networks, and can be formulated as follows: given a graph G = (N, L), with link
weights w(i — 7), and a non-empty set R (R C N) of required nodes (in the multicast
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routing problem this set is made of m; = dim (R) multicast group members), find an
acyclic subgraph Zg(m;) of G that contains a path between every pair of nodes and
minimizes w(Zg(m;)), where w(Zg(my)) is defined as

w(Ta(m)) = wli—J)

(i—3)€TG(mye)

The difficulty with the Steiner Tree problem is that its determination belongs to the
class of N P-complete problems. A problem II is defined to be N P-complete if

1. e NP, and

2. I" <, I for every I € NP,

Informally, a problem IT is defined to be N P-complete if its solution can be checked /verified

by a polynomial-time algorithm! (condition 1), and if any other N P-complete problem
I’ can be reduced to the problem II in polynomial time (condition 2). A problem that
satisfies condition 2, but not necessarily condition 1 is defined to be N P-hard. That the
Steiner Tree problem belongs to the class of N P-complete has been proven by Richard
Karp in [65]%. Condition 2 implies that if any N P-complete problem could be solved in
polynomial time, then all N P-complete problems could be solved in polynomial time.
However, no polynomial-time algorithm has been discovered for any N P-complete prob-
lem so far.

For the Steiner tree problem however, in two special cases, where m, = dim (R) = 2
and m, = dim (R) = N, there does exist a polynomial time algorithm:

1. my = 2: The Steiner tree problem reduces to the shortest path problem, for which
the solution can be found in polynomial time, with e.g. the Dijkstra algorithm
(with the complexity Cpijkstra = O (Nlog N + L)).

2. my; = N: Since all the nodes in the graph form the group, the Steiner tree problem
is translated to the minimum spanning tree problem: find an acyclic subgraph
T(N) that connects all nodes in graph G and whose total weight w(7')

w(T)= > wi—j)

(i—3)eT

! An algorithms is called a polynomial-time algorithm if it terminates after a number of computa-
tional steps bounded by a polynomial in the input size.

2 N P-hardness (condition 2) has been proven by reducing another N P-complete problem, in this
case the Exact-Cover problem, to the Steiner Tree problem.
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PRIM(G, s)

1. INITIALIZE(G, s, 8, )

2. queue Q «— N

3. while Q #0

4 EXTRACT-MIN(Q)— u

5. for each v € (adj [u] and Q)
6. if 0[v] > w(u — v)

7 then d[v] — w(u — v)
8 m[v] = u

Figure 2.7: The pseudocode of the Prim Minimum Spanning Tree algorithm.

is minimized.

Since T contains no loops and connects all nodes, it forms a tree, a so called spanning
tree, spanning the graph G.

There exist two greedy algorithms to obtain the minimum spanning tree: Kruskal’s
and Prim’s algorithm. Kruskal’s [67] algorithm first arranges all links in the increasing
order of the link weight. Then, starting with a minimum weight link, it grows a set
of partial minimum spanning trees, until all nodes in graph G are connected. Prim’s
algorithm [82] builds upon a single partial minimum spanning tree, rooted at an arbi-
trary node s. The pseudocode of the Prim algorithm is given in Figure 2.7. The Prim
algorithm operates similarly to the Dijkstra shortest-path algorithm. The first 4 lines
are the same as in the Dijkstra algorithm. Line 5 adds an extra condition for every
node v that is a neighbor of the searching node u: if node v is not in the queue Q any-
more (i.e. it already belongs to the tree rooted at s), it should not be updated. Lines
6 — 8 describe the updating procedure, similar to the relaxation process in the Dijkstra,
algorithm. The difference is in the attribute 6{v], which contains not the smallest value
of the path w(P,_,,) from source s to node v that far, but the smallest link weight that
connects v to the tree at node u.

Both Kruskal’s and Prim’s algorithm have complexity that grows logarithmically
with N. Precisely, the complexity of Kruskal’s algorithm is Cgyyskar = O (Llog N) and
that of Prim’s algorithm is Cprim = O (L + Nlog N).

For 2 < m; < N the Steiner 'Tree problem complicates significantly, since there exists
a large number of ways to construct the minimum weight tree, considering this tree can
also include none, one, or more (maximum of N —m;) auxiliary nodes belonging to the
set M\R (the so-called Steiner points; in multicast routing problem those nodes that
are not the members of the group). A Steiner minimum tree can be constructed in the
following way: consider the set A; of k auxiliary nodes and the set of group members
R. A number of possible ways to choose the set of auxiliary nodes is equal to Ng, =
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Figure 2.8: Steiner Minimum Tree - the minimum weight tree connecting the multicast
group members 1, 5, 6 and 7.

A (V) = 2V-m¢. The subgraph G} is obtained from G by removing all other
nodes M\ {R U A} and the links incident to this set of nodes A\ {R U Ax}. In that
subgraph, the minimum spanning tree with the weight w(7g, ) is computed, either with
the Kruskal or the Prim algorithm. This procedure is repeated for each of Ng, possible
subgraphs Gj. Among all Ng, minimum spanning trees, the one with the minimal
value is the Steiner Minimum Tree, w(7¢) = ming, (w (75, )) - Hence, the complexity is
approximately Cseiner = 2V "™ Cpy i = O (N?2V~™¢) . This exponentially fast growing
computational complexity of Steiner Trees limits their practical applicability. Even when
reductions in the topology, introduced and described in [45], are implemented, the
computational time remains unacceptably high.

The Steiner Minimum Tree for a graph in Figure 2.1 is illustrated in Figure 2.6.
Shadowed nodes 1,5,6 and 7 represent the multicast users. Nodes 2 and 4 are the
so-called Steiner points.

2.3 Uniform Recursive Tree (URT)

The structure to be introduced in this section is called a Uniform Recursive Tree
(URT)[92]. A URT is a random tree rooted at a source, that grows according to the
following rule: given a URT with N* nodes, a URT with N* 4- 1 nodes is deduced by
attaching the N* + 1-th node uniformly (thus with probability 1/N*) to any of the N*
other nodes in the tree. Our interest in URT stems from the fact that the Shortest
Path Tree in a complete graph K with exponentially (or equivalently uniformly) dis-
tributed weights is exactly, and in a random graph G, (N) asymptotically, the Uniform
Recursive Tree, as is proven in [100]. Therefore, in our analysis of Shortest Path Trees
in Chapter 4 and Chapter 5, we will use some of the relevant results for properties of
URT. Below, we list analytical expressions for properties of URT of interest for our
study.
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If the number of nodes is N, the probability distribution function of the hopcount
Hy of the path between two arbitrary nodes in the Uniform Recursive Tree is shown
[100] to obey precisely

N—(k+1 k+1
GV

Pr[Hy =k = 7 (2.1)

where Sj(\lf) are the Stirling numbers of the first kind. The average and variance of
hopcount Hy obey
E[Hy] =Y (N+1)+~v—1 (2.2)
and y
var[HN]:¢(N+1)+7—%+1/}'(N+1) (2.3)

respectively, where ¢ (z) = Il;/(zi)l is the digamma function [7], and -y is the Euler constant
v =0.57721...
Using the asymptotic formulae for the digamma function leads to

E[HN]zlogN—l—'y—l-i-O(%) (2.4)
var [Hy] =log N + —12+O el (2.5)
n| = log Y 6 N .
If N — oo, the probability distribution (2.1) becomes
1+0(%) & log N
Pr [hN = k] = ——N— %Cm_nm (26)

where ¢, are the Taylor coefficients of ﬁ listed in [7]. The above listed formulae will
be referred to in the discussion of the gain of multicast over unicast (in terms of the
number of used links) in Chapter 4.

The average number of hops from a source to m randomly chosen destinations (thus
in a tree connecting the source to m receivers), for every N and m is given by

N

mN 1
E[Hy (m)] = 57— > % (2.7)
k=m+1

Moreover, in [99] the exact probability generating function and probability distribution
Pr[Hy (m) = k] have been derived, from which the variance follows as

N-1+m (E [Hy (m)])? m2N? |
=— F — _

N+1_ml i m) 2

var [Hy (m))] (N+1-m) (N—m)(N+1—m)

k=m+1

(2.8)
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Expressions (2.7) and (2.8) will also be used in Chapter 4, as well as when discussing
multicast trees in the Internet in Chapter 5.

Van der Hofstad et al. [99] derived further the average E [Wy (m)] of the sum of
the weights Wy (m) in the Shortest Path Tree to m uniform destinations in the random
graph G, (V) with exponentially distributed link weights,

where ((z) is a Riemann Zeta functlon. This result will be used in our analysis of cost
of multicast in terms of used network resources, in Chapter 4.

Finally, the ratio of the average of the number of nodes with degree k, denoted by
DY, over the total number of nodes in the URT has been shown [92] to obey for large
N

N

|
—
N

— =<2 (2.9)

e

“M
?rlb—\
o)>]

J

E[DY] 1 log" ' N

which is, for large N, close to Pr[deg = k], the probability that an arbitrary node has
a degree k. Hence, the decay rate of the node degree distribution in the URT equals
—In2 = 0.693. We will use this result in our study of multicast trees in the Internet,
in Chapter 5.
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Chapter 3

IP Multicast: State of the Art

The standard IP multicast model, as we already have mentioned in Chapter 1, has
been introduced by Steven Deering in 1988 [35] and defined in RFC 1112 [34]. Since
the introduction of that basic IP multicast model, other IP multicast models have
appeared, with the goal of overcoming the complexities and flaws of the original model.
This chapter introduces and briefly describes three different multicast service models:
the traditional Any Source Multicast model, Source Specific Multicast, and Explicit
Multicast.

Not only the service models, but many different multicast protocols have appeared
and evolved in the meantime as well. Current best practice for network-layer (IP) mul-
ticast service provision comprises four different protocols: Internet Group Management
Protocol (IGMP) [48] [21], Protocol Independent Multicast (Sparse Mode) (PIM-SM)
[44], Border Gateway Protocol with multiprotocol extensions [13], and the Multicast
Source Discovery Protocol (MSDP) [47]. In this chapter we briefly outline how these
protocols work, and how they work together to provide the end-to-end IP multicast
service. For more information on the existing multicast protocols we refer to a nice
survey by Maria Ramalho [84]. Finally, this chapter lists and discusses the issues that
led to a much slower deployment of IP multicast than initially predicted.

3.1 Best Current Practice

3.1.1 Multicast protocols

There are two main actions that have to take place for multicast to be realized. First,
the hosts that are interested in a particular multicast group need to inform the routers
that they are attached to that they want to join the group. They do this with the use of
Internet Group Membership Protocol (IGMP [48] [21]). The multicast-enabled routers
in the Internet use the information on location of groups or of senders to determine the
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delivery tree along which packets are sent from the source to the set of receivers. This
delivery tree is determined with the use of multicast routing protocol.

Internet Group Membership Protocol (IGMP)

In order to receive multicast, a host needs to join the multicast groups it wishes to receive
from. The Internet Group Management Protocol was designed for hosts to notify the
routers that they are attached to that they want to receive traffic on a particular IP
multicast group. If a host only wants to send multicast traffic, no protocol between
host and router is needed. The host simply sends the multicast packets out on the
link, and they will be forwarded by a multicast router. IGMPvl [34] was proposed
in conjunction with DVMRP [103], the first multicast routing protocol. IGMPv2 [48]
is a current IETF standard. It enables a fast termination of group subscriptions, by
the introduction of “leave” messages. IGMPv2 [48] supports the traditional multicast
model, Any Source Multicast (ASM). IGMPv3 [21] addresses some of the weaknesses of
the ASM model (the ASM model and its weaknesses will be described in Section 3.1.2).
IGMPv3 supports both the ASM and the Source Specific Multicast (SSM) model (also
to be described in Section 3.1.2), as it allows receivers to subscribe to only specific
sources of a particular multicast group.

Multicast Routing Protocols

Based on the information on the location of group members, multicast routing protocols
build multicast routing trees. The trees that multicast protocols build can be classified
in two groups: source-specific and group-shared trees. A source-specific tree is a tree
with the source as a root of the tree and with the branches of the tree that are formed
of the paths toward the receivers. This implies that for each individual source sending
to each group there exists a separate tree. Because this tree is built as the union of
shortest paths through the network, it is also referred to as a Shortest Path Tree (we
have discussed Shortest Path Tree in Chapter 2). These trees are used in the one-to-
many type of applications, where one source is emitting data to many receivers. In
case of group-shared trees, there is only one tree shared by all sources in the group.
Steiner Trees, that have also been discussed in Chapter 2, are the optimal group-shared
trees. However, due to their complexity and alleged instability, Steiner Trees are not
implemented in routing protocols. Instead, group-shared trees use a single common root
placed at some chosen point in the network. This shared root is called the rendezvous
point (RP). When using a shared tree, sources must send their traffic to the root (RP),
and then the traffic is forwarded down the shared tree to reach all receivers. Group-
shared trees thus have longer delays (packets must first be sent to the RP before they
can be distributed), but require less router state to be maintained.

The first multicast routing protocol to have emerged has been DVMRP [103].
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DVMRP builds a source-specific tree and uses a technique known as Reverse Path
Forwarding (RPF). RPF is an optimized form of flooding, where the router accepts a
packet from source S through interface I only if I is the interface the router would use
to reach S. When a node accepts a packet, it forwards that packet to all the interfaces
except the one to which the accepted packet arrived. DVMRP implements its own
unicast routing protocol in order to determine which interface leads back to the packet
source. This technique dramatically decreases the overhead associated with standard
flooding. A more refined version of DVMRP includes pruning to flooding: if there
are no members in a certain subtree, this subtree is cut off by a “prune” message to
the previous router. DVMRP will periodically reflood in order to reach any new hosts
that want to receive a particular group. Because of the way the tree is constructed by
DVMRP, it is called a reverse Shortest Path Tree.

A protocol by far most used today is Protocol-Independent Multicast (PIM) [36,
44]. PIM supports two different group membership models: dense (a large group size)
and sparse (a small group size). The dense mode PIM (PIM-DM) [36] is very similar
to DVMRP. It creates source-specific trees, and it uses reverse path forwarding with
pruning. The major difference with DVMRP is that PIM relies on the unicast routing
tables to retrieve the path back to the source and that it is independent of the specifics
of any unicast routing protocol, as its name implies. The sparse mode PIM (PIM-SM)
[44] creates group-shared trees, and employs the notion of a rendezvous point (RP) as
a root of the multicast tree. Each group has a single RP. When a user wants to join the
group, it sends a join message to the RP. This message is processed by all intermediate
routers that create an entry in their multicast routing tables as well, forming a branch
between the new user and the RP. Each user that wants to multicast a packet, sends
the packet toward the RP, encapsulated in a unicast packet. The RP decapsulates the
packet and forwards it along the created tree. The major difference between PIM-SM
and other shared-tree protocols is that if the data rate of the source exceeds a certain
threshold, a source-specific tree can be used in PIM-SM instead of a RP shared tree.
The router that the receiver is attached to sends in that case a “join” packet toward
the source and a “prune” toward the RP. The source will continue to send a copy of
its packets to the RP, considering that there might still exist members in the group
that are receiving packets via the RP rooted tree. PIM-SM includes both ASM and
SSM functionality: PIM-SSM forms a subset of PIM-SM. PIM-SSM builds shortest path
trees rooted at the source immediately and it bypasses the RP connection stage through
shared distribution trees. This is because in SSM the router closest to the interested
receiver host is informed of the unicast IP address of the source for the multicast traffic.

Inter-domain Multicast Solutions

All the protocols mentioned and described so far are used for multicast routing within
a single administrative domain (AS).
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One of the first suggestions for the realization of inter-domain multicast routing
has been the combination of PIM-DM [36] and PIM-SM [44]. In this approach, PTM-
DM is being used as the intra-domain routing protocol, and the source specific trees
constructed and maintained by PIM-DM in each domain are connected in a shared
tree constructed by PIM-SM. Due to a large control overhead caused by, among other
things, advertising RPs, this scenario is not applicable to the Internet.

A longer-term solution that is currently being investigated uses a hierarchical ad-
dressing scheme called the Multicast Address-Set Claim (MASC) [83] protocol and
the Border Gateway Multicast Protocol (BGMP) [97] that construct the bidirectional
inter-domain shared trees, connecting individual multicast trees built in a domain.

The most commonly used inter-domain multicast routing solution to this end is
the PIM-SM/MBGP/MSDP protocol suite. The Multicast Source Discovery Protocol
(MSDP) [47] is a mechanism to connect multiple PIM Sparse-Mode (PIM-SM) domains
together. It works in the following way: Each PIM-SM domain’s RP communicates with
an MSDP speaking RP in another domain via a TCP connection. In this way, a virtual
topology consisting of MSDP peering RPs is created. These connections are used to
exchange information about sources for particular groups in different domains. When
a local RP receives traffic from an active source in its domain, it sends Source Active
(SA) messages to its MSDP peers. Each SA message contains the IP address of the
source, the multicast group address, and the IP address of the originating RP, i.e. the
RP that is sending the SA. These messages are sent periodically, for as long as the
source is active. Each MSDP peer, upon receiving the SA message, controls whether
there are any receivers in its local domain interested in receiving the traffic from the
advertised source. If so, that RP will send a PIM-SM join message directly back to the
source (and not to the RP in the AS of the source), creating a branch of the forwarding
tree towards the sender. In addition, each MSDP peer forwards the SA message it
just received away from the originating peer RP, after performing a RPF check back
to it. The RPF check is performed based on paths advertised by Multiprotocol BGP
(MBGP). Multiprotocol BGP (MBGP) [13] is an extension to BGP, in the sense that
is it able to distinguish between unicast and multicast topologies. The differences in
these topologies occur because, for example, there may exist parts of the network that,
due to policy regulations, refuse multicast traffic.

The advantage of MSDP is that it is easy to implement and that it solves the third-
party dependencies problem-it allows each domain not to depend on a competitor’s RP
for transmitting the multicast traffic, but to get data directly from the multicast source,
wherever it is located.

However, PIM-SM/MSDP is only an interim solution due to, firstly, scalability
issues: if there would be thousands of multicast groups, the number of SA messages
flooding the network would become too large to handle. Two other problems related
to MSDP are join latency and bursty sources problems. Join latency problem arises
because RPs with no receivers for the particular group discard the SA message. If
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a receiver would join before the new SA is issued, it would not receive the multicast
content until the next SA message is issued. Bursty sources, as their name implies,
send data in bursts, that can be separated by several minutes long time intervals. The
fact that MSDP multicast routing state is established only after the information on the
active sources i8 transmitted might cause some of the initial packets from a bursty source
to be lost. This can occur because when a local RP receives a packet from a source, it
sends an SA message to its peers, and, after establishing the reverse forwarding path,
the receivers can join the source. However, it takes some time to both forward SA
messages and to establish forwarding state in other RPs. Hence, by the time interested
receivers would join the source, the initial packets may already have been dropped.
If the silent periods between packets transmission is longer than the forwarding state
timeout (set by default to three minutes), forwarding state will be removed. If the
source would resume with sending packets only at that moment, then the whole process
of establishing the routing state should start all over, with the initial data packets being
lost again.

3.1.2 Multicast service models: Any Source Multicast (ASM),
Source Specific Multicast (SSM) and Explicit Multicast

The traditional multicast model, as defined in RFC1112 [34], is also known under the
name Any Source Multicast (ASM). Its name reflects the capability to allow one or
many sources to generate a multicast group’s traffic. The main design concept of this
model is a concept of a host group, a group of users interested in a particular multicast
application. A group is identified by a single class-D destination address. As already
stated in Chapter 1, this model is an open model: any host can join and leave a given
multicast group any time, and there are no restrictions on their location nor number.
Any host can send a packet to that group address, and have it delivered to all members
of the group. Moreover, the sender of the content does not need to be a member of
the particular group. This model supports both source-specific and group-shared trees,
and, accordingly, both one-to-many (e.g. audio/video distribution, push media and file
distribution) and many-to-many (e.g. video conferencing, multiuser games, distance
learning) type of applications.

To this end, all multicast-enabled networks have been designed to support the ASM
service model. The open character of this architecture, however, has caused several
important deployment problems. Firstly, finding a globally unique multicast addresses
for a group is difficult. It is always possible that another multicast group uses the
same multicast address. At this moment there is no technically feasible solution for
preventing address collisions in ASM among multiple applications. Next, receivers in
the traditional model are susceptible to flooding attacks, since they are not able to
specify from which particular source(s) they want to receive traffic from.
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Source Specific Multicast (SSM) [58, 15] is a multicast service model developed to
solve those issues. SSM is a service model that supports multicast delivery from only one
specified source to its receivers. In this model, a notion of “channel” is defined. Each
channel consists of precisely one sender and arbitrarily many receivers. Each channel
is identified by an (S,G) pair, where S is an address of a source and G is an SSM
destination address. Receivers interested to receive packets from S need to subscribe to
channel (S,G). Hence, when a receiver subscribes to an (S,G) channel, it receives data.
sent only by source S. An IP packet will then be transmitted from source S to address
G along a source-specific tree. SSM defines thus channels on a per-source basis, i.e.
channel (51,G) is different from channel (S2,G). This prevents the problem of global
allocation of SSM destination addresses, and enables each source to be responsible for
resolving address collisions for the various channels. At the same time, when a sender
picks a channel (S,G) to transmit on, it is automatically ensured that no other sender
will be transmitting on the same channel. Finally, the SSM model simplifies intra- and
inter-domain routing, since there is no need for shared trees and rendezvous points any
more. The knowledge of the source and group pair is assumed to come from “out-
of-band,” for example a webpage. Since the Internet address of the source is given
explicitly, there is no need to run MSDP.

Due to the weaknesses of the ASM model, many felt [10, 41] that the ASM model
should be abandoned and replaced by the SSM permanently. The problem however
is the lack of support of many-to-many applications in the SSM architecture. The
proponents of the SSM argue (see [10, 41]) that in the short term this is not a serious
concern, since the multicast applications are momentarily dominated by one-to-many
applications (Figure 3.3 indicates that the average number of sources per group is
below 5). The most appealing of multicast applications could be supported, while the
amount of complexity required would be vastly reduced. Some other classes of multicast
applications that are likely to emerge in the future are few-to-few (e.g. private chat
rooms, whiteboards), few-to-many (e.g. video conferencing, distance learning) and
many-to-many (e.g. large chat rooms, multi-user games). The first two classes can
be easily handled using a few one-to-many source-based trees. The issue of many-to-
many multicasting service on top of an SSM architecture is an open issue at this point.
However, some feel [59] that even many-to-many applications can be handled with
multiple one-to-many instead of shared trees, or alternatively by using an application
layer relay mechanism [107].

Although SSM would be preferable in many cases, it has been argued [72] that SSM
is not sufficiently widely available to completely replace ASM at this moment. The
big three streaming players (Windows Media, Real, and QuickTime) all support ASM
multicast, as do basically all operating systems (Windows, Mac OS, and Unix), and
most routers (all Cisco routers, all Juniper routers, etc.). The challenge at this moment
is to extend this support to include SSM (currently supported by Windows XP but not
by many applications).
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Finally, a third approach to providing multicast services is the recently proposed
explicit multicast (XCAST) [17] for small multicast groups. The main idea behind the
XCAST is to have packet headers that contain a list of all the (unicast) IP addresses
of the multicast group members. Intermediate routers forward the XCAST packets
along the unicast shortest paths and branch if needed. If branch is needed, the packet
is replicated on the outgoing links and the list of IP addresses in the header is split

properly.

3.2 Deployment Status

Multicasting over a large portion of the Internet has first taken place in March 1992 over
the Multicast Backbone (MBone) [43, 8]. The MBone is an overlay network on top of
the Internet, that was used to provide a multicast facility to the Internet. The MBone
can be best viewed as a collection of “islands” that support multicasting within their
domains. The multicast routing function was provided in each island by routers running
a daemon process called mrouted, which received unicast-encapsulated multicast packets
on an incoming interface and forwarded them subsequently to the appropriate set of
outgoing interfaces. The mrouted daemons (in different islands) were connected to
each other via point-to-point IP connections (called tunnels) over the Internet. In this
manner, the mrouted daemons and the tunnels that connect them formed a virtual
network on top of the Internet The original multicast routing protocol, DVMRP [103],
was used to create multicast trees.

Since 1992, the MBone has grown tremendously. As more and more routers became
capable of handling multicast packets, the MBone became integrated into the Internet
itself. This has marked the beginning of the evolution of intra-domain multicast, to
be followed by inter-domain solutions. Today, almost all network routers are equipped
with multicast capability. And with the increasing number of network operators that
implement IP multicast today, the MBone era, consisting of tunnelling and DVMRP,
is long behind us.

Nevertheless, ten years after its initial deployment, IP multicast is still not widely
deployed. Recent data shows (see [3]) that around 5% of the routable prefixes in BGP
are reachable by multicast, and that around 3.5% of active AS numbers are multicast
enabled. Most of the larger Internet Service Providers (ISPs) provide IP multicast, in-
cluding Sprint, Worldcom/UUnet, Multicast Technologies, Verio, IP-only.net, LavaNet,
Spirit One, Naino, and several others. Research networks (such as SURFnet and In-
ternet2), provide IP multicast as well. The major obstacle to a wider deployment of
multicast are (smaller) edge ISPs, that, for reasons to be explained below, are reluctant
to support it.

Figure 3.1 to Figure 3.3 (source [3]) illustrate the penetration of multicast into
the Internet. One basic measure of the size of the multicast enabled Internet is the
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Figure 3.1: The relative size of the multicast enabled Internet.

number of address blocks (or prefixes) that have multicast routing. This number can
be expected to grow proportionally to the number of sites that are multicast enabled,
as each additional address block will tend to represent a new computer network that
has become multicast enabled. Another measure for the growth of multicast enabled
Internet is the total number of Autonomous Systems that enable multicast routing.
Although multicast-equipped networks may vary widely in size, each new Autonomous
System with multicast routing represents a new network enabled for multicast.

Figure 3.1 provides two independent estimates for the growth and the relative size
of the multicast enabled Internet. The upper line represents the ratio of the number of
address blocks (or prefixes) that have multicast routing to the number of address blocks
(or prefixes) that have unicast BGP routing (as seen from the Multicast Technologies
Autonomous System [3]). The lower line shows the ratio of the number of multicast
enabled Autonomous Systems to the total number of Autonomous Systems with BGP
routing. Both measures are growing, although the address block ratio tends to be higher.
A reasonable estimate is that the actual penetration of multicast into the Internet lies
somewhere between these two lines.

Figure 3.2 gives an indication on the usage of multicast in the Internet, as it shows
the number of Autonomous Systems with multicast routing, together with the number
of Autonomous Systems with active multicast groups. Finally, Figure 3.3 shows the
ratio of the number of multicast sources and the total number of groups. Hence, it
represents an estimate of the number of sources for each ASM group.

There are several technical and non-technical issues that have stalled multicast wide-
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spread deployment. Some of these issues have been alleviated in the years of research,
however, other remain unresolved. In the sequel we will describe and discuss some of
them.

3.2.1 Deployment Challenges

Group Management -Group management can be defined as a set of access control func-
tions that determine who may send to and receive from a particular multicast group.
The traditional ASM service model does not consider group management, including
receiver authorization, transmission authorization, and group creation. This can in-
duce several problems, such as spamming (a high-rate useless data is transmitted to
the multicast group, causing congestion and packet loss) drowning out the authentic
sources (transmitting the alternate data and changing the content of the session) and
unauthorized reception of multicast data (including pay-for content, such as pay-per-
view events). These problems affect both the ISPs and the content providers, as well
as multicast users themselves.

Address Allocation- One of the problems in ASM that will occur as multicast be-
comes more popular is a multicast address allocation. Multicast address allocation
refers to assigning to each application a unique address from a globally-shared address
space. In the current IP protocol version, IPv4, the multicast address space consists
of s = 2% distinct addresses. Since the address space is limited, addresses must be
re-used over time. The current multicast address space is unregulated, and therefore
nothing prevents applications from sending data to any multicast address. Members
of two sessions will receive each other’s data if separate addresses are not chosen. A
lack of address allocation mechanisms poses a threat to ISPs, since they will be dealing
with angry customers and carrying unwanted data. In addition, since packets from
other sessions must be processed and dropped, address collision induces inefficiencies
for multicast receivers and can lead to application inconsistencies.

Traditionally, multicast addresses are assigned to groups randomly, assuming that
the collision probability is low. At this moment, the probability of an address collision is
limited, but only because multicast has not yet become a popular interdomain service.
The average router today has memory available for 1024 to 16384 (source address, group
address) entries (default is set to 4096). The limited memory of routers in the current
deployed Internet limits the probability of address collision, because new groups cannot
be created after memory runs out. The probability of at least one collision in a set of
X multicast addresses is equal to
s(s=1)(s=2)...(s-X+1)

X

Prleollision] =1 —

X(X-1)
(or1—e” 4 |, X < s). For a memory that can store 1024 addresses (X = 1024), the
probability of collision is limited to 0.18 percent. However, as multicast gains popularity
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(it is conceivable that many thousands of multicast groups will be simultaneously in
use in a large network) and routers reserve more memory for multicast addresses, the
collision probability will become unacceptably high: For routers with memory that can
store only 8192 addresses, the probability of a collision increases to about 12 percent.

Network Management- Network management refers to the debugging of problems
that occur with the multicast tree during transmission, and the monitoring of utiliza-
tion and operation patterns for the purpose of network planning. While intradomain
multicast is relatively easy to deploy, providing interdomain multicast is complicated.
Problems may occur when RPs and their associated sources are located in different
domains. Dependence on an RP in the domain of another ISP makes it difficult to
diagnose and debug problems. Most of the debugging tools so far are academic proto-
types; none of them is robust enough to support commercial deployment. They only
partially address the various issues in monitoring and debugging, and cannot identify
all problems related to the current protocol architecture.

The three above-listed problems (group management, address allocation and net-
work management) have been somewhat alleviated with the introduction of the SSM
model (and IGMPv3 that supports it). First, the SSM model and IGMPv3 provide
both source pruning for specific multicast groups, as well as source-specific joins. This
makes spamming an SSM channel significantly more difficult than an ASM host group.

Furthermore, per-source (or channel) allocation as implemented in the SSM model
eliminates the addressing problem as well, as the source address makes each channel
unique. Other proposed solutions to addressing problem include static allocation and
assignment [74], where the address space is divided equally between the autonomous
systems in the Internet, and IPv6 addressing.

Finally, interdomain multicast and network management are simplified with SSM,
since the Internet address of the source is given explicitly, and there is no need to run
MSDP.

Multicast Security- Providing security for multicast-based communication is inher-
ently more complicated than for unicast-based communication because multiple entities
participate, most of which will have no trusted relationships with each other. Future
multicast security should provide four distinct mechanisms: authentication, authoriza-
tion, encryption and data integrity. Authentication is the process of forcing hosts to
prove their identities so that they may be authorized to create, send data to, or receive
data from a group. Authorization is the process of allowing authenticated hosts to
perform specific tasks. Encryption would ensure that eavesdroppers cannot read data
on the network. Data integrity mechanisms would ensure that the datagram has not
been altered in transit.

Lack of a proper business model: One of the most significant reasons behind the
slow deployment of multicast has been the lack of a good business scenario for the
providers. In terms of deployment and management, providing multicast is more costly
than unicast. Therefore, ISPs are only motivated to provide multicast if the savings in
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bandwidth would be higher than the deployment and management costs. This threshold
is referred to as multicast deployment’s sweet spot: the point where the gained benefit
outweighs the additional costs. The cost of a network service can be defined as the sum
of network related costs, infrastructure costs and management costs (in terms of human
resources). Multicast does have a high initial cost, higher than unicast. However, the
events that attract a large audience (millions of interested users), have the potential
to overwhelm any (large) collection of servers and available network bandwidth. This
makes multicast not only a profitable and useful service for both content and the network
providers, but also a necessary one. As a number of users grows, so does the benefit of
multicast.



Chapter 4

Properties of Multicast Routing
Trees

In the previous chapter, we have discussed some of the issues that stalled multicast
deployment, and concluded that one of the leading issues is a lack of a business incentive
for network providers. In order to provide a trustworthy model for multicast business
scenarios, it is necessary to establish a proper model for multicast trees, valid for any
type of network topology. In this chapter, we look into the properties of multicast
routing trees. We believe that understanding and quantifying these properties would
lead us to the establishment of a realistic model for multicast trees and, subsequently,
to a reliable business model. This chapter further discusses possible implications of our
analytical derivations for the network providers. In Chapter 5, our theoretical findings
will be validated via Internet measurements.

4.1 The gain of multicast over unicast

One of the main benefits of multicast is that it economizes on the number of link-
traversals: only one copy of the data packet traverses each link along the shortest path
to destinations. Hence, multicast reduces the overall network load. In this section, we
focus on the efficiency, or gain, of multicast in terms of network resource consumption
compared to unicast. Specifically, we concentrate on a one-to-many type of commu-
nication, where a source distributes messages (packets) along the shortest path to m
different, uniformly distributed destinations.

4.1.1 Gain: Chuang-Sirbu law and log-log scale insensitivity

Quantifying the network savings of multicast has been initiated by Chuang and Sirbu
[32], and further investigated by Philips et al. [81] and Chalmers and Almeroth [26]. In

37



38 CHAPTER 4. PROPERTIES OF MULTICAST ROUTING TREES

their study presented in [32], Chuang and Sirbu made two modeling assumptions. First,
they assumed that multicast packets are being delivered along a Shortest Path Tree from
a source to m destinations. As most of the current multicast protocols forward packets
based on the (reverse) shortest path, the assumption of shortest-path tree delivery is
rather realistic. Secondly, they assumed that m destinations are uniformly chosen out
of N nodes. The uniformity assumption has further been validated in [81] by Philips et
al. They concluded that, for large m and N, deviations from the uniformity assumption
are negligibly small. Internet measurements reported in [81] and [26] seem to support
the assumption as well.

The gain (savings) of multicast compared to unicast can analytically be expressed in
the following way. Let us denote by Hy (m) the number of link traversals, or hops, in the
Shortest Path Tree rooted at a particular source to m randomly chosen destinations. In
unicast, messages have to be sent m times from the source to each destination. Hence,
unicast uses on average fy(m) = mFE [Hy] link-traversals (hops), where E [Hy| =
E[Hy (1)] is the average number of hops of a message to a uniform location in the
graph containing N nodes. If we define for multicast gy(m) = E [Hy (m)] to be the
average number of hops in the Shortest Path Tree rooted at a source to m randomly
chosen distinct destinations, then, of course, gy(m) < fax(m). For the extreme sizes
of the multicast group, we have simple expressions: gn(1) = fn(1) = E[Hy] while
gn(N — 1) = N — 1 reflecting the number of links in a (complete) spanning tree.

Chuang and Sirbu defined the normalized cost of a multicast tree, as the ratio
E[Hy (m))/E [Hy]. Empirically, via simulations on various network topologies, they
obtained results which when plotted on log-log scale suggested a power-law relationship

F [HN (m)] /E [HN] ~m” (41)

where E [Hy (m)] is the total number of multicast links in the tree, E [Hy| is the average
number of hops between any two nodes in the network, v is the economy-of-scale factor
taking the value of 0.82 and m is the number of multicast receivers.

The Chuang-Sirbu law is the result most referred to when discussing the gain of
multicast. Yet, Van Mieghem et al. [101] have proven that the Chuang-Sirbu law cannot
hold for all m. The problem with Chuang-Sirbu law is that it has been deduced from an
observed straight line in a log-log plot. Many functions, however, can be expanded in
some interval as a polynomial, hence, one must be particularly cautious when drawing
conclusions based on an insensitive log-log scale plot.

Below, we merely list some of the more important results obtained on the gain
(efficiency) of multicast in [101].
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4.1.2 Gain: Theory

The average number of hops E [Hy (m)] in the Shortest Path Tree rooted at a par-
ticular source to m randomly chosen destinations, in the graphs of class G, (), with
independently chosen links with probability p and with uniformly (or exponentially)
distributed link metrics w, has been shown in [101] to obey

E|Hy (m)] = mN (W) ~1, (4.2)

where 1(z) is the digamma function. For large N, we have the accurate asymptotic,

Bty )] ~ 7 tog (1) - 3 (43)

—m m

Unicast uses on average fy(m)} = mE [Hy| hops to deliver the message to m ran-
domly chosen destinations. Since in the RGU class of graphs and for large N E [Hy] is
given with (2.4), fy(m) follows

fn(m) ~m(log N +v — 1), (4.4)

This scaling law clarifies the empirically derived Chuang-Sirbu law in G,(V): for
small values of m, when plotted on the log-log scale, functions (log N + v — 1) m®® and
2 Jog (&) — § look very much alike. Van Mieghem et al. [101] have further shown
that for the complete graph with exponentially distributed weights, and for m small
with respect to N, the ratio E [Hy (m)] /mE [Hy] increases about linearly with m on
a log-log scale, explaining the empirical Chuang-Sirbu law.

To conclude, although seemingly close to power-law, F [Hy (m)] = gn (m) does not
follow a power-law for all m.

We will use the above results in our mathematical analysis of the stability of multi-
cast trees in the following section, as well as in our discussion on possible implications
of multicasting for network providers in Section 4.4.

4.2 Stability of Multicast Routing Trees

Apart from the dynamics of topology updates, IP multicast design offers the possibility
of members joining and leaving a group at any time. This activity requires the multicast
tree to be dynamically updated (e.g. branches without multicast members must be
discarded). These changes imply that the forwarding of IP multicast packets may
change dramatically, resulting in undesirable transient routing effects.

The goal of this section is to investigate and quantify multicast stability, in par-
ticular, to determine the probability density function for the number of branches that
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change if one user joins or leaves the group. In addition, we quantify the common
belief (see e.g. the book of Huitema [60]) that Steiner Trees are more instable than
Shortest Path Trees. This intuitive supposition is the other significant reason for not
deploying Steiner Trees in multicast routing protocols (as stated in [60]), in addition
to their increased computational complexity. Instead, most of the current multicast
protocols forward packets based on the (Reverse) Shortest Path. The SPT algorithm
does not necessarily result in a tree that economizes on network resources but it is easy
to compute and it offers minimum delay.

This section is organized as follows. In Section 4.2.1, the stability of the multicast
tree is defined and basic theoretical results are deduced. Section 4.2.2 presents simu-
lation results for both the Shortest Path Tree (SPT) and the Steiner Minimum Tree
(SMT). Shortest Path Trees and Steiner Minimum Trees are compared in Section 4.2.3.

4.2.1 Stability: Theory

Inspired by Poisson arrival processes, at a single instant of time, we assume that either
no or one group member can leave. In the sequel, we do not make any further assump-
tion about the time-dependent process of leaving/joining a multicast group and refrain
from dependencies on time. As a measure for the stability of the multicast tree, the
number of links in the tree that change after one multicast group member leaves the
group has been chosen. If we denote this quantity by Ay(m}, then, by definition of
gn(m), the average number of changes equals

E[An(m)] = gn(m) — gn(m — 1) (4.5)

Since gn(m) is concave (see [101, Theorem 2]), E [Ay(m)] is always positive and de-
creasing in m. If the value of m is extended to real numbers, then E [Ayx(m)] = gy (m),
which simplifies further estimates.

The situation where on average less than 1 link changes if one multicast group
member leaves may be regarded as a stable regime. Since F [An(m)] is always positive
and decreasing in m, this regime is reached when the number of the receivers m exceeds
m;, which satisfies £ [Ax(m;)] = 1. For example, for the recursive tree, which is the
Shortest Path Tree (as shown in [100]) for the class RGU!, this condition approximately
follows from (4.3) as

mN N m—1)N N
E[An(m)] ~ N—m log (E) - J(V — m)+ 1 log (m — 1) (4.6)

Let y = %, then 0 <y <1 and

ElAxm)]  _—y (y —1/N) 1
R e T e (v )

IFor the definition of the class RGU, see Chapter 2.
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After expanding the second term in a Taylor series around y to first order in %,

E[An(zN)] ~ y—1—logy +0 ( 1 )

(1-y)? N
Hence, for large N, E [An(y1V)] ~ 1 occurs when y; = 0.3161, which is the solution in
y of ;l‘gf);ﬂ = 1. For the class RGU, a stable tree as defined above is obtained when

the multicast number of receivers m is larger than m; = 0.3161N = % In the sequel,
since m; is high and of less practical interest, we will focus on multicast group sizes
smaller than m,;. The computation of m; for other graph types turns out to be difficult.
Since, as we will demonstrate in Chapter 5, the comparison with Internet measurement
shows that formula (4.3) provides a fairly good estimate, we expect that m; =~ % also
approximates the stable regime in Internet well.

The following theorem quantifies the stability in the class RGU.

Theorem 1 For sufficiently large N and fized m, the number of changed edges Ay (in)
in a random graph G, (N) with uniformly distributed link weights tends to a Poisson
distribution,
k
Pr [A,\r(m) _ ]{'] —~ e—E[AN(m)](E [AZ'(m)D (47)
where E [An(m)] = gn(m) — gn(m — 1) and gy(m) is given by (4.2) or approximated
by (4.3).

Proof. In Chapter 2 we have stated that it has been shown ([100][101]) that the
Shortest Path Tree from a source to an arbitrary node in the random graph G, (N)
with uniformly (or exponentially) distributed link weights, is a Uniform Recursive Tree
for large N. In addition, the number of hops (the hopcount Hy) from that source
to an arbitrary node tends, for large N, to a Poisson random variable with mean
E [Hy] ~ log N +~—1, where ~ is Euler’s constant (y = 0.5772156 .. .). Hence, Ay (m)
is the random variable that counts the absolute value of the difference between the
hopcount Hy(m) from the source to user m and the hopcount Hy(m — 1) from the
source to the user closest in the tree to m, which we label by m — 1. Both users m and
m — 1 are not independent, nor are the two random variables Hy(m) and Hy(m — 1)
independent in general, due to a possible overlap in their paths. If the shortest paths
from the root to each of the two users m and m — 1 overlap, there always exists a node
in the Shortest Path Tree, say node B as illustrated in Figure 4.1, that sees the partial
shortest paths from itself to m and m — 1 as non-overlapping and independent. Since
the Shortest Path Tree is a Uniform Recursive Tree, the subtree rooted at that node B
(shown as a dotted line in Figure 4.1) is again a Uniform Recursive Tree’. With respect

?Recall that a Uniform Recursive Tree possesses the property that any new node N has cqual
probability to be attached to any of the N — 1 nodes already in the tree.
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Figure 4.1: A sketch of a uniform recursive tree, where Hy(m) = 3 and Hy{(m —1) = 4
and the number of links in common is two (shown in bold Root-A-B).

to B, the nodes m and m — 1 are uniformly chosen. We denote the unknown number
of nodes in that subtree rooted at B by v(m) < N. We have that v(m) < v(m — 1)
because by adding a group member, the size of the subtree can only decrease. For
large N and small m, v(m) is large such that the above mentioned asymptotic law of
the hopcount applies. If both m and N are large, v(m) will become too small for the
asymptotic law to apply (a fact illustrated by the simulations in Section 4.2.2). Thus,
for fixed m and large N, this implies that Ay(m) tends to Poisson random variables
with mean E [Ayx(m)]. For any graph and any m and N, relation (4.5) applies. Since
E [An(m)] can be explicitly computed as (4.6), this completes the proof. |

Remark that the proof can be extended to a general topology. Assume for a certain
class of graphs that the pdf of the hopcount Pr[Hy = k] and the multicast efficiency
gn{m) can be computed for all sizes N. The subtree rooted at B is again a Shortest
Path Tree in a subcluster of size v(m), which is an unknown random variable. An
argument similar as the one in the proof above shows that

Pr [Aw(m) = k] =Pr [H,,(m) = k’]

This argument implicitly assumes that all multicast users are uniformly distributed over
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the graph. By the law of total probability,

N
Pr [Hymy = k] = Y _ Pr [Hym) = klv(m) = n] Pr[v(m) =n]

— Z Pr[H, = k] Pr [v(m) = n]

n=1

which, unfortunately shows that the pdf of #(m) is required to specify Pr [Ay(m) = k.
However, we can proceed further in an approximate way by replacing the unknown ran-
dom variable v(m) by its best estimate, E [v(m)]. In that approximation, the average
size E [v(m)] of the shortest path subtree rooted at B can be specified, at least in prin-
ciple, with the use of (4.5). Indeed, since £ [Hgpm)| = Z,li"l(m)]_l k Pr [Hppmy) = k],
by equating
E [Hepmy] = gn(m) — gn(m — 1)

a relation in one unknown E [v(m)] is found and can be solved for E [v(m)]. In conclu-
sion, we end up with the approximation

Pr[An(m) = k] ~ Pr [Hgjy(m) = k]

which roughly demonstrates that, in general, Pr[Ay(m) = k] is likely related to the
hopcount distribution in that given class of graphs.

Unfortunately, for very few types of graphs, both the pdf Pr[Hy = k] and the
multicast gain gy(m) can be computed. This fact augments the value of Theorem 1,
although the class RGU is not a good model for the graph of the Internet. Fortunately,
the Shortest Path Tree deduced from that class seems a reasonable approximation (as
shown in [100]) and sufficient to provide first order estimates. Moreover, its relatively
simple analytic character is desirable in modeling problems.

4.2.2 Stability: Simulation Results

The main goal of the simulations is to verify the quality of the asymptotic result in
Theorem 1. This section is devoted to that purpose. In addition, results for the Steiner
Minimum Tree on the same type of graphs for the class RGU are presented and com-
pared to those of the corresponding Shortest Path Tree.

In order to anticipate frequently received criticism about the class RGU, the value
of the results only applies to this class RGU and no attempt is made to correlate these
results to the current Internet, although the previous section did so. The main reasons
are as follows:

1. The topology of the Internet is currently not sufficiently known to categorize the
Internet as a type or an instance of a class of graphs. The Internet is most likely
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best seen as an organism changing over time; there does not exist a fixed Internet
topology and, hence, a class specification is desirable, in particular for simulations.
There are measurements (on a part) of the Internet that show that the Internet
graph is sparse (low link density p). The measurements further indicate that the
distribution of the degrees (number of links per node/router) is likely polynomially
distributed (as mentioned in Chapter 2 and as will be discussed in more detail
in Chapter 5) with exponent close to —2.2 (see. e.g. [46]). Unfortunately, these
measurements only reveal a part of what we need to know.

2. For any routing problem, in addition to the network topology, we also need knowl-
edge of the link weight distribution. Older topology models and generators were
more likely to define all links with unit weight (w = 1). However, as briefly dis-
cussed in Chapter 2, it makes sense to distinguish between a satellite link, a large
bandwidth link and a smaller, or legacy link. Hence, not all link weights will be
equal to w = 1.

Even if more realistic topology generators (such as e.g. gt-itm [108]) are used, the
second problem of the link weight distributions remains debatable. The link weight
distribution is equally important as the topology of the graph itself. It has been shown
in [100] that for N large enough (in practice N > 50), the dependency of the hopcount of
the shortest path on the link density p (i.e. the number of links in the graph) becomes
insignificantly small. Moreover, by attaching a certain weight to a link, the specific
details of the underlying topology may be shielded (or become irrelevant) in a routing
problem [75].

Shortest Path Tree (SPT)

We confine ourselves to graphs of the class RGU with N > 100 and with link density
p = 0.2. The value of p is arbitrarily chosen since, as stated above, the hopcount of the
shortest path is insensitive to the value of p in sufficiently large graphs. For each graph
of N nodes, we define the number of multicast receivers in the network, and the source
node. For each N and p, 10° topologies are generated randomly. The connectivity
is tested using Prim’s minimum spanning tree algorithm [33]. Only if the generated
topology is connected, m nodes out of N — 1 (the node number one was defined as a
source node) are uniformly chosen, and the Shortest Path Tree is computed using a
modification of Dijkstra’s algorithm. The Dijkstra algorithm is modified in such a way
that the algorithm stops after finding the paths to all m destinations, as explained in
Section 2.1. The number of edges in the tree was computed as well as the number of
edges in the tree that interconnects one (uniformly chosen) multicast user less. The
difference of those two values was stored in a histogram, from which the probability
density function was deduced, as well as the mean E[Ay] and the variance var[Ay] of
the number of changed edges. These two variables (E[Ay] and var[Ay]) are plotted
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Figure 4.4: SPT: Pdf Pr[An = k] for N = 100 and m < N/3.
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Figure 4.5: SPT: Pdf Pr[Ay = k] for N =100 and m > N/3.
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as a function of the number of receivers m, for two different values of N (100 and 200
respectively) in Figures 4.2 and 4.3. However, for larger values of NV, this simulation
process is time consuming, and not efficient. Therefore, for N larger than 500, we used
a Markov discovery process to find the shortest paths from the source node to the other
multicast group members. The Markov discovery process has been explained in detail
in [100]. The Markov discovery process allows us to compute the Shortest Path Tree
very efficiently in large graphs (even up to 10° nodes) of the class RGU.

We observe that the mean E[Ay] determined via the simulations, and the mean
E[Ay] computed by (4.6) are almost identical. Another important observation is that
there is an area where the mean E[Ay] and the variance var[Ay] tend to each other.
Since this is a property of the well-known Poisson distribution, we are led to the con-
clusion that the probability density function of the number of changed edges Ay is very
likely a Poisson distribution. In Figures 4.4 to 4.7, simulation results together with the
Poisson law (4.7) are plotted in the dotted and the solid line respectively, as a function
of the number of changed edges, with the number of receivers m as a parameter.

Figures 4.4 to 4.7 show that for m < & (equivalent to E[{Ay] > 1), the probability
density function is remarkably well described by the Poisson distribution. For m > %,
the noticeable differences between the mean E[Ay] and the variance var[Ay] appear,
and there are significant deviations of the probability density function from the Poisson
distribution. The explanation is that the size v(m) of the subtree rooted at B as
illustrated in Figure 4.1, becomes too small to justify a Poisson law for the hopcount in
that subtree. But, as we have already explained in Section 4.2.1, if the average number
of changed links is less than one, the multicast tree can be considered as stable.

Figure 4.8 and 4.9 represent results obtained from the Markov discovery process,
for N = 1000. These figures show that, for N = 1000, the probability density function
matches the Poisson distribution (4.7) even for larger values of m.

Finally, the effect of the link weight distribution on the number of changed branches
Ay in the Shortest Path Tree is illustrated in Figure 4.10. For graphs of the class
Gp(N), this Figure 4.10 compares the pdf Pr[Ay = k] obtained with uniformly (or
exponentially) distributed and with constant (w = 1) link weights. Earlier in {100}, it
was shown that, for all link weights equal in G,,(V), the probability that the hopcount
exceeds 2 hops precisely equals
N-2

Pr[Hy >2]=(1-p)[1-p’]

and very rapidly decreases with IV for all link densities p > % This phenomenon is
also observed in the behavior of Ay in Figure 4.10 and supports the generalization of
the Poisson law (4.7) - which is deduced for uniformly (or exponentially) distributed link
weights - that Pr[Ay(m) = k] is reasonably well approximated by Pr [H Blu(m)] = k}
Figure 4.10 also seems to indicate that less variability in the link weight distribution
amounts to a higher stability of the shortest path multicast tree. Although concluded
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from the class G,(N), similar simulations with more realistic topologies generated by
gt-itm [108] confirm this stable Shortest Path Tree behavior® (Figure 4.11).

In conclusion, the simulation results indicate that, in spite of the applicability of
Theorem 1 to an asymptotic regime (large N and fixed m), the law (4.7) seems to have
a wider validity region. This feature has previously been observed in [102] for the prob-
ability distribution of the hopcount between two arbitrary chosen nodes. In [102] it has
been theoretically demonstrated that the asymptotic law given with (2.6) possesses the
property of almost sure behavior. This property implies that each hopcount distribu-
tion obtained by measurements from a source to a certain number of destinations will
closely resemble (2.6). A wider validity region of Theorem 1 suggests the robustness of
the Poisson law against certain changes in the modeling assumptions which might be
associated with almost sure behavior.

Steiner Minimum Tree

We continue by presenting corresponding results obtained for the Steiner Minimum
Trees. The simulation process is similar to the one used for generating the Shortest
Path Tree. Again we performed simulations in the class RGU. We generated 10° random
graphs of that class RGU. In each graph, m; = m + 1 multicast group members are
chosen uniformly out of the N possible nodes. Depending on m;, the Steiner Minimum
Tree [45] is generated using different algorithms. For m, = 2, the Steiner Minimum
Tree (SMT) problem reduces to the computation of the shortest path between those
two users. If m; = N, the MST is actually the (complete) minimum spanning tree, and
is computed with Prim’s algorithm. For 2 < m; < N, the SMT problem belongs to the
class of N P-complete problems. Certain reductions in the topology [45] decrease the
number of nodes and links to a reduced graph, and increase the speed of simulations. In
spite of the implemented reductions, the simulation process is extremely time consuming
for large N. Therefore, we confine ourselves to graphs where N is not larger than 20 4.
In each graph, the SMT is computed for m, = m + 1 and m members of the multicast
group. The difference Ay in the number of the links forming these trees was stored in
a histogram, from which the probability density function was deduced.

Influence of the link weight distribution. For the class of G,(N) with various
polynomial link weight distributions specified by the power exponent «,

Priw < 2] = 2%1lo<z<1 + o1

100000 iterations of transit-stub graph with N = 100 nodes have been performed.

4The computational time for a set of simulations of Steiner Minimum Trees on a SUN Solaris OS
5.8 workstation (CPU frequency of 360 MHz), for N = 20, in 2001, amounted to approximately 700
hours of simulations.
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Figure 4.12: SMT: Pdf Pr[Ay = k| for N = 10 (a = 0.2).
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where 1, is the indicator function®, we have simulated the pdf Pr[A;q = k] as shown
in Figures 4.12 to 4.17 for a = 0.2,0.5,1,2,5, oc. The class RGU corresponds to o =1
and the last case (o = 00) corresponds to w = 1 on all links in the network.

The first observation from these figures is that the pdf Pr[A;p = k| appears to be
independent of the link probability p for & < 1. Second, the larger y = %, the more
correlation there is in the Steiner Tree which is reflected by oscillatory behavior of
the probability density function. Third, these oscillations are more pronounced for the
increasing power exponents «.

If the power exponent « is small (but a > 0), var [w] = g is relatively
large (with a maximum for oo = —‘/—52_—1 which is the “golden number”) while E [w] = ;%5
is small. This variation implies the existence of smaller link weights that will play a
dominant role in the Steiner Minimum Tree. Since the Steiner Minimum Tree is a
minimum link weight tree, the links with smaller weights will more likely be included
in both the Steiner Minimum Tree with m and m + 1 multicast users. This will lead to
a reasonable stable situation which is similar to the Shortest Path Tree dynamics. The
larger part of the tree will not change if a multicast user leaves or joins. The number
of changed branches Ay in the Steiner Minimum Tree is very unlikely to be smaller
than in the corresponding Shortest Path Tree because by choosing a longer hop path,
it may be possible to achieve a lower total weight of the tree. As a second implication
of small e, the link weights have a thinning effect on the topology and overshadow the
influence of the link density p: even if there is a link, it is the link weight that determines
the importance of that link especially in shortest link weight problems. This explains
the negligible effect of p as observed in Figure 4.12, 4.13 and 4.14. When « is large,
var [w] — 0 and F[w] — 1. Let us consider the limit case of & — oco. All links are
equally important and, hence, the effect of the topology quantified by the link density
p is important. If p — 1, then G,(N) — Ky and the behavior of Ay in the complete
graph Ky with w = 1 is readily analyzed. Any Steiner Minimum Tree s(m + 1) in
K connecting m + 1 multicast users consists of precisely m links while the total link
weight of that tree also equals m. Moreover, there exists a large number of different
Steiner Trees. In particular, the number of different minimum spanning trees or s(/V)
trees in K is precisely (N — 1). The number of changed branches Ay consists of the
total number of branches in s(m + 1) and s(mm) minus the 2 times the number L, of
links in common. Hence, Ay = 2m — 3 — 2L, or Ay is always odd, which explains
the oscillatory behavior between odd and even values for Ay in Figures 4.16 and 4.17,
especially for p high. The stability of these Steiner Minimum Trees is as worse as can
be: the Steiner Tree s(m + 1) in Kn may consist of entirely different branches from
those of the Steiner s(m) as exhibited by the wild oscillations in Figure 4.17.

In conclusion, the simulations have shown that the link weight distribution has
profound influence on the stability of the Steiner Minimum Tree. The more links are

5The indicator function 1, equals 1 if the condition z is true, otherwise it is zero.
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equal (equivalent to « large), the higher the instability. If more links have different
link weights, the more stable the Steiner Tree is. Whereas the underlying topology is
decisive in the former, it plays hardly a role in the latter situation. Thus, the more the
link weight structure of a network is heterogeneous, the healthier it is for the stability of
the Steiner Trees. Recall the opposite behavior for the Shortest Path Tree as illustrated
in Figure 4.10.

Influence of the size NV of the graph. If we compare the results for the pdf obtained
for N = 10 and N = 20 in the class RGU as illustrated in Figure 4.18, we observe that
the probability density function for N = 10 and N = 20 match each other well for
y=%>0T.

The mean E[Ay] and the variance var|Ay] were also computed and plotted as a
function of the ratio y = % in Figure 4.19. We observe for the class RGU (a = 1) that
the mean value seems independent of the number of nodes in the network, although the
variances differ.

4.2.3 Comparison of Steiner and Shortest Path Tree

In order to compare the stability of the Shortest Path Tree (SPT) and the Steiner
Minimum Tree (SMT) in the class RGU, we have plotted in Figures 4.20 and 4.21, the
probability density functions of changed number of edges Ay for N = 10 and N = 20
nodes, and in Figures 4.22 and 4.23 the mean value and the variance of these pdfs.
From these figures, the following observations can be made: (a) The maximum number
of changed edges Ay in SPT does not increase with the increase of N as fast as for the
Steiner Tree (SMT). This phenomenon has been explained previously: the minimization
of the weight of the total tree forces the Steiner Tree to include longer hop paths if the
sum of their link weights is smaller. (b) The pdf of Ay for the Steiner Minimum Tree
possesses a larger tail which agrees with the common intuition that Steiner Trees are
less stable than Shortest Path Trees. (¢} The larger tail for the Steiner Tree also causes
that the mean F[Ay] of SMT is larger than that of the SPT and similarly for the
variance. (d) The more remarkable observation is that the mean E[Ay] for N = 10
and N = 20 in both SMT and SPT, hardly changes with N for nearly all values of
y = %. Most likely, for RGU or o = 1, the dynamics of the Steiner Minimum Tree
resembles those of the SPT as argued above. The equality of £[Ay] and var [Ay] in

SPT follows from the Poisson law (4.7).

4.3 Cost of Multicast Routing Trees

In the previous section we have demonstrated that Steiner Trees exhibit less stable
dynamic behavior compared to Shortest Path Trees. This characteristic, in addition
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Figure 4.21: Comparison SPT and SMT (N = 20).
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to their computational complexity, prohibits the implementation of this algorithm in
multicast routing protocols. Instead, most of the current multicast protocols forward
packets based on the (Reverse) Shortest Path. The SPT algorithm does not necessarily
result in a tree that economizes on network resources but it is easy to compute and
it offers a minimum delay. The question that arises then is, how much more do the
Shortest Path Trees cost, in terms of the total resources used, compared to the Steiner
Trees.

Recently, Bollobas et al. [19] have shown that in the complete graph with N nodes
and with exponentially distributed link weights with mean 1, the asymptotic weight of
the Steiner Minimum Tree spanning m + 1 uniformly chosen nodes and m small with
respect to N,

E [Witeiner (k)] = (14 0(1)) = log (4.8)

N m+1

Triggered by this result, van der Hofstad et al. [99] have derived the average

E [Wy (m)] of the sum of the weights Wy (m) in the SPT to m uniform multicast users in

the random graph G, (V) with exponentially distributed link weights, expression (2.9).

However, no analytic expressions are known for the distribution Pr [Wy (m) < z], nor

for the corresponding probability generating function Owy(m) (2) = E [exp (—2Wx(m)].

Here, we complement the analytical results derived in [99]. The significance of Wy (m)

for multicast is that Wy (m) can represent the cost of used resources of the multicast

tree, defined as the sum over all links in the multicast tree of the (monetary) costs of
the resources used per link.

We proceed with presenting the simulation results and a conjecture on the prob-
ability density function of the weights. So far, we are not able to prove whether the
probability density function of the normalized variable Wy (m) tends to a Gaussian or
to a Gumbel.

4.3.1 Cost: Simulation Results and a Conjecture

We have performed a set of simulations to complement the analytical results derived
in [99] on complete graphs (with exponentially distributed link weights with mean 1).
Therefore, in simulations presented in this section we confine ourselves to that class of
graphs. For each number of nodes N, 10° topologies were generated randomly. For each
of these topologies, m € {1, ..., N — 1} nodes were uniformly chosen. The Shortest Path
Tree (SPT) and the Steiner Minimum Tree (SMT) have been computed subsequently.
The SPT is computed by using the Dijkstra algorithm, with N < 100. Depending on
m, the Steiner Minimum Tree [45] is generated using different algorithms, as explained
in Section 2.2. Again, like in our study on the stability, in spite of the implemented
reductions, the simulation process is still extremely time consuming for large N. There-
fore, we restrict the simulations of SMT to graphs with N < 20. In each graph and
for each m, the sum of the weights as well as the number of links in both the SPT and
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the SMT have been stored in 4 histograms. From these histograms, the probability
density function of the sum of the link weights fuy(m) () = 4 pr[Wy (m) < z] in the
SPT and the SMT, as well as the probability density function of the number of links
Pr[Hy (m) = k] have been deduced. Since Pr[Hy (m) = k] is analytically known [99],
these simulations are not shown, but served as a verification for the simulations.

Figure 4.24 gives the probability density function of the sum of the link weights
fw',\,(m) (.’l‘) il’l the SPT

The average value E[Wy (m)] of the sum of the link weights in the SPT and the
SMT is plotted as a function of the number of multicast receivers m, for the number of
nodes N = 20 in Figure 4.25. Apart from the match between simulations and theory
for the SPT, this figure reveals that E[Wy (m)] for the SMT seems similar (apart from
some scaling factor) to that of the corresponding SPT. In Figure 4.26, simulation results
of the variance of Wy (m) in the SPT and the SMT are shown. So far, var [Wy (m)]
has only been derived analytically for m = N — 1.

Although N is small (which allows us to show the entire m-range), Figure 4.27 in-
dicates that the scaled random variable Xy (m) = Wy lm) - BWn(ml] 5 close to a Gumbel

\/var[Wy (m)]

type e~ ", which may suggests, for all m, that

Loay

lim Pr[Xy(m)<az]=e* " (4.9)

N—oc
where v = 0.5772... is Euler’s constant. For the particular case of m = 1, we are able
to prove this result (see below). However, simulations for larger N' (N > 1000) seem to
indicate that Xy (m) tends to a normalized Gaussian for m > 1. As a matter of fact,
for m = N — 1, convergence of Xy (N — 1) to a normalized Gaussian can be proved®.
Figure 4.28 illustrates this behavior. Hence, Xy (m) converges only slowly towards
its asymptotic limit, implying that simulations are not the best device to obtain the
asymptotic distribution.

Conjecture 1 For all m < m,,

lim Pr KWN(m) — EWN(m)l) < x] —ee BT (4.10)

N—oo var [Wy(m)]

For the particular case of m = 1, we are able to prove this result:

Proof. Proof of Conjecture (4.9) form=1 =

6R. van der Hofstad, G. Hooghiemstra and P. Van Mieghem, “The weight of the shortest path tree”,
unpublished.
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Figure 4.24: The pdf of sum of the weights in the SPT for N = 100.
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In [99], the probability generating function of the weight Wy = Wx(1) of the short-
est path is derived

k
i n(N —n
Pwy (2) =E [C_ZWN] = Nl_ 1 H z +(711(N —)n)

The variance, computed from Lp;VN (0) — (ga@vv (O))2, is

var [Wy] =
1

and for large N,

2 log? N
var [Wy| = 27;,2 +0 ( ) >

The limit for N — oo will be computed, from which the distribution then follows by
taking the inverse Laplace transform. With y = / (%)2 + z, we have

ﬁ n(N BN = 1)! ﬁ 1
z—l—nN—n (N—-k—l)!nzl(y—{—%—n)(y—%—i—n)

n=1

The products can be written in terms of the Gamma function,

B I‘(y——+1N1 T(k+1) T{y+5-k)
Pwy (2) = (N = 2)! I'(y+%) ; I(N-kKI(y—-5+k+1)

Let the number of nodes be even N = 2M such that y = v M? + z ~ M+ 5% (provided
|z| < 2M). The sum, denoted by S, can be rewritten

5 = Tly+) T(M—j+1)
iy TM+ ) Tly—g+1)
such that
N'y—M+1)
, =M -—1)-— T
kaQ]V[ (Z) (2‘]\/[ ]‘)' F(y"‘ﬂé’[)

1 = Ty+)T(M—j+1)

X . -
2M -1 o TM+j)T(y—i+1)
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For large M,
I'(y—M+1)
I'(y+ M)

which makes us consider z — 2M z since then, using [7, 6.1.47],

(2M —1)! (M) L (= + 1)

2M

PCopyny (2M2) ~ (2M) *T (2 +1)

1 M-1 1
T 2 (HO(M))

== (M-1)

~ (2M) T (2 +1)

Hence,
y\}lm ]VZQP‘,VN (]VZ) =T (Z + 1)

or equivalently,

Jim [ [emVWNToENE] = T (2 4-1) (4.11)
The inverse Laplace transform of I' (z 4+ 1) is a Gumbel distribution. Since E[Wy] ~
L%A and (/var [Wy| ~ 5y We arrive at the asymptotic distribution (4.9) for the

weight of the shortest path (m = 1).

4.4 Implications for the Network Providers

Since multicast is more complex and more difficult to manage than unicast, an ISP
finds it cost effective to deploy and manage it for customers, only when doing so saves
significant bandwidth. Some work on establishing multicast business model has been
done previously. However, most of these studies focus on practical issues of multicast
pricing and billing, whereas the fundamental ISP’s dilemma remains neglected [42, 57,
90, 6, 96]. For example, Einsiedler et al. [42] propose a scheme to charge the users
for the resources they use. The resources are represented by the weights of the links,
that are determined by the maintenance costs, congestion on the link, or other factors.
At each router in the tree where branching takes place (branching point), costs are
determined by splitting the cost among subtrees. Each router stores the information
on the number of branches and on link weights, and distributes this information along
the branches to other branching points, and finally toward the receivers.

We believe that charging users extra for using multicast is not justified. The tech-
nology used should be transparent to users. Moreover, users could be offered lower fees
when using multicast in order to stimulate wide-spread usage. On the other hand, the
ISPs could receive more revenues from content providers for offering multicast, since
multicast enables content providers to reach more customers.
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Instead, we focus solely on the extra costs and savings that employing multicast
induces. The savings of multicast must outgrow the increased cost: the reduction in
the network cost must be higher than the increase in management and deployment cost.
If with C™ and C* we denote the cost of multicast and unicast respectively, then

Cm=Cm+Cm 4 O™

Ct=Cy+Cy+C
where Cf, C7, C and C%, C4, C%, are the network, deployment and manage-
ment costs for multicast and unicast respectively, and the extra costs multicast induces
compared to unicast are defined as

AC=Cm—C"=Cp —ClL+CP—Ct+C™ — C (4.12)

It is only if AC < 0 that the network operators would consider deploying multicast.
Given that virtually all routers nowadays support multicast, and no infrastructure
changes are needed, we can assume that

Cl—Cy=0
Due to the complexity of computing the management costs exactly, some assump-

tions and estimates need to be made. We know that an average ISP needs to employ
approximately one to three engineers more to manage multicast. Hence,

C™ — O ~ O

where C'i represents a monthly cost of extra manpower needed to manage multicast.

Finally, the network costs can be expressed in the form:
Cy — Cx = (E[Hy (m)] — mE [Hy]) BC, N,

where m is the number of multicast receivers, E [Hy (m)] = gn(m) is the multicast
efficiency given with (4.2), E[Hy] = E[Hy(1)] is the average number of links to a
uniform location in the graph given with (4.4), B is a bandwidth of an application, C,
is a monthly cost of transport of a 1 kB/s flow between two points of presence, and NV,
a number of simultaneous multicast sessions in the network.
So, expression (4.12) becomes:

AC = (E [Hy (m)] — mE[Hy|) BC,N; +Ckg (4.13)
Most of the ISPs today have to invest 10 kEuro for the monthly costs of an extra

engineer, and they have to pay C, = 0.05 Euro for the monthly cost of transport of kB/s
of data over the network®. Furthermore, data published in [1] indicate that, currently,

"Private communication with several IPSs.
8Private communication with ISPs.
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the number of simultaneous sessions is around N; &~ 100 (the maximum number that
can be supported in routers reaches approximately 20000). It is reasonable to assume
that, on average, the costs for the extra manpower fall in the range Cg =[5000, ..., 20000}
Euro, normalized monthly network costs in range C,, =[0.01, ...,0.5] Euro, and that the
number of simultaneous sessions varies from 1 to 20000. In addition, since AC' depends
on the bandwidth B required for a particular application, we can examine several
possible multicast scenarios, for three different values of bandwidth (three different
types of applications):

(a) 20 kB/s

(b) 128 kB/s for low quality video or high quality audio

() 1 MB/s for high quality video.

By substituting the above chosen values for parameters Cg, Cy,, V; and B in (4.13)
and letting AC = 0, we can obtain the break-even number of receivers m for which
the additional costs of implementing multicast over unicast becomes 0, as a function of
parameters Cg, C,, N, and B.

Figures 4.29, 4.30 and 4.31 display the break-even number of multicast receivers
m , as a function of Cf, C,, and Ny, respectively. In each figure, three lines have been
plotted, each corresponding to a different value of bandwidth B. The vertical line refers
to most likely values of parameters Cf, C,, and N, (10000, 0.05, and 100 respectively).

Provided our estimates are correct, and given that, on average, 10% of subscribers
participate in multicast, we obtain that multicast pays off for network providers

(a) approximately 300 subscribers in case of 20 kB/s flows

(b) approximately 90 subscribers for 128 kB/s

(c) approximately 20 subscribers for 1 MB/s flows

4.5 Conclusions

This chapter presented our study of the behavior and the properties of multicast routing
trees, both analytically and via simulations. First, we have reviewed the analytical
results for the savings of multicast over unicast, in terms of the number of traversed
links (hops), derived earlier in [101], valid for any type of network topology.

Further, the stability of the routing trees, defined as the number of links that changes
in the tree when one user joins or leaves the group, has been analyzed. The stability of
both the Shortest Path Tree (SPT) and the Steiner Tree (SMT) has been quantified for
the class of random graphs G,(N). The Poisson law (4.7) for the number of changed
links Ay in SPT, has been proven mathematically for the class G,(V), while simulation
results point towards a larger applicability of the Poisson law than the asymptotic
regime. In addition, we have argued that similar laws as the Poisson law can be obtained
for a general topology (including that of the Internet), provided both the hopcount
distribution Pr[Hy = k| and the multicast efficiency gn(m) are known. Hence, the
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Figure 4.28: The convergence of X (N — 1) to a normalized Gaussian.
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Figure 4.29: The break-even number of multicast receivers m as a function of menpower
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Figure 4.30: The break-even number of multicast receivers m as a function of normalized
network costs Cy,, with bandwidth B as a parameter (B = 20 kB/s, 128 kB/s and 1 MB/s).
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Figure 4.31: The break-even number of multicast receivers m as a function of the
number of simultaneous multicast sessions N, with bandwidth B as a parameter (B = 20
kB/s, 128 kB/s and 1 MB/s).




70 CHAPTER 4. PROPERTIES OF MULTICAST ROUTING TREES

stability (in our setting) of the Shortest Path Tree problem may be regarded in principle
as approximately solved.

The behavior of the Steiner Minimum Trees is not entirely understood and requires
further analysis. Especially, for large N, it would be interesting to find the scaling laws
of the Steiner Minimum Tree as well as the tail behavior. Apart from large network
sizes IV, the simulations show that the link weight distribution determines the stability
of the Steiner Tree problem. If the majority of the links have different weights, the
stability of the Steiner Minimum Tree resembles that of the Shortest Path Tree. The
other extreme, where most link weights are equal, leads to large instabilities reflected
by wild oscillations in the corresponding pdf Pr{Ay = k]. The stability of the Steiner
Minimum Tree is in most situations worse than that of the corresponding Shortest Path
Tree. Mainly because the departure or arrival of a multicast member may cause other
branches to be included in the Steiner Minimum Tree (to achieve an overall minimum in
the sum of the weights) than just the branches of the shortest path towards the subtree
rooted at B (as defined in Figure 4.1).

We conclude that the intuitive assumption on the (in)stability of Steiner Minimum
Trees is correct. Even though Steiner Trees optimize the use of resources, they cannot
be used in multicast protocols. If we define the cost as the sum of used resources, then
a question that arises is, how much more costly are the Shortest Path Trees compared
to Steiner Trees. With link weights representing the available resources, the sum of
used resources can be expressed as the sum of the link weights in the tree. The sum of
the link weights in the SPT is on average not more than 37% worse than that in SMT.,
From the extensive simulations we were lead to conjecture that the probability density
function of the scaled sum of the link weights for small values of N tends to a Gumbel,
however, with the increase of N, it converges slowly toward a Gaussian.

Finally, this chapter discussed some possible business scenarios for network oper-
ators. Among the additional costs of multicast over cost of unicast we distinguish
the deployment, management and network costs. By computing the network costs,
and estimating the deployment and management ones, we suggested that at moderate
bandwidths (e.g. 128 kB/s), multicast becomes beneficial for network operators for
approximately hundred receivers. For higher bandwidths (e.g. 1 MB/s) the break-even
number of receivers is achieved with approximately ten receivers.




Chapter 5

Measurement-Based Analysis of
Multicast Trees

The framework proposed and explicated in Chapter 4 allows us to exactly compute
certain properties of multicast trees. This framework is valid for any number of multi-
cast receivers m, any topology and any number of nodes NV in the topology. Thus, it
should also be valid for the topology of Internet. Nevertheless, in order to convince the
network operators that the business model based on that framework is utilizable, we
need to investigate how well it matches the real Internet data.

Understanding and modeling the topology of the Internet has attracted consider-
able attention in the last decade. Since the topology can influence the performance of
network protocols deployed, a reliable topology model is needed in order to examine and
verify their quality. Due to the volatile nature of the Internet, its exact reproduction is
an impossible task. Still, through the measurements of (a part of) the Internet, we can
capture some fundamental topological properties, such as the node degree distribution.
Generating topologies that possess these properties would create topology models that
closely resemble the Internet.

Both passive and active measurements are used for obtaining more insight into the
topology of the Internet. The most popular tool for acquiring the map of the Internet
thus far has been the traceroute utility [95]. However, as we will demonstrate further
in this chapter, there are many ambiguities and imperfections related to traceroutes.
Consequently, care is needed when extrapolating the results obtained via traceroute
measurements to the Internet as a whole.

One of the most striking observations in the Internet maps is the long-tailed node de-
gree distribution. It has first been observed by Faloutsos et al. [46] in 1999, when they
published their empirically derived results on properties of several Internet topology
parameters, among which the node degree distribution. They studied three different
Internet AS level instances, as well as a router-level map. These findings have provoked
astonishment among network researchers and stimulated the desire to explain this be-
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havior. However, Chen et al. {30] have criticized the results published in [46] implying
that they were obtained on incomplete AS graphs. They show that when data is ob-
tained from more complete AS graphs, the degree distribution follows heavily skewed
distributions (the values of degree vary over 3 to 4 orders of magnitude), but where only
tails decay like a power-law. In this chapter we present a thorough analysis of results
on node degrees obtained by the research community so far. We will show that, based
on traceroute data, the node degree distribution in the Internet map does not always
follow a power-law.

Oddly, whereas the structure of the Internet topology has been the focus of consider-
able study, modeling multicast trees has not received the attention it deserves. Only few
results have been available on the node degree distribution of multicast routing trees,
which provided contradictory conclusions. Similar to the node degree distribution in
the Internet map, we will show that the node degree distribution in the multicast tree
does not always follow a power-law.

In addition to the node degree distribution, we have investigated the number of links
in multicast trees. In particular, we investigate how well Internet measurement data fit
the model proposed in the previous chapter.

The remainder of this chapter is organized as follows: In the following section the
collection of measurement data is explained. In Section 5.1.3 we discuss the ambiguities
and inaccuracies in traceroutes and the dangers of drawing conclusions based on these
data. In Section 5.2.4, we focus on a problem specific for multicast analysis of unicast
traceroute measurements - the occurrence of cycles. In Section 5.3 we concentrate on
node degree distributions of Internet maps. In Section 5.4 multicast trees structure has
been discussed. Section 5.4.1 covers the related work on the node degree distribution of
multicast trees. The traceroute-based multicast trees and the quality of the URT as a
model for multicast trees on Internet is investigated in Section 5.4.2. There we present
our results on the node degree distribution. In Section 5.4.3 the number of links in
Internet multicast trees is evaluated. Conclusions are summarized in Section 5.5.

5.1 Measurement data sets

For our analysis on multicast trees and maps of the Internet, traceroute data was needed.
Traceroute infers an IP path between a source and a destination by sending out probe
packets with progressively increasing TTLs and then analyzing the ICMP error re-
sponses sent by routers along the path receiving a packet with a zero TTL. In this
section we describe three measurement architectures, RIPE NCC, Caida and Planet-
lab, that we used to obtain traceroute data.
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Figure 5.1: Distribution of RIPE testboxes over the world.

5.1.1 RIPE-NCC

RIPE NCC (the Network Coordination Centre of the Réseaux IP Européen) [5] performs
traceroute measurements between measurement boxes scattered over Europe (and few
in the US, Middle East, Japan and Australia/Oceania)(see Figure 5.1). At the time
of writing, the number of boxes has been 92 with on average 2 boxes being added per
month. We have collected the data in three periods: 1998-2001 (datasetl), May 1st -
June 1st 2003 (dataset2) and January 1st - February 1st 2004 (dataset3).

The measurements are executed in the following way: approximately 10 times an
hour, a traceroute is sent between each pair of measurement boxes, and the data has
been collected once a day in a central point in RIPE (see Figure 5.2; for a further de-
tailed description of the measurements and measurement configuration we refer to [5]).
Subsequently, for each source-destination pairs, the traceroute data has been inserted
into two tables in a database in the local computer in TUDelft. An example of these
two tables is given in Figure 5.3. For the particular source-destination pair, the first
table consists of two columns, routeID and count. To each unique path ( a combination
of IP-addresses visited by a packet traveling from the source to the destination test
box) a unique routeID has been assigned. The number of times a particular route has
been returned by traceroute has been stored in the count column. The second table
specifies for each routelD the entire list of returned IP-addresses.

Since not all the boxes are active all the time, the number of boxes from which we
obtained the data is smaller than the total number of boxes. In the period 1998-2001,



74 CHAPTER 5. MEASUREMENT-BASED ANALYSIS OF MULTICAST TREES

Routing

1 1
1 1
| vectors MySQL \
: Central Database :
‘ Point —— h
' y—
1 —

I ]

! !

I
1
o Probopackes |
1

Figure 5.2: RIPE measurement configuration.

the total number of boxes has been 50. However, due to errors that will be discussed
in the following section, 19 test-boxes have been excluded from further analysis. In
the traceroute measurements among the remaining 31 active boxes the most dominant
path, i.e. the path occurring most frequently, has been determined. In this way, a total
of 465 most dominant paths has been gathered. However, we ascertained further that
17% of the those traceroutes suffer from errors, again to be addressed in the following
section, leaving 386 non-erroneous dominant paths (dataset 1). In the period May 1st-
June 1st 2003, from each of 61 active boxes, traceroutes to all the other test boxes have
been obtained, resulting in a total of 1329019. Among all the distinguished paths in
the database, only the most dominant one has been considered. After discarding the
erroneous data, 973 non-erroneous most-dominant paths were distinguished (dataset 2).
Finally, the same measurements have been executed in the period January 1st- February
1st 2004, and traceroute paths from 72 sources to a variable number of destinations (60—
70) have been collected. The number of collected dominant non-erroneous traceroutes
paths in this experiment was 4521 (dataset 3).

This collection of measurements we have used both for the creation of Internet
router-level maps, as for the analysis of multicast trees. The data for the multicast
analysis has been collected in the following way: each destination measurement box
has been regarded as a multicast user. Multicast trees have then been constructed as
the union of paths returned by traceroutes. Since PIM-SM (the most commonly used
multicast routing protocol) relies on unicast routing tables for routing, trees constructed
as union of traceroutes will resemble multicast routing trees.
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mysqi> SELECT routeid, COUNT() mysqi> SELECT len,route FROMRoutes WHERE iD= 5;

AS count FROM Records WHERE +

sr=1 AND dst=18 GROUP BY | fen | route |

routeid ORDER BY count DESC; +
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Figure 5.3: Tables in the MySQL database.

5.1.2 CAIDA

The Cooperative Association for Internet Data Analysis (CAIDA) provides tools and
analyses promoting the engineering and maintenance of a robust, scalable global Inter-
net infrastructure. CAIDA’s Skitter tool [2] deploys a method similar to traceroute to
determine the IP path to a destination. Destinations are chosen from BGP tables and a
database of Web servers. Skitter sends ICMP echo request packets, increments the TTL
when sending them and registers the IP address of the replying routers. If a router does
not respond to three subsequent ICMP request packets, the TTL is increased. When
the desired destination is reached, Skitter registers the round-trip-time (rtt) as well.
However, in case TTL becomes 30, or “ICMP unreachable” reply has been received,
or a routing loop is encountered, Skitter stops probing the destination. Resolving the
aliasing problem is attempted as well, by deploying the iffinder tool. The iffinder tool
relies on a similar router identification technique as the one described in [52].

The CAIDA Skitter project has deployed around 30 monitors worldwide. Each
monitor performs traceroutes measurements to thousands of destinations every day.
We have obtained the traceroutes from 6 skitter monitors over 3 days measurements
(1,2,3 April 2003). Totally 684135 traceroutes have been collected in our database. The
incomplete traces have been eliminated, leaving 276680 out of 684135 complete and
stable traceroutes in the database.

Multicast routing trees have been obtained in the following way: first, we have ran-
domly chosen m = 50,100, 500, 1000, 2000, 5000, 10000, 20000 destinations (multicast
users). For three monitor boxes (two of them situated in United States and one in
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Figure 5.4: Current distribution of 537 PlanetLab nodes over 254 PlanetLab sites.

Japan) the collection of paths from these three sources to randomly chosen destinations
has been obtained via traceroute. In this way, we obtained for cach source a set of 8
trees. These trees resemble multicast routing trees, under the assumption that multi-

cast group members are uniformly distributed. This assumption has been discussed in
Chapter 4.

5.1.3 PlanetLab

PlanetLab [4] is an open, worldwide distributed testbed that enables performing ex-
periments under real-world conditions, and on a large scale. At the time of writing,
there were more than 250 institutions participating in PlanetLab projects, including
TUDelft. Our experiments have been executed on November 10th 2004. At that mo-
ment, there were 445 PlanetLab nodes running on locations in USA, Asia and Europe
(see Figure 5.4). Architecturally, the PlanetLab network is similar to RIPE: each node
can serve as a source as well as a destination. From each of the PlanetLab sites, we
can perform traceroutes to all the other PlanetLab sites. Since in some cases there are
multiple nodes per PlanetLab site (situated at the same location), we selected one node
per PlanetLab site, resulting in a total of 79 nodes (since many nodes are not active or
not accessible at all time). Multicast trees have been generated in the same fashion as
from RIPE measurement data.

Problems with traceroutes

The fraceroute utility [95] has been the most popular tool for acquiring a map of
the Internet so far. Once an extensive amount of traceroutes from multiple sources
to multiple destinations is acquired, the Internet map can be created as a umion of
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these traceroute paths. Nevertheless, there are many issues considering traceroute mea-
surements that complicate this apparently straightforward procedure. These unsolved
issues raise the question of the trustworthiness of conclusions based on traceroutes.

5.2 Ambiguities in {raceroutes

5.2.1 Errors and inaccuracies

In spite of being the best current tool for inferring the end-to-end IP level path, tracer-
outes suffer from several types of errors and flaws [106]. In our dataset 1 (data from
1998-2001), we have analyzed the errors in paths returned by traceroutes, categorized
them following the nomenclature proposed by Paxson in [78, 77|, and compared to his
results.

Unresponsive routers

A certain number of routers will not reply to traceroute probes. Totally, for dataset 1,
consisting of 465 most dominant paths, 4 paths contained unresponsive routers, forming
0.86% of all the dominant paths’ records.

Routing loops

A routing loop is diagnosed if a node with a certain IP address appears in one record
more than once. We distinguish two types of loops, “persistent routing loops” and
“temporary routing loops.”

A loop is considered persistent, if ¢raceroute records include loops that were not
resolved by the end of the traceroutes, that is, after probing 30 hops. Out of 465 most
dominant paths, persistent routing loop has been detected in only 1 of them, making
0.2% of all the records.

A routing loop is temporary if loops within routes are resolved, in other words, if
the traceroute probe bypasses the loop and reaches the destination. An example of a
temporary routing loop between two test-boxes is:

1 x.x.70.193
2 x.x.201.98
3 x.x.201.128
4 x.x.201.128
5 x.x.71.194

We notice that at hop 3 and hop 4, the same IP-address is detected. 35 out of the
465 most dominant traceroutes contained temporary routing loops, which makes 7.5%
of all the records.
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Compared to results obtained by Paxson [78, 77|, the probability of temporary
routing loops in data obtained from RIPE in 2001 increases largely. The difference
is mainly caused by the definition of the unknown IP address (255.255.255.255) in
RIPE According to this definition, a significant number of unknown IP addresses is
mapped to the same 255.255.255.255, increasing the probability of temporary routing
loops appearance. Approximately 60% of all temporary routing paths are caused by an
unknown IP address (255.255.255.255).

Infrastructure failure

This failure reflects a problem inside the Internet infrastructure: the terminating router
in the traceroute record was somewhere in the middle of the network, not at the destina-
tion node. Surprisingly, out of the 465 dominant traceroutes, 37 exhibited this failure,
comprising 8% of all the records.

One possible cause is that some network sites have placed “firewalls” to filter in-
coming network traffic for security purposes. The firewall drops the packet without
returning an ICMP Time Exceeded message. Thus, packets are lost and the source
never receives a reply for a given hop.

Other inaccuracies

There are other types of flaws related to traceroute measurements as well. We have
mentioned that some ISPs hide their routers from traceroutes by manipulating the
ICMP replies. This can reduce the accuracy of topologies discovered. In addition, since
two probes are sent to every router on the path, a considerable amount of overhead is
generated. Finally, as reported in [94], when performing traceroute measurements using
different tools (Skitter [2] and Rocketfuel [94]) in the same area of interest (with the
time difference of two months) a noticeable number of different routers and links have
been found (5-10 times as many addressess, links, routers, for a given ISP have been
found with Rocketfuel, however some have been only found with Skitter).

5.2.2 Alias resolution

The traceroute utility returns the list of IP addresses of routers along the path from
the source to the destination. One router can nevertheless have several interfaces,
with several different TP addresses. The aliasing problem arises because an ICMP
response packet of a router along a path has the address of the outgoing interface
of the response as the source address, instead of the interface on which the probe
packet triggering that response arrived. Since these two addresses can be different,
when reading the traceroute responses, one would assume that they belong to two
different routers. In order to obtain the accurate router-level maps, it is necessary to
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determine which TP addresses belong to the same router. This, however, is not a trivial
problem. The early Internet mapping attempts have either ignored alias resolution
[20], or have used a very simple alias probe heuristic [76}: after sending an alias probe
packet to a non-existing port, the router responds with an ICMP port unreachable
message. If the source address of this packet is different than the address to which
it has been sent to, then these two addresses represent two interfaces belonging to
the same router. The second is an alias resolution heuristic proposed by Govindan
and Tangmunarunkit in Mercator [52] that relies on alias probing, but includes two
refinements. The alias probe packets to all interfaces are repeatedly sent. A second
refinement is necessary because large backbones do not have complete routing tables,
and backbone(s) to which the sending host is eventually connected may not be able
to forward an alias probe to its eventual destination. Therefore, Mercator [52] sends
alias probes via source-route capable routers. Mercator cannot discover all interface
addresses belonging to a router. Instead, it discovers only those interfaces through
which paths from the Mercator host enter the router. The most enhanced alias resolving
technique up to this moment, has been designed in the Rocketfuel project [94]. The
pair-wise method implemented in Rocketfuel discovers three times more aliases than
the preceding techniques. Rocketfuel includes Mercator’s address-based heuristic, but
combines it with other methods: it compares T'TLs in response, tests ICMP rate limiting
triggered by earlier probes, but most importantly, Rocketfuel compares the IP identifier
field of the responses. Rocketfuel’s IP identifier-based method significantly outperforms
the Mercator heuristic: it finds almost three times as many aliases as an address-based
method. Nevertheless, in spite of being the most effective alias resolving technique,
Rocketfuel’s Ally tool still encountered some substantial problems, such as unresponsive
IP addresses (almost 6000 out of 56000 addresses did not react when queried for aliases).

5.2.3 Bias sampling

Lakhina et al. [69] have pointed to the bias in sampling when deducing topological
properties of maps based on traceroute measurements. Currently, most of the traceroute
measurements are performed from a limited number of publicly available sources, to a
larger number of more flexibly chosen destinations. Consequently, nodes and links lying
nearer to the sources will be visited much more frequently than those that are more
remote, forming a possible cause for the manifestation of the long-tailed node degree
distribution.

The same authors point to another significant problem: if a graph is generated
by aggregating shortest paths from a limited number of sources and destinations, the
node degree distribution in those graphs can vary significantly. They demonstrated
via simulations that the random graphs of the class G, {(N) [18], with Poisson node
degree distribution, will appear to have a power-law characteristic. This implies that
it is fallacious to characterize the router-level topology of Internet based on the node
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degree distribution of its (imperfect) subgraph. For all these reasons, in this chapter,
we confine to analyzing the traceroute data, avoiding to impose the conclusion to the
whole Internet router-level topology.

5.2.4 Analysis of cycles

The topology of a multicast tree is one of the significant elements for successful multicast
management. Attaining this data is, however, a complex task, much more difficult than
tracing unicast paths. The determination of the multicast tree requires accessing the
data in the routers themselves. Considering the difficulty to acquire real multicast
data and the rising need to analyze the multicast trees, we have assumed that paths
constituting a multicast tree are actually the ones returned by traceroute measurements.
The MBone era, consisting of tunnelling and DVMRP, is long behind us. Many network
operators, the number raising continuously, implement native multicast today. Since
PIM-SM (the most commonly used multicast routing protocol) relies on unicast routing
tables for routing, the assumption we make seems justifiable.

However, when constructed as a union of traceroutes, the resulting topology can
include cycles, and therefore is not a tree. Namely, when tracing paths from source X
to m different destinations, in some cases the subsections of paths between the same
two nodes consisted of different nodes. This problem is illustrated in Figure 5.5. In
Figure 5.5(a), for three destinations that have been traced from a source 12, a path
from the source 12 has traversed nodes 10 and 665. In two out of three cases traceroute
has returned nodes 196 and 666 as intermediate nodes between 10 and 665, whereas in
the traceroute record for the third destination, destination nodes 197 and 195 have been
detected. In the real multicast session, the corresponding multicast tree would consist
either of segment 10-196-666-665 or 10-197-195-665, but not of both of them. In our
example, since the majority of paths (two out of three) have traversed the nodes 10-196-
666-665, we assumed that this segment would appear in the multicast tree. Actually, the
choice of either path in Figure 5.5(a), does not influence neither the degree distribution
of the nodes, nor the total number of links in the tree. We call this type of cycles
symmetrical. However, not all the loops detected in our data are symmetrical. The
examples depicted in Figure 5.5(b) and 5.5(c) show asymmetrical loops. The cycle in
Figure 5.5(c) is seemingly symmetrical, however the existence of children of the node
293 (an intermediate node in one segment) affects the total number of links and the
degree distribution as well.

In the RIPE-NCC traceroute dataset 2, a total of 606 loops in 72 created trees has
been detected, out of which 493 (81%) were symmetrical. The loops occur probably
due to load balancing and router/link failures. The distribution of the number of loops
per source node is shown in Figure 5.6.

In Figure 5.7 the hopcount distribution in the loops has been given suggesting that
Pr[hop = k] ~ ek, with 0.7 < a < 1, which implies that most loops are short.
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Figure 5.5: The illustration of cycles: (a) symmetrical, (b) asymmetrical type 1, (c)
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Figure 5.6: The number of loops per source node.
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Figure 5.7: The distribution of the hopcount in the loops.

dataset | # traces | # srcs | # dests | #loops-aver. | # sym. loops-aver.
RIPE 4521 72 60-70 7.66 6.75

Table 5.1: The average number of loops and symmetrical loops per tree (source).

5.3 Node degree distributions in the maps of Inter-
net

5.3.1 Overview of node degree distributions obtained in other
research groups

One of the first attempts to map the Internet router-level topology was that of Pansiot
and Grad in 1995. Pansiot and Grad have constructed the Internet map based upon
the traceroute records from a single node to 5000 geographically dispersed destinations,
as well as on traceroutes from a subset of 11 nodes chosen from the set of 5000 nodes
to the rest of the destinations. Based on these records, they created a graph containing
3888 nodes and 4857 edges. Although they have performed a simple heuristic for re-
solving aliases, i.e. determining which IP addresses belong to the same router, and have
discovered in that way 200 aliases (5 % of the total number of nodes), some apparently
different nodes actually represent the same node. Figure 5.8 gives the node degree
distribution in the aforementioned graph, plotted on a log-log scale, and fitted with
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Figure 5.8: Pansiot and Grad (1995).

the linear function decaying with the rate o, = 2.32, with the correlation coefficient’
r =0.97.

Subsequent to Pansiot and Grad’s attempt, several global router-level Internet map-
ping projects have been initiated, almost all based on the traceroute utility [20, 52, 2].

Burch and Cheswick [20] have used BGP backbone routing tables in order to de-
termine the destinations of traceroutes. For each prefix in the table, they repeatedly
generated a randomly chosen IP address from within that prefix. From traceroutes to
each such address, they determine router adjacencies, building a router level map in
this manner, without applying any alias resolving technique.

Govindan and Tangmunarunkit [52] obtained a snapshot of the Internet topology
with the use of the Mercator program. Mercator is designed to map the network from
a single source without an initial database of target destination nodes for probing, but
to the heuristically determined destination address space. Mercator sends hop-limited
probes from a single source and distributes them in directions other than radially from
the sender with the use of the source-routing. In this way Mercator discovers crosslinks
that might otherwise not have been discovered. Govindan and Tangmunarunkit have
collected a large dataset in 1999, resulting in a graph consisting of 228263 nodes and
320149 links.

Regarding the node degree distribution, the results of Govindan and Tangmu-
narunkit [52] indicated that for node degree values below 30, the plot on a log-log

I The linear correlation coefficient measures the extent of linear relationship of two variables, and is
cov(y.x)

glven by r= m .
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Figure 5.9: Rocketfuel data (January 2002).

scale is linear, suggesting a power-law behavior. However, the distribution becomes
significantly more diffuse for node degrees larger than 30.

The Rocketfuel project [94] had the goal to map 10 diverse ISP networks. Publicly
available traceroute servers served as sources, while the destinations have been chosen
out of the BGP routing table, or out of RouteViews when BGP tables were not available.
Direct probing has been used, but with a limited number of measurements. Traceroutes
that contributed most to the map were chosen, and the others were omitted, trading
accuracy for efficiency. As discussed in Section 5.1.3, Rocketfuel deploys the most
advanced alias resolution technique so far. After aliases have been resolved, Spring et
al. [94] concluded that almost 70% of the routers had only one interface, while 10% of
routers had two aliases, this number rising to one router having up to 24 aliases.

In our analysis, we have used two sets of data obtained within Rocketfuel project
[94]. First, we have merged the tables for these 10 ISPs’ topologies together, and after
eliminating duplicate nodes and links (links and nodes common for several ISPs), we
created the aggregate topology with the size of 42875 nodes and 88437 links. The nodal
degree distribution in the resulting graph has been calculated and is shown in Figure
5.9.

Furthermore, it is interesting to investigate how the alias resolving process affects the
node degree distribution. Accordingly, raw traceroute data from the Rocketfuel project,
before router IP alias resolution, has also been analyzed, using a few Perl scripts from
the Rocketfuel architecture itself. Again, we obtained the aggregate topology over all
ISP’s, counting 48399 nodes and 103681 links. The degree distribution is plotted in
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Figure 5.10: Rocketfuel data (before alias resolution procedure, January 2002).

Figure 5.10.

Figures 5.9 and 5.10 seem to indicate that alias resolution process does not influence
the node degree distribution significantly. Both distributions follow a power-law, with a
slightly different exponent, 2.35 and 2.36 for before and after alias resolving respectively.

5.3.2 Node degree distributions based on CAIDA, RIPE NCC
and PlanetLab data

Additionally, we have created maps of (part of) the Internet using CAIDA, RIPE and
PlanetLab measurement data.

By merging all traceroutes collected from CAIDA as described in 5.1, a router-level
map is obtained, from which the node degree distribution is computed, and illustrated
in Figure 5.11. The quality of the fit on the log-log scale implies a power-law. Important
to note is the higher value of the slope coefficient a, = 2.97.

Similarly, a map of the Internet has been constructed from RIPE measurement data,
by assembling together the most dominant non-erroneous traceroute paths from each
of z test boxes (x varied from 31 in dataset 1 to 70 in dataset 3) to all the other boxes
in the period 1998-2001 (dataset 1), May-June 2003 (dataset 2), and January-February
2004 (dataset 3). In this way the graph named G has been created, consisting of 1888
nodes and 2628 links, 2574 nodes and 3922 links, and 3850 nodes and 6743 links, in
three different periods respectively. To verify if the measured fragment is sufficiently
dense, for the graph G, created in 2001 we observed the following: if it was constructed
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Figure 5.11: CAIDA data (1,2,3 April 2003).

by merging paths collected from (any) 16 sources to all destinations, nearly 85% of the
total number of nodes would already be included in the graph. Moreover, for any given
source from 31 sources, we compute how many new nodes and links are added to the
topology when adding all of the most dominant iraceroutes collected at that source.
It appears that on average only 1.5% (£1%) new nodes, and 0.7% (+0.5%) new links
are being added to the topology. We should point out that no effort has been made to
determine the aliases, hence, the graph G represents the approximation of the Internet
interface map, not of the Internet router map. In Figure 5.12 the probability density
function (pdf) of the node degree in the graph G; created from data out dataset 1 has
been plotted on a log-lin scale. We observed then that the best fit for the pdf obtained
was on a log-lin scale. The pdf of the node degrees in G; followed an exponentially
decreasing function with rate 0.668 over nearly the entire range. This decay rate is very
similar to the decay rate of the pdf of the node degrees in the URT, which equals log 2
= 0.693 (see Equation (2.10) in Section 2.3). This is a quite intriguing result, since all
the other published results based on many different measured datasets indicate that
the degree distribution of the (sub)graph of the Internet should obey a power-law.
Moreover, it is not difficult to see that, in general, the union of two or more trees (a)
is not a tree and (b) has most degrees larger than that appearing in one tree. Hence,
the close agreement points to the fact that the intersection of the trees rooted at a
measurement box towards the other boxes is small, such that the graph G, is “close”
to a uniform recursive tree. This conclusion is verified as follows. Starting with the
first union 7' = T; UT; of the trees 77 and Ty, (where a tree T, is constructed as a
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Figure 5.12: The node degree distribution based on RIPE NCC data (dataset 1).

union of traceroutes from the source i to all the other measurement boxes), we also have
computed the intersection T NTy. Subsequently, we added another tree T5 to the union
T = TyUT,UT; and again computed the intersection (or overlap) T' = (T1UT3)N Ts.
This process was continued until all trees were taken into account. We found that (a)
the number of nodes in the intersection was very small and (b) the common nodes
predominantly augmented the degree by 1 and in very few cases by more than 1. It is
likely that the overlap of trees would be larger (in terms of common nodes and links)
if we had considered the router level map instead the interface map. The similarity
in properties of the graph (G; and the Uniform Recursive Tree might be in that case
smaller. The Rocketfuel project results have indicated that there is a small impact of
alias resolving to the node degree in Internet maps. Hence, we don't expect that alias
resolution only can explain the discrepancy.

We performed the same analysis for the dataset 2 and dataset 3, with more testboxes
in RIPE architecture. The results obtained were slightly different, as illustrated in
Figure 5.13. The slope coefficient decayed to the value of 0.61 and 0.41 for dataset 2
and dataset 3, respectively. Even though the slope coefficient does not correspond to
that of a URT as observed in 2002, the data is still better fitted with a linear function
on a log-lin scale, than on a log-log scale. We anticipate that one of the possible
reasons may lie in the fact that each RIPE measurement box acts as source as well as
destination.

Finally, the data from the PlanetLab network has been used. By merging the
traceroutes from each of 79 nodes to all the other, the topology consisting of 4226 nodes
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Figure 5.13: The node degree distribution based on RIPE NCC data (dataset 2 and
dataset 3).

and 7171 links was produced. No alias resolution technique has been implemented. The
node degree distribution in this map has been computed, and illustrated in Figure 5.14.

Again, a higher quality fit has been achieved on a log-lin than on a log-log scale,
even though the slope coefficient takes the value 0.48. This result seems to confirm our
observation that when each source serves as the destination as well, the node degree
distribution observed seems to follow an exponential function.

5.3.3 Simulations of the union of Shortest Path Trees in the
complete graph

If we assume that fraceroutes represent shortest paths, than the subgraph of Internet
graph G in Section 5.3.2 can be modelled as a union of shortest paths. This triggered
us to investigate the node degree distribution in the union of Shortest Path Trees in a
complete graph Ky with uniformly distributed link weights, and to compare them with
distributions obtained from RIPE data, for small values of m compared to N. We have
performed the following set of simulations: in a complete graph Ky with uniformly
distributed link weights consisting of N = 1000 nodes, m nodes have been chosen
randomly, where m = 3, 5, 10, 20, 50, 100, 200, 500, 700, 1000. Uniformly distributed link
weights represent the special case of polynomially distributed link weights, Plw <
z] = %lg<a<1 + 1z>1, with parameter @ = 1. For a particular m, the Shortest Path
Tree rooted in each of m nodes to the other m — 1 destinations has been computed.
Consequently, the union of the shortest paths has been created, and the node degree
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Figure 5.14: The node degree distribution based on PlanetLab data.

distribution in the resulting graph has been calculated. For each m, 10000 iterations
have been performed. The same procedure has been applied for every value of m. The
resulting distributions are presented in Figure 5.15. Figure 5.15 reveals that for small
m compared to N the simulated pdf of node degrees resembles the shape observed from
RIPE data, except for several outliers in Figure 5.13. Perhaps tuning the parameter o
would fit the distribution given in Figure 5.13 better.

5.4 The Structure of Multicast Trees

5.4.1 Related work

To the best of our knowledge, only few results have been published on the characteristics
of multicast routing trees. The first one has been provided by Chalmers and Almeroth
[25], who have looked into the properties of the Internet multicast trees on the MBone
[43]. They have gathered multicast tree data for four live multicast sessions: the 43rd
IETF meeting in December 1998 and the NASA shuttle launch in February 1999, each
of them consisting of a separate audio and video channel. The path from each receiver
to the source has been traced via mtrace (multicast traceroute) [49]. However, since
receivers are traced one after another, the receivers participating for a short time may
have been missed. Indeed, only 43% of the receivers for IETF and 29% for NASA have
been successfully traced. The mtrace data has been used for each dataset to reconstruct
a multicast tree. Chalmers and Almeroth have developed the tool mwalk, that builds
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an activity graph of all possible trees over time: the whole session has been divided in
10000 intervals, and to each receiver an activity table is assigned, with the time intervals
in which that particular receiver was a member of the group. In Figure 5.16 we have
plotted the node degree distribution obtained for 10000 realizations of the multicast
tree, in the 43rd IETF video dataset, when 129 receivers have been traced to belong to
the group.

After fitting their data on different scales, we noticed that the best fit of all (with
the correlation coefficient of 0.91) was obtained for the linear fit on the log-lin scale,
suggesting rather exponentially than polynomially distributed node degrees. Moreover,
the slope of the curve in Figure 5.16 is approximately the same as that of the Uniform
Recursive Tree (URT) (see Section 2.3). However, it must be noted that the data-set
is rather small and, therefore, we must be careful in drawing hard conclusions.

The only other result on the multicast tree degree distribution so far has been
provided by Dolev et al. [39]. In [39] Dolev et al. have investigated properties of
multicast trees obtained from Internet measurement data. The data they used for their
multicast analysis has been obtained via unicast traceroute measurement. They have
used two datasets: first, on the underlying topology provided from a mapping project
presented in [20] (using traceroute measurements), they generated Shortest Path Trees
using the Dijkstra algorithm. The second dataset was created based on traceroute
measurements of the paths between the root and the clients in the client population of
www.bell-labs.com. Dolev et al. do not report whether loops occurred in their data,
nor how they approached and treated that phenomenon. In [39, Figure 6 and Figure 7]
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Figure 5.16: Node degree distribution in IETF 43rd meeting-video data set (7-11
December 1998) from [25].

they have plotted the node degree distributions in both datasets on a log-log scale, and
fitted with the linear function decaying with the rate —3.40 and —3.18 for the first and
the second dataset, with the correlation coefficients of 0.9897 and 0.9829, respectively.
These findings seem to suggest a power-law structure of the node degree distribution
in multicast routing trees, which contradicts that of Figure 5.16.

5.4.2 Node-degree distribution of trees in RIPE and CAIDA

In order to understand the discrepancy found in Section 5.4.1, we have further investi-
gated the node degree distribution obtained from the Skitter project. The node degree
distribution for each of the trees has been computed. We present the resulting distrib-
utions only for trees rooted at the source in the United States, since the distributions
for trees rooted at two other sources are almost identical. Our results indicate that
based on CAIDA traceroute data, for m > 100, as given in Figure 5.17 (m = 1000 and
m = 100), the node degrees seem to be polynomially distributed.

However, when we plotted the node degree distribution for m = 50 on two different
scales, log-lin in Figure 5.18(a), and log-log scale in Figure 5.18(b), we noticed one
remarkable property: when fitting the data with a linear function in both scales, the
quality of the fit seems to be comparable. This can be seen in the value of the linear
correlation coefficients r, and rg, that represent the measure of the quality of fit. The
resulting slope coefficient a.. and the correlation coefficient r, for linear fits on log-
log scale, and the slope coefficient 3, and the correlation coeflicient rg for linear fits
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Figure 5.17: The degree distribution in multicast tree based on CAIDA traceroute data
(m = 1000 and m = 100).

m = 50
o, | 4.04
o | 0.95
B8.10.75
T3 0.93

Table 5.2: Linear function fit coefficients (log-log scale and log-lin scale), with corre-
sponding Pearson’s coefficient in CAIDA data for m=>50.

on log-lin scale, for m = 50 destinations derived from CAIDA traceroute data, are
summarized in Table 5.2. We notice that the quality of the fit on a log-log scale for
m = 50 is only slightly higher than the quality of the fit on the log-lin scale. Therefore,
it is questionable whether based on the given data it is reasonable to claim that the
degree distribution of the union of traceroutes representing a multicast routing tree
follows a power-law distribution for small m.

Even more doubt is raised after plotting the data obtained from RIPE in two differ-
ent scales, for m = 20 and m = 50 (Figure 5.19). Although fitting the data on a log-log
scale is somewhat better, the quality of fitting with linear functions in both scales is
considerably deteriorated, as can be seen from Table 5.3 and Figure 5.19. Therefore,
we conclude that the degree distribution in the multicast tree for small m does not
convincingly follow a power-law. For larger values of the number of destinations m the
degree distribution seems to follow a power-law, when multicast trees are created as a
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Figure 5.18: (a) The degree distribution in multicast tree based on CAIDA traceroute
data (m = 50) on log-lin scale. (b) The degree distribution in multicast tree based on
CAIDA traceroute data (m = 50) on log-log scale.

[(m=50] m=20 |
[r, [0.78 [ r, [ 0.74 |
{ rg | 0.61 | rg 0.65

Table 5.3: Pearson’s coefficients for linear function fit in log-log and log-lin scale in
RIPE data for m=>50 and m=20
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union of traceroutes. The result of Chalmers and Almeroth implies that if a method for
constructing trees is used other then the union of traceroute paths, power-laws might
not be observed for even larger values of m. Nevertheless, as in the case of the result of
Chalmers and Almeroth presented above, also for the results based on RIPE and Caida
measurements holds that one must be careful when drawing hard conclusions based on
these limited data sets only.

5.4.3 Number of links in CAIDA trees-the gain of multicast

In Figure 5.20 the number of links has been plotted, for each source, as a function of
m. In addition, for N = 135314 (the number of nodes in the Internet map derived
from traceroute measurements) and for various values of m (in the range [50,20000]),
the values of the functions E[Hy (m)] and E [Hy (m)] £ 3ox(m) (where ox(m) =

var (Hy (m))) have been computed, according to (2.7) and (2.8), and plotted in
the same figure. We observe that the measured number of links falls in the range
E [Hy (m})] £ 30 5(m), indicating again the URT nature of the multicast trees. Further,
since oy (m) is much smaller than E [Hy (m)], the number of links in the URT is well
approximated by the mean, Hy (m) =~ E [Hy (m)] for large values of N. Thus, the
measurement results so far indicate that the URT represents a reasonable, first order
model for the multicast tree in Internet.

5.5 Conclusions

Several ambiguities related to traceroute data have been discussed, such as errors and
inaccuracies, alias resolving and bias sampling, that make the trustworthiness of derived
conclusions on the topological characteristics of Internet questionable. We have ascer-
tained that 17% of the traceroutes we collected in 2001 were erroneous (loops, etc.).
The analyzed routing pathology is summarized and compared to results obtained by
Paxson in 1995. We may conclude that the quality of traceroute measurements either
decreased over time or that the part of the Internet covered in Paxson’s measurements
is less prone to error than that in the RIPE measurements.

Further, the detailed review of Internet map node degree distribution has been
provided. In Table 5.4 we summarize the presented results. By z we denoted the data
that was not available to us. Most of the measurements, with the exception of the
RIPE and PlanetLab data, indicate power-laws, with similar values for the gradient
coefficient ¢,. Furthermore, they seem to suggest that alias-resolving techniques do
not have a major effect on the node degree distribution in the Internet. The gradient
coefficient o, lies in the range 2.3 — 2.4, with the exception of CAIDA data, where the
value of the slope coefficient is ., = 2.97. This might be the consequence of the one
order of magnitude larger map obtained with Skitter, than the one obtained within the



5.5. CONCLUSIONS 95

data set number number number of | slope
of trace- | of nodes | links coefficient
routes (log-log scale)
Pansiot and Grad 46110 3888 4857 2.3237
CAIDA z 276680 324338 2.9723
Rocketfuel before 1048808 43726 103681 2.3424
alias resolving
Rocketfuel after alias 1048808 42875 86090 2.3683
resolving
Mercator z 228263 320149 2.38

Table 5.4: Comparison of node degree distribution from various traceroute data sets:
power-law.

Rocketfuel project.

The divergency in results obtained by RIPE NCC and PlanetLab may be caused
by the RIPE and PlanetLab measurement architecture, where each measurement box
serves both as the source and as the destination. Hence, the number of sources and des-
tinations is balanced, whereas in all the other measurement architectures the number
of sources has been very limited (only few) compared to a large number of destinations.
The discrepancy in the node degree distributions based on RIPE and PlanetLab tracer-
oute data with the previous results seems to confirm the above stated observation on
the reliability of traceroutes.

Finally, we have analyzed the structure of multicast trees, created as the union
of traceroutes. The scarce results on node degree distributions in multicast trees have
been controversial as well. Our results on the node degree distribution in multicast trees
seem to suggest that based on traceroute data, universal power-law behavior cannot be
claimed. While for larger values of the number of destinations m the degree distribution
seems to follow power-law, for m < 50 based on both RIPE and CAIDA traceroute data
this seems not to be the case. Furthermore, the Internet measurements of the number
of links in the tree seem to suggest that the URT model we used to derive the laws
given above represents a reasonable model for multicast trees in Internet.
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Figure 5.19: (a) The degree distribution in multicast tree based on RIPE traceroute
data (m = 50 and m = 20) on log-lin scale. (b) The degree distribution in multicast tree
based on RIPE traceroute data (m = 50 and m = 20) on log-log scale.
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Figure 5.20: The average number of links (Caida measurements and theoretical value).
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Chapter 6

Overview of AL Multicast Protocols

Although relatively young, the idea of application layer multicast has attracted much
research attention, resulting in a number of proposals. In Application Layer multicast,
as the name implicates, the multicast related features, such as group membership,
packet replication and multicast routing are implemented at the end hosts, rather than
in network routers, as depicted in Figure 1.4. Evidently, Application Layer multicast
suffers from worse efficiency than network layer multicast, since packets may traverse
the same link several times. Moreover, end hosts in general do not possess the routing
information available to routers, instead they must rely on end-to-end measurements
to infer network metrics upon which the end-host multicast delivery tree is built.

All application layer multicast protocols organize the group members into two
topologies, namely the control topology and the data topology. Members that are
peers in the control topology exchange periodic refresh messages to identify and recover
from “ungraceful” departures from the group'. The data topology is usually a subset of
the control topology and identifies the data path for a multicasted packet on the over-
lay. In fact, the data topology is a tree, while the control topology ensures a greater
connectivity between members. For this reason, in many protocols the control topology
is called a mesh and the data topology is called a tree.

The proposed application layer multicast methods can be classified in various ways.
One criterion is how the overlay nodes are selected. According to this criterion, the pro-
tocols can be classified in the fixed-nodes-based and dynamic-nodes-based approaches.
In the fixed-nodes-based approach [27, 9, 28], nodes that form the overlay multi-
cast trees are first strategically placed across the whole Internet. Their advantage
is that since fixed nodes are used, the multicast tree is stable. However, the mul-
ticast service is not flexible, and still needs the ISP support. In addition, those
fixed nodes can possibly form a bottleneck. In dynamic-nodes-based overlay multi-
cast [50, 80, 56, 109, 88, 71, 104, 11, 16, 98] the group members are self-organized into

1 An ungraceful departure is one when the member departs from the group without informing its
peers through control messages.

99
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an overlay multicast tree and periodically self-improve. Another criterion for protocol
classification is whether the overlay building algorithm is centralized or distributed.

Here we adopt the approach to classify the AL multicast protocols based on the type
of topology created for communication between end hosts. According to this criterion,
they could be roughly classified into four different categories: mesh-based, tree-based,
multicast on top of structured peer-to-peer overlays, and hierarchical multicast. In this
chapter, we will explain in more detail each of these categories.

6.1 Mesh-based (mesh-first) multicast

In the mesh-based approach [28, 31][31] group members first self-organize into the mesh
topology, so that between each pair of members multiple paths exist. The second step
is the creation of a source-specific tree rooted at any member, achieved by running some
of the well known multicast routing mechanisms, e.g. DVMRP [103]. We will describe
Narada [31], the most representative protocol belonging to this class and Scattercast
[27].

6.1.1 Narada

How it works: Each member in the group, i.e. each node in the mesh, maintains the
list with the state of all the other members in that particular group. A new member
that wants to join this group needs first to obtain the list of current members. It
receives this list from the node designated as a Rendezvous Point, with the help of a
bootstrap protocol. Subsequently, the new member sends the join request message to
several members from the list, selected randomly, and tries to join the group as their
neighbor. The member has successfully joined when it receives the acceptance message
from at least one of the queried nodes. The new member will then start exchanging
periodic refresh messages with its neighbors on the mesh, updating their tables. This
information will be further propagated, until it reaches all members of the group.

If the member wants to leave, it will send the leave message to the neighbors on the
mesh. Also this information will be propagated to all the other nodes in the mesh.

The multicast data delivery tree in Narada are the source-based trees, with any
specific member as the source. The delivery tree is computed by the members of the
group, which run a variant of a distance vector protocol. The tree is then constructed
from reverse shortest paths between each recipient and the source, in identical fashion
to e.g. DVMRP [103] (DVMRP has been explained in Chapter 3). An example of such
a data tree is shown in Figure 6.1(a).

One of the main design objectives of the Narada creators was robustness. In case
of a failure, for instance of node 2, upon not receiving any refresh messages from this
user, nodes 1, 3, 7 and 8 will query node 2. If they receive no reply, node 2 will be
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Figure 6.1: Narada protocol.

considered “dead” and the rest of the members will be informed of it. A more serious
consequence would be induced by the failure of the nodes 3 and 7, leading to a mesh
partition 6.1(b). Members will detect the partition by the absence of the updates from
members belonging to the other cluster. Each member keeps the list of members that it
receives no updates from. Each entry in that list can remain in the list a limited amount
of time. Periodically and with certain probability, each node that detected partition
chooses and probes one of the nodes in that list. If it receives a response, it will try to
add the link to that node and repair the partition. Otherwise, the probed node will be
regarded as dead. The value of this probability is chosen carefully so that in spite of
several members simultaneously attempting to repair a partition only a small number
of new links are added.

Due to several possible causes, the constructed mesh might not be optimal: (i) initial
selection of neighbors by a joining node is random, (ii) links created during the partition
reparation process are necessary at that moment, but eventually become superfluous;
(iii) dynamic join/leave process; and (iv) dynamic conditions of the underlying network.
Since the data delivery paths in Narada are spanning trees of the mesh, their quality
depends on the quality of links that constitute the mesh. Therefore, Narada allows
periodical refinement of the mesh by adding and dropping of overlay links. Each member
periodically evaluates the cost and the utility of the existing links, as well the cost and
utility of forming a link to some random member that is not a neighbor yet. An example
is given in Figure 6.1(c). A joining node 9 (Figure 6.1(c)) chooses randomly two nodes
to connect to, e.g. node 1 and node 8. In Figure 6.1(c) a link evaluated as potentially
useful (the link between nodes 6 and 8, reducing the number of hops on the underlying
topology between e.g. nodes 6 and 9) is included. A non-useful (redundant in this
example) link (between nodes 1 and 8) will be omitted from the mesh.
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6.1.2 ScatterCast

ScatterCast [27] belongs to the group of the fixed-nodes based protocols: its architecture
is composed of dedicated ScatterCast Proxies (SCXs) strategically placed in service
clusters around the Internet, usually at ISP points of presence.

How it works: SCXs use a protocol called Gossamer to distributedly self-organize in
a mesh structure. For each multicast session a new mesh is generated. Members that
wish to join first contact a nearest service cluster, and request an SCX. The cluster
sets up an SCX if there is none, and communicates its IP address to the new member.
In addition, it sends its locally scoped multicast address, so that new members can
communicate with SCX either via unicast, or local area multicast if possible. Similar
to Narada, a distance vector protocol is run by SCXs on top of this mesh to construct a
source-rooted delivery tree. In the tree creation process, two requirements are consid-
ered: the degree of SCX is limited according to its bandwidth and the delay between
the source and the destination SCXs is minimized.

Periodically, in order to improve the mesh, SCXs probe each other, and evaluate
the cost of potential links compared to the cost of existing links. The cost of a link is
computed as the sum of the costs of paths to all source SCXs. If the new cost is lower
than the cost of the existing link, the existing link will be substituted with the new one.

Mesh partitions are detected and repaired with the use of centralized Rendezvous
Points. One of Rendezvous Points is randomly selected to periodically send refresh
messages along the mesh. If any of the SCX nodes stops receiving these messages, it
contacts that particular RP and reconnects the mesh. Although the partition recovery
problem is considerably simplified with the use of centralized points, it will still arise
in case all Rendezvous Points fail.

6.2 Tree-based (tree-first) multicast

Protocols belonging to this group distributedly construct a data delivery tree directly.
Moreover, in contrast to mesh-based protocols, group-shared trees are built. The nodes
organize themselves by choosing their parents in the tree. The choice of parents is
crucial for the performance and the efficiency of the tree. In order to enhance the
overlay, some of the protocols in this group build a mesh subsequently. Members of the
group connected in a tree discover some other members that are not their neighbors on
the tree, and set up the additional control links to these members. The protocols of
this class differ among each other in the tree building algorithm.

6.2.1 Banana Tree Protocol (BTP)

The Banana Tree Protocol (BTP) [56] is probably the simplest protocol belonging to
the class of tree-based protocols.
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Figure 6.2: Tree optimization in BTP: Parents switching.

How it works: A node that wants to join the group obtains the information on some
nodes already existing in a group with the use of a bootstrap mechanism, and chooses
one of them to be its parent. If the node is the first in the group, then it becomes the
root. The tree is incrementally optimized with the occasional parent switching. The
node changes its parent in order to reduce tree cost or latency. It can switch to its nearby
sibling or grandparent, but not to any other arbitrary node, such as its descendants,
to prevent the creation of loops. Each node receives the list of siblings from its parent,
and by pinging its siblings looks for a sibling closer than its parent. In case such a
sibling is found, a node sends a switch request to that sibling (Figure 6.2). At the same
time, the node changing the parent prohibits any other sibling to switch to it, otherwise
loops and partitions may be formed, as depicted in Figure 6.3(a). In addition, it has to
ensure that the node it is switching to is still its sibling, to avoid the situation outlined
in Figure 6.3(b). Nodes 1 and 3 are in the first instance the siblings of node 2. However,
due to their change of parents, this is not the case any longer at the moment node 2
decides to change its parent. Hence, at the moment of switching, the switching node
must possess the current parent information.

6.2.2 Host Multicast Tree Protocol (HMTP)

In the Host Multicast Tree Protocol (HMTP) [109] a group-shared tree is built. The
tree is built in such a way that the cost is minimized, and the maximum degree at each
node is sustained. The optimization metric is a member-to-member round-trip time
(rtt). Zhang et al. suggest in [109] to add bandwidth as a second metric in the future.
HMTP does not create a control mesh.

How it works: The join procedure is described in Figure 6.4. A member that wants
to join (node 8) contacts the root {R), and sets it as a potential parent. Next, from
the root it obtains the list of the root’s children nodes (nodes 1, 2 and 3). Based on
the round-trip-time values, it finds the node closest to itself among the potential parent
and its children. If the closest node is the potential parent, the newcomer sends the
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Figure 6.3: (a) Loop formation in BTP: simultaneous switching (b) Loop formation in
BTP: outdated information.

join request to that node (e.g. R). A potential parent accepts a newcomer as its child,
provided the number of its children is smaller than its degree bound. Otherwise, the
nearest of potential parent’s children becomes the potential parent (e.g. node 3), and
the whole process is repeated all over: the newcomer obtains the list of children of the
potential parent (only node 4 in our example), and searches for the nearest node among
potential parent and its children. In this way, the nodes that are nearby on underlying
topology will be clustered together.

The tree structure is maintained by periodical exchange of refresh messages among
the neighbors in the tree. Each member keeps information on its current children, and
on its path to the root. The path information is included in the refresh messages of
parents toward their children. When a node wants to leave, it informs its parent and
children. The parent of the leaving node then simply deletes that node from its children
list. The children of the leaving node have to look for a new parent. The search for a
new parent is identical to the join procedure, except that the order is reverse: instead
by the root, the children of the leaving node start the procedure at their grandparent.

The partition recovery procedure is similar to the member-leave procedure. Absence
of the refresh messages is the indication to the parents and children of the failed node
that a failure, hence partition, has occurred. Upon failure detection, the parent of the
failed node updates its children list. Children reconnect to the tree by trying to connect
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Figure 6.4: HMTP join.

to some node on their root paths.

The dynamics of the underlying network and of the group membership can decrease
the quality of the tree over time. The tree can be refined by members changing the
parent. A member occasionally starts a rejoin procedure, not from the root, but from
another randomly selected node in its root path. In addition, in order to search other
branches for a potentially better parent, a node may choose a suboptimal node for a
parent (not the one closest to himself). If a better (i.e. closer) parent is found, the
node will switch to that parent.

In HMTP no loop avoidance algorithm is applied. Instead, loop detection and
resolution is performed. A member in the loop detects the loop by finding himself in
its root path. When the loop is detected, the member in the loop leaves the current
parent, and rejoins the tree, searching for a parent from the root on.

6.2.3 Yoid

Your Own Internet Distribution [50] was probably the first protocol in the group of
tree-based protocols. Yoid builds a group-shared tree as well, along which data is
disseminated among the members. However, to increase robustness and stability, Yoid
also builds control mesh topology. These additional mesh links are used for recovery
from tree partitions.

How it works: When a new host wants to join a group, it contacts a rendezvous
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point, which is not necessarily a member of the group. RP provides a newcomer with a
list of (several) current, randomly selected members. In case the joining node is the first
member of the group, it becomes the root. Otherwise, it selects one of the members in
the list as a parent.

This simple tree building mechanism might lead to a structure that suffers from
loops and bad performance. To prevent loops, Yoid deploys a simple loop avoidance
mechanism: a node rejects join requests from nodes that are in its root list. This rule
prevents most of the loops, but not all of them. If the loop occurs, it is detected in
the same manner as in HMTP: a node finds himself in the root path obtained from its
parent. To avoid transient tree reconfiguration when several nodes try to reconnect to
new parents simultaneously, Francis et al. [50] propose additional information in the
root path information, coined switchstamp. Each time a node changes the parent, in
the first root path information message it receives from a new parent, the switchstamp
of that node is set higher than that of any other node in the root path. In case of a loop,
a node in the loop with the highest switchstamp will terminate the loop by changing
the parent.

Another consequence of the simple tree building protocol can be high data loss
and high latency. Therefore, two tree refinement mechanisms, latency and loss-rate
refinement, are proposed. Whereas the latency refinement algorithm tries to improve
the end-to-end latency by effectively reducing the tree depth, the loss-rate refinement
algorithm restricts the maximum node degree of the nodes behind low bandwidth links.
These two processes run simultaneously so that, despite their conflicting objectives,
they form the tree in such a way that both metrics are considered

6.2.4 ALMI

ALMI [80] protocol is probably one of the very first application layer multicast propos-
als. It belongs to the group of centralized approaches. Due to its centralized character,
ALMI is only suitable for groups of small size (several tens) and many-to-many type of
applications.

How it works: In ALMI, a session (group) consists of the session (group) controller
and regular session (group) members. The session controller is in charge of computing
a minimum spanning tree (MST) spanning all members of the group. This tree is
used for the dissemination of the application data. As an optimization metric, the
latency between the members is used. Each member monitors the latency to a set of
other members. The controller receives the updates from the members containing this
latency data, and based on this data, it periodically recomputes the tree. Subsequently,
the controller communicates to each member the information on the new parent and
children nodes. Members willing to join a multicast group first contact and query
the controller. The controller returns the identity of a parent node, to which the new
member should initiate a connection, and list of children nodes, from which the member
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should accept connection requests.

To enhance the robustness of the protocol, Pendarakis et al. propose in [80] several
back-up controllers that operate in stand-by mode. Nevertheless, the scalability of the
protocol remains highly restricted.

The centralized approach considerably simplifies the routing challenge, since the
centrally computed tree should contain no loops. Loops and partitions might however
occur. One reason for their occurrence are the delayed or lost updates from members.
Another cause might be the dissemination of the different versions of the MST to
members. This problem can be circumvented by assigning a number to each version of
the MST. Members maintain a cache of the different version numbers in the routing
tables and only route packets with the tree version numbers contained in the cache. If
a packet with a newer tree version is received, the receiving node will re-register with
the controller to receive the new MST.

6.2.5 Overcast

How it works: Overcast [62] is designed as a single-source multicast scheme, with band-
width and not latency as a metric for optimization, since is not intended for interactive
applications. The objective of the tree building mechanism is to maximize bandwidth
from all nodes to the root. The protocol places a new member in an iterative process as
far from the root as possible without reducing the bandwidth. A member that wants
to join starts the join process by contacting the root, that becomes the potential parent
node. In each iteration of the process a member estimates the direct bandwidth to the
potential parent as well as the bandwidth to the potential parent via each of the po-
tential parent’s children. The bandwidth is estimated by measuring the download time
of 10 Kb of data. If bandwidth via any of the potential parent’s children is higher than
or equal to direct bandwidth to the root, then that particular child node becomes the
potential parent node, and the new iterations begins. Otherwise, the potential parent
becomes the parent of a new member. When there are several children of the potential
parent that satisfy the bandwidth criterion, the child closest (in terms of network hops)
to the new node (as reported by traceroute) is selected as potential parent.

Occasionally, members measure the bandwidth to their siblings, parent and also
grandparent, and switch parent based on the evaluation result.

Each member periodically sends refreshment messages to its parent. If a parent is
not contacted by a child for a certain period, the parent considers the child and all its
descendants as “dead”.

6.2.6 Overlay Tree Building Control Protocol (TBCP)

TBCP [73] builds trees that are constrained in the node out-degree: each member fixes
the number of children it is willing to support.
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Figure 6.5: TBCP joining mechanism: local configuration evaluation.

How it works: Figure 6.5 demonstrates the join procedure in the TBCP protocol.
The node who is the main sender to the group is chosen to be the root. Similar to HMTP
and Overcast, the new member (node 4) first contacts the root (R), and receives a list
of its children (nodes 1, 2 and 3). The newcomer then measures the distance (rtt) to
the root and its children. Subsequently, it returns the measured data to the root. The
root then evaluates all possible configurations for the newcomer, as illustrated in Figure
6.5, upon which it selects the optimal one. If a new node is accepted as a child of the
root (Figure 6.5(a)), the joining procedure is completed. If, on the other hand, either
newcomer 4 (Figure 6.5(b)) or any of the current root’s children (nodes 1 to 3) has to
be redirected (Figure 6.5(c)), that particular node restarts the joining procedure, but
from the node to which it is redirected to.

Also the existing members can occasionally perform the join procedure to replace
themselves in the tree, in order to improve the performance of the tree. The tree
performance can further be improved by organizing members hierarchically in domains,
where each domain has its own root node.

No node failure recovery mechanism is deployed in this protocol.
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6.2.7 Short general comparison of mesh-based and tree-based
protocols

We conclude this section by briefly summarizing the advantages and disadvantages of
both mesh-based and tree-based group of protocols, with respect to each other.

The first advantage of the mesh-based protocols is their superior robustness. The
probability of overlay network partitioning due to node failure or departure is low, since
these overlays consist of multiple or redundant connections between group members. In
addition, there is no need to reconstruct a path (as is the case in a tree overlay) since
alternate paths already exist. Another advantage is that the mesh-based protocols
utilize the already existing tree building algorithms. Finally, since source-specific trees
are built in the mesh, protocols of this group support multi-source (many-to-many)
applications.

The main drawback of mesh-based approach is high control overhead, since every
member needs to keep information on state of all the other members. Every time
member join/leave occurs, all the group members have to be notified, leading to consid-
erable control overhead. Although this was an explicit design choice, trading overhead
for greater robustness, it restricts these algorithms to support only small multicast
groups. The mesh-based mechanisms also suffer from higher packet loss, as they have
to run a tree building algorithm. That can lead to transient conditions when not all
the routing tables of the members have converged, and, consequently, packets may be
lost.

The main advantage of tree-based protocols is that they scale better to larger group
sizes than mesh-based protocols, since each host has to be aware of only a small number
of other hosts. Their main weakness is the partitioning susceptibility. Tree overlays are
more susceptible to partitioning, since failure (or a voluntary leave) of any (non-leaf)
member can lead to the tree partitioning and communication breakage.

6.3 Multicast on top of structured P2P overlays

In the last few years, file sharing systems gained a lot of popularity. Peer-to-peer
systems are attractive in at least two respects. First, from the user standpoint, peer-
to-peer computing has a huge potential, as it reduces the need for expensive back-end
servers, typically used to perform complex tasks. The current trend in building P2P
systems consists in providing an application independent overlay network as a substrate
on top of which novel large-scale applications can be constructed.

Two broad classes of overlay networks infrastructure solutions can be differentiated:
unstructured [51, 93], and structured overlay networks. In unstructured overlays nodes
are organized in a random graph: a newcoming user joins the overlay by connecting itself
to any, randomly chosen, existing node. Data that is stored in overlay nodes is queried




110 CHAPTER 6. OVERVIEW OF AL MULTICAST PROTOCOLS

either by flooding, or by using random walks on the graph. This results in inefficiency,
since a large subset of nodes has to be queried for a content not widely distributed to
be found. Despite the considerable efforts made on improving the unstructured overlays
(the most recent, Gia [29]), as a response to a poor data discovery performance, the
structured overlays have emerged.

Structured overlays are built in a controlled fashion. In these systems, to each data
item and to each member a unique logical identifier is assigned. Based on the member’s
identifier, new members join by attaching to a well defined existing member, which
results in a highly structured graph. But not only is the placement of new members
precisely determined, also is the placement of data items. These systems rely on dis-
tributed hash tables (DHTs) to map the key (the identifier of data items) to the node
in charge of storing that particular key and that particular data item. This enables
efficient search for exact queries, since a data item, given its key, can be found in only
O(logN) hops. In addition, the total of only O(logN) neighbors should be maintained
per each node.

Some recent studies [53] have shown that the churn (the rate at which nodes join
and leave the network) as well as the heterogeneity of users are high. Many argue that
unstructured overlays can handle such an environment more efficiently. In addition,
they provide more efficient search for complex queries of popular data items than their
structured counterparts. However, in [22] Castro et al. compared structured and un-
structured graphs via detailed simulations. A hybrid system has been designed that
constructs a structured graph, however data placement and search mechanisms are the
same as those deployed in unstructured overlays. Simulation results based on a real-
world samples indicated that the hybrid system can support complex queries with lower
message overhead while providing higher query success rates and lower response times
than systems based on unstructured graphs.

These structured overlays can be used for AL multicast to be built on top of them
as an application. Many such proposals have emerged. AL multicast can be built on
top of the structured overlays as an application. What all the proposals of this group
have in common is that to each member a logical address from some abstract coordinate
space is assigned. As a consequence, the data distribution trees are embedded in the
overlay, and no routing protocol is needed. This enables these schemes to scale to very
large group sizes (thousands of members), without being restricted to single-source
applications, which is the major advantage of these schemes.

The main drawback is their degraded performance compared to that of the protocols
of the first two groups. Their worse performance is a consequence of the non-optimal
match between the overlay and the underlying substrate. Namely, the end users do not
possess topology information generally available to network routers. Therefore, when
connecting to each other into an overlay, often they do not take the underlying topology
into account. In that case the two neighboring nodes in the overlay may be separated by
many hops on the IP layer. Consequently, even if optimal in the number of application
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layer hops, a path between the source and the destination on the overlay may consist
of a large number of IP-layer hops.

Generally, there are three possible approaches toward integrating the topology aware-
ness into the overlay: Proximity routing, Topology-based nodeld assignment and Prox-
imity neighbor selection. These techniques will be briefly explained further in this
chapter. However, achieving the congruency of the overlay with the underlying IP-layer
network in the optimal way remains a difficult problem, and the integration of topology
information into the overlay remains partial and incomplete.

6.3.1 CAN-based Multicast (MCAN)
CAN overlay network

As the name reveals, this multicast scheme [86] exploits the underlying structured
overlay network CAN [85]. The nodes in a CAN are identified in a d-dimensional
Cartesian coordinate space on a (d+1)-torus. Every node in a CAN holds an individual
zone (see Figure 6.6), determined by its coordinates. The routing table in each node
consists of IP address and the zone coordinates of that node’s neighbor, where two
nodes are considered neighbors if their zones overlap in all but one dimension. This
implies that each node maintains the routing table with O(d) entries, resulting in the
routing table independent of the network size. The routing of the message is performed
in a greedy forwarding fashion: the packet is sent to the neighbor with coordinates
closest to those of the destination.

The overlay is formed in the following way: a joining node first discovers a node
already participating in CAN by using the bootstrap mechanism. Next, it chooses
randomly a point with (x,y) coordinates in the CAN space. Via the bootstrap node, it
sends a join request message to a node occupying the zone with (2, y) coordinates. The
zone in which the point (z,y) lies is then split in two: one half is kept by the current
holder of that zone, and the other half is allocated to the new node?. Subsequently,
both nodes update their routing table and this change is announced to their neighbors,
to update their routing tables as well. When a node leaves, it hands the zone over to
one of its neighbors.

Topology Awareness in CAN overlay network

The CAN overlay allocates nodes to zones at random, i.e. there is no relation between
node coordinates and the underlying topology. Hence, neighbors on a CAN are not
necessarily physically near each other in the Internet. Consequently, routing may be
inefficient. The topology awareness technique that has been implemented in CAN
is coined topology-based nodelD assignment. In this approach, topology information

?In a two-dimensional CAN, the zone is split first along z, and then along the y axe.
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Figure 6.6: A two-dimensional CAN overlay network example.

is integrated in the overlay construction: the nodes that are close to each other in
the underlying network are neighboring each other in overlay. The designers of CAN
proposed in [87] landmark-based placement for accounting for the underlying topology
when creating CAN. In this mechanism each joining node probes a set of landmark
machines, estimates network distances by measuring the round-trip-time and orders
the rtts according to increasing order. The CAN space is then divided into evenly sized
bins and, rather than choosing a CAN node among all nodes randomly, the split node
is randomly chosen within the bin area. These bins are clusters of nodes with same
landmark ordering. Hence, the nodes topologically close to each other are likely to have
the same ordering and will be located in the same part of CAN space.

The Forwarding Algorithm in CAN-based Multicast (MCAN)

The CAN overlay can easily be exploited for multicasting. If we assume that CAN
nodes, or their subset, form the multicast group, then the simplest way to achieve mul-
ticasting would be to simply flood the message to all the participating nodes. Since the
simple flooding algorithm induces a large number of duplicate packets, a more efficient
forwarding algorithm has been proposed in [86]. Nevertheless, even the improved algo-
rithm generates a substantial number of duplicate packets. This algorithm we describe
below and further refer to as MCANI.

Forwarding algorithm (MCAN1):

Origin forwarding rule: The source that generates a new message forwards that message
to all its neighbors (Figure 6.7(a)).

General forwarding rule: If a node receives the message along the y-axis, then it
will further forward the message along the y-axis in the direction going away from the
source, and to neighbors in both directions along the z-axis (In Figure 6.7(b), node H
forwards the message to I, J,K, and ). Otherwise, if a node receives the message
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along the z-axis, it will forward it only to neighbors along the z-axis, in the direction
away from the source (node C in Figure 6.7(b)).

The halfway rule: A node does not forward a message along a particular direction
if the message has already propagated halfway across the space from the source coor-
dinates along that dimension. The halfway rule is illustrated in Figure 6.7(c) (G and
H will not sent to K, A will not send to N, etc). This rule prevents the flooding from
looping round the back of the space.

Cache suppress rule: A node caches the sequence numbers of received messages and
does not forward the same message more than once.

The corner filter rule: This rule is built upon the fact that every node knows the
zone coordinates for each of its neighbors. A node only forwards the message to its
neighbor if its zone is in contact with the corner of that neighbor. The corner of a
node is determined in the following way: assume node X receives the message along a
particular axis. Assume further that it borders node Y along the orthogonal axis (in
the opposite direction from which it received the message). The corner Cy of Y is then
the lowest coordinate of Y in that (orthogonal) dimension. In Figure 6.7(d), Cys is the
corner of node M, while C is the corner of node F'. Thus, nodes M and F' receive the
message only from nodes J and D respectively, since J and D’s zones are in contact
with M and F’s corners.

6.3.2 SCRIBE

Here we will briefly describe the Scribe multicast algorithm together with its Pastry
overlay network. Only routing mechanisms, relevant to our analysis are explained. For
more details, we refer to [40].

Scribe is a tree-based application layer multicast mechanism built on top of Pastry.
Scribe builds a single multicast tree for the whole group. Each group has a unique
groupld and a root of the group tree. The tree is created by combining Pastry paths
from each group member to the tree root. A node wishing to send a message to the
group delivers the message first to the root. From the root, multicast messages are then
distributed along the multicast tree.

6.3.3 Pastry

In the Pastry overlay network, each node has a unique identifier (nodeld). The identi-
fiers are chosen out of the 128-bit circular space and assigned to the nodes. Nodelds are
presented as a sequence of digits in base 2° (b is a configuration parameter with typical
value 2 or 4).

To route a message, a node uses a leaf set and a routing table. A leaf set consists of
typically 2b or 2 x 2b entries, which are filled with nodelds numerically closest to the
current node’s nodeld. A routing table consists of 128/b rows, with 2b columns per each
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Figure 6.7: The original multicast forwarding algorithm in CAN.
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row. The routing table is constructed in the following way: the entry in the n-th row
and k-th column of a node’s routing table contains a nodeld that matches the current
node’s nodeld on the first n digits, and its (n + 1)-th digit is equal to k. If there is no
nodeld that satisfies this criterion for an entry, the entry is left empty. An example of
a routing table for a node with nodeld 12030321 is illustrated in Figure 6.8.

The routing in Pastry is performed as follows: upon receiving a message, a node
first searches for the destination key in its leaf set. If the leaf set does not contain that
key, the node starts searching in its routing table for the node whose nodeld matches
the destination key in at least one digit more than the current node does. If such a
node is not found in the routing table, the current node will look back into its leaf set
and forward the message to a node whose nodeld matches the destination key in the
same number of digits as the current node, but is numerically closer to the key.

If the number of Pastry users is sufficiently large, there might exist several nodes
that meet the criterion for an entry. The node will then be chosen randomly out of
all candidates satisfying the criterion. Alternatively, a proximity neighbor selection
technique can be applied: an entry in the routing table includes the nodeld of the node
topologically nearest to the current node, of all possible candidates. In the original
Pastry design, Rowstron et al. [89] assumed that a function exists that enables each
Pastry node to determine its relative “distance” to another node, given the node’s IP
address.

6.3.4 Bayeux

Bayeaux [112] is very similar to Scribe, but uses Tapastry [111] as an underlying overlay.
They also differ in approach to supporting replication. Tapestry uses a distributed
algorithm called surrogate routing for mapping keys uniqely to an existing node in the
network, in case a node’s routing table has no entry for a node matching the n-th digit.
A minor difference lies in the direction in which digits are resolved (from right to left).

6.3.5 Delaunay triangulation

This protocol builds overlay topology which satisfies Delaunay Triangulation property
[71]. It targets very large multicast group sizes.

How it works: Each member is assigned logical (x,y) coordinates that can reflect
geographical location of the nodes. Based on these coordinates, the nodes are con-
nected so that topology created consist of triangles that satisfy Delaunay Triangulation
property. A Delaunay Triangulation (DT) for a set of nodes is such a triangulation,
where for each circumscribing circle of a triangle formed by three nodes, in the inte-
rior of the circle there is no other node (see Figure 6.10). Delaunay Triangulations
can be easily determined locally, since it has been proven in [91] that DT satisfies the
locally equiangular property: a triangulation is a DT if the minimum internal angle of
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Leafset 12030221 12031210

12030000 12031001

12030123 12031310

12030220 12032001
Routing Table

0 1 2 3
0 [01230100] t ] [23012101 [32132012]
1 [10233221] 11000123 | 2 | [13201323]
27 0 ] 12108320 {12231022| [12332101]
3 12003211] [12012301 [12023002] [ 3 |
4 0 [12031310| [12032211] [12033001]
5 (12030001 ;12030121] [12030221] [ 3 |
6 ] LI PR S I I
7| Lt ] 1 )

Figure 6.8: Leaf set and Routing table for node in Pastry with nodeld 12030321. De-
pending on the destination key, the node chooses the next hop from the routing table
according to the longest prefix rule. E.g., for a destination key 31032030, 12030111,
12030000 the next hop would be 32132012 (row 0 column 3 in routing table), 12030121
(row 5 column 1), and 12030000 (in leaf set) respectivelly.
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Figure 6.9: Routing in Pastry.

the adjacent triangles is maximized. The equiangular property is illustrated in Figure
6.11. Triangles AABC and AABD, which share a common link AB, satisfy the locally
equiangular property, since their minimum internal angle is not smaller than the mini-
mum internal angle of triangles AACD and ABCD. The equiangular property ensures
that nodes geographically close to each other will be connected in the topology. By
enforcing this property for each node, the topology can be constructed and maintained
in a distributed fashion. Another attractive property of DT is that there is a set of
non-overlapping routes between any pair of nodes, which enables a good scalability of
this protocol. Finally, no tree building protocol is needed. Once the overlays is created,
as we will demonstrate below, the routing information is embedded in it.

The overlays are created as follows: the joining node is bootstrapped to any node
already in the DT overlay. This node subsequently performs a neighbor test on the
joining node: it verifies whether an newcoming member can become a neighbor or not.
Based on the coordinates of the current neighbors and joining node, a testing node
verifies whether a link toward a joining node would satisfy the equiangular property
with the current neighbors. If so, a new node is accepted as a neighbor of the testing
node. Otherwise, the testing node redirects the newcomer to the node whose coordinates
are closer to the coordinates of the newcomer. The process ends once a new node passes
a neighbor’s test. Hence the only state information to be maintained by each node is
confined to that of its neighbors.

As mentioned above, there is no tree building protocol required in this approach.
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Figure 6.10: Delaunay Triangulation.

Figure 6.11: Locally equiangular property.
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Figure 6.12: Compass routing.

i [o]J1]2]3[4]5]6]T7]
Bin(i) [ 000 [ 001 [ 010 [ 011 ] 100 [ 101 | 110 | 111
G(i) [000[001]011]010] 110 ] 111]101] 100

Table 6.1: Binary and Gray code comparison.

For each sender the next hop is determined locally, as each node is able to locally
determine its children nodes with respect to the tree rooted at the sender. Each node
accomplishes this by implying the “compass routing” procedure on its coordinates and
the coordinates of its neighbors and the sender. Compass routing is demonstrated in
Figure 6.12. Node A determines that its neighbor B will be its child node in a tree
routed at S, since selecting A leads to smaller angle from B to S than selecting C or
D. While compass routing in planar graphs may result in routing loops, this is not the
case for Delaunay triangulations [66]. Hence, no loop detection mechanism is required.

6.3.6 HyperCast

How it works: HyperCast protocol [70] organizes multicast members in the logical n-
dimensional hypercube structure, a structure containing 2" nodes (Figure 6.13). To
each node a label in the form of a binary string is assigned, (e.g., “010”), indicating the
position of the node in the logical hypercube. The bit strings are assigned in such a way
that two nodes will be neighbors in the overlay, if their bit sequences differ in exactly
one bit (Gray code). Each node then needs to maintain the table with the addresses of
its (maximum n) neighbors. The relation between the binary and Grey code is shown
in Table 6.1.

Similar as in DT protocol, HyperCast requires no multicast routing protocol. Ar-
ranging the nodes according to the Gray code ensures that the routing tree can be
embedded even in the incomplete hypercube (when there are less members than 27,
which is most often the case) with the use of a very simple algorithm. This algorithm
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Figure 6.13: Hypercube.

enables a node with a label B(¢) to compute the label of its parent node in the tree
with a root label B(r) by using only the labels B(i) and B(r) as input, and to do
that by inverting only a single bit. This algorithm works as follows: Let us assume
that B~1() is the inverse function of function B() that assigns a number to a binary
label, i.e., B~}(B(k)) = k. Let us further denote with B(:) = I = I,... oI} and
B(r) = R = R,,... RyRy. the label of the i-th and 7-th node in the Gray encoding,
respectively. The label of the parent node of node [ in the tree rooted at R is computed
in the following way: if B~'(J) < B~!(R), the least significant bit in which 7 and R
differ should be inverted. Otherwise, the most significant bit in which / and R differ will
be inverted. An example of the routing tree in an incomplete hypercube with 7 nodes,
for root node 000 is depicted in Figure 6.14. Forwarding of packets is straightforward:
a message Is sent to a neighbor that has one bit more of overlap with the destination
label. For details on the join procedure and node failure recovery we refer to [70].

6.4 Hierarchical multicast

Algorithms of this group arrange multicast members into hierarchical structures, which
is an imperative for obtaining better scaling characteristics. In Kudos [61], a two layer
hierarchy is constructed, with a mesh-based sort of protocol on each of the layers. NICE
[11] sets up a multi-layer hierarchy, where on each layer hosts are distributed into a set
of clusters.
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Figure 6.14: Tree with 000 as root embedded in an incomplete Hypercube.

6.4.1 Kudos

Kudos [61} protocol introduces a two-layer hierarchy to increase scalability, with a
mesh-based mechanism at each layer. Hence, it also can be classified as a mesh-based
protocol.

How it works: Kudos organizes members into clusters (sets of nodes). If there are
totally N nodes that form the overlay, Kudos will arrange them in approximately N'/2
clusters each containing approximately N'/2 nodes. In each cluster the node that is
closest to all the other nodes in that cluster is determined and is referred to as the
cluster head. All the other nodes in the cluster are referred to as children. In each
cluster the nodes belonging to that cluster form an overlay network, using any mesh-
based protocol (e.g. Narada a[31]), independently of the nodes in other clusters. Top
layer in this two layer hierarchy is formed by cluster heads from the layer below (see
Figure 6.15). The cluster heads in the top layer will also connect themselves into a
network in the top layer, again with the use of some mesh-based algorithm.

There are three clustering operations that this protocol performs: migration, split-
ting and diffusion. Migration is related to the join process. When a new node wants
to join the network, it is bootstrapped to a randomly chosen cluster. From the head
of that cluster the newcomer receives the list of the other head nodes. Among them it
selects several and evaluates the latency toward them. If a child detects a head that
is considerably closer to it than the current head, it will migrate to that cluster. In
order to limit the number of probes the child node executes, the child will only probe
those heads for which the latency toward the current child’s head is less than twice the
latency between the child and it’s current head.

If a cluster outgrows the size of twice N'/2, the cluster will be split in two. The
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Top layer

Bottom layer

Figure 6.15: Two level hierarchy in Kudos.

head of the old cluster remains the same. The old head sends the latency information
to all its child nodes. Every child responds with the computed number of other child
nodes that are closer to it than the the old head is. Based on these responses, the old
head appoints the head for the new cluster. Each child node in the former cluster based
on the information it receives.

Whenever the size of the cluster diminishes to less than the half of N'/2, due to node
failure, member leave or migration, the cluster diffuses. The remaining nodes migrate
to the neighboring clusters.

Due to the clustering and hierarchical organization this protocol achieves higher
scalability and lower management overhead than its one layer equivalent, since measure
probes are run across smaller groups and member failures effect smaller groups. The
price paid for this is the efficiency, since the children nodes belonging to different clusters
cannot form overlay links among each other.

6.4.2 NICE

The goal of the NICE protocol [11] is to organize group members into a hierarchical,
layered structure.

How it works: All group members are assigned to the lowest layer Ly, and they
are grouped into clusters. The nodes within a cluster periodically exchange refresh
messages containing the information on latency among them. The arranging of nodes
into the clusters is performed according to this latency. The clusters are of size between
k and 3k — 1 nodes, where k is a constant. The node in each cluster that is closest to all
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Layer L, s

Layer L,

Figure 6.16: NICE hierarchical structure and clustering.

the other nodes in that cluster is designated as the cluster leader. The cluster leaders
of all clusters at the layer L; form clusters in the layer L;.;. This process continues
until the layer is reached with only one member, resulting in maximum log, N layers
(see Figure 6.16).

The joining procedure works in the following way: When a new node wants to join,
it contacts the rendezvous point, from which it receives the information on the members
in the highest layer (L,). Among those members, it finds the member closest to itself
in terms of latency. This member, the cluster leader of a cluster in layer L,_;, notifies
the newcomer on the members in its cluster on layer L, ;. The newcomer searches in
that cluster and finds the closest member to itself again. This procedure is repeated
until the newcomer finds the adequate cluster in the layer L.

If upon joining of the new host that cluster exceeds the size of 3k — 1, it will be split
into two clusters of minimum size 3k/2, in such a way that the maximum of the radii
among the two clusters is minimized. If a host wants to leave, it notifies the members
of all the clusters it belongs to.

Also in NICE no routing protocol is needed, since the source-specific trees are em-
bedded into the topology itself. An example of such a tree in a NICE structure with a
cluster size k = 4 is given in Figure 6.17. A source sends a data packet to all its peers
in the overlay topology (node G belongs only to layer Ly, so it only sends the packet to
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Layer L, ‘

Figure 6.17: Multicast routing in NICE.

nodes E, F' and H). Assume that the sending node and the receiving node belong to
the same cluster at the layer L,. If and only if the receiving member is the cluster leader
of the cluster C; (where C; is its cluster on the layer L;) it will distribute the packet to
all the other members of the cluster Cy, k # i. In the example in Figure 6.17, node F,
the cluster leader of a cluster on the layer Ly, receivers a packet from node G, one of
its peers in that cluster. Therefore, it distributes the message to the other members of
its cluster in layer L1, nodes A and L. Nodes A and L will subsequently disseminate
the message to all the other nodes in their clusters on the levels below.

6.5 Conclusion
This chapter has presented seventeen different mechanisms for AL multicast realization.

All protocols have been classified in four categories based on the type of topology created
for communication between end hosts.

6.5.1 Efficiency

In general, it is difficult to analytically compute the efficiency for most protocols as
most of the results are obtained either via simulation or empirically. The performance
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also varies according to group sizes and the characteristics of the underlying topology.
In most cases different algorithms are not compared under the equal conditions. This
has been a trigger for our analysis, presented and discussed in the following chapter.

6.5.2 Scalability

The scalability of these protocols is determined by control overhead. Control overhead
refers to all the non-data traffic that traverses the network. It includes traffic required
to maintain the overlay as all application layer multicast solutions require nodes to
exchange refresh messages with their neighbors and the probe traffic and other active
measurements performed during the overlay self-organization and maintenance process.
The average overhead per node is often used as an indicator of the scalability of the
protocol. Another metric is the amount of information kept by each node on the overlay.
State information maintained in each node has to be periodically updated to reflect
dynamically changing network environment. This implies that a node maintaining
more state information will generate more update messages, contributing to additional
protocol overhead. This metric therefore directly impacts the scalability of a technique.
Information maintained by each node includes routing tables and group state. Protocols
which require the full set of member state to be stored in each node are thus not as
scalable as those which only maintain partial group member state.

An intuitive, but simple approach, which can provide a quick insight into the scala-
bility of each technique, is the number of members each of the proposed protocols can
support. The protocols we described in this chapter can be classified in four groups
based on their scalability:

Low scalability (several tens of multicast members): ALMIL

Medium scalability (several hundreds of multicast members): Narada, BTP, Yoid,
HMTP, TBCP.

Large scalability (several thousands of multicast members): CAN, Scribe, Scatter-
cast, Overcast, Bayeaux, Kudos.

Very large scalability (several tens of thousands of multicast members): NICE, DT.
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Chapter 7

Hopcount in Application Layer
Multicast

7.1 Problem statement

In Chapter 6, we have classified and reviewed several AL multicast schemes. AL mul-
ticast enables rapid and seamless deployment of multicast applications. However, the
price that it has to pay is the performance penalty, because a packet may be replicated
and forwarded on the same link more than once. The objective of this chapter is to
determine and compare the efficiency of different application layer multicast schemes
under the same conditions. We focus on several schemes that belong to two latter
classes presented in Chapter 6, due to their superior scalability.

In the early approaches, overlay networks have been created without considering the
underlying Internet topology. More recently, methods have been developed for integrat-
ing the information of the underlying network into the overlay. Currently, these methods
can be classified into three groups: proximity routing, topology-based nodeld assign-
ment, and the proximity neighbor selection. Section 6.3.1 and Section 6.3.2 discuss
several such techniques. Some experiments have suggested that the proximity-neighbor
selection attains the optimal results [23].

The goal of this chapter is twofold:

1. We evaluate the performance of three scalable application layer multicast algo-
rithms, CAN-based multicast (MCAN) [86], Scribe [40] and NICE [11]. As a perfor-
mance metric the number of hops has been used. We compare these schemes mutually,
as well as to multiple unicast connections (we denote them further with m-unicast) and
IP multicast. Furthermore, we introduce and evaluate modifications to MCAN that
lead to a better performance in terms of the number of hops (duplicate packets). For
clarity, with MCAN1 we denote the original, and with MCAN2 our modified algorithm.
We perform this evaluation both via extensive simulations, as well as via experiments
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on PlanetLab [4].

2. We investigate the influence of the underlying topology awareness on the per-
formance of application layer multicast. In our study, for each of the implemented
algorithms, we have considered two extreme situations: no topology awareness, and ab-
solute topology awareness. Whereas under the no topology awareness conditions nodes
in overlay are placed randomly, without taking the underlying IP-layer topology into
account, the term absolute topology awareness indicates the ideal situation in which
the complete knowledge of the underlying substrate is attained and used in the creation
of the overlay.

To the best of our knowledge, the only study similar to ours has been provided by
Castro et al. [24]. However, our study differs from [24] in several aspects. First, our
goal is not to estimate the underlying topology. Instead, we assume that the underlying
topology is either completely known to the joining overlay nodes (absolute awareness)
or completely unknown. In this way, we try to establish the upper and lower boundaries
for the hopcount of these three algorithms. Secondly, we use the hopcount as a metric,
since it is an important quantity from a network point of view. Third, we perform our
simulations on a very large number of different substrates (up to 10°) which ensures
the statistical credibility of our results. Fourth, we introduce the modifications to
MCAN algorithm that lead to improved results for hopcount compared to the original
algorithm. Finally, we evaluate our results via experiments on the PlanetLab network.

This chapter is organized as follows: Section 7.2 introduces our modifications to
the CAN-based multicasting algorithm. In Section 7.3 we first explain the simulation
designs of six compared schemes: MCAN with and without improvements, Scribe,
NICE, m-unicast and IP multicast. The same section further presents and discusses
the simulation results for different types of the underlying topology. In Section 7.4
the results of the measurements on PlanetLab are presented. Finally, we conclude in
Section 7.5.

7.2 Forwarding in CAN based Multicast (MCAN)

The forwarding algorithm used to realize multicasting in CAN and proposed in [86] has
been described in Section 6.3.1. Nevertheless, even the improved algorithm generates
a substantial number of duplicate packets. In order to further reduce the number of
duplicate packets we introduce certain modifications to this algorithm. In this Section
we describe our modifications. The modified algorithm is explained on an example of
a two-dimensional CAN, and illustrate it in Figure 7.1.
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Multicast CAN Modified Forwarding Algorithm (MCAN2)

Origin forwarding rule: The source that generates a message forwards the message to
all its neighbors along the z-axis, but only one neighbor per direction along the y-axris.
In Figure 7.1(a), A forwards the message to C and N along the z-axis, but only to H
and only to E in positive and negative direction of y-axis respectively.

General forwarding rule: A node that receives the message along the y-axis, for-
wards the message to all the neighbors along the z-axis. However, it will forward the
message to only one neighbor in a particular direction along the y-axis (the direction
away from the source). If there are several neighbors in that direction, the neighbor to
which the message will be sent is chosen randomly. A node that receives the message
along the z-axis, forwards it to all the neighbors along the z-axis that lie in the direction
opposite of that from which the node received the message (e.g. node C and node D in
Figure 7.1(b)).

The halfway rule and the cache suppress rule: These rules remain unmodified.

The corner filter rule: In the modified algorithm, the corner filter rule is applied
only on forwarding along the z-axis. In Figure 7.1(d) M only receives the message from
J since M’s corner is in contact with J’s zone. However, in the y-axis forwarding, even
though E’s zone does not touch F’s corner, E will forward the message to F.

7.3 Evaluation via Simulations

In our simulations, we confine ourselves to random graphs of class G, (V) [18]. We first
generate a graph consisting of N > 100 nodes, representing the routers. For each graph
of N nodes, we define the number of multicast users /m in the network, such that a ratio
p =m/N takes the value from the set p = {0.05,0.1,0.2,0.5,0.7,0.9}. For each N,
10° different topologies are generated. In the simulations of Scribe, before defining m,
we first define the number of nodes Npgg,, that constitute the Pastry network. The
multicast members in Scribe form a subset of nodes participating in Pastry, such that
the Npgsiry =m, 2xm ,4 xm.

Two different scenarios for the members location have been considered: in scenario
a, some multicast members (or Pastry nodes) may belong to the same router, while in
scenario b, each member is attached to a different router.

In each underlying topology, the following nine different multicast schemes have been
implemented: multiple-connections unicast, IP multicast, the original MCAN with and
without the topology awareness (MCAN1 and MCAN1 _top), the modified MCAN with
and without topology awareness (MCAN2 and MCAN2 _top), Scribe without and with
the absolute topology awareness (Scribe and Scribe_top) and NICE without topology
awareness (NICE). For each mechanism and each underlying topology, the number of
hops in the path is computed and stored in a histogram. In a multiple-connections
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Figure 7.1: The modified multicast forwarding algorithm in CAN.
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unicast, the total hopcount is the sum of the hopcounts along shortest paths from a
source to each of the m —1 destinations individually. For IP multicast, we assumed that
the message is disseminated along the Shortest Path Tree!, since the most of the current
IP multicast routing protocols forward packets based on the (Reverse) Shortest Path.
The total hopcount is equal to the sum of the links in a multicast tree. For MCAN,
in addition to the total number of hops traversed, an effective number of hops has
been computed and stored. An effective number of hops is computed by only including
the hops traversed in order for all destinations to be reached, without including the
forwarding paths of the duplicate messages.

7.3.1 MCAN on a random graph

We have assumed for simplicity that all nodes in a CAN form a multicast group, and
we created a two-dimensional CAN. In order to evaluate MCAN on top of a random
graph, three different sets of simulations have been performed:

(i) Single overlay: in this set of simulations, no topology awareness is considered. For
each underlying topology the CAN overlay structure is kept the same. Next, we
consider two scenarios as stated above, scenario a and b. After a CAN overlay
consisting of m MCAN members is generated, the m MCAN members are mapped
onto each of the underlying topology in the following way: in scenario a, each
MCAN member is mapped to one out of N nodes in the underlying network
randomly. In this scenario, the same node can be chosen multiple times, i.e.
several MCAN members can be attached to a same router. In scenario b, m out
of N nodes in the underlying network are chosen randomly, and each of the m
MCAN members is assigned to one of them. Hence, each member is attached
to a different router. For each scenario, and each underlying topology, both
MCAN1 and MCAN2 have been implemented, and their hopcounts have been
stored in histograms. From each histogram, the probability density function of the
hopcount was deduced, together with the mean E[Hy] and the variance var[Hy].

(#) Multiple overlays: For each underlying topology, r = 1000 different samples of a
CAN overlay, each consisting of m members, have been generated. For each of
the overlay instances, the identical procedure as described in (i) has been applied.

(#43) Topology aware overlay: For each m and N, and both scenarios a and b, in
each of the generated underlying topology, the identical nodes (routers) to those
chosen in (i) have been selected. The CAN overlay is then constructed using
the information about the distances in the underlying network. Each newcoming
node learns the hopcount to all the other nodes already in CAN using the Dijkstra
algorithm. The nearest node is then chosen to be the split node.

L A Shortest Path Tree is the union of the shortest paths between the source and all m destinations.
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[ sch. T MCAN m/p_ [ 1/2 T sch. [ MCAN [ m/p [ 1/2 [ sch. | MCAKN | mjp [1/2]
1 single 10/0.05 1 13 mult 10/0.05 1 25 t.a. 10/0.05 1
2 single 20/0.1 1 14 mult 20/0.1 1 26 t.a. 20/0.1 1
3 single 40/0.2 1 15 mult 40/0.2 1 27 t.a. 40/0.2 1
1 | single | 100/0.5 T | 16 | mult | 100/05 T | 28 ta. | 100/05 1
5 single 140/0.7 1 17 mult 140/0.7 1 29 t.a. 140/0.7 1
6 single | 180/0.9 1 18 mult 180/0.9 1 30 t.a. 180/0.9 1
7 single 10/0.05 2 19 mult 10/0.05 2 31 t.a. 10/0.05 2
8 single 20/0.1 2 20 mult 20/0.1 2 32 t.a. 20/0.1 2
9 single 40/0.2 2 21 mult 40/0.2 2 33 t.a. 40/0.2 2
10 single | 100/0.5 2 22 mult 100/0.5 2 34 t.a. 100/0.5 2
11 single 140/0.7 2 23 mult 140/0.7 2 35 t.a. 140/0.7 2
12 | single | 180/0.9 2 | 24 | mult | 180/0.9 2 | 36 ta._ | 180/0.9 P)

Table 7.1: The simulated schemes 1-36. The number of node N=200. The column 1/2
stands for type of MCAN algorithm: MCANI is the original, MCAN? is the modifed.
Each scheme 1-36 has been simulated in both scenario a and b.

In Table 7.1 we summarize the parameters used in the simulations. In the remainder
of this section we present the results of our simulations.

The pdf of hopcount in MCAN

Figure 7.2, Figure 7.3 and Figure 7.4 present the probability density functions (pdf)
of the hopcount of both MCANI and MCAN2 algorithms in a single (schemes 1-12),
multiple (schemes 13-24) and a topology aware (schemes 25-36) CAN structure respec-
tively, for N = 200, and scenario a. In each Figure, (a) and (b) give the pdfs for low
and high value of ratio p = m/N respectively. Figure 7.2 suggests for for both MCAN1
and MCAN?2 a similar, bell-shape form of pdf, based on simulations on a single overlay.
However, the average hopcount of MCAN2 is up to 11% lower than that of MCAN1
with the increase of m.

In Figure 7.3 and Figure 7.4 we observe another interesting phenomenon: a “cluster-
ing” effect for the hopcount in MCANI. These figures, particularly Figure 7.3, indicate
that the values of hopcount of MCANTI in multiple overlays (schemes 13-18) concentrate
around several dominant values. This suggests that there seems to exist a finite number
of “groups” of CAN structures.

This behavior is observed in the topology-aware CAN as well (scheme 25-30), how-
ever the number of values around which hopcount concentrates is lower. The phenom-
enon of clustering is not reflected in the hopcount of MCAN2, neither in multiple, nor
topology-aware overlays. The pdf of MCAN2 is bell-shaped, with a variance much lower
than that of MCAN1. The average hopcount of MCANT is again 10% higher than that
of MCAN2.
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Figure 7.2: The pdfs of MCAN1 and MCAN2 in a single CAN overlay. (a)schemes
1-3 and 7-9, N = 200, p = 0.05,0.1,0.2, scenario a. (b) “schemes 4-6 and 10-12, N = 200,
p =0.5,0.7.0.9, scenario a.
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Figure 7.3: The pdfs of MCANI and MCAN2 in multiple CAN overlay. (a)~schemes
13-15 and 19-21, N = 200, p = 0.05,0.1,0.2, scenario a. (b) schemes 16-18 and 22-24,
N =200, p=10.5,0.7,0.9, scenario a.
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Figure 7.4: The pdfs of MCAN1 and MCAN2 in topology aware CAN overlay.
(a)"schemes 25-27 and 31-33), N = 200, p = 0.05,0.1,0.2, scenario a. (b) schemes
28-30 and 34-36, N = 200, p = 0.5,0.7,0.9, scenario a.

Effect of the topology awareness on MCAN1 and MCAN2

The average hopcount in MCAN1 and MCAN2 as a function of m, in a single, multiple
and topology aware CAN (schemes 1-36), has been plotted in Figure 7.5 and Figure 7.6
for scenario a and b, respectively.

In scenario a, a topology aware CAN demonstrates the best performance, as ex-
pected. For high values of p, (p > 0.7) the reduction in hopcount reaches 24%. Remarkably,
in scenario b, where each member is attached to a different router, the topology aware-
ness does not seem to impact the hopcount significantly. Moreover, for a small ratio
p (p £ 0.2), the hopcount of MCAN1 obtained in a topology aware CAN (schemes
25-30) is higher than the hopcount in multiple overlays (schemes 13-18). A possible
explanation is that when a new user joins the group, it chooses the nearest node in the
CAN as the split node, which consequently may separate two nodes already neighboring
each other in the CAN. This phenomenon is illustrated in Figure 7.7. We consider a
small portion of the CAN overlay, where two users A and B, close to each other in the
underlying network, are neighbors in the CAN space. Node C lies in another part of
the underlying network. If a newcomer C is close to A on the underlying substrate, it
chooses A as the nearest node already in CAN. A splits its zone and assigns half of it
to C. However, this partitioning can be performed in such a way that the addition of
C in the existing CAN structure will separate A and B, resulting in a higher hopcount
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Figure 7.5: (a) Effect of overlay creation on hopcount of MCAN1 (N = 200, scenario
a). (b) Effect of overlay creation on hopcount of MCAN2 (N = 200, scenario a).
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Figure 7.6: (a) Effect of overlay creation on hopcount of MCAN1 (N = 200, scenario
b). (b) Effect of overlay creation on hopcount of MCAN2 (N = 200, scenario b).
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Figure 7.7: Joining of the node C increases the distance between A and B.

among them (as exemplified in Figure 7.7).

The total and effective hopcount of MCAN1 and MCAN2

In Figure 7.8 the average total and effective hopcount of MCAN1 and MCAN2 in
multiple and topology aware CAN overlays (schemes 13-36), for scenario b has been
plotted. The effective hops are the hops a message traverse until it reaches each of the
destinations for the first time, and do not include the forwarding paths of the duplicate
messages. For both multiple and topology-aware CAN (schemes 18-24, and 30-36),
the ratio of the total and the effective hopcount of MCAN2 is around 1, implying
that the modifications we introduce eliminate most of the duplicate messages. The
effective hopcount of MCANT1 is up to 5% lower than the effective hopcount of MCAN2,
suggesting, as expected, that the message forwarded with MCAN1 will reach all users
in a smaller number of hops. However, MCAN2 optimizes the total number of hops
traversed by the message.

7.3.2 Scribe on a random graph

For the simulations of Scribe, exactly the same random graphs as those used in the
analysis of MCAN in the previous subsection have been generated. In order to simulate
Scribe, we first need to define a Pastry network. A number of Pastry nodes Npgsiry is
determined, and random nodelds in the range [0,2'2® — 1] are assigned to those nodes.
Since we only simulated a small number of users (Npgstry < 2'2%), we confined ourselves
to b = 2. The leaf set of each Pastry node consists of 8 entries. Again two different
scenarios have been simulated: scenario a, in which several Pastry nodes may belong
to the same router, and scenario b, where each Pastry node is attached to a different
router.
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Figure 7.8: (a) Comparison of total and effective hopcount in MCAN1 and MCAN?2 for
multiple CAN overlays (scheme 13-24). (b) Comparison of total and effective hopcount
of MCAN1 and MCAN?2 in topology aware CAN overlays (scheme 25-36).

After the Pastry network has been defined, a subset of m Pastry nodes has been
chosen, representing Scribe participants. Also, a root for the group tree has been deter-
mined. A Scribe tree is built by combining Pastry paths from each Scribe member to the
root. Pastry paths are constructed based on the information on the underlying topol-
ogy, as explicated in the previous chapter. Two different sets of simulations have been
performed, Scribe, the Scribe algorithm without topology awareness and Scribe top,
in which the absolute topology awareness has been integrated.

Finally, the ratio z = m/Npgstr, is varied, such that Npgsiry = M, Npgstry = 2 * m2
and Npestry = 4% m.

Effect of the topology awareness on Scribe

Figure 7.9, presents the average value of hopcount for Scribe and Scribe _top in scenario
a in (a) and scenario b in (b) respectively. As can be seen from Figure 7.9, the topology
awareness seems to have a great influence on the hopcount in Scribe in both scenarios.
or p > 0.1 the average hopcount is up to 40% lower than that of Scribe_ top. For smaller
values of p the difference in average hopcount in Scribe and Scribe _top is smaller. This
figure further indicates that, while in the performance of fully topology aware Scribe is
comparable to IP multicast in scenario b, this is not the case in scenario a. Furthermore,
in scenario a, the hopcount of topology unaware Scribe is higher than that of unicast.
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Figure 7.9: (a) Average hopcount of Scribe and Scribe_top (N = 200, Npastry = M),
scenario a. (b) Average hopcount of Scribe and Scribe_top (N = 200, Npgsiry = M),
scenario b.

Influence of the ratio x = m/Npggry

Figure 7.10 illustrates Scribe performance under the variation of the number of Pastry
nodes (Npqstry), where Npgsiry = m, 2%m , 4xm, and the number of users m = 10, 20, 40.
As Figure 7.10(a) displays, the performance of Scribe is affected by the variation of these
parameters. If only a half of all Pastry nodes participate in Scribe application, the dif-
ference in hopcount reaches 16%. For a number of Pastry nodes four times higher
than the number of Scribe participants, the hopcount is increased up to 28%. For
Scribe_top, the influence of Np,sy, is negligible (Figure 7.10(b)). This is an expected
result, since the routing tables in Scribe (thus without topology awareness) are filled
randomly. Hence, a node will choose appropriate nodes for its entries randomly, without
considering their locations. Consequently, nodes that participate in multicasting will
not necessarily follow the shortest possible paths to the root. By deploying the absolute
topology awareness, each Scribe top node chooses the nearest node among many can-
didates. On joining a multicast group, each node will follow the shortest possible path
to the root, resulting in a considerably more efficient multicast tree. Moreover, with
the number of Pastry nodes increasing, the possibility of creating more efficient tree
increases as well.
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Figure 7.10: (a) Impact of Npystry (N = 200, p = 0.05,0.1,0.2, scenario a). (b) Impact
of Npgstry (N =200, p = 0.05,0.1,0.2, scenario b).

7.3.3 NICE on a random graph

Again, under the same conditions as in simulations of CAN and Scribe, the NICE
algorithm has been implemented and evaluated. For simulations of NICE, we have
only simulated scenario b. In the NICE structure members are organized in layers,
as discussed in Chapter 6. In each layer members are divided into clusters, with each
cluster of size between [ and 3/—1 (! is a constant). The choice of cluster size bounds has
also been discussed in Chapter 6. Although the original protocol assumes that members
are assigned to clusters based on proximity information (to the cluster leader), in order
to make our analysis complete, we first consider the case when clusters are formed
in a random manner, that is, the joining nodes possess no topology awareness. We
investigated the influence of the constant ! on the performance of NICE.

Effect of constant [ on NICE

Figure 7.11 displays hopcount in IP multicast, m-unicast and NICE, for different values
of constant [. We observe that, similarly to MCAN and Scribe, the hopcount in topol-
ogy unaware NICE is nearly as large as hopcount of m-unicast. This figure further
suggests that the value of [ does not impact the efficacy of topology-unaware NICE
algorithm. A random choice of nodes that form the clusters, overlapping cluster sizes
and the relatively small network size might be the reasons for not perceiving the effect
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Figure 7.11: Impact of [ on the hopcount in NICE (N = 200, scenario b).

of layering.

7.3.4 Comparative analysis on a random graph

In Figure 7.12 and Figure 7.13 the average hopcount in Scribe, Scribe_top, NICE,
m-unicast and IP Multicast, together with MCAN1 and MCAN2 in multiple CANs
has been plotted for both scenarios a and b, respectively. The results correspond to
Npgstry = m. As anticipated, IP Multicast achieves the best performance. Further,
Scribe_top achieves the lowest number of hops among all AL multicast schemes, in
scenario b even comparable to IP multicast. The hopcount of MCANT1 in both scenar-
ios is higher than that of m-unicast. The hopcount of MCAN2 is comparable to the
hopcount of m-unicast in scenario a, slightly better in scenario b. In scenario a, the
hopcount of Scribe is higher than that of m-unicast. In scenario b, Scribe and NICE
perform slightly worse than MCAN2 but comparable to m-unicast.

Figure 7.14 and Figure 7.15 display the average hopcount in Scribe, Scribe top,
NICE, m-unicast, IP Multicast, together with MCAN1 and MCAN2 in a topology-
aware CAN (MCAN1top and MCAN2top) in both scenarios a and b, respectively. These
figures seem to indicate that in scenario a the hopcount achieved with MCANT1 is lower
than that of m-unicast. In both scenarios, performance of our algorithm MCAN? is
better than that of Scribe and of NICE in scenario b. In scenario-b, the results are the
same as for the multiple CANs, MCANT1 obtaining the highest hopcount of all, with a
slightly improved performance of MCAN1 and MCAN2.
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Figure 7.12: Comparison of all mechanisms in scenario a (N = 200) (multiple-overlay

CAN).
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Figure 7.13: Comparison of all mechanisms in scenario b (N = 200) (multiple-overlay
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Figure 7.14: Comparison of all mechanisms in scenario a (N = 200) (topology-aware

CAN).
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7.4 Evaluation via Measurements on PlanetLab

In addition to simulations, we evaluate the performance of AL multicast mechanisms
under realistic conditions, by performing experiments on PlanetLab. Our experiments
have been executed on November 10th 2004. At that moment, there were 445 PlanetLab
nodes running on locations in USA, Asia and Europe. We have performed two sets of
measurements.

1) For the measurements, corresponding to the scenario b, we selected one node per
PlanetLab site, resulting in totally 79 nodes. Each of these nodes represents a multicast
group member.

2) For the 79 selected nodes Scribe and MCAN without topology awareness have
been implemented. One node has been designated as a source. Among the neighbors
on the overlay, traceroutes [95] were collected on November 10th. The hopcounts of
MCAN, Scribe, multicast and m-unicast have been computed.

3) Based on the traceroutes collected among these 79 nodes, the underlying router-
level topology has been created. This topology consisted of 4226 nodes and 7171 links.
No alias resolution technique has been implemented.

4) With the knowledge of this topology, topology- aware MCAN and Scribe have
been created and implemented, and subsequently, hopcount has been computed.

Figure 7.16 shows the results of our PlanetLab experiments. Figure 7.16(a) gives
the pdf of hopcount in multiple MCAN1 and MCAN2. This figure reveals the same
phenomenon in hopcount of MCAN1 as we observed for simulations of multiple CAN:
the clustering effect. In Figure 7.16(b) we have plotted the average values of hopcount
for each of the schemes. This figure resembles the corresponding Figure 7.13 and 7.15
obtained from simulation data. Again, as expected, IP multicast achieves the lowest
hopcount. The values of hopcount of MCAN and Scribe (without topology awareness),
seem all to be approximately equal to unicast. The hopcount of Scribe_top (with
absolute topology awareness) is only slightly lower than that of MCAN2top, but lower
than unicast. Striking is the hopcount of topology aware MCANI1-the hopcount of
topology aware MCANT1 is even larger than that of unicast! One possible explanation
for this phenomenon is illustrated in Figure 7.17. The sequence of Figures 7.17(a) to
7.17(e) shows the process of nodes joining CAN network. First, only node 1 is in CAN,
and then, one by one, other nodes join. Let us assume that node 2 is the nearest node
to the newcomer 5. Node 5 then chooses node 2 as the split node. However, even though
they will be neighbors in CAN, due to the way MCAN algorithm operates (as described
in Section), they do not send messages to each other. Hence, the hopcount among nodes
will not be diminished by the nodes vicinity on CAN. In addition, as illustrated earlier
in Figure 7.7 as well, the addition of node 6 (e.g. close to node 3) may separate nodes
3 and 4, which are nearby in the underlying topology.
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Figure 7.16: (a) The pdfs of MCAN1 and MCAN2 in multiple CAN overlays derived
from experiments on PlanetLab. (b) The average hopcount of all schemes of interest,
derived from experiments on PlanetLab.
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7.5 Conclusions

Our goal was to examine the performance of several scalable Application Layer multicast
mechanisms, MCAN and Scribe, under the same conditions, with the hopcount as
a performance metric. In addition, we aimed at establishing the upper and lower
boundaries for the hopcount of these two algorithms, as a function of the network
awareness. Here, we summarize our observations:

1. We observe a hopcount “clustering” effect in MCAN.

2. The number of duplicate messages in MCAN is fairly eliminated with the modi-
fications to the forwarding algorithm that we introduced.

3. There is no significant influence of topology (un)awareness on the hopcount of
MCAN in scenario b (all members attached to different routers).

4. For a small number of multicast users m compared to the number of nodes in the
network N (p = m/N < 0.1), the hopcount obtained in MCANT in a topology
aware CAN overlay is higher than the hopcount in topology unaware CAN over-
lays, in scenario b. The same phenomenon has been observed in the measurements
results. One possible explanation is the way the topological information has been
integrated in CAN.

5. In Scribe, we observe a large influence of topology awareness on the hopcount.
The difference in hopcount can reach 40%.

6. In scenario a, topology unaware Scribe performs worse than m-Unicast.

7. The hopcount in the topology unaware NICE is virtually the same as in m-Unicast,
irrespective of the value of the cluster size [.

8. When the underlying topology is completely known, and each user is attached
to a different router, Scribe achieves the same number of hops as IP multicast.
The hopcount of a complete topology aware Scribe when the users may connect
to the same router remains higher than that of IP multicast. MCAN seems to
outperform m-Unicast only if CAN is completely topology-aware, and users may
attach to the same router multiple times. Under all the other circumstances, the
number of hops of MCAN is higher than m-Unicast. The modified CAN algorithm
MCAN2 outperforms m-Unicast. It outperforms the topology unaware Scribe as
well.
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9. The results of experiments on PlanetLab match our simulation results.

We can conclude that all the schemes perform poorly when the underlying topol-
ogy is unknown. However, in case of CAN, the topology awareness can even lead
to an increase in the hopcount.




Chapter 8

Conclusions

This chapter summarizes our research on Network and Application Layer multicast.
We recapitulate the methods we have used and our major findings. The chapter is
organized in three sections: Section 8.1 and Section 8.2 outline our findings related
to Network Layer (IP) and Application Layer (AL) multicast respectively. The main
contributions of this thesis are highlighted in Section 8.3.

8.1 Network Layer Multicast

Although a standard feature on most routers for a couple of years, and in spite of the
growing demand, IP multicast has not been widely utilized yet. This thesis focussed
on the impediments and challenges of multicast deployment. Most network providers
simply disable the multicast feature because they lack the necessary knowledge to op-
erate and manage it and they lack a business incentive. Network operators will only
put effort in implementing and managing IP multicast if doing so yields (significant)
financial benefits.

In order to establish a reliable multicast business framework, first all the factors that
impact multicast savings need to be quantified, as well as the additional cost multicast
induces. This, in turn, can only be achieved by fully understanding the behavior and
the properties of multicast trees. Understanding and modeling multicast trees properly
has therefore been the focus of the first part of this thesis.

We have started with the analysis of the stability of a multicast routing tree. The
stability of a multicast routing tree is an important factor that contributes to the
additional complexity of multicast over unicast. As multicast users join or leave the
group, a routing tree has to be recomputed, which can lead to transient routing behavior
and packet losses. We have examined the stability of such a tree, specifically, how
the number of links changes as the number of multicast users in a group changes.
In particular, the probability density function (pdf) for the number of changed links
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when one multicast user joins or leaves the group has been studied. We have first
analyzed the class of Shortest Path Trees (SPT), since they are commonly used by
the current multicast protocols. In random graphs of the class G,(N) with N nodes,
link density p and with uniformly (or exponentially) distributed link weights, SPT can
be asymptotically modelled with the Uniform Recursive Tree (URT). For this reason,
URT has been used further as a model for multicast trees. For the above defined class
of graphs the probability density function of the number of changed links is proved
to tend to a Poisson distribution for large N. The proof of this theorem enables a
generalization to an arbitrary topology. Extensive simulations, mainly conducted to
quantify the validity of the asymptotic regime, reveal that the Poisson law seems more
widely valid than just in the asymptotic regime.

Moreover, the stability of a Steiner Tree connecting m multicast users is compared
to the Shortest Path Tree via simulations. Steiner Minimum Trees, although optimizing
on the use of resources, are not deployed in multicast routing protocols, due to their
complexity and alleged instability. Our simulations confirm the intuitive assumption
that the stability of the Steiner Tree is in most situations worse than that of the cor-
responding Shortest Path Tree. Mainly because the departure or arrival of a multicast
member may cause other branches to be included in the Steiner Tree (to achieve an
overall minimum in the sum of the weights). Moreover, simulations reveal that not only
the network size NV, but also the link weight distribution, often forgotten when modeling
the network, has a significant impact on the stability of Steiner Trees. If the majority
of the links is differently weighted, the stability of the Steiner Tree resembles that of the
SPT. The other extreme, where most link weights are equal, leads to large instabilities
reflected by wild oscillations in the corresponding pdf of the number of changed links.

Hence, we conclude that the intuitive assumption on the (in)stability of Steiner
Minimum Trees is correct. Even though Steiner Trees optimize the use of resources,
they cannot be used in multicast protocols.

If we define the cost of multicast trees as the sum of used resources, then a question
that arises is, how much more costly are the Shortest Path Trees compared to Steiner
Trees. With the link weights representing the available resources, the sum of used
resources can be expressed as the sum of the link weights in the tree. The sum of the
link weights in the SPT is on average not more than 37% worse than that in SMT.
From the extensive simulations we were lead to conjecture that the probability density
function of the scaled sum of the link weights for small values of N tends to a Gumbel,
however, with the increase of N, it converges slowly toward a Gaussian.

The possible implications for business scenarios for ISPs of the model for multicast
trees we proposed have been discussed as well. Among the additional costs of multicast
over cost of unicast we distinguish the deployment, management and network costs.
Based on our model we have computed the network costs, and we have estimated the
deployment and management ones. The results suggested that at moderate bandwidths
multicast becomes beneficial for network operators for approximately one hundred re-
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ceivers. For higher bandwidths the break-even number of receivers is achieved with
approximately ten receivers.

In our study, we have assumed that routing follows shortest paths from the source
toward each of the destinations. Policy-based routing, although designed to find short
paths, can have the inflating effect on the paths. In order to convince the network oper-
ators that the business model based on the framework that we propose is trustworthy,
we have investigated how well our theoretical results match data collected from the
Internet itself. Specifically, we have investigated the node degree distributions and the
number of links in the multicast routing trees.

Internet measurement data in our study has been collected via the traceroute utility.
Traceroute collects and returns the information on an end-to-end IP path by transmit-
ting and receiving probe packets. By merging the collected paths together, multicast
routing trees can be obtained. Subsequently, the grouping of multicast routing trees
can lead to maps of (a part of) the Internet on a router-level. The traceroute data that
we have used was gathered from several different measurement architectures, such as
CAIDA, RIPE and PlanetLab.

After analyzing this data, we have shown that traceroutes suffer from several types
of drawbacks and faws. We have demonstrated and discussed the weaknesses of tracer-
outes that include errors and inaccuracies, aliasing problem and the bias sampling
problem. These drawbacks of traceroutes must be taken into account when drawing
the conclusions on topological properties of Internet based on traceroute measurement
data.

The (un)reliability of traceroutes is reflected in the results for the node degree dis-
tribution in maps of the Internet. In addition to our own measurements, measurement
data for this study has been provided by a number of different research groups. Simi-
larly to previously reported work on the node degree in the Internet map, most of the
measurements we collected, with the exception of RIPE and PlanetLab data, indicate
power-laws for node degrees, with similar values for the coefficient a,, (- in the degree
distribution given in Chapter 2). Furthermore, the measurement data seem to suggest
that alias-resolving techniques do not have a major effect on the node degree distri-
bution in Internet. The coefficient «, lies in the range 2.3 — 2.4, with the exception
of CAIDA data, where the value of the slope coefficient is «, = 2.97. This might be
the consequence of the one order of magnitude larger map obtained with the Skitter
project {(CAIDA), than the one obtained within the Rocketfuel project. The results
obtained by RIPE and PlanetLab indicate however not polynomially, but exponentially
distributed node degrees.

The divergence in results obtained by the RIPE and PlanetLab may be caused by
RIPE and PlanetLab measurement architecture, where each measurement box serves
both as the source and as the destination. Hence, the number of sources and destinations
is balanced, whereas in all the other measurement architectures the number of sources
has been very limited (only few) compared to a large number of destinations. The
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discrepancy in the node degree distributions based on RIPE and PlanetLab traceroute
data with results obtained by others, seems to confirm the above stated observation on
the reliability of traceroutes.

Only few measurement results have been reported on the topology of multicast
trees to this end. The results on the node degree distributions in multicast trees have
also been controversial: both exponential and polynomial distribution (power-law) have
been claimed. These conclusions have been drawn based on the quality of the fits of
the node degree distribution with a linear function on a log-log and a log-lin scale

While for larger values of the number of destinations m the degree distribution seems
to follow a power-law, for small m (m < 50) (based on both RIPE and CAIDA tracer-
oute data) this seems not to be the case. Further, our measurement results on the num-
ber of links in multicast trees indicated that this number lies in the range E [Hy (m)] +
3on(m) (where onx(m) = /var (Hy (m)), and E [Hy (m)] and var (Hy (m)) are the
average and the variance of the number of links in the Shortest Path Tree in the random
graph, and are given with Equations 2.7 and 2.9) for all values of number of users m.
Additionally, since oy (m) is much smaller than E [Hy (m)] for large N, as also sup-
ported by the measurement data, the number of links in the tree is well approximated
by the mean, Hy (m) ~ E [Hy (m)].This leads us to believe that although the random
graph with uniformly (or equivalently exponentially) distributed link weights and bi-
nomially distributed node degrees is not a good model for the Internet, the Shortest
Path Tree deduced from that class might be a good first-order approximation for the
multicast trees on the Internet.

8.2 Application Layer Multicast

Application Layer (AL) multicast was born as a response to a slowly deployed but
highly demanded IP multicast. Within a short period of time, a wealth of algorithms
emerged. Whereas the initially proposed schemes suffered from scalability, recently
proposed mechanisms for AL multicast can scale to large groups, counting tens of
thousands of users. The low implementation barrier of AL multicast is certainly its
most attractive feature. Unfortunately, the efficiency of AL multicast is lower than
that of IP multicast, since packets may traverse the same link several times.

In our study on Application Layer multicast, we have investigated the total num-
ber of hops (hopcount) the message traverses in three schemes: CAN-based multicast
(MCAN), Scribe and NICE. Among all the AL multicast protocols we have chosen these
three due to their superior scalability over the other schemes. We have compared the
hopcount among the different schemes, as well as to the hopcount achieved by unicast
and IP multicast, all under equal conditions. To the best of our knowledge, no such
evaluation of AL multicast has been performed to this end. Moreover, we have investi-
gated the influence of topology awareness on the efficiency of these protocols. Topology
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| awareness can be defined as the degree of the congruency of the overlay topology with
the underlying topology. We have assumed two extreme situations: in one extreme,
& overlay networks are completely oblivious to the underlying networks. In the other,
| overlay nodes possess all the knowledge of the underlying substrate.
In addition, we have introduced improvements to the MCAN algorithm that lead to
| reduction of duplicate messages.
‘ Both extensive simulations, as well as the measurements via PlanetLab, have indi-
cated that:

e The values of hopcount of the original MCAN forwarding algorithm concentrate
around several dominant values. This suggests that there seems to exist a finite
number of “groups” of CAN structures.

e The number of duplicate messages in MCAN is fairly eliminated with the modi-
fications to the forwarding algorithm that we introduced.

e Topology (un)awareness leads to no significant improvement on the hopcount of
| MCAN if all members can be attached to different users. For small number of
| users, the hopcount can even deteriorate. In Scribe, a large influence of topology
| awareness on the hopcount is perceived. The difference in hopcount can reach

40%.

e The original MCAN forwarding algorithm seems to outperform unicast only if
CAN overlay is completely topology aware and multiple users may attach to the
same router. Under all the other circumstances, the number of hops of MCAN is
higher than that obtained with unicast. Our modified MCAN algorithm outper-
forms unicast under all circumstances.

o If multiple users may attach to a same router, topology unaware Scribe performs
worse than m-Unicast.

e The hopcount in the topology unaware NICE is virtually the same as in m-Unicast,
irrespective of the value of the cluster size [.

e When the underlying topology is completely known and each user is attached to
a different router, Scribe achieves the same number of hops as IP multicast. The
hopcount of a complete topology aware Scribe when the users may connect to the
same router is still higher than that of IP multicast.

8.3 Thesis Contributions

Below, we list the main contributions of this thesis.
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We proposed a Uniform Recursive Tree (URT) as a model for IP multicast trees.
Based on the URT, the stability, savings and cost of multicast trees have been
analyzed and quantified.

The proposed model (URT) has been verified via measurements on the Internet.
The measurements of the number of links of multicast trees in the Internet indicate
an excellent fit with our analytical derivations. This suggests that the Shortest
Path Tree derived from the random graph is a good approximation for multicast
trees, even though the random graph is not a good model for the Internet itself.

The possible implications of our theoretical model for business scenarios of the
Internet Service Providers have been investigated. No appropriate business model
for IP multicast has been established to this end. Our results suggested that at
moderate bandwidths multicast becomes beneficial for network operators for ap-
proximately one hundred receivers. For higher bandwidths the break-even number
of receivers is achieved with approximately ten receivers.

The node degree distribution in the map of the Internet and in the IP multicast
trees, both constructed based on traceroute measurements collected in various
measurement architectures, has been analyzed. So far, power-laws have been
claimed for these distributions. The majority of our results for the node de-
gree distributions in the map of the Internet indicates power-laws, with a variant
gradient coefficient. Nevertheless, in some architectures (RIPE and PlanetLab)
we observe exponentially and not polynomially distributed degrees. Similar ob-
servations have been obtained for multicast trees. While for larger values of the
number of multicast receivers the degree distribution seems to follow a power-law,
for small group sizes this seems not to be the case.

Several scalable AL multicast schemes have been evaluated (under the same con-
ditions) and the influence of the topology awareness has been evaluated. To the
best of our knowledge, no such analysis has been conducted previously. We may
conclude that, among the schemes evaluated, Scribe performs the best. When the
topology is unknown to the end user, the performance of these schemes (in terms
of the number of traversed hops) can significantly deteriorate, and fall behind that
of unicast. In addition, the creation of CAN overlays indicates that the method of
the topology-information integration is even more important than the integration
of the topology information into the overlay itself.
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Chapter 9
Abbreviations

AL Application Layer

ALMI Application Level Multicast Infrastructure
ARPA Advanced Research Project Agency

AS Autonomous System

ASM Any Source Multicast

BGMP  Border Gateway Multicast Protocol

BGP Border Gateway Protocol

BTP Banana Tree Protocol

CAIDA  Cooperative Association for Internet Data Analysis
CAN Content Addressable Network

DHT Distributed Hash Table

DIS Distributed Interactive Simulations

DT Delaunay Triangulation

DVMRP Distance Vector Multicast Routing Protocol
HMTP  Host Multcast Tree Protocol

HTML Hyper-Text Markup Language

ICMP Internet Control Message Protocol

[ETF Internet Engineering Task Force

IGMP Internet Group Membership Protocol

P Internet Protocol

ISP Internet Service Provider

MASC Multicast Address-Set Claim

MBGP  Multiprotocol Border Gateway Protocol
MBone  Multicast Backbone

MCAN  CAN-based multicast

MSDP Multicast Source Discovery Protocol

MST Minimum Spanning Tree

NCP Network Communication Protocol

NICE NICE is the Internet Cooperative Environment




p2p

pdf
PIM-DM
PIM-SM
REC
RGU
RIPE
RP

RPF

rtt

SA

SCX
SMT
SPT
SSM
TBCP
TCP
TTL
URT
VLAN

Peer to Peer

Probability density function

Protocol Independent Multicast-Dense Mode
Protocol Independent Multicast-Sparse Mode
Request for Comments

Random Graph with uniformly distributed link weights
Réseaux IP Européen

Rendezvous Point

Reverse Path Forwarding

round trip time

Source Active

Scattercast Proxies

Steiner Minimum Tree

Shortest Path Tree

Source Specific Multicast

Tree Building Control Protocol

Transmission Control Protocol

Time to Live

Uniform Recursive Tree

Virtual Local Area Network
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Chapter 10

Symbols

o power exponent in polynomial link weight distribution
' power exponent in the node degree distribution
I'(2) Gamma function

¥ Euler’s constant

Ay (m) the number of changed links in the tree

4 (v) “attribute” of node v

v the economy-of-scale factor in Chuang-Sirbu law
m(v) predecessor list of node v

¥(z) digamma, function

¢(2) Riemann Zeta function

C cost

deg,, node degree

E[Hy (m)] = fny(m) the average number of links in a tree
E[Hy (m)] = gny(m) multicast efficiency

Gp(N) a random graph with N nodes and link probabilty p

Hy the number of links in a path from a source to a destination (hopcom
Hy(m) the number of links in a tree from a source to m destinations

Ky a complete graph with N nodes |
L the number of links in the graph

l the cluster size in NICE

m the number of multicast receivers

my the number of multicast users (receivers plus source)

N the number of nodes in the graph/ network size

Npastry the number of Pastry users

r correlation coefficient

w{i — 7) weight on the link connecting node i to node j

Wn (m) the sum of the link weights in SPT

Wteiner (k) the sum of the link weights in SMT
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Summary

Computing systems that can treat and provide multimedia keep developing rapidly.
Parallel to this development, great progresses in network technologies, in wireless as
well as wired, in core as well as access networks, are achieved: high-speed broadband
networks are becoming a reality. The continuously increasing number of users in the
Internet contributes to creating good foundations for the distribution of high qual-
ity multimedia content (audio/video conferencing, real-time interactive applications,
shared white boards, software updates, tele-classing, animated simulations, etc.) to the
end users.

The distribution of these types of applications over Internet can be most effectively
enabled by network-layer (IP) multicast technology. IP multicast has emerged to avoid
the situation in which multiple packets with identical data are sent to multiple receivers.
IP multicast differs from unicast in that it enables the source of data to send the data
packet only once. That packet is duplicated in the network when needed. In this way
multicast induces considerable reductions in the load on the sender, as well as the overall
network load.

Despite the savings it offers in network capacity and the growing demand for the
applications it supports, IP multicast is fifteen years after its origination still only
restrictedly adopted. The reasons that lead to its slow deployment are discussed in
Chapter 3. One of the most important ones is the lack of an appropriate business
model. The network operators are reluctant to implement multicast due to its higher
complexity compared to unicast. Such a business model can only be formulated if all
the factors that impact the savings and additional costs of multicast over unicast can
be quantified. This in turn requires the properties and behavior of multicast routing
trees to be understood and determined.

Consequently, the first part of this thesis focusses on determining the representative
properties of multicast routing trees. This is achieved both through exercising graph
theory (Chapter 4) as via measurements on the Internet (Chapter 5). The properties
analytically studied in Chapter 4 are the number of links (branches) in a multicast tree,
the stability of a tree, and its cost, defined as the sum of the used resources. They
are mathematically derived for the Uniform Recursive Tree, that serves as a model
for multicast trees. The possible implications of our results for network operators are
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discussed in the same chapter.

In addition to the study of Internet multicast trees, Chapter 5 presents the study of
modeling (a part of) the Internet. In both studies we make use of different measurement
architectures. The Internet measurements are performed via the traceroute utility.
Traceroute represents the current best tool for retrieving the path between a sender
and the destination in the Internet. Nevertheless, it suffers from several types of flaws
(discussed in the same chapter). Regarding multicast, the Internet measurements we
have collected seem to indicate that the Uniform Recursive Tree represents a reasonable
first-order approximation for multicast trees in the Internet.

Recently, an alternative solution to the IP multicast deployment problems emerged,
in the form of Application Layer (AL) multicast. The major difference between IP
multicast and AL multicast is that in the former, packets are replicated at routers,
whereas in the latter, packets are replicated at end-users. End-users that want to
receive multicast traffic form an overlay network in which each edge corresponds to a
direct unicast path between two group members. All data packets are sent as unicast
packets and forwarded from one member to another on the overlay, according to a
particular algorithm. The price that AL multicast has to pay for its simplicity is a
performance penalty (e.g. in terms of number of hops and packet delay), because a
packet may be replicated and forwarded on the same link more than once. Due to
the ease of deployment, many AL multicast protocols have been proposed within a
couple of years. However, little is known about their efficiency thus far. In general, it
is difficult to compare the efficiency for most protocols, as the performance also varies
according to group sizes and the characteristics of the underlying topology. In most
cases different algorithms are not compared under the same conditions. Understanding
the performance of existing AL multicast protocols is invaluable for optimizing and
improving the best among them. Moreover, if AL multicast does not substantially
improve unicast, its deployment cannot be justified.

Therefore, in the second part of this thesis we aim to compare AL multicast protocols
under equal conditions, as a function of the network size and the number of multicast
users. Chapter 6 reviews seventeen different AL multicast protocols. Among those,
three that are most promising in terms of efficiency and scalability, have been chosen.
We further introduce improvements to one of them. These four protocols have been
compared mutually, as well as to IP multicast and unicast. As a comparison metric, the
number of traversed hops has been chosen. In addition, the influence of the knowledge
of the underlying topology has been investigated. The results of our analysis are given in
Chapter 7. The extensive simulations and experiments on the Internet have suggested
that when the underlying topology is unknown to the end users, and they may be
attached to the same router, the efficiency of AL multicast is worse than that of unicast.




Samenvatting (Summary in Dutch)

Titel: Multicast in de netwerk- en de applicatielaag.

Multimedia toepassingen over het Internet, zoals audio- en videoconferenties, telel-
eren en software updates, laten een snelle groei in hun omvang zien. De oorzaak van deze
groei is de toenemende rekenkracht van computers, de grote vooruitgang in netwerk-
technologiegn (breedband), en de toename in het aantal gebruikers.

Het over het Internet verzenden van data gebeurt met name middels het unicast com-
municatie protocol. Echter, het verzenden van multimedia tussen meerdere gebruikers
kan efficiénter verzorgd worden door middel van het multicast protocol. Het verschil
tussen unicast en multicast is het volgende: bij unicast zendt een zender een bericht
aan de ontvanger via de kortst mogelijke route. In het geval van meerdere ontvangers
stuurt de bron een bericht evenveel keer als er ontvangers zijn. Multicast daarintegen
combineert de afzonderlijke unicast routes in een boomstructuur met de zender aan de
basis en de ontvangers aan de uiteinden. Er wordt steeds slechts één bericht (pakketje)
door de bron (onderaan aan de stam) gestuurd, tot op het plek waar de takken van de
boom uit elkaar gaan. Op die plek wordt het bericht vermenigvuldigd. De zo ontstane
multicast routeringsboom levert een forse besparing van de netwerkcapaciteit op voor
multimedia toepassingen.

Ondanks de besparing van netwerkcapaciteit is IP multicast (multicast op het netwerk
niveau) vijftien jaar na het ontstaan ervan nog steeds niet op grote schaal doorgebroken.
Er zijn een aantal redenen die de implementatie van multicast hebben vertraagd (Hoofd-
stuk 3). Eén van de belangrijkste redenen is het ontbreken van een geschikt business
model. De netwerkbeheerders zullen multicast pas implementeren als het winst oplev-
ert. Fen business model kan pas worden opgesteld als alle factoren die besparingen en
kosten van multicast beinvloeden kunnen worden gekwantificeerd. Dit betekent dat we
de eigenschapen van multicast routeringsbomen, en meer algemeen de onderliggende
Internettopologie, moeten bepalen en kwantificeren.

Als eerste doel van deze thesis stellen wij de representatieve eigenschappen van de
multicast routeringsbomen vast door middel van zowel grafentheorie (Hoofdstuk 4) als
Internetmetingen (Hoofdstuk 5). De eigenschappen die we in Hoofdstuk 4 analytisch
bestuderen zijn het aantal links (takken) in een multicastboom, de stabiliteit van de
multicastboom, en zijn kosten. Onze wiskundige berekeningen zijn gebaseerd op de
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Uniforme Recursieve Boom. Met behulp hiervan hebben we een schatting gemaakt
onder welke condities multicast winstgevend wordt voor netwerkoperatoren.

Naast multicastbomen bestuderen wij in Hoofdstuk 5 het modelleren van de topolo-
gie van (een deel van) het Internet. Daarvoor maken wij gebruik van verschillende
meetopstellingen en architecturen. De Internet metingen zijn met name verricht door
middel van de ‘traceroute’ methode. Traceroute is op dit moment het beste gereedschap
voor het bepalen van het pad van de zender naar de ontvanger. Traceroute is echter
niet ideaal vanwege de aanwezigheid van foutmeldingen, aliasing en een bias sampling
probleem (Hoofdstuk 5). De effecten van deze nadelen moeten worden meegewogen in
conclusies over de Internettopologie en routeringsbomen.

Onze metingen aan het Internet suggereren dat de Uniforme Recursieve Boom een
aanvaardbaar model is voor multicastbomen in het Internet. Dit model kan daarom als
basis dienen voor een multicast business model.

De problemen die inherent zijn aan IP multicast kunnen deels opgelost worden met
Application Layer (AL) multicast - multicast op de applicatie laag. In AL-multicast
is de multicastfunctionaliteit van de netwerklaag naar de applicatielaag verplaatst.
Dat wil zeggen dat het dupliceren van de pakketjes niet meer door de routers, maar
door de eindgebruikers wordt gedaan. Echter, dit gaat ten koste van de kennis van
de onderliggende netwerkstructuur en daarom is AL-multicast minder efficiént dan
IP-multicast. Er was nog weinig bekend over de prestaties van de verschillende AL-
multicast protocollen. Doorgaans is het moeilijk om de efficiéntie van de meeste pro-
tocollen te vergelijken op basis van de aanwezige literatuur, omdat de resultaten veelal
door middel van simulaties dan wel empirisch verkregen zijn en alleen in grafische vorm
beschikbaar zijn. Meestal zijn protocollen niet vergeleken onder dezelfde condities.
Bovendien varieert de efficiéntie als functie van het aantal gebruikers en de karakter-
istieken van het onderliggende netwerk.

Als tweede doel heeft deze thesis daarom de prestaties van AL multicast protocollen
vergeleken, als een functie van de netwerkomvang en het aantal gebruikers. Deze thesis
vergelijkt de bestaande protocollen wel onder gelijke condities, waardoor de protocollen
beter begrepen kunnen worden. Het biedt ook een basis om te zien of AL-multicast
protocollen iiberhaupt significant beter zijn dan unicast en of hun installatie gerecht-
vaardigd is. Hoofdstuk 6 presenteert een classificatie en een gedetailleerd overzicht van
zeventien verschillende AL-multicast protocollen. Uit deze zeventien protocollen hebben
we de drie waarvan we de beste prestaties verwachtten, met betrekking tot schaal-
baarheid en efficiéntie, verder geanalyseerd. Deze drie zijn MCAN, Scribe en NICE.
Daarnaast hebben we een verbetering voor het MCAN algoritme geintroduceerd als
vierde AL multicast protocol. Deze vier protocollen plus unicast en IP-multicast hebben
we vergeleken, onder gelijke condities, op basis van de hopcount (aantal verbindingen
tussen knooppunten in het netwerk die een bericht moet passeren om alle ontvangers te
bereiken). Daarnaast hebben we onderzocht hoe het topologiebewustzijn van de proto-
collen hun efficiéntie beinvloedt. Topologiebewustzijn is gedefinieerd als de mate van
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overeenkomst tussen de topologie van het netwerk op de applicatielaag en de topolo-
gie van het onderliggende netwerk. De vergelijking ging uit van twee uitersten: de
eindgebruikers die het overkoepelende netwerk vormen weten of niets of alles van het
onderliggende netwerk. De resultaten van onze analyse presenteren wij in Hoofdstuk 7.
De uitgebreide simulaties en Internet metingen demonstreren dat als de onderliggende
topologie onbekend is, en meerdere gebruikers aan dezelfde router verbonden kunnen
zijn, de efficiency van AL multicast slechter is dan die van unicast.
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