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Preface

Before you lies the final piece of work I will produce during my time as a student in Delft. It is the product
of more than twelve months of efforts, which, according to true TU Delft tradition, is longer than initially
planned. Along the way, the process has surely been very difficult at times, but overall, I look back and am
quite proud of the end result. As you will be able to read, this thesis is part of a longer program that is to
eventually result in proven and effective simulator training programs that teach pilots to recognize, prevent,
and recover from dangerous stalled flight conditions. It is my hope that a step in that direction has been
made, no matter how small that step might be.

Back in the summer of 2016, when I was looking for a thesis project, I was immediately excited by the
possibility of working on stall modeling of a real aircraft. It appeared to have everything I was looking for: a
challenging system identification problem, the fact that I would not have to sit in a simulator control room
for weeks on end, a relevant application to industry, and also the opportunity of doing actual flight tests!
However, these flight tests also introduced a large amount of uncertainty into the feasibility and planning
this project, which made me doubt whether I should commit to this subject.

However, in the end, my enthusiasm and optimism won; in August 2016, I officially started my thesis.
As with all students, the first months were spent with reading up on literature and trying to wrap my head
around the suddenly enormously-appearing task that stood before me. Then, already in November 2016, it
turned out that my initial doubts were unfounded. A full day of flight tests took place during probably the
most beautiful day of weather of that year’s Fall. The fact that I could work with real flight data has been both
a privilege and a challenge. During these months I have become so familiar with the view of the plots, that
I decided to use them to decorate the cover page of this report, so that others might see them too as I did.
Moreover, I feel that they have been used to build a high-quality model, but I will leave the final judgement of
that to the examination committee.

I would like to use this section to thank all the people that have helped me during this project. First of all
a big thanks to Daan and Coen, my daily supervisors, for all the feedback, encouragement, and support. Our
meetings were really enjoyable, and provided me with (sometimes much needed) positive reinforcement to
push on. Next, Max, thanks for your feedback on those important decision moments, and for finding the time
in your busy schedule to read and comment on my paper. René, thank you for your comments on my paper,
and for updating DUECA to support the latest changes to Matlab. Olaf, thank you for all your assistance
(and patience) in getting the stall model running in SIMONA. Hans and Xander, Citation pilots, for your help
in designing the flight tests, and for managing all that paperwork (and the bureaucrats of the NLR). Aircraft
technicians, Ferdinand and Menno, thanks for preparing and planning the aircraft, and for guiding a student
who has very little experience with real-world aircraft operations. Sunjoo, for supporting the research project,
your industry insights, your enthusiasm, and for agreeing to be part of the examination committee. Steven
Hulshoff, for also taking place in the examination committee as external member. And finally, a big shout-out
to all the boys and girls of room NB2.44 and SIM0.08. Thanks for all the coffee breaks, lunches, Friday drinks,
bad jokes, time-outs for really bad jokes, and being a place where all the daily struggles and frustrations could
be discussed. Without you, it would have been no fun at all!

This preface is already turning out much longer than I thought, much like this whole report itself. A short
note on how it is structured: it consists of four parts. First comes the research paper I have written, which
is intended to summarize my research in a scientific way. Next is the prelminary thesis report, which covers
roughly the first half of the thesis project. After that, there are two parts containing appendices, which present
additional findings, details, and conclusions that did not make it to the final paper.

iii



Contents

List of Figures vii

List of Tables viii

Nomenclature ix

I Scientific Paper 1

II Preliminary Thesis Report 33

1 Introduction 34

2 Background & Literature Review 37
2.1 Aerodynamic Stall Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2 New FAA Regulations Regarding Stall Modeling in FSTDs . . . . . . . . . . . . . . . . . . . . . 38
2.3 ICATEE List of Effects of Aerodynamic Stall . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4 A Literature Survey of Stall Modeling Research . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4.1 Early Efforts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4.2 Kirchoff’s Theory of Flow Separation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4.3 Other Extensions to Aerodynamic Model Equations . . . . . . . . . . . . . . . . . . . . 43
2.4.4 Application of Fighter Methods to Civil Aircraft . . . . . . . . . . . . . . . . . . . . . . 44
2.4.5 Founding of ICATEE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.4.6 Bihrle Applied Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.4.7 Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 Flight Test Experiments 48
3.1 Test Aircraft and FTIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Flight Test Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 Objectives For Flight Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.2 Maneuver Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Notes on the Flight Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Flight Path Reconstruction 51
4.1 Unscented Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.1 UKF Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.1.2 UKF Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Navigation Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.1 Position, Velocity, Attitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.2 Wind, IMU Sensor Biases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.3 Air Data Boom Vane Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.4 Full Navigation Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Observation Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.1 Position Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.2 Attitude Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.3 Air Data Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.4 Full Observation Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Observability and Final System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.1 Local Observability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.2 State Covergence On a Real Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.3 Final System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Example of UKF Performance on Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

iv



Contents v

5 Stall Model Structure 66
5.1 Conventional Aerodynamic Model Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2 Extensions to the Conventional Aerodynamic Model Equations . . . . . . . . . . . . . . . . . 68

5.2.1 Terms Based on Kirchoff’s Theory of Flow Separation . . . . . . . . . . . . . . . . . . . 68
5.2.2 Higher Order Polynomial Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.3 Univariate Splines of State Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2.4 Other Model Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Buffet Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4 Merging the Stall Model with the Regular Aerodynamic Model . . . . . . . . . . . . . . . . . . 72
5.5 Chapter Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Parameter Estimation 73
6.1 Evaluating Model Fit Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.1.1 Mean Squared Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.1.2 Variance Accounted For . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.1.3 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.1.4 Parameter Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.1.5 Cramèr-Rao Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2 Nonlinear Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2.1 Nonlinear Optimization in MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2.2 Parameter Sensitivity of the Solution of an ODE . . . . . . . . . . . . . . . . . . . . . . 76

6.3 Linear Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.4 Chapter Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7 Preliminary Results 78
7.1 Model Identification Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.1.1 Selected Model Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.1.2 Cost Function & Solver Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.2 Estimated Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.2.1 As Function of Flight Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.2.2 Parameter Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.3 Time-History Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.3.1 Training Data Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.3.2 Validation Data Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.4 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8 Conclusion &Outlook 90
8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.2 Outlook For Remainder of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Bibliography 93

III Appendices to Preliminary Thesis Report 97

A AHRSData Corrections 98
A.1 Specific Force to Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.2 AHRS Output to Specific Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.3 Complete Correction Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

B Usability of Old Flight Data 101
B.1 Analysis Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
B.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
B.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

C Vibrations in the Air Data Boom 109
C.1 Power Spectral Density Estimate of Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . 109
C.2 Filtering the Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

D Example Flight Test Card 111



vi Contents

IV Appendices to Final Report 115

E TimeHistory Plots of All Flight Data Sets 116

F Analysis of Flight TestManeuver Effectiveness 123
F.1 Methodology & Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
F.2 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

G SIMONA Implementation ofModel 128
G.1 Current State of SIMONA Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
G.2 Recommended Next Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

H List of Recommendations for Future Research 130



List of Figures

1.1 The structure of the proposed thesis research methodology . . . . . . . . . . . . . . . . . . . . . . 35

2.1 Progression of trailing edge flow separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2 Statistics of civil aviation fatalities by category, 2006-2015 . . . . . . . . . . . . . . . . . . . . . . . 38
2.3 Example of nonlinear control and stability derivatives of an F-15 during stall . . . . . . . . . . . . 41
2.4 Illustration of internal variable X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.5 Non-pysical model behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.6 Mechanization of aircraft angular rate vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1 A picture of the PH-LAB laboratory aircraft of DUT and NLR, note that the air data boom is not
installed in this picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Schematic views of the PH-LAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Negative correlation between CÆup and CÆ0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 UKF state convergence (1/2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 UKF state convergence (2/2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4 UKF reconstructed states (1/2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.5 UKF reconstructed states (2/2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.6 UKF reconstructed measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.7 UKF reconstructed input signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.8 UKF measurement innovations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Illustration of internal variable X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 Effect of varying ø1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3 Effect of varying ø2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.4 Effect of varying a1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.5 Effect of varying Æ§ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.1 Scatter of X -parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.2 Scatter of CL-parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.3 Scatter of CD -parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.4 Scatter of CY -parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.5 Scatter of Cl -parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.6 Scatter of Cm-parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.7 Scatter of Cn-parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.8 Time history of training data fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.9 Time history of validation data fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.10 Sensitivity analysis of X and CL-parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.1 Raw AHRS output visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.2 Corrected AHRS output visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

B.1 Detailed plots of Æ, Ø, for a longitudinal stall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
B.2 Reconstructed measurement signals, for a longitudinal stall . . . . . . . . . . . . . . . . . . . . . . 103
B.3 Reconstructed state (1/2), for a longitudinal stall . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
B.4 Reconstructed state (2/2), for a longitudinal stall . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
B.5 Reconstructed input signal, for a longitudinal stall . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
B.6 Detailed plots of Æ, Ø, for a partially lateral stall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
B.7 Reconstructed state (1/2), for a partially lateral stall . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

vii



C.1 PSD of raw and filtered boom signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
C.2 Time history of raw and filtered boom signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

E.1 Time history plots of training sets 1, 2, and 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
E.2 Time history plots of training sets 4, 6, and 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
E.3 Time history plots of training sets 9, 10, and 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
E.4 Time history plots of training sets 13, 14, and 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
E.5 Time history plots of training sets 17, 18, and 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
E.6 Time history plots of training sets 20, 21, and 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
E.7 Time history plots of training sets 26, 27, and 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
E.8 Time history plots of training sets 29, 30, and 31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
E.9 Time history plots of training sets 32, 33, and 34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
E.10 Time history plots of validation sets 5, 7, and 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
E.11 Time history plots of validation sets 16, 22, and 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
E.12 Time history plots of validation sets 22, and 23, which are repeated from previous figure and 25. 122

F.1 Flight test maneuver analysis plots for the X -parameters. . . . . . . . . . . . . . . . . . . . . . . . 124
F.2 Flight test maneuver analysis plots for the CL-parameters. . . . . . . . . . . . . . . . . . . . . . . . 125
F.3 Flight test maneuver analysis plots for the CD -parameters. . . . . . . . . . . . . . . . . . . . . . . 125
F.4 Flight test maneuver analysis plots for the CY -parameters. . . . . . . . . . . . . . . . . . . . . . . 126
F.5 Flight test maneuver analysis plots for the Cl -parameters. . . . . . . . . . . . . . . . . . . . . . . . 126
F.6 Flight test maneuver analysis plots for the Cm-parameters. . . . . . . . . . . . . . . . . . . . . . . 127
F.7 Flight test maneuver analysis plots for the Cn-parameters. . . . . . . . . . . . . . . . . . . . . . . . 127

G.1 Overview of the complete Citation II aircraft model as implemented in Simulink . . . . . . . . . 129
G.2 Aerodynamic stall model part of the Simulink model. . . . . . . . . . . . . . . . . . . . . . . . . . . 129

List of Tables

3.1 Mass and geometry properties of the Cessna Citation II . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 FTIS signals that are measured in-flight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3 Air data boom dimensions w.r.t. datum line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 UKF parameters used for the FPR in this thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 The range from which the random states were sampled for the local observability analysis. . . . 57

7.1 Parameter bounds used in preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.2 Largest absolute parameter correlation values (repeated from Table 7.3) . . . . . . . . . . . . . . 84
7.3 Parameter correlations from preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.1 AHRS output, specific force, acceleration symbol notation definitions . . . . . . . . . . . . . . . . 98

E.1 List of all gathered data sets, showing whether they were a wings-level or accelerated stall, and
wheter they were used as training (T) or validation (V) data. . . . . . . . . . . . . . . . . . . . . . 116

F.1 List of the properties and metrics that were used in the analysis if flight test maneuver effective-
ness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

viii



Nomenclature

List of Roman Symbols

Symbol Description Unit
a1 Shape parameter of flow separation point X -
A Specific force output signal of AHRS (includes a correction on zb-axis) ms°2

b Wing span m
C Force or moment coefficient (see subscripts) -
c̄ Mean aerodynamic chord m
g0 Standard gravitational acceleration (9.0865) ms°2

h Altitude m
I Rotational moment of inertia kgm2

J Cost function value -
K UKF Kalman gain -
M Mach number -
m Mass kg
p Roll rate rads°1

P UKF state auto-covariance matrix -
q Pitch rate rads°1

Q UKF process noise matrix -
r Yaw rate rads°1

R UKF measurement noise matrix -
S Wing surface area m2

S Periodogram, power spectrum estimate -
t Time s
u Wind velocity in xb ms°1

u UKF input vector -
v Wind velocity in yb ms°1

v UKF process noise variables vector -
VTAS True airspeed ms°1

W UKF weights or wind velocity - or ms°1

w Wind velocity in zb or random variable ms°1 or -
w UKF measurement noise variables vector -
X Normalized flow separation point position -
x x-position in current axis system m
x UKF state vector -
y y-position in current axis system m
y UKF measurement vector -
z z-position in current axis system m

ix



x List of Tables

List of Greek Symbols

Symbol Description Unit
Æ angle of attack rad
Æ§ Angle of attack for which X = 0.5 rad
Æcrit critical angle of attack rad
Ø Angle of sideslip rad
±a ,±e ,±r Aileron, elevator, and rudder deflections rad
∏ Bias term -
¡ Aircraft roll angle rad
µ Aircraft pitch angle rad
√ Aircraft yaw angle rad
ø Time constant s
ø1 Lag time constant of flow separation point X s
ø2 Hysteresis time constant of flow separation point X s
X UKF set of sigma points -
Y UKF transformed set of sigma points -
! Aircraft rotation vector or frequency rads°1 or Hz

List of Subscripts

Subscript Meaning
0 Static term
b Body reference frame
D Drag force
E Earth-fixed reference frame
k Time sample
L Lift force
l Roll moment
L,R Left and right
m Pitch moment
N Normal force
n Yaw moment
osc Oscillatory
si Sidewash
ss Steady-state
T Tangential force
up Upwash
v Air data boom vane
xx, y y, zz, xz Aircraft body planes
Y Lateral force

List of Superscripts

Superscript Meaning
· Time derivative
ˆ Estimate
˜ Dimensionless variant of variable
a Augmented state with process and measurement noise variables
> Matrix transpose



List of Tables xi

List of Abbreviations

Abbreviation Meaning
AHRS Attitude and heading reference system
AvSP Aviation safety programme
BAR Bihrle applied research
CAST Commercial aviation safety team
CFD Computational fluid dynamics
CFIT Controlled flight into terrain
CRLB Cramèr-Rao lower bound
DADC Digital air data computer
DASMAT Delft University aircraft simulation model and analysis tool
DUT Delft University of Technology
EU European Union
FAA Federal Aviation Administration
FL Flight level
FSTD Flight simulation training device
FTIS Flight test information system
GPS Global positioning system
ICATEE International Committee for Aviation Training in Extended Envelopes
JAR Joint aviation requirements
LOC-I Loss off control in-flight
MLE Maximum likelihood estimate
MSE Mean squared error
NASA National Aeronautics and Space Administration
NLR Netherlands Aerospace Laboratory
ODE Ordinary differential equation
QTG Qualification test guide
RE Runway excursion
SRS SIMONA research simulor
SUPRA Simulation of upset recovery in aviation
UKF Unscented Kalman filter
US United States
VAF Variance accounted for





I
Scientific Paper

1



Stall Model Identification of a Cessna Citation II from Flight
Test Data Using Orthogonal Model Structure Selection

Joost van Ingen⇤

Delft University of Technology, Delft, 2629HS, the Netherlands

From 2019 onwards, airline pilots will be required to follow stall training in simulators. A major open
research question is which level of model fidelity is required for effective training. As part of an effort to
answer this question, a stall model of a Cessna Citation II aircraft is developed from specifically-gathered
flight test data. The model is based on Kirchoff’s theory of flow separation. During identification, the nonlinear
and linear parameters of the model are estimated in separate steps. This distinction enables the application
of a semi-objective model structure selection method using multivariate orthogonal functions. It is shown
that stall-related effects should be included in the model equations for lift, drag, and pitch moment. The
model parameters are accurately estimated, and model output is validated around a flight condition of 5,500
m altitude. The developed methodology is concluded to be well-suited for stall model identification of small
business jets.

Nomenclature

Roman

A Matrix of regression variables
A⇤ Specific force in ⇤-direction [m/s2]
a Regression variable vector
a1 X-parameter for shape [-]
b Aircraft span [m]
C⇤ Force/moment coefficient [-]
c̄ Average chord length [m]
I⇤ Angular moment of inertia

around ⇤-axis [kgm2]
J Cost function value
M Mach number [-]
m Mass [kg]
N Amount of time samples
n Amount of terms in a model structure
p Roll rate [rad/s]
q Pitch rate [rad/s]
R2 Coefficient of determination
r Yaw rate [rad/s]
S Wing surface area [m2]
p Orthogonalized regression variable vector
U Theil statistic

Greek

↵ Angle of attack [rad]
↵⇤ X-parameter for scheduling [rad]
� Angle of sideslip [rad]
�k,j Gram-Schmidt scaling parameter
✏ Vector of remnant
�a Aileron deflection [rad]
�e Elevator deflection [rad]
�r Rudder deflection [rad]
✓ Pitch angle [rad] or parameter vector
✓̂ Optimal estimate of parameter vector
⇢ Correlation
� Standard deviation
⌧1 X-parameter for time delay [s]
⌧2 X-parameter for hysteresis [s]
� Roll angle [rad] or orthogonal parameter

vector
�̂ Optimal estimate of orthogonal parameter

vector
 Heading angle [rad]

⇤MSc student, supervised by: dr. ir. D.M. Pool, dr. ir. C.C. de Visser, dr. ir. M.M. van Paassen, and prof. dr. ir. M. Mulder; all from the Faculty of
Aerospace Engineering, Control and Simulation Division. Email: joostingen@gmail.com
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Roman (continued)

VTAS True airspeed [m/s]
x Regression variables
xE , yE , zE Cartesian position in FE [m]
ẋE , ẏE , żE Velocity components in FE [m/s]
X Flow separation point variable [-]
y Measurement vector
ŷ Model output vector

Subscripts

D Drag
L Lift
l Roll moment
m Pitch moment
n Yaw moment
T Thrust force
Y Lateral force

I. Introduction

Loss of control in-flight currently is the largest category of fatal civil and general aviation accidents,1 and aerody-
namic stall is an important contributor.2 Better training of pilots in recognizing, preventing, and recovering of stalls is
seen as an important step for increasing safety.3 From March 2019 onwards, such training will become mandatory for
all airline pilots.4 Due to cost and safety considerations, this stall training will take place in simulators. As a result,
there is an increased demand for stall models of civil aviation aircraft.

Currently, aerodynamic stall models are difficult to obtain. Stalls are characterized as highly nonlinear, unsteady,
configuration-dependent, and fundamentally unpredictable.5 Current stall modeling methods generally fall in either of
two categories. The first category is based on modeling methods that were originally developed for fighter jets. Starting
in the 1980s, these were also applied to civil aviation aircraft. NASA6,7 and the EU8,9 both have had dedicated research
programs based around this “fighter” method. This method relies on extensive wind tunnel testing, is complex and
expensive to implement, but can be used for modeling even extreme maneuvers such as spins. The second category
is based on Kirchoff’s theory of flow separation.10 It involves modeling of an internal flow separation point variable
X , which in turn affects lift and possibly other forces or moments. The potential range of application of “Kirchoff’s
method” is smaller – spins cannot be modeled – but it is simpler to implement. Research has shown that the flow
separation point parameters can be identified from flight test data.11,12,13 Both these approaches have resulted in
stall models of varying fidelity. Recently, novel modeling methods have appeared, such as those based on CFD14

or representative methods based on aircraft geometry and/or configuration.15,16 Regardless of modeling method, a
major unanswered question is what level of fidelity is actually required for effective pilot stall training. A pilot-in-the-
loop evaluation of several stall models of varying fidelity found no differences in subjective ratings from a group of
experienced pilots.17 The Faculty of Aerospace Engineering at the TU Delft is uniquely positioned to contribute to
this question; it has access to both a research simulator, as well as a test aircraft.

However, a full model of the stall dynamics of this test aircraft – a Cessna Citation II – does not exist yet. Previous
research18 has resulted in a partial stall model based on Kirchoff’s method, which includes only longitudinal dynam-
ics. Because flight data of only quasi-static stall maneuvers were available, it was shown to be difficult to identify
dynamic stall effects. Moreover, a thorough substantiation of which terms to include in the model remained to be
done, specifically considering control surface degradation, which was not yet included in the model.

Therefore, the existing Citation II stall model has been extended. Dedicated flight tests are done to gather data
that contains sufficient dynamic excitation as well as control surface perturbations during stall maneuvers. An air data
boom is installed that measures side slip angle, enabling the identification of lateral model terms. System identification
is aided by objective model structure selection using multivariate orthogonal functions modeling. Finally, the nonlinear
parameter estimation problem is approached efficiently, by optimizing the flow separation point parameters separately
from the rest of the model.

The structure of this paper is as follows. Section II describes the flight test vehicle and the maneuvers that were
flown to gather the data. Section III presents the stall modeling methodology. The parameter estimation and model
structure selection techniques that were used are discussed separately. Results are presented in Section IV. Section V
follows with a discussion of the work, and Section VI presents the conclusions.
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II. Flight Test Data

A. Flight Test Vehicle

Flight tests were performed in a Cessna Citation II (callsign PH-LAB). This aircraft is jointly owned by the Faculty of
Aerospace Engineering of Delft University of Technology, and the Netherlands Aerospace Center (NLR). The aircraft
is equipped with an advanced flight test instrumentation system (FTIS), which connects and logs data from installed
sensors. Schematic views of the aircraft can be found in Figure 1. Tables 1 and 2 describe general mass and geometric
properties, and list the flight test equipment relevant to this research. Critical to this research is the air data boom,
which is mounted on the nose of the aircraft, and is illustrated on the left-hand side of Figure 1. The boom enables
accurate measurements of the angle of attack and angle of sideslip.19

Figure 1. Schematic views of the PH-LAB, including the body-fixed reference frame axes definition. The left schematic also illustrates the
installed air data boom.

Table 1. PH-LAB dry mass &
dimensions.

Dimensions

b 15.9 m
c̄ 2.09 m
S 30.0 m2

Mass and inertia

m 4,157 kg
Ixx 12,392 kgm2

Iyy 31,501 kgm2

Izz 41,908 kgm2

Ixz 2,252.2 kgm2

Table 2. List of flight test equipment installed in the Cessna Citation II aircraft PH-LAB,
including the variables they measure, which are relevant to this research.

Name Explanation Measures Variables Units

GPS Global positioning system Position in FE xE , yE , zE m
Velocity in FE ẋE , ẏE , żE m/s

DADC Digital airdata computer Total airspeed VTAS m/s

AHRS Attitude & heading reference
system

Aircraft attitude �, ✓, rad
Body rotation rates p, q, r rad/s
Body specific forces Ax, Ay , Az m/s2

Synchro Angle measurements Contr. surf. defl. �a, �e, �r rad

Boom Air data boom Air incidence ang. ↵,� rad

B. Flight Test Maneuvers

Two flights were conducted in order to gather the stall data required for this research. Special maneuvers were flown
for the specific goal of stall model identification. In total, 34 stall maneuvers were recorded, all in clean configuration
(i.e., no flaps, and gear retracted). Each stall maneuver was trimmed to include stall entry, stall itself, as well as
recovery phases.
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Figure 2 visualizes several key characteristics of the data sets. Figure 2a shows that the majority of data sets were
gathered around 5,500 m flight altitude. As a result, this is the only condition for which the model output could be
validated. Figure 2b shows that angles of attack up to 22 degrees were achieved, where the Citation would stall around
12 degrees. Figure 3 shows the gathered flight data in a V -n diagram.

Two types of stall were flown: wings-level symmetric and accelerated stalls. This distinction was made in an
attempt to distinguish ↵̇-related effects from q-related ones. The difference between these maneuver types can seen
in the �-plot in Figure 2c. The former was entered by achieving trimmed, level flight, and then reducing airspeed
by 1 kts/s by closing the throttle. During the stall, effort was put into keeping the wings-level condition with aileron
inputs. The accelerated stall entry was similar, but started from a coordinated turn of either about 30 or 45 degrees
bank (approximately 1.1 or 1.3 g). In the stall, the pilots aimed to keep the same bank angle and turn rate. Maneuvers
1-15, 33, and 34 are wings-level, the rest are accelerated stalls. All accelerated stalls were right-hand turns, except
maneuver 29, which was a left-hand turn.

A piloting technique was developed in collaboration with the test pilots, based on one described by Morelli.20 The
main principle is that pilot inputs are composed of two components: one part to keep the aircraft at or close to the
desired flight condition, and a second component with (semi-)random disturbances to excite the aircraft. Figures 2d,
e, and f visualize the use of control surfaces during each maneuver. In Figure 2f it can be seen that large rudder inputs
were only applied during maneuvers 3-6 and 27-34. This is because rudder inputs were only applied as “disturbance”.
The response of the aircraft to rudder excitations during stall was unknown, which is why rudder deflections were
carefully increased during the experiments. The end result is that not all data sets contain sufficient rudder excitations
for identifying a yaw moment model. The aileron and elevator were used during all maneuvers.

For the conditions that were tested, the aircraft’s stall behavior was quite benign and showed a strong self-
recovering tendency. Active pilot elevator inputs were required to direct the Citation II back into a stalled condition
after the aircraft would recover itself. As a result, some of the stall maneuvers are actually a sequence of short stalls.
Examples of this can be seen later on in this thesis, for instance in Figure 27.

C. Data Pre-Processing

Before the model identification, two data pre-processing steps were taken. First, all recorded signals were filtered
using a zero-phase low-pass filter using MATLAB’s filtfilt function. A Butterworth filter of order 4 was used.
There were two main disturbance sources: vibrations due to the stall buffet, and amplified noise in signals that are
obtained through numerical differentiation (e.g., ṗ, or ↵̇). The buffet vibrations are vital to a realistic stall model
implementation in a simulator, but these are modeled by a separate buffet model,18 and are not in the scope of this
research. The cut-off frequencies for the filtered signals are listed in Table 3. An example of filtering can be seen in
Figures 4 and 5, where part of a time history and a power spectral density estimate are shown both before and after
low-pass filtering.

After applying the low-pass filter, the second pre-processing step was to apply an optimal state reconstruction
using an Unscented Kalman Filter (UKF). This filter was developed and shown to be effective in previous research,18

and was adjusted to use the ↵ and � signals from the air data boom.

Table 3. Cut-off frequen-
cies used for low-pass filter-
ing measured signals.

Signal(s) fc [Hz]

↵, � 4.0
↵̇, �̇ 4.0
�a, �e, �r 4.0
Ax, Ay , Az 1.5
p, q, r 1.5
ṗ, q̇, ṙ 4.0

45 46 47 48 49 50 51 52 53 54 55
9

10

11

12

13

14

15

16

17

18

Figure 4. Detail of boom ↵-signal time history
showing oscillatory vibrations due to buffet.
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Figure 5. Power spectral density estimate of ↵-
signal before and after low-pass filtering.
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Figure 2. Visualization of several properties of the gathered flight test data. Plots a and b show the Mach-altitude and ↵-� envelope,
respectively. Plots c-f are violin plots, which show approximations of the distribution of the bank angle and control inputs. Black marks
are means. The difference between longitudinal and lateral maneuvers can clearly be seen, as well as the fact that the rudder was used very
little in maneuvers 7-26.

Figure 3. Decimated view of all the time samples in the flight data sets on the maneuvering load factor limit diagram of the Cessna Citation
550 II, defined for a take-off weight of 11,500 lbs. All airspeeds were converted to indicated airspeeds. The grey plot area marks the flight
envelope where normal flight maneuvers are possible. It can clearly be seen that part of the recorded flight data fall to the left of this area,
which corresponds to stalled flight.
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III. Methodology

The stall model consists of six separate models; one for each of the force (CL, CD, CY ) and moment (Cl, Cm,
Cn) coefficients. The methodology that was followed for the identification of these models is explained in this section.
First, the general modeling principle is explained, which is based on Kirchoff’s theory of flow separation. After that, a
general overview of the system identification process is given. Finally, the methods used for model structure selection
and parameter estimation, which form the core of the novel approach in this research, are presented separately.

A. Kirchoff’s Theory of Flow Separation

In the early 1990s, a relatively simple model structure was published that is able to explain the nonlinear, dynamic, and
time-dependent phenomena caused by aerodynamic stall.10 Previous research has shown the validity of this modeling
approach for several different aircraft.12,13 This model is based on the assumption that the effect of stall on airfoil lift
can be described by Kirchoffs theory of flow separation, which states that the relation between airfoil lift and the flow
separation point X , which represents the fraction of the chord length affected by flow separation, can be modeled by:

CL = CL↵

 
1 +

p
X

2

!2

↵ . (1)

The variable X represents the distance along the wing chord where the flow separates, and ranges from 1 (flow is
fully attached) to 0 (flow is fully separated). It was shown that the dynamics of X can be adequately modeled by a
first-order ordinary differential equation (ODE):

⌧1
dX
dt

+X =
1

2
(1� tanh [a1 (↵� ⌧2↵̇� ↵⇤)]) . (2)

Only four parameters are needed for this ODE, and each represents a physical effect of the stall. ⌧1 sets the time delay
in the dynamics of X , which is caused by inertia in the flow; it takes time before the air flow has reacted to sudden
changes in ↵. ⌧2 encodes hysteresis effects on X . The static mapping between X and ↵ is parametrized by a1, which
is a shape parameter that determines the “abruptness” of the stall, and by ↵⇤, which schedules the angle of attack at
which the stall occurs. These four parameters will from here on be referred to as X-parameters. Visualizations of the
effect of varying these parameters on CL and X can be found in previous research.18

Because of Equation 2, solving for the model parameters is a nonlinear optimization problem, which makes it
sensitive to intial conditions, and computationally more demanding to solve. Another challenge is that a direct mea-
surement of X is not available. The solution is to estimate the parameters via another measurement that is available,
and which is influenced by X . The most obvious candidate for this is CL, which is directly affected by X as described
in Equation 1. A special system identification methodology, detailed in the next section, was used to deal with these
challenges.

B. System Identification Methodology

A key idea in this research is to split the parameter estimation problem into two parts. First, the X-parameters are
estimated using nonlinear methods. After that, they are assumed fixed and X can be calculated for all data sets. This
is followed by model structure selection, and finally the estimation of the remaining parameters using conventional
linear methods. These three steps are visualized in Figure 6.

The most important advantage is that X can be regarded as a regressor during model structure selection. This
enables quick iterations between selecting a model structure, estimating its parameters, and evaluating the result of
any changes. Due to the iterative and interactive nature of a system identification task, this is seen as a highly desirable
advantage. Moreover, if this distinction was not made, the semi-objective model structure selection method would
have not been possible.

The X-parameters are identified using the measured CL, as this relation is best documented in literature. An initial
assumption on the model structure of CL needs to be made. The implicit assumption is made that the dependence of
the X-parameters on the model structure is mild. When, during the later model structure selection step, a different
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model for CL is found, the X-parameters will be re-estimated, and this process is repeated until it has converged. The
next sections describe the steps in Figure 6 in detail.

Figure 6. Block diagram of the steps and flow in the system identification approach.

C. Parameter Estimation

As shown in Figure 6, parameter estimation is split into two parts. The linear parameter estimation in step 3 is done
using the familiar ordinary least-squares methods, whilst the nonlinear estimation of step 1 is done using a gradient-
based solver built into Matlab.

1. Linear Parameter Estimation

Once the model structures of the force and moment coefficient equations are set, the parameter estimation problem is
straightforward. For this research, it was chosen to use the model structures in polynomial form, i.e.,

ŷ = ✓1a1 + ✓2a2 + . . .+ ✓nan , (3)

where ŷ is the model output vector, ai are the regression variable vectors, and ✓i are parameters. Note that ai is
allowed to contain non-linear polynomial terms, such as ↵2. Equation 3 can be written in matrix notation as:

ŷ = A✓, where A = [a1 a2 . . . an] , and ✓ = [✓1 ✓2 . . . ✓n]
| . (4)

To minimize the error between measurement and model output ✏ = y � ŷ, ordinary least squares (OLS) is used. This
leads to the well-known closed-form solution for the parameter estimate ✓̂:

✓̂ = (A|A)�1 A|y. (5)

This procedure is the same for all aerodynamic model equations.

2. Nonlinear X-Parameter Estimation

A second parameter estimation method was used for estimating the X-parameters. An optimization problem was
created with the goal of minimizing the mean squared error between the measured lift coefficient CL, and the model
output ĈL(✓, x). Both are defined as N ⇥ 1 vectors, and x indicates the flight data.

✓̂ = argmin
✓

J(✓, x) with J(✓, x) = 1
N

⇣
CL � ĈL(✓, x)

⌘| ⇣
CL � ĈL(✓, x)

⌘
. (6)
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This method requires a choice for the model structure of ĈL. During the initial step only of the system identification
procedure, the following model was used:

ĈL(✓, x) = CL0 + CL↵

 
1 +

p
X

2

!2

↵+ CLq

qc̄

V
, (7)

with X as in Equation 2. Upper and lower bounds were set on all parameters as constraints. The initial conditions were
randomly and uniformly sampled from the parameter space constrained by these boundaries. The active set algorithm,
as available from Matlab’s fmincon function was used to solve for the X-parameters. Multiple runs were done on
each data set. Since the cost function surface tended to be flat near the solution, the best few percent of runs were
averaged to obtain a point estimate for each data set. This final step reduced the variance of the results. To deal with
the numerical difficulties of the parameter sensitivity of the solution of an ODE,21 at each iteration, the gradient of the
cost function with respect to the parameters was explicitly computed using the method described in Appendix A.

For the initial step, which used the model structure as shown in Equation 7, the upper and lower bounds are
presented in Appendix B. For the final optimization results, the boundaries are presented in Table 4.

Regarding the choice for the initial model structure: the only hard requirement is that some dependency on X is
included, otherwise estimating the X-parameters is impossible. The Kirchoff term found in literature was selected, as
its effectiveness has been shown before. The q-term was added because it is commonly found in models for lift. On
subsequent iterations, the model structure that followed from the model structure selection step was used instead, so
the initial model structure of ĈL was not seen as critical.

D. Model Structure Selection Method

Before estimating the model parameters, a model structure needs to be selected. In other words, this means identifying
which regressors are required for capturing the dynamics in the measured data. Note that it is during this step in the
system identification process that choices are made if e.g., changes in control surface effectiveness or dynamic effects
need to be included, and if so, how this is done.

A good model structure must be effective at explaining the patterns in the data, and be parsimonious. The model
structure has a large influence on the trade-off between bias (model cannot represent data) and variance (model does
not generalize well to previously unseen data).22 In general, evaluating the usefulness of separate model terms is
hard, since these influence each other i.e., adding an extra term to some model structure is very likely to change the
estimated parameter values of the other terms. Further complexities are caused by the fact that the flight data will
inevitably contain errors, have interdependencies/correlations, and is limited in quantity.

An multivariate orthogonal function modeling algorithm was developed as a tool to deal with these challenges. Its
block diagram is presented in Figure 7, and will be explained in the next sections. Section D-3 will explain the way it
is used and how its results were interpreted.

Figure 7. Block diagram visualization of the multivariate orthogonal function modeling algorithm used for model structure selection.
During step 2 in Figure 6, this algorithm is run for each model (CL, CD , ...) for each training data set.

1. Multivariate Orthogonal Function Modeling Algorithm

An algorithm for creating and selecting model terms that lead to a good model was developed based on the multi-
variate orthogonal function (MOF) modeling method described by Morelli.20 To avoid correlations of model terms,
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all candidate model terms are orthogonalized. The most important consequence of this is that it becomes possible
to compute the effect of adding terms independently of each other. This makes it an objective and (semi-)automated
procedure for model structure selection.

The algorithm’s basic principle is that it iteratively “builds up” model structures from scratch, using a pool of
orthogonalized candidate regressor terms. This iterates until a cost function is minimized, which penalizes both any
errors between model output and the dependent variable, as well as model complexity. In the following, orthogonalized
regression variables will be denoted by pi to distinguish them from the regular regression variables ai. The algorithm
starts by generating a set of candidate model terms, based on a set of base regressors and a maximum term order. This
will be discussed in the next section. After that, the first step is to include a bias term:

a1 = p1 = 1 . (8)

Then at each iteration, a Gram-Schmidt orthogonalization procedure is used for making all remaining candidate model
terms orthogonal to the terms that are already in the selection.

pj = aj �
j�1X

k=1

�k,jpk , j = 2, 3, . . . , n , where: �k,j =
p|
kaj

p|
kpk

. (9)

Note that the orthogonal regressors are linear combinations of the original regressors. Once orthogonalized, all can-
didates are evaluated based on the effect that they would have on the predicted square error (PSE). This cost metric
consists of two parts: a fit error (equal to the mean squared error), and a penalty term for complexity:

PSE =
(y � ŷ)|(y � ŷ)

N
+ �2

y
n

N
. (10)

N is the number of data points, n is the number of terms currently used in the model, and �2
y is the variance of the

modeled signal y (e.g., Cm, CY , etc.), which is used as a scaling term. Because of the orthogonality, the change in
PSE which would result from adding candidate j can be computed independently for each candidate as:

�PSEj = �

�
p|
jy
�2

p|
jpj

+ �2
y
1

N
. (11)

The candidate leading to the greatest reduction in cost is selected and added to the model. After that, the procedure is
repeated: all candidates are again made orthogonal to the selected terms, the best one is selected, etc. This goes until
�PSEj � 0 for all j, which means that the added penalty of increasing the model complexity is no longer be offset by
the decrease in mean square error.

At this point, a matrix P = [p1 p2 . . . pn] has been constructed, which can be used to find the vector of
maximum-likelihood parameters �̂ connected to the orthogonalized regressors. For this, the OLS procedure that
was explained can be used in exactly the same way. The result ŷ = P �̂ can then be transformed back to the “normal”
non-orthogonalized regressors and associated parameters ŷ = A✓̂. When the �j,k are collected in a matrix:

� =

2

6666664

1 �1,2 �1,3 . . . �1,n
0 1 �2,3 . . . �2,n
0 0 1 . . . �3,n
...

...
...

. . .
...

0 0 0 . . . 1

3

7777775
, (12)

then A = P�, and thus the optimal parameter vector �̂ can easily be transformed back to the original regressor
definition by applying the following substitution:

ŷ = P �̂ = PI�̂ = P (���1)�̂ = A��1�̂ , hence: ✓̂ = ��1�̂ . (13)
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Once A and ✓̂ are obtained, the algorithm checks all the terms that have been selected for their contribution to
the final model output. It does so by computing the root mean square RMS = 1

N

p
ŷ|ŷ of the model output ŷ, and

comparing that with the RMS of the model output that would occur if that term would be simply ignored, without
making any other changes to the parameters or regressors. If the change in RMS is lower than a threshold, for which
0.5% was used, the term would be regarded as ineffective and removed.

The output of the MOF modeling algorithm is a selection of regressor terms A for the specific flight data set that
was used as input. As a final step, the results of all data sets need to be generalized. This is done based on a simple
count of how many times each model term appears in the output for each flight data set. If a term is selected in 50%
of data sets or more, it generally is concluded to be useful, and included in the general model structure. This threshold
was used since it was found to work well in the identification of the regular flight envelope model of the Citation II.23

However, the results were always interpreted alongside other analyses such as the effect on MSE, consistency in the
estimate of the associated parameter, or correlations between estimated parameters.

2. Candidate Model Terms

The described algorithm iteratively searches within a set of candidate terms for the best contribution to a model. Any
decision that influences the terms that are included in this set will have a strong influence on the final results. If the
pool does not contain any useful terms, the quality of the model will never be good. Or, if many similar terms are
included, it will be impossible to choose between them since the results will be inconsistent across data sets. This
section explains how the candidate model terms are generated, and explains several design choices that were made.

The most straightforward approach for creating candidates is to simply use the common regressors such as ↵, �e,
or p. In this research, the thrust force coefficient CT and Mach number M were also included. Appendix C explains
why including CT is important in the current application. This approach is extended by also including X and several
mathematical transformations of X as regressors. These will play a crucial role in including the effects of aerodynamic
stall on the aircraft dynamics. Again, note that this is only possible because the parameter estimation problem is split
into two separate parts, which enables the assumption that the X-parameters can be considered constants during model
structure selection. The following terms were used as “base regressors”:

1, ↵, ↵̇, �, �̇, p, q, r, �a, �e, �r, CT , M,

X, (1�X),
⇣

1+
p
X

2

⌘2
, max(0.5, X) .

These are named “base regressors” since they form the basis for the automatic generation of any potential higher-
order candidate regressors. A routine was implemented that automatically generates from these all unique product-
wise combinations up to and including a user-defined maximum order n.

Four base regressors that contain X were included, and it is important to consider why these were selected. In this,
it is relevant to re-state that for attached flow X = 1, and for fully separated flow X = 0. The regressor X itself can
be used for explaining an effect that reduces or disappears during stall. (1�X) does the opposite, it only takes effect
during flow separation. The third term is part of the term appearing in Kirchoff’s classical theory of flow separation,
which would be created by taking the product of this term with ↵. Finally, the term max(0.5, X) was used to take into
account some effects that change during stall, but do not completely disappear for fully separated flow.

Obviously, many more potential base regressors are possible. However, it was found that it is important to avoid
similar candidate regressors i.e., those that have strong correlations with each other. If two regressors are correlated,
they explain the same patterns in the data. The result of this is that it is not clear which regressor to select, which
makes the results ambiguous. For example, consider a feature that is present in 90% of the data. Then, say there are
three regressors that are equally suitable for explaining this feature. Each will then, on average, be selected on 30%
of the data sets, which is below the 50% threshold. When viewing these results, the user should recognize that these
terms are the same, or the result would not be noticed.

In practice it was found that by setting the maximum model order higher than n = 2, the results became much
less useful because this led to correlated terms being included in the candidate pool. Next to that, the amount of terms
increases very quickly for increasing model order, which complicates the interpretation of the results by a user. As a
result, the algorithm was used in quite a specific way, which will be explained in the next section.
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3. Practical Use of Algorithm

Ideally, the model structure selection algorithm converges to the same model structure for all data sets. It was found
that this was not the case. When setting the maximum order of candidate terms higher than two, models full of
higher-order model terms were the result. This conflicted with the goal of selecting a parsimonious model structure.

The suspected reason for why this occurs is that the flight data contains nonlinear effects that cannot easily be
modeled, as well as significant random disturbances. While simpler regressor terms might be able to explain general
trends just fine, it is likely that there exists a higher-order term that does the job better on that specific data set alone.
The disturbances differ for each data set. Hence if the described algorithm is given the choice, it will select different
higher-order terms for each data set. This makes it hard to identify model terms that generalize well across data sets.

The solution that was implemented was to change the way in which the algorithm was used. This is visualized in
Figure 8. The algorithm is run for both n = 1 and n = 2 separately. The results are then interpreted manually to make
conclusions about useful model terms. In most cases, useful new model terms are only found for n = 1, but there are
two exceptions (CL and Cm) that will be discussed in the results. The usefulness of terms is judged by the effect on
the total model fit quality (MSE and R2) on the validation data sets.

Any useful terms that are found are “frozen” into the model structure such that they will always be included during
future iterations. Iterations are run until no more new good model terms are found. In all cases, only 1 or 2 iterations
were needed. The resulting model structure is passed on to the parameter estimation step of the system identification
process.

Figure 8. Flow chart of the practical way that the model structure selection algorithm was used. Usefulness of model terms is judged by
the effect on MSE and R2 on the validation data sets.

IV. Results

To identify the aerodynamic model though the proposed methodology, 34 flight data sets were available. It was
chosen to split this data into 27 training and 7 validation sets (roughly a 80-20 split). Sets 5, 7, 12, 16, 22, 23, and
25 were used for validation. The split was made randomly, but a check was done that both training and validation
sets contained wings-level as well as accelerated stalls. First, the final model structure that was obtained from the
model structure selection method described in previous section will be presented. Next, the results of the nonlinear
X-parameter optimization are presented. Third, the parameter estimates for the aerodynamic model equations are
shown. The final subsection gives the results of model validation, which showcases the current quality of the stall
model.
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A. Stall Model Structure

The final stall model structure, which resulted from multiple iterations of the process described in Figure 6 is given in
Equation 14. The model for each of the aerodynamic model equations will be discussed separately.

ĈL = CL0 + CL↵

⇣
1+

p
X

2

⌘2
↵+ CL↵2 (↵� 6�)2+

ĈD = CD0 + CD↵↵+ CD�e
�e + CDX (1�X) + CDCT

CT

ĈY = CY0 + CY�� + CYp

pb
2V + CYr

rb
2V + CY�a

�a

Ĉl = Cl0 + Cl�� + Clp
pb
2V + Clr

rb
2V + Cl�a �a

Ĉm = Cm0 + Cm↵↵+ CmX�e
max( 12 , X)�e + CmCT

CT

Ĉn = Cn0 + Cn�� + Cnr
rb
2V + Cn�r

�r

(14)

1. CL-model

The obtained CL-model contains the classical Kirchoff term, and a spline term using the angle of attack squared,
(↵ � 6�)2+, which will be discussed later. The model structure selection algorithm was run as explained in Figure 8.
The results of the first iteration are shown in Figure 9a. The grey bar for the bias term indicates that it was frozen into
the model; it was not left up to the algorithm itself to select it. Three terms were found to be useful (i.e., occuring in
more than 50% of dat sets): ↵, ((1 +

p
X)/2)2, and the combination of the two, the Kirchoff term: ((1 +

p
X)/2)2↵. It

was decided to include the latter, since it resulted in the largest improvement in model validation fit quality.

0 5 10 15 20 25

0 5 10 15 20 25

(a) First iteration

0 5 10 15 20 25

0 5 10 15 20 25

(b) Second iteration

Figure 9. Results of model structure selection algorithm for CL displaying the count of how many times a model structure is selected.
Dashed bar marks 50% of training data sets. Grey bars indicate that a term was forced to the model structure manually.

Next, the algorithm was re-run with the Kirchoff term frozen in the model structure. The results of this second
iteration are in Figure 9b, and they indicate that another dependency on the angle of attack is a potentially good term:
either as ↵ or ↵2. This was surprising, as initially it was expected that all dependency on the angle of attack would
be modeled by the Kirchoff term. However, after experimenting with several variations of ↵-related terms, the term
(↵� 6�)2+ was added to the model. This notation indicates a univariate spline in ↵ with zero-order continuity:

(↵� 6�)2+ =

8
<

:
(↵� 6�)2 when ↵ � 6�

0 when ↵ < 6�
. (15)

In understanding why this extra term is useful to have in addition to the Kirchoff term, consider what happens
when the aircraft enters a deep stall. Kirchoff’s theory of flow separation predicts the lift due to ↵ will decrease by a
factor of 0.25 when X goes to zero. However, this reduction is too strong for our data, the measured reduction in lift
is less. Discrepancies such as these make sense: Kirchoff’s theory was derived for airfoils, whereas the flight data is

13



of a full aircraft in three-dimensional flow. The term (↵ � 6�)2+ contributes a positive effect to the aircraft lift at high
angles of attack, even when X goes to zero. It thus mitigates part of the lift reduction due to stall. The beneficial effect
on the CL-model is visualized in Figure 10, where during the deepest part of the stall (t = 40-50 s), the spline corrects
part of the lift reduction modeled by the Kirchoff term.
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Figure 10. Contributions of individual CL-model terms for data set 5 (validation).

Although the difference in
model validation fit was mod-
est (difference is <1% on MSE),
it was decided to use the spline
term instead of simply ↵2. There
were two reasons for this. First,
the spline term’s effects are lim-
ited to higher angles of attack
(↵ > 6�) which reduces the cor-
relation with the Kirchoff term.
This led to lower variance in the
parameter estimates. Secondly,
if ↵2 was used, this term would
contribute positive lift for nega-
tive angle of attack, which can
occur during a stall recovery ma-
neuver, which is clearly unphys-
ical. The spline term prevents
this. The threshold of 6� resulted in the best fit, and was found using trial and error.

During a third iteration, no new model terms were found. The way the model structure selection algorithm was
used for CL is a good illustration of both its strengths and limitations. It provided no clear-cut answer, but its results
were insightful to guide further analysis.

2. CD-model

For the drag coefficient model structure selection process, Figure 11a shows the results of the first iteration. Many
contributing model terms were identified, including CT . The appearance of the thrust coefficient term has to do with
suspected errors in the engine model. This is discussed in Appendix C in detail. The useful second-order terms in the
first iteration all contained CT . No clear underlying physical phenomenon was found for this. Also, further analysis
showed that these terms generalized badly across data sets, so they were not selected.

0 5 10 15 20 25

0 5 10 15 20 25

(a) First iteration

0 5 10 15 20 25

0 5 10 15 20 25

(b) Second iteration

Figure 11. Results of model structure selection algorithm for CD displaying the count of how many times a model structure is selected.
Dashed bar marks 50% of training data sets. Grey bars indicate that a term was forced to the model structure manually.
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Figure 12. Contributions of individual CD-model terms for data set 23 (validation).

During the first iteration,
multiple X-related terms were
found. It was decided that in-
cluding (1 � X) was most de-
sirable, for two reasons. First,
the difference in model quality
between the X-terms was very
small. This is interesting to note,
and is indicative of the difficul-
ties in selecting the best model
terms. Secondly, the effect of
(1�X) is constrained to just the
stalled flight conditions, which
means that the effect on the other
model terms (especially the bias
term) is limited as much as pos-
sible. To conclude, after the first
iteration CT , �e, ↵, and (1�X)
were added.

Figure 11b shows the results of the second iteration. The part of CD not modeled by the selected terms does not
correlate clearly to any remaining candidate. This can be interpreted either as that the current model structure captures
all relevant dynamics, or as that the candidate set is missing suitable candidates. Either way, no new terms were added
to the model.

Figure 12 shows the contributions of the individual terms in the model for CD. It is seen that the largest influences
are produced by the angle of attack and by flow separation point X . Also the effect of including CT is clear, none of
the other terms can explain the sudden rise in drag that occurs after the stalled flight. Finally, the elevator term is used
to explain high-frequency fluctuations in drag, which are also seen in the measured CD data.

3. CY -model

The obtained stall model structure for the lateral force contains no stall-related terms. The data does not suggest that
special additions to the conventional aerodynamic modeling terms are necessary. Furthermore, only first-order terms
are included in the model, as no support for more complex terms is found in the results of the model structure selection
algorithm. �, p, r, and �a were included after the first model iteration. In the second iteration �r was also identified as
a potentially good contribution, but further analysis showed a small negative effect on the validation fit quality. Plots
of individual model contributions are presented in Appendix D.
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(a) First iteration
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(b) Second iteration

Figure 13. Results of model structure selection algorithm for CY displaying the count of how many times a model structure is selected.
Dashed bar marks 50% of training data sets. Grey bars indicate that a term was forced to the model structure manually.
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4. Cl-model

Figure 14 shows the results of the model structure selection algorithm for the roll moment coefficient. As for the
lateral force, only first-order terms were found to be useful. Interesting to see is that both �̇ and r are found to be good
options, of which only the latter is selected since it led to a (slightly) lower MSE. On the second iteration, the angle
of attack and elevator also received good scores. Since there is little physical justification for including these terms in
the roll moment model, and because they did not increase the fit of the model on validation data, they were not added.

No stall-related terms were selected; the data does not suggest that being in a stall results in changes to the roll
dynamics. This only partially agrees with experience from the flight tests. One the one hand, it was commented by the
test pilots that roll control was not noticeably affected during stall. This suggests that changes to aileron effectiveness
are not needed in the model. On the other hand, during some maneuvers the stall resulted in significant roll-off motions,
and these are currently not included in the model. Plots of individual model contributions are presented in Appendix
D.
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(a) First iteration
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(b) Second iteration

Figure 14. Results of model structure selection algorithm for Cl displaying the count of how many times a model structure is selected.
Dashed bar marks 50% of training data sets. Grey bars indicate that a term was forced to the model structure manually.

5. Cm-model
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Figure 15. Contributions of individual Cm-model terms for data set 12 (validation).

The obtained model for the pitch
moment includes the flow sepa-
ration point variable in the form
max( 12 , X) · �e. From Figure
16a, it can be seen that this
second-order term is selected in
the majority of data sets, indi-
cating a strong match with flight
data. This model structure re-
duces the elevator effectiveness
by up to half its original value
during stall. Physically, this
makes sense. In the stall, the hor-
izontal tail can be in the wake
of the main wing, reducing its
effectiveness. This also agrees
with comments from the test pi-
lots, who stated that in stall,
pitch controllability was reduced
but still clearly present.
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Next to the modified control term, terms depending on ↵ and CT are selected. Due to the vertical offset of the
engines, the thrust setting influences the pitch moment. The contributions of the individual model terms are visualized
in Figure 15. During the stall onset (40-50 s), a (small) negative bias occurs. This is seen in more data sets. One
possible reason for this is that the modeled change in control effectiveness is inaccurate during stall onset, which is
possible since max( 12 , X) is a crude mapping. Another possible reason is that an important effect is not included in
the model. However, no solutions to this issue were found.
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(a) First iteration
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(b) Second iteration

Figure 16. Results of model structure selection algorithm for Cm displaying the count of how many times a model structure is selected.
Dashed bar marks 50% of training data sets. Grey bars indicate that a term was forced to the model structure manually.

6. Cn-model

For training the yaw moment model, only 11 out of the 27 training sets could be used. As shown in Figure 2, elevator
and ailerons were used in all stall maneuvers to keep the aircraft at desired pitch and bank angles, but rudder inputs
were only applied as deliberate disturbance inputs, and only for some of the data sets. It was found that without the
rudder disturbances, Cn identification results were not reliable.

Using only the 11 data sets that were suitable, the same model structure selection procedure was applied. After
the first iteration, � and �r were added, as is shown in Figure 17a. The second iteration of the algorithm did not select
any new model terms. Based on engineering insight, the effect of adding r as a term was also tested. Although it was
not picked by the model structure selection algorithm, it did lead to a small improvement in model quality. Plots of
individual model contributions are presented in Appendix D.
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(a) First iteration
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(b) Second iteration

Figure 17. Results of model structure selection algorithm for Cn displaying the count of how many times a model structure is selected.
Dashed bar marks 50% of training data sets. Grey bars indicate that a term was forced to the model structure manually.
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B. X-parameter Estimates

As shown in Figure 7, the estimation of X-parameters was done iteratively. After the CL model structure had con-
verged to the form in Equation 14, one final optimization was done. The results of this optimization are presented
in this section. Table 4 lists the numerical results and the outcomes of several statistical tests. Figure 19 is a matrix
plot of the parameter estimates, which visualizes the distributions and correlations of the estimates. In each figure,
the diagonal plots are histograms that visualize an approximation of the parameter distributions. The off-diagonals
are scatter plots of each of the parameter combinations. If correlations are present, the data points will form a clear
diagonal. The red star marks the median value, and the values of the correlations are shown (⇢).

Table 4. Results of estimating the X-parameters and several statistical tests. For the KS-test a significance of ↵ = 0.1 was used. h = N
means that the distribution can be assumed to be approxmately normal, h = ⇥ when that this is not possible. The t-test and signed rank
test were run with ↵ = 0.01 and a Bonferroni correction (here n = 4). For these, h = ⇤ if the null hypothesis is rejected, and the parameter
value is expected to differ from zero.

Parameter Results KS-test t-test Signed rank
Name Unit ✓̂ ✓lb ✓ub �(✓̂) p h p h p h

⌧1 [s] 0.2547 0.001 0.80 0.1565 0.147 N 0.000 * 0.000 *
⌧2 [s] 0.0176 0.000 0.50 0.0819 0.020 ⇥ 0.002 * 0.000 *
a1 [-] 27.6711 15.000 40.00 6.7177 0.781 N 0.000 * 0.000 *
↵⇤ [rad] 0.2084 0.100 0.35 0.0202 0.594 N 0.000 * 0.000 *

On each of the 27 training data sets, the optimization was run 300 times from random initial conditions. These
initial conditions were uniformly sampled from the parameter space defined by the upper an lower parameter bound-
aries (✓ub and ✓lb), see Table 4. On each data set, the results of the 300 runs were ordered by the MSE of the model
output. It was found that the cost function surface was relatively flat near the optimal solution. Therefore, to reduce
the variance of the parameter estimates, it was decided to take the average of all runs that reached an MSE within 2%
of the best run as the point estimate for that data set. After that, the median over all data sets was taken to obtain the
final parameter estimates ✓̂.

Figure 18. Visualization of the sensitivity of the model output to the X-parameters. Whereas the
static parameters influence almost the entire time-history, the dynamic parameters only affect the
part where the aircraft actually stalls. Data set 3 (training) is shown.

Three statistical tests were
performed. The Kolmogorov-
Smirnov (KS) test was used
to determine whether it is
reasonable to assume that
the distribution of the esti-
mates is approximately nor-
mal. Next, both parametric
(t-test) and non-parametric
(Wilcoxon’s signed-rank) one-
sample tests were done to
check with what degree of
certainty it can be stated that
the real parameter value is
different from zero, given the
data available. The one-
sample tests use a Bonfer-
roni correction on their sig-
nificance level to determine
the result h.

The outcome of the sta-
tistical tests shows that only
the distribution of ⌧2 cannot be considered normal, which agrees with observing the histograms in Figure 19. The
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skewed distribution is likely to be caused by the lower bound of the parameter: the parameters are clustered around
⌧2 = 0. It was decided to keep the lower bound in place because negative values of ⌧1 and ⌧2 are unphysical. Further-
more, all four X-parameters were found to be significantly different from zero. This was found surprising, considering
the low value of ⌧2. Also this result is likely to have been influenced by the lower parameter bound on ⌧2. If nega-
tive values of ⌧2 had been allowed, its distribution is expected to be spread around the zero value, which would have
reduced the significance of the results of the one-sample tests.

In general, the static parameters (a1 and ↵⇤) were easier to estimate than the dynamic parameters (⌧1 and ⌧2). Two
main reasons were found for this. First, the cost function surface tended to become rough for large values of ⌧1 and ⌧2,
as is shown in Figure 20. Since a gradient-based optimization algorithm was used, this reduced its effectiveness. This
problem was mostly solved by setting ✓ub small enough for ⌧1 and ⌧2. A second reason is that the sensitivity of the
model output to changes in a1 or ↵⇤ is greater than the sensitivity to changes in ⌧1 or ⌧2, as is visualized in Figure 18.
Whereas the static parameters influence the output during almost all times of the maneuver, the dynamic parameters
only influence CL during the stall itself.

Finally, the estimated X-parameters were compared to those found in literature. Table 5 contains the results from
several other studies. The dynamic parameters were made dimensionless for better comparison. Compared to the other
aircraft types, a1 and ↵⇤ are similar. However, ⌧1 is about a factor 2 lower, and ⌧2 is about a factor 5 lower compared
to the values found for other aircraft. These differences could be caused by the choice of model structure, parameter
estimation, or simply because of differences in the physical flow phenomena around the aircraft. The final column
contains the results of previous research on the same aircraft.18 This previous research used only data on quasi-static
stall maneuvers; data with very little dynamic excitation. Furthermore, a very different approach to estimating ⌧1
and ⌧2 was used, namely through the stall buffet vibrations. Since in the current research a direct estimation of these
parameters is used, instead of via the buffet, it is concluded that the newly obtained X-parameter values are more
accurate. The static parameters are equivalent between the two Citation II stall models.

Table 5. Comparison of estimated X-parameter values to literature, where for the Cessna Citation II: c̄ = 2.06 m, and Vstall ⇡ 75 m/s
(approximate average from flight test data).

Parameter Unit Citation II VFW-61411 C-16011 AT-2624 Citation II18

⌧1
V
c̄ [-] 9.27 15.6 14.5 - 22.44

⌧2
V
c̄ [-] 0.64 4.45 3.46 - 13.18

a1 [-] 27.67 15.00 25.70 25.00 25.87
↵⇤ [rad] 0.21 0.34 0.36 0.25 0.25

Figure 19. Matrix plot of the estimated X-parameters

Figure 20. Example of the cost function surface for the op-
timization of X-parameters. Note the roughness of the cost
function surface for values of ⌧1 and ⌧2 larger than 1 s.
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C. Aerodynamic Model Parameter Estimates

Table 6. Parameters estimation results and statistical tests. For the KS-test a significance of
↵ = 0.1 was used. h = N means that the distribution can be assumed to be approxmately
normal, h = ⇥ when that this is not possible. The t-test and signed rank test were run with
↵ = 0.01 and a Bonferroni correction. For these tests, h = ⇤ if the null hypothesis is rejected,
and the parameter value is expected to differ from zero, h = � otherwise.

Parameter Results KS-test t-test Signed rank
Name Unit ✓̂ �(✓̂) p h p h p h

CL0 [-] 0.1758 0.0423 0.9135 N 0.0000 * 0.0000 *
CL↵ [-] 4.6605 0.3965 0.9399 N 0.0000 * 0.0000 *
CL↵2 [-] 10.7753 3.8895 0.7665 N 0.0000 * 0.0000 *

CD0 [-] 0.0046 0.0223 0.2648 N 0.2801 � 0.0837 �
CD↵ [-] 0.2372 0.1443 0.5802 N 0.0000 * 0.0000 *
CD�e

[-] -0.1857 0.0781 0.4845 N 0.0000 * 0.0000 *
CD(1�X)

[-] 0.0732 0.0317 0.1101 N 0.0000 * 0.0000 *

CDCT
[-] 0.3788 0.0852 0.2042 N 0.0000 * 0.0000 *

CY0 [-] 0.0032 0.0035 0.8693 N 0.0000 * 0.0003 *
CY�

[-] -0.5222 0.0682 0.9894 N 0.0000 * 0.0000 *
CYp [-] -0.5000 0.2244 0.9694 N 0.0000 * 0.0000 *
CYr [-] 0.8971 0.4794 0.8368 N 0.0000 * 0.0000 *
CY�a

[-] -0.2932 0.0685 0.8481 N 0.0000 * 0.0000 *

Cl0 [-] -0.0017 0.0001 0.8529 N 0.0000 * 0.0000 *
Cl� [-] -0.0454 0.0167 0.9067 N 0.0000 * 0.0000 *
Clp [-] -0.1340 0.0620 0.7478 N 0.0000 * 0.0000 *
Clr [-] 0.1412 0.1287 0.5916 N 0.0000 * 0.0000 *
Cl�a

[-] -0.0853 0.0248 0.6586 N 0.0000 * 0.0000 *

Cm0 [-] 0.0183 0.0138 0.9811 N 0.0000 * 0.0000 *
Cm↵ [-] -0.5683 0.1329 0.8496 N 0.0000 * 0.0000 *
Cm�eX [-] -1.0230 0.1542 0.0736 ⇥ 0.0000 * 0.0000 *
CmCT

[-] 0.1443 0.0498 0.8103 N 0.0000 * 0.0000 *

Cn0 [-] 0.0013 0.0000 0.3076 N 0.0000 * 0.0010 *
Cn� [-] 0.0804 0.0093 0.5920 N 0.0000 * 0.0010 *
Cnr [-] -0.0496 0.0308 0.9029 N 0.0000 * 0.0010 *
Cn�r

[-] 0.0492 0.0040 0.9162 N 0.0000 * 0.0010 *

The results of the parameter
estimation for the aerodynamic
model equations can be found
in Table 6. This table shows
the estimated aerodynamic coef-
ficient values, the standard devi-
ations of the estimates over the
data sets, and the outcomes of the
same statistical tests as for the X-
parameters. Matrix plots of the
parameter estimates are shown in
Figure 21.

All parameters in Table 6
can be assumed to come from
a normal distribution, except for
Cm�eX . This agrees with the his-
tograms for this parameter, found
in Figure 21e. Furthermore, the
one-sample statistical tests indi-
cate that all model parameters are
statistically different from zero,
except for CD0 . Because this
is a bias parameter, it was still
kept in the model. The fact that
the drag bias is estimated to be
small is surprising. It is hypoth-
esized that this can be explained
by the inclusion of CDCT

into
the model. Because the thrust is
constant for the most part of the
maneuvers, this term already ac-
counts for a large part of the bias
effect. This is problematic for the
current model for CD, but is ex-
pected to be solved once an up-
dated engine model will become
available.

In the lift, drag, and moment coefficient models, the bias and ↵ parameters show clear correlations. Especially
for the drag coefficient model, this can be regarded as a problem affecting the accuracy of the estimate (see Fig 21b,
⇢ = �0.95). These correlations are likely to be caused by the fact that the angle of attack is approximately constant for
the largest part of the maneuvers. Hence, it is not easy to distinguish between ↵-related effects, and bias. Removing
either of these parameters in these models lead to a strong increase in modeling error, so no action was taken.

D. Model Validation

Of the 34 recorded flight data sets, 7 were kept aside for model validation (80-20 split). Table 7 compares the MSE
and coefficient of determination (R2) for both the training and validation data. Time histories comparing model output
to measured data are presented for three selected validation data sets in Figure 24. It was chosen to show the best,
worst, and an average quality fit, measured by average normalized MSE over all coefficients.
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(a) CL parameter estimates (b) CD parameter estimates

(c) CY parameter estimates (d) Cl parameter estimates

(e) Cm parameter estimates (f) Cn parameter estimates

Figure 21. Matrix plots of the parameters estimates. The diagonal plots are histograms that visualize an approximation of the parameter
distributions. The off-diagonals are scatter plots of each of the parameter combinations. The red star marks the median value, and the
values of the correlations are shown (⇢)
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As Table 7 shows, the model quality is approximately the same on training and validation sets, indicating that
the model is neither under- nor overfitting. In some cases, the validation fit is even slightly better. This is caused by
the random allocation of flight data maneuvers; some of them led to much lower errors. Because there are only 7
validations set, the average over them is influenced more significantly by the random allocation than for the training
data. It can be seen that for some sets, the worst R2 scores are even negative. This holds often the asymmetric models
(lateral force, roll, yaw), which on average also show a lower quality fit than for the longitudinal model equations (lift,
drag, pitch). In part, this can be explained by the definition of R2:

R2 = 1�

P
(y � ŷ)2P
(y � µy)2

. (16)

In the extreme case that the measurement is (nearly) a constant, i.e., y ⇡ µy , then the denominator is (close to) zero.
The more a time history is like a constant, the more any present errors will lead to a reduction in R2, which is the case
for the asymmetric models, as can be seen in Figure 24.

Table 7. Properties of the estimated parameters of the aerodynamic model equations. MSE and R2 are averages over the sets.

Training data (27 sets) Validation data (7 sets)
Coefficient MSE R2 min(R2) max(R2) MSE R2 min(R2) max(R2)

CL 1.65⇥ 10�3 0.92 0.71 0.98 1.45⇥ 10�3 0.91 0.77 0.96
CD 1.01⇥ 10�4 0.74 -1.47 0.97 6.72⇥ 10�5 0.89 0.84 0.94
CY 4.68⇥ 10�5 0.66 -0.67 0.91 4.55⇥ 10�5 0.57 0.29 0.82
Cl 2.40⇥ 10�6 0.54 -0.60 0.85 1.97⇥ 10�6 0.47 0.08 0.92
Cm 9.93⇥ 10�5 0.68 -0.39 0.92 9.87⇥ 10�5 0.73 0.26 0.92
Cn 8.21⇥ 10�7 0.49 -0.66 0.96 8.66⇥ 10�7 0.12 -0.43 0.80

To gain more insight into the types of errors that occur in the model output, use is made of Theil statistics.25 Theil’s
U -coefficient is a normalized metric for model quality, and ranges from 1 (worst case) to 0 (perfect fit). The error U
can further divided into a bias error Ubias, a variance error Uvar, and a covariance error Ucov. These can be calculated
as:

U =

q
1
N

P
(y � ŷ)2

q
1
N

P
y2 +

q
1
N

P
(ŷ)2

, (17)

Ubias =
(ȳ � ˆ̄y)2

1
N

P
(y � ȳ)2

, (18)

Uvar =
(�y � �ŷ)2

1
N

P
(y � ȳ)2

, (19)

Ucov =
2(1� ⇢yŷ)�y�ŷ
1
N

P
(y � ȳ)2

. (20)

Here, � and ⇢ indicate the standard deviation and the cross-correlation, respectively. Bias, variance, and covariance
errors always add up to one due to their definition, so they can be used to divide U into fractions. Uvar relates to scaling
errors, while Ucov is caused by any errors that are uncorrelated to the signals. These statistics were computed for all
the validation data sets, and the result is shown in Figure 22. Within each coefficient group, the order of data sets is
the same. They are ordered by average, normalized U over the six coefficients.

This figure confirms the previous observation that the longitudinal models have a higher quality fit. Furthermore,
what can be seen is that generally speaking, the same trend can be seen for all coefficients; there is a relation between
the fit quality for all models. In other words, some data sets (e.g., set 7) have a high error for all aerodynamic force
coefficients, some have low error.
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Figure 22. Theil statistics of the 7 validation sets, grouped by coefficient model. Lower means better fit. Groups are sorted by average
U -score over all coefficients, normalized by average score over that coefficient (from left to right: 12, 23, 25, 16, 5, 22, 7).

Furthermore, it can be seen that the largest part of the error can be attributed to Ucov. This indicates that generally,
the model parameters have been properly estimated. However, some maneuvers show that large parts of the error are
caused by bias. The contribution of scaling errors to the total model error is small.

Figure 24 shows time-history plots of three selected validation sets, one with the lowest error, one with an average
error, and the set with the largest error. Overall, the model output shows good agreement with the flight data, also
during the stall. There are some stall-related effects that are not reflected by the model, for instance in the CL and CD

time histories of the “average” plot in Figure 24. However, the model re-aligns with data once the aircraft recovers
from the stall. An attempt was made to explain (part of) these features by considering X on left and right wings
separately, as some authors in literature have proposed,12 but this did not lead to improved results for our data.

0.5 0.75 1 1.25 1.5
0.5

0.75

1

1.25

1.5

training data

validation data

Figure 23. Comparison of CL at the stall identification
angle of attack ↵ = ↵⇤.

A possible issue can be seen in the model output for Cm. During
stall onset, the model predicts a negative pitch moment, i.e., a pitch-
down tendency that is not present in the data. Since the first action a
pilot should take to recover from a stall is to reduce angle of attack,
any errors in pitch moment are likely to affect the suitability of this
model for use in stall recovery training in simulators.

A final validation check was done on the stall identification angle
of attack. Since the model will be used to train pilots in recognizing
a developing stall, it is extra relevant that the model output agrees
with flight data around the angle of attack where the effects of stall
begin to be significant. The values of the modeled and measured
lift coefficient were compared at ↵ = ↵⇤. This was done for all
maneuvers, and is shown in Figure 23. As is shown, the data points
mostly lie on the diagonal, indicating that the model predicts the
same lift at the stall identification angle of attack as measured in the
data.

V. Discussion

This paper has presented a methodology for aerodynamic modeling of a Cessna Citation II, including the aero-
dynamic stall dynamics. It was applied to a series of flight data sets that were specifically collected for this purpose
at an altitude of 5,500 meters. The obtained stall model shows very good agreement with the validation data. The
discussion of these results is presented in this section, and is split into three parts. First, the resulting model itself
will be discussed. Several potential model issues are covered, and the simulated model outputs are compared to those
of other Citation II models. After that, the inclusion of dynamic effects in the stall model is considered. Finally, an
exploration of the required effort to expand the current model to the full flight envelope is presented.
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Figure 24. Selected plots from the 7 validation data sets, showing model output versus measured force and moment coefficients. Left
column contains data set 12, which has the lowest MSE, middle is set 5, and right is set 22. In the bottom plot, angle of attack and the
calculated flow separation point variable are shown.

1. Obtained Stall Model

The model structure that was selected in this research is well-supported by the flight data. The multivariate orthogonal
function modeling algorithm provided good guidance in identifying and selecting effective model terms. However,
there are a few noteworthy results that are discussed here.

First of all is the fact that no terms relating to pitch rate q are selected, while these are commonly found in models
for CL, CD, and especially Cm. One explanation is that q really does not have an influence on the Citation II’s stall
dynamics, but since its regular flight envelope model does include q-terms,23 this appears to be unlikely. A better
explanation is that the contribution of q to the lift, drag, or pitch moment is small. Moreover, the measured values
of q in the flight data are close to zero when the aircraft is not in stall. Hence, identifying these relatively small
effects due to q during stalled flight conditions – where strong nonlinearities and (random) disturbances are present –
is challenging. A potential remedy for this is to gather new flight tests, where a dynamic maneuver such as a 3-2-1-1
on the elevator is added just before the aircraft stalls.

Another aspect of the model structure that is noteworthy is that no changes in control effectiveness for the aileron
and rudder were identified. In qualitative comments, the test pilots stated that the control response of the aircraft did
not change too much during the stall. However, a similar effect as for the elevator was expected. Perhaps the current
approach of using X to add effects to control effectiveness terms is unsuitable for the aileron or rudder. Alternatively, it
could be that not enough data is available to identify these effects. Dynamic maneuvers such as a 3-2-1-1 using aileron
or rudder, performed right before the stall will give a stronger reference point to compare the control performance
inside the stall to.
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Next, the fact that the thrust coefficient is used as a regressor for the models for Cm and CD is uncommon. As is
discussed in Appendix C, these terms are corrections for mismatches in the engine model.

A final note on the model structure is regarding the use of X as a regressor. In this research, it has been shown that
it is beneficial to use X as (part of) a term in the lift, drag, and pitch moment coefficient stall models. Its use in the
lift and drag models has been proposed by other research before,13,18 but its use for modeling the reduction in elevator
effectiveness is a novel contribution. Hence, given new flight data and/or better mathematical transformations, other
uses of X are thought to be possible. For instance, the static pitch stability term Cm↵ is expected to change during stall.
However, it must be kept in mind that X is only a single variable used to describe all the flow separation phenomena
around the entire aircraft. This obviously is a simplification of reality. From a system identification perspective, a
simple model is actually desired, as long as it still leads to accurate results. Nevertheless, it might not be possible to
explain all relevant stall-related effects on the flight dynamics using X .

The identified stall model is significant improvement compared to the previous Citation II stall model as well as
its normal flight envelope model when simulating stall maneuvers. Table 8 shows the difference in average MSE over
the 7 gathered validation data sets for all three of these models. Lateral model terms were not included in the previous
stall model due to a lack of the side slip measurement. The new stall model achieves a much lower error for all model
outputs. It is interesting to see that the normal flight envelope model actually achieved a lower error on the pitch
moment coefficient fit than the previous stall model.

Table 8. Comparison of the newly developed stall model, the previous stall model, and the normal flight envelope model of the Citation II
in terms of the average mean squared error on the 7 validation data sets gathered for this research.

Current Previous stall model18 Normal flight envelope23

Model MSE MSE Difference MSE Difference

CL 1.45⇥ 10�3 3.02⇥ 10�3 + 208% 3.35⇥ 10�2 +2313%
CD 6.72⇥ 10�5 3.16⇥ 10�4 + 470% 1.38⇥ 10�3 +2050%
CY 4.55⇥ 10�5 n/a n/a 2.47⇥ 10�4 + 543%
Cl 1.97⇥ 10�6 n/a n/a 1.30⇥ 10�5 + 662%
Cm 9.87⇥ 10�5 2.89⇥ 10�3 +2925% 7.84⇥ 10�4 + 795%
Cn 8.66⇥ 10�7 n/a n/a 1.61⇥ 10�5 +1864%

Figure 25 visually compares the longitudinal model outputs of both these models, as well as the normal flight
envelope Citation II model.23 Figure 26 shows the lateral model outputs of just the new stall model alongside the
regular flight envelope model. The improvement in model fit is illustrated clearly, especially for the drag and pitch
moments. The previous stall model can be seen to experience a significant bias during most part of the pitch moment
time trace, which explains the large difference in MSE for the previous stall model. Also, the normal flight envelope
model can be seen lack the reduction in lift during stall.

Figure 25. Comparison of longitudinal outputs of the newly-obtained stall model to the previous version’s. Additionally, outputs of the
normal flight envelope model are shown, which is a validated dynamics model for the Citation II. Data set 22 (validation) is shown.
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Figure 26. Comparison of lateral outputs of the obtained stall model with the outputs of the validated normal flight envelope model for the
Citation II. Data set 22 (validation) is shown.

2. Dynamic Stall Effects

One of the goals of this research was to include dynamic effects of stall into the model. These effects are parametrized
using ⌧1 and ⌧2. Including these terms into the model complicates both system identification as well as model evalua-
tion, since an ODE needs to be solved to obtain X . Hence, it is sensible to review them: does the extra effort actually
influence the model output in any significant way?

A simple test for this is to investigate what happens when either of these parameters is set equal to zero. The effect
on the modeled lift coefficient of setting ⌧1 equal to zero is shown in Figure 27. It is shown that due to the time delay
parametrized by ⌧1, the minimum value of X is larger, and therefore the maximum lift coefficient is higher than when
⌧1 is neglected. As a result, the model provides a better match with the flight data. For ⌧2, the change in model output
is small. There is less than 1% difference in MSE and the difference with the current model output can hardly be seen
in the time traces. From this result it seems likely that ⌧2 can be neglected/set to zero in modeling the stall dynamics of
a Citation II type aircraft, at the flight condition that was considered. This was to be expected, as the estimated value
of ⌧2 was already close to zero.

These results show that while the hysteresis effect, parametrized by ⌧2 might not have a strong influence on model
output, the dynamic time-delay effect by ⌧1 is critical for a realistic model output.
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Figure 27. Illustration of the effect on model output by setting either ⌧1 or ⌧2 equal to zero. It is shown that the maximum achieved lift
coefficient is decreased when ⌧1 = 0. The effect of ⌧2 = 0 is so small that it is indistinguishable from the current stall model.
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3. The Road to a Full-Envelope Stall Model

The end goal of the research effort is to obtain a stall model that provides the most realistic simulator experience
reasonably possible, for all flight conditions that are relevant for training scenarios. This model will then serve further
research into what parts of such a stall model are relevant for effective training, and which are not. Before that is
achieved, there are still many steps to take. The current stall model is only validated at an altitude of 5,500 meters,
and has not yet been tested in a human-in-the-loop simulation. Regarding the research efforts that still are to be done,
three major considerations are discussed here.

First of all, it is believed that the stall modeling methodology that was developed for this research will be a suitable
tool for expanding the validated stall model envelope. It has been shown that Kirchoff’s methodology can capture the
relevant nonlinearities in a stall maneuver, and that both the model structure and parameters can be identified. The
same procedure as was described should be repeated for other selected altitudes, and other flap and gear configurations.
The model parameters can then be made functions of flight condition. This is a common practice in aerodynamic
modeling, and was also applied for the normal flight envelope model of the Citation II from Reference 23. The stall
model structures should ideally be the same at every flight condition. If terms need to be added or removed for different
flight conditions, this will pose an additional challenge.

Secondly, new flight tests will have to be conducted. These should be planned based on what flight conditions are
to be required during training scenarios. If only few and specific scenarios are foreseen, one could perhaps do with
fewer (costly) flight tests than what would be required for a full flight envelope model. For this research, about 30
maneuvers were done at the same flight condition. This seems like a good number. Also the piloting technique that
was used for this research was generally found to be effective. A good addition to the flight test maneuvers would be
the inclusion of dynamic excitation before the aircraft stalls. For example, a sequence of 3-2-1-1s or doublets on all
three control axes could be performed. This should facilitate identification of changes in control responses. Important
is that the aircraft is sufficiently dynamically excited both in- and outside the stall, and that high enough angles of
attack are reached. No clear differences were found between wings-level and accelerated stall maneuvers in terms
of identifiability. All control surfaces, including rudder, should be used during the stall. Without rudder inputs, yaw
moment identification is not possible.

Thirdly, since the model’s goal is to provide the best simulator experience possible, it will be vital to actually put a
human in the loop fly it. This should be done even before expanding the stall model to the full flight envelope. Current
model development was solely guided by quality of fit metrics such as MSE, and by visually inspecting plots. These
metrics might overlook properties of the model that are vital for a good simulator experience, or conversely: they
might severely penalize some errors that are irrelevant for the intended purpose. Hence, early simulator experiments
will help in steering the research focus to the most relevant issues.

VI. Conclusion

Using flight test data gathered specifically for this goal, a complete model of the stall dynamics of a Cessna Citation
II is identified and validated around an altitude of 5,500 m, or 18,000 ft, in clean conditions. Overall, the model output
shows very good agreement with flight data, especially during stalls.

Kirchoff’s theory of flow separation is used as modeling principle, and is suitable for capturing the effects of
stall on aircraft dynamics. Model structure selection is facilitated using a multivariate orthogonal function modeling
method. Apart from modeling the effect on the lift, the flow separation point variable X is also used to capture the
effect of stall on drag and elevator effectiveness. The latter of these additions is a novel approach of this research.
Given the available data, X is not found to have an effect on the lateral dynamics (roll, yaw, lateral force) or aileron
and rudder effectiveness.

The stall model parameters are estimated accurately. The flight data that was gathered includes the use of control
surfaces and dynamic excitation during stall, and enables direct estimation of the stall model parameters. This is an
improvement compared to previous research, which used data of only quasi-static stalls, and where the transient stall
effects needed to be estimated indirectly, via the accelerations caused by the stall buffet.

In conclusion, the model identification methodology that is developed in this research is considered to be well-
suited for identifying a stall model of a small business jet, like a Cessna Citation II. This methodology, as well as the
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obtained model, will serve as the basis for future research, leading to better stall models and training programs, which
will prepare pilots for real-life encounters with stall upsets.
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Appendices

A. Parameter Sensitivity of Solution of ODE

This Appendix presents the method used for computing the cost function gradient @J(✓, x)/@✓. Consider the example
model structure from Equation 7, which results in the following parameter vector: ✓ =

⇥
⌧1 ⌧2 a1 ↵⇤ CL0 CL↵ CLq

⇤|.
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The relevant equations are repeated for clarity:

J(✓, x) = 1
N

⇣
CL � ĈL(✓, x)

⌘| ⇣
CL � ĈL(✓, x)

⌘
,

ĈL(✓, x) = CL0 + CL↵

⇣
1+

p
X

2

⌘2
↵+ CLq

qc̄
V ,

⌧1
dX
dt +X = 1

2 (1� tanh [a1 (↵� ⌧2↵̇� ↵⇤)]) .

The first four parameters in ✓ influence the cost function via X , the rest does not. As a result, the application of the
chain rule requires a separate treatment of X-parameters and others:

@J(✓, x)

@✓i
=

8
<

:

@J
@ĈL

@ĈL
@X

@X
@✓i

when ✓i 2 {⌧1 ⌧2 a1 ↵⇤
}

@J
@ĈL

@ĈL
@✓i

when ✓i 2 {CL0 CL↵ CLq}

. (21)

All the partial derivative terms in this equation are relatively straightforward to obtain using algebra, except for
@X/@✓i. When using finite difference methods to compute the parameter sensitivity of a solution of an ODE (i.e.,
the flow separation point X), numerical issues can arise.21 To avoid this, a different method is used instead.26 First,
Equation 2 is rewritten to the following form:

d
dtX(t, x, ✓) = 1

⌧1

�
�X + 1

2 �
1
2 tanh [a1 (↵� ⌧2↵̇� ↵⇤)]

�
with X(0, x, ✓) = X0(x, ✓) . (22)

X0 is the static mapping from ↵ to X , i.e., without considering dynamic effects. Equation 22 can be written as:

dX(t,x,✓)
dt = G(X, t, x, ✓) . (23)

Next, @X/@✓, which is the partial derivative that we want to obtain, is defined as:

@X(t,x,✓)
@✓ = S(t, x, ✓) . (24)

When one takes the partial derivative of Equation 23 with respect to ✓, the following result is obtained:

@
@✓

d
dtX(t, x, ✓) = @G(X,t,x,✓)

@X
@X(t,x,✓)

@✓ + @G(X,t,x,✓)
@✓ . (25)

Substituting Equation 24 yields:

d
dtS(t, x, ✓) =

@G(X,t,x,✓)
@X S(t, x, ✓) + @G(X,t,x,✓)

@✓ with S(0, x, ✓) = 0 . (26)

The terms @G/@X and @G/@✓ can be derived from Equation 22. A second ODE has been obtained, which can be
solved numerically. The solution can be substituted into Equation 21 to complete the chain rule.

B. Results of Initial X-parameter Optimization

An important assumption is that the dependence of the optimal set of X-parameters on the selected CL model structure
is mild. When the optimization of the X-parameters is done using the initial model structure (as in Equation 7), then
the results are as shown in Table 9. The parameters are clearly in the same order of magnitude, the assumption is
concluded to hold.

C. Explanation for Including CT As Regressor

The models for drag and pitch moment coefficient both contain the thrust coefficient CT as a regressor term, since it
was found that this has a strong beneficial effect on model quality. Since this might appear surprising, this Appendix
presents the likely reason behind this.

First, recall that the aerodynamic force and moment coefficients, such as CD and Cm, cannot be measured directly,
but are determined based on other measurements. For this, it is required to have accurate knowledge of the engine
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Table 9. Results of estimating the X-parameters using the initial model structure for CL.

Parameter Results
Name Unit ✓̂ Diff. w. final ✓lb ✓ub �(✓̂)

⌧1 [s] 0.4623 +81.5% 0.001 2.00 0.4227
⌧2 [s] 0.0212 +20.5% 0.000 2.00 0.1049
a1 [-] 22.1161 -20.1% 15.000 40.00 4.7636
↵⇤ [rad] 0.2286 + 9.7% 0.100 0.35 0.0200

thrust. However, also the thrust cannot be measured directly. An engine model is used for computing the thrust based
on signals that are measured, such as thrust lever setting, and atmospheric conditions. The Citation II is equipped
with two Pratt & Whitney JT15D turbofans. The models that were used for these are included in the Delft University
Aircraft Simulation Model and Analysis Tool (DASMAT).

It is clear that any errors in this engine model propagate into errors into the “measured” aerodynamic force and
moment coefficients, and thus lead to changes in the identified model parameters. If the error in thrust would have
been constant, only the bias term of the model would change. However, the thrust was not constant during the recorded
stall maneuvers, which also led to a changing error in the engine thrust. As a result, the bias term cannot correct for
this error. Since the thrust coefficient CT is computed based on the same engine model, it contains the same error.
Hence, because it is correlated with a pattern in the data that cannot be otherwise explained, it is beneficial to the
model quality to include CT as a regressor.

It is recommended to do research and improve the accuracy of the engine model. If that is successful, these
thrust-related model terms should no longer be necessary, which would be an improvement to model simplicity.

D. Individual Model Term Contributions of CY , Cl, and Cn

The contributions of the individual model terms were shown in the main part of the paper only for the longitudinal
model outputs (i.e., CL, CD, Cm). The same plots for the lateral model outputs are presented here in the Appendices,
in Figures 28, 29, and 30.
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Figure 28. Example of the model term contributions of the lateral force model, example shown is data set 12 (validation).
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Figure 29. Example of the model term contributions of the roll moment model, example shown is data set 12 (validation).
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Figure 30. Example of the model term contributions of the yaw moment model, example shown is data set 12 (validation).
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�
Introduction

Loss of control while in-flight (LOC-I) is usually defined as a significant deviation from the intended flight
path, not resulting from a catastrophic system failure [34]. It can arise from a range of upset types, of which
aerodynamic stall is a major candidate [38]. LOC-I currently is the largest category of fatal accidents in civil
and general aviation, and the only one which is not decreasing over time [5]. Improving the type-specific
stall recognition, prevention, and recovery training that pilots must receive is seen as a promising way of
increasing aviation safety [11].

From March 2019, the FAA will require US airline pilots of following such stall training [20]. Due to the
cost and safety issues of training in real aircraft, this will most likely take place in simulators. However, cur-
rent flight simulation training devices (FSTDs) are generally not able to simulate aerodynamic stall due to
limitations in their underlying flight dynamics models.

This gap has sparked new research in modeling aircraft dynamics at high angles of attack. In 2016, the FAA
has released updated FTSD qualification requirements with respect to stall modeling [21]. Simulating a stall
is challenging due to its highly nonlinear, unsteady, configuration-dependent, and fundamentally unpre-
dictable nature [8]. The configuration dependence combined with FAA regulations requiring type-specific
qualification indicate that a large amount of new stall models will be required by 2019. Current modeling
methods rely on extensive flight test and/or wind tunnel measurement campaigns, involving large cost and
complexity. This cost and complexity is seen as a barrier for the effective implementation of new pilot train-
ing.

To address these issues, a stall modeling task force was set up at the Control and Simulation department
of the TU Delft Aerospace Engineering faculty. The group’s goal is to develop a new method for creating
stall models, that serve effective pilot stall training, at relatively low cost. The first step towards this goal is
to develop a baseline stall model for the faculty’s own Cessna Citation II aircraft from flight test data as a
reference point. Developing such a baseline model will be the main goal of this thesis. A first effort in this
area was already completed at the task force [56], this work builds on that.

Research Objective
The research objective of this thesis is formulated as: “To identify, verify, and validate a stall model of the
Cessna Citation II faculty aircraft that includes both longitudinal and lateral-directional dynamics, changes in
control surface effectiveness, and dynamic effects, based on flight test data.”

This can be broken down into multiple sub-goals, which are easier to handle. The sub-goals of the thesis
project are:

1. Gather flight data that enables the identification of the stall dynamics of a Cessna Citation II aircraft,
including both longitudinal and lateral-directional terms, changes in control surface effectiveness, and
unsteady effects, by designing and executing new flight tests.

2. Pre-process the flight data to obtain an optimal estimate of the aircraft state trajectory by adapting and
applying an Unscented Kalman Filter, as described in [56].

3. Select a model structure that enables the representation of the desired stall characteristics, and whose
parameters can be estimated with good accuracy given the available flight data.
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4. Estimate the parameters of the selected model structure using a suitable parameter estimation method.
5. Verify and validate the identified stall model using flight data.
6. Integrate the newly developed stall model into the high-fidelity Citation II simulation tool DASMAT.

Research Question
The main research question of this thesis is fomulated as: “How can a model of the stall behavior of a Cessna
Citation II aircraft, including both longitudinal and lateral-directional dynamics, changes in control surface
effectiveness, and dynamic effects, best be identified from flight test data?”

Same as for the research goal, the research question can be broken down into smaller sub-questions.
However, due to time constraints not all sub-goals of the thesis correspond to a sub-question, only those that
are in the focus area.

1. What types of flight test maneuvers are suitable for identifying dynamic stall behavior, including control
surface degradation?

2. What model structure is suitable for representing aircraft stall behavior, including both longitudinal
and lateral-directional dynamics, changes in control surface effectiveness, and dynamic effects?

3. What parameter estimation techniques are suitable for accurately estimating the parameters of a non-
linear stall model structure from flight data?

Methodology & Structure of This Report
As the main research goal of the work is to identify, verify, and validate a model, the steps that must be taken
correspond to those of a general system identification framework. First, data needs to be gathered and pos-
sibly pre-processed. Then, a model structure must be chosen, and its parameters will be estimated. The
result is then verified and validated, which might lead to re-visiting some of the earlier steps in case of errors.
Finally, the model is implemented for the intended purpose. This structure is presented in block-diagram
format in Figure 1.1. These steps correspond to the sub-goals of the thesis, and will be explained in more
detail.

Figure 1.1: The structure of the proposed thesis research methodology

Step 0: Literature study The step that precedes the first step of the actual work is to get familiar with the
body of knowledge already available on the topic of stall modeling. To that end, a literature survey was exe-
cuted. Some general concepts, history, and prevailing methodologies found in stall modeling are presented
in chapter 2.

Step 1: Gathering data The previous effort of identifying a Citation II stall model at DUT was based on a
database of quasi-static stall maneuvers. This data lacked the availability of a side-slip measurement, and
contained little excitation of control surfaces and dynamic terms, which prevented the identification of a full
model. Therefore, new flight tests had to be be designed, planned, and executed. Details of the flight test
vehicle, procedures, and maneuvers can be found in chapter 3.

Step 2: Pre-processing data The flight data contains measurement errors, so the real flight path of the
aircraft is be unknown. To maximize the accuracy of the model, the flight data has been pre-processed to
obtain the best estimate of this flight path. For this, the recommendations developed in [56] were followed
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and an UKF was used. The mathematics and specific application of the UKF to this thesis are treated in
chapter 4.

Step 3: Model structure selection A key step in system identification is to choose a suitable model structure.
This is where the main focus of the thesis will be. This step involves a lot of engineering judgement, and is
not a problem that can solved in closed form. Chapter 5 presents the main building blocks from which the
final stall model will be constructed.

Step 4: Parameter estimation Once the model structure is determined, its parameters must be estimated
using (part of) the flight data. Both nonlinear and linear parameter optimization algorithms will be used in
this thesis. Those algorithm, and the metrics used to evaluate model quality are covered in chapter 6.

Step 5: Verification & validation of results In order to finish the thesis work, the resulting model will have
to be verified and validated. The current work has not yet reached this step, instead chapter 7 covers an
analysis of preliminary results.

Step 6: Integration As a final step in the thesis, the resulting model will be implemented in the DASMAT
simulation framework used at the Control and Simulation department. DASMAT already includes many sim-
ulation models, such as a flight dynamics model for the conventional flight envelope, a thrust model, and a
mass model. Moreover, it is used as an input for the department’s research simulator SIMONA. This step is
not yet covered by this report, and will be addressed in future updates.



�
Background & Literature Review

This chapter introduces the concept of aerodynamic stall. Next, it discusses recent regulatory developments
that are relevant to the research. A list of properties which should be included in the modeling of stall is given,
which represents the current industry best practices. Next is the main part of this chapter: a literature survey
on the history and current state of the art in stall modeling. The chapter concludes with a short summary of
the literature survey.

2.1. Aerodynamic Stall Definition
Physically, aerodynamic stall is a condition in which the flow (partially) separates from the wing of an aircraft,
this phenomenon depends highly on angle of attack and Mach number. In practice, a wing is considered to
be in the stall regime if its angle of attack is increased beyond the critical angle of attack (which corresponds
to maximum lift). Figure 2.1 visualizes the stall progression of a typical wing and its effect on the lift it pro-
duces. Stall is characterized as highly nonlinear, unsteady, unpredictable, and configuration-dependent. For
example, consider the effect of stalled wing wake on horizontal stabilizers, which is clearly dependent on air-
craft geometry. Or, consider the effects of aerodynamic hysteresis on the flow field. These factors, and many
others, make aerodynamic stall very challenging to predict and model accurately and effectively.

(a) Flow visualization
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Figure 2.1: Progression of trailing edge flow separation

Most wings of conventional aircraft have relatively thick and rough airfoils, resulting in a turbulent bound-
ary layer. This type of wings, at regular angle of attack rates encountered during normal flight, experience
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mainly trailing edge stall i.e separation initiates at the trailing edge and moves to the leading edge as angle of
attack is increased [29].

2.2. New FAA Regulations Regarding Stall Modeling in FSTDs
In aircraft accident statistics, loss of control in-flight (LOC-I) is the number one category of fatalities in civil
aviation. Figure 2.2 shows these statistics from 2006 through 2015. While new technologies have mitigated
other accident categories such as controlled flight into terrain, or mid-air collisions, LOC-I has remained at
a constant level. Aerodynamic stall is the biggest contributing factor to LOC-I [38], and is relevant in about
40% of cases.

Figure 2.2: Statistics of civil aviation fatalities by category in 2006-2015, showing that LOC-I is the category that is biggest
by far. Figure from [5].

As unfortunate as they are, these accidents have leant us valuable lessons. In many cases pilots did not
follow the proper upset recovery procedures. Fatal accidents have resulted from upset situations from which
recovery was likely to be possible. Therefore, improving pilot training is seen as an effective way to reduce
LOC-I fatalities. The FAA has announced that from 2019 onwards, all civil aviation pilots need to be trained
on how to properly recognize, prevent, and recover aerodynamic stall [20].

Because of cost and safety considerations, the new training will most likely take place in a flight simulation
training devices (FSTDs). Current FSTDs generally cannot offer stall training. To address this, the FAA FTSD
qualification requirements have also been updated [21]. According to the new additions to FAA Part 60, FTSDs
should comply with the following points:

• The flight dynamics model should reflect the aircraft type-specific stall properties. These properties
can be broken down into the list in section 2.3, not all properties will be equally relevant for all aircraft.

• The flight envelope of the dynamics model should enable the training tasks, with Æ-envelope being at
least as big as the stall identification angle of attack + 10 degrees. The training tasks themselves are not
defined in Part 60.

• During qualification, the simulator is evaluated using three types of stall maneuvers, i) wings-level (1g)
stall entry, ii) stall entry in turning flight of >25 degrees bank (accelerated stall), and iii) stall entry in
power-on conditions (only for propellor-driven aircraft).
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• Each of these three maneuvers should be evaluated at least one of the following three flight conditions:
a) high-altitude cruise near performance limit, in clean conditions, b) approach/landing conditions,
with corresponding flaps and gear deployed, and c) second-stage climb, with different flap and gear
settings than b.

• The simulated time histories are subject to a list of numerical tolerances compared to flight data. These
tolerances hold up to but not beyond the stall angle of attack.

• Beyond the stall angle of attack, the time histories should be “of correct trend and magnitude” when
compared to flight data.

• Separate requirements are put on the stall buffet model.
• Finally, the simulator should be subjectively rated by a subject-matter expert (SME) who is acceptable

to the FAA. The SME should have extensive experience in stalling the real aircraft.

2.3. ICATEE List of Effects of Aerodynamic Stall
As can be imagined, the flow field around a complete aircraft at high angles of attack is highly complex. Ex-
actly predicting and quantifying the all effects of a stall based on is not feasible with today’s methods. How-
ever, several categories of effects are common, and give a good basis for modeling stall. The International
Committee for Aviation Training in Extended Envelopes (ICATEE) has proposed a list of properties of aero-
dynamic stall to be modeled in future stall or post-stall flight models. These properties are listed here, and
a short physical explanation is given. The characteristics of aircraft dynamics at high angles of attack are
described in more detail in [8].

Degradation in lateral-directional stability Due to aerodynamic stall, static and dynamic lateral (roll mo-
tion) and directional (yaw motion) stability of the aircraft are negatively affected. This is one of the most
dangerous aspects of a stall, since it can lead the aircraft to going into a spin motion from which it is hard
to recover. There are numerous ways in which the lateral-directional stability is affected, some are explained
here for illustrative purposes.

As can be seen in Figure 2.1, the derivative of the lift coefficient to the angle of attack CLÆ becomes negative
in the Æ range following Æcrit. This effect can make the roll damping Clp positive. In a roll the down-going
wing experiences a higher local angle of attack. When CLÆ > 0, this results in more lift for the down-going
wing and thus a moment countering the roll motion. Hence the name, roll damping. In the stall regime,
where CLÆ < 0, this effect is reversed which can lead to large roll excursions.

A similar effect is seen on the effective dihedral ClØ , which describes the roll response from sideslip angle.
At a positive sideslip angle, the aircraft nose has rotated to the right. Due to the interaction of the wing and
fuselage, the induced angle of attack on the right wing is increased. Now the sign of CLÆ again determines the
type of response. For positive sideslip it is desirable to roll to the left, which only happens for CLÆ > 0.

As a last example, the directional stability CnØ can be greatly affected by stall effects. The two main con-
tributors are the fuselage and vertical tail. Generally speaking, the fuselage has a destabilizing effect, and the
tail a stabilizing one. If the vertical tail is inside a low-energy stalled wake, its effect can be greatly diminished,
so that the fuselage effect can become dominating.

Degradation in control surface effectiveness At high angles of attack, turbulent or stalled wakes originat-
ing from wing, fuselage, engine, or others can impinge on the control surfaces, reducing their effectiveness.
Needless to say, these effects are highly configuration-dependent. In extreme cases, control response can
even be reversed. For example, consider a pilot who deflects his ailerons in order to initiate a left rolling mo-
tion while the aircraft is stalled. The right aileron then deflects downward, which can actually decrease lift
due to the increase in local angle of attack. For the left wing the opposite can happen. This results in a right
rolling motion, opposite to what was intended.

Changes in pitch stability For some aircraft configurations, entering a stall can result in an uncontrollable
pitch-up motion. Obviously, this is highly undesirable; the first thing a pilot should do in a stall is unloading
the wings by reducing angle of attack. Wings with high sweep are particularly prone to this issue. Typically,
span-wise flow and upwash at the tip result in wing tips stalling first, which for swept wings moves the center
of lift forward, potentially causing instability. This can be mitigated with wing fences (limit span-wise flow),
wing twist (reduce the angle of attack near the tip), or increasing aspect ratio (relative move of aerodynamic
center is smaller).
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Another important contributor to pitch-up instability is the effect of the wing wake on the tail. The tail
will move towards or away from the wing wake with changing angle of attack. The wake from an un-stalled
wing will reduce the effective angle of attack due to downwash, reducing tail effectiveness. Much worse is the
loss of dynamic pressure when the tail enters the wake of a stalled wing. T-tail aircraft are prone to this type
of behavior. In extreme cases, it can lead to a second stable trim point at very high angle of attack. Combined
with reduced elevator effectiveness, the pilot might not have enough control authority to pitch the aircraft
out of the stall, a nasty situation to be in.

Stall buffet According to the Oxford dictionary, “to buffet” means “to strike repeatedly and violently”, which
is essentially what happens during stall and stall onset. Turbulent and separated flows impact on parts of the
aircraft, resulting in significant vibrations that can be felt by pilot and passengers. It is one the most important
cues that pilots use in evaluating the severity of the stalled flight condition, and therefore very important
during stall training in the flight simulator [52].

Modeling the stall buffet consists of adding colored noise signals to the three orthogonal aircraft acceler-
ations calculated by the flight dynamics when some threshold (e.g. angle of attack ∑ 10±) is exceeded. The
spectra of these noise signals can be obtained from flight test data. Since simulating stall buffet comes down
to violently shaking your simulation equipment, the amplitude is often tuned down in real simulators to pre-
vent fatigue damage to expensive equipment.

Unsteady and hysteresis effects Already in 1951, it was known that the angle of attack rate had a significant
effect on the maximum lift a wing can produce due to flow circulation effects [25]. This effect is commonly
called aerodynamic hysteresis. Furthermore, the process of flow separation is not instantaneous, hence it is
subject to some dynamics. This can be imagined as that the flow needs some time to adjust after an abrupt
upset. Studies have shown that including both these unsteady effects improves the model quality during
dynamic maneuvers [22].

Un-commanded roll response requiring significant control deflection to counter Due to small asymme-
tries in geometry, propellors, atmospheric turbulences, or other disturbances; both wings never stall at ex-
actly the same time. This creates a lift difference, resulting in a roll motion. The down-going wing then
experiences a larger local angle of attack, which can deepen the local stall even further. This is called un-
commanded roll-off, and occurs in each stall to greater or lesser extent. Some aircraft tend to roll in a specific
direction during stall (especially propellor aircraft); others have more unpredictable behavior.

Apparent randomness or non-repeatability Because of the complex and unsteady nature of stall, small
disturbances or imbalances can grow quickly and have significant effects. Such small disturbances are ran-
domly present at all times in and around the aircraft; a prime example of this is atmospheric turbulence. This
makes every stall maneuver unique in some way. This may have implications on the recovery strategy a pilot
should apply: if two stall maneuvers can randomly turn out to be fundamentally different, then it may not
make a lot of sense for the pilot to memorize a fixed set of actions as a recovery procedure. Instead, pilots
could then be taught the underlying principles, and respond accordingly to the actual situation at hand.

Mach effects Mach number is one of the fundamental properties which a stall depends on. Due to changes
in compressibility, the flow field around the wing changes. Moreover, local supersonic flows may occur during
high subsonic speeds, which might drastically alter stall behavior. Generally, Mach effects are accounted for
by gathering data (flight, wind tunnel, CFD) over a wide range of airspeeds, and letting the Mach number be
an independent variable in the model.

2.4. A Literature Survey of Stall Modeling Research
The current section presents a literature survey of past and present research into understanding and mod-
eling aircraft dynamics at high angles of attack. An attempt has been made to present it in chronological
order, but some deviations from this are made for the sake of clarity. Next to that, parts of the section overlap
with other chapter 5, but this was kept since it was the intention that this literature survey could be read as
standalone.
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2.4.1. Early Efforts
The early research into aircraft stability and control characteristics at high angles of attack started appear-
ing in the 1950s and 1960s, with main contributions by NASA and the US air force [31], [7]. The majority of
work considers fighter-type aircraft, which makes sense considering that it was (and still is) much more com-
mon for these aircraft to encounter the far reaches of their flight envelope. It is interesting to note that most
early efforts focussed on investigating lateral-directional stability, as in [45] and [10], whereas in the period
following the early efforts, the focus was on modeling longitudinal dynamics. A likely reason for this is that
lateral-dynamic effects are much more complex to model mathematically, so any modeling effort would nat-
urally begin with longitudinal terms. However, lateral-directional terms are most critical for flight safety, so
gaining insights into physical flow phenomena causing instability and into configuration effects is valuable
for the design of new aircraft. Some examples of design choices made for increasing directional stability at
high angles of attack are given in [8].

In the 1970s, the first attempt at building a full aerodynamic model using flight test data is published in
[18]. An important conclusion from this work was that due to the highly nonlinear nature of stall, experiment
data does not generalize well to the entire flight envelope, so a lot of data is required for identifying a full
model that is valid for the entire (extended) flight envelope. Around the same time, the same observations
were made in a review of control and stability derivatives of an F-15 scaled model in [33]. In this technical
note, the highly nonlinear effect of stall is visualized clearly by plots of control and stability derivatives versus
either alpha or beta. Some examples are presented in Figure 2.3

(a) Identified values of CNÆ and CmÆ plotted against Æ (b) Identified values of CnØ and ClØ plotted against Æ

Figure 2.3: Example figures from [33], illustrating the nonlinear nature of control and stability derivatives of a 3/8 scale
model of an F-15

In the 1980s a move is seen to other aircraft types than fighters. In [9], a summary is given of research
on stall and spin dynamics of general aviation aircraft, and in [54] a nonlinear model is given of a sailplane.
The latter paper presents a modeling approach based on first partitioning flight test data based on alpha and
beta, and then fitting a conventional linear-in-the-parameters-type polynomial model to each data bin. A
work using a similar method is [4]. Although this data partitioning approach was succesful in explaining the
large nonlinearities, data again proved to be a problem as each data bin should contain proper excitation of
all aircraft states and control surfaces. Following the described period of early efforts, several distinct themes
can be identified in the research into stall modeling.
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2.4.2. Kirchoff’s Theory of Flow Separation
The first attempt at describing the nonlinear, dynamic, and time-dependent phenomena caused by stall with
a relatively simple model structure was published in [29] in the early 1990s. This research was inspired by
previous work on rotorcraft propellor blades and is based on the assumption that the effects of flow separa-
tion on airfoil lift can be described by Kirchoff’s theory of flow separation. This theory states that the relation
between lift coefficient and the separation state of the flow X can be approximated by the nonlinear relation:

CL =CLÆ

√
1+

p
X

2

!2

Æ . (2.1)

X can take values on a range from 1 (flow fully attached) to 0 (flow fully separated), as is illustrated in Fig-
ure 2.4. The dynamics of X itself are also nonlinear and different for each aircraft configuration, but exper-
iments have shown that they can be described by Equation 2.2, using only four parameters. These can be
estimated from wind tunnel or flight test data. The dynamics are split in an unsteady part, with parame-
ters ø1 and ø2, and an expression for the steady flow separation point. This model and its parameters, are
explained in more detail in subsection 5.2.1.
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In [22] the parameters of this model were estimated for two transport aircraft using flight data of quasi-
steady and dynamic stall maneuvers. The model was then used to simulate the longitudinal dynamics of the
aircraft during stall. A validation step showed good agreement between model output and flight data, espe-
cially when the parameters were estimated from dynamic stall maoeuvres. An extension to include lateral
dynamics is presented in [53] and [23]. Basically, these papers separate the lift and drag contributions of the
left and right wings to describe roll and yaw motions caused by flow separation. In recent years, [15] and [16]
present another application of this method.

Figure 2.4: Illustration of internal variable X (figure from [15])

The power of this approach is that it effectively captures the nonlinear relation between Æ and CL via the
use of X . By doing this, prior knowledge is put into the model i.e. from years of wind tunnel research, it is
known that the relation between flow separation point and lift is approximately as in Equations 2.1 and 2.2.
Because of that, this method is physically meaningful and simple in the sense that it requires only four extra
parameters to describe a complicated nonlinear mapping.

However, it is not the only way to capture this relation. Any nonlinear model with enough approxima-
tion power is theoretically able to do this, see for example the new developments in spline theory in [14].
Nevertheless, the question remains whether fitting such a model is feasible given the limited data available.
Including as much previously available information in a modeling effort seems wise, which is an argument
for using Kirchoff’s theory. Furthermore, X could be used to help add new model terms that describe changes
in stability or control surface effectiveness. So far, the models in [23] etc. did not contain any of these terms,
which indicates possible areas of improvement.

Another issue, albeit perhaps a less relevant one, is that the current form of the model can never be valid
for angles of attack in the very deep stall regime. Figure 2.5 shows that due to the definition in Equation 2.1,
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once the flow is fully stalled i.e. X = 0, CL becomes a nondecreasing function of Æ. This clearly is unphysical,
so model is not valid for very high angles of attack, which might be an issue depending on the intended use
of the model.
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Figure 2.5: Illustration of non-physical behavior of the model based on Kirchoff’s theory of flow separation.

2.4.3. Other Extensions to Aerodynamic Model Equations
As stated in the previous section, any model structure that has enough approximation power should be able
to describe the high-angle-of-attack dynamics of any aircraft. In the research into Kirchoff’s theory of flow
separation, approximation power was gained by adding Equation 2.1 to the conventional aerodynamic model
equations. However, other extensions are also possible. The conventional method is to use linear polynomials
as the aerodynamic model equations for each flight condition, and make the parameters of these models
depend on flight condition. Usually these models use only terms up to the first order Taylor series of the set
of independent variables. For example, if Cm is to be modeled using only Æ, q̃ , and ±e in the pool of available
explanatory variables, the model would be of the following form:

Cm =Cm0 +CmÆÆ+Cmq q̃ +Cm±e
±e (2.3)

Implicit in this model is the assumption that aerodynamic derivatives such as CmÆ are constant. Clearly, this
only holds for limited ranges of Æ. By allowing higher order terms of the Taylor expansion to be included,
nonlinearities and dependencies between explanatory variables can be explained. This can extend the range
on which the model is valid. Consider the same example, but now allow the use of terms up to order two. The
model would then take the form:

CL =Cm0 +CmÆÆ+Cmq q̃ +Cm±e
±e +CmÆ2Æ

2 +Cmq2 q̃2 +Cm
±2

e
±2

e +CmÆqÆq̃ +CmÆ±e
Æ±e +Cmq±e

q̃±e (2.4)

Of course, as the order of terms increases, the probability of a term (e.g. Æ±e ) actually being useful in ex-
plaining the dynamics reduces. Selection of which model terms to include is a nontrivial task. In [41], this
is addressed by orthogonalizing the model terms with respect to each other. The explanatory power of each
model term can then be investigated independently, although the order of orthogonalization still influences
the results.

In this paper, and in [36], another method is the addition of simple univariate spline functions of the
explanatory variables into the pool of explanatory variables. An example spline function is given by:

(Æ°Æi )m
+ =

(
(Æ°Æi )m if Æ>Æi

0 otherwise
(2.5)

The terms in Equation 2.4 are global terms i.e. they cover the whole range of explanatory variables. Hence,
it is not possible to make local adjustments without influencing the whole model domain, which is undesir-
able. This also makes it more likely that the model will require higher order terms to cope with strong local
nonlinearities, also this leads to bad generalization behavior. By adding spline terms, the model can be ad-
justed locally without having to introduce higher order terms.
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The downside of the method presented in this section is that it ignores previous knowledge, such as in
Equations 2.1-2.2. Furthermore the current formulation does not contain unsteady effects, although these
could potentially be added in the form:

ødCm
d t +Cm =Cm,steady

where Cm,st is for instance the right side of Equation 2.4. Another way of including time-dependent effects
is to also include the time derivatives of the explanatory variables as candidate regressor, e.g. also train the
model on terms such as Æ̇ and/or Ø̇.

The method also has large potential benefits. The model form is linear in the parameters, which en-
sures finding a set of parameters that is globally optimal, and greatly speeds up the computational burden of
parameter estimation. A second advantage is that the generation and selection of model terms can be fully
automated if the candidate pool, maximum model order, and some threshold of explanatory performance are
set. In conclusion, this method is a more general approach than using Kirchoff’s theory of flow separation.
Combinations of both methods might offer benefits.

2.4.4. Application of Fighter Methods to Civil Aircraft
In 1998, the Commercial Aviation Safety Team (CAST) was founded in the USA with the goal of reducing
aviation fatalities by 80% in 10 years. To achieve this, the NASA Aviation Safety Program (AvSP) was launched
in 2000, a partnership between the Federal Aviation Authority (FAA), Department of Defence (DoD), and
aviation industry. As part of the AvSP, research has been done to develop aerodynamic modeling methods
for the dynamics of large transport airliners in upset conditions. This has led to a series of publications, see
[6], [12], [24], [43], and [44].

Traditional methods for modeling the dynamics of civil aircraft are based on obtaining static effects via
wind tunnel tests, and dynamic effects via small-amplitude flight test maneuvers. These models are nor-
mally only validated for the normal flight envelope, but accident investigations showed this is often exceeded
during loss-of-control events. The conclusion was that traditional models were not suitable for predicting
post-stall and spin dynamics. After analyzing loss-of-control motions of civil aircraft, it was found that they
were more similar to those of high-performance aircraft (i.e. fighters) than previously thought. This led to
methods designed for the latter, which had been successful at describing fighter spin dynamics for many
years, being also applied to civil aircraft.

The methods derived from those of high-performance aircraft are based on extensive wind tunnel testing.
Like traditional methods, static effects are also found from static wind tunnel tests. However, dynamic effects
are identified differently. An important assumption is that data from rotary balance tests, and forced oscilla-
tion test can be combined vectorially to obtain the total dynamic response. Even though these two tests are
fundamentally different, and this combination poses numerous challenges, good results have been obtained.

Figure 2.6: Decomposition of total aircraft angular rate vector into steady-state and oscillatory components (figure from
[44])

Data from the rotary balance tests represent aircraft responses during coordinated turns, in which the
vector of rotation lies close to the velocity vector. Rotary balance tests do exactly this: an aircraft model is
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moved with a rotation vector that is parallel to the free stream velocity. Angle of attack/sideslip, rotation rate,
and control surface deflections are varied. The associated rotation is called the steady-state rotation !ss.

Forced oscillation tests involve moving the model in a sinusoidal way along its body pitch, roll, and yaw
axes, and represent dynamic responses from uncoordinated turns. Angle of attack/sideslip, oscillation am-
plitude/frequency, and possibly control surface deflections are varied. The associated rotation is called the
oscillatory rotation !osc. See Figure 2.6 for an illustration of how the total aircraft angular rate vector can be
factorized into !ss and !osc.

The databases which result from these tests are combined by factoring the total aircraft rotation vector
into a steady-state rotation !ss and an oscillatory rotation!osc =

£
posc qosc rosc

§T . This results in the follow-
ing model structure:

Ci =Ci ,static(Æ,Ø)+¢Ci ,±(Æ,Ø,±)+¢Ci ,qosc (Æ, qosc )+¢Ci ,!ss (Æ,Ø,!ss)

C j =C j ,static(Æ,Ø)+¢C j ,±(Æ,Ø,±)+¢C j ,posc (Æ, posc)+C j ,rosc (Æ,rosc)+¢C j ,!ss (Æ,Ø,!ss)
(2.6)

where i = N ,T,m, j = Y , l ,n, and ±= [±a ±e ±r ]T . Factoring out the aircraft rotation vector into a steady-
state and an oscillatory rotation is non-trivial, and can be done in infinitely many ways. There are several
proposed methods to do this, these are explained in detail in [44], where it is also shown that each leads
to different predicted spin dynamics. As an example, the so-called "direct resolution" method is given in
Equation 2.7. Direct resolution is considered one of the simplest mechanization methods.

!ss = pb cosÆcosØ+qb sinØ+ rb sinÆcosØ

posc = pb °!ss cosÆcosØ

qosc = qb °!ss sinØ

rosc = rb °!ss sinÆcosØ

(2.7)

An approach essentially equivalent as described here was taken by the European SUPRA project (Simu-
lation of Upset Recovery in Aviation). SUPRA was part of the 7th European Framework Programme and ran
from 2009 to 2012. Its goal was to enhance flight simulation capabilities for upset recovery training of large
civil aircraft by improving 1) aerodynamic modeling capabilities in the envelope beyond stall [2], [3], [1]; and
2) motion cueing solutions for motion-base simulators [30], [48]. The final report summary can be found in
[19] (unfortunately, the project website supra.aero is offline).

The SUPRA project added on the stall modeling work done at NASA mainly in two ways. First, it adds
unsteady aerodynamics terms to the model using a simple additional term. Second, it uses complementary
CFD analysis to generate more data and help in verifying model output.

2.4.5. Founding of ICATEE
In 2009, the Royal Aeronautical Society hosted a conference fully devoted to high angle-of-attack flight dy-
namics modeling titled "Flight Simulation – Towards the Edge of the Envelope". It was clear that there was
a growing need for better upset prevention and recovery training, and thus more research into this area. An
international working group was formed to specifically address this issue: the International Committee for
Aviation Training in Extended Envelopes (ICATEE). The group is chaired by Dr. Sunjoo Advani, and currently
has about eighty members including airframe manufacturers, airlines, authorities, simulator manufacturers,
training providers, and research institutes. Section 2.3 presents the list of properties of aerodynamic stall that
the ICATEE recommends to include in a model. These recommendations have been taken over in the new
regulations by the FAA.

2.4.6. Bihrle Applied Research
One name that pops up frequently when reading literature on modeling aerodynamic stall is the one of Bihrle
Applied Research (BAR), the research company of Bill Bihrle Jr. Early work done by BAR considered the use of
simulation as a support tool for high-angle-of-attack flight testing [51] and explains the process of augmen-
tating the aerodynamic database of high performance fighter-type aircraft [50], [35], [17]. First, these papers
conclude that it is possible to augment existing aerodynamic models that are only valid for the normal flight
envelope, and that the updated model output can have a high correlation with test data. Second, they show
that gathering aerodynamic data for the extended (post-stall) flight envelope in wind tunnel experiments is a
good approach.
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Later papers approach the problem of modeling stall and post-stall aircraft behavior more from the per-
spective of pilot training. Reference [26] describes the problems with the current FSTDs relating to stall and
how to address them. In [28] an argument is made for updating regulations, as it is shown that the problems
with FSTDs can directly be related to the FAA and JAR requirements of that time.

A recent paper from 2012 [27] is a summary of all this. It builds the case why high-angle-of-attack aerody-
namics cannot be represented using conventional linear modeling methods, using several examples. It then
goes on to argue that in order to represent the stall dynamics with high fidelity, the advanced nonlinear mod-
eling used for fighter aircraft is needed. They also argue that for this modeling method to work, wind tunnel
test campaigns are needed.

Finally, in [27] the (now updated) FAA regulations are considered. These require that aircraft responses
should be “of correct trend and magnitude”, as evaluated by a subject matter expert, which already gives
some leeway. Next, the evaluation of correctness is done based on several pre-defined maneuvers, which
can be found in the Qualification Test Guide (QTG). These maneuvers only cover a limited part of the flight
envelope. This means that by regulation, the quality of the entire simulator stall dynamics model is evaluated
subjectively on only a small part of the envelope. While making the qualification process easier, this does
raise the question on whether it results in adequate simulators. This question is left unanswered; and is also
one of the motivating factors of the current research.

2.4.7. Recent Developments
In recent years, the interest in stall modeling has gained momentum, likely due to the upcoming regulations
stating that pilots must receive simulator stall training. What can be seen is that research has become more
diverse, and attempts to take a more pragmatic approach, i.e. the focus lies on developing a stall model
of sufficient fidelity for simulator-based stall training, with a minimum of resources. This section briefly
addresses several of these new efforts.

In [13] dynamic stability derivatives up to very large angles of attack are determined used CFD analysis.
They claim a good agreement with experimental data. The potential upsides of accurate CFD procedures are
obvious: full-scale geometries can be tested, no safety issues, and significantly lower costs.

The training aspect of stall modeling is covered in [52]. It explains research into the effect of stall model
fidelity on pilot training. Even though a large group of participants was evaluated, there were not many dif-
ferences in training caused by varying model fidelity. The experiment also included a surprise stall scenario,
and despite being briefed on the correct recovery procedure short beforehand, only a quarter of test subjects
strictly followed the proper procedures. This finding once again emphasizes the need for proper stall training.

Two works of generating stall models based on aircraft geometry are given in [46] and [55]. The first uses
an empirical approach based on aircraft geometry to arrive at a base model, and uses vortex-lattice methods
to enhance it. The second work focusses on post-stall modeling of a T-tailed regional jet or turboprop based
on configuration. Tools such as these could offer a simple and quick method of arriving at a basic model,
which might already be sufficient for pilot training.

2.5. Chapter Summary
Aerodynamic stall is a highly nonlinear, unsteady flight condition and is currently one of the most impor-
tant contributors to fatalities in civil aviation. To address this, new regulations have been announced: all
US commercial pilots need to receive stall training from 2019 onwards. Training is expected to take place
in flight simulation training devices (FSTDs). As current FTSDs do not support stall simulation, this is an
open research field. The International Committee for Aviation Training in Extended Envelopes (ICATEE) has
proposed a list of stall properties that FSTDs should be able to replicate, depending on aircraft type.

1. Degradation in static/dynamic lateral-directional stability
2. Degradation in control surface effectiveness (pitch, yaw, roll)
3. Changes in pitch stability
4. Stall buffet
5. Unsteady and hysteresis effects
6. Un-commanded roll response
7. Apparent randomness
8. Mach effects

The current state of the art in modeling high-angle-of-attack aircraft dynamics is based on experience
with modeling fighter aircraft spin dynamics. This approach heavily relies on extensive wind tunnel testing



2.5. Chapter Summary 47

campaigns. A second approach lies closer to traditional aerodynamic modeling. It attempts to explain the
nonlinearities caused by stall by adding terms based on Kirchoff’s theory of flow separation. Alternatives
or extensions of this second method lie in adding additional terms which are combinations of explanatory
variables or simple splines.

While having very accurate models will always help in some way, the question remains what level of fi-
delity is needed for effective pilot training. So far, the investigated effect of model fidelity level on training is
not clear yet. Recent stall modeling developments show a more pragmatic approach, attempting to quickly
and cheaply arrive at a basic model.
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Flight Test Experiments

The current chapter describes the flight test experiments that were conducted to gather the data used in this
thesis. First, the test aircraft and its systems are shown. After that, the flight test design is explained. Last,
some notes and visualizations of the results of the flight tests are given.

Figure 3.1: A picture of the PH-LAB laboratory aircraft of DUT and NLR, note that the air data boom is not installed in
this picture

3.1. Test Aircraft and FTIS
Table 3.1: Mass & dimensions

Dimensions

b 15.9 m
c̄ 2.09 m
S 30.0 m2

Mass and inertia

m 4,157 kg
Ixx 12,392 kgm2

Iy y 31,501 kgm2

Izz 41,908 kgm2

Ixz 2,252.2 kgm2

Delft University of Technology and the Netherlands Aerospace Labora-
tory (NLR) collaboratively own a Cessna Citation II, with registration
code PH-LAB, to execute flight tests that support their research goals.
It is is business jet type aircraft with un-swept wings, twin fuselage-
mounted jet engines, and a cruciform tail (i.e. the horizontal tail in-
tersects the vertical tail somewhat in the middle). Figure 3.1 gives an
impression of what the aircraft looks like. Figure 3.2 shows the aircraft
schematically, and Table 3.1 presents the aircraft dimensions and mass
properties in more detail.

The PH-LAB is equipped with an advanced flight test instrumenta-
tion system (FTIS) that has available a range of sensors signals and logs
them in a data file during flight. Additionally, an air data boom with an
Æ and Ø-vane was installed on the nose of the aircraft. The dimensions of the air data boom vanes are given
in Table 3.3. A procedure is available that calculates the c.g. location based on weight balance tests, payload

48
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mass, and fuel burn. The end result of all this, is that obtaining calibrated measurements from flight tests is
quite user-friendly, and less prone to errors. Table 3.2 lists all measured signals that were used.

Figure 3.2: Schematic views of the PH-LAB, including the body-fixed reference frame axes definition

3.2. Flight Test Design
This section presents flight tests themselves, starting with a description of their objective; i.e. what would be
desirable if safety, cost, and time were no constraints. Next, the maneuvers themselves are briefly described.
For more details on the flight test procedures, please refer to Appendix D, where one of the flight test cards
that was used is included as an example.

3.2.1. Objectives For Flight Tests
The flight test objectives were mainly based on two sources. First, previous experience at the research group
with stall modeling led to a series of recommendations. This prior modeling effort used a set of recorded
stall maneuvers, which was already available. This data was not gathered with the goal of stall modeling, so
it was not ideal. The most important recommendations were: i) the availability of a sideslip measurement to
explain lateral effects, ii) to record dynamic stall maneuvers, and iii) to excite control surfaces to investigate
reduced control effectiveness during stall.

The second source is the FAA simulator qualification requirements document [21]. These provide guid-
ance on what properties of stalls are to be included in a stall model. Next to that, this document explains
in detail which maneuvers need to be evaluated during the qualification process. Including this type of ma-
neuver in the flight tests makes sense, as it enables the (partial) validation of the model according to FAA
standards.

When the objectives from above two sources are combined, in the ideal case the flight tests would satisfy
the following list of requirements.

• Fly two types of stall maneuvers, namely:
1. wing-level (1g) stalls
2. accelerated stalls (bank angle of > 25 deg)

• Fly each of these two stall maneuvers in three conditions:
1. high altitude (near performance limit altitude, clean)
2. approach/landing (corresponding flaps, gear down)
3. second-stage climb (flaps other than approach/landing, gear up)

• Dynamically excite the aircraft, such that transient and unsteady effects can be estimated from the data,
and such that variables that normally are highly correlated (such as Æ̇ and q) are sufficiently uncoupled.
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• Have an accurate measurement of all relevant state and input signals, including angle of attack and
angle of sideslip.

• Both before and during stall, sufficiently excite control surfaces ±a , ±e , and ±r , and combinations of
these in an uncorrelated way.

• Ensure that the flight envelope is sufficiently covered by the recorded maneuvers so that the model can
be identified and validated for all relevant flight conditions.

• Gather sufficient repetitions of each maneuver such that model overfitting is no problem and enough
data is left for model validation.

3.2.2. Maneuver Descriptions
After discussing the above desires with the test pilots of the PH-LAB, two types of maneuvers were prepared.
Each could then be executed with or without perturbations on the control inputs, and at different flight condi-
tions. The following paragraphs explain the maneuvers and their execution. Due to cost and time constraints,
it was decided to execute all maneuvers in clean conditions. Please see Appendix D for an example flight test
card.

Table 3.2: Measured signals in-flight

Signal name Update [Hz] æ2 (var) Unit Source

x 1.0 1.1e-2 m GPS
y 1.0 1.1e-0 m GPS
h 1.0 2.2e-2 m GPS
ẋ 1.0 2.3e-5 m/s GPS
ẏ 1.0 2.4e-5 m/s GPS
ḣ 1.0 1.0e-4 m/s GPS
¡ 52.1 1.6e-4 deg AHRS
µ 52.1 2.6e-5 deg AHRS
√ 52.1 1.1e-4 deg AHRS

VTAS 16.0 4.8e-2 kt/s DADC
Æv 100.0 2.5e-2 deg synchro
Øv 100.0 1.2e-2 deg synchro
Ax 52.1 3.9e-5 m/s2 AHRS
Ay 52.1 3.8e-4 m/s2 AHRS
Az 52.1 2.7e-3 m/s2 AHRS
p 52.1 5.2e-2 deg/s AHRS
q 52.1 8.5e-3 deg/s AHRS
r 52.1 3.1e-3 deg/s AHRS
±a 100.0 8.1e-4 deg synchro
±e 100.0 8.2e-3 deg synchro
±r 100.0 2.3e-3 deg synchro

Table 3.3: Air data boom dimensions w.r.t.
datum line

Dimension Description Dimension [inch]

xÆ x-position of Æ vane -27.5
zÆ z-position of Æ vane 128.5
xØ x-position of Ø vane -16.3
zØ z-position of Ø vane 128.5

Wing-level (1g) stall This maneuver consists of es-
tablishing trimmed, level flight, and reducing air-
speed at 1 kts/s until the aircraft stalls. The pilot then
attempts to hold the stall for a few moments, before
recovering.

Accelerated stall at 30 or 45 deg bank After estab-
lishing trimmed and level flight, the pilot rolls the air-
craft to the desired bank angle and applies pitch up to
maintain altitude. After that, airspeed is reduced at 1
kts/s until the aircraft stalls. Bank angles of 30 and 45
deg correspond to 1.1g and 1.4g respectively.

Control surface perturbations (AKA "wiggle") Dur-
ing some of the maneuvers, the pilots applied semi-
random perturbations to the controls. Based on the
maneuver description in [41], the objective of these
perturbations was to apply as wide a frequency spec-
trum as possible, and with amplitudes such that the
aircraft attitude does divert too much from the de-
sired stall condition. During flight, a practical way to
implement this was to let one pilot control the ele-
vators by holding on to the steering column, and the
other pilot controlled ailerons and rudder. This re-
duced individual pilot workload, and increased the
likelihood that the control signals were uncorrelated
with each other.

3.3. Notes on the Flight Tests
In total, data was recorded of 37 stall maneuvers, of which 34 were in clean conditions. About half the ma-
neuvers were wing-level (1g) stalls, the rest were accelerated. During flight it became clear that if the pilots
were to keep the aircraft stalled for more than a moment, control surface deflections are always necessary.
Therefore, the distinction between "wiggle" and "no wiggle" is not clear-cut: all stalls contained some control
surface deflections. This was not seen as a problem, as this only increased the information contained in the
data sets.

Furthermore, the stall behavior of the Cessna Citation II that was seen during the flight tests was generally
considered very benign and forgiving by all persons on board. It required significant excitation of control
surfaces to keep it in the stall, as the aircraft had a strong tendency to restore itself. Also while in stall, there
there was enough time and control surface effectiveness to control the aircraft.



�
Flight Path Reconstruction

The current chapter describes the flight path reconstruction (FPR) techniques used in this thesis. The work
builds further on previous research done at Delft University of Technology, in the sense that the Unscented
Kalman Filter (UKF) implementation of [56] is used, with small adaptations. Flight path reconstruction is
necessary since not all aircraft states needed for the parameter estimation can be measured directly. More-
over, those variables that can be measured are subject to sensor bias and noise. FPR aims to address these
issues; by combining several measurements with knowledge of the system dynamics, a better estimate of the
aircraft states can be obtained.

First the implementation of the UKF is described. Next, the full navigation and observation equations
that describe the system dynamics and measurement prediction are given. After that it is shown that some
states need to be removed due to observability issues. Finally, some preliminary results are given to indicate
the quality of the FPR.

4.1. Unscented Kalman Filter
The Kalman filter is a widely-used method for reconstructing the aircraft state history from raw flight data. Its
basic idea is to recursively provide an optimal state estimate based on the previous estimate, knowledge of the
system dynamics, and the current output measurement. There are other methods for FPR, each has certain
strengths. Moreover, there are multiple variations of the Kalman filter. Making a choice from all these is not
an easy task. In [56] a thorough analysis of multiple methods for FPR is presented, and the UKF is appointed
as best option. In this research, that recommendation is followed since the flight test vehicle is the same, so
repeating the analysis would lead to double work. This also led to more time being available for other parts of
this thesis, e.g. gathering more data via flight tests, implementing new parameter estimation methods, and
validating the choice of model structure.

4.1.1. UKF Implementation
The UKF is a variation of the Kalman filter that is based on the idea of creating a set of so-called sigma points
X in the state space around the current state estimate, and propagating these through the navigation and
observation equations to obtain the required information on the innovation and cross covariances.

To implement the UKF, the state vector xk is appended with the process noise variables vk and observation
noise variables wk to obtain the augmented state vector xa

k =
£
x>k v>k w>

k

§>
. The estimate for the augmented

state vector, which has length L, is given by:

x̂a
k,k = E

n
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k,k

o
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. (4.1)

Due to the assumption that the noise can be described by zero-mean Gaussian random variables, the ex-
pected value of the noise vectors is zero. The corresponding augmented covariance matrix is given by:
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where Q and R are the process and observation noise covariance matrices, respectively. The set of sigma
points based on x̂a

k,k and P a
k,k is called the augmented set of sigma points, and is constructed as:

X
a

0 = x̂a
k,k ,

X
a

i = x̂a
k,k +

≥q
(L+∏)P a

k,k

¥

i
i = 1, 2, . . . , L ,

X
a

i = x̂a
k,k °

≥q
(L+∏)P a

k,k

¥

i°L
i = L+1, L+2, . . . , 2L .

(4.3)

The notation (·)i indicates the i th column of a certain matrix. Again, L is the dimension of x̂a
k,k . ∏ is a scaling

parameter defined as:
∏=Æ2 (L+∑)°L . (4.4)

Parameters Æ and ∑ are also scaling parameters to set the spread of the sigma points around the mean,
Æ 2 [0, 1] and ∑ such that ∏ 6= 0. Another important notion is that each sigma point (i.e. each column in X

a
k,k )

has two corresponding weights. One set, denoted by (·)(m), is used for calculating the new state estimate; as
this is calculated by taking the weighted mean of the transformed sigma points. The other, denoted by (·)(c),
is for obtaining the updated covariance matrices. These weights are defined as:

W (m)
0 =∏ /(L+∏) , (4.5)
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Ø is a (non-negative) tuning parameter; for Gaussian distributions, Ø= 2 is optimal. The set of augmented
sigma points X a

k,k can be split between those points corresponding to the state, those corresponding to the
process noise variables, and those corresponding to the observation noise variables:
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Once the augmented sigma points are calculated, those that belong to the state are transformed through
the navigation equation f , after which the predicted state estimate and predicted state covariance can be
calculated using the sigma weights:
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Here, uk denotes the input at time k. Next, the set X x
k+1,k is transformed a second time; now through the

observation equation h, after which the measurement prediction ŷk+1,k is calculated similar to the state pre-
diction.

Yk+1,k = h
≥
X

x
k+1,k , uk , Xw

k,k

¥
. (4.11)

ŷk+1,k =
2LX

i=0
W (m)

i

°
Yk+1,k

¢
i . (4.12)

Now that the measurement prediction is made, the innovation covariance Py y and cross covariance Px y
matrices can be obtained.
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i ° ŷk+1,k

§£°
Yk+1,k

¢
i ° ŷk+1,k
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Using the covariance matrices, the Kalman gain Kk+1 can be calculated, and the state and covariance matrix
predictions can be updated using the latest measurement yk+1.

Kk+1 = Px y P°1
y y . (4.15)

x̂k+1,k+1 = x̂k+1,k +Kk+1
°
yk+1 ° ŷk+1,k

¢
. (4.16)

Pk+1,k+1 = Pk+1,k °Kk+1Py y K >
k+1 . (4.17)

This concludes a single time step, after which the index k is advanced by one, and the process is repeated.
Like all Kalman filters, the UKF requires the user to initialize the state and covariance matrix. Ideally, the state
is initialized close to its optimally estimated value, and the covariance matrix is sufficiently large such that
divergence is avoided. One of the advantages of the UKF is that it is relatively robust to such errors.

4.1.2. UKF Parameters
For clarity, the tuning parameter values used for the implementation of the UKF in this work are listed in
Table 4.1.

Table 4.1: UKF parameters used for the FPR in this thesis.

Parameter Allowable range Chosen value
Æ [0, 1] 0.3

∑ 6=
≥

1
Æ2 °1

¥
L 0

Ø [0, inf) 2

4.2. Navigation Equation
As stated above, the Kalman filtering technique requires knowledge of the system dynamics and the relation
between state and measured signals. The navigation equation contains the former. This section will present
the state variables required to describe the system, and their dynamics equations.

4.2.1. Position, Velocity, Attitude
The "core" of the aircraft state is position, velocity, and attitude. The position in the Earth-centered Earth-
fixed (ECEF) reference frame (xE , yE , zE ) is governed by:

ẋE = [u cosµ+ (v sin¡+w cos¡)sinµ]cos√° (v cos¡°w sin¡)sin√+WxE (4.18)

ẏE = [u cosµ+ (v sin¡+w cos¡)sinµ]sin√+ (v cos¡°w sin¡)cos√+WyE (4.19)

żE =°u sinµ+ (v sin¡+w cos¡)cosµ+WzE (4.20)

The change of body velocities of the aircraft (u, v, w):

u̇ = (Ax °∏x °wx )° g0 sinµ° (q °∏q °wq )w + (r °∏r °wr )v (4.21)

v̇ = (Ay °∏y °wy )+ g0 cosµ sin¡° (r °∏r °wr )u + (p °∏p °wp )w (4.22)

ẇ = (Az °∏z °wz )+ g0 cosµcos¡° (p °∏p °wp )v + (q °∏q °wq )u (4.23)

where g0 = 9.08665 [m/s] is the gravitational acceleration. The dynamics of the Euler attitude angles (¡, µ, √):

¡̇= (p °∏p °wp )+ (q °∏q °wq )sin¡ tanµ+ (r °∏r °wr )cos¡ tanµ (4.24)

µ̇ = (q °∏q °wq )cos¡° (r °∏r °wr )sin¡ (4.25)

√̇= (q °∏q °wq )
sin¡
cosµ

+ (r °∏r °wr )
cos¡
cosµ

(4.26)

In above equations (WxE , WzE , WzE ) are the estimated wind velocities. Next, (Ax , Ay , Az ) and (p, q, r )
are the measured body accelerations and rotation rates. These measurements will be contaminated with bias
and noise. Variables (∏x , ∏y , ∏z ) and (∏p , ∏q , ∏r ) are the estimated sensor biases, and (wx , wy , wz ) and
(wp , wq , wr ) are the sensor noise variables. A correction for the bias is included to improve accuracy. Also,
the effect of noise is explicitly included, as it is required by the formulation of the UKF.
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4.2.2. Wind, IMU Sensor Biases
It is assumed that the biases present in the measurement signals of the IMU are constant, therefore their
dynamics are simply:

∏̇x = 0 (4.27)

∏̇y = 0 (4.28)

∏̇z = 0 (4.29)

∏̇p = 0 (4.30)

∏̇q = 0 (4.31)

∏̇r = 0 (4.32)

The wind velocities are assumed to be a random walk, i.e. they are expected to meander (slowly) over time.

ẆxE = 0.01wN (4.33)

ẆyE = 0.01wN (4.34)

ẆzE = 0.01wN (4.35)

where wN is a standard normally distributed random variable. The constant 0.01 was determined in [56] to
yield good results.

4.2.3. Air Data Boom Vane Parameters
The last variables to be added to the state vector are several air data boom vane parameters. These vanes
measure the direction of the local flow (uv, vv, wv) at the vane position, which is different from the flow
direction (u, v, w) at the aircraft center of gravity. There are two main sources for this error: i) aircraft induced
flow effects and ii) flow velocity components induced by aircraft body rotations.

The following relations are an approximation of the air data boom vane angles that includes these two
perturbation effects [37]:

Æv = atan
µ

wv

uv

∂
º (1+CÆup ) atan

≥ w
u

¥
°

xvÆ (q °∏q °wq )

u
+CÆ0

Øv = atan
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vv

uv

∂
º (1+CØsi ) atan

≥ v
u

¥
+

xvØ (r °∏r °wr )

u
°

zvØ (p °∏p °wp )

u
+CØ0

Where xvÆ , xvØ , and zvØ are x, z offset length of the Æ and Ø vanes, respectively, compared to the aircraft c.g.
which can be reconstructed since the c.g. location is available. CÆup , CØsi , CÆ0 , and CØ0 are parameters that
describe the aircraft induced flow effects (and possibly also account for any measurement biases). As can be
seen, the induced flow is modeled as a linear function of angle of attack or flank angle, which obviously is an
approximation of the real, much more complex aerodynamic effects.

From previous experience, it was found the up- and sidewash coefficients vary over time, so they too were
modeled as random walks. The bias terms were assumed to be constant, hence:

ĊÆup = 0.01wN
º

180 (4.36)

ĊØsi = 0.01wN
º

180 (4.37)

ĊÆ0 = 0 (4.38)

ĊØ0 = 0 (4.39)

Adding extra states makes the system harder to observe, and might result in bad convergence of the state
estimate. Therefore it seems desirable to experimentally obtain fixed values for these parameters, and treat
them as true constants. However, determining the values of these parameters experimentally beforehand is
also a difficult task, and might be dependent on the way the boom is installed, or other day-to-day variations.
Therefore, it is chosen to let the Kalman filter estimate their values. The observability analysis is described in
section 4.4.
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4.2.4. Full Navigation Equation
To summarize, the complete navigation equation is repeated in Equation 4.40. As will be seen in section 4.4,
there will be some adjustments following the observability analysis.

ẋ = f (x(t ), u(t ), w(t )) (4.40)

ẋ =

2

666666666666666666666666666664
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(4.41)

where the state vector is:

x = [x y z u v w ¡ µ √ ∏x ∏y ∏z ∏p ∏q ∏r WxE WyE WzE CÆup CØup CÆ0 CØ0 ]> (4.42)

the input vector:

u = [Ax Ay Az p q r ]> (4.43)

and the process noise vector:

w = [wx wy wz wp wq wr ]> (4.44)

4.3. Observation Equation
In an ideal case, all state variables can be measured directly. Unfortunately, this is not always the case, but
the measured variables do hold a relation to the states of interest. The observation equation captures this
relation, and enables the Kalman filter to use the measurements to correct the current best state estimate.

4.3.1. Position Measurements
Using GPS, the position and velocity in the ECEF reference frame are measured. The aircraft position state is
also defined in the ECEF frame so a direct measurement is available:

xGPS = x + vxGPS (4.45)

yGPS = y + vyGPS (4.46)

zGPS =°z + vyGPS (4.47)

To relate the body velocities to the ECEF velocity, a transformation is needed in order to predict the measure-
ment. This results in the following observation equations:

ẋGPS = [u cosµ+ (v sin¡+w cos¡)sinµ]cos√° (v cos¡°w sin¡)sin√+WxE + vẋGPS (4.48)

ẏGPS = [u cosµ+ (v sin¡+w cos¡)sinµ]sin√+ (v cos¡°w sin¡)cos√+WyE + vẏGPS (4.49)

żGPS = u sinµ° (v sin¡+w cos¡)cosµ+WzE + vżGPS (4.50)
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4.3.2. Attitude Measurements
The body attitude is measured directly by the attitude and heading reference system (AHRS), which results in
the simple equations:

¡AHRS =¡+ v¡AHRS (4.51)

µAHRS = µ+ vµAHRS (4.52)

√AHRS =√+ v√AHRS (4.53)

The AHRS also measures the body accelerations and rotation rates, but these are not included in the obser-
vation equation. They are included in the Kalman filter by using them as inputs to the navigation equation.

4.3.3. Air Data Measurements
The test vehicle is equipped with a digital air data computer (DADC) that can output a pressure altitude and
total airspeed signal. Since GPS is used for the altitude, only the total airspeed measurement is used:

VTAS =
p

u2 + v2 +w2 + vT ASDADC (4.54)

Finally, the air data boom vanes measure the local direction of the flow at the location of the boom. Note
that the boom Ø-vane does not measure the angle of sideslip, but an angle that shall in the rest of this thesis
be called flank angle. This angle is related to the angle of sideslip via the relation tanØ = tanØfl cosÆ. Also
henceforth, Øv denotes the flank angle measured by the boom. The observation equations for the boom vane
angles are:

Æv = (1+CÆup ) atan
≥ w

u

¥
°

xvÆ (q °∏q °wq )

u
+CÆ0 + vÆboom (4.55)

Øv = (1+CØsi ) atan
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u

¥
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u
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u
+CØ0 + vØboom (4.56)

4.3.4. Full Observation Equation
The complete vector containing all measurement variables used in the UKF implementation is given by Equa-
tion 4.59. Note the addition

y = h (x(t ), u(t ), v(t )) (4.57)

y =
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(4.58)

where the measurement vector is:

y = [xGPS yGPS zGPS ẋGPS ẏGPS żGPS ¡AHRS µAHRS √AHRS VTAS Æv,boom Øv,boom]> (4.59)

the input vector:
u = [Ax Ay Az p q r ]> (4.60)

and the measurement noise vector:

v = [vxGPS vyGPS vzGPS vẋGPS vẏGPS vżGPS v¡AHRS vµAHRS v√AHRS vT ASDADC vÆboom vØboom ]> (4.61)
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4.4. Observability and Final System
For a Kalman filter to function properly, it is important that the system described by Equation 4.40 and Equa-
tion 4.57 is fully observable: observability is a necessary condition for convergence of the state estimate. Un-
fortunately, the considered system is nonlinear, which makes a global observability analysis difficult. Local
observability, on the other hand, can be shown quite easily using a method from [58] that was implemented
by [14]. Subsection 4.4.1 will show that the system is indeed locally observable. Unfortunately, this does not
guarantee good performance of the Kalman filter. Subsection 4.4.2 takes a more practical approach by sim-
ply attempting to apply the Kalman filter to one of the available data sets, and investigating the convergence
properties of the result. There it will be seen that some of the states had to be removed.

4.4.1. Local Observability Analysis
Proving local nonlinear observability can be done with relatively little effort, as is shown in [32] and [58].
Using Lie derivatives, an observability matrix O(x) can be constructed in a way that is comparable to the
analysis done for linear systems. If the rank of O(xtest) is equal to the dimension of the state vector x, the
system is said to be locally observable at xtest.

The Lie derivative of a system with state equation f (x) and output equation h(x) is noted and defined as
follows:

L f h(x) = @h(x)
@x

f (x) (4.62)

where @h(x)
@x denotes the Jacobian of h(x) with respect to x. Using a recursive series of n Lie derivatives, where

n is the dimension of x, the observability matrix O(x) can be constructed:

O(x) =

2
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(4.63)

The MATLAB code written by [14], which included symbolic derivations of the observability matrix, was ad-
justed to the current case. Since significantly reduced the probability of errors compared to doing these
derivations by hand. Next, the numeric values for any state can be substituted, and the rank of the matrix
can be determined. A number of example states were uniformly sampled from the range presented in Ta-
ble 4.2 (all values are in SI units), and all were subjected to the observability test.

Table 4.2: The range from which the random states were sampled for the local observability analysis.

x y z u v w ¡ µ √ ∏x ∏y ∏z
lower 0 0 -8000 50 0 -10 0 -1.5 0 -0.5 -0.5 -0.5
upper 0 0 0 200 20 40 1.5 1.5 2º 0.5 0.5 0.5

∏p ∏q ∏r Wxe Wye Wze CÆup CØsi
CÆ0 CØ0

lower -0.5 -0.5 -0.5 0 0 -10 0 0 -1 -1
upper 0.5 0.5 0.5 20 20 10 0.5 0.5 1 1

In total, 100 states were sampled and tested, and all tested states turned out to be fully observable. How-
ever, this does not prove general observability. The chosen range of states does not cover all states possible
in real flight, just a subset that was estimated to be representative of the conventional flight envelope. Also,
since the state is of high dimension (n = 24), the chosen subset will tend to be sparsely populated, even if
many more states are evaluated. And next, even if two states that are relatively close to each other are shown
to be observable, it is not guaranteed that the state space in between also is (although it is quite likely). All in
all, it is a good sign that the evaluated states are observable, yet the true test is in applying the current system
and Kalman filter algorithm to a real data set.

4.4.2. State Covergence On a Real Data Set
A more practical approach to observability is to apply the Kalman filter to a data set and investigate the con-
vergence behaviour of the estimated states. In previous section it appeared as if the system is indeed observ-
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able, but again this does not guarantee good convergence of state estimates.

The Kalman filter was run on a data set of an accelerated stall maneuver, initiated from a coordinated
turn at approximately 30± bank. Three sets of initial conditions were used. The first was chosen such that it
was reasonably close to the expected state. The other were set either much too low or much too high. If the
system has good convergence properties, all three initial conditions should converge reasonably quickly to
the same state estimate. Failure to do so indicates problems. Figure 4.2 and 4.3 present the state convergence
results.

It can be seen that several states are not converging well. However, not all states that currently are con-
verging badly need to be removed: one "bad" state might cause "good" states to fail to converge. Since
there are many interconnections in the system it is not straightforward to say which states are causing the
problems. First of all, WzE was removed from the system. The vertical wind component is generally very
small, in the order of magnitude of 0.1 to 0.2 m/s [42]. Therefore, removing it should have only a small
effect on the estimation of żGPS, but it will make estimating the other wind velocity components easier.

Figure 4.1: Plot of CÆup vs. CÆ0 showing
strong negative correlation (cor = -0.936)

Next, CÆ0 was removed. It converges badly,
and it is clearly visible in Figure 4.1 that it is
strongly negatively correlated with CÆup . This
makes sense, as they can both describe a bias in
Æ-measurements, so an increase in one parame-
ter leads to a reduction in the other. Finally, both
CØsi and CØ0 were dropped, as they led to large un-
certainties in the estimated value of Ø. An attempt
was made to remove only one of these, but in both
cases the resulting system performance was still
bad. After these changes, the resulting system of-
fered good and reliable convergence behavior.

4.4.3. Final System
To conclude this section, the final system used in
the Unscented Kalman Filter is repeated here. The
system attempts to obtain an estimate for the state:

x = [x y z u v w ¡ µ √ ∏x ∏y ∏z ∏p ∏q ∏r WxE WyE CÆup ]> (4.64)

based on the measurement:

y = [xGPS yGPS zGPS ẋGPS ẏGPS żGPS ¡AHRS µAHRS √AHRS VTAS Æv,boom Øv,boom]> (4.65)

and the input:

u = [Ax Ay Az p q r ]>. (4.66)

Furthermore, it is influenced by process noise:

w = [wx wy wz wp wq wr ]> (4.67)

and measurement noise:

v = [vxGPS vyGPS vzGPS vẋGPS vẏGPS vżGPS v¡AHRS vµAHRS v√AHRS vT ASDADC vÆboom vØboom ]> (4.68)
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Figure 4.2: Convergence of state (1/2) using the full KF system. Three initial conditions were used: one expected to
lie close to the correct state (red) and high/low estimates (greens). The body velocities v and w , and all wind velocity
components are converging badly.

Figure 4.3: Convergence of state (2/2) using the full KF system. Three initial conditions were used: one expected to
lie close to the correct state (red) and high/low estimates (greens). The states CÆup and CÆ0 appear to be negatively
correlated; both CØsi and CØ0 converge badly.
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The navigation equation f is:

ẋ = f (x(t ), u(t ), w(t )) (4.69)

ẋ =

2

66666666666666666666664

[u cosµ+ (v sin¡+w cos¡)sinµ]cos√° (v cos¡°w sin¡)sin√+WxE
[u cosµ+ (v sin¡+w cos¡)sinµ]sin√+ (v cos¡°w sin¡)cos√+WyE
°u sinµ+ (v sin¡+w cos¡)cosµ+WzE
(Ax °∏x °wx )° g sinµ° (q °∏q °wq )w + (r °∏r °wr )v
(Ay °∏y °wy )+ g cosµ sin¡° (r °∏r °wr )u + (p °∏p °wp )w
(Az °∏z °wz )+ g cosµcos¡° (p °∏p °wp )v + (q °∏q °wq )u
(p °∏p °wp )+ (q °∏q °wq )sin¡ tanµ+ (r °∏r °wr )cos¡ tanµ
(q °∏q °wq )cos¡° (r °∏r °wr )sin¡
(q °∏q °wq ) sin¡

cosµ + (r °∏r °wr ) cos¡
cosµ

06£1
0.01wr
0.01wr
0.01 º

180 wr

3

77777777777777777777775

(4.70)

and the measurement equation is given by:

y = h (x(t ), u(t ), v(t )) (4.71)
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4.5. Example of UKF Performance on Data
To give an impression of the performance of the UKF algorithm combined with the system described in this
chapter, Figures 4.4 to 4.6 offer a illustrative overview of the results. Plots for the states that were left out were
intentionally left blank to show that they were dropped from the original system.

On the scale that is shown, the states estimates have very narrow confidence bounds, which indicates
good performance. In Figure 4.5 it can be seen that the bias terms converge to steady values. Next, the mea-
surement innovations are also generally within their uncertainty bounds. Finally, no strange or unexpected
behavior is seen anywhere. It is therefore concluded that the current filter approach works well for the data
sets that were gathered. The described filter was applied to all the gathered test data.
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Figure 4.4: Reconstructed aircraft states (1/2) of an accelerated stall maneuver (and recovery), initiated at approximately
30 deg bank
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Figure 4.5: Reconstructed aircraft states (2/2) of an accelerated stall maneuver (and recovery), initiated at approximately
30 deg bank
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Figure 4.6: Measured (raw) and reconstructed signals that function as input to the Kalman filter; the reconstructed accel-
eration signals have been corrected with the bias terms
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Figure 4.7: Measured (raw) and reconstructed signals that appear in the output vector of the Kalman filter
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Figure 4.8: Innovations of the signals that appear in the output vector of the Kalman filter, along with ±1æ bounds; where
æ is the square root of the diagonal elements of the estimated covariance matrix



�
Stall Model Structure

In modeling aircraft dynamics, the goal is to provide a solution for the equations of motion, which govern the
rate of change of the aircraft velocity components and angular rates. These equations of motion are generally
understood very well. To illustrate this, consider the (common) analysis case where an aircraft that is: rigid,
of constant mass, symmetric in the X Z -plane, and ignoring rotating masses; which flies over flat and non-
rotating Earth. The equations of motion (EOM) that result from these assumptions, defined in the aircraft
body frame of reference, are:
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Where X ,Y , Z are the body axis components of the total aerodynamic force acting on the aircraft, and l ,m,n
are the moments. Once these are known, solving the EOM is quite straightforward. It is clear that identifying
models for these six forces and moments, which are called the aerodynamic model equations, is the major
challenge and focus in modeling aircraft motion.

This chapter will start with a background on the conventional expressions of these aerodynamic model
equations as linear polynomials of the aircraft state and control surface deflections. Next, several additions
to this approach that enable the modeling of the effects of separated flow are discussed. Finally, the modeling
methodology for stall buffet is presented.

5.1. Conventional Aerodynamic Model Equations
It is customary to express the aerodynamic model equations in non-dimensional form. In this way, they do
not depend on dynamic pressure, hence the model parameters are easier to compare between different flight
conditions and aircraft. Moreover, under a number of reasonable assumptions (e.g. sub-sonic flight, aircraft
is much more dense than surrounding air) the equations can be written as functions of just the incidence
angles of the incoming air and their rates of change (Æ,Ø, Æ̇, Ø̇), the body angular rates (p, q,r ), and the control
surface deflections (±). In system identification, such variables are called the independent variables (IVs).

Ci =Ci (Æ,Ø, p, q,r, Æ̇, Ø̇,±) (5.3)

Here, i = L,D,Y , l ,m,n .1 For conventional aircraft, ± contains aileron, elevator, and rudder deflections,
but advanced control effectors, flaps, slats, and trim deflections could be included as well. Although the
true interaction between aircraft body and the flow field around it is incredibly complex, the conventional

1The choice for i = X ,Y , Z , l ,m,n is also common, although this thesis the former is chosen. Conversion between the two can be done
with a simple transformation.
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method is to simplify the dimensionless aerodynamic model equations as a first order Taylor expansion about
a certain trim condition, for example:

CL =CL0 +CLÆ¢Æ+CLØ¢Ø+CLp

¢pb
2V

+CLq

¢qc̄
V

+ . . . +CL±a
¢±a +CL±e

¢±e +CL±r
¢±r (5.4)

Here c̄ and b are the mean aerodynamic chord length and wing span respectively, and are chosen as the
characteristic lengths for longitudinal and lateral model terms. The ¢-notation denotes deviations from a
trim condition i.e. ¢Æ = Æ°Æ0. In Equation 5.4 the parameters are the partial derivatives of the force or
moment coefficients. Partial derivatives with respect to states are called stability derivatives, whereas partial
derivatives with respect to control surface deflections are called control derivatives. To illustrate their defini-
tions:

CLÆ =
@CL

@Æ

ØØØ
0

, CLp = 2V
b
@CL

@p

ØØØ
0

, CLq = V
c̄
@CL

@q

ØØØ
0

, CL±a
= @CL

@±a

ØØØ
0

, etc.

Final common assumptions are that the longitudinal and lateral terms are uncoupled, and the control
surface deflections only influence the moment equations. Note that these assumptions do not hold for all
cases, especially for large incidence angles and control surface deflections they are not likely to be correct!

From here onwards, the notation is simplified: when states are written with a tilde, the non-dimensional
state is meant (e.g. q̃ = qc̄

V ), and the ¢-notation is dropped. This leads to the following (exemplary) form of
the aerodynamic model equations:

CL =CL0 +CLÆÆ+CLq q̃ +CLÆ̇ Æ̇

CD =CD0 +CDÆÆ+CDq q̃ +CDÆ̇ Æ̇

CY =CY0 +CYØØ+CYp p̃ +CYr r̃ +CYØ̇ Ø̇

Cl =Cl0 +ClØØ+Clp p̃ +Clr r̃ +ClØ̇
Ø̇+Cl±a

±a +Cl±r
±r

Cm =Cm0 +CmÆÆ+Cmq q̃ +CmÆ̇ Æ̇+Cm±e
±e

Cn =Cn0 +CnØØ+Cnp p̃ +Cnr r̃ +CnØ̇ Ø̇+Cn±a
±a +Cn±r

±r

Again, this model structure is but one of many possibilities. Which terms to include is determined on a
case-by-case basis. In many cases, for example, it will be found that q and Æ̇ are not sufficiently de-correlated
to include both terms, in which case one of them is usually dropped.

Because of the assumptions made, this model structure is only valid close to the trimmed flight condition
at which its parameters were identified2. A global aerodynamic model, which is valid for all flight conditions
of interest, is obtained by estimating the model parameters for many different trimmed flight conditions.
Then, the found model parameters are generalized as functions of the flight condition variables. This makes
it possible to interpolate between, or extrapolate, the estimated parameter values.

To estimate the parameters, data is required. This can come from wind tunnel experiments, flight test
experiments, or analytic methods (i.e. CFD). It is common to use wind tunnel tests to estimate the so-called
static terms (e.g. CL0 ,CmÆ ), and flight tests for the dynamic terms (e.g. CLq ). While this method has been
proven to be effective, one can imagine that lots of tests are required to sufficiently cover the flight envelope
of interest.

Another downside of this method, which is especially relevant for stall modeling, is that when the nonlin-
earities in aircraft response become stronger, the validity range of the conventional model structure becomes
more narrow. This could be remedied by estimating the model parameters on a finer partitioning of the flight
envelope, but this only adds to the already challenging and expensive effort of gathering data. Furthermore,
since stall is a unsteady flight condition, trimming the aircraft in a stall is extremely challenging, which basi-
cally makes flight tests impossible.

It can therefore be concluded that the conventional modeling approach is not very suitable for stall mod-
eling, and that more advanced model structures are necessary. The next section will explore several exten-
sions that can be made to the linear model structure, which increase the approximation power of the aerody-
namic model equations.

2The flight condition can be defined by variables like Æ,Ø, M ,h, but other choices are also possible
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5.2. Extensions to the Conventional Aerodynamic Model Equations
There is a theoretically infinitely large set of model terms that can be added to the aerodynamic model equa-
tions, but only a few will be considered in this section. Increasing approximation power is a good step if the
model is not able to describe the patterns in the data that is used for estimating its parameters (i.e. the train-
ing data). In such a case, the model is said to have high bias. The model from section 5.1 has relatively low
approximation power, but since only small ranges of the linear flight envelope are used as training data, the
complexity of the patterns between input and output is relatively low. When larger ranges of the (possibly
nonlinear parts of the) flight envelope are considered, adding extra model terms is a good approach.

However, adding more model terms is not always a good step. This cannot be seen if the model quality
is only evaluated based on the training data: adding more terms will always result in a equally good or better
training fit. In contrast, when comparing model output to a separate data set, which was not used for training
(i.e. validation data), there comes a point where adding more model terms leads to an decrease in quality.
When this occurs, the model is said to suffer from high variance.

The objective in model structure selection is to minimize both bias and variance, whilst keeping the model
as simple as possible. This is a task which requires a lot of creativity and engineering judgement. This section
will present several building blocks with which a suitable model structure can be created.

5.2.1. Terms Based on Kirchoff’s Theory of Flow Separation
When modeling any phenomenon, taking into account as much prior knowledge as possible is generally a
good idea. In [29], this is exactly what was done. The authors derived a relation between angle of attack and
lift of an airfoil, based on Kirchoff’s theory of flow separation, and expanded the aerodynamic model with an
expression for this.

The central idea is to add an internal variable X that describes the flow separation point. X can range
from 0 to 1, and is illustrated in Figure 5.1. The effect of X on the lift of the airfoil/wing can be described by
Equation 5.5, and the dynamics of X have been experimentally determined to be describable by Equation 5.6.

Figure 5.1: Illustration of internal variable X (figure from [15])

CL =CLÆ

√
1+

p
X

2

!2

Æ (5.5)

ø1
d X
d t

+X = 1
2

£
1° tanh

°
a1 · (Æ°ø2Æ̇°Æ§)

¢§
(5.6)

As can be seen, the dynamics of X depend on four parameters (ø1,ø2, a1,Æ§), which can be interpreted
physically. A description of this interpretation will be given, in addition to plots of the effect of varying these
parameters.

• ø1 describes the time dependency of the flow condition. One can imagine that after an abrupt flow
disturbance, like a gust of turbulence, the flow needs some time to readjust to the new conditions. This
is modeled as a first-order differential equation. The effect of varying ø1 is shown in Figure 5.2.

• ø2 describes the effect of hysteresis, i.e. the dependency on rate of change of angle of attack Æ̇. Due
to circulation and boundary layer effects, the result is that for positive Æ̇ the separation point moves to
higher angle of attack. The opposite also happens: for negative Æ̇ the reattachment point is shifted to a
lower angle of attack. The effect of varying ø2 is shown in Figure 5.3.
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Figure 5.5: Effect of varying Æ§ on static flow separation point and lift coefficient (adapted from [56])

• a1 is a shape parameter determining the abruptness of the transition into a stalled state. The effect of
varying a1 is shown in Figure 5.4.

• Æ§ is a scheduling parameter that can shift the turning point to higher or lower angle of attack. It is
straightforward to show that when Æ = Æ§, then X = 0.5 i.e. the flow separation point lies between
leading and trailing edges. The effect of varying Æ§ is shown in Figure 5.5.

A strong advantage of this model structure is that it is able to describe the unsteady, nonlinear relation
between lift and angle of attack, and only uses four parameters to do so. Furthermore, it has been shown that
the parameters can be estimated from flight data. A downside is that this turns the parameter estimation into
a nonlinear optimization problem. Because of this, finding the set of globally optimal parameters is no longer
guaranteed, and the optimization becomes computationally much more expensive. Parameter estimation
techniques will be discussed in chapter 6.

The theory is explicit in its effect on the aircraft lift; the effect on other forces and the moments is not as
clear. However, it can with relatively little effort be adapted to also describe other effects of a stall. An obvious
first step is to use the internal variable X , or its derivative Ẋ , as an IV. For example, adding a term:

CDX (1°X ) (5.7)

to the drag equation adds a term that, as the wing progresses into stall, linearly increases CD (or decreases,
depending on the sign). Such terms can be added to the other aerodynamic model equations as well.

Finally, asymmetric effects can be described by computing X for left and right wing separately. These can
differ due to e.g. roll and/or yaw motion, which can cause differences in local angle of attack. Then, a term
such as:

[(CZ )R ° (CZ )L]¢y , (5.8)

which describes an induced roll moment can be added. ¢y denotes the effective lever arm between left and
right wing, which introduces another unknown parameter which must be estimated from the data. Other
lateral-directional effects can be included in a similar manner.

Overall, Kirchoff’s theory of flow separation offers a strong basis for modeling the effects of aerodynamic
stall. The effect on lift has been derived from both theory and empirical observations, and has been shown
to be effective at explaining flight data. By determining a flow separation variable X , new model terms are
made possible.

5.2.2. Higher Order Polynomial Terms
A straightforward extension to the conventional aerodynamic model equations is to relax the assumption that
only first order Taylor expansion terms are used. It takes but little extra effort to include higher order terms
like Æ2 or ÆØ into the set of independent variables. See for example the model for CL based on Æ and q where
terms up to order 2 are used:

CL =CX0 +CLÆÆ+CLq q̃ +CLÆ2Æ
2 +CLq2 q̃2 +CLÆqÆq̃ (5.9)
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This is a good method for including (mild) nonlinearities and phenomena that result from the coupling
of states and/or control inputs. Additionally, the parameter estimation problem is still linear.

There is no theoretical limitation to the maximum order or terms that are included. In practice, however,
high-order polynomials generally suffer from two main issues. First, they are quite prone to have high vari-
ance, i.e. the models have a bad fit on validation data compared to training data. Next, they do not generalize
well outside of the data range used for training. These effects are well-understood in literature. The result is
that it is rare to encounter terms of higher order than, say, 3.

5.2.3. Univariate Splines of State Variables
A technique that has the advantages of polynomials, but does not suffer from the same downsides, is the
use of spline functions. A spline is a function that is defined locally, and thus has to fit only a small sub-
part of the training data. This will reduce the complexity of the patterns in the data, and thus will reduce
the required model order. Multiple splines can be combined to cover a larger (or the whole) state and input
space. Continuity between the splines can be mathematically ensured.

Splines are very suitable for representing local variations in the training data. An example of local varia-
tions might be a variation in Cm±e

withÆ: once the angle of attack increases beyond a certain threshold value,
the horizontal stabilizer might be in the main wing wake. This could create a strong local change in Cm±e

. A
formulation for a univariate spline, as given in [41], is:

(x °xi )m
+ =

Ω
0 when x < xi

(x °xi )m when x > xi .
(5.10)

The variable x could represent any of the aircraft state or control inputs. Choosing the partitioning of
these input variables, i.e. setting xi correctly, is a task left to the engineer designing the model structure.

Terms such as described in Equation 5.10 can be combined with each other and “normal” state and in-
put variables in the same way as described in subsection 5.2.2, which gives a lot of freedom to the designer.
Furthermore, also these spline terms result in a model structure that is linear in the parameters.

5.2.4. Other Model Extensions
The model terms mentioned in this chapter so far have mostly been quite simple. It is possible, even likely,
that more elaborate terms with complexity comparable to Equation 5.5 will be good additions to the model.
By choosing specific functions of IVs as model terms, one is already injecting information into the model,
which is very benificial if these functions correspond well to reality. Badly chosen expressions will not likely
be of any value, hence careful thought should be put into them.

Without a thorough theoretical or empirical analysis, it is difficult to derive useful model terms. However,
as long as the model terms remain linear in the parameters, a “brute force” type approach could provide a
good strategy. Based on some intuition (e.g. that the rudder effectiveness should decrease with X ) one can
propose a set of model expressions (square root, logarithmic, rational, combinations of these, etc.), and test
each of them on the data.

In this approach lies the risk of ending up on a “treasure hunt” to finding ever more complex and obscure
model terms that improve the fit. To avoid this, it is wise to apply the famous principle of “Occam’s razor”,
which loosely states that when one must decide between multiple solutions that offer the same or very sim-
ilar performance, the simplest one is often the best. Including regularization, which will be discussed in
chapter 6, is another way of preventing excessive model terms.

5.3. Buffet Model
Stall buffet is a clearly noticeable vibration caused by the separation of the flow around the airframe. It is one
of the most important queues for pilots to recognize a stall situation, and therefore vital to include it during
stall simulation.

Previous research into the buffet in longitudinal and lateral body axes found that the dominant frequen-
cies of the vibrations were much larger than those of the aircraft dynamics. This makes it possible to model
the aircraft dynamics and buffet independently. It was shown that the power spectrum of the stall buffet Sy y
can be modeled as a white noise signal that is passed through a shaping filter

Sy y =
ØØH( j!)

ØØ2 Suu . (5.11)



72 5. Stall Model Structure

In [56], the shaping filter is composed of the sum of one or more second-order band-pass filters, which can
be written as

H( j!) =
H0 !

2
0

( j!)2 + !0
Q0

j!+!2
0

. (5.12)

Creating a buffet model based in this approach can be reduced to three problems. First, the dominant fre-
quency peaks must be identified in each of the three aircraft body axis. Second, the average amplitude or
power of the buffet signals must be determined. Thirdly, some threshold from which the buffet is engaged
must be defined, potentially with some scaling in the amplitude. Likely candidates for a threshold function
are fixed values of Æ, or X .

All these can be identified from flight data. Separating the dynamics and buffet signals can be done using
simple high- or low-pass filters since these two responses are sufficiently separated in the frequency domain.

5.4. Merging the Stall Model with the Regular Aerodynamic Model
A topic that has not been considered so far, but which is very important, is the merging of the stall model with
the aerodynamic model for the “regular” flight envelope. These two models have some overlap, but at some
condition a transition needs to be made between them. Although a final solution for merging the models can
only be implemented when the stall model is nearing completion, already some thoughts can be shared. In
general, there are three important considerations.

First of all is the point or region of transition. At some point or over some region of flight condition, the
output of the current model should be replaced by the other. This transition should be triggered by some
variable(s) that is/are available in the simulation. An obvious candidate would be angle of attack Æ, but other
(and combinations of) variables are worth considering as well.

Second is the shape of the transition. Potential options are a “hard” transition, which instantaneously
switches between the output of the two models, or a sigmoidal transition, which is a more smooth transition.
The exact shape of such a transition can and should be modified to deliver satisfactory results.

Third, care should be taken that the outputs of both models agree to at least a reasonable degree in their
transition areas. For example, the major control and stability derivatives should have the same sign, and com-
parable magnitude. This will likely be the hardest consideration to implement, because the two models are
structured differently and might make use of different aircraft states. One way of preventing a large mismatch
between model outputs is to fit the stall model on a wider range of flight condition that just the stall alone.
In that way, the stall model will be forced to agree more with the regular flight envelope. Of course, this will
have implications on the stall model structure. One could consider the resulting model to be an intermediate
variant between “local” and “global”.

5.5. Chapter Conclusion
A major part of modeling aircraft dynamics is identifying models for the aerodynamic model equations, which
describe the six aerodynamic forces and moments acting on the airframe. The conventional approach is to
express these as linear models of the aircraft states and pilot control inputs, containing only first order Taylor
expansion terms. Due to the highly nonlinear nature of stall, this approach only works well in the flight
domain below the stall angle of attack.

To include the effects of aerodynamic stall, several types of extensions to the aerodynamic model equa-
tions can be made. Kirchoff’s theory of flow separation adequately describes the nonlinear, unsteady relation
between Æ and CL using only four extra parameters. Other options are to include higher-order Taylor terms,
spline functions, or other transformations of state and/or input variables. The goal in model structure selec-
tion is to minimize both variance and bias, whilst keeping the model as simple as possible.

The stall buffet can be modeled independently of the aircraft dynamics. It can be represented by passing
a white noise signal through a shaping filter. The parameters of the shaping filter and a threshold rule for the
buffet can be identified from flight data.
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Parameter Estimation

Once a model structure has been defined, the next task is to estimate its parameters. To do so, a cost or ob-
jective function must be defined. Next, an algorithm or method for finding the optimum of this cost function
must be chosen. Afterwards, the resulting parameters can be analyzed to judge the quality of the model. This
chapter introduces the methods that make this possible.

First, the metrics and methods for evaluating model quality are presented. After that, nonlinear and linear
parameter estimation algorithms are treated separately. Some special considerations that are specific to the
current stall modeling task are given wherever they arise. The chapter ends with a brief conclusion on the
most promising method for the case of stall modeling.

6.1. Evaluating Model Fit Quality
Metrics that measure the quality of a model fit are important tools that aid engineering judgement. More-
over, parameter optimization requires an optimization objective, or cost function, which should be a numer-
ical measure describing model fit. This section presents several tools that will be used to analyze the model
quality.

6.1.1. Mean Squared Error
This popular choice for cost function is aptly named, as describes the average value of the mismatch between
model output and measurement squared.

MSE = 1
N

NX

k=1
(zk ° ẑk )2 , (6.1)

where N is the amount of data points, zk denotes the k-th sample of the measured output, and ẑk the cor-
responding model output. Since the aerodynamic model equations provide six outputs, the MSE is averaged
over all of them, regardless of the absolute size.

6.1.2. Variance Accounted For
In contrast to the MSE, which is a measure of the absolute difference between model output and measure-
ment, the variance accounted for (VAF) is a relative measure of fit, since it is scaled with the size of the mea-
sured variable.

VAF = 100%£
√

1°
ßN

k=1 (zk ° ẑk )2

ßN
k=1z2

k

!

. (6.2)

As can be seen from its definition, the upper limit of the VAF is 100%, but it can take any negative value.

6.1.3. Regularization
Regularization refers to a range of techniques to prevent models having a high variance problem. It is es-
pecially relevant in cases where models with very high approximation power are used, such as the neural
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networks in machine learning. It can be seen as adding a penalty for model complexity in the objective func-
tion of an optimization problem, e.g.

J (µ) = MSE(µ)+∏P (µ) . (6.3)

Here, J is the cost function value, µ is the parameter vector, P is some regularization penalty function, and
∏ is a scaling parameter. Common choices for P are either a fixed penalty per parameter, or the sum of the
squared parameter values. Note that metrics such as Equation 6.1 or 6.2 only evaluate the parameter estima-
tion problem, whereas Equation 6.3 entails both the tasks of model structure selection, as well as parameter
estimation. In this sense, regularization can be seen as a generalization of the goodness of fit metric.

In the current case, regularization will be most useful in deciding whether or not to add a new model
term. It provides a numerical judgement for decisions such as “Should I add this model term if it improves
the objective by only 1% ?”

6.1.4. Parameter Correlations
When the model parameters are estimated on multiple data sets, it is possible to investigate the correlation
of their variations between data sets:

C (µ) = cor(£) , (6.4)

where £ is a (d £p) matrix containing the d estimates of the p parameters. When Ci j is “close to 1” (or
to °1), this indicates that parameters µi and µ j are describing the same phenomena in the data, which could
mean there are redundancies in the model. In such cases it might be wise to drop one of the model terms
corresponding to these parameters.

Of course, the definition of “close to 1” is subject to interpretation. A common test is to regard correlations
higher than 0.9 as problematic [36]. One should also take care in interpreting the results when d is low, since
the computed correlation value is an estimate of the true correlations.

6.1.5. Cramèr-Rao Lower Bounds
If changing a model parameter results in no change in cost function value, one can imagine that it is impos-
sible to obtain a meaningful estimate of its value. The Cramèr-Rao Lower Bound (CRLB) is a measure for the
sensitivity of a model’s output with respect to its parameters. Furthermore, it is a theoretical lower limit on
the accuracy of the parameter estimates i.e.

var(µ) ∏ CRLB . (6.5)

The CRLB can be computed as the inverse of the Fisher information matrix M : CLRB = M°1. A good
approximation of M can be obtained by

M(µ, x) º
NX

k=1
rµ ẑk (µ, x)T R°1rµ ẑk (µ, x) , (6.6)

where ẑk is the k-th time sample from ẑ, the (m £N ) model output, µ is the (p £1) parameter vector, and x
is the (n £N ) model input. Hence, the model has n inputs, p parameter, m outputs, and is evaluated at N
time samples. The notation rµ denotes the gradient of the model output with respect to µ, hence rµ ẑk is an
(m£p) matrix. Finally, R is a scaling factor. In many cases, the choice is R = cov(ẑ°z), the (m£m) prediction
error covariance matrix. Note that for single-output models, such an R is equal to the mean squared error.
From Equation 6.6 it is clear that M and thus the Cramèr-Rao Lower Bounds depend on the model input,
output, as well as the estimated parameter values.

Theoretically, the variance of the estimated values of the parameters should tend towards the CRLB as the
number of estimates increases. In practice, the observed variance in parameter values often is multiple times
greater. In [40], the likely cause for this mismatch is traced back to a key assumption in the determination of
M . By using R°1 as a scaling factor, the power spectrum of the model residuals is assumed to be uniform up
to the Nyquist frequency. In reality, the noise power is significantly colored. Taking this effect into account
requires careful analysis of the model residuals, and complicates the calculation of the bounds significantly.
The authors of [40] propose alternative methods which provide a better representation of reality, but the
results should still be reviewed with caution.

Nevertheless, while the CRLB might not necessarily be a good measure of the absolute parameter esti-
mation accuracy, it does provide information of the relative accuracy. Several types of flight test maneuvers
were used, and each was executed by a human pilot, causing variations between the data sets. Knowledge of



6.2. Nonlinear Parameter Estimation 75

which maneuvers provide more information is valuable for future research, and the CRLB are a useful metric
for such an analysis.

6.2. Nonlinear Parameter Estimation
Parameter estimation is the task of finding the best parameters given a parametrized model structure, and
a set of data. The goal is to minimize a cost objective (or maximize a value objective) by changing the pa-
rameters. In cases where the cost function is a nonlinear function of the model parameters, the estimation
problem is said to be nonlinear. This is the case when model terms such as in subsection 5.2.1 are used.

Nonlinear optimization is a challenging research field by itself, on which a lot of theory has been written,
see for instance [47]. It is beyond the scope of this thesis to formally derive or even properly explain the
nonlinear optimization algorithms presented here. Instead, use will be made of existing implementations of
such solvers, particularly those available in MATLAB and its Optimization Toolbox.

A list of available algorithms will be given in subsection 6.2.1. Many of these algorithms depend on (esti-
mates of) the gradient of the cost function with respect to the model parameters. The model terms defined in
subsection 5.2.1 requires the solution of an ODE. Obtaining an estimate of the sensitivity of a solution of an
ODE to its parameters is numerically challenging. Subsection 6.2.2 describes a technique that is numerically
more stable that finite differences.

6.2.1. Nonlinear Optimization in MATLAB
MATLAB as multiple built-in algorithms that can be used for finding the minimum of any nonlinear function.
Each will differ in computational effectiveness, accuracy, and tendency to get stuck in local optima. The
most straightforward method of finding the most suitable algorithm is simply to try them all. Since they are
all available in MATLAB, this will not require a lot of development effort. The best candidate can then be
selected and used for obtaining the final results.

Dealing with local optima The possibility of ending in a local optimum is inevitable in any nonlinear opti-
mization. A good approach to mitigate this risk is to randomly generate a large set of initial conditions from
which the optimization is run. After this, the result with the lowest cost function is assumed to be the global
optimum. Issues like finding two optima that have nearly the same associated cost value can still arise. In the
end, engineering judgement is the final test.

Limiting the search space In order to speed up the search, and to exclude any unfeasible results, it is wise
to apply constraints to the parameter space wherever possible. For instance, from experience it is known
that CLÆ should be about 2º. It is reasonable to constrain its value to the range, say, [0 10]. Here, the use
of dimensionless coefficients shows its worth, as the parameter values should all be with the same order of
magnitude.

Gradient-based Algorithms MATLAB employs a range of well-known optimization algorithms that make
use of the gradient of a cost function w.r.t. its parameters. Detailed backgrounds on these algorithms can be
found in [47]. The following algorithms are available:

• Interior Point
• Active Set
• Sequential Quadratic Programming
• Trust Region Reflective
• Levenberg-Marquardt

Implementing these can be done either using the functions fmincon or lsqnonlin. These differ in the
required formatting of the cost function, and not all algorithms are available to both. Setting the desired
algorithm can be done in the options struct generated by optimset.

When the gradient is not explicitly provided, the solvers will automatically attempt to estimate it using
finite difference methods. These can be one-sided or two-sided.

rµ J (µ) º J (µ+¢µ)° J (µ)
¢µ

(6.7) rµ J (µ) º J (µ+¢µ)° J (µ°¢µ)
2¢µ

(6.8)
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The perturbation ¢µ must be chosen small enough to prevent the influence of nonlinearities in J , but
large enough to prevent numerical issues. MATLAB will choose ¢µ itself. If the estimate of the gradient is not
accurate, it is likely that the optimization will not perform well. Using finite differences to obtain the gradient
of the solution of an ODE to its parameters is especially prone to numerical errors [49].

Gradient-free Algorithms In cases where the gradient is not known, or when it simply is not feasible to
estimate it, gradient-free algorithms can provide a solution. Two that are built into MATLAB, and which can
be called by patternsearch and fminsearch functions:

• Nelder-Mead Simplex
• Pattern Search

6.2.2. Parameter Sensitivity of the Solution of an ODE
Using finite difference methods to estimate the gradient of a model with respect to its parameters is known
to suffer from numerical issues when the model is governed by an ODE [49]. In some cases, a numerical
estimate of the parameter sensitivity can be obtained simultaneous with the solution of the ODE [39]. The
use of the internal flow separation point variable X is such a case.

Consider an example system governed by the ordinary differential equation

d
d t

y(t , x,µ) =G(y, t , x,µ) with y(0, x,µ) = y0 ; (6.9)

where t is time, x system input, and µ the parameters. The sensitivity of the solution y of the system to µ can
be written as

@

@µ
y(t , x,µ) = S(y, t , x,µ) . (6.10)

Differentiation of Equation 6.9 with respect to µ results in another ODE that governs the first-order pa-
rameter sensitivity.

d
d t

S(y, t , x,µ) = @G(y, t , x,µ)
@y

S(y, t , x,µ)+ @G(y, t , x,µ)
@µ

. (6.11)

The initial conditions of Si j = 1 if µ j = yO
i , and zero otherwise (which is the case in the current applica-

tion). This ODE can be solved using the same numerical methods as the original ODE. Doing so results in a
much more accurate estimate of the parameter sensitivity than using finite differences [49].

This result can be used to find the parameter sensitivity of the cost function to the model parameters. A
distinction between parameters must be made: those that govern the dynamics of X , and other parameters.
The first category contains ø1,ø2, a1, and Æ§. In order to illustrate this example, assume that the model only
simulates the lift coefficient. For the first category of parameters, the chain rule states

@J
@µ

= @J
@CL

@CL

@X
@X
@µ

. (6.12)

The first two terms on the right hand side are straightforward to obtain; the last term can be computed using
the method presented in this section. For the other parameter category, the result is the much simpler

@J
@µ

= @J
@CL

@CL

@µ
. (6.13)

6.3. Linear Parameter Estimation
Very efficient and effective methods exist for estimating the optimal parameters of linear systems. Contrary
to nonlinear parameter estimation, finding a global optimum can be guaranteed, and their computational
demand is generally much lower. This makes it desirable to only apply nonlinear optimization where it is
absolutely necessary.

The stall model structure proposed in chapter 5 is made nonlinear via the use of the flow separation point
parameter X . Note that if the parameters of X are assumed to be fixed, the remaining problem is linear,
and thus can be solver much more efficiently. This could potentially greatly increase the accuracy and speed
with which the optimization is done. However, by doing this one makes the implicit assumption that the
parameters of X are independent of the other parameters. As long as the dependence is not too strong, the



6.4. Chapter Conclusion 77

gains from the more efficient estimation method could very well outweigh the error made by ignoring this
relation.

It is not possible to estimate just the parameters of X by themselves, as the flow separation point is not
measured. The most obvious solution for this is to estimate the parameters of X based on the lift coefficient.
This makes sense, as Kirchoff’s theory is defined for the relation between Æ and CL . This approach will be
implemented and the resulting parameter estimates will be compared to other approaches, where all model
parameters (i.e. not just those belonging to X first, then the rest) are optimized simultaneously.

Once X is fixed, it can be added to the set of independent variables, which are also called regression
variables. The model output ŷ can then be written as

ŷ(µ) = Aµ (6.14)

in which A is the matrix of regression variables, and µ the vector of parameters. The goal of parameter es-
timation is to minimize a cost function that penalizes the remnant between model output and measured
variables:

µ̂ = argmin
µ

J (µ) . (6.15)

Using a quadratic cost function results in the maximum likelihood estimate for µ̂. The derivation of the
well-known ordinary least-squares (OLS) algorithm follows from setting the derivative of the cost function to
the parameters to zero, and is as follows:

J (µ) = 1
2

°
y ° ŷ(µ)

¢T °
y ° ŷ(µ)

¢
(6.16)

J (µ) = 1
2

°
y ° Aµ

¢T °
y ° Aµ

¢
(6.17)

@J (µ̂)
@µ = 0 √! °AT (y ° Aµ̂) = 0 (6.18)

AT Aµ̂ = AT y (6.19)

µ̂ =
£

AT A
§°1

AT y . (6.20)

It has been proven that OLS leads to the maximum likelihood estimate (MLE) under the assumption that
the remnant samples ≤= y° ŷ are normally distributed. If they only includes sensor noise, this is a reasonable
assumption. However, if the remnant also includes a significant modeling error contribution, OLS might not
yield the best results. In such cases, more advanced MLE methods such as weighted least-squares (WLS)
could be applied.

6.4. Chapter Conclusion
This chapter has presented the methods that will be used for solving the parameter estimation problem,
and analyzing the results. Due to the use of X , at least part of the parameter optimization is nonlinear. All
parameters can be solved for simultaneously by any nonlinear optimizer.

Alternatively, by estimating the parameters that determine X first using the measured values of CL , the re-
maining problem can be solved using linear methods. When the solving for the optimal X -parameters is done
using gradient-based methods, the gradient can be obtained more accurately that from finite differences by
applying the theory from subsection 6.2.2.

The results of these different approaches can be compared using engineering judgement and the metrics
and methods from section 6.1. The best method will be selected and used for estimating the final model
parameters.
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Preliminary Results

This chapter presents the process and result of fitting a preliminary model structure on the newly gathered
flight data sets. This preliminary model structure was selected based on a combination of conventions found
in literature, and intuition. It was not expected that this would result in a perfect model, or even a particularly
good one, yet undertaking this effort was a valuable step in the research. The reasons for this are threefold.
First, it tests if Kirchoff’s theory is at least a reasonable choice for stall modeling. Secondly, it gives insight
into the accuracy with which the model parameters can be estimated from the data; this is informative of
both the flight data quality as well as the parameter estimation method. Thirdly, it enables the identification
of problems and guides the direction of further thesis work.

First, the approach taken to estimate the parameters is explained. This approach was implemented in
MATLAB and applied to all the training test data. Next, the resulting parameter values are investigated. To
get a feeling for the model quality, two time histories of model output are compared to measured data: one
from the training data, and one from the validation data. Finally, a brief sensitivity analysis is presented.
This chapter does not end with a conclusions section, this is postponed to chapter 8, where the conclusions
regarding the preliminary results are combined with conclusions on the other aspects of the thesis work so
far.

7.1. Model Identification Approach
This section describes the process of selecting a model structure, and then fitting it to the newly gathered
flight data. Of the 34 new flight data sets, 26 were selected as training data. This corresponds to about 75% of
the total. The remaining 8 data sets were used for validating the model. The sets were selected such that both
maneuver types (longitudinal and accelerated stalls) were present in the training as well as the validation sets.

7.1.1. Selected Model Structure
The preliminary model structure was selected based on conventions found in literature and intuition. A
formal substantiation of the choices made was left to later stages of the thesis work, as at this time the goal
was not to create the perfect stall model, but to gain experience with the process of parameter estimation and
its issues.

Kirchoff’s model term was implemented into the CL-equation. The equation governing the dynamics of
X was included was well. A static and a q-term were also added, which made the model for CL essentially
the same as those found in literature, in which good results are claimed. If Kirchoff’s theory is indeed a good
model structure for stall modeling, the fit for CL should at least be reasonable.

For the other force and moment equations, the most intuitive terms were added. It was assumed that
the longitudinal and lateral-directional dynamics are uncoupled. All equations include a static term, an Æ or
Ø-term, and relevant dynamic stability terms. Control derivative terms were added to the moment equations.
Finally, linear terms depending on X were included in both the drag and pitch moment equations, as this was
a common choice in literature. The effect of stall on asymmetric model terms was less clear, so a X -term was
not added. The resulting model structure was:

78
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ø1
d X
d t +X = 1

2

£
1° tanh

°
a1(Æ°ø2Æ̇°Æ§)

¢§

CL =CL0 +CLÆ

n
1+

p
X

2

o2
Æ+CLq q̃

CD =CD0 +CDÆÆ+CDq q̃ +CDX (1°X )

CY =CY0 +CYØØ+CYp p̃ +CYr r̃

Cl =Cl0 +ClØØ+Clp p̃ +Clr r̃ +Cl±a
±a

Cm =Cm0 +CmÆÆ+Cmq q̃ +CmX (1°X )+Cm±e
±e

Cn =Cn0 +CnØØ+Cnp p̃ +Cnr r̃ +Cn±r
±r .

(7.1)

7.1.2. Cost Function & Solver Algorithm
The mean squared error (MSE) between the measured coefficients and model output was used as cost func-
tion. Since the model generates six outputs, the MSE is averaged over all of them. The interior point algo-
rithm, implemented by fmincon, was selected as solver. For each training data set, 500 parameter sets were
randomly sampled from the parameter space defined in Table 7.1. The cost value associated with these con-
ditions were evaluated, and the 30 best were used as initial conditions for the optimization, which was then
run.

The optimization was automatically stopped when the cost value had converged to within specified toler-
ance. Other stopping criteria were: the step parameters had become sufficiently small, or after 150 iterations,
or when a single iteration took longer than 1.0 second. Most iterations were finished in the order of 0.1 to 0.2
seconds on the computer that was used, yet it turned out that some combinations of training data and pa-
rameters resulted in numerical difficulties, which led to much longer computation times. Most optimizations
converged to a steady value before the other stopping criteria were active, hence stopping some optimization
attempts early was not seen as a big problem, while it saved a lot of computation time.

Table 7.1: Upper and lower bounds of the 30 model parameters, all are dimensionless except ø1, ø2 [s], and Æ§ [rad]

parameter lb ub parameter lb ub

ø1 0.001 6.0 Cl0 -1.5 0.5
ø2 0.0 6.0 ClØ -0.5 0.5
a1 0.0 80.0 Clp -1.0 1.0
Æ§ 0.0 0.5 Clr -1.0 1.0
CL0 0.1 0.6 Cl±a

-2.0 2.0
CLÆ 0.0 10.0 Cm0 -0.5 0.5
CLq -2.0 5.0 CmÆ -1.0 1.0
CD0 -1.0 1.0 Cmq -1.0 1.0
CDÆ -1.0 1.0 CmX -1.0 1.0
CDq -1.0 1.0 Cm±e

-2.0 2.0
CDX -1.0 1.0 Cn0 -0.5 0.5
CY0 -0.5 0.5 CnØ -0.5 0.5
CYØ -1.0 1.0 Cnp -0.5 0.5
CYp -1.0 1.0 Cnr -0.5 0.5
CYr -1.0 1.0 Cn±r

-1.0 1.0

7.2. Estimated Parameter Values
A set of parameters was estimated for each training set. To gain insight into the accuracy of the estimates,
the parameter value results are presented in two ways. First, they are given as function of flight condition.
This is presented in the form of a plot of estimated parameter values versus altitude. Second, the correlations
between the estimated parameter values are presented, this time in the form of a table.

7.2.1. As Function of Flight Condition
Figures 7.1 to 7.7 present plots of the estimated parameter values versus the flight condition. The plots are
organized by model equation, i.e. X -parameters are separate, CL-parameters are separate, etc. For each
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parameter, a linear fit through the data points is presented.
The flight condition is assumed to be completely defined by altitude h alone. A common choice for defin-

ing flight condition in literature is to use Æ, Ø, M , and h. Only the last of these variables was used. The goal
of the stall modeling is to lose the parameter dependence on Æ and Ø; the model structure should be able to
describe the effect of (relatively large) variations in these variables. It should therefore be no longer necessary
to include them in the flight condition description. The Mach dependence was dropped because all stalls
were flown at approximately the same speed, which made it very hard to derive a relation. An alternative for
using h is to use the Reynolds number, this will be investigated during later stages.
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Scatter plots of estimated X-parameters

Figure 7.1: Plots of the estimated X -parameter values versus average altitude h during the stall maneuver, with linear
trend lines fitted to them

Overall, is clear that fitting a line through the data points does not make a lot of sense. Since most stalls
were recorded around 5500 m altitude, the slope of the trend line is strongly influenced by the few stalls at
lower altitudes. Since the variance in the parameter estimates is still significant, this makes it impossible to
derive conclusions on the real relation between parameters and altitude. It seems wise to lose the altitude
dependence of the parameters, and consider them constants, due to lack of data.

In Figure 7.1, it can be seen that there is quite a large spread in the estimated X -parameter values. The es-
timated values of ø1, ø2, and a1 are spread over almost the complete allowed range. The estimate of Æ§ is the
only one which shows some measure of accuracy, its average value is about 0.25 radians, which corresponds
to a stall angle of about 14±, which seems reasonable.

For the modeled force equation parameters from Figures 7.2 to 7.4, the spread is generally lower than for
the X -parameters, but it still is significant. From an analysis of the theory of flight dynamics modeling, it is
possible to construct some prior expectations on the value (or at least: the sign) of the model parameters.
Several of the parameters showed results that were inconsistent with these expectations. Some estimates of
CDÆ , CDq and CDX were negative, while an increase in drag physically makes much more sense when these
regression values increase. Finally, some estimates of CYØ were positive, this also contrasts intuition. In gen-
eral, if the sign of a parameter estimate varies between data sets, this is usually an indication of bad accuracy.
Next to that, some parameters (like CLq ) show a large scatter, which also indicates bad accuracy.
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Figure 7.2: Plots of the estimated CL-parameter values versus average altitude h during the stall maneuver, with linear
trend lines fitted to them
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Figure 7.3: Plots of the estimated CD -parameter values versus average altitude h during the stall maneuver, with linear
trend lines fitted to them
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Scatter plots of estimated CY-parameters

Figure 7.4: Plots of the estimated CY -parameter values versus average altitude h during the stall maneuver, with linear
trend lines fitted to them
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Figure 7.5: Plots of the estimated Cl -parameter values versus average altitude h during the stall maneuver, with linear
trend lines fitted to them
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Figure 7.6: Plots of the estimated Cm -parameter values versus average altitude h during the stall maneuver, with linear
trend lines fitted to them
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Figure 7.7: Plots of the estimated Cn -parameter values versus average altitude h during the stall maneuver, with linear
trend lines fitted to them
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For the modeled moment equation parameters, shown in Figures 7.5 to 7.7, one very clear observation
can be made. The estimated values of the dynamic damping terms (Clp Cmq Cnr ) as well as the control ef-
fectiveness terms (Cl±a

Cm±e
Cn±r

) are approximately zero: some estimates are positive, some are negative.
Under normal flight conditions, one would expect these derivatives to have a clear positive or negative value.
Changes in the sign during flight has a strong effect on flight dynamics.

It is possible that exactly this has happened, that during stall the sign of these terms changes. The data
sets contain portions of both “normal” as well as stalled flight, but the model has only one parameter to
describe both parts. The optimal value is then likely to be around zero. Unfortunately, this will result in a bad
description of both flight conditions. It would be interesting to see what happens if the model is given more
freedom to vary the dynamic damping and control response as the aircraft progresses into stall. New model
terms could enable such freedom.

Overall, what is clear is that the variance of the parameter estimates is significant, and that some results
are not in line with expectation. Large or unexpected variations in parameter estimates on training data can
be a symptom of several underlying problems. First, it can arise from modeling error. This is likely if the
model cannot represent the features in the data. The changing sign of the control effectiveness terms could
be an example of this.

Second, it is possible that the data is not informative enough. This can arise from a range of causes:
the flight test maneuver flown, flight instrumentation calibration errors or noise, or errors in the flight path
reconstruction. Of these, the first is most likely, as the sensors and Kalman filter methods are the result of
careful development, yet all these reasons deserve looking into.

The final possible error source is the optimization method. Currently, fmincon is tasked with optimizing
all 30 parameters simultaneously, which means that the search space is of high dimension. It is probable that
on at least several of the data sets the optimum was not found. Other issues could be that the cost function is
not sensitive to parameter changes, or that the estimation of the sensitivity cannot be determined accurately.

7.2.2. Parameter Correlations
Table 7.3 presents the correlations between the model parameters. Since large absolute correlation values
are indicative of modeling or data issues, correlations larger than 0.7 have been highlighted. Judging what is
“too large” of a correlation factor is subject to debate, but 0.9 is a common threshold. For more convenient
referencing, the largest correlation values (i.e. those >0.7) have been repeated in Table 7.2.

Table 7.2: Largest absolute parameter correlation values (repeated from Table 7.3)

µ1 µ2 cor

CL0 CLÆ -0.86
CD0 CDÆ -0.88
Cm0 CmÆ -0.79
CmÆ Cm±e

0.87
Cn0 Cn±r

0.87
Clr Clp -0.73

Cm0 CYØ -0.73

CmÆ CYØ 0.75

Clr Cn±r
0.75

CL0 and CLÆ , CD0 and CDÆ as well as Cm0 and CmÆ are significantly negatively correlated. Apparently
it is difficult for the optimization to distinguish between a static effect and the influence of Æ. Most of the
flight data (approach to stall, stall recovery) is within a narrow range of Æ-values, which might be a reason for
this. However, since during the stall several large Æ-excitation have been achieved, it was expected that the
correlation would have been lower.

The second strong correlation is between CmÆ and Cm±e
. A possible explanation for this is a strong corre-

lation betweenÆ and ±e . This explanation is feasible, as during the entry into stall the angle of attack increase
is achieved by increasing the elevator input. This corresponds to a large fraction of the time of the recorded
maneuvers.

Along the yaw axis, Cn0 and Cn±r
show a large positive correlation. It is not quite clear what is the cause of

this, since one would expect Cn0 to be zero for an aircraft that is nearly symmetric along the X Z -plane. For
many maneuvers, the rudder input was not actively used, and thus close to zero. Small static rudder effects
may thus have been attributed to both of these parameters.
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Next, Clp and Clr are negatively correlated. This means that as the roll damping term becomes larger (i.e.
less negative), the term for roll moment due to yaw becomes smaller. This can easily happen in roll and yaw
motions are strongly correlated during the maneuvers.

The rest of the correlations are less obvious to explain, as they consider derivatives of different forces/moments
to different variables. Of course, their correlations could be a coincidence, but it is likely that each of them is
influenced by the fact that the aircraft has stalled during the test flight maneuver. Hence, their correlations
are expected to arise from several different flow phenomena that all arise from the stall condition. This is a
flag for that more model terms are needed to explain the difference under stalled flight.

7.3. Time-History Comparisons
To illustrate the model fit quality in a more intuitive way, this section presents time-history comparisons of
the data and model output. Both a training data example and a validation data example are shown.

7.3.1. Training Data Example
The training set with the lowest mean squared error is presented in Figure 7.8. Due to the nonlinear solver
method that is used, many optimization attempts do not end up in the global optimum. The result is a
modeling error that is not entirely due to the model structure. Hence, showing the result with the lowest
error is most illustrative of the model approximation power of the model structure. It must be noted that
this approach can only be used when it is reasonable to assume that the model will suffer from bias (i.e. the
approximation power is expected to be too low). Due to the structure of Equation 7.1 and the estimated
parameter values, this was deemed appropriate in this case.

The plot shows the control surface deflections, the model values of the flow point separation parameter
X , and the comparisons of the six aerodynamic forces and moments acting on the aircraft. The maximum
angle of attack recorded during the maneuver was about 19±.

Considering the modeled force equations, it was expected beforehand that at least the lift coefficient
should show a reasonable fit, since Kirchoff’s theory was developed for modeling the effect on airfoil lift.
Figure 7.8 shows that this was correct, both CL and drag coefficient CD are represented quite well. The model
output follows the general trend of the measured data closely, during both stall and the regular flight regime.
However, there is some oscillatory behavior during the stall around t = 38 seconds that the model cannot re-
produce. Furthermore, the model output for the lateral force CY is clearly lacking, and is around zero during
the entire maneuver.

The modeled moment equations show a less adequate fit than the forces. For all moments, some type of
response can be seen during the stall. However, the model cannot track the oscillations in the data. For Cm
and Cn at least the phase response is in accordance; for the roll moment Cl the derivative model response is
at some points of opposite sign compared to the measurements. It is clear that the models for the moments
need a lot of work.

7.3.2. Validation Data Example
A better indication of overall model quality is obtained when investigating the model output compared to a
validation data set. To generate the validation data, the altitude of the flight maneuver was used to look up
the model parameter values from the fitted linear trend lines in Figures 7.2 to 7.7. The results is shown in
Figure 7.9.

The validation data plot has the same structure as the training data plot. The type of stall performed here
was different compared to the one shown in Figure 7.8: the Citation II was stalled multiple times. This can
be seen from the variation of X , and in the oscillations of CL . Eight validation data sets were available, one
of them was chosen that contained excitations in all control surfaces. When observed visually, all validation
data plots were of similar quality.

The lift coefficient again shows a reasonable fit. Some phase lag is seen, the model response is slightly
slower than the measured response. The fact that the results agree quite well is a good indication that the
model structure is indeed suitable for simulating aerodynamic stall.

It is interesting to observe that the fits for Cl and Cn appear to be better than in the training data. A
conclusive reason for this could not be found, but it appears that the parameters found during model training
are far from optimal. The plots for CD , CY , and Cm show that the fitting quality is not good, and a lot of work
still needs to be done.
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Figure 7.8: Time history comparison of training data versus model output, the best training result was selected with
MSE=6.6087e °4
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Figure 7.9: Time history comparison of validation data versus model output



88 7. Preliminary Results

7.4. Sensitivity Analysis
One possible reason for the large observed variance in the estimated parameter values is that the model fit
quality might be insensitive to changes in parameter values. A sensitivity analysis offers more insight into
such issues, which is why one was performed. The result shown here is the sensitivity of the parameters on
the same training data set as displayed in Figure 7.8.

It is expected that during future research, only the parameters of X are solved using the nonlinear opti-
mization, based on the measured CL signals. After that, all other model parameters can be solved using linear
methods, which are guaranteed to find the global optimum. Hence, at this point only the X and CL-parameter
sensitivity is of interest.

To perform the sensitivity analysis, each parameter of interest was varied over a range around its current
value in small steps. At each step, the VAF was computed as a measure for model fit. An advantage of the
VAF for this purpose is that it is a normalized metric. All other parameters were kept fixed at their respec-
tive optimally estimated values. Because of the model nonlinearity, the parameter sensitivity may depend
on the values themselves. Moreover, note that cross-dependencies between multiple parameters cannot be
investigated in this way.
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Figure 7.10: Sensitivity analysis of X and CL-parameters, red dot indicates estimated optimal parameter value, same
dataset as the one presented in Figure 7.8

It is clear from Figure 7.10 that the sensitivity of the X -parameters is very low, possibly with the exception
of Æ§. Furthermore, it appears as if CLq is difficult to estimate. Which might indicate that it is not necessary
to include this model term.

Overall, it can be concluded that whilst the stall model structure using Kirchoff’s theory of flow separa-
tion enables modeling of the aircraft lift during aerodynamic stall, the associated parameter estimation is a
challenging task.
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Table 7.3: Correlations between the estimates of the model parameters on the 26 training data sets, absolute correlation values larger than 0.7 have been highlighted

ø1 ø2 a1 Æ§ CL0 CLÆ CLq CD0 CDÆ CDq CDX CY0 CYØ CYp CYr Cl0 ClØ Clp Clr Cl±a
Cm0 CmÆ Cmq CmX Cm±e

Cn0 CnØ Cnp Cnr Cn±r

ø1 1.00 0.17 0.41 0.06 0.34 -0.40 0.06 -0.14 0.24 0.06 -0.33 0.09 -0.37 0.03 0.32 0.07 0.26 -0.07 0.11 0.23 0.43 -0.63 -0.08 -0.05 -0.64 0.11 0.28 0.15 -0.11 -0.01
ø2 1.00 0.26 -0.06 -0.05 0.06 -0.21 -0.01 0.02 0.31 0.07 0.17 -0.33 0.27 0.39 0.20 -0.06 0.07 0.15 0.15 0.06 -0.17 -0.03 -0.19 -0.28 -0.08 0.34 0.17 0.18 -0.02
a1 1.00 -0.37 0.10 -0.35 -0.24 0.01 0.20 -0.08 -0.19 0.51 -0.28 0.13 0.08 0.29 0.40 -0.05 -0.08 0.33 0.20 -0.25 0.10 -0.32 -0.39 -0.15 0.13 -0.16 -0.25 -0.17
Æ§ 1.00 0.39 -0.40 0.10 -0.14 0.01 0.16 0.13 0.09 -0.09 -0.03 -0.07 -0.27 -0.09 -0.32 0.40 -0.34 0.13 -0.20 -0.09 0.19 -0.14 0.16 -0.01 0.21 0.02 0.29
CL0 1.00 -0.86 0.18 0.14 0.02 -0.12 -0.06 0.12 0.08 -0.07 -0.06 -0.38 -0.03 -0.02 0.08 0.00 0.10 -0.04 -0.01 0.00 -0.05 0.20 -0.16 0.06 -0.18 0.04
CLÆ 1.00 -0.05 -0.13 -0.06 0.15 0.06 -0.19 0.04 -0.06 0.13 0.28 -0.31 0.20 -0.17 -0.11 -0.20 0.18 -0.01 0.11 0.25 -0.19 0.16 0.06 0.43 -0.09
CLq 1.00 0.11 0.01 -0.24 -0.32 0.09 -0.02 0.03 -0.13 -0.09 -0.04 -0.22 0.23 0.12 0.12 -0.12 -0.39 0.08 -0.06 0.43 -0.03 0.39 0.04 0.42
CD0 1.00 -0.88 0.29 0.18 0.04 -0.10 0.30 -0.17 -0.07 0.11 0.04 0.11 0.10 0.36 0.08 0.19 -0.15 0.22 -0.13 0.14 -0.23 -0.19 -0.03
CDÆ 1.00 -0.38 -0.40 0.02 0.06 -0.18 0.08 0.12 0.05 -0.15 -0.09 0.07 -0.29 -0.09 -0.30 -0.06 -0.28 0.21 -0.13 0.21 0.06 0.08
CDq 1.00 -0.19 0.17 -0.28 0.45 0.26 0.04 0.05 -0.43 0.43 -0.20 0.19 -0.21 0.03 -0.09 -0.16 -0.14 0.58 -0.24 0.54 0.06
CDX 1.00 -0.06 0.23 -0.19 -0.16 -0.13 -0.24 0.58 -0.30 -0.19 -0.21 0.35 0.42 0.25 0.36 -0.50 -0.40 0.02 -0.22 -0.43
CY0 1.00 -0.39 0.32 -0.10 -0.01 0.02 -0.38 0.28 -0.23 0.27 -0.29 0.04 -0.21 -0.30 -0.08 0.20 -0.09 0.13 0.12
CYØ 1.00 -0.33 -0.29 0.16 -0.09 0.34 -0.36 0.09 -0.73 0.75 -0.03 0.07 0.58 -0.30 -0.70 0.15 0.17 -0.34

CYp 1.00 -0.14 -0.06 0.54 -0.39 0.46 -0.04 0.17 -0.08 -0.05 -0.04 -0.03 -0.11 0.31 -0.41 0.06 0.08
CYr 1.00 0.16 -0.13 0.19 -0.07 0.10 0.31 -0.44 0.12 0.01 -0.41 0.08 0.55 -0.02 0.15 -0.01
Cl0 1.00 0.19 0.07 -0.32 0.60 -0.05 0.12 -0.04 -0.33 0.00 -0.41 0.18 0.00 0.09 -0.24
ClØ 1.00 -0.26 0.16 0.27 0.07 -0.02 0.18 -0.11 -0.05 -0.16 0.02 -0.36 -0.26 -0.09

Clp 1.00 -0.73 0.09 -0.19 0.32 0.48 0.17 0.34 -0.45 -0.34 -0.05 -0.14 -0.62
Clr 1.00 -0.33 0.29 -0.43 -0.36 -0.04 -0.35 0.54 0.40 0.24 0.02 0.75
Cl±a

1.00 -0.15 0.17 -0.20 -0.32 -0.06 -0.10 -0.10 0.15 -0.11 -0.25

Cm0 1.00 -0.79 0.05 -0.01 -0.48 0.28 0.69 -0.22 -0.41 0.37
CmÆ 1.00 0.07 0.13 0.87 -0.44 -0.66 0.01 0.18 -0.47
Cmq 1.00 -0.15 0.11 -0.54 0.02 -0.60 -0.08 -0.50
CmX 1.00 0.42 -0.06 -0.16 0.08 -0.09 -0.11
Cm±e

1.00 -0.39 -0.46 -0.10 0.06 -0.36
Cn0 1.00 0.21 0.40 -0.20 0.87
CnØ 1.00 -0.24 0.03 0.40
Cnp 1.00 0.12 0.33
Cnr 1.00 -0.18
Cn±r

1.00
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Conclusion & Outlook

This chapter concludes the preliminary thesis report. It is structured in two parts. First the conclusions
that have followed from the past months of thesis work are presented. These are connected to the research
questions as much as possible. The second part of this chapter presents what actions and research still needs
to be performed during the remainder of the thesis work.

8.1. Conclusion
A conclusive answer to the main research question cannot be given yet. However, the findings in this prelim-
inary thesis report allow for some statements to be made which already constrain the solution space of the
sub-questions. The sub-questions are repeated here, along with the findings so far.

1. What types of flight test maneuvers are suitable for identifying dynamic stall behavior, including control
surface degradation?

• 34 new stall maneuvers were gathered, including the measurements of a boom-mounted Æ- and Ø-
vane. Additionally, a database of about 80 recorded stall maneuvers, which do not include this boom
data, exists. Comparison of the reconstructed state trajectories between the two databases showed that
from the old data, the longitudinal states could potentially still be used, under some conditions. The
lateral-directional states, Ø in particular, could not be accurately reconstructed with a lacking boom
signal.

• The amount of test data gathered so far does not seem sufficient to make a stall model that is valid for
the entire operational altitude envelope. Instead, the final model will likely be constrained to around
5500 m altitude (FL180), since most new test data was gathered at that condition.

• Two types of new flight test maneuvers were gathered: longitudinal (1g) and accelerated (1.1g or 1.4g).
Moreover, there was significant variation between the recorded maneuvers in terms control surface
excitation (choice of control, amplitude, frequency). It was not yet possible to analyze the relation
between these types of maneuvers and the resulting model quality, as the current stall model is not yet
of sufficient fidelity for this.

2. What model structure is suitable for representing aircraft stall behavior, including both longitudinal and
lateral-directional dynamics, changes in control surface effectiveness, and dynamic effects?

• In literature, two main stall modeling methods can be found. The first is derived from methods devel-
oped originally for fighter aircraft, and is heavily based on wind tunnel tests. The second method is
derived from semi-empirical knowledge on the lift of a stalled airfoil, and builds on Kirchoff’s theory of
flow separation. It has been shown that its parameters can be estimated from flight data.

• Given the current availability of flight test data, the considerable cost and complexity of executing wind
tunnel tests, and prior experience with Kirchoff’s method, the fighter method is not feasible for the
current research.
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• The current preliminary results, which follow from a naive approach, indicate that modeling the lift
coefficient during aerodynamic stall using Kirchoff’s method is a promising approach. This confirms
what could be found in literature.

• The results of the models for the other forces and the moments indicate that the preliminary model
structure did not offer adequate approximation power. As a result, these models still need a lot of work.

3. What parameter estimation techniques are suitable for accurately estimating the parameters of a nonlinear
stall model structure from flight data?

• Estimating the X -parameters is a challenging task with the methods that have been applied so far. A
large variance in the estimated values can be seen. The presence of local optima is very likely. The
model output is not very sensitive to changes in the X -parameters. Moreover, the finite difference
methods used internally by MATLAB’s gradient-based numerical optimization algorithms do not give
robust results as X is governed by an ODE.

• Estimating the other model parameters shows similar difficulties as the X -parameters, albeit slightly
less severe. An important realization was that for a wide range of model structures, and once the X -
parameters are fixed, the rest of the model parameters can be solved using the familiar least-squares
methods. Doing so would give an incredible boost to the speed and convenience of estimating these
parameters.

• Large parts of the model are the same as a conventional aerodynamic modeling approach, which de-
scribes the flight dynamics of the Citation II in the regular flight envelope. Such a model already exists,
so prior knowledge on these parameters that coincide is available.

Other conclusions

• The recommendation from [56] to use an Unscented Kalman Filter for flight path reconstruction ap-
pears to lead to correct results. Also when the UKF was modified to include the new boom signals, the
results were as expected.

8.2. Outlook For Remainder of the Thesis
From the conclusions and experience of thesis work so far, a general approach for the rest of the thesis work
was derived. In broad terms, the work will mainly involve iterations between implementing better parameter
estimation methods and adjusting the stall model structure.

However, a list of more specific adjustments or topics that can be investigated was gathered. This sec-
tion presents this list, with the elements roughly ordered in a logical order of execution. Obviously, it is not
expected to be conclusive, and only represents the best ideas during the writing of this report.

• The first action will be to implement the numerical method for computing the parameter gradient of
an ODE, as described in chapter 6, and use this to explicitly supply MATLAB’s nonlinear solvers with
the cost function gradient. This should improve the algorithms’ performance.

• Next, the effect of the resampling of the AHRS output signals will be investigated. The AHRS has an
update rate of 19.2 ms, whereas all flight data is re-sampled to 100 Hz, or 10 ms. This resampling might
result in large numerical jumps in the body specific force or rotations signals. The effect of this on the
data is not understood yet.

• For the preliminary results, the interior point algorithm was used for estimating the optimal parameter
values. MATLAB offers several other gradient-based algorithms; each has different performance and
robustness. A straightforward comparison of these will be done to investigate any noticeable difference
in practicality and results.

• So far, only gradient-based algorithms have be used for the nonlinear optimization, yet numerically
estimating the gradient is difficult and complex. Gradient-free algorithms exist, and are available within
MATLAB’s Optimization toolbox. Also their performance will be investigated, preferably alongside the
gradient-based algorithms.

• The “old” flight test data, i.e. the data without air data boom, will be included in the parameter esti-
mation effort for the longitudinal model terms wherever possible, especially the CL case. Differences
between the old and new data estimates will be closely monitored, as it is not clear yet whether includ-
ing the old flight data indeed leads to an increase in model quality.
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• An explicit analysis into the effect of the data on the resulting model quality will be done. This includes
comparing the old and new data, but also comparing between the maneuver types within the new data.
This analysis could result into valuable insights that guide further flight test experiments.

• An attempt will be made to estimate the X -parameters first, using only the measured lift coefficient
signals. In this, the assumption is made that these X -parameters are independent of the other param-
eters. For this to be successful, it should be made sufficiently plausible that the X -parameters can be
accurately be described as a function of flight condition.

• If it is possible to fix the X -parameters, linear methods will be implemented for the remainder of the
parameter estimation task.

• New candidate model terms will be proposed for all aerodynamic model equations. These terms can
include: X , Ẋ , other aircraft states or control signals, simple splines, (polynomial) functions, or combi-
nations of these. All these terms will then be evaluated: do they improve the model fidelity enough to
justify the added model complexity?

• The current stall buffet model will be investigated and compared to the new flight test data. If necessary,
an update will be made.

• Special care must be taken to merge the newly developed stall model and the “regular” aerodynamic
model of the Citation II. The envelopes of these models overlap, and some way of switching between
them is required. Moreover, the output of the two models should agree to a reasonable level in the
transition area, i.e. the simulated response should at least have the same sign, and preferably also
approximately the same magnitude.

• To include prior knowledge of the flight dynamics model of the Citation II, Bayesian parameter estima-
tion techniques can be used. Such methods are fundamentally different from the MLE-based methods
that implemented so far, their implementation is quite complex, and will require a significant effort
time-wise. Therefore, doing this might not be worth it in the limited time available.

• The resulting stall model will be integrated into DASMAT, which will enable the use of the model in the
SIMONA research simulator. Experiencing the result of the simulated stall in a full-motion simulator
will help in identifying the model’s strong and weak points.

• The last planned step of the thesis is to compare the model output to the FAA FTSD qualification re-
quirements. The regulations clearly specify a set of maneuvers for which the performance of the flight
dynamics model must be evaluated. Besides the numerical tolerances, the evaluation also contains a
subjective part, which might not be feasible yet to evaluate.
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A
AHRS Data Corrections

In order to be able to apply flight path reconstruction successfully, accurate information of the aircraft body
accelerations is needed. For the flight test data used in this thesis, output signals of the AHRS were used for
this. However, several values in these signals were unexpected, and led to diverging Kalman filter results in
some cases. These findings sparked a closer examination of any pre-processing of the AHRS signals done
by the sensor itself. The result of this was the conclusion that before accounting for the effect of gravity, a
correction applied by the AHRS had to be undone.

First the conversion from specific force to acceleration is given. Next, the conversion from raw AHRS data
to specific force is presented. To arrive at this second conversion, the correction done inside of the sensor is
derived from an example flight data set. Lastly, the complete correction method for transforming the AHRS
signals to body accelerations is given.

Table A.1: Definition of signal notations in this appendix

Signal Symbol(s)

AHRS output Ax , Ay , Az
Body specific force Sx , Sy , Sz
Body acceleration ax , ay , az

A.1. Specific Force to Acceleration
First, consider the difference between the AHRS output signals, body specific force signals, and body acceler-
ation signals. The notation that is used in this appendix is defined in Table A.1.

Due to the presence of gravity, accelerations cannot be measured directly. Instead, accelerometers mea-
sure specific force. Body accelerations can be computed from this by taking out the effect of gravity, for
which the body attitude has to be known. The magnitude of the gravitational acceleration is assumed to be
g0 = 9.80665 ms°2. The conversion from specific force to body accelerations is:

ax = Sx ° g0 sinµ

ay = Sy + g0 sin¡cosµ

az = Sz + g0 cos¡cosµ .

(A.1)

A.2. AHRS Output to Specific Force
It was expected that the AHRS output would be equal to the specific force. Hence, any mismatches between
these are likely due to internal pre-processing done by the sensor. One possibility is that the AHRS fuses
several measurements and already applies the correction to take out the influence of gravity. Alternatively,
some other signal manipulation might have been applied.

It is challenging to reverse-engineer what is going on inside the sensor, since only the sensor measure-
ment is available. Luckily, common sense, combined with the fact that the gravitational acceleration points
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A.2. AHRS Output to Specific Force 99

(approximately) vertically down and is about g0 = 9.80665 ms°2, provides clues. An example of the raw AHRS
output is given in Figure A.1.

It can be clearly seen that already some correction for gravity is done in the z-axis. The first part of the
data (i.e up until t is about 10 seconds) is of steady and level flight conditions. During that time the value of
Az is close to zero. One would have expected the value to be about °g0 because the body z-axis is (nearly)
aligned with the local vertical. Hence, one possibility is that the AHRS has already added a correction term
g0 cos¡cosµ, and fully corrects for the gravity. Another possibility is simply that g0 has been added to the
signal.

However, from Figure A.1 it can be seen that is not likely that the gravity has been fully corrected for.
Between 20 to about 50 seconds, the aircraft is in a coordinated turn at 30 degrees bank angle. As such, the
aircraft is experiencing a lateral acceleration i.e. ay is non-zero. Ay is zero during this coordinated turn,
which corresponds to a measurement of specific force, not acceleration. Thus, Ay has not received any pre-
processing.

Secondly, Ax shows a steady, positive value for the most part of the maneuver. In contrast, Figure A.1
also shows that during the first 40 or so seconds, the airspeed is approximately constant. The most sensible
explanation for this is that Ax represents specific force, so no pre-processing was applied to Ax .
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Figure A.1: Plot of raw AHRS output of an accelerated stall maneuver, including plots of the aircraft attitude and airspeed

To summarize, no pre-processing is done inside the AHRS for x and y directions. Ax and Ay represent
specific force, or Sx and Sy . A correction is made for Az . The most sensible option is to assume that g0 was
added to the signal, otherwise the Euclidean norm of the AHRS signal is a function of body attitude due to
the correction factor. In equations, the following correction must be made to convert the AHRS output into
specific force:

Sx = Ax

Sy = Ay

Sz = Az ° g0 .

(A.2)

This does leave the fact that such a correction makes no physical sense. A potential explanation for why
the manufacturers of the sensor did choose to apply it was found in the documentation of the sensor. This
revealed that the data bus was encoded to represent a valid data range of about ±40 ms°2. Applying the
mentioned correction shifts Az more to the zero point, which increases the freedom in the data range for
representing dynamic maneuvers.
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A.3. Complete Correction Method
When Equations A.1 and A.2 are combined, the complete correction that needs to be applied to the AHRS sig-
nals in order to obtain body accelerations is given in Equation A.3. To illustrate the correctness of this method,
consider the same example data set as was used for Figure A.1. The results are presented in Figure A.2.

ax = Ax ° g0 sinµ

ay = Ay + g0 sin¡cosµ

az = Az + g0
°
cos¡cosµ°1

¢
.

(A.3)

The results now make a lot more sense. There is a clear correlation between ay and az which one would
expect to see while in a coordinated turn. Furthermore, when the airspeed does not change the signal ax
now is approximately zero, as it should be. The current method was concluded to be correct, and was applied
inside the Kalman filter to obtain the body acceleration signals.
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Figure A.2: Plot of reconstructed body acceleration signals during an accelerated stall maneuver, including plots of the
aircraft attitude and airspeed



B
Usability of Old Flight Data

This Appendix investigates the effect on the reconstructed aircraft state trajectory of removing the air data
boom signals. First, the analysis method is explained. After that, the results are presented. The Appendix
ends with a discussion which results in the following conclusion: the old data cannot be used for lateral
model terms as Ø cannot be reconstructed accurately without boom signals. For longitudinal model terms,
the old data could potentially used under some conditions: the reconstruction of Æ is only accurate when no
significant lateral motions are present anywhere in the recorded data set.

B.1. Analysis Method
Prior to the start of this thesis, data has been gathered of about 80 stall maneuvers, which were performed
during the practical of the Flight Dynamics course. This data differs from the newly gathered stall data in two
important ways. First of all, the old data solely consists of quasi-static longitudinal stall maneuvers, and does
not include significant control surface excitations. This makes the old data less informative of the dynamic
properties of aerodynamic stall.

Secondly, during the old flight tests, an air data boom was not installed. This means that instead of the
boom Æ-vane, the fuselage-mounted Æ-vane had to be used, and a sideslip measurement was not present.
In order to compare the effect of the lack of air data boom signals, one of the new flight test maneuvers was
taken as an analysis case. Then, two different Kalman filters were run on the data. In this way, only the
relevant differences are observed between the two approaches.

New Kalman Filter The first Kalman filter makes use of the boom data, and serves as baseline. This filter is
the same one as described in chapter 4 of this report.

• Used Æ-signal: from air data boom, added in observation equation.
• Used Ø-signal: from air data boom, added in observation equation.

Old Kalman Filter The second Kalman filter does not make use of the boom signals, and represents the
case where these signals are unavailable. The old stall data uses the body Æ-vane. A special approach was
implemented to account for the viscous damping in this sensor, but it was unclear what level of accuracy
could be obtained. Furthermore, a measurement of the sideslip was lacking entirely. The incidence angles
are important inputs for the flight path reconstruction. Since a sideslip measurement was lacking, a pseudo-Ø
was used instead, which essentially is a white noise signal of predefined intensity.

• Used Æ-signal: from body vane, added in navigation equation.
• Used Ø-signal: pseudo-Ø, added in observation equation.

B.2. Results
The complete results of both flight path reconstruction algorithms are presented in Figures B.2 to B.5. Since
the old data only contains longitudinal maneuvers, a longitudinal stall maneuver was selected as the analysis
case.
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The main difference between the two Kalman filters lies in the Æ and Ø-signals which are used; a more
detailed plot of the reconstructed flow incidence angles is presented in Figure B.1. Another reason for high-
lighting these these two signals is that they are extremely important for the fitting of the aerodynamic model.

In all plots, the results from the new filter, which uses the new data, is colored blue. The old filter, which
uses the equivalent of the old data, is colored green. The raw data is only added for illustrative purposes, and
is grey. The next section discusses the differences present in the data.
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Figure B.1: Detailed comparison of the flow incidence angles Æ and Ø for a longitudinal stall maneuver

B.3. Discussion
In interpreting the results, the output of the new Kalman filter is regarded as the baseline. Although the
boom vanes signals are inevitably contaminated by errors and noise, they are the best source of information
available.

The reconstructed angle of attack is a close match; there is a small error during the dynamic parts (i.e.
where the stall actually occurs) of the maneuver. Overall, from this plot it appears as if the reconstruction of
Æ based on the old data is accurate. However, the observed errors are larger while a significant sideslip occurs.
It appears that during assymmetric motions, the lack of a sideslip measurement also influences the angle of
attack measurement. This could cause issues when some lateral motions are included in the old data, which
could happen e.g. by accident or because of roll-off due to the stall.

To further investigate this potential problem, please see Figure B.6 and B.7. These shows the same detailed
plots of Æ and Ø as in Figure B.1, but now for a dataset that starts with a coordinated turn. Because the old
Kalman filter has issues with reconstructing lateral maneuvers, an error builds up during the initial part of the
data set, from which it does not fully recover. The result of this is a significant error in Æ. Further analysis has
shown that during accelerated stall maneuvers, the old Kalman filter fails to reconstruct Æ with meaningful
accuracy. Because Æ is such an important variable, this discrepancy will influence any modeling effort. It is
clear that a lot of care needs to be taken when using the old data.

Conversely, the reconstructed angle of sideslip does not match well. It is clear that using a pseudo-Ø signal
leads to a significant underestimate of the true angle of sideslip. This makes sense, as one is telling the Kalman
filter at every time that the expected value of Ø is zero, which is clearly not true during stall maneuvers (or
motions like a coordinated turn).

Looking at the rest of the results, the main differences are in the body velocity components u, w, v , the
estimated wind velocities Wxe ,Wye , and the accelerometer bias terms ∏Ax , ∏Ay ∏Az . Finally, CÆup shows an
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Figure B.2: Comparison of reconstructed measured signals between the old and new data sets
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Figure B.3: Comparison of reconstructed state signals (1/2) between the old and new data sets
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Figure B.4: Comparison of reconstructed state signals (2/2) between the old and new data sets



106 B. Usability of Old Flight Data

Figure B.5: Comparison of reconstructed input signals between the old and new data sets
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Detail of incidence angles (green: old, blue: new)
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Figure B.6: Analysis plot of a second stall maneuver starting from a lateral motion, detailed comparison of the flow
incidence angles Æ and Ø

Figure B.7: Part of the reconstructed state signals (1/2) of a second stall maneuver starting from a lateral motion



108 B. Usability of Old Flight Data

offset, but this was to be expected since a differentÆ-vane was used. None of these signals are used as regres-
sion variables, so these differences are much less relevant than any discrepancies in Æ and Ø.

To summarize, the old data cannot be used for modeling the lateral model terms, as the reconstructed
sideslip is not accurate. For the longitudinal state reconstruction: it appears that Æ is only accurate when
there are no asymmetric maneuvers present anywhere in the data set. Hence, a lot of care should be taken
when using the old data. A manual inspection of each of the data sets will be necessary to ensure that no such
lateral maneuvers are present.

There remain some troubling issues. First of all, even when a manual check has been done of all data to
prevent unwanted maneuvers, it will still be impossible to check the accuracy of the reconstructed signals.
Secondly, although is it known that Æ is an essential state variable for the modeling effort, it is not clear how
big of a problem it is when there are small errors. The question then is: does the inclusion of extra data, which
is known to have some issues, improve the resulting model quality or decrease it? Such questions will have to
be addressed ad hoc during the actual modeling effort itself.



C
Vibrations in the Air Data Boom

The air data boom installed on the nose of the aircraft is not completely rigid. During the flight tests, this
could clearly be seen from the cockpit window as mechanical vibrations; especially during the stall buffet.
Due to the up- and downward motion of the tip of this boom, the measurements of Æ and Ø are influenced.
In [37], a more formal analysis of this issue is treated. In this thesis, the issue will be tackled pragmatically.

First, an estimate of the power spectrum of the boom Æ-signal is given. From that, a filtering strategy was
derived, which was applied to the data. To illustrate the result of the filtering, a time-history plot is presented.

C.1. Power Spectral Density Estimate of Vibrations
A power spectral density (PSD) estimate is informative of what the boom vibrations look like in the frequency
domain. From the flight tests, it was observed that the boom exhibited what appeared to be harmonic exci-
tations. One would thus expect a clear peak in the power spectrum at some frequency. Ideally such a peak is
far away from the frequencies at which the aircraft dynamics themselves have power.

A PSD estimate Sūū(!) of a random signal ū(t ) is obtained as

Sūū = 1
2T

|U (!)|2 (C.1)

where T is the length of the data sample in seconds, and U (!) can be obtained using the Fast-Fourier Trans-
form routine in MATLAB. If the power is converted into dB/Hz, the result is Figure C.1
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Figure C.1: Power spectral density estimate of the boom Æ-signal, both before and after the filtering procedure
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A clear peak can be seen around 10 Hz, which corresponds to the mechanical vibrations. Moreover, while
it is challenging to exactly define the break frequency of the frequency response of the aircraft dynamics, it
is reasonable to assume that it is between 1 and 4 Hz. As a result, the vibrations and aircraft dynamics are
clearly separated in the frequency domain.

C.2. Filtering the Vibrations
A Butterworth type of filter of order four was selected for getting rid of the vibrations in the data. To preserve
as much of the aircraft dynamics as possible, the cut-off frequency was set at 4 Hz. The result of this is in
the frequency domain is presented in Figure C.1. The peak has been completely removed, while keeping the
spectrum below 4 Hz intact.

To illustrate the effect in the time domain, Figure C.2 shows a sub-selection of the dataset used for this
analysis. It could be cross-checked with the Az -signal that the stall buffet first occurred around 45 seconds.
The vibrations are completely removed by the filtering procedure.
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Figure C.2: Detail of the time history of the boom Æ-signal, both before and after the filtering procedure

The current analysis is only for the Æ-signal, but the conclusions hold for the boom Ø-signal; the same
filter is applied. The main difference between them is the total power in the signal and the vibrations specifi-
cally: typically Ø is much smaller, and the intensity of the buffet vibrations are much lower in y-direction. All
of the boom Æ and Ø-signals are filtered with the described procedure before applying the Kalman filters.



D
Example Flight Test Card

Below, an example flight test card was included to illustrate the procedures that were used during the flight
tests.

 
FLIGHT TEST CARD                              

 
PROJECT                    : Dynamic Stall Modeling for the Cessna 

Citation II 
TEST CARD NUMBER           : 1a 
SUBJECT                    : Control effectiveness during stall 
REFERENCE                  :  
NOTES                      :  
EST. DURATION OF TEST POINT: 120 seconds 
HAZARD CATEGORY            : ROUTINE / LOW / MEDIUM / HIGH 
 

INITIAL CONDITIONS 
ALT/FL : As required ENGINE SETTING: As required 
IAS    : As required FLAP SETTING  : UP 
MACH   : As required LANDING GEAR  : Up 
MASS   :  OTHER         : NO-ICING Conditions 

ANTI-ICE OFF 
C.G.   :    
 
EXPERIMENT PROCEDURE  REC. NRS 
 
 Maneuver ALT/FL Flap 

setting 
Landing 
gear 

□ Wing level stall (1g) 
+ control wiggle 

FL150-FL200 Clean Up 

□ Accelerated stall  
@ 30 deg bank 

FL150-FL200 Clean Up 

□ Accelerated stall  
@ 45 deg bank 

FL150-FL200 Clean Up 

 
 
 Maneuver ALT/FL Flap 

setting 
Landing 
gear 

□ Wing level stall (1g) 
+ control wiggle 

FL110-FL150 Clean Up 

□ Accelerated stall  
@ 30 deg bank 

FL110-FL150 Clean Up 

□ Accelerated stall  
@ 45 deg bank 

FL110-FL150 Clean Up 

 
 
Note 1: See test card 2 for procedures for chosen maneuvers. 
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112 D. Example Flight Test Card

 
FLIGHT TEST CARD                              

 
PROJECT                    : Dynamic Stall Modeling for the Cessna 

Citation II 
TEST CARD NUMBER           : 1b 
EST. DURATION OF TEST POINT: 120 seconds 
HAZARD CATEGORY            : ROUTINE / LOW / MEDIUM / HIGH 
 

INITIAL CONDITIONS 
ALT/FL : As required ENGINE SETTING: As required 
IAS    : As required FLAP SETTING  : UP 
MACH   :  LANDING GEAR  : Up 
MASS   :  OTHER         : NO-ICING conditions 

ANTI-ICE OFF 
C.G.   :    
 
EXPERIMENT PROCEDURE REC. NRS 
 
WINGS LEVEL 1-G STALL 

1. Set max N1 values on box 
2. perform the pre-stall items of the Slow Flight/Stalls 

checklist 
3. clean stalls NOT in icing conditions. If A/I ON: observe 

minimum N2 of 65% 
4. minimum altitude 4000 ft AGL, anticipate loss of 1000 ft 
5. No stalls above FL250 

 
crew coordination: 

6. all selections by PNF on command of PF 
7. controls and thrustlevers by PF 

 
The recommended stalling exercise goes as follows: 

8. thrustlevers to 50% N1 one by one 
9. extend speedbrakes 
10. do not trim below green speed reference  
11. slowing through green speed reference: retract 

speedbrakes 
12. recovery at stall: set 90% N1 
13. pitch attitude 2.5° below horizon 
14. speed 120 KIAS: climb to original level 
15. accelerate and perform after-stall checks (in a series 

of exercises, after stall checks may be delayed until 
after the last exercise). 

16. Establish trimmed level flight 
 
Extra for these tests: 

17. Confirmation: “data tag activated” 
18. Reduce airspeed with ~1 kts/sec 
19. Maintain stall for 1 second 
20. Recover 
21. Confirmation: “data tag ended” 
22. PNF checks slip indicator and altitude and if necessary 

notifies the PF 
 
* Perturbations … 

− excite both elevator and ailerons, no rudder 
− do not result in large a/c attitude excitations(max ±5 degrees) 
− are as random and uncorrelated as possible 
− cover as wide a frequency range as possible 
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FLIGHT TEST CARD                              

 
 
Accelerated stall @ 30 or 45 deg bank procedure: 

1. Set max N1 values on box 
2. perform the pre-stall items of the Slow Flight/Stalls 

checklist 
3. clean stalls NOT in icing conditions. If A/I ON: observe 

minimum N2 of 65% 
4. minimum altitude 4000 ft AGL, anticipate loss of 1000 ft 
5. No stalls above FL250 

 
crew coordination: 

6. all selections by PNF on command of PF 
7. controls and thrustlevers by PF 

 
The recommended stalling exercise goes as follows: 

8. thrustlevers to 50% N1 one by one 
9. extend speedbrakes 
10. do not trim below green speed reference  
11. slowing through green speed reference: retract 

speedbrakes 
12. recovery at stall: set 90% N1 
13. pitch attitude 2.5° below horizon 
14. speed 120 KIAS: climb to original level 
15. accelerate and perform after-stall checks (in a series 

of exercises, after stall checks may be delayed until 
after the last exercise). 

16. Establish trimmed level flight 
 
Extra for these tests: 

17. Confirmation: “data tag activated” 
18. Bank to 30 or 45 degrees 
19. Establish level turn 
20. Reduce airspeed with ~1 kts/sec 
21. Maintain stall for 1 second 
22. Recover 
23. Confirmation: “data tag ended” 
24. PNF checks slip indicator and altitude and if necessary 

notifies the PF 
 
* Perturbations … 

− excite both elevator and ailerons, no rudder 
− do not result in large a/c attitude excitations  

(max ± 5 degrees) 
− are as random and uncorrelated as possible 
− cover as wide a frequency range as possible 

 
 





IV
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E
Time History Plots of All Flight Data Sets

This appendix contains the time history plots of all of the 34 data sets that were gathered, as well as the model
outputs. All force (CL , CD , CY ) and moment (Cl , Cm , Cn) outputs are shown, alongside the two most crucial
inputs: Æ and X . Table E.1 lists which data sets were used training, and which for validation.

Table E.1: List of all gathered data sets, showing whether they were a wings-level or accelerated stall, and wheter they
were used as training (T) or validation (V) data.

Set Type Use Set Type Use Set Type Use Set Type Use

1 wings-level T 10 wings-level T 19 accelerated T 28 accelerated T
2 wings-level T 11 wings-level T 20 accelerated T 29 accelerated T
3 wings-level T 12 wings-level V 21 accelerated T 30 accelerated T
4 wings-level T 13 wings-level T 22 accelerated V 31 accelerated T
5 wings-level V 14 wings-level T 23 accelerated V 32 accelerated T
6 wings-level T 15 accelerated T 24 accelerated T 33 wings-level T
7 wings-level V 16 accelerated V 25 accelerated V 34 wings-level T
8 wings-level T 17 accelerated T 26 accelerated T
9 wings-level T 18 accelerated T 27 accelerated T

Figure E.1: Time history plots of training sets 1, 2, and 3.
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Figure E.2: Time history plots of training sets 4, 6, and 8.

Figure E.3: Time history plots of training sets 9, 10, and 11.
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Figure E.4: Time history plots of training sets 13, 14, and 15.

Figure E.5: Time history plots of training sets 17, 18, and 19.
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Figure E.6: Time history plots of training sets 20, 21, and 24.

Figure E.7: Time history plots of training sets 26, 27, and 28.



120 E. Time History Plots of All Flight Data Sets

Figure E.8: Time history plots of training sets 29, 30, and 31.

Figure E.9: Time history plots of training sets 32, 33, and 34.
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Figure E.10: Time history plots of validation sets 5, 7, and 12.

Figure E.11: Time history plots of validation sets 16, 22, and 23.
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Figure E.12: Time history plots of validation sets 22, and 23, which are repeated from previous figure and 25.



F
Analysis of Flight Test Maneuver

Effectiveness

During the flight tests performed for this research, two types of stalls were flown: wings-level symmetric stalls,
and accelerated stalls. Next to that, there were differences between the degree to which the control surfaces
were used during the maneuvers, especially for the rudder. Finally, because the maneuvers were executed
by human pilots, there was natural variation between the maneuvers. If a link can be found between certain
characteristics of the flight test maneuvers and the quality of the model that can be estimated from them, this
would be very helpful in planning new flight tests. This Appendix presents the results of an analysis into this
topic.

F.1. Methodology & Results
To perform such an analysis, two issues need to be solved. First of all, how can the characteristics (i.e. prop-
erties) of the flight test maneuvers be quantified? Secondly, how can the quality of the model that can be
estimated from this maneuver be quantified (i.e. metrics)? Especially this second issue is complex, since
the quality of the model depends on many factors, including the parameter estimation method, the selected
model structure, and of course all other data sets. A list of the properties and quality metrics that were used
is shown in Table F.1.

Since it was not clear which properties and metrics would be related, if any, it was chosen to evaluate all
possible combinations. This led to a great number of plots, which will be presented in Figures F.1 to F.7. The
plots are split between the X -parameters, CL-parameters, CD -parameters, and so on.

Interpreting the results, several observations can be made. First of all, no clear difference between wings-
level and accelerated stall maneuvers can be seen. Secondly, the properties that have visibly most consistent
relation with the metrics are the maximum angle of attack, and the RMS of the body rotation rates. Thirdly,
the negative effect on Cn-model quality of the lack of rudder excitation in some of the data sets can be seen.
Finally, the CRLB of the X -parameters, especially those of ø1 and ø2 appear to benefit from stronger excitation
of X and q .

The mean squared error does not seem to be an effective metric. Generally, it is shown that the MSE
increases when the excitation of the aircraft (i.e. RMS of body rotations) increases. However, this excitation
can be both because of pilot inputs, as well as because of stall-related disturbances. This latter part is unlikely
to be captured by the model, and thus leads to an increase in MSE. However, these disturbances can probably
not be avoided if high angles of attack are to be achieved, since this leads to stall.

F.2. Conclusions
The following conclusions can be made based on the results of the analysis. They are certainly not surprising,
but they deserve to be re-stated.

• It is beneficial to achieve a angle of attack that is as high as possible.
• All control surfaces, including the rudder, should be excited during stall.
• Larger dynamic excitation (i.e. in p, q , r ) lead to better identifiable model parameters.

123



124 F. Analysis of Flight Test Maneuver Effectiveness

Table F.1: List of the properties and metrics that were used in the analysis if flight test maneuver effectiveness.

Type Name Unit Description

Property maneuver type - Categorical variable, either 1 (wings-level) or 2 (accelerated)
Property TIS s Time in stall, amount of seconds during data set when X < 0.9
Property Æmax rad Maximum achieved angle of attack during maneuver
Property XRMS - RMS of X -signal
Property ±a,RMS rad RMS of ±a -signal
Property ±e,RMS rad RMS of ±e -signal
Property ±r,RMS rad RMS of ±r -signal
Property pRMS rad/s RMS of p-signal
Property qRMS rad/s RMS of q-signal
Property rRMS rad/s RMS of r -signal
Property ÆRMS rad/s RMS of Æ-signal
Property ØRMS rad/s RMS of Ø-signal

Metric MSE of yi - Mean squared error of model output yi with respect to measured
signal y. This is done for all six outputs.

Metric CRLB of µi div. Cramèr-Rao lower bound of parameter µi . This is computed for all
of the parameters included in the model.
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Figure F.1: Flight test maneuver analysis plots for the X -parameters.
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Figure F.2: Flight test maneuver analysis plots for the CL-parameters.
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Figure F.3: Flight test maneuver analysis plots for the CD -parameters.
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CY-parameters
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Figure F.4: Flight test maneuver analysis plots for the CY -parameters.
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Figure F.5: Flight test maneuver analysis plots for the Cl -parameters.
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Figure F.6: Flight test maneuver analysis plots for the Cm -parameters.
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Figure F.7: Flight test maneuver analysis plots for the Cn -parameters.



G
SIMONA Implementation of Model

A critical next step in the research towards effective programs for pilot stall training is to evaluate the devel-
oped stall model in a human-in-the-loop simulation. This will take place in SIMONA, the research simulator
of the research group in which this thesis was performed. This Appendix briefly describes the current state of
the project on this matter, and lists several next steps to be taken.

G.1. Current State of SIMONA Implementation
The current version of the Citation II stall model has been implemented in the same way as the normal flight
envelope model. This normal model is used for demonstration purposes, and can be found in the DUECA
project CitationDemo. For the stall model, a new project was created, called CitationStall. Both projects
can be checked out of the repository.

The aerodynamic force and moment models themselves are implemented as part of the complete Cita-
tion II aircraft models in Simulink. These Simulink files are included in the repository project files. When
these models are verified to work, Simulink’s Code Generation tool (on Mac: Cmd+B, on Windows: Ctrl+B)
is used to export the models to a series of C files. These files are placed in the module CitationModel and
communicate with the rest of the C++ code. For this to work, the Simulink model inputs and outputs needs to
be defined according a specific format. DUECA supports exported code by Matlab 2016b, and several older
versions.

Besides the aerodynamic model the Simulink model contains an engine model, a landing gear model, a
mass model, an atmospheric model, and a gravity model. Figure G.1 shows what this looks like. Figure G.2
shows what is inside the aerodynamic model block. The current stall model is implemented as stand-alone
(i.e., only the stall model is included, not the normal flight envelope model), is not trimmed, and has not been
thoroughly tested.

G.2. Recommended Next Steps
During next steps of the research, the simulator is thought to become an important tool during model devel-
opment. To facilitate this, it will be useful to have a convenient interface for quickly implementing variations
of (stall) models. Generated code from Simulink models is a good way to approach this, since offline testing
is made easy. However, there are several improvements that could be made that will make work easier:

• First of all, there are two bugs in the model that were clearly noticeable during a first test in SIMONA:
there is an unexplained roll moment to the left, and uncontrollable pitch oscillations start near the stall.
These bugs should not be in the model.

• Second, a general update of the Simulink model would be helpful. The division of functionalities in
sub-blocks is clear, but the signal routing between them is not. Muxes, buses, input/output blocks,
goto/from blocks, and selectors are all used interchangeably. The current model contains contributions
from multiple authors, so it will be beneficial for one person to obtain a deep understanding of all its
parts.

• Next to that, many parts of the model are quite old and stem from a Simulink version when Matlab
Function blocks were not available yet. They are difficult to understand, and could definitely use an
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Figure G.1: Overview of the complete Citation II aircraft model as implemented in Simulink

Figure G.2: Aerodynamic stall model part of the Simulink model.

update. Using as many Matlab Function blocks is highly recommended for this update, they are flexible,
can be easily inspected, and result in nicely generated C code.

• The way in which the current stall model has been implemented is not ideal, and is not very flexible for
making quick changes and fixes. It will pay off to think about a convenient way to interface with this.

• The m-files that are used to initialize the model could use an update, many functions in them are not
actively used anymore.

• A trim input has not been determined for the initial conditions yet. Solving for a trim input is a nonlin-
ear optimization problem, but is vital for testing errors

• During this thesis, it was seen that the engine model very likely contains errors, so an update is desired.
If and when this is done, it is instrumental to also implement these changes to the methods used to
pre-process any Citation II flight data, as this is a completely separate routine!

• The stall model should be combined with the regular flight envelope model. One thing to keep in mind
during that, is that the regular flight envelope model could potentially also benefit from including a
term related to CT , to account for engine model errors.

Furthermore, considering the DUECA project, also there several next steps are recommended:

• Inside the CitationModel module, a clear folder structure for all the files generated by Simulink, and
others that are required should be created. Currently, it is very easy to forget updating one or more of
these after editing the Simulink model and generating new code.

• Finally a way to run several (stall) model simultaneously in DUECA will be very helpful during exper-
iments. It will enable rapid switching between normal or stall models, or different variants of stall
models.



H
List of Recommendations for Future

Research

The developed stall modeling methodology is concluded to be suitable for extending the envelope of the
obtained model. This final Appendix contains the most important recommendations for possible future re-
search endeavours into stall modeling based on the findings from this thesis.

• One of the first upcoming steps should be to perform a human-in-the-loop experiment using the cur-
rent stall model. This will be instrumental in identifying which aspects of a stall model are important
for a convincing simulator experience, and will determine future research steps. For this, the Simulink
implementation of the stall model will have to be debugged and thoroughly tested, as explained in
Appendix G.

• If the stall modeling methodology developed in this thesis is to be applied to extending the obtained
stall model, new flight tests will have to be done. Regarding these flight tests, several recommendations
can be made:

– In general, it was found to be beneficial to achieve a high angle of attack that is as high as possible.
– If the degradation of control surfaces is to be modeled, it is important to excite the aircraft with the

control surface of interest both during the stall, as well as right before the stall. Both the stall and
this extra maneuver should be included in the same data set. For example, a 3-2-1-1 or doublet
could be added at the start of the data set.

– For the identification of dynamic aircraft responses (i.e., to body rotation rates), it is also impor-
tant to excite the aircraft both outside of and during the stall. For this, the same maneuvers as
described in previous bullet will be effective.

– All control surfaces should be excited during the stall, also including the rudder.
– The aircraft response to large rudder inputs during the stall is more unpredictable than the re-

sponse due to aileron or elevator deflections. It is recommended to be careful when applying the
rudder input disturbances.

– Avoid very rapid oscillatory control surface excitations during the flight tests. During the flight
tests, the aircraft response to such inputs was seen to be limited. The expected reason for this is
that the aircraft dynamics act as a damper system, so high-frequency components of the control
inputs do not enter into the measured dynamics. During system identification, this effect can be
mistaken for a reduction in control surface effectiveness that is not really there.

• Regarding the model structure selection method:

– New mathematical transformations of X should be tested as candidate regressors.
– It was unexpected that no terms that model the changes in aileron and rudder effectiveness were

found. Future research should focus on finding these effects, or proving that they do not exist.
– It was also unexpected that no terms depending on q were identified. Also this should be a point

of attention in future research.
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– A special focus should be placed on evaluating the effect of (simple) spline terms as regressors. In
the model for CL , it was found that even a simple spline was beneficial to model quality. Due to
their local effects, splines are and ideal tool for modeling configuration-dependent effects of stall
(e.g., tail shadowing).

– The presence of the terms relating to CT is unconventional, and expected to be caused by errors
in the engine model. The engine model should be updated, and these terms should be removed
from the model if possible.

– Currently, a lot of manual work is involved in the model structure selection step. While this is not
necessarily a bad thing, it could be interesting to investigate an increase in automation. Especially
when the modeling methodology is to be used to expand the current model, this could save a lot
of development time.

• Regarding parameter estimation:

– During following research, identify dimensionless variants of ø1 and ø2, as the airspeed at which
stall occurs varies quite significantly with altitude.

– It would be interesting to see what is the effect on model quality of estimating the X -parameters
using CD or Cm instead of CL . It is expected that this will change the estimated parameters sig-
nificantly, and possibly this has a strong positive effect on the model quality for CD or Cm . If this
is the case, it could be considered to have multiple variants of X . Note that this will increase the
number of parameters and complexity of the model.

• In this research, the buffet model was not treated. The first version of the buffet model was developed
during previous research [57]. The new flight data should be used to either validate and/or update the
buffet model.

• Finally, considering the data pre-processing, novel and more accurate state reconstruction methods
can be considered, such as the unbiased adaptive maximum a posteriori (UAMAP) algorithm, or a
multi-rate Kalman filter. Furthermore, the effects of low-pass filtering and resampling of data can be
investigated further.
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