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Basic phenomena

1. BASIC PHENOMENA

1.1 Introduction

In most seas and estuaries, a
periodic rise and fall of the
water surface can be observed

(see Figure 1.1). It is known T vdairange
as the vertical astronomical \ l
tide. |

-

water level

The period of the vertical \ ///
movement is 12 h 25 min. T L &
This is called the tidal period " S
T. The highest level is called T = scalpenod = 12h.25mn

the High Water level (HW),
the lowest level is called the Figure 1.1 Example of a vertical astronomic tide
Low Water level (LW),

whereas the difference between HW and LW is called the Tidal Range.

When the vertical movement of the water level is measured for about one day (say 25 hours), than
it can be observed that the second HW and LW differ from the first HW and LW (see Figure 1.2).
This difference in HW's and LW's is called the daily inequality.

|

water level
daily inequality HW

HW 4
e

HW ,

_________________ \

daily inequality LW

Figure 1.2 Daily inequality of a tide

‘When the tide is observed for a longer period (about one month), it can be seen that the tidal range
varies in time (see Figure 1.3). Periods occur with relatively large tidal ranges, and periods with
smaller tidal ranges. The period with the large tidal ranges is called spring tide, whereas the period
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Basic phenomena

with the smaller tidal ranges is called neap tide. The time between two successive periods of spring
tide is about 15 days (half a month).

water level

A

J—
o/

—
]
\\C”"‘”—
I

approx. 1 month

Figure 1.3 Occurrence of spring and neap tides during approximately one month

The above phenomena concern the water level variation in one location. What actually happens,
however, is that a long wave (a tidal wave) is passing along the location, where the observations are
made (see Figure 1.4). The length of such a tidal wave can be several hundreds of kilometres
(depending on the depth).

wadsr level water level
A HW
U “time
LW
HW e location
- X

7 T -

W
f—

Y

several hundreds of kilometers

Figure 1.4 Schematic presentation of a tidal wave

When the water level is measured at location A and the wave moves to the right, a periodic rise and
fall of the water level can be observed. So, associated with the vertical movement of the water
surtace, there are also horizontal movements ot the water particles.
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Basic phenomena

When the water level is measured at location A and the wave moves to the right, a periodic rise and
fall of the water level can be observed. So, associated with the vertical movement of the water
surface, there are also horizontal movements of the water particles.

This periodic movement of the water level is a fascinating phenomenon. The study on tides started
as a scientific interest on how tides are generated. Why they are so periodic? For many centuries,
people tried to understand and explain the observed phenomena.

There are also more practical interests in the tide:

ships that want to enter a harbour. The captains want to know if there will be enough keel
clearance (water under the ship’s hull). They want to know the time of occurrence of HW and
LW and also the water levels at HW and LW. Therefore, they need a prediction of the tide.
These predictions are needed for one location (for instance a harbour or its access channel),
since important civil engineering works are carried out, it becomes necessary to predict what the
effect of such works will be on the tidal motion (like water levels and velocities) in the relevant
area. Therefore tidal calculations have to be carried out, based on the equations for fluid flow.
The calculations are made for a certain area of interest, which will be influenced by the civil
engineering works;

1.2 Framework of the lectures

The lectures on tides are divided into parts, which follow the different interests as discussed above:

Chapter 2 deals with the origin and generation of tides;

Chapter 3 deals with the analysis and prediction of tides, which concerns the analysis of the
tidal curve at one location. The purpose of the analysis is to be able to predict the tide in future
at that location;

Chapters 4,5,6,7 and 8 deal with the fidal computations. Chapter 4 discusses the derivation of
the basic equations and some types of long waves. In chapter 5 addresses some considerations
on tidal propagation in one dimension. Chapter 6 concerns tidal propagation in two dimensions.
In chapter 7 shows some analytical solutions are. Since the computer became a tool for
calculations, numerical computations techniques were developed. Numerical models are common
used now. The aspects of numerical calculations are therefore discussed in Chapter 8.
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Origin and generation of tides

2 ORIGIN AND GENERATION OF TIDES
2.1 Introduction
Tides are generated by mutual attraction forces between Earth, moon and sun. The influence of other

celestial bodies can be disregarded. The attraction force between two bodies is determined by
Newton's law of gravity.

When only two bodies, with masses m, and m,,
are considered, an attraction force F will occur. /\
When the distance between the bodies is denoted \‘ /\
as x (see Figure 2.1), then Newton's law of gravity
becomes: \,n"/ e,

F s goibe

x? Figure 2.1 Attraction forces between two

where a is the universal gravity constant. celestrial bodies

The universal gravity constant a can be expressed in terms of the acceleration due to gravity g.
Consider a body with mass , on the surface of the Earth. The mass of the Earth is m; and the radius
is r. The weight of the body is equal to the attraction force between the body and the Earth:

m m
F:mg:a_LE
P r2

2
From this it follows that: a = £—

mg
Now the system Earth-moon is
consu':lered (see Figure 2.2). T
The distance between the Earth WA
and moon is denoted as K.r. e ke 7
The mass of the moon is F // £\
denoted as M.m;, and the \/ ke
attraction force between Earth o mass M m,
and moon is expressed by: massm,
m_ Mm
F=a Mg
(Kr)?
Substitutioe of Figure 2.2 Earth-moon system
a-= gr’
me
gives:
Fo- i ) mMm ) MmE
mE K2r2 KZ

which is an expression for the attraction force between Earth and moon.

Tides and tidal currents IHE-Delft 2 - 1



Origin and generation of tides

This attraction force is counteracted by the centrifugal force due to the rotation of the Earth and moon
system around their common centre of gravity. The location of this common centre of gravity can be

derived as follows (see Figure 2.3):

mgxr = M.m(Kr-xr)
x = Mk - Mx
. MK
M+ 1

Substitution of the values for
M and X gives:

M = 0.0123
K =603

So x = 0.73, which means that
the common centre of gravity is
inside the Earth.

Figure 2.3 Location of common centre of gravity

Now the rotation of the Earth-moon system around the common centre of gravity is considered. First
an expression for the centrifugal force is derived. The centrifugal force acting on a body with mass

m equals to:
I:'"a = ma,

To find an expression for a,, point P with a circular orbit
1s considered (see Figure 2.4). At time t the velocity is v,.
At time ¢ + dt the velocity is v,,4. The difference in v in
time dt is denoted as dv. Acceleration is the change of
velocity per unit of time:

av  vdod do
d =—=— and — = lar speed),
¢ ar dt dt ngnilar spesd)
gives
d =vw

4

Figure 2.4 Point P with circular
orbit

Tides and tidal currents
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Onigin and generation of tides

Figure 2.5 illustrates the expression for v in that formula:

V- ds _ rdd
S e T e— = Q)
at dt
Substitution in the expression a, = vw yields:
a, = rw’

The expression for the centrifugal forces F ,now becomes:

F, = mro?
To find the angular speed of the rotation of the Earth-moon
system around their common centre of gravity denoted as w,,
(see Figure 2.6).

Figure 2.5 Expression for v

Common centre of gravity

Attraction Force = Centrifugal Force
M.me 2 MK
go = ‘-mm r
K? M+1
2 _ gM+1 _gM+1)
w, = =
K? Kr K3r
Substitution of: Ean
g=9.81m/s .
M=0.0123
K=603 Figure 2.6 Angular speed
r=638x10°m
gives:

w,, = 2.66 x 107 rads or T = time for one revolution = 27.32 days

To investigate what the rotation around the common centre of gravity means for an arbitrary point
P on the Earth surface, only the translation of the Earth is considered; the rotation around its own

axis is neglected (see Figure 2.7):

the Earth and moon are sketched in position (1); 14 days later the Earth and moon are in position

(2). The orbit of the centre of the Earth follows circle a. The centrifugal force is directed from the

centre of the circle;

point P at the Earth surface (top of the head) follows the same circle as the centre of the Earth

(circle b). The centrifugal force is directed parallel to the force in the centre of the Earth and has
the same magnitude (per unit of mass), because the circles have the same radii;

the same holds for the left and right ears.

From the above it can be concluded that:

- every point on Earth revolves through a circle with the same radius;

- the centrifugal force in every point P is directed parallel to the line that connects the centres of

Earth and moon;

- the centrifugal force (per unit mass) is equal for all points on the Earth surface.

Tides and tidal currents
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Origin and generation of tides

circle b

(1) )]

Common centre of gravity

Figure 2.7 Translation of the Earth due to rotation of the moon

2.2 Tide generating force

Tides are caused by forces acting on the water particles on the surface of the Earth. The forces acting
on point P at the surface of the Earth are now considered (see Figure 2.8).

Figure 2.8 Forces acting on water particles

The distance from point P to the centre of the moon is R.r. The attraction force between Earth and
moon is denoted as:

Tides and tidal currents IHE-Delft2 -4



Origin and generation of tides

F-=g Pe
When the attraction force in point P per unit mass is considered (dividing by m, and replacing K by
R), then:

The acceleration force is equal to the attraction force if the entire Earth is considered. The attraction
force between Earth and moon is:
M- m,

K2

F=g

which equals the acceleration force for the entire Earth. The acceleration force per unit mass is found
by dividing by m,.
M

Tt
The acceleration force is equal for any point on Earth, and directed parallel to the line that connects
the centres of Earth and moon. The attraction force F,, can be decomposed into the acceleration force
and F,, and F, which is the residual force that causes the tides on Earth. F, is called the tide generating
Jorce (see Figure 2.9).

Figure 2.9 Direction of the acceleration force F, and the tide generation force F,

Tides and tidal currents IHE-Delft 2 - 5



Origin and generation of tides

Figure 2.10 gives a schematic
presentation of the distribution
of the tide generating force on
the Earth surface. The forces in
locations A and B are opposite
and almost equal. These forces
are very small, compared to g.
The centrifugal forces due to
the rotation of the Earth around
its own axis are neglected:
these are also very small
compared to g. For the actual

Figure 2.10 Distribution of the tide generation forces

motion of the water masses, only the component of F, is important, which is directed along the Earth
surface. This force is denoted as F; and is called the tractive force.

For deriving an expression for the tractive force F, it can be related to the location on the Earth by
considering the angle 6 (see Figure 2.11).

Moon

Figure 2.11 Derivation of the tractive force F,

The expression for F, becomes:

s

F, = F_sin(@+a) - F,sin O

Substituting the expressions for F,, and F, gives:

M M
Fo=827 5 Fam g3
R K

so that the tractive force F; can be expressed by:

Tides and tidal currents
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Origin and generation of tides

F-=Mno+a-Msno
R? K2

s

This formula can be simplified

by considering the following

geometric relations (see Figure

2.12):

(1) Rr = Kr - rcos ©
(because « is very small).
R=K -cos ©

(2) cosa = 1
(because o = small)

(3) Rrsina =r sin 6 : . .
(K-cos 0) sin & = sin 0 Figure 2.12 lllustration of the geometric relations
K>>cos 0
K sin & = sin 6

sin 6

sin o =

Substituting the expressions for R and « into the equation for the tractive force F, gives:
F =ﬂ(sin6-cosa +cosﬂsina)-ﬂsin9
R? K?

s

Substituting the following relations:

R=(K'COSB); cosa = 1; sina:Sil;(e
gives:
F, = ——;‘&-——(sine + —Si"e'cose) - Mo
* (K - cosB)? K K2

sin O - cos O

2 2 - sin ©

FS
F 1_cosG2
K

sin 6 +

-2
For the term( 1 ~ cols< e] the binomial theorem can be applied. The general formula is:
nn-l)xz+ n(n-l)(n-2)x3+
2! 3!
Applying the first and second term of this series on the expression gives:

-2
l_cos() =1+2cosG+
K K

(1+x)"=1+nx+

Substituting this result into the equation for the tractive force F; gives finally:
F = ﬂ 1 +2 cos 6 sin O + M - sin 6
foK? K K

Tides and tidal currents HE-Delft 2 - 7




Origin and generation of tides

. . . 2
. &M sin 0 + sin 6 cos 6 , 2sin 0 cos 6 . sin 6 cos® 6 _sin B
K? K K K?
F . EM[3snBcosB . sin cos’
Y & K K?
. 2
Because K >> cos 0 the term 2 smﬁK# can be neglected. So:
. &M 3 sin B cos 6
5 K2 K
Substituting sin® cos® = —é—cosZBgives:
F =28 20
2K
The distribution of the tractive force over the surface of the Earth can be found by:
F, =0 if 20 =0, n, 27w soif 6 =0, n/2, n
F, = max if 20 = n/2, 3n/2 soif O = m/4, 3n/4

The other values are in between. Figure 2.13 gives the result.

VAV VYV ) P

FEEEFINNAAAA

A

%

77

Moon

Figure 2.13 Distribution of the tractive force over the Earth surface

So far the tractive force due to the moon was considered. The same, however, holds for the sun. The
ratio of the tractive forces caused by the moon and the sun can now be derived as follows. For this
the magnitude of the term

3aM (force per unit mass)
2 K3

is considered. The ratio can be found in Table 2.1.

Tides and tidal currents IHE-Delft 2 - 8



Origin and generation of tides

Table 2.1 Ratio of the tractive forces of the moon and the sun

Symbol Moon Sun Dimension
M 0.0123 333,000 -)
K 60.3 23,500 )
3gM 0.82 *10° 0.38 * 10° (m/s?)
2K3

Remarks about the values from Table 2.1 are:

- The forces per unit mass are very small (compared it to g = 9.8 m/s?).

- The ratio of the tractive forces caused by moon and sun is about 2 to /.
- So the effect of the sun on the tide can not be neglected.

2.3 The equilibrium theory

The previous Section explained the influence of the tractive force on water particles on the Earth. This
Section considers the influence of the tractive force on the water masses on the Earth. For this, it is
firstly assumed that the Earth is fully covered with water and how the shape of the water surface is
influenced by the tractive force. This was the assumption of Newton when he derived his equilibrium
theory.

When the inertia forces are neglected, the tractive force has to balance the force from the slope or
gradient of the water level. Now a water element with length dx is considered at the surface of the
Earth (see Figure 2.14).

oh
h+2 _dx water level
dx

h___—]

1 3h oh
1 ;(’ g(h +—bxdx) (h +_bxdx)
> e gh.h

2h
pgh |<—d—x—>| eoh -iﬁdx)

Figure 2.14 Schematic presentation of a water element at the surface of the Earth

Tides and tidal currents IHE-Delft2 -9



Origin and generation of tides

At the left hand side the water level is h. At the right hand side the water level is:
h + - dx
ox
When a hydrostatic pressure distribution is assumed, then the pressure at the left hand side has its
maximum value at the bottom pgh, in which p = density of water.

At the right hand the maximum pressure is

oh
h + — dx
pPg ( = )

The force acting on the left hand side is:

1
—pgh-h
2Pg

The force acting on the right hand side is:
Logln + S| h + L
2 ox ox

So the net force acting on the water element (in x-direction) is:

1 1 oh , \?
—pgh? - —pgl h + —dx
Ca 2g( ax)

2
lpgh2 - lp Kt e 0P o | g
2 2 ox ox

The term ( @dx) ? is small and can be neglected, so the net force becomes:
ox

oh
- pgh—dx
Pg Fw

The force per unit mass is found by dividing the net force by phdx (the mass of the considered water
element). So the net force per unit mass is:
oh
—dx
P
phdx ox
That force has to balance the
tractive force per unit mass:
F, = 3820
2K3
at all locations on the Earth
surface. The resultant water
level is an ellipsoid and is
sketched in Figure 2.15.
Increased water levels occur at
the side of the moon and at the
opposite side. A similar ellipsoid results from the attraction of the sun.

Moon

Figure 2.15 Deformation of the water surface due to the tractive
forces

Tides and tidal currents IHE-Delft 2 - 10



Origin and generation of tides

Now the rotation of the Earth is introduced. First the simple (not correct) situation is considered that
the moon is positioned in the plane of the equator (see Figure 2.16).

»
€
Moon after
24 hours
HWy
“m
w,
equator Moot

Figure 2.16 Moon positioned in the plane of the Earth’s equator

The angular speed of the Earth
is ®,. In one revolution of the
Earth point P meets HW,, LW,,
HW,, LW, and again HW, . The
time history of the water level
in point P during one revolution
of the Earth can be recorded as
indicated in Figure 2.17.

Two high waters and two low
waters occur per day. This is
called a semi-diurnal tide.

2T
water level |

'
-

el

HW,

[
|
tme

J

W,

i

2

Figure 2.17 Recording water levels in time at P

After 24 hours point P is back at its original position. In that time the moon moved along its orbit to
another position. The angular speed of the moon is w,,.

Also the ellipsoid turmed somewhat, because it follows the position of the moon. Point P meet the next
HW, not after 24 hours but somewhat later. This time can be calculated from the angular speeds of
Earth and moon, as is presented in see Table 2.2.

Tides and tidal currents
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Origin and generation of tides

TABLE 2.2 Angular speeds of Earth and moon
e —————————— .

e ————
Earth Moon
Tg =24 hrs T, = 27.32 days
wg = 15.041°/h Wy = 0.549°/h

In a little more than 24 hrs, rwo periods of the tidal cycle of a semi-diurnal tide occur. Therefore:

=28 . 360 _ousan
(@, - w,) 14.49°h
T =1242 h = 12 h 25 min.

This is the basic period of the tide due to the moon. The basic period of the tide caused by the sun is
12 hours.

Now the assumption that the moon was located in the plane of the Earth equator should be corrected.
In reality, the plane of the orbit of the moon makes an angle with the plane of the equator. This angle
is called the moon s inclination (see Figure 2.18).

two highwater levelsinB

ting

li :
gt
o= 8 -2 "

path of rotation ot a
certain point on Earth (B)

Figure 2.18 Inclination of the moon

In one revolution of the Earth point P meets now different high and low waters: HW,, LW,, HW,,
LW,. The time history of the water level in point P is presented in Figure 2.19. The high waters HW,

and HW, are different. Also the low waters LW, and LW, are different. This is called the daily
inequality.

Tides and tidal currents THE-Delft 2 - 12



Onigin and generation of tides

So far, attention was paid to
the tractive force of the moon.
However, both the moon and
the sun have their effect on the
tide.

‘When sun, Earth and moon are
in one line, the solar bulge and
the moon bulge are working
together (they are in phase).
That is the case during New
Moon and Full Moon (see
Figure 2.20) and is called
spring tide. The high waters
are extra high, the low waters
are extra low: the tidal range is
therefore large.

When the moon s
perpendicular to the line of sun
and Earth, the bulges of moon
and sun are out of phase. This
is the case during First Quarter
and Last Quarter of the moon
(see Figure 2.21) and is called
neap tide. During neap tide,
the high waters are extra low,
the low waters are extra high:
the tidal range is small.

Observing a tide during a
month results in a time history
as sketched in Figure 2.22. A
periodic variation of the tidal
range can be observed, where
the spring tides and neap tides
can be clearly distinguished.
The period 7T of this
phenomenon can be derived
from the angular speeds of
moon and sun (relative to the
Earth; see Figure 2.23).

] !
T=12h 25mn T=12h 25mn

Figure 2.19 Time history of water level at point P

Figure 2.20 Sun, Earth and moon in one line: Spring tide

@ First Quarter

@ Last Quarter

Figure 2.2] Moon perpendicular to the line sun Earth: Neap tide

-

water leve!
neap

i
UUUUUUUUUUU

Figure 2.22 Tidal recordmgs during one month

Tides and tidal currents
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Origin and generation of tides

The angular speed of the moon
is @, = 0.549 °%h

(A
The angular speed of the sunis { / m)\\
@, =0.041 %h : .

-
/
b )—
N

A full revolution of the moon Seeca- g
around the Earth will last
about 27
21
0 - Figure 2.23 Angular speeds of sun and moon

m 5
_360°
~0.508°/h

T =354 h = 14.8 days

= 708 h

HWF & C

water level |
So, spring tides occur about A

twice a month. HW

Until now, the Earth was
considered to be fully covered
with water and inertia of the
water masses was neglected. In
reality tides will propagate in
the oceans of the globe,
encountering reflection, moon crosses
damping and distortion. the meridian
Figure 2.24 Age of the tide
According to the equilibrium
theory, HW would be expected
at a certain location at the moment that the moon crosses the meridian of that location. In reality,
however, HW lags behind the moment that the moon crosses the meridian (see Figure 2.24). That time
lag is called high water full and change (HWF&C) or port establishment. It is caused by the inertia
of the tidal system.

The same holds for spring tide, which would be expected to occur when sun and moon are in the same
line (relative to the Earth), which is at New Moon and Full Moon. Generally, spring (and neap) tides
occur 1 to 3 days later (see Figure 2.25). That time lag of about 1-3 days is called the age of the tide.

Tides and tidal currents IHE-Delft 2 - 14



Origin and generation of tides

water
lgvel New Moon

b e

First Quarter /

me_dl

age of the tide

Last Quarter

’

.

Figure 2.25 Occurrence of spring and neap tides

A complicating factor is that
the distances between Earth,
moon and sun are not constant.
Actually, the orbit around the
sun is an ellipse (see
Figure 2.26). So, the distance
between Earth and sun varies.
The tide generating force
contains K>. The force varies
+ 5% from the mean value.
The sun is nearest to the Earth
in January (that is winter in the
Northern hemisphere). It is

w7

i /&f\

Figure 2.26 Elliptical orbit of the Earth

farthest away in July (summer at the Northern hemisphere). The tides caused by the sun, the solar
tides are stronger in January and weaker in July. The effect of the changing distance can be described
by adding an extra tide, called the solar elliptic tide.

The orbit of the moon around the Earth is also an ellipse. So the distance to the Earth is also varying.
The tidal force varies by + 16% from the mean value. In a similar way as for the sun, this effect can
be described by adding an extra tide, called the lunar elliptic tide. Tides caused by the moon are also

called lunar tides.

Besides the astronomical complications there are more phenomena, which influence the tides:
- reflections of water masses against irregular coast of oceans;
— frictional resistance of the bottom of shallow seas;

— rotation of the Earth around its axis, which causes deviations of the tidal waves;
— wind effecting tidal water levels.

Tides and tidal currents
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2.4 Astronomical analysis of the tide generating force

The component of the tide generating force which is directed along the Earth surface is the tractive
force F,

F = 33“ 28 5in20
In this fonnulaKandOarenotconstant;theydepmdmnwtionsofthe moon and the sun. It is known
that:
- the motions of moon and sun have a periodic character;
- each motion has its own characteristic mean angular speed.

The next step is to assume that:
Tthe phenomenon, generated by the tide generating force (which is the tide), contains the
same frequencies as the force itself.
This assumption is essential, because the analysis and prediction of tides (which will be discussed in
Chapter 3) is based on this assumption.

For the analysis of the tidal signal (which is the water level versus time), it is important to know the
important frequencies. Those frequencies can be found from the decomposition of the tractive force
into its components. Investigators like Doodson and Darwin have succeeded to decompose the tractive
force into its sinus components. This astronomical analysis gives as a result the frequencies and
relative importance of each component. This decomposition is not discussed further. It is illustrated
how the tractive force can be decomposed, and what can be lcarned from it.

The motions resulting from the Earth, moon and sun can be described by looking at thé celestial
sphere. This is a non-rotating sphere, which moves along with the Earth. The relative motions of the
moon and the sun, as they appear to the celestial sphere are projected on this sphere (see Figure 2.27).

North Pole

autumnakequinox

descé

vernal equinox

Figure 2.27 Relative motions of moon and sun in relation to the celestrial sphere
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First the projection of the sun on the celestial sphere is considered. It is a circle, which is called the
ecliptic. The angle with the equator is constant, about 23.5°. The ecliptic intersects the equator at two
places: the vernal equinox and the autumnal equinox.

The vernal equinox is used as a point of reference for the description of the motions of the celestial
bodies moon and sun on the sphere. When the sun is in the vemnal equinox, spring starts in the
Northern hemisphere. The position of the vernal equinox is not constant; it makes one revolution
around the equator in about 26,000 years. That motion can be ignored on the tide.

The Earth rotates around the sun in 365.24 days. That is the period between two successive crossings
of the sun through the vernal equinox. The mean angular speed of the sun is w, = 0.041°/h.

The next step is to consider the projection of the moon on the celestial sphere. The motion of the moon
is a more complicated one. The lunar orbit intersects the ecliptic at two points: the ascending node
and the descending node. The lunar orbit makes an angle with the ecliptic of about 5°. The location
of the nodes is not constant. They move along the ecliptic with a period of 18.6 years in westward
direction.

The declination is the angle between the plane of the equator and the line that connects the centre of
the Earth with a certain point on the sphere. The maximum declination of the moon occurs when the
ascending node is at the vernal equinox. It is 23.5° + 5° = 28.5°.

The minimum declination of the moon occurs when descending node is at the vernal equinox. It is
23.5°-5°=18.5°.

It is known that the moon £ Blrgeum .
moves in an ellipse around the
Earth. The position of that
ellipse is not constant. The
perigeum (which is the point
closest to the Earth) rotates
once in 8.85 years (see
Figure 2.28).

Yp= 8.85 years

Other periods are:
- the moon completes one Figure 2.28 Moving position of the perigeum
revolution around the
Earth in about one month (27.32 days);
- the Earth rotates around its axis in one day.

The relevant periods and angular speeds are given in Table 2.3.
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Table 2.3  Periods and angular speeds

Origin Angular speed in °/hour Period
Rotation Earth 15.041069 0.997 day
Moon around Earth 0.549016 27.32 day
Earth around sun 0.041069 365.24 day
Perigeum moon 0.004642 8.85
Nodes lunar orbit 0.002206 18.60 vear

To describe the decomposition of the tractive force, the expression of F, is decomposed
systematically, where all the frequencies are represented by sinus components:

oo 3EM o ﬂ{,‘
) € 2K3

where:
A, constant
A; amplitude of component i
w, angular speed of component i
=jw,+kw,+lw+ma,
in which ®,, ,, W, w, are the angular speeds of Earth, moon, sun, perigeum of the moon
¢; phase of componentiart=0.

o

n
+ }:]A,cosw,t + d),l
.

The effect of the nodes of the moon is left out. They are taken into account in a different way which
will be shown further on.

To give an impression of how the decomposition can be carried out, the celestial sphere is considered
again (see Figure 2.29).

meridian Pole

meridian

paralel

equator

Figure 2.29 Celestrial sphere
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The symbols used in Figure 2.29 have the following meaning:

S position of a celestial body (which can be moon or sun); it has a declination d;
T position of an observer at latitude b;

P Angle of intersections between points S and 7 (both located on meridians);

O centre of the Earth.

In the expression of the tractive
force, O is the angle between
the lines which connect;;
- the centre of the Earth and
o @ the moon or sun OS, and

- the centre of the Earth and
Moon/Sun location on the Earth
surface OT (see Figure
2.30).

Tractive Force

Figure 2.30 Locations of O, Sand T Thus the angle SOT equals to

0. ST is part of a circle. The
tractive force in T is directed along the circle 7.

Looking at Figure 2.30, it can be seen that F, makes an angle ¢ with the meridian. F, can be
decomposed in a horizontal and a vertical component. F; horizontal is directed along the parallel,
whereas F; vertical is directed along the meridian:

F ™ F, sin t

$

F, =F cost

S

Now the expression for F, can be substituted in these equations:

3gM 3gM

= 22 " 5in20sint = == —sinBcosOsint
2K3 3

Shor

‘*ﬂ

F = BL-Msin 20cost gﬂsin BcosOcost
2K3 K3

To express and ¢ into d, b and p, the following geometric relations can be used (they are not derived
here):

cos@ = sinbsind + cosbcosdcosp

sinBsint = cosdsinp

sinBcost = sindcosb + sinbcosdcosp

These geometric relations can be substituted in the expressions for Fs,,, and F| :

FS”" = %(sindcosb + sinbcosdcosp)(sinbsind + cosbcosdcosp)
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After some elaboration the following result can be obtained:
. %gI:—;I[(sinbsinstinp) + (cosbcos?dsin2p)]

Shor

~ ~

2 4

F = %kg%l[%(kinzd - 1)sin2b + (cos2bsin2dcosp) + (%siancoszdcosZp)]

1 3 5
Numbers 1 to 5 are put at the terms of the equations. The

formulae contain b, d and p, where: 7S
b latitude of the location of the observer on Earth; nf
d declination of the moon or sun (the declination of the <
celestial bodies varies with time)
p angle between the meridian of the observer and the
meridian of the position of the moon or sun (see

Figure 2.31).

To find the angular speed of p, it should be realized that
the location of the observer relative to the sphere rotates
with an angular speed w,, whereas the position of the
moon or sun rotates with w,, or w,. So the angular speed Figure 2.31 Angle between observer

of pis: and moon or sun
dp
— =w - 'or the moon
dt e On S
d,
;’rl W, -, for the sun

Considering the formulae for F,m andF } with a focus on p:

— terms 4 and 5 contain sin 2p and cos 2p. The angular speed of 2p is:
2(w, - w,,) for the moon
2(w, - w,) for the sun.
This means that semi-diurnal tides are involved;
— terms 2 and 3 contain sin p and cos p. The angular speed of p is:
(w, - w,) for the moon
(w, - w,) for the sun.
This means that the diurnal tides are involved,
~ looking closer to terms 2 and 3, it can be seen that they contain sin 2d. So if the declination = 0
(if Moon and Sun are in the vernal equinox), the diurnal components are 0. Therefore those
diurnal components are called declination tides,
— term 1 contains only the declination d. The declination varies with the angular speed of moon and
sun. Typical angular speeds (which are called long period tides) are:
w,, for the moon
w, for the sun.
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To extend the decomposition, the declination d is
expressed in terms of the motion of moon and sun.
For the sun, d is expressed in the longitude of the
sun. Figure 2.32 shows the celestial sphere. The
longitude of the sun with respect to the vemnal
equinox is denoted as h.

For the moon, longitude d is expressed in:
— the longitude of the moon,;

- the longitude of the ascending node;
- the longitude of the perigee.

Figure 2.33 shows the celestial sphere, where:

— the longitude of the moon with respect to the
vernal equinox is denoted as s,

— the longitude of the ascending node with respect
to the vernal equinox is denoted as N,

— the longitude of the perigeum with respect to
the vernal equinox is denoted as p.

The variation in time of those variables are known.
As an example, the expressions for the longitudes
with reference time t = 0 at 1 January 1900 at
0.00 hours is given:

h =280.190 + w,t, (longitude of the sun)

s =277.026 + w,t, (longitude of the moon)

Figure 2.32 Celestrial sphere showing the
longitude d of the sun

N =259.156 + w,t, (longitude of the node of  Figure 2.33 Celstrial sphere, showing the

the moon)
p =334385 +w,t (longitude of the perigee)
(dimension in degrees).

If these relations are substituted in the general
equations of the tractive force, expressions
composed of the sum of numerous harmonic
components are obtained. Each harmonic
component, which is found from that elaboration,
has its own amplitude and angular speed (or

frequency).

In the above, the effect of the moving nodes of the
moon is not taken into account as a separate
component. The effect of the nodes is taken into
account in a different way (see also Figure 2.34).
The angle of the ecliptic with the equator is

ascending node

Figure 2.34 Effect of the nodes of the moon
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constant: 23.5°. The moons orbit makes an angle of about 5° with the ecliptic. The maximum angle
between the moons orbit and the equator varies from 18'2° - 28'4°, depending on the location of the
nodes:

— 28%:° if ascending node is in vernal equinox;

- 18'° if ascending node is in autumnal equinox.

The nodes made one revolution in 18.6 years.

The most convenient way is to substitute 23}2° for the angle between the moons orbit and the equator.
in the expressions of the tractive force. The variation due to the revolution of the nodes is taken into
account by multiplying the amplitude with a factor f; and adding a phase shift u;, to the harmonic
terms. The general equation for the tractive force is:

F, = zﬂ{Ao + LAcos(wt + §)
2K3 i=1

With the corrections the expression becomes:

F, = 204, + Dposof + &+ )

The node factors f; and u; are known from astronomical data for each component. The node factor f;
is considered to be constant per calendar year.

The harmonic terms that we obtain from the astronomical analysis can be regarded as tide generating
forces due to ideal stars. For example, M, cos (2 w, - 2 w,,) is the force that would be exerted by a
moon with a circular orbit in the plane of the equator. A second example is S, cos (2 w, - 2 w,), which
is the force that would be exerted by a sun with a circular orbit in the plane of the equator.

The number of harmonic terms is large because:

- the orbits are not in the plane of the equator, which cause declination tides (mainly diurnal);

- the distance between the Earth and the moon and sun are not constant, as their orbits are ellipses.
The distances vary and also the angular speed. That cause the elliptical tides (both diurnal and
semi-diurnal).

2.5 Main constituents of the tide

The most important tidal constituents are given in Table 2.4. They are called the main astronomic

constituents of the tide. Five groups can be distinguished; their meaning will be explained later. In

Table 2.4, the following information can be found:

- the symbol of each constituent (like M,, S.y;

— the angular speed, expressed in the angular speeds of the Earth, the moon, the sun, the perigeum
of the orbit of the moon and also the numerical values;

— the astronomic coefficient, which gives some information about the relative strength of the
component. This will also be discussed later;

— the last column gives the type of the constituents.
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Table 2.4 Main astronomic constituents of the tide

up | Symbol |Frequency Period Angular Astronomic | Type of constituent
(hours) speed cocfficients
(deg/hour)
I M2 (202w, 12.42 28.9841 0.908 semi-diurnal principle lunar tide
S22 2w.2w, 12.00 30.0000 0423 semi-diurnal principle solar tide
Kl |o, 23.94 15.0411 0.531 diurnal lunar-solar declination tide
Ol |w-2wy 25.80 13.9430 0.377 diurnal lunar declination tide
I Pl |o.2w, 24.07 14.9589 0.176 diurnal solar declination tide
N2 |20,30,%0, 12.66 28.4397 0.174 semi-diurnal lunar elliptic tide
K2 |20, 11.97 30.0821 0.115 semi-diurnal lunar-solar declination tide
m Ql  |w30,tw, 26.87 13.3987 0.072 diurnal lunar elliptic tide
L2 20w, 12.19 29.5285 0.026 semi diurnal lunar elliptic tide
v Mf |2w, 328 1.0980 0.156 long periodic lunar tide
Mm |0, 661 0.5444 0.083 long periodic lunar tide
Ssa 2w, 4383 0.0821 0.026 long periodic solar tide
A% Sa |, 8759 0.0411 0.012 long periodic solar tide
Msm |0y-20,tWw, 764 04715 0.012
Msf 20,20, 354 1.0159 0.008
Mim |30,w, 219 1.6424 0.030
Ml |0 w,tw, 24.83 14.4967 0.030
1l |30, 24.13 14.9179 0.010
¢l |20, 23.80 15.1232 0.008
1 e tw,w, 23.10 15.5854 0.030
001 |w+2w, 2231 16.1391 0.016
2N2  |20.40,+2w, 12.91 27.8954 0.024
p2  2040,+20, 12.87 27.9682 0.022
V2 2030200, 12.63 28.5126 0.034
A2 2002040, 12.22 29.4556 0.007
T2  |20.-3w, 12.02 29.9590 0.025
w, = angular speed of Earth W, = angular speed of moon
w, = angular speed of sun w, = angular speed of perigeum of moon's orbit

In a tidal analysis, the tidal signal (= the observed water level versus time) is decomposed into its

constituents. When the constituents have been determined, a prediction of the tide can be made (for

a week, a month, a year in advance). For the analysis and prediction of the tide, a distinction can be

made between the important and less important constituents. For this, Table 2.4 shows 5 groups:

- group I is always needed for a tidal prediction;

- group II is also taken into account; '

— group III is theoretically of minor importance. In several seas they are stronger than the
astronomic coefficients indicate;

— group IV reflects the tides with longer periods. They have to be taken into account if accurate
predictions are needed for a longer time;

— the constituents of group V will be considered if an accurate prediction is needed.

Table 2.5 presents the most important astronomic constituents.
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Table 2.5 Most important constituents

e ———e—)

Type of tide Constituent
Principle tides, semi-diurnal M2, moon

S2, sun
Declination tides, diurnal K1, moon and sun

01, moon

P1, sun
Declination tides, semi-diurnal K2, moon and sun
Elliptical tides, diurnal Q1, moon
Elliptical tides, semi-diurnal N2, moon

L2, moon

In Table 2.4, the column of the astronomic coefficient gives the value of 4, in the expression:

F, = 321—”31{,40 + LfAcos(wt + ¢, + u,.)]

Multiplying 4; by %’3{ gives the amplitude of the tractive force for that component.

So, A, or the astronomic coefficient indicates the relative importance of the component.

When the tide is measured at a certain location on Earth, the relative magnitudes of the components
can differ considerably from the astronomic ones. This is caused by the irregularities in the oceans
and seas.

The tide can completely be described by the sum of the astronomic components in deep oceans. Those
tides are observed on ocean islands.

In shallow coastal shelf seas the tide is effected by:
— bottom friction;
— variable propagation speed of the tidal wave.

1 Bottom friction

The bottom friction is proportional to the water velocity squared:
F proportional to #’

in which

F friction force

u water velocity.

For alternating flows, the flow direction should be taken into account. The expression becomes:
F proportional to u | u |
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If the direction of flow changes, the direction of the friction force must change as well.

If u positive, than F negative.
If u negative, than F positive.

S S S S S S SS SSS s

Figure 2.35 Sinusoidal tidal wave

7L LT 77 7L 777
F F

Figure 2.36 Velocities in a tidal wave

Consider a tidal wave with a
sinusoidal shape.

The velocities in a tidal wave
can be described by (see also
Figure 2.36):

u =1 sin wt
where:

0 maximum velocity
w angular speed of the wave

This means that F s
proportional to:
u|u| =’ sin wt |sin wt|.

This relation can be expressed
in a Fourier series:
F is proportional to

i sinor + Ssin3er + ..
3n 15

It means that the friction
generates terms with a

frequency 3 times the basic frequency. If the basic frequency of M, (semi-diurnal component) is
taken, than a M, tidal component will be generated. Mg has six oscillations per day, and is called a
sixth-diurnal component. It is clear that the M¢-component does not have an astronomic origin.

1l Variable propagation speed of a tidal wave in shallow water

A purely sinusoidal wave is considered, which enters from the ocean into a shallow sea. In this

Vg(h+a)
—_—
m N WM
= '
Va(h-a)

S S S S S S S S

Figure 2.37 M2 tidal component

example, an M,-tidal
component is taken (see
Figure 2.37). The propagation
speed of a disturbance in water
with depth h isygh. The
amplitude of the wave is a.
This means that the
propagation speed of the top
isyg(h + a). The propagation
speed of the through

isyg(h - a).Indeep oceans h
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is much larger than a. The propagation speeds are equal. In shallow seas there is a difference. If the
tidal wave propagates into a shallow sca after some time the shape will be distorted (see Figure 2.38).

faster
—
. V' —ty 5
g /
W
N o) o b 7

-a— slower

N

e m (TN
U P N M

~—

Figure 2.38 Influence of the water depth on a tidal wave

When this distorted wave is decomposed in its components, then the original M,-component plus a
component with double frequency is found. It has four oscillations per day and is called the M, tide.
In fact, from the M,-tide a series of super-harmonics is generated in shallow seas, like M,, M¢, M.
The same holds for the S,-tide: S,, s, S;. Those tides are also called over tides. The distortion of the
tides with a period of one day, like K, and O, is very small. It is not necessary to take their super-
harmonics into consideration.

It never occurs that one partial tide enters a shallow sea. There are always more tidal components that
interact. This interaction gives rise to new components with frequencies deviating from the original
ones. We call them compound tides. They are derived from M,, S,, N,, K,, O,. The interaction
between M, and S, yields MS,. The interaction between M, and N, yields MN, and so on. The
symbol is denoted by the symbols of the original tides. The subscript denotes the period, expressed
in parts of the diurnal tide (or the number of oscillations per day).

The tidal components, generated by non-linear effects in shallow water are called shallow water tides,
and consist of:

- super-harmonic tides or over-tides;

— compound tides.
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The most important components, also called the shallow water tides, are listed in Table 2.6. This
table contains groups, which are semi-diurnal, ter-diurnal, quarter-diumnal, sixth-diurnal and eighth-
diurnal tides. The table does not give astronomic coefficients, because the components do not have
an astronomic origin. The amplitudes of the components depend on the shape of the sea in which they
are generated. Experience has learned that from the shallow water tides at least the M,, M, M;, MS,,
MN, have to be considered.

Table 2.6  Shallow water tides

Symbol Origin Frequency Period Angular Remarks
(hrs) speed

(deg /h)
MNS2 M2+N2-82 205w, 2w, +w, 13.13 27.4238 semi-diurnal
2MS2 2M2-S2 204w, 20, 12.87 27.9682
2SM2 252-M2 20, 2w 4w, 11.61 31.0159
MK3 M2+K1 3020, 8.18 44.0252 terdiurnal
2MK3 2M2K1 3w 40, 8.39 42.9271
SK3 S2+K1 3020, 7.99 45.0411
SO3 S2+01 302020, 8.19 43.9430
M4 2M2 4w 4w, 6.21 57.9682 quarter diurnal
Ms4 M2+82 40,20,-20, 6.10 58.9841
MN4 M2+N2 450,10, 6.27 57.4238
MK4 M2+K2 4020, 6.09 59.0662
S4 282 40 4w, 6.00 60.0000
M6 3M2 6w 6w, 4.14 86.9523 sixth diurnal
2MS6 2M2+S2 6w 4w,-20, 4.09 87.9682
2MN6 2M2+N2 60 - Tw,tw, 4.17 86.4079
2SM6 282+M2 60 20,4, 4.05 88.9841
MSN6 M2+S2+N2 60-50,20, 10, 4.12 87.4238
S6 3S2 6w .-60), 4.00 90.0000
M8 4M2 8w-8w, 3.11 115.9364 eighth diurnal
3MS8 3M2+S2 8w 6w,-20, 3.08 116.9523
2(MS)8 2M2+282 8w 4w,4w, 3.05 117.9682
2MSN8 2M2+S2+N2 80, 70,20+, 3.07 117.4079
S8 482 8w, -8w, 3.00 120.0000

=

w, = angular speed of Earth  w_, = angular speed of moon
w, = angular speed of sun w, = angular speed of perigeum of moon's orbit

Meteorological tides

In addition to the main constituents of the tide, the meteorological tides should be addressed. Most

meteorological phenomena are unpredictable and not harmonic. There are, however, two exceptions

on that rule:

- Monsoons, which blow in one direction during half of the year and in the opposite direction
during the other half. This causes an annual variation of the water level. That variation can be
described by a harmonic wave, with a period of one year;

- A wave period of one day, which is caused by alternating land- and sea wind. In some tropical
regions that should be included in the tidal analysis.
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3 Analysis and prediction of tides
3.1 Introduction

Chapter 2 discussed the generation of tides and the main tidal constituents. This Chapter discusses
the analysis and prediction of the tide at a certain location, based on a measured tidal signal.

Figure 3.1 shows an observed "
tidal signal. The A
decomposition of the tide
generating forces provides
accurate information about the

frequencies of the' h@MC ﬂ ﬂ /\ ﬂ ﬂ ﬂﬂ
Tie mgiteis 1 Jyuuuguot =

lags of the components do not
follow from theoretical

considerations. They must be Figure 3./ Observed tidal signal

calculated from the observed

tide at a given location. The derivation of the characteristics of the components from the observed
tide is called tidal analysis.

3.2 Harmonic analysis of the tide
3.2.1 Formula used in tidal analysis

The tidal analysis is based on the general formula for the tractive force:
F, gM[A . }:Acos(m + &)l 3.1)
The analysis of the observed tide is based on a similar relation:
h(t) = h, + Lheos(wt - ) (3.2)
i=1
where:

h(t) water level at time ¢
h,  mean water level

w, angular frequency of component / (known)
h;  amplitude of component / (unknown)
@,  phase lag of component 7, related to the time base of the observation (unknown)
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Equation 3.2 can be rewritten, by introducing the corrections due to the revolution of the moon's
nodes:

J; multiplying factor for the amplitude;
u; phase correction for the phase angle.

Further, the phase angle can be related to the equilibrium tide in Greenwich (England). Then
Equation 3.2 becomes:

h(t) = h, + Efﬂ,cos((nlt -V, +u) (.3)
i=1
Where: phase related to
h_ equilibnum tide
H;  amplitude of component i [= 7‘]

v;+u; phase angle of the equilibrium tide in Greenwich of
constituent 7 at ¢ = 0 (astronomical argument)

v uniform changing part

t GMT (Greenwich mean time)

Equation 3.3 holds for the equilibrium tide, which is
observed at the meridian of Greenwich (England; see
Figure 3.2).

Figure 3.2 Meridian of Greenwich

For analysing the tidal signal at an arbitrary location on
the globe, indicated as P (see Figure 3.3), its relative S hours earier
location to Greenwich should be taken into account.
Location P is L degrees west of Greenwich, and it is there
S hours earlier. To include these, the following
corrections can be made:
— phase correction for the location: -pL;

p =0 for long period tides;

p=1 for diurnal tides;

p =2 for semi-diurnal tides;
— phase correction for the time: +aS.

Thus, the correction in phase angle is -pL + @S Figure 3.3 Location P related to
Greenwich
The formula for the equilibrium tide at an arbitrary
location becomes:
n
h(t) = h, + LfHgos(wt + v, + u, - pL + &) (34)
i1

Equation 3.4 holds for the analysis of the equilibrium tide.
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The next step is to come to the real tide. The phase of the components for the real tide will differ
from those of the equilibrium tide. This phase difference is called kappa X (for each component 7).
So the equation for the analysis of the real tide at an arbitrary location becomes:

h(t) = h, + f:f,H,cos(co,I +v,+u, -pL +wS -K) (3.5)
i=1

In tidal analyses it is usual to use the corrected kappa number g,, which is expressed by:
g = L+ @S - K, (3.6)
Substituting the corrected kappa number in Equation 3.5 gives:

h(t) = h, + )’:':f,H,cos(m,I +v, tu -g) (3.7
i=1

In Equation 3.7 H; and g, are the tidal constants which have to be determined from the observed tidal
signal. The other factors f, w, (v; + u,) are known from astronomical data.

Equation 3.7 is used for the analysis of the tide and also for the inverse operation, the prediction of
the tide. When the tidal constants are known for a location, the astronomical tide (the tide without
meteorological influences) can be predicted for any period in future at that location. The method can
be used for water levels (which is most used), but also for velocities.

After this introduction into tidal analysis, the procedure how to determine tidal components from an
observed signal is discussed. For this, a closer look is taken at the basic formula (Equation 3.7) for
the tidal analysis. The observed tidal signal is composed of many sinusoidal functions, each with its
own:

- amplitude;

— angular speed;

- phase (at 7 =0).

The unknowns are the tidal constants H, and g;. The other factors are known from astronomical
analysis, that are £, w, v, u;. For the analysis, Equation 3.7 is simplified into:

h(t) = h, + Lheos(w, t - ) (3.8)
i1
in which A, and #; are the unknowns. The real tidal constants can be derived from them by:
h,
H, = =
/i

Two methods are commonly applied for tidal analysis:

- method of least squares;

- Fourier analysis.

In these lecture notes, the method of least squares is further elaborated.
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An example of the result of a tidal analysis is presented in Figure 3.4, which shows the tidal

amplitude (#;) in m as a function of the angular speed (w) for location Hook of Holland along the
Dutch coast.

1.0

T 1

09
0.8
M,
0.7t

0.6

amplitude —»

05t
0.4t
03t
0.2 S,

M,
01k 0, Nz 5(2 3::SNLJ.|MSL
5 ; v x
°|l 0, ams, Ll 2M; MO, MK, 4MS, ] . Me £M5%

0.04 008 0.12 016 020 024
—— frequency o [rev,/hour]

Figure 3.4 Results of a tidal analysis for Hook of Holland (The Netherlands), showing the
amplitudes H; as function of the angular speeds @,

In Figure 3.4 the following groups of components can be distinguished:

— the first group around 0.04 rev./hour, which consist of diurnal components (once a day);

— the second group around 0.08 rev./hour, which consist of semi-diurnal components (twice a day).
The M, (semi-diurnal lunar tide) and S, (semi-diurnal solar tide) are the most important
components;

— the third group around 0.12 rev./hour, consist of ter-diurnal components (less important),

— the fourth group around 0.16 rev.hour, being the quarter-diurnal components. In this group, M,
is a rather important component; it is a shallow water component;

— the last group, which is composed of the sixth-diurnal components.

Figure 3.4 shows that within a group the differences in angular speed (or frequency) are very small.

3.2.2 Method of Ileast
squares l

measured signal
The aim of a tidal analysis is

to determine amplitudes and

phases for a series of sinus [ U UﬂUﬂUﬂUﬂUﬂUﬂUﬂUﬂUﬂUI
functions from an observed

tidal signal. The determination ty
of amplitudes and phases is a
problem of best fit, for which
the method of least squares

g

Figure 3.5 Measured tidal signal
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can be applied. Suppose a tide is observed as is shown by the measured signal g(?) over a time
interval #,-t, (see Figure 3.5)

Then a function A(t) can be aoproxmaton of the

found, which 1s an measured signal

approximation  of  the (it parsater Ay Ay <8y B
measured signal (see

Figure 3.6). The function #(2) |h®

contains four parameters 4,, lﬂ N ﬂ JAWA! f\ AWA [\ , \

A, B, B, The measured \_/UU U\; L J U U
signal g() and the ty ta
approximation h(t) are not

equal. The above four

parameters  should be Figure 3.6 Approximation of the measured tide
determined such that the best
fit with the measured signal can be found.

There is a small difference or error &) between the two functions:
gt) = h(t) - g(1) (3.9

The method of least squares requires that the error &%), integrated over the time interval f, - 1, is
minimum;

)

f €(?)?dt = minimum (3.10)

4

The parameters A;, A, B, B, are parameters of approximation A(?) to minimize the error. So,
Equation 3.10 can be rewritten as:
) )

f e(r)dt = ﬂh(t) - g(nPdt = F (4,,4,,B,,B,) = minimum (3.11)

5 4

The function F will be minimum, when the derivates to 4, 4,, B,, B; are 0:

BF o BF o OF o 8

84, 84, 8B, 8B,
These are four equations with four unknowns 4,, 4, B,, B,. So the unknowns can be solved from
these equations and the best fit approximation is found.

The method of least squares can be demonstrated for the case of two sinusoidal functions (or tidal
components). In a real tidal analysis, more sinusoidal functions (or tidal components) are involved,
for which the help of a computer is required to solve all equations. The general simplified expression
for a tidal component is:

hcos(wt - @)
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For two components, h(t) can be written as:
h(f) = hicos(w,f - @) + hycos(w,t - )

where A, a,, h,, @, have to be determined.

Expression 3.12 can be elaborated as:
h(f) = hjcos(w,f)cose, + h;sin(w,f)sine, + h,cos(w,f)cos a, + h,sin(w,!)sine,

To simplify the procedure, the following relations are introduced:
hcosa, = A4, h,cosa, = 4,

hsine, = B, h,sine, = B,

Substitution in Equation 3.13 gives:
h(f) = A cos(w,f) + B;sin(w,f) + A,cos(w,f) + B,sin(w,?)

(3.12)

(3.13)

For determining parameters 4, B,, 4,, B,, values from
the measured signal g(#) of Figure 3.5 at time instants | °* 7T
ty to+At, 1,+2At,..., t,+kAt can be taken 7 {

(see Figure 3.7). For t, + iAt = t,, the corresponding
value is g(t)). For g(r)) to g(t,), the integrated error

(which should be minimum), can be written as: Figure 3.7 Values of g(t)
k
F(A,,B,,4,,B,) = L[h(t) - g(t)]*At

i=0

Substituting the relation for A(?,) gives:
k
F = Tldcos(@t) + Bysin(wr) + Acos(w,r) + Bysin(w,t) - g(t)PAr
i=0
The derivatives of F to the parameters 4, B,, A,, B, should be 0.
OF OF OF OF

=0, — =0, — =0, — =0
04, 8B, 04, 8B,
The derivatives become:
k

g = 22[A,cos(mlti) + Bisin(w,1) + A,cos(w,t) + Bysin(wyt) - g(t)]cos(w,t)At = 0
1 i=0

OF & . . .

H = EZ[A,oos(m,t,.) + Bisin(w,t,) + A,cos(w,t) + Bsin(w,t) - g(f)]sin(w,t)At = 0
, =0

OF & . .

7 2[4 cos(w,t) + Bisin(w,t) + A,cos(w,t) + Bsin(wyt) - g(t)]cos(w,t)At = 0
2 i=0

8F & . . .

I = 2[4 cos(w,t) + Bisin(w,t) + A,cos(w,t) + Bsin(w,t) - g())sin(w,t)At = 0
L =0
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Elaborating the first equation by dividing both sides with 24¢ yields:
k
?o[“iloos(wlti) + Bysin(@t) + A,cos(w,t) + Bysin(wyr) - g(t)lcos(w,t) = 0

Further elaboration of this relation gives:
k k k k
A, Xcos(w,t)cos(w,t) + B, Tsin(w,t)cos(w,r,) + A, X cos(w,t )cos(w,r) + B, Lsin(w,t)cos(w,r) =
i=0 i=0 i=0 i=0

k
= Lg(t)cos(w,t)

i=0

Doing a similar derivation for the other three equations gives a set of equations of the following form:
Ay a, + B a,+A4,a, +B,a, =b
Ay ay + B ay, +A,a, +B,a, =b,
Ay ay + B ay, + Ay a;; + By ay, = b,
Ay a, +Ba,+A,a, +B,a, =b,

Here, A, B, A;, B, are unknowns and a;, - @, and b, - b, are known. The four linear equation with
the 4 unknowns can be solved by mathematical techniques. When parameters A4, B,, 4,, B, have been
found, the parameters 4,, @, h,, @, can be determined by:

h, cos o, = A4, h, cos @, = 4,

h, sm a, = B, h, sin a, = B,

So the parameters of the function A(f) = hcos(w,f - «,) + h,cos(w,t - ,) are determined,
thereby approximating the measured signal g(?).

Now the residual function €(f) = A(f) - g(f) remains. In some cases, this residual is examined to
see whether some components are overlooked. It also contains meteorological effects (like wind set-
up). If we want to analyse the residual we make use of spectral analysis, which is not further
discussed here.

3.2.3 Sample interval

sample nterval
=

To make a good estimation of the amplitudes and ,
phases of tidal components in a tidal analysis, /l‘
values are taken from the measured signal at a 1

| J\f\
certain time interval 4¢ (see Figure 3.8). These are \L\JL '
) /

e e e

called samples. The time between two samples is
called sample interval, and is usually taken
constant. Figure 3.8 Values at sample interval At
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It can be proved that a sinus function must be sampled at least 2 times per period. For example, when
the tidal component M; is important, with a period of 3 hours, the sample interval should be less than
12 hours. A common sample interval is 1 hour in tidal analysis.

3.2.4 Duration of the tidal measurement

Figure 3.5 showed the results of the tidal analysis for Hook of Holland. Within the groups,
components with angular speeds vary close to each other. Take for instance M, and S,. They have
angular speeds of 29°/hour and 30°/hour respectively. If these components need to be seperated in
a tidal analysis, a certain length of the observation is required.

Consider two components with slightly different angular speeds w, and w, and same amplitude (1).
Then the sum becomes:
h(f) = sin(w,f) + sin(w,f)

with:
w, = nAw
w, = (7 - DAw

n is large, so (®, - ®,) = Aw is small.

Substitution yields:
ht) = 2cos-21—(ml - mz)txsin%(ml N ZWS(%Amt)xsm(ml - -:-Zl-Am)t

The sinus function represents the fast oscillating part of the combined wave; the cosinus function

represents the slow oscillating part. The cosinus function is the slowly varying amplitude of the sinus
function (see Figure 3.9).

Ts= synodic period

I
|
I
I
|
1
I
|
1
l
|
!
|

sin 1t

N2 2 S A2 W o W A O o R A W o W 4
\\VZZANS VANV IIANY VANV ARV ANV AN PNV JPEN 21

I
!
1
1
I

in
phase

in
anti-phase

in
phase

Figure 3.9 Resulting tidal curve consisting of two components
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From Figure 3.9, the following conclusions can be drawn:

— the combined amplitude is maximum when sinw,t and sinw.t are in phase;

— the amplitude is minimum (= 0), when sinw,t and sinw,t are in anti-phase;

— the function is periodic with T,, which is called the synodic period of the two components.

Period T, can be derived from the equation for A(?), in which:

ﬂT: =T - T = 2_“
2 o Aw
In the synodic period:
sin(w,f) = sin(nAwr) makes n oscillations, and

sin(w,f) = sin(n - 1)Awr makes n + 1 oscillations.

To separate two components in a tidal analysis, at least one synodic period must be measured. Thus,
to separate diurnal and semi-diurnal components, their angular speeds should be considered:
@ iurmal = 15°h (=360°/24 h)

@, pmi-diurnat = 30°/h (=360°/12 h)
The criterion for separation is:
2n 360° _ 360°

- =24 h =1 day
Aw  30°h - 15°/h  15°h

To separate M, and S, , the minimum observation period should be at least:
(mM2 = 29°/h, wg = 30°/h)

r.2m _ 360 _ 360

w 30°h - 29°/h 1°/h

= 360 h = 15 days

Table 3.1 gives the minimum observation periods to separate tidal components P,, K,, O, and Q,.
For instance, 13.7 days of observation are required to separate diurnal tides K, and O,.

Table 3.1 Minimum observation periods (in days) for four diumnal tidal components

Minimum observation period
Tidal component P, K, 0, Q,
P, X 182.6 14.8 9.6
K, X 13.7 9.1
0, X 27.6
0 > S——

Table 3.2 shows the required observation periods to separate the semi-diurnal tides S,, K,, M,, N,,
L, and 2MS,. To separate the important semi-diurnal tides M, and S,, a minimum observation period
of 14.8 days is required. Other components need a period of about 30 days.

Tides and tidal currents (February 27, 1997) IHE-Delft 3 - 9
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Table 3.2 Minimum observation periods (in days) for six semi-diurnal tidal components

Minimum observation period (days)
Tidal component S, K, M, N, L, IMS,
S, X 182.6 148 9.6 31.7 74
K, X 13.7 9.1 27.1 7.1
M, X 27.6 27.6 14.8
N, x 13.8 9.6
L, X 9.6
(VAL —— — x

The period of 30 days is more or less accepted as the standard observation period for a minimum
tidal analysis. To separate S, and K, and P, and K|, an observation period of half a year is required.
Thus is displayed in the Tables as 182.6 days. A period of 369 days (about 1 year) is very nearly a
multiple of all values of the synodic periods. Therefore, 369 days is considered as the standard length
for a tidal analysis.

3.3 Tidal prediction

A tidal prediction is the inverse process of the tidal analysis. When the harmonic constants (= the
amplitudes and phase angles) at a given location are known (which are always valid), the tide can
be predicted for any time in future. There is, however, one condition. The physical condition of the
sea or the river must not change. In cases where important civil engineering works have been
implemented (like the Delta Works in The Netherlands) the tidal components will be affected by the
morphological changes.

The prediction of the tide is carried out by using Equation 3.7:
h(f) = h, + LfHeos(@t + v, + u, - g)
i1

From the harmonic analysis, the harmonic constituents H; and g; are known. The mean sea level A,
is also derived from the harmonic analysis of the tide. The angular speed w; of each constituent is
known from the astronomical analysis. Table 2.4 presents the astronomic components, whereas
Table 2.6 gives the shallow water components. The nodal factor f; and the astronomic argument or
equilibrium argument (v; + ;) have been computed for many years in advance. The values for the
node factor f; are given in Table 3.3. These node factors are taken at the middle of each year from
1970 to 1999 for a range of tidal components, and are considered to be constant over one year!
Finally, Tables 3.4, 3.5 and 3.6 a, b, ¢ give the values for the astronomic argument (v, + ;).
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in any calendar year (P. Schureman: Manual of harmonic analysis and prediction of
tides. U.S. Department of Commerce, Coast and Geodetic Survey, 1941)

Table 3.5  Differences to adapt the values of Table 3.4 to the beginning of each calendar month
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Table 3.6b Differences to adapt the values of Table 3.4 to the beginning of each calendar month

Table 3.6c  Differences to adapt Table 3.5 to the beginning of each day of a month (P. Schureman:
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Analysis and prediction of tides

Table 3.4 shows the astronomic arguments at the begin of each calendar year from 1970 to 2000 for
a range of tidal components. The astronomic argument varies over the year. So it must be corrected
for the month and the day within that month.

Table 3.5 shows the corrections to adjust the astronomic argument for a certain month within a year.
The correction is 0 for January.

Table 3.6 a,b,c gives the corrections to adjust the astronomic argument for a specific day within a
month. The correction is 0 for the first day in the month.

To get more feeling for carrying out a tidal prediction, a practical example is given. The question is
to predict the water level in Hook of Holland (The Netherlands) at 23 April 1990, 12.00 o'clock (at
noon). The prediction is carried out by the Formula 3.7:

h(t) = h, + }":fﬂ,cos(m,. t+ (v, +u)-g)
i=1

For simplicity, a restricted number of components (with an amplitude of 0.1 m or more) are taken
into account:

A, mean water level (= 0.06 m for Hook of Holland);

0O, diumal lunar declination tide;

N,  semi-diurnal lunar elliptic tide;

M, semi-diurnal principle lunar tide;

S,  semi-diurnal principle solar tide.

Table 3.7 presents the data on tidal components of Hook of Holland.

Table 3.7 Tidal components of Hook of Holland -
Component w; (/h) H; (m) 8 ()
0, 13.943 0.10 187
N, 28.440 0.12 59
M, 28.984 0.79 85
S, 30.000 0.19 145
Other data needed from Table 3.4-3.6 are displayed in Table 3.8.
Table 3.8 Other data needed for tidal prediction of Hook of Holland
1Jan 1990 1 Apr1990 23 Apr 1990 23 Apr 1990
Component f Oh Oh Oh 12h
A(vitu) A(vitu) A(vitu) A(vitu)
0, 1.128 240 236 161 167
N, 0.977 324 229 256 341
M, 0.977 259 325 183 347
Sg 1 OJ 0 0 360
Tides and tidal currents (February 27, 1997) HE-Delft 3 - 15



Analysis and prediction of tides

Combining Tables 3.7 and 3.8 gives:

Com ponent £ H cos (wt + (v, +u) - g)
0, 1.128 10 cos (167 + 240 + 236 + 161 - 187) =-0.22
N, 0.977 12 cos (341 + 324 + 229 + 256 - 59) =+ 0.98
M, 0.977 79 cos (347 + 259 + 325 + 183 - 85) =+ 0.62
S; 1 19 cos (360+0+0+0-145)=-0381
Now the contribution of each component to the water level can be determined as follows:

A, = +0.06 m

0,= -0024m

N,= +0.114m

M,=+0478 m

S,=-0153m+

+0.475 m is water level in Hook of Holland at 23 April 1990, 12.00 hours.
A more accurate prediction can be obtained by including more components.

3.4 Type of tides

The tide can be classified by the so-called form-number:
Hy, + Hy,

H,, + Hg,

K1 and O1 are the main diurnal components; M2 and S2 are the main semi-diurnal components.

Four types of tides can be distinguished (see also Figure 3.10):

- fully semi-diurnal (F < 0.25). Such a tide can be found at Immingham in England. There are two
HW's and two LW's per day of about the same height. The mean tidal range at springtide is 2
(H\, + Hy));

— mixed, mainly semi-diurnal (0.25 < F < 1.5). Such a tide can be found at San Francisco in the
U.S. There are two HW's and two LW's per day which are different in height and time. The mean
tidal range at springtide is 2 (H,,, + Hy,);

— mixed, mainly diurnal (1.5 <F < 3). Such a tide can be found in Manila in the Philippines. Most
of the time there is one HW per day, for a short time there are two HW's with a strong inequality
in height and time. The mean tidal range at springtide is 2 (Hy, + Hp,);

— fully diurnal (F > 3). Such a tide can be found in Do-Son in Vietnam. There is only one HW and
one LW per day. The mean tidal range at springtide is 2 (Hy, + Hy,).

Tides and tidal currents (February 27, 1997) IHE-Delft 3 - 16
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Figure 3.10 Examples of four main tide types

Finally a definition of the most commonly used tidal terms is given in Table 3.10.
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Analysis and prediction of tides

Table 3.10 Most commonly used tidal terms

Abbreviation  Full name Explanation "

MSL
MHW
MLW
MHWS

MLWS

Mean Sea Level The average sea level over a long period. "
Mean High Water The average of all high water levels.
Mean Low Water The average of all low water levels
Mean High Water The average of two successive high water levels at
Spring springtide.
Mean Low Water Spring  The average of two successive low water levels at
springtide.
Mean High Water Neap  The average of the two successive high water
levels at neap tide.

Mean Low Water Neap  The average of two successive low water levels at
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Long waves in one dimension

4  Basic equations and types of long waves in one dimension
4.1 Introduction

The tidal analysis and prediction concentrated on the tide at one location. In this Chapter, the
propagation of a tidal wave is discussed. Equations are derived, which describe the propagation of
tidal waves. With these equations, tidal computations can be made. The first methods for tidal
computations are analytical methods (Chapter 7). In later stages, numerical methods have been
developed (Chapter 8).

One of the main reasons to make tidal computations is to see how water levels and velocities will
change when civil engineering works will be carried out in tidal regions. First, some arbitrary
examples are presented, showing the changes in tidal motion.

Figure 4.1 shows a river that
flows in a sea, where a tide is
present. For the planned dam
in the river, it is necessary to
compute the changes in the
tidal motion (water levels and
velocities) downstream of the
dam in prior to construction.

Figure 4.2 shows an estuary,
where plans are to reclaim a
certain area. The water levels
and velocities can change
considerably due to the change”
in geometry. Therefore, prior
to the start of the project it
should be known how the tide
will change in the estuary. For
this, tidal computations must
be carried out.

Before deriving the equations,
first a survey of the various

types of flow is given, to show v
in which category tidal waves belong.

A flow motion can be characterized by the water level 1) and ’
the velocity (with components: u,v,w). The parameters are .
functions of time ¢ and space coordinates x,y,z. The space

Figure 4.2 Plans for reclamation in an estuary

Figure 4.3 Directions of u,v,w
and x,y,z
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Long waves in one dimension

coordinates and the components of the velocity are presented in Figure 4.3, where:
— u is directed in the x-direction;
- vis directed in the y-direction,
- w is directed in the z-direction.

An overview of the various types of flow motion is given in Figure 4.4. From this Figure it can be
concluded that tidal waves can be considered as long waves.

Uniform Non-uniform Long waves Short waves:
Flow
% . i G, & Flow not
constant | flow flow Vertical velocities| | Vertical velocities
constant
in p[ch 8/8x =0 8/8x = 0 w=0 w=0 in place
(periods of hours)| | (periods of seconds)
E.g. river with E.g. river with Tidal waves E.g. wind waves
constant slope and varying cross
¢ross section section

Flow motion

[ ]

$ Steady flow Unsteady flow |  Flow not
;onflanf 6/6[ =0 6/6‘ = 0 {'0”"“"1
mlime in time

f_—r—l [ I 1

Figure 4.4 Overview of various types of motion

4.2 Basic equations for long waves in one dimension

The basic equations for long waves in one dimension are derived for one-dimensional problems (like
a tidal river). The first step is to make the following assumptions:

vertical velocities are small. The flow is nearly horizontal, which means that the pressure in the
water is proportional to the depth. This implies a hydrostatic pressure distribution,

width of the channel is small. This implies that the water level in cross-direction is horizontal.
To give an idea, the width should be less than 10 km;

density of the water is constant.

The equations which describe the water motion in long waves are:

equation of continuity;
equation of motion.
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Long waves in one dimension

4.2.1 Equation of continuity

Consider an element of the channel of Figure 4.5.

Qdt

>/ //

= X

Figure 4.5 Element of a channel with length Ax

The symbols of Figure 4.5 have the following meaning:
Ax  length of element;

A cross section,

b width at still water surface;

Q  discharge in the channel.

The inflow at the left-hand side in a time increment 4t is Qdr.
The outflow at the right-hand side in a time increment d is:

0 + ( iQ_dx) dt.

ox

In the time increment dt, water is stored in the element. The water level increases with:

.

a

The width at the water surface is b. So the stored amount of water is:

-&—"dtbdx. -
a

Conservation of mass, over a time increment dt means:
Inflow - Outflow = Storage

Thus:
- + &Y = on
Qdt (Q dx] at _dt thdx.

Tides and tidal currents (March 19, 1997) IHE-Delft 4 - 3




Long waves in one dimension

dr - 0dt - Laxdr - Marbax.
ox ot

90 oM _ g 4.1)
ox ot

Equation 4.1 is the equation of continuity.

4.2.2 Equation of motion
The equation of motion can be derived by considering an element of the channel with a length Ax and
applying Newton's law:

F = ma

By definition, acceleration is the change of the velocity per unit of time:

du

a = =

dt
Consider u = f{x,t). Then, a change in u can be written as:

du=§£dt+§£dx
ot ox

Dividing by at, yields:
du  ou , Ouds
at ot oxdt
The water particle has to be followed, that means that the change in x per unit of time is the velocity:
dx
= =
So the acceleration can also be written as:
a = du _ Ou Ju

= + Y—

dt o
According F' = ma, the acceleration equals the force per unit mass:
F
a = —
m

The forces acting on the considered element originate from gravity, pressure and bottom friction. For
further elaboration, an element of the channel per unit width is considered.

Tides and tidal currents (March 19, 1997) IHE-Delft 4 - 4



Long waves in one dimension

A. Gravity force

Figure 4.6 shows the

coordinate system in the

channel. x is directed along the .

river. 7 is directed upwards. /

is the local depth, so:
h=h,+n.

1 is the slope of the river bed.

Consider an element with >
length Ax. The mass m of the Figure 4.6 System of coordinates with element Ax
element is phdx. The weight of
the element is pghdsx.
The force component in the x-direction F is pghdxI (in fact it is sin I, but sin I = I, because / is
small). The gravity force in the x-direction per unit of mass is:

F _ pghdx]

m phdx

=g]

B. Pressure force
For the pressure force, the same element with length Ax is considered (see Figure 4.7).

mass=e.h.dx

1 h
Z @ 9(h+5 a0

////////// 7
7777 s

h
o catnagl e

Figure 4.7 Element dx with symbols for pressure force

The water level at the left-hand side is 4. The pressure force is proportional to the water depth. At
the bottom the pressure force is pgh. The resultant pressure force at the left-hand side is:

1 1
—xpghxh = —pgh?
2 Pg ng

At the right-hand side, the water level is 7 + <?—a:dx. So, the pressure at the bottom is:

Tides and tidal currents (March 19, 1997) IHE-Delft4 - 5



Long waves in one dimension

pg( h + %) ;
ox
The resultant pressure force at the right hand side is:

2
lp h+§ﬁdx h+%dx =lp h+%dx.
2 ox ox 2 ox

The net force in the x-direction is:

1 1 oh oh , )2 oh
—pgh? - Zpgl h? + 2nLax + | Lax| | = pghLax
Pg pg[ i aald ( 3 )] R

2 2
The mass of the element is phdyx, so the net force in the x-direction per unit mass is:
oh
h—dx
F__ %Y
— = — = - g— 4.2)
m phdx ox

Because = h, + 7, Equation 4.2 can be written as:

£ - - g2
m ox (4.3)

C. Bottom friction

For the bottom friction, the
same element with length Ax is
considered (see Figure 4.8). In
the element, water flows with
velocity u in the positive x-
direction. Due to that flow,
along the bottom a shear
stress T acts in the opposite
direction on the water element,
per unit length of the channel Figure 4.8 Element Ax with symbols for bottom friction
and per unit width. The force

on the element F = - dx.

Now, an expression must be
found for 7. Therefore, a
closer look is taken at a river
with  uniform flow (see
Figure 4.9). The slope of the
river is 1. The cross section of
the river is A, whereas the
length along the bank is O.

Figure 4.9 River with uniform flow
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Long waves in one dimension

For uniform flow, the gravity force due to the slope of the river and the friction force, will balance.
The weight of the element is pgAdx. So the gravity force in x-direction F, = pgAdxI (assuming that
sin I = I). The friction force along the bank of the river is - 7dx0.

There is a balance between both forces, so:

pgddxl = O = 1 = ng%

In this expression A/O is the hydraulic radius R.

The hydraulic radius can be expressed in

terms of width and depth of a river (se¢ | /> ~— 7
Figure 4.10). /% ]/ Tn
A h ¥
R=5=—— i

For a side niver, than w >> h, so
R = wh _ h Figure 4.10 Cross section of a river
w

The hydraulic radius R is about equal to the depth. For smaller rivers (in relation to the depth), the
hydraulic radius R can be computed from:
rR=4.
0

The equation for the shear stress becomes now:
7= pgIR 4.4)

For uniform flow, Chézy's law holds:

u = CyRI
The velocity is proportional to the square root of the slope and the square root of the hydraulic
radius. Cis Chézy's constant, and depends on the roughness of the river bed. For rivers in the tidal

area in Holland, C = 50 is a common value.

The dimension of C can be derived from:

1
- m_/s =m?2/s
VR |Ym
Re-writing Chézy's lawu = C RI gives:
o3
C?R
Substitution in Relation 4.4 yields:
u? g u? (4.5)
T = PE—K = pPg— .
C?R £

Tides and tidal currents (March 19, 1997) HE-Delft 4 - 7



Long waves in one dimension

Substitution of Equation 4.5 in the general expression of the friction force per unit width (F = - 7dx)
gives:

2

-pg—dx

c
The mass of the considered element is pdixh, so the friction force per unit mass is:
2
u
pg—dx

F C? u?

- = - = 8 (4.6)

m pdxh C*h

Considering a unit width of the channel means that the hydraulic radius R = 4. Considering an
arbitrary cross section of the channel, R can better be taken instead of 4. So a more general
expression for the friction force per unit mass is then:

F i

.—.=—g_

(4.6)
m C?R

The friction force holds for a uniform flow, and can be applied for tidal flow. A justification for that
assumption is that the flow oscillates slow due to the tide.

The direction of the tidal flow

alternates. Ebb flow and flood —————————p— —_—

flow are in opposite

directions. So the friction

force, directed opposite to the u -

flow direction is alternating

too (see Figure 4.11):

- u( positf: - F negative; V7777 Ya LSS SIS
’ B E— —_—

— u negative - positive. E "

This is taken into account by
writing »” as u |u|.

Figure 4.11 Alternating flows due to tides

So for tidal flows the term for the friction force can be written as :

£ .
m

g1
C?R

For the force per unit of mass, the expressions for gravity, pressure and bottom friction have been

derived as follows:

E = g] - gﬁ - g_u-
m ox C?R
gravity pressure bottom friction

Tides and tidal currents (March 19, 1997)

IHE-Delft 4 - 8




Long waves in one dimension

The equation of motion becomes now:

ii'uiu_:gl-g%

ot ox ox
or:

@+u@-g]+ga_h

ot ox ox

- g
C?R
u| _

+8
C?R

This equation does not hold only for tidal flow, but for flow in all kinds of long waves. For tidal
computations, the x-axis is mostly considered to be horizontal, so that / = 0. The term -g/ disappears
from the equation. So it reduces to :

Sy, g, gt @4.7)
ot ox ax C?R
So, two equations are now available for describing the fluid motion in tidal waves:
- Equation of continuity (4.1): 2, b-%- =0,
ox ot
. y ou ou oh ulu|
- Equation of motion (4.7): — +u— + g— +g—— =0
Eq 4.7) 7 % 8% TS
For tidal calculations it is
more convenient to use the @
discharge O instead of the .
velocity u. Figure 4.12 shows ® 20 O
a schematization of a river, O O o/
which splits up n two Q, O o
branches. Considering Q,
sections (1), (2) and (3) of the ®
schematization, the condition
at the node is that the water
levels are equal and that there Figure 4.12 Schematization of a river with two branches
is conservation of mass:
- M=M= M5
- Q=Q;+Q,
The equation of motion can be re-written by introducing # = %
Tides and tidal currents (March 20, 1997) IHE-Delft4 -9



Long waves in one dimension

The first and second term of the equation of motion (Equation 4.7) become:

30, M,
du _ ot o _ 100 QoA
or A2 Aot A2 o - b -
90, 3_AQ LTI 77777777 - 89
ou _ ox o~ _ 190 _ Qo4
ox A2 Adx A?ox
A
Figure 4.13 shows that the change in cross section
dA can be written as:
dA = bdn
so:
Uy
ox ox
oA ban Figure 4.13 Changing cross section
ot ot

Substitution in the first two terms of Equation 4.7 gives:

ou 100 0bon
o A ot A? ot
ou 190 0Obon
Ox A odx A2 ox

So, the equation of motion becomes (also replacing u with Q/A):

130 _ogban|, 0130  gsom], on . 00

+ g
A ot A2 ot AlA ox A2 ox gax C242R

Substitution of the equation of continuity % = - b? gives:
t

100 Qbon Qbon Q% ém , 3k, , Q0 |

+g— +g
A ot A2 ot A2 ot A3 ox ox C24%R
One step further:
l@_@@_ﬂ_+ ]-.Qiﬂ-r M:
A3t 42 o gA3) ox C?4°R
L J L J
term (2) term (3)
Taking a closer look to term 2:
- 20,0
A% ot
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Long waves in one dimension

The equation of continuity can be written as:

EE)
ot ox
Substitution gives for term (2):
2090
A? ox

To elaborate term (2) further, the following expression is considered:
a0 0A
2 e 2
912 ., @& & _,000 ,0°4
ox\ A A A? A? ox A3 ox

Substitution of 4, b@ gives:
ox ox

1(2)’ _2080 _,0%am
ox\ A A? ox A3 ox

So term (2) becomes:

QQQ_ =i{2)2+2Q—2bﬂ
A2 ox  ox\ 4 A® ox

Now considering terms (2) and (3) together:
i(g)z Y <k X Q_Zb]m

ox\ A A3 Ox gA3) ox
| J | J
term (2) term (3)
This can be simplified to:

&l

_a..(g)2+ 1 —Q_zé
ox\ A gA3

2
Expression —l; can be written as:

Q2b=Q2_b__21 u?

u F ——

gd® A2gd  gdAlb  gh

This 1s called the Froude number. For tidal situations this number is small compared to 1. This can
be illustrated with the next example. Takeu=1 m/s,g=10m/s* ,and h= 10 m.
2
The Froude number 3—; = Wlo = 0.01, which is small compared to 1.
g
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Long waves in one dimension

2
So, the term —? can be neglected. Now terms (2) and (3) reduce to:
gA

3(2), o
ax(A) o
9

2
which is equal to: p [ (%—) + g'n]

As % = ?—;,terms(Z)and(B)canbewrittenas:
i_Q_2+gh=i(u2+gh)=ighl+.u_2
ox|\ 4 ox ox gh

In this relation the Froude number occurs, which can be neglected (small compared to 1). So terms
(2) and (3) reduce to:

d oh an

—_— h = — = —_—

at "% T

The equation holds for small numbers of the Froude number. The equation of motion, in terms of
Q and 7, is now reduced to:

ig + gﬂ - g_QLQ' =(
A ot ox C242R

4.3 Types of long waves
4.3.1 Relative importance of terms in the equation of motion

Unsteady motion of nearly horizontal flow can usually be classified as long waves. Tidal waves are
one of the types of long waves. The following briefly considers the various types of long waves,
which are described by the equations derived in Section 4.2. To distinguish the different types of long
waves, first the equation of motion is considered, written in terms of u and 7:

ou s ui + g@ - suim Jul =0

ot ox ox c?R
L LJ
local convective

acceleration  acceleration (acceleration when traveling with the fluid particles)

| | + L o+ |
inertia gravity friction
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Long waves in one dimension

In different types of long waves, the different terms play a more or less important role. Three types

of long waves will be considered:

= Translation waves, where inertia terms are most important and the friction term can be neglected:;

— Flood waves (river), where friction is the most important term, and inertia terms can be neglected;

— Tidal waves, where both the inertia terms and the friction term are of importance (in some cases,
friction can be neglected to obtain simple solutions).

4.3.2 Translation waves

A translation wave is a disturbance that propagates without any significant deformation. It is caused
by a sudden relief or withdraw of water in a channel, for instance by opening of sluices. A translation
wave can be positive (increase by water level) in the case of a relief (see Figure 4.14). Figure 4.15
shows a negative translation wave, which occurs in case of a withdrawal.

/i 4 / ¢

/| basn - / - channel
/! > cnarvi /| _ben 27777

/f 7

/ &

/ /|

v \J /| L/

/ T /| -

g 1 ;

¢77//////}////,/////// STTTT77 777 777777777777

Figure 4.14 Positive  translation  wave Figure 4.15 Negative translation wave, in
resulting from opening a sluice case of a withdrawal

Now consider the situation as sketched in Figure 4.16.

udt
— cdt
I
- ¥ = =
o g Mo u=0
—u u=0
S S S S S S S S S

Figure 4.16 Symbols used for translation waves
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Long waves in one dimension

Figure 4.16 shows a part of a channel with depth 4,. The height of the translation wave is 7. The
wave has a steep front. The propagation speed of the wave front is ¢, which is called the celerity. The
velocities at the right hand side of the wave front are zero; the velocities at the left hand side are
small. Therefore, bottom friction. Can be neglected.

Equation for this specific case can be derived by considering the box, indicated in Figure 4.16.At the
left hand side of the box, the water velocity is u, whereas at the right hand side the water velocity is
zero.

1. Continuity
The first equation that can be derived is the equation of continuity. Continuity for the box in Figure
4.16 means:
Inflow - Outflow = Storage
So:
pgudt (h, + 1) -0 = pgcdt p

From this relation, the following expression for velocity u can be found:
n

hy + 1

For n<<h,:

u-==c«

u=c %‘- Egquation of continuity
0

1I. Equation of motion

Applying Newton's law (F' = ma) to the box in Figure 4.16 gives:
du _ d(mu)

Mo =
dr at

F =ma =

or
Fdt = d(mu)

Here, term mu is the momentum. Newton's law in this form says:
Force during dt = Net increase of momentum in time dt
(on the box) (inside the box)
= Increase of momentum inside the box

= inflow of momentum - outflow of momentum

Applying this to the box in Figure 4.17 gives (neglecting the friction force):

Tides and tidal currents (March 19, 1997) IHE-Delft 4 - 14



Long waves in one dimension

udt
— cdt
—
= = N
( . \1 \l
"__"- """" E" T T — =
u f——
ho = :_—: h
| 1 [ Y u=0
— | —
- — —
et U —_— (U=
LT — 7

Figure 4.17 Increase of momentum inside the box

Pressurs at fhe Jeft hand side %pg(ho + )2

Pressure at the right hand side: %pgho2

The net pressure force is equal to: %pg(ho +1)? - %pghoz = pgh,,n(l + 2%]
0

The increase of momentum inside the box is: p.cdf (h, + pu

Inflow of momentum - outflow of momentum is: p udt (h, + pu -0

The net increase of momentum in the box is the difference between both terms:
p(c-wadt (h, + p)u

Now Fdt = d (mu) can be written as:

pghon[l + Zhl)dr = ple-u)di(ly+n)u
0

Assuming that n << h,, then this expression reduces to:
pghymdt = p(c - u)hyudt

or

gn = (¢ - uu Equation of motion

Tides and tidal currents (March 19, 1997) IHE-Delft 4 - 15




Long waves in one dimension

III.  Combining equations of continuity and motion
The equations of continuity and motion are:
u = chl Continuity

gn = (c - wu Motion

Elimination u by substituting u from the equation of continuity in the equation of motion gives an
expression for the celerity c:

o =(c-cﬂ.]ﬂ

ho ho
h
&t = £
] -
ho
h
c= 8%
R §
ho

When n « h, , then c = \[gh,

Substitution of ¢ into the equation of continuity gives for s
the velocity u: n

u=—;—‘/gho=n hi ro| o
0 0

From the equation of continuity, it can be seen that:

TTITIIITILT

uh, = cn
This is the discharge through the plane at the left hand . ;
side of the box, denoted as q in Figure 4.18. T A— s Z
So: Vi 7
Vi=ne é
g =uhy=cn and n =2 .

/4444

Figure 4.19 Reflection against a
Some important properties of the translation waves are: vertical wall
— Reflection against a vertical wall. The height of the

N

reflected wave is equal to the height of the original didspeared
wave (see Figure4.19), |/ A 7 =
- “Dying out” at a boundary where the water depth or | reo wve !
width largely increases (see Figure 4.20); ///////////////////////7//%>>
— Partially reflecting and partially transmitting at &
sudden changes in width and depth (see Figure 4.21). -

Figure 4.20 Dying out of transl. waves
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——
13
______ ="
R ] \"S" K
- | =
14 -—Q, !
h, 3 L Qo h 2
— Gy SIS/ 77777777
ST 7 /7777777777777, longitudinal section
b
b1¢ I 2
plan

Figure 4.21 Sudden changes in width and depth of a channel

The conditions in cross section A are:
- M, + N3 = 1, (same water levels left and right of A);

- 0, - 0; = O, (continuity in A)

The general expression for Q is:

0 Vgh

Substitution in the continuity relation Q, - Q; = Q, gives:

nlbl‘/ghl - T‘sbl\/ghl = Nyb,8h,
(m, - 713)b1\/gh1 = N,b,/8h,

c¢nb in which ¢

When 7, is known, 1, and n; can be solved:

2b,/gh,
=M
b,/gh, + b,/gh,
b, Jgh, - b, /gh
N o= M, 1y 2V8",

b, ghl + b2 gh,

4.3.3 Flood wave

In this type of wave, the friction term is most important. The inertia terms can be neglected. The
changes of u in x and ¢ are small and the changes of 1) and 4 in x and ¢ are small.

Tides and tidal currents (March 19, 1997) IHE-Delft 4 - 17




Long waves in one dimension

The flood wave in a river has
the shape as sketched n |  FT—=T___

Figure 422. The flood wave |  TTTeeall N
has a propagation speed c. )

/
////////
7

Figure 4.22 Flood wave in a river

The equations for this wave are:

59 + b% = 0 (continuity)

ox
180 . _on g0 . :
i) + gax gl + gC2A2 0 (motion)

The inertia term %%g and the slope of wave g?—a: are small and can be neglected.

In general, rivers have a

difference  between  the _ b .

discharge width and the B by -

storage width ( Figure 4.23). 7 e %

= = 7

The water is stored over a %/ W/MW 7
. ‘9. . 77 s

width b, which is term b in the S

equation of contmulty The ) cross-section of a nver

part of the river that is

transporting the discharge has

a width b,. Figure 4.23 Cross section of a river

Neglecting the inertia and the slope of the wave in the equation of motion gives:

g2

= g]
C?4°R

2
Q_ = C2RI
AZ

u = g,u2 = C?RI,
A

or | u = Cm which is Chézy's law, which holds for uniform steady flow.

Chézy's law can also be written in terms of Q: Q = CAyRI

Tides and tidal currents (March 19, 1997) IHE-Delft 4 - 18



Long waves in one dimension

Introducing 4 = b.h, (4 is the cross section that transports the discharge Q) and when b, .., / then:
R=h

So:
Q = Cb,,Jhl

or
Q = Cbh :h 3zy12

The propagation speed (or celerity) c of the flood wave is associated with the progress of a certain
discharge Q. So the celerity (speed of the top of the wave) is the speed of the property dQ = 0 (no
change in Q).

AsQ=f(x1), dO = anx + B -0

ot
The celemy of the wave is :
_ da _ _dQlot
dt oQ/ox

Expressions for = Q and ag can be found by:

Continuity: 9Q . —b@ or 90 . —b%
ox ot ox ot
Motion (reduced to Chézy's law): 22 - E(Cbshml”z) _ b 3p1ndhn
o ot 2 o
oh
= — = —b
‘/_ 2 o
The celerity of the flood wave becomes:
3 b oh
—l) Y e
_ 8o 27 _ 35
dQ/ox b oh 2b
ot
In the expression b > b,, so i <1-
b
3

When for instance b = 2b_, than ¢ =

g U.

The propagation speed of the flood wave is less than the velocity of the water which is often the case.
The ratio b/b has a large influence on the propagation speed of the flood wave. Important from this

consideration is that the propagation speed is not equal to /gh.
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4.3.4 Tidal wave

Tidal waves are described by the equation of continuity and the equation of motion. As both inertia
and friction are important, the complete equations should be considered:

.a—Q.+bﬂ=0
ox ot

180, o, 00
A ot ox C24%R

It is, however, impossible to solve the complete equations analytically. Analytical solutions can only
be found for simplified equations, which will be treated in Chapter 7. It is possible to solve the
complete equation numerically by using computers Chapter 8).

To get insight in the behavior of tidal waves, first some simplified equations will be discussed which
describe the socalled harmonic waves.

4.4 Harmonic waves

Harmonic waves are:

— periodic in time;

- sinusoidally shaped;

- and have amplitudes which are much smaller compared to the water depth.

The small amplitude, relative to the water depth, means that the current velocities are small.
Therefore the friction term in the equation of motion can be neglected. The equations reduce to:

.QQ + b@ = 0
ox ot

QQ B .gﬂ =
ot ¢ ox 0

The objective is to derive an equation for the water elevation . Therefore, the first equation is
differentiated to #:

& + bﬁ = 0
oxat or?
and the second equation is differentiated to x:
PO, gy g
oxot ox?
Subtracting these equations gives:
pIM gy ¥ o I _gd S
ar? ox? a2 b ax?
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Long waves in one dimension

The general solution of this equation for harmonic waves is :
n = ficos(wr - kx) 7

Pl

So the water elevation 7 is a function of x and ¢,

which means that it varies in place and time. When — ]

wt = constant = ¢, it means that wave 1 is a l 1[ \ /

function of x for a certain time (see Figure 4.24): ‘ - '
n(x,r) = ficos(e - kx) = ficos(kx - @), \

where: \_/
E = ZT" (L = wave length).

Figure 4.24 Sketch of 7 for ax = constant

When kx = constant = 3, the wave is a function of '

time at a certain location (see Figure 4.25): /
n(x,f) = ficos(wr - B) /

where: /

w:%"(]‘:waveperiod) U x

Looking at the wave in time shows that the top (or :
the total shape) has a certain Figure 4.25 Sketch of 7 for kx = constant

propagation speed or celerity c, see
Figure 4.26.

e

— c

During period 7T the top of the wave i~ X -
travels over a distance L, so: ‘ \ / )
c = = orL =cT - !
T

This is the well-known relation for
wave phenomena. -

The celerity ¢ can be expressed in  fyoyre 4,26 Celerity c of a tidal wave
terms of w and k:

L 2T
c==Zand w = —
T T
w 2n/T L )
SO —_— F — = — 0 C = —
k 2n/L T k
thus k=2—"t
L

The first and second order derivatives of the general equationt = ficos(w? - kx) to x and ¢ are:

oM . wfisin(w? - kx) and &, wficos(wr - kx)
ot or?

BN _ o I o_ o }
5 kfisin(wt - kx) and e k*icos(wt - kx)
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Long waves in one dimension

Substitution of these derivatives in the equation:

In _gAdn
a2 b ox?
gives:

~w¥icos(wr - k) - _gbﬁx—kzxﬁcos(mt - k) =0
or -w?+ kz% =0

2
Thus: < = gé-
k? b

As the celerity of the wave is ¢ = %:

c2=-giorc=i &
b b

This general solution represents two harmonic waves, one propagating in the positive x-direction
and one propagating in the negative x-direction, each with a propagation speed or celerity

Note that ¢ = propagation speed of the wave shape and not the velocity of the water particles!

The general solution can also be written as:
n = ficos(wr-kx)
el

ficosw(r - iJc) with ¢ =
()

ficosw(t - ) with ¢ = = ‘%
C

So the compllete solution with the two waves propagation in the positive and negative x-direction is:

n = ficosw(t - ) + ficosw(t + %), in which ¢ = l%
(54 (o4

Now the solution of the discharge Q for the harmonic wave will be discussed. This solution is similar
to the solution of the water elevation 7:

0 = Qcos(wt - kx + @)

For substitution in the equation of continuity:
ﬂ -+ biaﬂ = 0
ox ot

the first order derivative of O to x and the first order derivative of 7 to f are needed:

% . Sisin(r - ke + o), and O = Aasin(er - k).
Ox ot
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Substitution in the equation of continuity gives:
Oksin(wt - kx + @) - bfwsin(wt - kx) = 0

This means that

¢ = 0 and

Ok - bfjw = 0
So: O = biic

The general solution for discharge Q becomes:

Q = biiccoso(t - %) with ¢ = iJZbA;
c

The complete solution for the two waves, propagating in the positive and negative x-direction, is:

0 = bﬁccos«{t o £) - bﬁccosw(t + f) with ¢ = %
c c

This can also be written as:
0= Qwsa{t —- f) - Qwsm(t + f-) with Q = bfic.
c c

4.4.1 Single progressive harmonic wave

A specific solution is obtained by introducing boundary conditions. For example:
atx =0 :1n = ficoswt

The general solution becomes:
n = ficos(wt - kx) + ficos(wr + kx)

forx=0:
n = ficoswr +  ficoswt
wave travelling wave travelling
in the positive in the negative
x-direction x-direction

The boundary condition can hold for one of the two waves: for the single progressive wave in the
positive x-direction or the single progressive wave in the negative x-direction. Consider the single
progressive harmonic wave, propagating in the positive x-direction, which is described by:

n = ficosw(r - X) or 1 = ficos(wt - kx)
c

To illustrate that this formula describes, a wave is considers which propagates in the positive
x-direction (see Figure 4.27). The starting point is at x = x,. Some further to the right (at x, + 4x)
the phase is earlier.
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This means that after some c ]
time the top will arrive there. —

So for a small positive Ax and
constant f, the phase / j\\\
difference: P
A[u{t - .’E)] Xg xo+Ax\—/
c / \

should be negative.

4
ith ¢ = ,| == = positive,

Figure 4.27 Wave propagating in positive x-direction

this is true for the wave:

n = ﬁcosm(t - f)
c

The second wave

n = ﬁcosu{t + f)
c

1s the other wave, travelling in the negative x-direction.

Length of a tidal wave

The wave length of a tidal wave is large. The wave length is given by:
L =cT

Take for instance the wave corresponding with the M,-tidal component:
T'=12 h 25 min = 44700 sec.

For a water depth /= 10m, ¢ = I% = Jgh = /100 = 10 mis

so: L =10 *44700=447.000m = 450 km.

In deep oceans the wave length is even much larger, because the wave length L is proportional to the
square root of the depth.

A harmonic wave propagates over large distances, thereby keeping its original shape. The fact that
the wave does not deform is a consequence of neglecting the friction. In nature we will never find
pure harmonic waves. In shallow seas estuaries the following effects occur:

— friction;

- damping;

- reflection, and so on.

Discharge in a single progressive harmonic wave

Consider the motion of the water particles in a single progressive harmonic wave that propagates in
the positive x-direction.
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The water elevation is given by: 1 = fjcosw?

The discharge is given by:

So nand Q are in phase. This

means that:

- when 7 = max. positive,
then Q = max. positive;

— when n=0then Q=0;

- when 7 = max. negative,
then Q = max. negative.

The relation between 7 and O
is given in Figure 4.28.

The discharge (or velocities)
of the water particles are in
phase with the water
elevation. The velocities are
maximum positive under the

0 = Qcos(wt - kx) with O = beiy

).
>

- )
4 - X
——r v’ —
— ! - ! —_—— i
: ¢ : ¢ : '
e - . . !
L9 P | |
////////////////////////,

Figure 4.28 Relation between wave 7 and discharge O

top or crest of the wave. The velocities are maximum negative under the trough of the wave.

Consider now the ratio of the velocities of the water particles and the propagation speed of the wave.

Q = bchy
and: O = 44
where:

= maximum velocity water particles;

U
A = bh (cross section).
i _ A

So: #bh = bcfj or X = 3

c

The amplitude 77 is small compared to the water depth 4. So the velocity « is small compared to the
propagation speed c. This means that the assumption to neglect the friction term in the equation of
motion was correct. The velocities of the water particles appear to be small.

It was derived mathematically that the velocities are maximum positive under the crest of the wave,
and maximum negative under the trough of the wave. This can be illustrated by considering
continuity or the mass balance for a wave, propagating in positive x-direction (Figure 4.29). Consider
a wave at time #, and some time later at #, + A4t. In this time the wave shape propagates. The water
particles move back and forth, but in the mean, they stay in the box.
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—»C
do —
wn = J~_UWp el - N 4
/6'// U ( \\\ '// AL ( \\ «
] ;o N ~ \ X .
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Q : ¢ - 9 : Q
Q — o - 5  — ¢
A iy /\ - /\__ 2 LA S S S S
water stays water stays water stays
in this box in this box in this box

Figure 4.29 Mass balance for a propagating wave

4.4.2 Standing harmonic wave

Standing waves can be observed in rivers or estuaries, which are closed at one end, and where total
reflection takes place. In that case the complete solution of the harmonic wave applies.

Consider a wave propagating in the positive x-direction and a reflected wave propagating in the
negative x-direction (see Figure 4.30).

reflection against a wall

¢
incoming wave —

ﬂ\//\X
-

x

n =:z,cos (wt-kx)

C
-

reflected wave /\

b

N = ncos (@1 + kx)

\\\\\\v\\\\\\\\\\\\v\\\\\\

Figure 4.30 Incoming and reflected waves
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If case of complete reflection, the amplitude of the reflected wave is equal to the amplitude of the
incoming wave. The resultant wave is the sum of the two progressive waves.
N = ficos(w! - kx) + ficos(w! + kx)

Using the relation:
cosa + cosb = 2<:osa—£cosa—b
2 2
and: c=wt-kx,b=wt+kx
Sothat: a+b=22t=mtand.a;b=ﬂ=—b
2 2 2 2

gives: n = 2fjcoswrcos(-kx)

Consider the expression for the complete solution of the discharge:
0 = Qws(mt - kx) - Qms(mt + kx)
Applying the above relations gives:
Q = Ox(-2)sinwrsin(-kx) or
Q = 20sinkxsinwr with O = bic
To interpret these results, first a closer look is taken to the expression for the water elevation:

= 2fjcoskx coswt
| I

amplitude is a
Jfunction of x

The water elevations have the same phase wt for all values of x. The amplitude of the water elevation
is a function of x. There are locations where the amplitude is always 0:

coskx = 0 for kx = z 3;
k = 2—“ substitution yields x = lL 3L
L 4 4
These locations are called nodes.

There are locations where the amplitude is maximum: coskx = %1 for kx = 0, m, 2m, ...
These locations are called antinodes.

At certain instances, all
elevations are 0, namely when X

cosw? = 0.

At certain instances all N"' / /\ J
elevations are maximum,

namely when coswt = £1. v \
The resulting water elevation

in the standing harmonic wave
are indicated in Figure 4.31.

At a certain moment in time,
the wave has the slope given Figure 4.3]1  Standing wave with nodes and antinodes
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by the drawn line. A quarter period later all elevations are 0. After a half period the wave has the
shape of the dashed line. After three quarter of the period all elevations are 0 again, and so on.

Considering the expression for the discharge gives:
Q = 20sinkxsinwt
—

amplitude is a
Junction of x

The discharges have the same phase ax for all values of x. The amplitude of this discharge is a
function of x (see Figure 4.32).

There are locations where the a
amplitude is always 0: I\
sinkx =0

forkx=0, 7, 2m, ........ s /\
/ N
P N
- X

As k= 2m/L, it means that : N o

which is in the antinodes. = =

3 5
3 L 2L
L -t <

Locations where the amplitude 0 St

is always maximum are:
sinkx=+ 1 Figure 4.32 Nodes and antinodes of the discharge
for kx = /2, 372, ....

As k =27/, it means that amplitude is maximum for x = 0, 4L, 3/4L, which is in the nodes.

As said before, standing waves can be observed in rivers and estuaries which are closed at one end.
It is logical that the antinode (where Q = 0 all the time) is located at the closed end.

Figure 4.33 shows the time history of a standing wave.
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a

Q=0 19=0 Q=0 =0 Q=0 n=2ncoskx coswt
antnode node  antinode node  antinode Q= ZQHS'" kx sine t
7 v
; =
/
. 2\9-—”/(0) olr -— lz = max
o o o [¢) ol|/
o o o o o f Q=0
o) 0 [o) o ol/
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Figure 4.33 Time history of a standing wave

Tides and tidal currents (March 19, 1997) IHE-Delft 4 - 29



Long waves in one dimension

Resonance of a standing wave

The mode of oscillation in a /f //
bay or estuary, which is 7 2 /// //
closed at one end, is governed /// [ ////// (L \/

by the ratio of the length of or
the tidal wave and the length acean
of the bay. Consider a bay
with a length [/ (see
Figure 4.34).

If the length of the bay
approaches L, %, °/L Figure 4.34 Bay with length !
(where L is the length of the

tidal wave), then a node . L ]
occurs at the sea entrance and \j//’_-_q
an antinode at the closed end '

(see Figure 4.35). —

SRR
‘l
-

In that case, resonance occurs.
The water levels in the

antinodes become yery large E .
(theoretically infinite). In /__\ \/1; |2y
nature, friction will prevent M; 4
that the amplitude of the water ! £

levels becomes infinite. ooon -

Thus the friction should be Figure 4.35 Resonance in the bay of Figure 4.34
taken into account with the

computation of the resulting wave height. For this, mathematical models are available.

Resonance will take place if | = YiL, %L, °/,L, ..... A general expression is:
1= 22y Githn=0,1,2,3,4,..

The natural period of oscillation of a bay with length / can be found from:

L=C.T"T=£=L
¢ \gh
T=-—%  withn-=0123, ..
2n + 1)/gh
RS

2n + 1

In this way it can be checked if a bay or estuary will have resonance problems for certain periods
from the tide at sea.

An example of a standing wave, in which the length of the bay is about one quarter of the wave
length (% L) 1s found in the Bay of Fundy at the east coast of Canada (see Figure 4.36).
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Figure 4.36  Bay of Fundy, Canada

The bay is connected to the open sea and has a closed end. The tidal amplitude increases considerably
between the open end and the closed end of the bay.

At the open end the amplitude is about 1.5 m. At the closed end the amplitude is about 6 m. The high
waters and low waters occur in the whole bay almost simultaneously. Both features indicate a
standing wave in resonance. This can be checked as follows:

— length of the bay: /=300 km;

— average depth: h=75m;

— principal tide: M,-tide (period of 12 h 25 min, so T = 44700 s).
L = cT = \[ghT
Jeh = J10x75 = 27mis
T =44700s

so: L =27 *44700 = 120600 m ~ 1200 km.

The length of the bay is about a quarter of the wave length (Y4L), so resonance occurs.

Tides and tidal currents (March 27, 1997) IHE-Delft 4 - 31



Long waves in one dimension

Seiches

Resonance does not happen only due to the tidal wave with periods of hours (like the M,-component
with 12 h 25 min.), there are also periodic long waves of relative short periods, ranging from
5-30 minutes, which are called seiches. Seiches are caused by meteorological phenomena, like
moving depressions. The amplitudes of seiches are small compared to the water depth, which means
that the friction can be neglected and that the harmonic wave solution can be applied. Seiches are
especially of relevance for harbour basins and should be taken into account.

As example, consider the harbour area of Figure 4.37.

sea

/ \ o &/, velocities
L

&4 /////////////////////////////////

M, - tide
T=12h 25 min d= 16 m
0000707 & W iz
% % | harbour basin
7 —
seiches 7
T =20 min ' //

7

vertical movement of water level

Figure 4.37 Harbor area along a tidal river

Seiches can occur with periods of about 20 minutes. The depth of the harbour area is 10 m. The
critical length of the harbour basin can be determined as follows:

Length of the seiches wave (superimposed on the tidal wave) is:
L = cT = JghT = \/10x10x20x60 = 12000m = 12km

So the critical length of the basin / = YaL = 3 kom, which means that with such a length resonance due
to seiches can be expected. Practical consequences can be:

- high velocities at the mouth of the harbour basin and cross currents on the river;

- important vertical movements of moored ships.

Transverse oscillation

For completeness also a third mode of oscillation, a transverse oscillation in seas or bays, is
considered (see Figure 3.38). This occurs between two closed ends. The length between the two
closed ends should be %4L, L, */,L. In such a case, antinodes are located at both ends and resonance
may occur, with large amplitudes of the water levels in the antinodes.
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Resonance will take place if L
I=%L,L,*,L, ..... A general - -
expression is: 7 c +rTE
n, . 7 LTS EERN -
|l = =Lwithn=1,23, ..... / 1= T 1] ; 2
| L Lt
The natural period of
oscillation of a basin with .«
length / can be derived I Caili Tl
through: T~ T 1
71 0 ‘/:,/' P
L=CT"T=£=L ’ k"' T~
€ Veh Figure 4.38 Transverse oscillation
n 2]
l=—=L-L==—
2 n
so. T = 2L

nygh

It is also possible that the
length of a bay or estuary, L

closed at one end equals
WL, L, ... (see Figure 4.39).
In this case also resonance
will take place, caused by a

standing wave. In this case, \ 1 N
however, no amplification of ooon LT et . st
the tide occurs. 1 L Sk

anode antnode
The tide at the closed end has

the same amplitude as the tide Figure 4.39 Oscillation for 1=0.5 L
at the open end. It may
become somewhat smaller due to friction.

An application of resonance between two closed ends is
a lake, which is exposed to a heavy wind for a certain ey Tw

time and suddenly the wind stops (see Figure 4.40). ) f
//x‘/ T7TT7T777 77777777 "_"'///

The wind causes a shear stress over the water surface:

x, = foW? Figure 4.40 Lake exposed to wind
in which:

Ty shear stress;

f, friction coefficient;

pa density of air;

w wind velocity (m/s).

As reaction to the wind a slope in the water level of the lake occurs. Therefore, consider an element
of the lake with length dx, see Figure 4.41.
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Figure 4.41  Sloping water level as reaction to the wind

The shear stress will balance with a pressure gradient due to the slope in the water surface. The shear
force (per unit width) is: T dx

The net pressure force (per unit width) is: p“g%'dvh

Equilibrium of the forces means:
p”gh%]dx = f.pwdx

So the slope of the water level is:
o Le?
ox p,gh

Note that the slope is reverse proportional to the depth (1/h), which means that:
— 1in shallow lakes the wind can cause an important set-up;
— in deep lakes (or seas, or oceans) the slope will be very small.

This means that storm wind will lead to storm surges (= set-up due to storm) in shallow seas, and

not in deep oceans. Figure 4.4 shows the equilibrium situation during heavy wind, which is a more
or less constant slope.

When the wind stops, the shear force at the surface has ceased. The pressure gradient forces the
water to flow back. Now the effect of inertia becomes visible: the lake starts to oscillate (see
Figure 4.42). Of course this motion will be damped due to friction.

The period of oscillation can be computed from the discussed theory:
~ length of the lake L
— depth of the lake h.

The oscillation is performed by a half wave length:

l=-;-L,L=cT=T\/g_h

SO:T:_L_=__21_
Veh  Vgh
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XX

,
/
////////, e .’//'/‘/'////////////,//i///’,/’////,’/,///

-

'

Figure 4.42  Oscillation in a lake after a storm
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S Tidal propagation in one dimension

5.1 Introduction

The discussions on the harmonic wave gave some insight in the behaviour of a tidal wave. This
Chapter treats some types of tidal propagation in one dimension, namely a tidal wave travelling on
a river in upstream direction and a tidal bore. Tidal waves in seas and oceans are discussed in
Chapter 6.

5.2 Tidal wave on a river
A tidal river is the lower reach of a river, which is under influence of the tide. Here, interaction takes

place between the oscillating flow caused by the tide at sea and the run-off of the river. One of the
effects is that the amplitude of the tide decreases in the upstream direction.

Consider the situation of tidal wave
Figure 5.1. The assumptions
for the river are:

— a uniform cross section;

— constant slope /;

— discharge O, = constant.

The x-axis is parallel to the
bed of the river and positive in
the downstream direction. The
discharges Q, is positive; the Figure 5.1
slope 1 is also positive.

The run-off flow in the river is basically balanced by the friction force (Chézy's law holds). Thus the
equation of motion for this problem should contain the friction term. The equations describing this
problem are:

.a_Q + bﬂ = 0

uation of continui
r ar Eq f ty

%%_? - g% - gl + g-&Qzl% Equation of motion

Assume that the deviations from the mean water level are small, implies that C, 4, R can be
considered as constants. The friction term is non-linear, which causes problems in the analytical
solution. Therefore, this term is linearized:
4y gl .o
= = mQ
C?4’R  C%4™R
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where m = 8l Y

C4%R
As g, C, A, R are considered as constants, m is a mean of discharge |Q| over a tidal cycle. So m is
a kind of mean value of the friction over a tidal cycle. As a consequence of the linearization, the
solution will not show any distortion of the tidal wave due to the quadratic friction.

The linearized equations now become:
90 , ,om ; _
= +b— =0 Equation of continui
” > g of ty
190 , gﬂ - gl + mQ = 0 Egquation of motion

A ot ox

From these equations, an equation for the water elevation 7 can be derived. For that, the first
equation is differentiated to ¢ and the second to x:

20, ., _, (5.1)
oxor a2

120, gal"+ aQ-Oorazg+gAazn+mA =0 (5.2)
A Oxot ox? oxot ox

Subtracting Equations 5.1 and 5.2 gives:
21 - a1 a2

at2 ox

Replacing a—Q- by (-b?ﬂ) (equation of continuity) gives a relation with independent variable 7:

baz" - gAazn R mAbaTI - Oor (dividing by 5) 20 - BA.F0 , 0 _ g

or? ox? or? b ox? ot
As % = c,,2 (propagation speed), this equation becomes:
%zn; - & 22:']2 + mA— &n = 0, which is known as the telegraph equation. (5.3)
t

Oscillating solutions of this linear equation are of the form:
= fie, cos(mt * kx)

in which:

1 reference wave amplitude for x = 0
f,¢**: amplitude of the wave, function of x
A, k:  unknown.
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It is not likely that a wave with a very high amplitude occurs for x = - (up the river), so only ™
satisfies. The wave on the river, is a progressive wave in the negative x-direction, so only
cos(w? + kx) should be considered.

The solution of the equation is :
n = fi,e cos(wr + kx)

This is a single progressive wave, propagating in the upstream direction, with decreasing
amplitude.

Factors A and k can be obtained by substituting the solution in the telegraph equation. The
derivatives of 7 are:

% = fi,e™ -sin(wt + kx) @ = -f) we sin(wr + kx)

% = -fi, w-e™cos(wr + kx) = -fj we*cos(wr + kx)

% = fi,[he ™ cos(wr + kx) + ™ sinwr + kx)-k] = e cos(@r + kx) - fi ke sinwr + kx)
% = fi, AM[Ae ™ cos(wr+kx) + e™- -sin(wt+kx)-k] - k[A - e ™ sin(wr+kx) + e ™ cos(wt+kx) k)

= A% cos(wr + kx) - fi,Ake sin(wr + kx) -fi khe sin(wt + kx) - f)j%e Mcos(wr + kx)
= fi,A%eMcos(wr + kx) - 2f) kAe Msin(wt + kx) - f) % *cos(wt + k)

Substitution of these derivatives in Equation 5.3 yields:
-fi, w%eMcos(wt+kx) - ¢ [f), A% Mcos(wr+kx) - 21) kre Msin(wt+kx) 1) ke Mcos(wt+kx)] - mAf weMsin(wr+kx) = 0

Dividing byf}, and e** gives:
cos(@t + kr)[-w? - c2A? + cZk?) + sin(wr + ko)[2ckA - mAw] = 0

This equation can only be fulfilled when:
(-0? - A%+ k%D =0 (1)
(2kAc? - mAw) = 0 2

Now A and & can be solved:
mAw

From equation (2): k =
2A¢}

Equation (1) can be written as ¢2A? - cik? + w2 =0
2m?4%w?

5 +w? =0
42%;)

Substitution of k gives: ¢2A? - ¢
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2422
Multiplying with 4% c2[\%? + o[\ - LA - g
4c,
This is a quadratic equation of the type :
Jb2 -
ax? + bx + ¢ = 0 with roots x,, ='—b-*-—:i
” a
Applying this:
24 2.2
~0?  |wf + 4c? mAzw o o1z |1 m24?
[)’2] = \ 4co — \ (.)2
1.2 2 2 2
c; 2c,

A% is positive, which means that only the positive root holds:

By TE 242
W |-1+ |1+ MPAZ w |-1+ l+m‘;1
A = L [ A=—4 N z (5.4)
2c? c, 2
242
o [+1+ |1+ 2 A
. : N A\ w?
In a similar way, the solution for £ becomes: k = (5.5)

5.2.1 Celerity of the wave

For investigating the celerity of a wave, the above solutions can be used. Substitution of &
(Equation 5.5) in the expression for celerity ¢ gives:

(4] c, V2

C = =— =

k
242
J+]+‘l+m'4
w2

From this relation it can be concluded that:

c 2
- m=0 (no friction): ¢ = -2 =co=LA
V2 b
o c 42
— m + 0 (friction): c=———<g,
term >y/2

So in case of friction, the celerity of the wave is smaller than without friction.
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Example
.80 . _g 10 g

(mean value over a tidal cycle)
C4R C4RA C%R
So: mA = 8|
C?R
Substitution of:
g =10m/s’
lu| =1m/s
C =50m'¥s
R =5m
“’M,=O-00014 rad/s
gives:
ma = S o 101 40008
C?R  (50)*x5
m34? - 0.00082 -3
w? 0.00014?
Substitution in the expression for ¢ gives:
c 2 c 2
c= 2 = N2 = 0.54c,
J mi4? \/l + 433
1+ |1+
P

This shows that the celerity or propagation speed of a tidal wave is to a large extent reduced by the
friction.

5.2.2 Attenuation of the wave

The attenuation of a tidal wave is determined by the factor e* in the general solution:
n = fi,eMcos(wr + kx)

Substituting the numerical values of the above example in Equation 5.4 gives for A:
242
mA° _ 32
o?

- 0.00014y-1+/33 _ 3%10°5 m-!
/100

The attenuation of the amplitude is indicated in Figure 5.2.
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At x = 0 (mouth of the river; n et
see Figure 5.3), the amplitude '
is 7,

in upstream direction can be

determined as follows:

- x=-33km
Ax=-1,s0e’'=037;

The decrease in amplitude in . 1
x = 0

- x=-67km

“ %

Ax=-2s0e2=0.14; Figure 5.2 Development of the amplitude of a wave traveling in

- x=-100 km upstream direction

Ax=-3,s0e>=0.05

Thus, after 100 km only 5%
of the amplitude is left.

sea

i

Figure 5.4 gives an example
of tidal wave propagation in
one of the branches of the
river Rhine. The amplitude
decrease from location 1 to 7

(see water level curves), Figure 5.3 Mouth of the river
which confirms the theory.

5.2.3 Discharge of tidal river

The discharge of a tidal can be derived from the equation of continuity:
90 ,po .
ox ot

in which:
n = fie Mcos(wt + kx)
L -f) we Msin(wr + k)
ot
Substitution in the equation of continuity yields:
9 . 52N - by weMsin(er + ko)
ox ot
Integrating this equation gives:

f a0 = hij w f eMsin(wr + kx)dx
The solution of this integral can be found in standard books:

Tides and tidal currents (March 20, 1997)
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Figure 5.4 Tidal wave, propagating in upstream direction in a branch of the river Rhine

IHE-Delft 5 - 7

Tides and tidal currents (March 20, 1997)



Tidal propagation in one dimension

A
f eMsin(wt + kx)dx = Aze—kz[lsin(mt + kx) - kcos(wt + kx)]
+

The integration step gives :

Ax
0=0,+ bﬁ"mxze kz[x sin(wt + kx) - kcos(wt + kx)]
+

in which ), is the integration constant, being the constant run-off discharge of the river. The second
term is the oscillating part, which is superimposed on the constant discharge. The solution of the
discharge for a given point x along the river can be found as follows:

A. Neglecting the friction
When it is assumed that the friction can be neglected, then factor m = 0, which means that A = 0. The
expression for O becomes:

bfj w
0=0, - ]: cos(wt + kx)

This expression shows that the oscillating part of the discharge is in phase with the amplitude of the
water level:

n = fieMcos(wr + kx)

The solutions for the discharge and the water level for a given point x along the river are given in
Figure 5.5. These solutions correspond with the behaviour of a single progressive wave. The
moments, during which the currents are 0, are called slack water. We see that the moments of slack
water move to the moments of HW, because of the constant discharge.

% T HW HW

/‘—\ LW /—\ "

] I
1 I
i I
] I
1 I
| ]
| I

Q 1 1
I |
| |
1 |
| |
| |
|

Qg .\

|
N

| ebb
flood

slack
water

Figure 5.5 Discharge and water level for a given location x along a river
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B. Friction taken into account
Taking friction into account implies that both terms of the oscillating part should be considered. Now
the expression for Q is:

=0, - b

e™ " e’ .
kzkcos(mt + kx) + bfj @ Asin(wf + kx)
+

Az lz + k2

The different terms of the discharge are given in Figure 5.6. The term with the sinus function is due
to the friction. The effect of that term is that slack water occurs earlier.

n T HW HW
/\ Lw /\ ot
SN :

Az |
-L:z“ —— k cos [u%vk*)

| | !
I | |
| ! !
: : : @ Lkt
| | | |
Q : : : :
A
o e R T B
: TR O
| |/V \I/ I
ap e N LN
X sy~ 7

W = W
flood flood

slack slack
water water

Figure 5.6 Discharge when friction is taken into account

When the amplitude of the Q
oscillating part is equal to O, |
slack waters occurs at HW o HW
(see Figure 5.7). This means
that there is no flood flow.

0
i

Figure 5.7 Amplitude of oscillating part = 0,

When the amplitude of the ||q,
oscillating part is smaller than \A A
0., slack waters do not occur :
(see Figure 5.8). In this case,
only ebb flow can be
observed.
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Looking to the discharge of
tidal wave propagation of
Figure 5.4, it can be seen that H)'V
at location (4) only ebb flow :
occurs. This location is called 5
the limit of the flood flow. i
Downstream of this location :
flood low and ebb flow occur,

whereas upstream only ebb hr
flow can be observed.

i

|

ﬁ |
> {

Figure 5.8 Amplitude of the oscillating part < Q,

5.3 Tidal bore

For the discussion of tidal bores, a gradually varied steady flow situation is considered. For the
element of Figure 5.9, Newton’s law holds:

F =maora=—
m

7 - &
'ﬁﬂl"\.' F’a

Figure 5.9 Element for a gradually varied flow situation

For steady flow, the acceleration is:

The force per unit mass can be expressed by (see also Figure 5.9):
F dh u?

— = -— - gi - g— = pressure - gravity - friction
— = &8 P gravity - fr

The equation that describes steady flow is:
du dh . u?

U— + g—m + +
il el U e

= 0 (equation of motion) (5.6)
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The continuity equation shows that for constant q, % = 0.
This can be written as:
dh du du u dh
U + h— =0 - — = - —
dx dx h dx
Substitution in Equation 5.6 gives:
ﬁﬁ+gﬂ + g +gu2 =(
h dx dx C?h
Dividing by g and rearranging leads to:
ol
e —
SR s ] Expression of a fidal bore 5.7)
dx | - u?
gh

Note that-‘-/—l_‘_— is the Froude number, withc = /gh (celerity of the wave).
gh

Figure 5.10 shows the development of a tidal bore.

Figure 5.10 Development of a tidal bore

The development can be explained with Equation 5.7:

I For a current in upstream direction (subcritical flow: u < c or Fr < 1): % is negative,
2
I Slopeﬂcanbccomewwhenl—L=O~u=Jgh~u=c;
dx gh
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Il When the front propagates into the estuary, generally the depth will decrease. This means that:
- velocity u will increase;
- celerity ¢ will decrease.
Now the wave front becomes unstable: a bore is formed (u > ¢).

5.4 Resonance

Text not yet available.
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6  Tidal propagation in two dimensions

6.1 Basic equations for waves in two dimensions

The tidal motion in seas differs from the cases of the previous Chapters, as:
— The flow is two-dimensional;
— The rotation of the Earth has effect on the flow.

To describe the influences of these effects, first the water motions in two-dimensions are described.
The water motion in two dimensions can be described by three equations:

A continuity,

B motion in x-direction,;

C motion in z-direction.

6.1.1 Equation of continuity

For the Equation of continuity, a square box with lengths dx and dy is considered (see Figure 6.1).

(W v
_~
é’ldt dV ;
ot L V+Wdy
[}
T ;I il / velocities
L /]
| 7 i
]
b
|
v ,L-——-...___
i o 7/

—~/ dy
///é{/ /

bottom

Figure 6.1 Box in sea, with length dx and dy

The symbols used in the box have the following meaning:
n water level

h  local depth (h = h, + 1)

The inflow at the left-hand side and the front in time increment 4t is:
uhdydt + vhdxdt
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The outflow at the right-hand side and the back in a time increment 4 is:

(uh * %dx)dydi . (vh R %)dxdt

During time increment dt, water is stored in the box at the water surface:

an
adsdy

Conservation of mass, over a time increment df, means:
Inflow - Outflow = Storage

So:
(uhdydt + vhdsdi) - | uhdydr + %dxdydt + vhdidt + %dydxdt) . %dtdxdy

After some elaboration:
eul & A(uh) & a(vh)

= 0  Egquation of continuity for two-dimensional flow 6.1)
ot ox dy

6.1.2 Equation of motion in x- and y-direction

The equation of motion in x-direction can be derived by
considering a box of water with horizontal dimensions dx 74
and dy, and applying Newton's law in x-direction (see

Figure 6.2): ; " L
Force = mass * acceleration (in x-direction), thus el
du it — x
F =ma = m— !
X X dt :
u=f(xyt ¥
_ Ou ou Ju L y
du = adx * a,'dy * Edt ‘///é{//// d/v i
u
.d_u = % + .a_x - a_uiy. + @ velocities
dt ox ot dyat ot
As % =u, % = v, it follows that Figure 6.2 Box with x,y and u,v
t t

du _ du ou du
dt ot ox dy

]
I
#
=
I
&
<
|

Substitution in the relation for F; gives:
F, ou  ou o

—_ = e 4 Y + V—

m ot ox

The forces F, which act on the box are pressure, bottom friction, fluid friction along the walls (called
turbulent viscosity), wind force (shear stress over the surface), Coriolis force (due to rotation of the
earth), and tractive force.
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For a first approximation it is sufficient to pay attention to:
— Pressure force;

— Bottom friction;

— Coriolis force.

a. Pressure force
The pressure force can be derived in a similar way as for the one-dimensional case (see Figure 6.3).

n y
I
: \ - X
|
dhe
1L ogh e -+—dx 2d
5 I Gy =i ) E 2() gh ) dy
:
|
|
dy/'-—
- Yﬁ\//
dx bkl
f gh Cg(h+bxdx)

Figure 6.3 Symbols used for pressure force

Left-hand side
— Water depth: h.
— Pressure at the bottom: pgh.
— Resultant pressure force in x-direction: Y pgh’dy.
Right-hand side
— Water depth: h + %dx
x
— Pressure at the bottom pg (h + -g—x’idx).
- Resultant pressure force in x-direction —pg(h + ——dx)zdy

Net force in x-direction

1 1 Ax oh oh
—pgh®dy - —pg(h? + 2h=dx + (—dx)})dy = -pgh—
>P8 dy 2pg( F +(8x )My = -pg axdm’y
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The mass of the box is phdxdy, so the net force per unit of mass is:

oh
-pohZ"
B a
m phdxdy ox
Because h = h, + 5, this can also be written as:
3 gl 6.2
T €
b. Bottom friction
Consider the same box of water (see Figure 6.4). The
velocity of the water in the box is V with components u y

and v. The friction force 7 (per unit of surface) is
opposite to the direction of the velocity. The components

1
are 7,and 7, .
I
!
I

Consider the friction force in x-direction: P s

s U
-1, dxdy ‘g

The derivation for the one-dimensional case showed that
7 can be expressed in terms of velocity 7 and the
coefficient of Chézy C by:

/’[ & y

7Y

VZ
T = pg—

o2 Figure 6.4 Symbols used for bottom

friction

The component in x-direction is:
V2
T, = TCosp = Pg-C—zcos‘P = Pg

VeosV _  ufu? + v?
C 2 = Pg C 2
The friction force in x-direction is:

2 2
Tdedy = - pgluchxdy

The mass of the box is phdxdy
The net force per unit of mass is:

ufu? + v?

F, T dy=_g“ . -
m phdxdy C?h '

N

c. Coriolis force

The Coriolis force is caused by the rotation of the Earth. It is significant in oceans, seas and wide
estuaries. A rotating coordinate system introduces additional acceleration forces, which can be
illustrated with the example of Figure 6.5. This Figure shows a rotating disk with angular speed w.
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At location A, a person throws a ball (with mass m and
velocity v) to a person in location B. If the disk would not
rotate, the ball would arrive in location B after 4r s. From
S = vt it follows that AB = vAt. However, as the disk
rotates, the ball will actually arrive in location C after At
s. Apparently an acceleration a,, causes the ball to arrive
in C and not in B.

From § = -;-aﬂ it follows that B'C = %an(At)z.

So: B'C = A'CAa = ABAc = (vVAf)(wAY)

Thus: -‘%tx‘_.a,(At)2 = vo(Ar)? =~ &, = 2vw

Therefore, the Coriolis force becomes:
F.,, = moa., =2mw

The Coriolis force is directed perpendicular to the
direction of motion (see Figure 6.6). It is directed to the
right, if the plane is turning anticlockwise

Consider a point P moving on the Earth surface (see
Figure 6.7). Point P has a latitude ¢. Particle P has
velocity ¥ in the tangent plane. The rotation of the Earth
is @ The angular speed of the tangent plane is w sing.

This means that the force acting on particle P is:
F_,, = 2mvwsing

From this relation it can be concluded that:

— For sing = positive (Northern Hemisphere), the
Coriolis force is directed to the right;

— For sing = negative (Southern Hemisphere) the
Coriolis force is directed to the left;

— At the poles sing = maximum. Here the Coriolis
force 1s maximum;

— At the equator sing= 0. Thus, here the Coriolis force
1S Zero.

In x-direction, the Coriolis force F is directed to the right
on velocity + v F, = 2maw sing

The Coriolis force per unit mass in x-direction is:

Figure 6.5 Symbols used for the
Coriolis force

Figure 6.6 Direction of Coriolis
force

M, )

— = 2wvsing = fv (6.4)

m
in which f = 2asing, which is called the Coriolis Figure 6.7 Effect of Coriolis force
parameter. on Point P
Tides and tidal currents (March 21, 1997) IHE-Delft 6 - 5
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Equation of motion
The Equation of motion in x-direction (6.1) can now be written in terms of pressure force (6.2),
bottom friction (6.3) and Coriolis force (6.4) per unit of mass:

i-puiq»v_-——-ﬂf

a & H Tk

Z 2
or @+ui+vi+g@+gﬂ—ﬂ= 6.5)
ot ox dy ox C?h

In a similar way, the equation of motion in y-direction can be written as:

i+ui+v?ay_+g_+gD+ﬁ¢ (6.6)

ot ox

Figure 6.8 shows the direction of x and vin | 4
relation to x and y.

Equations 6.5 and 6.6, together with the =P f
Equation of continuity (6.1) describe the water
motion in two dimensions. These can be used for
describing tidal waves in large estuaries, seas

i
and oceans. ’ .

Figure 6.8 Directions of #, v and x, y

6.2 Effect of the Coriolis force

The effect of the Coriolis force on the tidal system in seas and oceans can be illustrated by
considering a river (see Figure 6.9).

The equation of motion in the y-direction is:

Q+u_ia!+v.a_v &n V—._W+ﬁ4-

+ o—1 + =
a a y ‘e ° cm
In the river: v=0,g=0,@=0,@=0
) ox oy
So the equation of motion reduces to:

@+ =0
gay Su

It can be concluded that the Coriolis force is balanced by the cross-slope of the water level in the
TIVET:

on _ -zu - _2wsing
¥y g g
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'/////////////*/////////////////
1

500 m :
1
1

—— U= 1m/sec

/////////////€7//////{7/C//‘/{/F/////
OImolis Force

cross section

—]

'

Corriolis Force

— o .
y a— ST 7T 50~ Northemn Hemisphere

Figure 6.9  Effect of Coriolis force in a river

Example
— Width of the river: 500 m;
- Velocity: 1 m/s;
— Latitude: 50° (Northern Hemisphere).
-4
Substitution gives: % - -2X°'73"113 x0.71,1 - 10

So the difference in water level in cross direction is: An = 10°x500 m = 5 mm. The influence
on the main flow in the river can thus be neglected. The situation, however, changes if the width
increases to many kilometers. Then also cross velocities may occur, caused by the Coriolis forces.

If large water bodies are considered (like the North Sea), the gravity terms and the Coriolis terms in
the Equations of motion can be of the same order of magnitude. Then so-called Kelvin waves can be
observed. For arbitrarily configurations no analytical solutions are known. However, numerical
solutions can be obtained very accurately.

L s A

An example of such an analytical solution is presented in
Figure 6.10, which shows a rectangular channel of constant .

depth, rotating around a vertical axis with angular speed . The o
x-axis is located along the bank of the channel; the y-axis
perpendicular to it.

TSI A G I IS i 5 A

Assuming small water level elevations, compared to the depth,

a harmonic solution of the two-dimensional equations is: Figure 6.10 Rectangular
channel with
rotation @

Tides and tidal currents (March 21, 1997) IHE-Delft 6 - 7
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Iy 5
n = fle © cosw(r - =)
c
in which:
fi: amplitude at the wall (for y = 0)
f. Coriolis parameter
c. celerity (ygh)

Further:
0

<
I

=1
h

o=

The amplitude of this wave is an exponential function of y. At the wall the amplitude is highest.

Assume a wide channel, with the following data:

- Latitude 50° (Northern Hemisphere);
— Depth 100 m;

— Wave amplitude for y =0 fi=1m

The wave amplitude as a function of y. Table 6.1 shows some values, whereas Figure 6.11 shows
this Kelvin wave.

Table 6.1 Wave amplitude as a function of distance y

Distance y from the wall (km) Wave amplitude 7 (m)
0 1
1 0.997
10 0.966
100 0.71
| 1000 ~ 0.03

6.3 Amphidromic systems

Kelvin waves can be reflected as Kelvin waves too. This is illustrated in Figure 6.12, which shows
the effect of the Coriolis force on a standing wave. To explain this Figure, Figure 6.13 is needed,
which shows the motion of a standing wave without rotation. This is also indicated at the left-hand
side of Figure 6.13.

The effect of rotation can be explained as follows. The Coriolis force is acting to the right on the
moving water particles (see Figure 6.13).

t=0
The velocities in the length direction are zero. So the Coriolis force in cross direction is also zero,
which means that the water surface in cross direction is horizontal.

Tides and tidal currents (March 21, 1997) IHE-Delft 6 - 8
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Figure 6.11 Kelvin wave

t = l 3 hours
4

The velocities in length direction at the node are maximum. The Coriolis force in cross direction is
acting toward the wall at the left-hand side. HW occurs at that wall.

1
t = — (6 hours
2( )

The velocities in the length direction are again zero. So the Coriolis force in cross direction is also
zero and the water surface in cross direction is horizontal.

3
t = = (9 hours
4( )

The velocities in length direction at the node are maximum. The Coriolis force in direction is acting
toward the wall at the right-hand side. HW occurs at that wall.
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L H
A/—_'-_'_O—
_ 3 o
t=0 & & (@) velocities = 0
0 0 o

VS A A A A A A B e

1 o - O -
t=_T 0 P E— o max. velocities at node
) o e o
SIS S S
H
2 o 5 velocities = 0
o 0

VLS AL A LLLLLASILALLEL LSS

O — o : -

o —_— o) max. velocities at node
@) — (6]

LSO LLLLLLSLLLLL

A

node
Figure 6.12 Effect of Coriolis force on a standing wave

So HW and LW are turning around in the basin:
— This rotation is anticlockwise on the Northern hemisphere;
— This rotation is clockwise on the Southern hemisphere.

It can also be observed that cross currents are introduced by the waves in cross-direction, on which
also the Coriolis force is acting.

The effect of the rotation of the earth on such a standing oscillation is that the nodal line is reduced
to a nodal point. At the nodal point the water level is constant. That point is called the Amphidromic
point. The wave system is called the Amphidromic system.

Around Amphidromic points, lines of equal phases can be seen (for instance for the M,-tide). These
are called the co-tidal lines. Also lines of equal tidal ranges can be drawn, which are called the
co-range lines.

In nature, many Amphidromic systems can be found. In the North Sea, three Amphidromic points
for the M,-tide occur (see Figure 6.14). One point is located in the Southern part of the North Sea,
one near the coast of Denmark and one near the Norwegian coast. The co-tidal lines (equal phases)
are shown as solid lines. The co-range lines (equal range)are indicated as dashed lines.

Figure 6.15 shows the M, co-tidal and co-range lines for the entire world.
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without cross- section
gyration at mia-length
A
hour OP—-—_:—"—.°-1 -
ke
AR resulting amphidromic

point and rotating
co-tidal lines

@)

hour 3

e A
hour 6 h'f"% »‘—1-'—-;-._]

hour 9 "JF it

Figure 6.13 Standing wave without rotation
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N,

s o <

Figure 6.14 Amphidromic points for the M, tide
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Figure 6.15 M, co-tidal and co-range lines for the world
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Analytical tidal computations

7. Analytical tidal computations

So far, properties of tidal propagation were considered, for which simplified equations were used. In
addition the geometry and the boundary conditions were simplified as well. In this way, insight was
obtained of the fundamental aspects of tidal motion.

Engineering problems, however, are not that simple. For concrete and complex situations, predictions
should be made as accurately as possible. This also refers to the prediction of effects of civil
engineering works in the coastal area on the tidal motion. Several approaches are available:
1. For first guesses and insight in a problem:

— Simplified analytical computations;
2. For accurate predictions in complex situations:

— Hydraulic scale models;

— Numerical tidal computations (mathematical models).

In hydraulic scale models the water in the models provides the solution. These models have been used
extensively in the past. However, they are expensive and it is time consuming to investigate
alternatives, as it takes a lot of effort to make changes in the geometry.

In mathematical models the equations are not simplified. The advantages are:

— The geometry is schematized accurately;

- Boundary conditions can be used from measurements;

— The computations are made by computers;

— Depending on the problem, one-dimensional, two-dimensional and even three-dimensional models
can be utilized.

Nowadays, tidal problems are mainly investigated with mathematical models. Hydraulic scale models
are an exception,; they are still used to study complicated three-dimensional current situations.

This Chapter, however, focuses on simplified analytical computations, which gives a first guess
approach for an engineering problem.

7.1 Small basin

The first problem concemns the tidal motion in a short basin, which can be a harbor along a tidal river,
or a relative short bay along a sea or ocean. Figure 7.1 shows such a small basin, with the following
characteristics:

! length of the basin;

b width;

h depthh.

The x-axis is directed positive to the right: x = 0 is located at the mouth; x =/ at the end of the basin.
At the mouth there is a sinusoidal tide, with amplitude 1} and period T. The length of a tidal wave can
be computed by:

L=cT

in which ¢ = /gh
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a |
amplitude ¢ A . >
period T H
:
]
—ﬂU—— | b depth h
1
tide i
:
|
sea
X
’ >
x=0 x=1L

Figure 7.1  Short basin

The term short basin is related to the parameter:
1 _ _ length basin
L  length tidal wave

If this ratio is small (smaller than 0.02) the basin will be filled in horizontal layers. A small increase
of the water level at the mouth can be considered as a disturbance. So a small translation wave will
run through the basin. The time to propagate to the end of the bay and back to the mouth is:

2t = A
c
Asl =crand L = cT, the ratio //L (= 7/T) becomes:
. lcom
T L

This means that the time for a disturbance to propagate to the end of the basin and back is small
compared to the period of the tidal wave.

As the basin is filled in horizontal layers, the equation of motion is reduced to:

Figure 7.2 shows a sketch of the longitudinal section of the basin. To compute the discharge at the
mouth of the basin, the equation of continuity can be used:

-a£+bﬂ=0

ox ot
As O - O . dn

ox ot ar
So:ﬂ-—bdn

ox dt
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27 _,
X

C
il

'x=0 x-;-L

Figure 7.2 Longitudinal section of the short basin of Figure 7.1

To obtain the discharge at the mouth of the basin, this equation should be integrated with respect to x:
1 I
o¢ dn dan
—+dx = [-b—dx - * = -b—1
{ ox { dt & -0 dt

For a closed basin at the end, O, = 0

So: 0, = bl%

(Note that b/ is the surface area of the basin).

Taken
Oy

ficosw? then:
-Osinwt , with 0 = bifjw

Figure 7.3 presents this relation between 7 and Q at the mouth of the short basin. From this Figure
it can be observed that:

— A decrease in water level means the emptying of the basin,

— An increase in water level means the filling of the basin;

— The phase difference between 7 and Q is 90o.

This relatively simple approach can often be used for basins of short length.

7.2 Lorentz method

The second analytical computation method is the Lorentz Method. This method has been named after
Prof. Lorentz, who was a famous physicist at the beginning of the 20* century. He developed the
method for tidal computations, to be implemented before the former Zuiderzee (now Lake IJssel) was
closed off from the Waddenzee in 1932. At that time, no computers were available, so all the
computations had to be carried out by hand.
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Figure 7.3 Relation between water level and discharge at the mouth of a short basin

The description of the Lorentz method starts with the basic equations for long waves. As was shown

in previous Chapters, the equation of motion can be simplified for small Froude numbers. The Froude
number was:
g2
Fr = — «1
gh

This is often the case. For example:
h=10m, u=1lm/s - Fr=0.0l.

The equations for small Froude numbers are:
Q + b @ =0
ox ot

_I_Q+giaﬂ+g____Q|Q| =0
A ot ox C242R

These equations can be applied for tidal calculations. The equations look simple, but analytical
solutions do not exist, because of the quadratic friction term. However, for small deviations in the
mean water level of a uniform horizontal channel, than b, 4, R, C can be considered as constants.
Now, analytical solutions can be formulated when the friction term is linearised. This linearisation of
the friction term was introduced by Lorentz.
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7.2.1 Linearization of the friction

The idea of Lorentz was that the calculation would not be too inaccurate if a linear friction term would
dissipate the same amount of energy during a tidal cycle, as the original quadratic term does:
quEI

in which:
E, energy dissipated by the quadratic friction term during one tidal cycle;
E, energy dissipated by the linear friction term during one tidal cycle.

The terms in the equation of motion are forces per unit mass. They can be seen as forces acting on a
water particle with velocity ». The work did by a force F during period df equals to:
Work = Force x Distance

So: dE = Fde = Fudi = F%dt

The original quadratic friction term was written as:

olol

CiU*R
This term is now replaced by the linear term mQ.
So:

CURA  CUR
2
dE, = moLar - ™2 4y
A 4

Assume a sinusoidal flow with Q = Qcoswt . The energy dissipated during a tidal cycle by the friction
terms is:
! 0°cosZot| coswt |
E =fg cos”wr|coswt|
7 C?4°R

T A2 2
E, = me cos"wr

First the energy dissipated by the quadran‘c fn‘ction term is further elaborated.
1

f gQ oos’wtloosmt| f gQ —coszmtlcoswtld(mt) = 4o gQ f cos’wtd(wt)
C%A°R C4
This integral can be solved as follows:
n2 /2 2 n2
f cos’wtd(wf) = f (1 - sinwf)coswtd(wt) = f coswtd(wf) - f sin‘wtd(sin wf) =
wt=0 wt=0 wt=0 wt=0
. I . 1 2
sinwf / - —sinfwt / =(1-0)-—=1-0) ==
wt=0 3 wt=0 3 3
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So the energy dissipated by the quadratic friction term becomes:

A3 ~
F.4.8°2_ 8 g0°
7 wCU3R3 30 C%Y3R

The energy dissipated by the linear friction term can be elaborated as follows:

T A2 2n A2 a2 _ m2
_ (mQ cos*wt - mQ° 1 _amo° 1
E, f — dt f —k ;ooszwtd(mt) 47 = cos’wt d(wf)

t=0 wi=0 wi=0
Solving the integral gives:
n/2 n/2 1 n2 1 n/2 1
f cos’wtd(wr) = f —(1 + cos2wr)d(wl) = f —d(wt) + f —cos2wtd(2wt)
2 2 4
wt=0 wt=0 wt=0 wt=0
n/2 n/2
= l(‘)t | + lslnzmt | = .I_E + 0 =£
2 =0 4 w0 22 4

So the energy dissipated by the linear friction term becomes:
A a2

Dividing with L, 1, 07 gives:
w A
. 880
3n C24%R

The coefficient 31 is called the number of Lorentz.
T

Two remarks should be made about the linearised friction:

1. With the value for m the correct amount of energy is taken out of the system during a tidal cycle.
During maximum velocities, the force is underestimated. During low velocities, the force is
overestimated. So the distribution of the energy loss over a tidal cycle is not correct. The correct
distribution (by the quadratic friction term) of the energy loss over the tidal cycle causes a
distortion of the tidal wave.

The result of introducing the linear frictions is:
-~ The damping of the tidal wave is correct;
- The distortion of the tidal wave is not taken into account.

2. In the expression for m, Q is a variable to be calculated. The procedure is to estimate Q, and
afterwards check this estimate. In case of deviation in 0, the calculation has to be repeated with

a better guess. A small difference between the computed Q and the estimated Q is acceptable.
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7.2.2 Harmonic solution

The equations with the linearize friction term linearize are:
-a—Q- + bﬂ = 0
ox ot

1 80 on
190, ,on -0
1o fu ™

As was shown in a previous Chapter, differentiation of the first equation to ¢ and of the second
equation to x, and eliminating O results in the telegraph equation:

ﬁ—coza_zn_'Q'mAﬁ:Owi‘thco: g
ar? ax? ot b

This is a linear differential equation of the second order. A harmonic solution of the equation is one
in which the amplitude and the phase depend on x:
N = fikx)cos(wr + d(x))

To determine the unknown parameters fj(x) and ¢(x), the derivations ofn(x,f) can be substituted in
the telegraph equation, as was done for the tidal wave travelling on a river. A simpler solution
procedure is introduced by Lorentz using complex numbers.

First, a short review of some relevant characteristics of complex numbers is given:
e = cosO + isin®
e ™® = cos® - isin®, in which i = /-1
in which:
cos® real part;
i sin@  imaginary part.

Figure 7.4 shows the complex plane can Im
be defined, with the real axis displayed A
horizontally and the imaginary axis
vertically. In Figure 7.4, ¢ is
represented as a vector in the complex ol
plane with:

- real component cos 6,

— imaginary component / sin6.

isinf
The same holds for e

A complex number w can be written as:
w=ge®
with € real and g complex..

icos@ fe

Figure 7.4 Complex plane
gcanbewrittenas: g = |g|e“=a+ib
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Figure 7.5 shows the vector g with length | g |
and an angle with the real axis a.

The same holds for the complex number w
(see Figure 7.6): w =g ¢ = |g| ¢ ¢'® =
|g| e

When the angle 6 varies uniformly in time
(6= ax) then:
w= |g|ei(-+u)
= |g|cos(ax + @) + | g|I sin(ax + @)

The real part of w is:

Im

R —

Re {w} = |g|cos(ax+ a)

It represents a harmonic motion with:
g| amplitude;

@ angular speed;

a phase lag.

This is similar to:
n(xn) = Ak)cos(wr + (x))

This can be written in complex form as:
n,») = Re G‘,‘(x)e i(wt + ¢(x))) = Re (ﬁ(x)e ih() « eiut)

Term fi(x)e *® can be represented in the complex
plane as shown in Figure 7.7. This Figure shows the
phase - amplitude diagram for a certain location x
with:

fi(x) amplitude;

¢(x) phase.

For substitution in the telegraph equation, 7(x,#) can
be written as:
(0 = fx)e ™ * o) - A(x)e i(x),, ot

which includes the imaginary part:
fi(x)isin(wr + $(x))

Forfj(x)e *® can be written as Ce"™, in which r is
a complex number, which must be solved. So the
expression to be substituted in the telegraph
equation is:

M - Cerxeiut - Cgmrorx

Figure 7.5 Vector g in the complex plane

Im

A

=

e

Figure 7.6 Vector g in the complex plane

Im

e - ——

©

3
R SR
Ty
®

Figure 7.7 Presentation of fj(x) in the
complex plane
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In complex notation, the derivatives of 7(x, 1) are relatively simple:
N e, 2 - g

ot
..a_?:n_ = -mzcem”x’ gz._ﬂ - rZCeiw:¢rx
ar? ox,

Substituting these derivatives in the telegraph equation gives an equation for the unknown ». The
telegraph equation is given by:

gﬂ - 6‘02 ——— mA@ =0

or? ox? ot
Substitution of the derivatives yields:

(-w*C - ¢2r’C + mAiwC)e™ * ™ =

-w? - ¢fr? + imdw = 0

r? = L(-mz + imAw)

o2
0

This equation for r yields two complex roots. The complex number r can be written as:

r=p+iq

2 "
r2=p2-q2+2ipq= . S imAw
&’ &’
The real parts are equal to:
2
(&)
P gt - —
%o
The imaginary parts are equal to:
mA®
2pq = —
c

0
By eliminating p or g, the following quadratic equations can be derived::

o b} - o - A g
0

ol - o] - A 0
4c,

The roots from these equations are:

R T R 7 0 R @ {1 + T + (maloy
coﬁ ’ v co‘/i

Similar expressions were found for the tidal wave on the river in Section 5.2, with A instead of p and
kofgq.

pl’z

Theroots of rare r,, = = (p + ig).

Tides and tidal currents (March 24, 1997) IHE-Delft 7-9



Analytical tidal computations

The final result for the solution of n(x,#) is composed of a linear combination of terms with the positive
and negative root.

N = Ce™ " *Cpe™ - ™

N, = Clemupx +igx Cze""' - px - g _ C,e”‘xe‘("” qx) C,e PRy g HOF - gx)

The real part of the first term is:
C, e cos(ax + gx) which is a wave propagating in the negative x-direction, with
increasing amplitude for increasing x.
The real part of the second term is:
C, e ™ cos (ax - gx) which is a wave propagating in the positive x-direction, with

decreasing amplitude for increasing x.

Both parts of the solution are drawn in Figure 7.8.
o TPX o PX

mnf\“ﬁ ﬂ ﬂﬁ’ﬂnm -

first term second term

Figure 7.8 Solution for n(x,?)

The term e 7 and e ™ represent the damping or attenuation of the tidal wave. The celerity of the wave
isc = < (substitution of k instead of g gives the known ¢ = %).
q

So far the water level 7 was considered. A formula for the discharge O can be found too with the
equation of continuity:

9 _ _,om

ox ot

Substitution of the solution for 7 (x, #) (= C, e'** ™ + C, e’ ™) gives:
%Q = -biwe™(C,e™ + C,e ™)

Integration yields:
0 () = -ZLiiCem - C o)
r

This result is similar to 7 (x, ).
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Harmonic solutions can be found for various boundary conditions, through which the integration
constants C, and C, can be solved. Two integration constants must be solved, so two boundary
conditions are needed. Different combinations of boundary conditions are possible:

— 2 water levels at different locations;

— 1 water level and 1 discharge;

— 2 discharges at different locations.

Some examples where the Lorentz method can be applied:
l’//////////lL/////////,

1. Channel closed at one end. 7(t) }fQ =0
(/7777 // /777 /777

) (222222227878 77 7T ELLELEL)
2. Channel connecting two oceans. n(t) 7 (t)

F7777777777777777777771

V\sszs//72222 22222222224

3. Channel connecting an ocean, = i)
ith tideless Iarge kil 7(t) n
with tideless large lake. [77777777777777777777X_

4 C] CIatoneSidetO.ﬁ] I’/////////////////////
(There is only a wave propagating () = oo
inﬂxcpositivix-direct?on?()ne |5////////////////////;
integration constant has to be
solved. So one boundary condition
is sufficient).
/
5 C] el " knownwaterlevel /S LS L7
and dis e at one location g(t[)) ’//////////////////////

Case 5 is considered as the standard case. The other cases can be derived from it. Case 4 represents
the tidal wave on a river. Special attention is paid to Case 1 in Section 7.3.3.

First standard case 5 is considered with the following equations:
N, 1) = Ce™* ™ + Cpe' ™
Ok, 0 = -ﬂee"‘"(Cle”‘ = Cg™
r

rd

The bound conditions at =0 are: ////////////////////////////////
n(0,1) =n(0)e t - X
Q0,19=0()e“ x=0

I‘//////////////////////////////,
/
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n(0) and Q(0) are complex quantities, representing the amplitudes and phases. Substitution of these
boundary conditions gives:

n(0,1) = Cie™ + C,e™ = n(0)e™, so C, + C, = n(0)
00.) = ~22em(C, - C) = 00,50 -2, - C) - 00)

C, and C, therefore become:
1 1
C, = —(0) - —r—Q(0
1 271() 2rbimQ()
1

€, = 510 + %ﬁQ(O)

A. Water level
Knowing that:
nex, ) =Ce™*™ + Ce™ ™ and n(x,f) = n(x)e™, thus nix) = C.e ® + C,e™
1 2 1 2

b

and substituting the values for C, and C, gives:

n®) = %n(0)e™ - %ﬁg(ow + Yin(0)e ™™ + % bier(o)e -
- o\e" +e™ r O)e"“ -e™™
n©) 2 biw 2 2
As:
e* + e ™ e™ - e ™

= cosh(rx), and = sinh(rx)

the water level amplitude can be written as function of x:
ne) = N(O)cosh(rz) - ——O(O)sinh(rx)
B. Discharge
Knowing that:
- bl(l) Wt C 2x C - _ iwt thus - bl(.l) C -rx C -
o0 = —Te ( e - G, 7™),and Q(x,1) = O(x)e™, o) = 'T( 1€ - (e ™)

and substituting the values for C, and C, gives:

biw|( 1 1 r 1 o 1 r -
= -2 Zn(0)e™ - ———0(0)e™ - —n(0)e ™ - ———O(0)e "™
0k . (2"\( )e > hie Q(0)e 271( )e T hie Q(0)e )]
biw e™ - e™™ 2 e +e™™
= -Z2n(0) - —2-0(0)
r -Tl( 2 bin( 2 ]

This formula can be written as:
06 = -2 n(O)siah(x) + Q(O)cosh(rs)
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So the formulas for 7 (x) and Q (x) for the standard case are:
1(x) = n(0)cosh(rx) - ﬁQ(O)sinh(rx)

biw

o) = -—r-n(O)Sinh(f'X) + Q(0)cosh(rx)

7.2.3 Tide in a channel which is closed at one end

The case of a channel, closed at one end, is of special interest, because under certain circumstances
high amplitudes can occur at the closed end and high discharges can occur at the mouth. The following
approach applies to tides (with periods of hours), but also to seiches in harbours (with periods of 5-30
minutes). Consider the prismatic channel of Figure 7.9 with length /.

L

* A

Figure 7.9 Prismatic channel

The location of x = 0 is at the end of the channel. The x-axis is directed to the sea. The vertical tide
1s given at the mouth by 7(/,#). The discharge O at the end is zero. To find the water levels and
discharges, the equations for the standard case can be used:

n(x) = n(0)cosh(rx) - T’Q(O)sinh(nc)
10

0) = —”'%nw)smh(nc) + Q(0)cosh(rx)

The boundary condition for x = 0 is given by Q (0) = 0. The equations now reduce to:
n(x) = n(0)cosh(rx)

o) = ”'7“’ n(0)sinh(rx)

The second boundary condition is formed by the water level at x = /:
n() = n(0)cosh(r/)

Looking closer to the behaviour of the amplitude of the water level at the closed end as a function of
the length of the channel. The amplitude of the water level is given by the modules of the complex
number 7 (see Figure 7.10).

Tides and tidal currents (March 24, 1997) IHE-Delft 7 - 13



Analytical tidal computations

im

| 0 |=In ©) coshn | b |-=mmmmmmm e n

.-Re

Figure 7.10 Behaviour of the amplitude of the water level at the closed end of the channel

For finding the ratio of the amplitudes, the phases are taken equal to 0 (see Figure 7.11). Then:
fi()) = 1(0)|cosh(r))| = 7(0)|cosh(p + ig)!|
= 1(0)|cosh(p/)cosg! + isinh(p/)sing|

Im

A

| 0 |='r'l M = real
| )= n (0) =real

N
i/
- »Re

Figure 7.11 Ratio of amplitudes

The value of the modulus of the complex number is the square root of the squared real and imaginary
parts (¢ = ya? + b?):
() = fi(0)ycosh*(pl)cos’ql + sinh®(pl)sin’ql
= fi(0)/cosh’(pl)cos’ql + (cosh?(pl) - 1)(1 - cos’gl)
= i(0)cos’ql + cosh’(pl) - 1
= f(0)ycos’q! + sinh3(pl)

Defining the amplification factor as the ratio of the amplitude of the water level at the end of the
channel and at the mouth, then:

A(0) _ 1
A0 JeosPgl + sinh(pl)
in which:
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wl! ( l) 2
p[ s L] % 1 +( )
OJ—\ \

P

i (mA)\?
ql w8 1 + |1+ ( )
coﬁ \ @

The amplification factor is determined by the parameters
. sarameter for the length of the chamnel:
%

ﬂ: parameter for the friction.
(A)

Figure 7.12 shows a plot of the amplification factor:
10 4ol md
i) ¢ ©

Along the vertical axis the amplification factor is given. Along the horizontal axis the length parameter
31. The friction parameter nd is found as parameter in Figure 7.12.
€ (&)

From Figure 7.12 it can be observed that the friction has a reducing effect on the amplification factor.
The amplification factor tends to go to infinity if the friction term becomes zero for certain values of
w!/
;0_ .

If m = 0 (no friction) than p/ = 0 and g/ = il

)

The amplification factor in case of no friction is:

A0 _ 1
A el
&0
The amplification factor is « if cos-eg = 0, which is the case for:
o
O~ an, 3n2, Sn...... = @n + D2 with n=0,1,2, 3...
%
Knowing that:
= ﬁ,andL =c, T,orc, = £glvcs LR L
T T A LT L
So W . 2'rri
)

Tides and tidal currents (March 24, 1997) IHE-Delft 7 - 15



Analytical tidal computations
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/Al ceo ] \z
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u
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2 ‘.
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o
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Figure 7.12 Amplication factor

The amplification factor is « if’

ot s nEor L
L 2 L

1
So resonance occurs for Fa =

I 2n+1

,forn=0,1,2,3, ..
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Infinite amplitudes will never occur, as the friction will prevent that.

Now the second equation for the discharge will be looked in further detail:
bi .
0 () = -==n(0)sinh(rx)

The discharge at the mouth is noted as Q (7). In the above equation, 1(0) is noted as 7(0). Further
x=/landr =p + iq. So:

o0 = -2 _40)sinh(p + gi)!
P +1q

As1)(0) is related to 1j(/), the amplitude of the discharge can be computed. Consider the case with no
friction. Take m = 0, so p = 0. Then Q (1) can be written as:

o) = -b—‘1°3ﬁ(0)sinh(iql)

Because sinh(ix) = I sinx, Q(I) becomes:
ibw

o0 = —Tﬁ(O)sinql :

For the case without friction it was found that g = =

)
Substitution gives:

ox) = -ibcoﬁ(O)sm‘:_’

0

The amplitude for the complex number Q (1) is:
. L wl
0 = 10| = begf(Osin—

0

For the case without friction, the amplitude of the water level j(0) was determined as:

#(0) = () —
w!/
COS—

%o
Substitution inQ (/) yields:
0 = beyf(rans

0

This result shows that high discharges can be expected if:

@ xn, 3, 5n2 .. =(2n+l)%withn=0, 1,234
CO

I 135
or — = —, = = ...

L 44 3

When the length of an estuary is changed (for instance by building a dam at x = ¥; /) the flow regime
can change considerably. The possibility of resonance should therefore always be checked.
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8 Numerical tidal computations

8.1 Introduction

To solve engineering problems, different tools can be used:
1. Simplified analytical computations for first guess/insight in the problem;
2.  Numerical tidal computations for accurate prediction in complex geometries.

In the second group also hydraulic scale models should be mentioned, but their use is an exception
nowadays. In the simplified analytical computations:

—  the equations are simplified;

—  the geometry is simplified.

In the numerical tidal computations:
—  the complete equations are used (without simplifications);
-  the complete complex geometry is schematized accurately.

For numerical tidal computations, mathematical models are used. The following types of models can

be distinguished:

1.  The computer program, which is general and can solve all kinds of problems (from small scale
flow computations to complete continental shelf seas);

2. The area considered, which is schematized and for which data have been gathered like depth's,
Chézy values (bottom friction) etc.

The term mathematical model is often used for both elements, which may be confusing. In these
lecture notes, the term mathematical model concerns the area considered, with all the data that
characterize the geometry and which is used as input for the computer program.

Different types of mathematical models can be distinguished:

—  1D-models for rivers, canals;

—  2D-models-horizontal for sea-areas;

—  3D-models when the vertical current distribution is important, e.g. in areas with
density currents.

Experiences with numerical computations depend on the type of engineer:

1. Engineers, who are interested in numerical computation procedures, like stability, accuracy,
efficiency of the computation schemes. They build the computer programs;

2. Model engineers, who schematize the area considered and build the mathematical model. They
are responsible for the computations;

3. Engneers, who use the results of the mathematical models. They must be able to judge if their
questions are solved with the correct type of mathematical model. They should have a general
knowledge of the characteristics of mathematical models.

This part of the lectures is directed to the second and third categories of engineers (model engineers).
First, some general aspects related to numerical computations are made, followed by the illustration
of some aspects with some practical examples.
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The numerical computations of this chapter focus on the complete equations, without simplifications.
Thus, the examples on 2D-models consider the 2D-equations as derived in Chapter 6:
o , Auh)  oh) _,
ot ox oy
L SN G oS
ot ox oy ox C?h

.a_v+uﬂ+v@+gﬂ+g@+ﬁ‘
ot ox dy dy C%

Continuity

Motion in x-direction

Motion in y-direction

For numerical computations the space steps and time step are made discrete:
dx - Ax
dy - 4y
dat - At

The partial derivatives are replaced by difference quotients (see Figure 8.1).

u
ou_ Yit-at Yt *
ot at
(forward difference)

L
t-at t t4+at

dn Ux Ux-ax

0 X AX

(backward difference)

- X
X=-AX X X+AX

Better approximation by: An

o0 _ Tx+ax ™ - ax
> x AX

(central difference)

- X
X=-AX X X+4aX

Figure 8.1 Examples of discrete time steps

With the different possible combinations of forward, backward and central differences, the equations
can be transformed into many difference schemes. With that difference schemes, u, v, and 1 are
solved for discrete space steps Ax, 4y and time steps At (see Figure 8.2).
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The following schemes can
be distinguished:

- explicit schemes; A grid for computation
-~ implicit schemes. 4 ofu,v,n.

This can be illustrated for the T
1-dimensional case, where 7 +

(and u) is a function of x, at I e
(see Figure 8.3). A variable, / aX
like 7, is computed at ¢ + A4¢.

e —
Tosummarizc:_ A/Z / / / ‘

rnstormed o  difeenc L L ST

scheme. With that scheme, x, /
v, 7 are computed for every Y 4

location on the Ax-Ay grid |Y
for every time step At. In
most cases a rectangular grid
is chosen with 4x = 4y. The
computation of the variables on the grid is performed by a computer.

Figure 8.2 Grid for computation

8.2 Set-up of a mathematical model

This Section focuses on the building of a mathematical model. For this, first the purpose of the model
must be formulated. Therefore, a sound description of the required output is needed. -

Aspects to be included are:
area considered (location of the boundaries);
- rate of detail (grid size),
- type of reliable output (water levels, velocities),
-~ wind as parameter to be included or not;
—  what data are available for boundary conditions, for calibration and validation?

An important remark is that the right type of model should be selected. For instance, do not use a
3D-model when the problem can simply be solved by a manual calculation.

Location of boundaries
The boundaries of the model follow from the area under consideration. Sometimes the boundaries
of the model must be chosen outside the area of interest.

Two examples:

1. If a model is used to study the effect of civil engineering works on the tidal motion, the
boundaries should be located, where the change in geometry due to the civil engineering works
has no effect on the water levels (when the water level is used as boundary condition);
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t+at

X- & X X+ax

"

:

t+at i;?:\

M
Y
a
qr

X- 24X X X+a4aX

Explicite Scheme

Ux, t+ atcomputed from

} at time t

Scheme has criterion for stability

Ux - ax, t
Ny, t
x - ax, t

Courant - condition

c.at
AX

(restriction forat)

Implicite Scheme

Ux, t+ atcomputed from

} attime t

} attmet +at

Tx- ax, t
Tx, t
'lx-AX,t

Ux-ax t+at

x +aX, t +at

Scheme is unconditionally stable.
(any at possible)

but be careful, a t has effect on
the accuracy

Figure 8.3 Explicit versus implicit schemes

2. If a model has to be built of an area, in which the effect of wind is important, the boundaries
should be located at deep water. At the boundaries, the water levels known from tidal prediction
(without wind effect) should be used. The effect of the wind on the water levels is computed in

the model (generated in the shallow areas).

The data needed for building the model

After the boundaries of the model have been chosen, a choice for the grid size ax = ay should be
made. The grid size can range from 10 m’s - 50 km (Eastern Scheldt model - Sunda Shelf model; see

Section 8.4 and Figure 8 .4).
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closed boundary

open ¢ ‘\ velocityl is O
boundary e
— N

®
boundary *® f
condition e =] AN

ax

eg.n M e

e

SN

/ ~ 4

Figure 8.4 Example of a schematization of an estuary

The choice of the grid size depends on:

- required level of detail (small gullies in the model);

-  size of the available computer (maximum number of grid points);
- efficiency (computing time is proportional to (4x)?).

Sometimes a small ax is needed for the required level of detail, but the area should be large because

civil engineering works have effect on the water levels at the boundaries. In such a case, the models
should be nested (see Figure 8.5).

Area with civ. engineering works

Large model, large A X

'

Boundary conditions ........
for

'

Small model, smalla x

Figure 8.5 “Nested” models

Assume the area of Figure 8.4 and a grid size ax. Then the area can be schematized to square boxes
with grid size ax = ay. Along the shore the boundary is closed; the velocity perpendicular to the

shore is zero. Along the open boundary, boundary conditions like water levels as function of time are
needed.
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Further information is needed on:

—  depth per box. Depth values may originate from echo-soundings or sea maps. Data from sea
maps should be interpreted with care, as they are prepared for ships. Often the depths taken
from sea maps are too small,

- Chézy value per box. Often the model starts with a uniform Chézy value for the entire area,
which is based on experience of that area.

Boundary conditions are needed at the open boundary. These may originate from:

—  measurements (directly);

—  measurements (analyzed): tidal analysis -~ harmonic components - tidal prediction;

-~  from other models (via “nesting”; see Figure 8.5),

- from literature (Schwiderski published tidal components for the entire world for every degree
by degree area on the globe).

For running the model, time step 4t should be selected as follows:

- explicit schemes: At is restricted by the stability criterion
ﬂ{ <1 - Ar< ﬁ‘ﬁ
Ax c

—  implicit schemes: there is no restriction for stability. But the accuracy is less for large At

(chosen by trial and error or experience).

8.3 Calibration of a model

To calibrate a model, the following data are needed:
1. Boundary conditions (like water levels at the open boundary);
2.  Observed water levels/velocities in the model area.

The data should cover the same period. They can originate from:
—  measurements;
— tidal prediction (from known components).

Figure 8.6 shows a schematic presentation of the Eastern Scheldt, The Netherlands. As an example,
the calibration of this estuary will be presented.

Location A

) /
////////////////////

Figure 8.6 Schematic presentation of the Eastern Scheldt estuary, The Netherlands
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Consider:
- 1. observed water levels as boundary condition in A;
2. observed water levels somewhere in the estuary in B.

With the first set of depths, Chézy values, and a chosen 4, computations with the model are made.
Such a computation is called the base case.

The observed water levels in A and B are decomposed into tidal components: diurnal, semi-diurnal,
quarter diurnal, etc. Per component a plot is made of the amplification versus the time lag (see

Figure 8.7).
| observed |
amplification
A depth £ location B
A—-B ep locauon ©
(+10%) 1 semi-diumal component
e Chezy &t(*7)
(+10%) ,°*
°
Chezy
(-10%)
n * depth (-10%)
At (*2)
—
tme by A= B

Figure 8.7 Plot of amplification versus time lag for points A and B of Figure 8.6

The next step is to vary the following parameters:
- depth: * 10%;

—  Chézyvalue +10%;

— timestep 4  multiplied with 2 and 2.

The decomposed results are also plotted in Figure 8.7. It can be concluded which parameter must be
changed for a good simulation (in this case, 4¢ should be smaller).

In the calibration, the computed results are compared with:
—  local water level measurements;

local velocity measurements;

—  known tidal pattern (from tidal atlases);

—  known locations of Amphidromic points;

After the calibration of model, a validation computation should be made, for which boundary
conditions and observed data from another period are used. In this way a check is made on computed
and measured water levels and velocities.
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8.4 Examples of mathematical models

This Section discusses two examples of models:
- small scale models, like the above model for the Eastern Scheldt (with emphasis on detailed
flow computation),

—  large scale models, which were for instance used for the Sunda Shelf (with emphasis on large
scale tidal computation).

8.4.1 Mathematical models used for the Eastern Scheldt estuary

A storm surge barrier had to be constructed in the mouth of the Eastern Scheldt. The construction
of such a civil engineering work has far reaching effects on the surrounding area, as it influences:
—  tidal motion;

—  exchange between the estuary and the sea;

- morphology.

The storm surge barrier is part of the so-called Delta Project, which was planned to offer a better
protection of the southwestern region of The Netherlands (see Figure 8.8) against high storm surges.
Under normal conditions, the barrier is open,; it will be closed when high storm surges are expected.

D

- & ]
o k mmmﬂh () ~ =
/\;srim SCHM \ yis 5 s

Figure 8.8 South-western part of The Netherlands (Delta region)
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In the process of realization of the project, three stages were distinguished:

- planning stage, in which the lay out and general characteristics of the structure are determined
—  design stage, in which the structure is designed;

—  execution stage, in which the structure is constructed.

In each of the stages, models played an important role to provide answers on questions the designers
face, like:
1. Planning stage
What is the effect of the aperture of the barrier on the tidal regime in the area?
What is the reduction of the tidal amplitude in the Eastern Scheldt?
2.  Design stage
Which are the boundary conditions for the design of the barrier?
3. Execution stage
(What are) the detailed flow patterns at the barrier site during different construction phases?

Computations to answer those questions were carried out with a tidal computation model with an
implicit scheme. That means that there was freedom in the choice of the time step, but careful
interpretation was needed regarding the accuracy of the computed results.

Figure 8.9 shows a 2-dimensional overall model of the Eastern Scheldt, which has the following
characteristics:

- grid size: 400 m;

-~ number of grid points: about 14,000,

- typical time step At = 1.5 minutes.

Figure 8.9 also shows the computed velocity field during maximum ebb for the situation without a
barrier.

Boundary conditions were obtained from four tidal gauges at the boundary. For this, the following

checks were made:

—  for the selection of the boundary, first with a model of the larger area it was investigated if the
water levels would be affected by the barrier;

—  for the tide at the location of the tidal gauges, a tidal analysis of the measured water levels was
made. From that analysis the components were obtained. With these components, a prediction
could be made of the tide for any day in the future. This procedure was used, as the tidal motion
during certain critical construction phases of the barrier were to be predicted in advance.

The model was calibrated extensively with observed water levels in the Eastern Scheldt and with
measured discharges in the three tidal channels.
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Figure 8.9 Two-dimensional model of the Eastern Scheldt estuary
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Calibration started with "
a base case comput- s
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for location 2 relative |= /”
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At decreasing -h/
Figure 8.11 shows the

semi-diurnal  compo- é .

nent. The amplification B Observed ' 1
and phase lag for the "

observed water level is

plotted with symbol [J.

The amplification and ‘o — ~

LAD 1N MOURS

phase lag for the base
case computation is
plotted with symbol ©.  Figure 8.10 Decomposed water levels

The next step was to vary
the depth, the friction and
A4t. It appeared that
decreasing the time step 4t
was the most effective way
to bring the base case
closer to the observed data
(in this example!).

The overall model (Figure
89) was used in the
planning  stage. For
detailed flow compu-
tations, models with
smaller grid sizes were
utilized, which were nested
in the overall model (see
Figure 8.12). The overall
model had a grid size of 400 m. For the flow computations during the successive building stages of
the barriers, models with a grid size of 45 m’s were needed, being the distance between the piers of
the barrier.

u
m
"

\

Figure 8.11 Locations 1 and 2 in the Eastern Scheldt estuary
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Figure 8.12 Models with smaller grid sizes nested in the overall model of the Eastern Scheldt
estuary

For each tidal channel, a model with a grid size of 45 m was made. The step from 400 m to 45 m was
too large for the transfer of boundary conditions in the area with complex geometry. Therefore, also
models with 90 m grids were made.

Figure 8.13 presents the models in the oo - 130w w) 1 J
mouth of the Eastern Scheldt. The boundary | = E \\ /
conditions for the 90 m grid models were P,

obtained from the overall model, whereas —

the boundary conditions for the 45 m grid

models were obtained from the 90 m grid £
mOdelS. A specla_l technlque was meloped MOCS - 7 (90 M -NET)
for the transfer of the boundary conditions

N
b S

Uil

to the small scale models in this area. /489

Figure 8.14 shows the results of a flow s

computation in the most northern tidal .

channel: the computed flow pattern during - . = L~

maximum ebb. The execution stage, with all - 3

piers placed, is investigated here. Figure 8.13 Models for the mouth of the Eastern
Scheldt estuary

Tides and tidal currents (March 25, 1997) HE-Delft 8 - 12



Numerical tidal computations

VELOCITIES
Timg

§

o/

82/ 1701 8830 WisD $PCLD -~ 10 .6 =wO!
Ting STCP ”e MIND AnGel - I~ oo

60
SCHOUWEN == ,TIH'

40

e e o
NN~ ~~ e
e e e i e Rt G
B o N RN SR P . o s s e rr s
R e s X rrrrr s i rrrrr e
R e e e Lt e, S SRt
20 LSRR RNy A e L
e I e R S Y T S P35 b PR s Aokl et cd M AR
S e

EXE N Sy
ANNANNANNATY sl =
AN NNN N ANAST caooe

O A ey Tooos
N SR
N %

N
\
\
%
\
\
N
N
N
~

P
YRR PPy

IR R
'R

Sveyplrrnss

| A AR
PI277rn

-
o

N

o

Figure 8.14 Results of flow computation in the northern tidal channel of the Eastern Scheldt
estuary

8.4.2 Mathematical models used for the Sunda Shelf, South-East Asia

The second example concerns the model of the Sunda Shelf, South-East Asia. A model was needed
of the coastal zone of the island of Java, Indonesia (see Figure 8.15). To obtain boundary conditions
for that model, it had to be nested into a larger model of the Java Sea.

For the Java Sea model it was possible to compose boundary conditions from known components of
the harmonic tide. However, monsoon winds play an important role in this sea, so the water levels
at the shallow boundaries are affected by wind-set up.

To get proper boundary conditions for the wind situations of the Java Sea model, the boundaries had
to be located in deep water. Therefore, first the Sunda Shelf Model had to be made, which is the large
model of Figure 8.15.
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Figure 8.15 Coastal Zone model, Java Sea model and Sunda Sea model for the island of Java,
Indonesia

Figure 8.16 shows the Sunda Shelf Model. Each dot represents the center of a grid cell. At the dots
depths must be known, for which sea maps were used.

Some characteristics of the model are:

- grid size: 50 km?;

—  number of grid points: 4000;

—  time step 10 minutes.

Figure 8.17 shows the locations of the boundary conditions for the model. The black dots represent
the composed water levels (®).

The water levels were composed (by a tidal prediction program) with the data of the constituents:
- diumal O0,, K;;
= semi-diurnal Mz, Sz, Kz, Nz.

The data originate from Schwiderski, who published harmonic constituents for every degree by
degree area on the globe.
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Figure 8.16 Sunda Shelf model
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Figure 8.18 shows a table from Schwiderski with amplitudes of the M,-component. The amplitudes
are given per degree by degree area. This Table covers the area from Sri Lanka to the Philippines.
There are also tables for:

—  other constituents;

—  other areas.

For a first calibration of the Sunda Shelf model, computed and “observed” water levels for the
locations Bulan Island and North Danger Reef were used (see Figure 8.19; Bulan Island and North
Danger Reef are shown in Figure 8.17; they are located in the North-Western part of the model). The
solid line in Figure 8.19 is the outcome of the computations, whereas the dotted line represents the
“observed” data. The agreement is reasonably, but not very good.

The term “observed” refers to the fact that no measured water levels were available in this area.
Therefore, the observed water levels were composed of known harmonic components from the British
Admiralty Tide Tables. These tables give amplitudes and phases for a series of components for many
locations in the world. A tidal predication program was used for the composition of the observed
water levels.
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Figure 8.19 Computed and “observed” water levels for Bulan Island and North Danger Reef
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