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Basie phenomena

The period of the vertical
movement is 12 h 25 min.
This is called the tidal period
T. The highest level is called
the High Water level (HW),
the lowest level is called the Figure 1.1
Low Water level (LW),
whereas the difference between HW and LW is called the Tidal Range.

1. BASIC PHENOMENA

1.1 Introduction

Inmost seas and estuaries, a
periodic rise and fall of the
water surface cao be observed
(see Figure l.1). It is known
as the vertical astronomical
tide.

.._-
HW

.1.
LW

T : ~_: 12h.25mon

Example of a vertical astronomie tide

When the vertical movement ofthe water level is measured for about one day (say 25 hours), than
it cao be observed that the second HW and LW differ from the first HW and LW (see Figure l.2).
This difference inHW's and LW's is called the daily inequality.

--;-- ----------------

water level
daily inequality HW

IHW 2 (
time

- ----------------- "'-
LW daily inequality LW

1

Figure 1.2 Daily inequality of a tide

When the tide is observed for a longer period (about one month), it cao be seen that the tidal range
varies in time (see Figure 1.3). Periods occur with relatively large tidal ranges, and periods with
smallertidal ranges. The period with the large tidal ranges is called spring tide, whereas the period
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Basic phenomena

with the smaller tidal ranges is called neap tide. The time hetween two successive periods of spring
tide is about 15 days (half a month).

water level

spnngtide spnngtide
-- - neaptide -~ - - -:.-:. --/,,- (>.- ....-, ",," I ~ .....-, ",."","( ) .......n <, -" <, - nI ! "'---r "---0 I \

time

/
~/

Figure J.3 Occurrence of spring and neap tides during approximately one month

approx. 1 month

The ahove phenornena concern the water level variation in one location. What actually happens,
however, is that a long wave (a tidal wave) is passing along the location, where the observations are
made (see Figure 1.4). The length of such a tidal wave can be several hundreds of kilometres
(depending on the depth).

water level water level

time

HW

/ LW

HW~

location

LW

severalhundreds of kilometers

Figure J.4 Schematic presentation of a tidal wave

When the water level is measured at location A and the wave moves to the right, a periodic rise and
fall of the water level can he observed. Sa, associated with the vertical movement of the water
surface, there are also horizontal movements of the water particles.
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Basic phenomena

When the water level ismeasured at location A and the wave moves to the right, a periodic rise and
fall of the water level can be observed. 50, associated with the vertical movement of the water
surface, there are also horizon tal movements ofthe water particles.

This periodic movement of the water level is a fascinating phenomenon. The study on tides started
as a scientific interest on how tides are generated. Why they are so periodic? For many centuries,
people tried to understand and explain the observed phenomena.

There are also more practical interests in the tide:
ships that want to enter a harbour. The captains want to know if there will be enough keel
clearance (water under the ship's hull). They want to know the time of occurrence of HW and
LW and also the water levels at HW and LW. Therefore, they need a prediction ofthe tide.
These predictions are needed for one location (for instanee a harbour or its access channel);
since important civil engineering works are carried out, it becomes necessary to predict what the
effect of such works will be on the tidal motion (like water levels and velocities) in the relevant
area. Therefore tidal calculations have to be carried out, based on the equations for fluid flow.
The calculations are made for a certain area of interest, which will be influenced by the civil
engineering works;

1.2 Framework of the lectures

The lectures on tides are divided into parts, which follow the different interests as discussed above:
Chapter 2 deals with the ortgin and generation of tides;
Chapter 3 deals with the analysis and prediction oftides, which concerns the analysis ofthe
tidal curve at one location. The purpose ofthe analysis is to be able to predict the tide in future
at that location;
Chapters 4,5,6,7 and 8 deal with the tidal computations. Chapter 4 discusses the derivation of
the basic equations and some types of long waves. Inchapter 5 addresses some considerations
on tidal propagation inone dimension. Chapter 6 concerns tidal propagation in two dimensions.
In chapter 7 shows some analytical solutions are. Since the computer became a tool for
calculations, numerical computations techniques were developed. Numerical models are common
used now. The aspects of numerical calculations are therefore discussed in Chapter 8.

Tides and tidal currents (April I, 1997) llIE-Delft 1 - 3
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Origin and generation of tides

2 ORIGIN AND GENERA TION OF TIDES

2.1 Introduction

Tides are generared by mutual attraction forces between Earth, moon and sun. The influence of otber
celestial bodies can he disregarded. The attraction force between two bodies is determined by
Newton's law of gravity.

When only two bodies, witb masses m, and m2-

are considered, an attraction force F will occur.
When the distance between the bodies is denoted
as x (see Figure 2.1), then Newton's law of gravity
becomes:

G~Fx~~8
where a is the universal gravity constant.

Figure 2.1 Attraction forces between two
celestrial bodies

Tbe universal gravity constant a can be expressed in terms of the acceleration due to gravity g.
Consider a body with mass mpon tbe surface of'the Earth. The mass of the Earth is mEand the radius
is r. The weight oftbe body is equal to the attraction force between the body and the Earth:

mmEF = mg = a-P_
P r2

gr2From this it follows that: a = -
mE

Now the system Earth-moon is
considered (see Figure 2.2).
The distance between the Earth
and moon is denoted as K.r.
The mass of the moon is
denoted as MmE. and the
attraction force between Earth
and moon is expressed by:

m~mE
F=a--­

(Kr)2

Substitution of
gr2a =-
me

gives:

F = sr". m~m
mE K2r2

Moon

ma$S M me

massme

Figure 2.2 Earth-moon system

which is an expression for the attraction force between Earth and moon.
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Origin and generation of tides

This attraction force is counteracted by the centrifugaI force due to the rotation of the Earth and moon
system around their common centre of gravity. The location of this common centre of gravity can be
derived as follows (see Figure 2.3):

mrr = M.mJKr-xr)
x=Mk-Mx

MKx =
M + 1

~

ConYnon eerere of gravrty
/' '

U/~//,
,
/

Kr

Substitution of the values for
Mand K gives:
M = 0.0123
K = 60.3

So X = 0.73, which means that
the common centre of gravity is Figure 2.3 Location of common centre of gravity
inside the Earth.

Ear1h

ma$sme

Moon

mass tw1 m.

Now the rotation ofthe Earth-moon system around the common centre of gravity is considered. First
an expression for the centrifugal force is derived. The centrifugal force acting on a body with mass
m equals to:

Fa = mäe

To find an expression for a.; point P with a circular orbit
is considered (see Figure 2.4). At time t the velocity is V"~

At time t + dt the velocity is V1+dt. The difference in v in
time dt is denoted as dv. Acceleration is the change of
velocity per unit of time:

dV vde deäe = and - = co (angular speed),
dt dt dt

gives
de = vw

Figure 2.4 Point P with circular
orbit

Tides and tidal currents IHE-Delft 2 - 2



Origin and generation of tides

Figure 2.5 illustrates the expression for v in that fonnula:

v= ds = rdfj.= rw
dt dt

Substitution in the expression a,= vC&Jyields:
a = rw2c

The expression for the centrifugal forces Fa now becomes:

F = mrüia

To find the angular speed of the rotation of the Earth-moon
system around their common centre of gravity denoted as Wm

(see Figure 2.6).

v

Figure 2.5 Expression for V

ül= gM+l
m K2 Kr

Substitution of:
g = 9.81 mis
M=O.OI23
K=60.3
r=6.38x I06m

grves:
wm = 2.66 X 10-6 radls or T = timefor one revolution = 27.32 days

Attraction Force = Centrifugal Force
Mrm; 2 MoKgo__ = m oW --or
K2 e m M+l

massm.

Ear1h

Figure 2.6 Angular speed

To investigate what the rotation around the common centre of gravity means for an arbitrary point
Pon the Earth surface, only the translation of the Earth is considered; the rotation around its own
axis is neglected (see Figure 2.7):
- the Earth and moon are sketched in position (1); 14 days later the Earth and moon are in position

(2). The orbit ofthe centre oftbe Earth follows circle a. The centrifugal force is directed from the
centre of the circle;

- point Pat the Earth surface (top of the head) follows the same circle as the centre of'the Earth
(circle b). The centrifugal force is directed parallel to the force in the centre of the Earth and bas
the same magnitude (per unit ofmass), because the circles have the same radii;

- the same holds for the left and right ears.

From the above it can be concluded that:
every point on Earth revolves tbrough a circle with the same radius;
the centrifugal force in every point P is directed parallel to the line that connects the eentres of
Earth and moon;

- the centrifugal force (per unit mass) is equal for all points on the Earth surface.

Tides and tidal currents !HE-Delft 2 - 3



Origin and generation of tides

P :'

circle b
--_ .../

~
circle a

(1)

(1) (2)

Common centre of gravity

Figure 2.7 Translation ofthe Earth due to rotation ofthe moon

2.2 Tide generating force

Tides are caused by forces acting on the water particles on the surface ofthe Earth. The forces acting
on point Pat the surface ofthe Earth are now considered (see Figure 2.8).

/
r /
/

/
/

Moon

Earth

Figure 2.8 Forces acting on water particles

The distance from point P to the centre ofthe moon is R.r. The attractionforce between Earth and
moon is denoted as:

Tides and tidal currents mE-Delft 2 - 4



Origin and generation of tides

M·m
F=g e

K2

When tbe attraction force in point P per unit mass is considered (dividing by m, and replacing K by
R), then:

MF =g-
m R2

The acceleration force is equal to the attraction force if the entire Earth is considered. The attraction
force between Earth and moon is:

M·m
F=g e

K2

which equals the acceleration force for the entire Earth. The acceleration force per unit mass is found
by dividing by m.;

F = g M
a K2

The acceleration force is equal for any point on Earth, and directed parallel to the line that connects
the centres ofEarth and moon. The attraction force F", can be decomposed into the acceleration force
and Fa andF,which is the residual force that causes the tides on Earth. Ft is called the tide generating
force (see Figure 2.9).

Moon

Earth

Figure 2.9 Direction of the acceleration force Fa and the tide generation force Ft
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Origin and generation of tides

Figure 2.10 gives a schematic
presentation of the distribution
of the tide generating force on
the Earth surface. The forces in
locationsA and B are opposite
and almost equal. These forces
are very small, compared to g.
The centrifugal forces due to
the rotationofthe Earth around
its own axis are neglected:
these are also very small Figure 2.10 Distribution ofthe tide generation forces
compared to g. For the actual
motionofthe watermasses,only the component of Ft is important, which is directed along the Earth
surface. This force is denoted as F, and is called the tractive force.

For derivingan expression for the tractive force F; it can be related to the location on the Earth by
considering the angle 6 (see Figure 2.11).

-_

Moon

Earth

Figure 2.11 Derivation of the tractive force Fs
The expression for F,becomes:

F, = Fmsin(6 +a) - Fasin 6
Substituting the expressions for Fm and Fa gives:

F = gM F = gM
m R2' a K2

so that the tractive force F, can be expressed by:

Tides and tidal currents lliE-Delft 2 - 6
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Origin and generation of tides

F = gM sin(e + a) - gM sin e
s R2 K2

This formula cao he simplified
by considering the following
geometrie relations (see Figure
2.12):
(1) Rr = Kr - r cos e

Kr(because a is very smalI).
R=K-cose

(2) cosc = 1
(because a = small)

(3) Rr sin a = r sin e
(K -cos e) sin a = sin e Figure 2.12 Illustration of the geometrie relations

r cosf)

K»cose
K sin a = sin e
. sin esma=--

K
Substituting the expressions for R and a into the equation for the tractive force F, gives:

F = gM (sin e . cos a + cos e sin a) - gM sin e
s R2 K2

Substituting the following relations:

R = (K - cos B) ; cos a '" sin esin a =
K

grves:
gM

(
. e sine.cosa) gMFs = -~~-- sin + - -sin a

(K - cose)2 K K2

. e sin e . cos esm + -----
K - sin e

For the term( 1 - co~ a) -2 the binomial theorem cao be applied. The general formula is:

n(n - 1) n(n - 1)(n - 2)(1 + x)n = 1 + nx + x2 + x3 + .
2! 3!

Applying the:first and second term ofthis series on the expression gives:

( 1 - co~ ar2 = 1 + 2 co~ a + .

Substituting this result into the equation for the tractive force F,gives finally:

F gM [ ( 1 2 cos e) (. a sin e cos e) . a 1= - + -- sm + - sm
s K2 K K

Tides and tidal currents !HE-Delft2 - 7



Origin and generation of tides

gM[ sin 8 cos 8 2sin8cos8 sin8cos28=- sin 8 + + +2-----
K2 K K K2

F = gM[3Sin8COS8 +2 Sin8COS28]
s K2 K K2

sin 8 cos2 8Because K » cos 8 the term 2 can be neglected. So:
K2

- sin a]

F = gM 3 sin 8 cos 8
s K2 K

Substituting sin8 cos8 = ..!.cos28gives:
2

F = 3gM sin28
s 2 K3

The distribution ofthe tractive force over the surface ofthe Earth can be found by:
F. = ° if 28 = 0, 1t, 21t so if 8 = 0, 1t/2, 1t

if 28 = 1t/2, 31t/2F = max•
The other values are in between. Figure 2.13 gives the result.

so if 8 = 1t/4, 31t/4

Moon

Figure 2.13 Distribution ofthe tractive force over the Earth surface

So far the tractive force due to the moon was considered. The same, however, holds for the sun. The
ratio ofthe tractive forces caused by the moon and the sun can now be derived as follows. For this
the magnitude of the term

3 gM (force per unit mass)
2 K3

is considered. The ratio can be found inTable 2.1.

Tides and tidal currents lliE-Delft 2 - 8



Origin and generation of tides

Table 2.1 Ratio oftbe tractive farces oftbe moon and tbe sun

Symbol Moon Sun Dimension

M 0.0123 333,000 (-)

K 60.3 23,500 (-)

3gM 0.82 • 10-6 0.38 • 10-6 (m/s")
2/(3

Remarks about tbe values from Table 2.1 are:
The farces per unit mass are very small (compared it to g = 9.8 mls2).
The ratio of the tractive farces caused by moon and sun is about 2 to 1.
Sa the effect of tbe sun on the tide cao not be neglected.

2.3 The equilibrium theory

The previous Section explained tbe influence oftbe tractive force on water particles on tbe Earth. This
Section considers tbe influence oftbe tractive force on the water masses on tbe Earth. For this, it is
firstly assumed that the Earth is fully covered witb water and how the shape of tbe water surface is
influenced by the tractive force. This was tbe assumption of Newton when he derived bis equilibrium
theory.

When the inertia farces are neglected, the tractive force bas to balance tbe force from tbe slope or
gradient of the water level. Now a water element witb length dx is considered at tbe surface of the
Earth (see Figure 2.14).

water level

1 bh ~h
-2 ~ g(h +-c)-xdx) (h +-~-xdx)

~~-
1"2 f gh.h

I.... ~I
dx

Figure 2.14 Schematic presentation of a water element at tbe surface of the Earth

Tides and tidal currents lliE-Delft 2 - 9



Origin and generation of tides

At the left hand side the water level is h. At the right hand side the water level is:
h + ah dx

ar
When a hydrostatic pressure distribution is assumed, then the pressure at the left hand side bas its
maximum value at the bottom pgh, in which P = density of water.
At the right hand the maximum pressure is

pg (h + : dr)
The force acting on the left hand side is:

.!.. pg h . h
2

The force acting on the right hand side is:

~p~ h + ~) (h + ~~dr)
So the net force acting on the water element (in x-direction) is:

.!..pgh2 _ .!..pJ h + ~) 2
2 2 ol ar

~pgh' - ~P~ h' + 2h~ + (:dx)')
The term ( : dr) 2 is small and can be neglected, so the net force becomes:

- pghÈ!!.dx
ax

The force per unit mass is found by dividing the net force by phdx (the mass of the considered water
element). So the net force per unit mass is:

pgahdr .---------------------------------~
ar ah---=-g-

ohdx ax

That force bas to balance the
tractive force per unit mass:

F = 3gMsin26
s 2K3 Moon

at all locations on the Earth
surface. The resultant water

level is an ellipsoid and is Figure 2.15 Deformation of the water surface due to the tractive
sketched in Figure 2.15.
Increased water levels occur at
the side of the moon and at the
opposite side. A similar ellipsoid results from the attraction ofthe sun.

forces

Tides and tidal currents !HE-Delft.2 - 10



Origin and generation of tides

Now the rotation ofthe Earth is introduced. First the simple (not correct) situation is considered that
the moon is positioned in the plane ofthe equator (see Figure 2.16).

Moon after
24hours

Figure 2.16 Moon positioned in the plane of the Earth' s equator

The angular speed of the Earth
is wc' In one revolution of the
Earthpoint P meets HW., LW.,
HW2, LW2 and again HW i- The
time history of the water level
in point P during one revolution
of the Earth cao be recorded as
indicated in Figure 2.17.

2T
waterlovol ~--------.;

HW,

Two high waters and two low
waters occur per day. This is Figure 2. J 7 Recording water levels in time at P
called a semi-diumal tide.

After 24 hours point P is back at its original position. In that time the moon moved along its orbit to
another position. The angular speed ofthe moon is Wm•

Also the ellipsoid tumed somewhat, because it follows the position of the moon. Point P meet the next
HW. not after 24 hours but somewhat later. This time cao be calculated from the angular speeds of
Earth and moon, as is presented in see Table 2.2.

Tides and tidal currents mE-Delft 2 - 11



Origin and generation of tides

TABLE 2.2 Angular speeds ofEarth and moon

Earth Moon

Tm= 27.32 days

~ = 15.041°1h

In a little more than 24 hrs, twoperiods ofthe tidal cycle of a semi-diurnal tide occur. Therefore:

2T = 21t = 360° = 24.84 h
(we - W".) 14.49°lh

T = 12.42 h = 12 h 25 min.
This is the basic period of the tide due to the moon. The basic period of the tide caused by the sun is
12 hours.

Now the assumption that the moon was located in the plane of the Earth equator should be corrected.
In reality, the plane ofthe orbit ofthe moon makes an angle with the plane ofthe equator. This angle
is called the moon 's tnclinatton (see Figure 2.18).

moon

o

path ol rotalion of a
certain point on Earth (8)

Figure 2.18 Inclination ofthe moon

In one revolution ofthe Earth point P meets now different high and low waters: HW), LW), HW2,

LW2• Thetime history ofthe water level inpoint Pis presented in Figure 2.19. The high waters HW)
and HW 2 are different. Also the low waters LW I and LW 2 are different. This is called the dai Iy
inequality.

Tides and tidal currents mE-Delft 2 - 12



Origin and generation of tides

So far, attention was paid to
the tractive force of the moon.
However, both the moon and
the sun have their effect on the
tide.

When sun, Earth and moon are
in one line, the solar bulge and
the moon bulge are working
together (they are in phase).
That is the case during New
Moon and Full Moon (see
Figure 2.20) and is called
spring tide. The high waters
are extra high, the low waters
are extra low: the tidal range is
tberefore large.

When tbe moon IS

perpendicular to tbe line of sun
and Earth, the bulges of moon
and sun are out of phase. This
is tbe case during FiTStQuarter
and Last Quarter of tbe moon
(see Figure 2.21) and is called
neap tide. During neap tide,
tbe high waters are extra low,
tbe low waters are extra high:
the tidal range is small.

Observing a tide during a
montb results in a time bistory
as sketcbed in Figure 2.22. A
periodic variation of tbe tidal
range cao be observed, wbere
tbe spring tides and neap tides
cao be clearly distinguisbed.
The period T of tbis
pbenomenon cao be derived
from the angular speeds of
moon and sun (relative to tbe
Earth; see Figure 2.23).

--
HW, ~~

------------J HW2

I~ I~----
T='2h 25_ T=,2h 2~mn

Figure 2.19 Time history of water level at point P

Ear1h

Figure 2.20 Sun, Earth and moon in one line: Spring tide

Figure 2.21 Moon perpendicular to tbe line sun Earth: Neap tide

walerleve!

time

T

Figure 2.22 Tidal recordings during one montb

Tides and tidal currents mE-Delft 2 - 13



Origin and generation of tides

The angular speed of the moon
is CUm = 0.549 °lh

The angular speed of the sun is
CUs = 0.041 °lh

A full revolution of the moon
around the Eartb wiIl last
about2T:

2n
CU - CUm s

360°
0.508°lh

T = 354 h = 14.8 days

2T = = 708 h

So, spring tides occur about
twice a month.

Until now, the Eartb was
considered to be fully covered
with water and inertia of the
water masses was neglected. In
reality tides will propagate in
the oceans of the globe,
encountering reflection,
damping and distortion.

Figure 2.23 Angular speeds of sun and moon

HWF&C
water level

HW

time

moon crosses
the meridian

Figure 2.24 Age of'the tide
According to the equilibrium
tbeory, HW would be expected
at a certain location at the moment that the moon crosses the meridian of that location. In reality,
however, HW lags behind the moment that the moon crosses the meridian (see Figure 2.24). That time
lag is called highwaterfull and change (HWF&C)or port establishment. It is caused by the inertia
of the tidal system.

The same holds for spring tide, which would he expected to occur when sun and moon are in the same
line (relativetothe Earth), which is at New Moon and Full Moon. Generally, spring (and neap) tides
occur 1 to 3 days later (see Figure 2.25). That time lag of about 1-3 days is called the age of the tide.
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NewMoon FirstQuarter

+ _--_~ FUlfJ__
~, ~,

<, .:: <,- ----"

water
level

age of the tide

I LastQuarter

_--_
... -

time

....." ...-----"..........._----_/

Figure 2.25 Occurrenceof spring and neap tides

A complicating factor is that
the distances between Earth,
moonand sun are not constant.
Actually, the orbit around the
sun is an ellipse (see
Figure 2.26). So, the distance
between Earth and sun varies.
The tide generating force
contains K3. The force varies
± 5% from the mean value.
The sun is nearest to the Earth
in January (that is winter in the Figure 2.26 Elliptical orbit of the Earth
Northem hemisphere). It is
farthest away in July (summer at the Northem hemisphere).The tides caused by the sun, the solar
tides are strongerin Januaryandweakerin July.The effect of the changingdistance can be described
by adding an extra tide, called the so/ar elliptic tide.

.5<s1

Theorbitofthe moonaroundtheEarth is alsoan ellipse. So the distance to the Earth is also varying.
Thetidal forcevariesby± 16%from the mean value. In a similarway as for the sun, this effect can
he described by adding an extra tide,calledthe /unar elliptic tide. Tides caused by the moon are also
called lunar tides.

Besides the astronomical complicationsthere are more phenomena,which influencethe tides:
- reflections of water masses against irregular coast of oceans;
- frictional resistance of the bottom of shallow seas;
- rotation of the Earth around its axis, which causes deviationsof the tidal waves;
- wind effectingtidal water levels.
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2.4 Astronomical analysis of the tide generating force

The component of the tide generating force which is directed along the Earth surface is the tractive
force r,

F = 3gMsin28
S 2/(3

In this formula K and 8 are oot constant; they depend on motions of the moon and the sun. It is known
that:

the motions of moon and sun have a periodic character;
each motion bas its own characteristic mean angular speed.

The next step is to assume that:
Tthe phenomenon, generated by the tide generatingforce {which is the tide), contains the
same frequencies as the force itself.

This assumption is essential, because the analysis and prediction oftides (which will be discussed in
Chapter 3) is based on this assumption.

Fortbe analysis ofthe tidal signal (which is the water level versus time), it is important to know the
important frequencies. Those frequencies can be found from the decomposition ofthe tractive force
into its components. Investigators likeDoodson and Darwin have succeeded to decompose the tractive
force into its sinus components. This astronomical analysis gives as aresuit the frequencies and
relative importance of each component. This decomposition is not discussed further. It is illustrated
how the tractive force can be decomposed, and what can be lcamed from it.

The motions resulting from the Earth, moon and sun can be described by looking at the celesttal
sphere. This is a non-rotating sphere, which moves along with the Earth. The relative motions ofthe
moon and the sun, as they appear to the celestial sphere are projected on this sphere (see Figure 2.27).

North Pole

equator

autumn

nding node I ---

t
.] ..-M-

- - - - - -------....._---- S_---- /~;--- --_" /_-
/ ~- ,
I /--

..,-/-:7 S
"/

lunar orbit

ecliptic

Figure 2.27 Relative motions ofmoon and sun in relation to the celestrial sphere
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First the projection of the sun on the celestial sphere is considered. It is a circle, which is called the
eclipttc. The angle with the equator is constant, about 23.5 0. The ecliptic intersects the equator at two
places: the vernal equinox and the autumnal equinox.

The vemal equinox is used as a point of reference for the description of the motions of the celestial
bodies moon and sun on tbe sphere. Wben the sun is in the vemal equinox, spring starts in the
Northem hemisphere. The position oftbe vemal equinox is not constant; it makes one revolution
around the equator in about 26,000 years. That motion cao he ignored on the tide.

The Earth rotates around the sun in 365.24 days. That is the period between two successive crossings
oftbe sun through tbe vemal equinox. The mean angular speed oftbe sun is (1). = 0.041 °/h.

The next step is to consider the projection of tbe moon on the celestial sphere. The motion of tbe moon
is a more complicated one. The lunar orbit intersects tbe ecliptic at two points: the ascending node
and tbe deseending node. The lunar orbit makes an angle with the ecliptic of about 50. The location
of the nodes is not constant. Tbey move along the ecliptic witb a period of 18.6 years in westward
direction.

The dec/ination is tbe angle between tbe plane of the equator and the line that connects the centre of
tbe Earth with a certain point on the sphere. The maximum dec/ination oftbe moon occurs when the
ascending node is at the vernal equinox. It is 23.5 ° + 5 ° = 28.5 °.

The minimum dec/ination oftbe moon occurs when deseending node is at the vemal equinox. It is
23.5° - 5° = 18.5°.

It is known that the moon
moves in an ellipse around tbe
Earth. The position of that
ellipse is not constant. Tbe
perigeum (which is tbe point
closest to the Earth) rotates
once in 8.85 years (see
Figure 2.28).

Other periods are:
tbe moon completes one Figure 2.28 Moving position oftbe perigeum
revolution around tbe
Earth in about one montb (27.32 days);
the Earth rotates around its axis in one day.

P = pengeun

T P = 8.85 y<oars

The relevant periods and angular speeds are given in Table 2.3.
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Table 2.3 Periods and angular speeds

Origin Angular speed in °/hour Period

Rotation Earth
Moon around Earth
Earth around sun
Perigeummoon
Nodes lunar orbit

15.041069
0.549016
0.041069
0.004642
0.002206

0.997 day
27.32 day
365.24 day

8.85
18.60 _year

To describe the decomposition of the tractive force, the expression of F, is decomposed
systematica1ly,where all the frequenciesare representedby sinus components:

F = 3gMsin28 = 3gMr~ + ÊA COSwJ + <P.]
s 21(3 2K3rO ;-1' , ,

where:
Ao constant
A; amplitude of componenti
Cc.I; angular speed of componenti

=j. Cc.I~+ k. Cc.Im+ /(»s +mCc.lp

in which wc, Wm, ws' wp are the angular speeds of Earth, moon, sun, perigeumof the moon
<Pi phase of component j at t = O.

The effect of the nodes of the moon is left out. They are taken into account in a differentway which
will be shown further on.

To givean impressionofhow the decompositioncan be carried out, the celestial sphere is considered
again (see Figure 2.29).

Moon
or

Sun

equator

meridian Pole

Figure 2.29 Celestrial sphere

Tides and tidal currents IHE-Delft 2 - 18



Origin and generation of tides

The symbols used in Figure 2.29 have the following meaning:
S position ofa celestial body (wbieh can hemoon or sun); it bas a declination d;
T position of an observer at latitude b;
P Angle of intersections between points Sand T (both located on meridians);
o centre of the Earth.

Tractive Force

Moon/Sun

Figure 2.30 Locations of 0,Sand T

tractive force in T is directed along tbe circle TS.

Inthe expression of the tractive
force, 8 is tbe angle between
the lines which connect;:

the centre of tbe Earth and
the moon or sun OS, and
the centre of the Earth and
location on the Earth
surface OT (see Figure
2.30).

Thus tbe angle SOT equals to
8. ST is part of a circle. The

Looking at Figure 2.30, it can be seen that F, makes an angle t witb tbe meridian. F, can be
decomposed in a horizontal and a vertical component. F, horizontal is directed along the paraIIel,
whereas F, vertical is directed along tbe meridian:

Fs =Fssint_r
F =Fseost
s.. "

Now the expression for F. can be substituted in these equations:

F = 3gMsin28sint = 3gMsin8cos8sints... 2K3 K3

F = 3gMsin28cost = 3gMsin8cos8eost
s.. " 2K3 K3

To express Band t into d, b andp, tbe foUowinggeometrie relations can be used (tbey are not derived
here):

cosf = sinbsind + eosbcosdeosp
sin8sint = cosdsinp
sin8cost = sindcosb + sinbcosdeosp

These geometrie relations cao be substituted in the expressions for F and Fs :
Silo, .",.,

F = 3gM(sindcosb + sinbeosdeosp)(sinbsind + cosbcosdcosp)
s.. " K3
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After some elaboration the following result cao be obtained:

F = 3gM[(sinbsin2dsinp) + (cosbcos2dsin2p)]
'.., 2K3

2

Fs = 3gM[.!.(3sin2d - 1)sin2b
- 2K3 2

1

4

+ (cos2bsin2dcosp) + (.!.sin2bcos2dcos2p)]
2

Numbers 1 to 5 are put at the terms ofthe equations. The ~ (
formulae contain b, d andp, where: ~
b latitude of the location of the observer on Earth;
d declination ofthe moon or sun (the declination ofthe

celestial bodies varies with time)
p angle between the meridian of the observer and the

meridian of the position of the moon or sun (see
Figure 2.31).

3

To find the angular speed of p, it should be realized that
the location of the observer relative to the sphere rotates
with an angular speed Wc, whereas the position of the
moon or sun rotates with Wm or WS. SOthe angular speed
ofp is:

dp
= we - wm

dt
dp = We - wm
dt

lor the moon

lor the sun

Considering the formulae for F, andFs with a focus on p:
Iw,. ft"

5

Figure 2.31 Angle between observer
and moon or sun

- terms 4 and 5 contain sin 2p and cos 2p. The angular speed of2p is:
2(W. - wm) for the moon
2(w. - wI) for the sun.

This means that semi-diurnal tides are involved;
- terms 2 and 3 contain sin pand cos p. The angular speed ofp is:

(w.-wJ for the moon
(co, - w.) fOTthe sun.

This means that the diurnal tides are involved;
- looking closer to terms 2 and 3, it cao be seen that they contain sin 2d. So ifthe declination = 0

(if Moon and Sun are in the vemal equinox), the diumal components are O. Therefore those
diurnal components are called declination tides;

- term 1 contains only the declination d. The declination varies with the angular speed of moon and
sun. Typical angular speeds (which are called longperiod tides) are:

wm for the moon
w. for the sun.
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To extend the decomposition, tbe declination d is
expressed in tenns of the motion of moon and sun.
For tbe sun, dis expressed in tbe longitudeof tbe
sun. Figure 2.32 shows tbe celestial sphere. The
longitude of the sun witb respect to tbe vemal
equinox is denotedas h.

For the moon, longitudedis expressed in:
- the longitudeof tbe moon;
- the longitudeoftbe ascendingnode;
- the longitudeoftbe perigee.

Figure 2.33 shows the celestial sphere, where:
- the longitude of the moon witb respect to the

vernal equinox is denotedas s;
- the longitudeofthe ascendingnodewitb respect

to tbe vernal equinox is denotedas N;
- tbe longitude of tbe perigeum witb respect to

tbe vernal equinox is denotedasp.

The variationin time oftbose variables are known.
As an exarnple, the expressions for the longitudes
with reference time t = 0 at 1 January 1900 at
0.00 hours is given:
h = 280.190 +w,t,
s = 277.026 + wmt,
N = 259.156 + wnt,

p = 334.385 + wpt

(longitudeoftbe sun)
(longitudeof the moon)
(longitudeof the nodeof
the moon)
(longitudeof tbeperigee)
(dimensionin degrees).

If tbese relations are substituted in the general
equations of the tractive force, expressions
composed of the sum of numerous hannonic
components are obtained. Each harmonie
component, which is found from tbat elaboration,
has its own amplitude and angular speed (or
frequency).

_--:;7"------_
/

/

equator

vemal equinox

Figure 2.32 Celestrial sphere showing the
longituded of the sun

l.Lnar orbit

Figure 2.33 Celstrial sphere, showing the
ascending node

L.uxir orbit

ecliptic

Inthe above, the effect of the movingnodes of the
moon is not taken into account as a separate
component. The effect of the nodes is taken into
account in a differentway (see also Figure 2.34).
The angle of the ecliptic witb the equator is Figure 2.34 Effect of the nodes oftbe moon
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constant: 23.50• The moons orbit makes an angle of about 50 with the ecliptic. The maximum angle
between the moons orbit and the equator varies from 18~ 0 - 28 ~ 0 , depending on the location of the
nodes:
- 28~ 0 if ascending node is in vernal equinox;
- 18~ 0 if ascending node is in autumnal equinox.
The nodes made one revolution in 18.6 years.

The most convenient way is to substitute 23~ 0 for the angle between the moons orbit and the equator.
in the expressions ofthe tractive force. The variation due to the revolution ofthe nodes is taken into
account by multiplying the amplitude with a factor j; and adding a phase shift ui to the harmonie
terms. The general equation for the tractive force is:

F • 3* + iA COS("" + <1»]s 2K3 0 i-1' , ,

With the corrections the expression becomes:

F = 3gM[A +:EI"..f .cos(WJ + 4> + u>]s 2K3 0 ~(~, , , ,

The node factorsj; and Ui are known from astronomical data for each component. The node factor j;
is considered to be constant per calendar year.

The hannonic terms that we obtain from the astronomical analysis can be regarded as tide generating
forces due to ideal stars. For example, M2 cos (2 Wc - 2 wm) is the force that would be exerted by a
moon with a circu1ar orbit in the plane ofthe equator. A second example is S2 cos (2 we - 2 wJ, which
is the force that would be exerted by a sun with a circular orbit in the plane ofthe equator.

The number ofharmonic terms is large because:
the orbits are not in the plane ofthe equator, which cause declination tides (mainly diumal);
the distance betweenthe Earth and the moon and sun are not constant, as their orbits are ellipses.
The distances vary and also the angular speed. That cause the elliptical tides (both diumal and
semi-diurnal).

2.5 Main constituents of the tide

The most important tidal constituents are given in Table 2.4. They are called the main astronomie
constituents ofthe tide. Five groups can be distinguished; their meaning will be explained later. In
Table 2.4, the following information can be found:
- the symbol of each constituent (Iike M2' S2);
- the angular speed, expressed in the angular speeds of the Earth, the moon, the sun, the perigeum

ofthe orbit ofthe moon and also the numeri cal values;
- the astronomie coefficient, which gives some information about the relative strength of the

component. This will also be discussed later;
- the last column gives the type ofthe constituents.
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Table 2.4 Main astronomie constituents ofthe tide

Proup Symbol Frequeney Period Angular Astronomie Type of constituent
(hours) speed coefficients -

(deg/hour)

I M2 2w.-2w.. 12.42 28.9841 0.908 semi-diumal principle lunar tide
S2 2w.-2w. 12.00 30.0000 0.423 semi-diumal principle solar tide
Kl w. 23.94 15.0411 0.531 diumallunar-solar declination tide
Ol W -2w.. 25.80 13.9430 0.377 diumallunar declination tide

n PI w.-2w. 24.07 14.9589 0.176 diumal solar declination tide
N2 2w.-3w. +wp 12.66 28.4397 0.174 semi-diumallunar elliptic tide
K2 2w. 11.97 30.0821 0.115 semi-diumallunar-solar declination tide

m QI w.-3w..+wp 26.87 13.3987 0.072 diumallunar elliptic tide
U 2w -Ca>....a-Ca>_.,_ 12.19 29.5285 0.026 semi diumallunar elliptic tide

IV Mf 2w.. 328 1.0980 0.156 long penedie lunar tide
Mm wm-Ca>p 661 0.5444 0.083 long periodic lunar tide
Ssa 2w. 4383 0.0821 0.026 long periodic solar tide

V Sa w. 8759 0.0411 0.012 long periodic solar tide
Msm wm-2w.+wp 764 0.4715 0.012
Msf 2w..-2w. 354 1.0159 0.008
Mtm 3wm-Ca>p 219 1.6424 0.030
MI w.-Ca>.,+wp 24.83 14.4967 0.030
xl w.-3w. 24.13 14.9179 0.010
$1 w.+2w. 23.80 15.1232 0.008
J] w.+wlll-Ca>p 23.10 15.5854 0.030
001 w.+2wm 22.31 16.1391 0.016
2N2 2w.-4wm+2wp 12.91 27.8954 0.024
JÛ 2w.-4w..+2w. 12.87 27.9682 0.022
v2 2w.-3w. +2w.-Ca>p 12.63 28.5126 0.034
À2 2w.-Ca>m-2w.+wp 12.22 29.4556 0.007
T2 2w.-3w, 12.02 29.9590 0.025

We = angular speed of Earth
W.= angular speed of sun

Wm = angular speed of moon
wp = angular speed of perigeum of moon's orbit

In a tidal analysis, the tidal signal (= the observed water level versus time) is decomposed into its
constituents. When the constituents have been determined, aprediction ofthe tide cao be made (for
a week, a month, a year in advance). For the analysis and prediction ofthe tide, a distinction cao be
made between the important and less important constituents. For this, Table 2.4 shows 5 groups:

group I is always needed for a tidal prediction;
group n is also taken into account;
group III is theoretically of minor importance. In several seas they are stronger than the
astronomie coefficients indicate;
group IV reflects the tides with longer periods. They have to be taken into account if accurate
predictions are needed for a longer time;
the constituents of group V will be considered if an accurate prediction is needed.

Table 2.5 presents the most important astronomie constituents.
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Table 2.5 Most important constituents

Elliptical tides, diumal

Elliptica1 tides, semi-diumal

QI, moon

Type oftide Constituent

Principle tides, semi-diumal M2,moan
S2, sun

Declination tides, diurnal KI, moon and sun
Ol, moon
PI, sun

Declination tides, semi-diumal K2, moon and sun

N2, moon
L2. rnoon

InTable 2.4, the column ofthe astronomie coefficient gives the value of Aj in the expression:

F = 3gMr.1 + Er J .cos(WJ + <I> + u)]s 2K3r&o ;(&, , , ,

Multiplying Aj by 3gM gives the amplitude of the tractive force for that component.
2K3

So, Ai or the astronomie coefficient indicates the relative importance of the component.

When the tide ismeasured at a certain location on Earth, the relative magnitudes of the components
cao differ considerably from the astronomie ones. This is caused by the irregularities in the oceans
and seas.

The tide cao completely he described by the sum ofthe astronomie components in deep oceans. Those
tides are observed on ocean islands.

In shallow coastal shelf seas the tide is effected by:
- bottom friction;
- variabIe propagation speed ofthe tidal wave.

I Bottomfriction
The bottom friction is proportional to the water velocity squared:

F proportional to rl
in which
F friction force
u water velocity .

For altemating flows, the flow direction should be taken into account. The expression becomes:
F proportional to u I u I
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Ifthe direction of flow changes, the direction ofthe friction force must change as weil.
If u positive, than F negative.
If u negative, than F positive.

It means that the friction
generates tenns with a

frequency 3 times the basic frequency. If the basic frequency of M2 (semi-diurnal component) is
taken, than a M6 tidal componentwill be generated.M6 bas six oscillations per day, and is called a
sixth-diumal component. It is clear that the M6-componentdoes not have an astronomie origin.

11 Variabie propagation speed of a lidal wave in shallow water
A purely sinusoidal wave is considered,which enters from the ocean into a shallow sea. In this

exarnple, an M2-tidal
component is taken (see
Figure 2.37). The propagation
speed of a disturbancein water
with depth h isJih . The
amplitude of the wave is a.
This means that the
propagation speed of the top
isJg(h + a). The propagation
speed of the tbrough
isJg(h - a). In deep oceans h

u

////////////////////////

Figure 2.35 Sinusoidal tidal wave

..
+U .. oU..

/ / /_ / /~ / / / /
F

/ /.i'/// / / / /
F

Figure 2.36 Veloeities in a tidal wave

yg(h + al-
depth

yg(h'a)

h -
////// /////////////// // .:

Figure 2.37 M2 tidal component

Consider a tidal wave with a
sinusoidal shape.

The veloeities in a tidal wave
can be described by (see also
Figure 2.36):

u = û sin cot
where:
û maximumvelocity
(I) angular speed of the wave

This means that F IS

proportional to:
u 1 u 1 = û2 sin (l)t 1 sin (l)tI .

This relation can be expressed
in a Fourier series:

F is proportional to
A2[ 8 . 8 . 3 1u-sm(&)( + -sm (&)(+ ....

31t 15
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ismueh larger than a. The propagation speeds are equal. In shallow seas there is a difference. If the
tidal wave propagates into a shallow sea after some time the shape will be distorted (see Figure 2.38).

faster__..

~ slower

Figure 2.38 Int1uence ofthe water depth on a tidal wave

When this distorted wave is deeomposed in its components, then the original M2-component plus a
component with double frequeney is found. It has four oscillations per day and is called the M4 tide.
In faet, from the M2-tide a series of super-harmonies is generated in shallow seas, like M4' ~, Ms.
The sameholds forthe S2-tide:S4,~, Ss. Those tides are also called over tides. The distortion ofthe
tides with a period of one day, like KI and O, is very smalI. It is not neeessary to take their super­
harmonies into consideration.

It never occurs that one partial tide enters a shallow sea. There are always more tidal eomponents that
interact. This interaction gives rise to new components with frequeneies deviating from the original
ones. We call them compound tides. They are derived from M2' S2' N2, KI> Ol. The interaction
between M2 and S2 yields MS4. The interaction between M2 and N2 yields MN4 and so on. The
symbol is denoted by the symbols ofthe original tides. The subscript denotes the period, expressed
in parts ofthe diumal tide (or the number of oscillations per day).

The tidal components, generated by non-linear effects in shallow water are called sha/low water tides,
and eonsist of:
- super-harmonie tides or over-tides;
- compound tides.
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The most important components, also called the shallow water tides, are listed in Table 2.6. This
table contains groups, which are semi-diumal, ter-diumal, quarter-diumal, sixth-diurnal and eighth­
diumal tides. The table does not give astronomie coefficients, because the components do not have
an astronomic origin. The amplitudes ofthe components depend on the shape ofthe sea in whieh they
are generated. Experience bas learned that oom the shallow water tides at least the M4' M6' Ms, MS4,
MN4 have to be considered.

Table 2.6 Shallow water tides

Symbol Origin Frequency Period Angular Remarks
(hrs) speed

(dc:g./h)

MNS2 M2+N2-S2 2w,-5wm+2w,+wp 13.13 27.4238 semi-diurnal
2MS2 2M2-S2 2w,-4w..+2w, 12.87 27.9682
2SM2 2S2-M2 2w +2wm-4w 11.61 31.0159

MlO M2+Kl 3w.-2wm 8.18 44.0252 terdiumal
2M1O 2M2-KI 3w,-4wm 8.39 42.9271
SK3 S2+Kl 3w,-2w, 7.99 45.0411
S03 S2+01 3w.-2wm-2w 8.19 43.9430

M4 2M2 4w.-4wm 6.21 57.9682 quarter diurnal
MS4 M2+S2 4w.-2wm-2w, 6.10 58.9841
MN4 M2+N2 4w.-5wm+wp 6.27 57.4238
MK4 M2+K2 4w,-2wm 6.09 59.0662
S4 2S2 4w-4w 6.00 60.0000

M6 3M2 6w,-6wm 4.14 86.9523 sixthdiumal
2MS6 2M2+S2 6w,-4wm-2w, 4.09 87.9682
2MN6 2M2+N2 6w,-7wm+wp 4.17 86.4079
2SM6 2S2+M2 6w,-2wm-4w, 4.05 88.9841
MSN6 M2+S2+N2 6w,-5wm-2w,+wp 4.12 87.4238
S6 3S2 6(a)~-6w 4.00 90.0000

M8 4M2 8w,-8wm 3.11 115.9364 eighthdiumal
3MS8 3M2+S2 8w,-6wm-2w, 3.08 116.9523
2(MS)8 2M2+2S2 8w,-4wm-4w, 3.05 117.9682
2MSN8 2M2+S2+N2 8w.-7wm-2w,+wp 3.07 117.4079
S8 4S2 8w-8w 3.00 120.0000

We = angular speed of Earth
w. = angular speed of sun

Wm = angular speed of moon
wp = angular speed of perigeum of moon's orbit

Meteorologica/ tides
Inaddition to the main constituents ofthe tide, the meteorological tides should be addressed. Most
rneteorological phenomena are unpredietable and not harmonie, There are, however, two exceptions
on that rule:

Monsoons, whieh blow in one direetion during half ofthe year and in the opposite direction
during the other half. This causes an annual variation of the water level. That variation cao be
deseribed by a harmonie wave, with a period of one year;
A wave period of one day, which is caused by altemating land- and sea wind. In some tropical
regions that should be included in the tidal analysis.
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3 Analysis and prediction of tides

3.1 IntroductÏon

Cbapter 2 discussed the generationof tides and themain tidal constituents. This Chapter diseusses
the analysis and predictionofthe tide at a certain location, based on a measured tidal signal.

Figure 3.1 shows an observed
ti dal signal. The
decomposition of the tide
generating forces provides
accurate infonnationabout the
frequencies of the harmonie
components ofthe tidal signal.
The magnitudes and phase
lags ofthe componentsdo not
follow from theoretical
considerations. They must be Figure 3.1 Observedtidal signal
ealeulated from the observed

time

h

tide at a given location. The derivationof the eharacteristies of the componentsfrom the observed
tide is called tidal analysis.

3.2 Harmonie analysis of the tide

3.2.1 Fonnula used in tidal analysis

The tidal analysis is based on the genera!formula for the tractive force:
3gM n

F = -[A + EA.cos(u>/ + <1>,)]
s 2K3 0 ;-1' , ,

(3.1)

The analysis ofthe observedtide is based on a similar relation:
n

h(t) = ho + Eh,.cos(u>,1 - a;)
;-1

(3.2)

where:
h(t) water level at time t
ho mean water level
Cûi angular frequencyof componentI (known)
h, amplitude of componentI (unknown)
ai phase lag of componenti, related to the time base ofthe observation (unknown)
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Equation 3.2 cao be rewritten, by introducing the corrections due to the revolution of the moon's
nodes:
/; multiplying factor for the amplitude;
Ui phase correction for the phase angIe.

Further, the phase angle cao be related to the equilibrium tide in Greenwich (England). Then
Equation 3.2 becomes:

11

h(t) = ho + Eff!,lXJs(w,1 - Vi + Ui)
i-I

where:

H; amplitude of component i (= i1
Vi+Uj phase angleofthe equilibriumtide in Greenwichof

constituent i at t = 0 (astronomical argument)
v, uniform changingpart
t GMT (Greenwichmean time)

Equation 3.3 holds for the equilibrium tide, which is
observed at the meridian of Greenwich (England; see
Figure 3.2).

(3.3)

phase relaled 10
equilibrium tide
in Greenwich

Figure 3.2 Meridian of Greenwich
For analysing the tidal signal at an arbitrary location on
the globe, indicated as P (see Figure 3.3), its relative SllOI.ne .....

location to Greenwich should be taken into account.
LocationP isL degrees west of Greenwich,and it is there
S hours earlier. To include these, the following
corrections cao be made:

phase correction for the location: -pL;
p = 0 for long period tides;
p = 1 for diurnal tides;
p = 2 for semi-diumal tides;

- phase correction for the time: +C&lS'.

Thus, the correction in phase angle is -pL + (A)~ Figure 3.3 Location P related to
Greenwich

The formula for the equilibrium tide at an arbitrary
location becomes:

11

h(t) = ho + Eff!,{;os(w,1 + Vi + Ui - pL + W~
i-I

Equation 3.4 holds for the analysis of the equilibriumtide.

(3.4)
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The next step is to come to the real tide. The phase of the components for the real tide will differ
from tbose ofthe equilibrium tide. This phase difference is called kappa K, (for each component i).
So the equation for the analysis ofthe rea/ tide at an arbitrary /ocation becomes:

"h(t) = ho + Effl,cos(Ü),! + vj + Ui - pL + Ü)p - Kj) (3.5)
j-l

In tidal analyses it is usual to use the corrected kappa number gj,which is expressed by:
-gj = -pL + Ü)p - Kj (3.6)

Substituting the corrected kappa number in Equation 3.5 gives:

"h{t) = ho + Effl,cos(Ü),! + vj + uj - g;)
j-l

(3.7)

InEquation 3.7 H, andgi are the tidal constants which have to be determined from the observed tidal
signal. The other factors t, (Up {v, + uJ are known from astronomical data.

Equation 3.7 is used for the analysis of the tide and also for the inverse operation, the prediction of
the tide. When the tidal constants are known for a location, the astronomical tide (the tide without
meteorological influences) can he predicted for any period in future at that location. The metbod can
be used for water levels (which is most used), but also for velocities.

After this introduction into tidal analysis, the procedure how to determine tidal components from an
observed signal is discussed. For this, a closer look is taken at the basic formula (Equation 3.7) for
the tidal analysis. The observed tidal signa! is composed of many sinusoidal functions, each witb its
own:
- amplitude;
- angular speed;
- phase (at t = 0).

The unknowns are the tidal constants Bi and gi' The other factors are known from astronomical
analysis, that are t,~,Vi' Ui' For the analysis, Equation 3.7 is simplified into:

n
h{t) = ho + Eh,cos(Ü)j t - ai)

j-l
(3.8)

in which h, and ai are the unknowns. The real tidal constants can be derived from them by:
h.

B=....!.., !;

Two metbods are commonly applied for tidal analysis:
- metbod of least squares;
- Fourier analysis.
In these lecture notes, the metbod of least squares is further elaborated.
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An example of the result of a tidal analysis is presented in Figure 3.4, which shows the tidal
amplitude (Hi) in m as a function of the angular speed (ClJi)for location Hook of Holland along the
Dutch coast.

0.04 0.08 0.12 0.16 0.20 014
- trequency CT(revjhourJ

1.0

0.9

0.8 t0.7
'""00.6 ::>

C.
0.5 E

'"0.4

0.3

0.2

0.1

Figure 3.4 Results of a tidal analysis for Hook of Holland (The Netherlands), showing the
amplitudes H, as function of the angular speeds Wj

In Figure 3.4 the following groups of components cao be distinguished:
- the fust group around 0.04 rev./hour, which consist of diurnal components (once a day);
- the second group around 0.08 rev./hour, which consist of semi-diurnal components (twice a day).

The M2 (semi-diurnal lunar tide) and S2 (semi-diumal solar tide) are the most important
components;

- the third group around 0.12 rev./hour, consist ofter-diumal components (less important);
- the fourth group around 0.16 rev.hour, being the quarter-diumal components. In this group, M4

is a rather important component; it is a shallow water component;
- the last group, which is composed ofthe sixth-diumal components.

Figure 3.4 shows that within a group the differences inangular speed (or frequency) are very small.

3.2.2 Method of least
squares measuredsignaI

The aim of a tidal analysis is
9 (t)

to determine amplitudes and
phases for a series of sinus
functions from an observed
tidal signal. The determination
of amplitudes and phases is a
problem of best fit, for which
the method of least squares

Figure 3.5 Measured tidal signal

Tides and tidal currents (February 27, 1997) !HE-Delft 3 - 4



Analysis and prediction of tides

can be applied. Suppose a tide is observed as is shown by tbe measured signal gft) over a time
interval trt2 (see Figure 3.5)

Then a function h(t) can he
found, which IS an
approximation of tbe
measured signal (see
Figure3.6). The function h(t)
contains four parameters AI.
Al> BI' B2. The measured
signal gft) and tbe
approximation h(t) are not
equal. The above four
parameters should be Figure 3.6 Approximationoftbe measured tide
determined such that tbe best

approximation of !he
measured signa!
(with parameter A1 .Az . B 1 . B 2)

h (t)

(\nnnonono/\Î\ !

V VVV V V V V V V V!
t 1

fit witb tbe measured signal can be found.

There is a small differenceor error e(t) betweentbe two functions:
e(t) = h(t) - gft) (3.9)

The method of least squares requires that tbe error e(ty, integrated over tbe time interval tI - t]. is
mimmum:

t2f e(t)2dt = minimum (3.10)

The parameters Ab A]. B; B2 are parameters of approximation h(t) to minimize tbe error. So,
Equation 3.10 can be rewritten as:

t2 t2

fe(t)2dt = flh(t) - g(t)fdt = F (Al,A2,Bl,B2) = minimum (3.11)

The functionF will be minimum,when tbe derivates to AbA]. B; B] are 0:
öF = 0 öF = 0 öF = 0 öF = 0
ÖAI ' öA2 ' öBl ' öB2

These are four equations witb four unknownsAb A]. Bb B2. So tbe unknowns can be solved from
these equations and tbe best fit approximationis found.

The method of least squares can be demonstratedfor tbe case of two sinusoidal functions (or tidal
components).Ina real tidal analysis, more sinusoidalfunctions (or tidal components)are involved,
forwhich the helpof a computer is required to solveall equations.The general simplifiedexpression
for a tidal componentis:

hcos(wt - IX)
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For two components, h(t) can be written as:
h(t) = hlcos(Wlt - al) + h2cos(W2t - a2)

where hl' al' h2, a2 have to be determined.
(3.12)

Expression 3.12 can be elaborated as:
h(t) = hlcos(wlt)cosal + hlsin(wlt)sinal + h2cos(W2t)cos a2 + h2sin(w2t)sina2 (3.13)

To simplify the procedure, the following relations are introduced:
hlcosal = Al h2cosa2 = A2

Substitution in Equation 3.13 gives:
het) = Alcos(Wlt) + BIsin(Wlt) + A2cos(W2t) + B2sin(W2t)

For determining parameters Ab BI' A], B], values from
the measured signal gft) ofFigure 3.5 at time instants
to to+l1t, to+2I1t, ... , to+kl1t can be taken

(see Figure 3.7). For to + il1t = ti' the corresponding

value is g(t;). For g(to) to g(tk), the integrated error

(which should be minimum), can be written as:
k

F(AI,BI'A2,B2) = E[h(t) - g(t;)]2I1t
;-0

Figure 3.7 Values of g(~)

Substituting the relation for h(tJ gives:
k

F = E(AlCOS(Wlt) + BIsin(Wlt) + A2cos(Wl;) + B2sin(W2t) - g(t;)f.6.t
;-0

The derivatives of F to the parameters A Jo B Jo A 2> B] should be o.
öF = 0 öF = 0 öF = 0 öF = 0
MI ' MI 'M2 'M2

The derivatives become:

~: = Ê2(AtOOS«IoV;) + B1sin(w11;) + A2cos(w29 + B2sin(wlj) - g(tj»)cos(w1tj)ät = 0
Wil j-O

öF = Ê2(A1COS(W1Ij) + B1sin(w1Ij) + A2oos(wlj) + B2sin(w2Ij) - g(tj»)sin(wllj)~1 = 0öB1 j-O

öF = Ê2(A looS(W1Ij) + B1sin(w1Ij) + A2oos(W2/j) + B2sin(wli) - g(lj)JooS(W2/j)~1 = 0
6.42 j-O

~BF = Ê2(AlooS(W1Ij) + B1sin(wl9 + A2oos(W2/j) + B2sin(w29 - g(lj))sin(W2/j)~1 = 0
u 2 ,-0
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Elaborating the fust equation by dividing both sides with 2.t1t yields:
k

:ElAlcos(wI9 + Blsin(wltj) + A2cos(wlj) + B2sin(wlj) - g(tj»)COS(WI/;) = 0
j-O

Further elaboration ofthis relation gives:
k k k k

A I :Ecos(wltj)cos(wltj) + BI :Esin(Wllj)COS(Wllj) + A2:EcoS(W21j)COS(Wllj) + B2:Esin(wlj)coS(W21j) =
i-O ;-0 i-O j-O

k
= Eg(t;)cos(wlt;)

j-O

Doing a similar derivati.onfor the other three equations gives a set of equations of the following fonn:
AI all + BI al2 + A2 a13 + B2 al4 = b;

AI a21 + BI a22 + A2 a23 + B2 a24 = b2

AI a31 + BI a32 + A2 a33 + B2 a34 = b3

AI a41 + BI a42 + A2 a43 + B2 a44 = b4

Here, A J, BJr A], ~ are unknowns and aJJ - a_" and bJ - b., are knOWD. The four linear equation with
the 4 unknowns cao he solved by mathematical techniques. When parameters Ab BI' A" B] have been
found, the parameters hJr trJr h" tr] cao be detennined by:

hl cos "I = AI h2 cos "2 = A2

So the parameters of the function h(t) = hlcos(wlt - "I) + h2cos(wi - "2) are detennined,

thereby approximating the measured signal g(t).

Now the residual function e(t) = h(t) - g(t) remains. Insome cases, this residual is examined to
see whether some components are overlooked. It also contains meteorological effects (like wind set­
up). If we want to analyse the residual we make use of speetral analysis, which is not further
discussed here.

3.2.3 Sample interval h

To make a good estimation ofthe amplitudes and
phases of tidal components in a tidal analysis,
values are taken from the measured signal at a
certain time interval.t1t (see Figure 3.8). These are
called samples. The time between two samples is
called sample interval, and is usually taken
constant. Figure 3.8 Values at sample interval .:1t
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It can he proved tbat a sinus function must he sampled at least 2 times per period. For example, when
the tidal component Ma is important,with a period of 3 hours, the sample interval should be less than
1Yz hours. A common sample interval is 1 hour in tidal analysis.

3.2.4 Duration of the tidal measurement

Figure 3.5 showed the results of the tidal analysis for Hook of Holland. Within the groups,
components with angular speeds vary close to each other. Take for instanee M2 and S2. They have
angular speeds of 29°/hour and 30D/hour respectively. Ifthese components need to be seperated in
a tidal analysis, a certain length of the observation is required.

Consider two components with slightly different angular speeds w) and W2 and same amplitude (1).
Then the sum becomes:

h(t) = sin(w1t) + sin(w2t)

with:
w1 = ndw

w2 = (n - l)dw

n is large, so (w1 - (2) = dw is small.

Substitution yields:

h(t) = 2cos..!..(w1- (2)t x sin.!.(w1 + (2)t = 2cos( .!.dwt) x sin(w1 - .!.dW)t
2 2 2 2

The sinus function represents the fast oscillating part of the combined wave; the cosinus function
represents the slow oscillating part. The cosinus function is the slowly varying amplitude of the sinus
function (see Figure 3.9).

Ts= synodic period

in
phase

ir.
anti-phase

in
phase

Figure 3.9 Resulting tidal curve consisting of two components
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From Figure 3.9, the following conclusions can be drawn:
- the combined amplitude is maximum when SinWItand sin~t are in phase;
- the amplitude isminimum (= 0), when sinco.t and sin~t are in anti-phase;
- the function is periodic witb Ts, which is called the synodic period oftbe two components.

Period T. can be derived from the equation for h(t), in which:
Aw 2~-T=~ T=-2 S S Aw

In the synodic period:
sin(w1t) = sin(nAwt) makes n oscillations , and

sin(w2t) = sin(n - l)Awt· makes n + I oscillations .

To separatetwo components in a tidal analysis, at least one synodicpertod must be measured.Tbus,
to separate diumal and semi-diumal components, tbeir angular speeds should be considered:

Wdiumal :::::15°lh (=360°/24 h)

wstmli-diumal :::::30° Ih (=360° 112 h)
The criterion for separation is:

T = 2~ 360° = 360° = 24 h = 1 day
Aw 300lh - 15°lh 15°lh

To separate M] and S] , the minimum observation period should be at least:
(wM = 29°lh, Ws = 3001h)

2 2

T = 2~ = 360° = 360° = 360 h = 15 days
Aw 300lh - 29°lh l°lh

Table 3.1 gives the minimum observation periods to separate tidal components PJ, KJ, O, and QI'
For instance, 13.7 days ofobservation are required to separate diurnal tides KI and 0l'

Table 3.1 Minimum observation periods (in days) for four diurnal tidal components

Minimum observation period
Tidal component

PI KI Ol QI

PI x 182.6 14.8 9.6

KI x 13.7 9.1

Ol x 27.6

0. x
Table 3.2 shows the required observation periods to separate the semi-diurnal tides S2' K2' M2' N2,
~ and 2M~. To separate the important semi-diumal tides M2and ~, a minimum observation period
of 14.8 days is required. Other components need aperiod ofabout 30 days.
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Table 3.2 Minimum observation periods (indays) for six semi-dinmal tidal components

Minimum observation period (day~
Tidal component S2 K2 M2 N2 i, 2MS,

S2 x 182.6 14.8 9.6 3l.7 7.4

K2 x 13.7 9.1 27.1 7.1

M2 x 27.6 27.6 14.8

N2 x 13.8 9.6

i, x 9.6

2MS. x

The period of 30 days is more or less accepted as the standard observation period for a minimum
tidal analysis. To separate S2and Kl. and PI and KI, an observation period of half a year is required.
This is displayed in the Tables as 182.6 days. A period of369 days (about 1 year) is very nearly a
multiple of all values ofthe synodic periods. Therefore, 369 days is considered as the standard length
for a tidal analysis.

3.3 Tidal predietien

A tidal prediction is the inverse process ofthe tidal analysis. When the harmonie constants (= the
amplitudes and phase angles) at a given location are known (whieh are always valid), the tide can
he predicted for any time in future. There is, however, one condition. The physical condition of the
sea or the river must not change. In cases where important eivil engineering works have been
implemented (like the DeltaWorks in The Netherlands) the tidal components wiIl be affected by the
morphological changes.

The prediction of the tide is carried out by using Equation 3.7:
11

h(t) = ho + Effl,r.os(Ü),t + Vi + Ui - g;)
i-I

From the harmonie analysis, the harmonie constituents H, and gi are known. The mean sea level ho
is also derived from the harmonie analysis of the tide. The angular speed Ü)j of eaeh constituent is
known from the astronomical analysis. Table 2.4 presents the astronomie components, whereas
Table 2.6 gives the shallow water components. The nodal factor J; and the astronomie argument or
equilibrium argument (Vi + Ui) have been computed for many years in advance. The values for the
node factor J; are given in Table 3.3. These node factors are taken at the middle of eaeh year from
1970 to 1999 for a range of tidal components, and are considered to be constant over one year!
Finally, Tables 3.4, 3.5 and 3.6 a, b, e give the values for the astronomie argument (Vi + U;).
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Table 3.3 Node factor f for themiddleof each year for the period 1970 to 1999 (P. Schureman:
Manual ofharmonic aralysis andprediaion of tides. u.s. Department of Commerce,
Coast anti Geodetic Survey, 1941)
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Analysis and prediction of tides

Table 3.4 Equilibriumargument (V0+u) for meridian of Greenwich at the start of each calendar
year (P. Schureman: Manual of harmonie analysis anti prediefion of tides. u.s.
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Ana1ysis and prediction of tides

Table 3.5 Differences to adapt the values of Table 3.4 to the beginning of each calendar month
inany calcodar year (P. Schureman: Manual of harmonie analysis and prediction of
tides. u.s. Department of Commerce, Coast and Geodetic Survey, 1941)
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Table 3.6a Differences to adapt Table 3.5 to the beginning of each day of a month (P. Schureman:
Manua/ ofharmonic analysis andprediction of tides. u.s. Department of Commerce,
Coast and Geodetic Survey, 1941)
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Analysis and prediction of ndes

Table 3.6b Differences to adapt the values of Table 3.4 to the beginning of each calendar month
inany cale:ndar year (P. Schureman: Manual of harmonie analysis anti predienon of
tides. U.S. Department of Commerce, Coast anti Geodetic Survey, 1941)
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Manual ofharmonic analysis antiprediefion of tides. u.s. Department of Commerce,
Coast anti Geodefic Survey, 1941)
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Analysis and prediction of tides

Table 3.4 shows tbc astronomie argumatts at the begin of each calendar year from 1970 to 2000 for
a range oftidal components. The astronomie argument varies over tbe year. So it must be corrected
for the month and the day within that montb.
Table 3.5 shows tbe corrections to adjust tbc astronomie argument for a certain montb within a year.
The correction is 0 for January.
Table 3.6 a,b,e gives the corrections to adjust the astronomie argument for aspeeifie day within a
month. The correction is 0 for the fust day in the month.

To getmore feeling for carrying out a tidal prediction, a practical example is given. Tbe question is
to predict the water level in Hook of Holland (TheNetherlands) at 23 April 1990, 12.00 o'cIock (at
noon). The prediction is carried out by the Formula 3.7:

ft

h(t) = ho + Effl,cos(wi t + (Vi + Ui) - gi)
i-I

For simplieity, a restricted number of components (with an amplitude of 0.1 m or more) are taken
into account:
Ac mean water level (= 0.06 m for Hook of Holland);
01 diumal hmar declination tide;
N2 semi-diumal1unar elliptic tide;
M2 semi-diumal principle lunar tide;
S2 semi-diumal principle solar tide.

Table 3.7 presents the data on tidal components of Hook of Holland.

Tab1e 3.7 Tidal components of Hook of Holland

Component W (D/h) H; (m) _&_("l

0] 13.943 0.10 187
N2 28.440 0.12 59
M2 28.984 0.79 85
S2 30.000 0.19 145

Other data needed from Table 3.4-3.6 are displayed in Table 3.8.

Table 3.8 Other data needed for tidal prediction of Hook of Holland

1 Jan 1990 1 Apr 1990 23 Apr 1990 23 Apr 1990
Component f Oh Oh Oh 12 h1

~(v+u;) ~(v+u;) ~(v+u1_ ~lv+u·)

0] 1.128 240 236 161 167
N2 0.977 324 229 256 341
M2 0.977 259 325 183 347
S2 1 0 0 0 360

Tides and tidal currents (February 27, 1997) IHE-Delft 3 - 15



Analysis and prediction of tides

Combining Tables 3.7 and 3.8 gives:

Table 3.9 Combining data of Table 3.7 and 3.8

Com ponent f H; cos (Cllt + (v + u.) - gi)

Ol 1.128 10 cos (167 + 240 + 236 + 161 - 187) = - 0.22
N2 0.977 12 cos (341 + 324 + 229 + 256 - 59) = + 0.98
M2 0.977 79 cos (347 + 259 + 325 + 183 - 85) = + 0.62
S2 1 19 cos (360 + 0 + 0 + 0 - 145) = - 0.81

Now the contribution of each component to the water level can be determined as follows:
Aa= +O.06m
Ol = -0.024m
N2= +O.114m
M2=+0.478m
52= -0153 m +

+0.475 m is water level inHook of Holland at 23 April 1990, 12.00 bours.
A more accurate prediction can be obtained by including more components.

3.4 Type of tides

Tbe tide can be classified by tbe so-called form-number:
HK} + HOI

F= ----

Kl and Ol are the main diurnal components; M2 and S2 are tbe main semi-diurnal components.
Four types of tides can be distinguished (see also Figure 3.10):
- fully semi-diumal (F < 0.25). Such a tide can be found at Immingham in England. Tbere are two

HW's and two LW's per day ofabout the same height. Tbe mean tidal range at springtide is 2
(Hw +Hs2);

- mixed, mainly semi-diumal (0.25 < F < 1.5). Such a tide can be found at San Francisco in tbe
U.S. Tbere are two HW's and two LWs per day which are different in height and time. Tbe mean
tidal range at springtide is 2 (Hw + Hs2);

- mixed, mainly diumal (1.5 < F < 3). Such a tide can be found in Manila in tbe Philippines. Most
oftbe time there is ODe HW per day, for a short time there are two HWs witb a strong inequality
in height and time.Tbe mean tidal range at springtide is 2 (HKI + HQl);

- fully diumal (F > 3). Such a tide can he found in Do-Son in Vietnam. Tbere is only one HW and
one LW per day. Tbe mean tidal range at springtide is 2 (HKI + Hol)'
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Figure 3.10 Exarnples of four rnain tide types

Finally a definition ofthe most commonly used tidal terms is given inTable 3.10.
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Table 3.10 Most commonly used tidal terms

Abbreviation Full name Explanation

MSL Mean Sea Level The average sea level over a long period.

MHW Mean High Water The average of all high water levels.

MLW Mean Low Water The average of all low water levels

MHWS Mean High Water The average of two successive high water levels at
Spring springtide.

MLWS Mean Low Water Spring The average of two successive low water levels at
springtide.

MHWN Mean High Water Neap The average of the two successive high water
levels at neap tide.

MLWN Mean Low Water Neap The average oftwo successive low water levels at
neap tide.
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Long waves inone dimension

4 Basic equations and types of long waves in one dimension

4.1 Introduction

The tidal analysis and prediction concentrated on the tide at one location. In this Chapter, the
propagation of a tielal wave is discussed. Equations are derived, which describe the propagation of
tidal waves. With these equations, tidal computations can be made. The first methods for tidal
computations are analytical methods (Chapter 7). In later stages, numerical methods have been
developed (Chapter 8).

One of the main reasons to make tidal computations is to see how water levels and veloeities will
change when civil engineering works will be carried out in tidal regions. First, some arbitrary
examples are presented, showing the changes in tidal motion.

Before deriving the equations, Figure 4.2 Plans for reclamation in an estuary
fust a survey of the various r-----......;..--w---...,
types offlow is given, to show t ,vu
inwhich category tielal waves belong. L.__

Figure 4.1 shows a river that
flows in a sea, where a tide is
present. For the planned dam
in the river, it is necessary to
compute the changes in the
tidal motion (water levels and
velocities) downstream of the
dam in prior to construction.

Figure 4.2 shows an estuary,
where plans are to reclaim a
certain area. The water levels
and veloeities can change
considerably due te the change'
in geometry. Therefore, prior
to the start of the project it
should be known how the tide
will change inthe estuary. For
this, tidal computations must
be carried out.

tide

Figure 4.1 Dam, planned in the tidal reach of a river

sea

A flow motion can be characterized by the water level TJ and
the velocity (with components: u,v,w). The parameters are
functions of time t and space coordinates x,y,z. The space

Figure 4.3 Directions ofu,v,w
and x,y,z
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Long waves inonedimension

coordinates and the components ofthe velocity are presented in Figure 4.3, where:
u is directed in the x-direction;
v is directed in the y-direction;
w is directed in the z-direction.

An overview ofthe various types of flowmotion is given in Figure 4.4. From this Figure it cao be
concluded that tidal waves cao be considered as longwaves.

CO"
i" II

l Flow molion .1
I

Steady flow

I
Un sieady flow I Flow "ot

stant IJ/lJt - 0 MIJL~ 0 constant
me i" time

I
I I I I

Uniform Non-uniform Long waves Short waves:
flow flow Vcrtical veloeities Vertical veloeities
M6,,- 0 6/6" ~ 0 '\1\' '" 0 W ~ 0

(pcriods of hours) (pcriods of scconds)

Flow Plot
constant
in place

Flow

Flow
constant
in place

E.a. riVICl' wilh
eonslanl dope and
crOlS Ic:clion

E.g. river wilh
val1'ing cross
sectien

Tidal 'WaveIl E.g. wind w.vee

Figure 4.4 Overviewof various types of motion

4.2 Basic equations for long waves in one dimension

The basic equationsfur longwaves in one dimensionare derived for one-dimensionalproblems (like
a tidal river). The fust step is to make the following assumptions:

verticalvelocttiesare small. The flow is nearly horizontal, which means that the pressure in the
water is proportional to the depth. This implies a hydrostatic pressure distribution;
width ofthe channel is small. This implies that the water level in cross-direction is horizontal.
To give an idea, the width should be less than 10 km;
density ofthe water is constant.

The equations which describe the water motion in longwaves are:
equation of continuity;

- equation of motion.
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4.2.1 Equation of continuity

Consider an element of'the channel of Figure 4.5.

Odt (a + t~dx) dt

dx

Figure 4.5 Element of a channel witb length Ax

The syrnbols of Figure 4.5 have tbe following meaning:
Ax length of element;
A cross section;
b width at still water surface;
Q discharge in the channel.

The inflow at tbe left-hand side in a time increment dt is Qdt.
The outflow at tbe right-hand side in a time increment dt is:

Q + (~)dt.

In tbe time increment dt, water is stored in tbe element. The water level increases witb:

~t.a
The width at the water surface is b. So tbe stored amount of water is:

ar,dtbdx ..a
Conservation of mass, over a time increment dt means:

Inflow - Outjlow = Storage

Tbus:

Qdt - (Q + aQdx)dt = ~dtbdx.ar at
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Long waves in one dimension

Qdt - Qdt - aQdxdt = ifrJdtbdx.ar at

aQ + b ifrJ = 0
ar at

(4.1)

Equation 4.1 is the equation of continuity.

4.2.2 Equation of motion

100 equation of motion can he derived by considering an element of the channel with a length .1x and
applying Newton's law:

F = ma

By definition, acceleration is the change ofthe velocity per unit of time:
dua =-
dt

Consider u =fïx,t). Then, a change in u cao be written as:
au audu = -dt + ::::_fix
at ar

Dividing by dt, yields:
du au au dx-=-+--
dt at ar dt

The water partiele bas to he followed, that means that the change in x per unit of time is the velocity:
dx
- = u
dt

So the acceleration cao also be written as:
du au aua = - = - + u-
dt at ar

According F = ma, the acceleration equals the force per unit mass:
Fa =-
m

The forces acting on the considered element originate from gravity, pressure and bottom friction. For
further elaboration, an element of the channel per unit width is considered.
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A. Gravity force
Figure 4.6 shows tbe
coordinate system in tbe
channel. r is directed along tbe .
river. 77is directed upwards. h
is tbe local depth, so:

h = ho + TI.
I is the slope of the river bed.

Consider an element witb
length zlr. The mass m of the Figure 4.6 System ofcoordinates witb element àx
element is puix. The weight of
tbe element is pghdx.
The force component in tbe x-direction F is pghdxl (in fact it is sin I, but sin I = I, because I is
sma1l). The gravity force in the x-direction per unit of mass is:

F pghdxl = gl
m phdx

B. Pressure force
For tbe pressure force, tbe same element witb length zir is considered (see Figure 4.7).

mass = e. h . dx

h + ~ hdx
~x

1- _

dx _,

Figure 4.7 Element dx witb symbols for pressure force

The water level at tbe left-hand side is h. The pressure force is proportional to the water depth. At
tbe bottom the pressure force is pgh. The resultant pressure force at the left-hand side is:

.!xpghxh = .!pgh 2
2 2

At tbe right-hand side, tbe water level is h + ahdx. So, tbe pressure at tbe bottom is:ar
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Long waves inonedimension

P~h + ~).

The resultant pressure force at the right hand side is:

~P~ h + : dx)( h + ~) = ~ P~ h + ~ r.
The net force in the x-directionis:

I I ~ ah (ah) 2]_pgh2 - -p h2 + 2h-dx + -dx
2 2 ax ax

ah:::pgh-dxax
The rnass ofthe elementis phdx, so the net force in the x-directionper unit rnass is:

pghahdxaxF ah- g-ax=
m phdx

Because h = ho + 1], Equation 4.2 cao be written as:
F = _ ga"
m ax

C. Bottomfriction
For the bottom friction, the
same elementwith length .dx is
considered(see Figure 4.8). In
the element,water flowswith
velocity u in the positive x­
direction. Due to that flow,
along the bottom a shear
stress T acts in the opposite
directionon thewater element, ordx
per unit length ofthe channel Figure 4.8 ElementÀxwith symbols for bottom friction
and per unit width. The force
on the elementF = - tdx.

Now, an expression must be
found for T. Therefore, a
closer look is taken at a river
with uniform flow (see
Figure 4.9). The slope of the
river is J. The cross sectionof
the river is A, whereas the
length along the bank is o. .: --- :

~/

Figure 4.9 River with uniform flow
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Long waves inone dimension

For uniform flow, the gravity force due to the slope ofthe river and the friction force, will balance.
The weight ofthe element is pgAdx. So the gravity force in x-d.irection F, = pgAdxJ (assuming that
sin I :::l).The friction force along the bank oftbe river is -sdxû.

There is a balance between both forces, 50:

ApgAdxJ = 'tdxO - r = pgl0

In this expression AIO is the hydrauite radius R.

The hydraulic radius can be expressed in
terms of width and depth of a river (see
Figure 4.10).

R = ~ = wh
o w + 2h

For a side river, than w » h, so
whR::: - = h-
w

w

Figure 4.10 Cross section of a river

The hydraulic radius Ris about equal to the depth. For smaller rivers (in relation to the depth), the
hydraulic radius R can be computed from:

AR =-.o
The equation for the shear stress becomes now:
,= pglR (4.4)

For uniformflow, Chézy's law holds:

u = cpü

The velocity is proportional to the square root of the slope and the square root of the hydraulic
radius. Cis Chézys constant, and depends on the roughness of the river bed. For rivers inthe tidal
area inHolland, C = 50 is a common value.

The dimension of C can be derived from:

[
1 1u mis 2

C = .[Ri - rm = m Is

Re-writing Chézy's lawu = C pü gives:
u21=-
C2R

Substitution in Relation 4.4 yields:
u2 u2

't = pg-R = pg-
C2R C2

(4.5)
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Long waves in one dimension

Substitution ofEquation 4.5 in the genera] expression ofthe friction force per unit width (F = - f'dx)
gives:

u2-pg-dx
c2

The mass of the considered element is pdxh, so the friction force per unit mass is:
u2pg-dx
C2F

m pdxh
(4.6)

Considering a unit width of the channel means that the hydraulic radius R z h. Considering an
arbitrary cross section of the channel, R can better be taken instead of h. So a more general
expression for the friction force per unit mass is then:

F u2
- = -g- (4.6)
m C2R

The friction force holds for a uniform flow, and can be applied for tidal flow. Ajustification for that
assumption is that the flow oscillates slow due to the tide.

The direction of the tidal flow
alternates. Ebb flow and flood
flow are in opposite
directions. So the friction
force, directed opposite to the
flow direction is alternating
too (see Figure 4.11):
- u positive - F negative;
- u negative - positive.

~
u

'/'///////////////// ./////////////////7..
F F

This is taken into account by Figure 4.11 Alternating flows due to tides
writing zl as u lul.

So for tidal flows the term for the friction force can he written as :
F ulul= -g-
m C2R

(4.7)

For the force per unit of mass, the expressions for gravity, pressure and bottomfriction have heen
derived as follows:

F
- = gl
m

gravity pressure

ah
g­ax

ug-
C2R

bottom friction

Tides and tidal currents (March 19, 1997) !HE-Delft4 - 8



Long waves inone dimension

The equation of motion becomes now:
au au ah ulul- + u - = gI - g- - g--at ax ax c2R

or:

au + u au _ gI + g ah + g ulul = 0
at ax ax c2R

This equation does not hold only for tidal flow, but for flow in all kinds of long waves. For tidal
computations,the x-axis ismostly considered to he horizontal, so that I =O.The term -gI disappears
from the equation. So it reduces to :

au + u ah + g ah + g ulul = 0
at ax ax c2R

So, two equations are now available for describing the fluid motion in tidal waves:

- Equation of continuity (4.1): aQ + b ah = 0;ax at
_ Equation ofmotion (4.7): au + u au + gah + g ulul = 0at ax ax C2R

For tidal calculations it is
more convenient to use the
discharge Q instead of the
velocity u. Figure 4.12 shows
a schematization of a river,
which splits up in two
branches. Considering
sections (I), (2) and (3) of the
schematization, the condition
at the node is that the water
levels are equal and that there Figure 4.12 Schematization of a river with two branches
is conservation ofmass:
- 111 = 112 = 113;
- QI =Q2+Q3·

@
°2

~

0

0

"- 0 0

°3
®

The equation of motion cao be re-written by introducing u = Q
A

Tides and tidal currents (March 20, 1997) lliE-Delft 4 - 9
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Long waves in one dimension

Thejirst and secondtenn ofthe equation ofmotion (Equation 4.7) become:
aQA _ aAQ

au at at = _!_ aQ _ g aA
at A 2 A at A 2 at b

aQA _ aAQ
ar ar = _!_aQ _ gaA

A2 Aar A2ar

Figure 4.13 shows that the change in cross section
dA can be written as:

ciA = bds;
so:

aA = b at}
ar ar
aA = bat}
at at

Figure 4.13 Changing cross section

Substitution in the first two terms of Equation 4.7 gives:
au = _!_ aQ _ Qb at}
at A at A 2 at

au = _!_ aQ _ Qb at}
ar Aar A2ax

So, the equation ofmotion becomes (also replacing u with Q/A):

[
1 ea Qb at}] Q[ I aQ Qb at}] at} QIQI
A at - A2at + A A a; - A 2 ax + g ar + g C2A 2R = 0

Substitution ofthe equation of continuity aQ = _ b at} gives:
ax at

1 aQ Qb at} Qb at} Q 2b c3Tl ah QIQI
-- - -- - -- - -- + g- + g
A at A 2 at A 2 at A3 ax ar C2A 2R

One step further:

I ea 2Qb c3Tl J 1 Q 2b1 c3Tl QIQI =
A at - A2at + ó~ - gA3 ar + gC2A2R

term (2) term (3)

Taking a closer look to term 2:
_ 2Q b c3Tl

A2 at

Tides and tidal currents (March 19, 1997) lliE-Delft 4 - 10



Long waves in one dimension

The equation of continuity can be written as:
-b àTt = _ aQ.

at ax
Substitution gives for term (2):

2Q aQ
A2 ax

To elaborate term (2) further, the following expression is considered:
aQA _ aA

~(Q)2 =2Q& a;Q =2ll_aQ _2Q2aA
ax A A A2 A2 ax A3 ax

Substitution of aA = b àTt gives:ax ax
~(Q)2 = 2Q aQ _ 2Q2b àTt
ax A A2 ax A3 ax

So term (2) becomes:

2Q aQ = ~( Q) 2 + 2 Q2b àTt
A2 ax ax A A3 ax

Now considering terms (2) and (3) together:

~( Q) 2 + 2 Q2b àTt + g( 1 _ Q2b) àTtax A A3 ax gA3 ax

term (2) term (3)

This can be simplified to:

~( Q) 2 + J 1 _ Q2b) àTt
ax A ól gA3 ax

E . Q2b b .xpression -- can e wntten as:
gA3

Q2b = Q2 s. = u2_1_ = ~
gA3 A2 gA g Alb gh

This is called the Froude number. For tidal situations this number is small compared to 1. This can
be illustrated with the next example. Take u = 1 mis, g = 10 m Is2 ,and h = 10 m.

The Froude number ~ = _1_ = 0.01, which is small compared to 1.
gh 100

Tides and tidal currents (March 19, 1997) lliE-Delft 4 - 11



Long waves inone dimension

Q2bSo, the term -- can be neglected. Now terms (2) and (3) reduce to:
gA3

.È_( Q) 2 + ga"
axA ax

which is equal to !((~r + gtj]

As a" = ah, terms (2) and (3) can be written as:
ax ax

a~(Q)2 1 a a ( u2]- - + gh = -(u 2 + gh) = -gh 1 + -
ax A Bx ax gh

In this relation the Froude number occurs, which can be neglected (small compared to 1). So terms
(2) and (3) reduce to:

a ah a"-gh=g-=g-
ax ax ax

The equation holds for small numbers of the Froude number. The equation ofmotion, in terms of
Q and TI, is now reduced to:

_!_ aQ + g a" + g Q IQI = 0
A at ax C2A2R

4.3 Types of long waves

4.3.1 Relative importante of terms in the equation of motion

Unsteady motion of nearly horizontal flow can usually be classified as long waves. Tidal waves are
one of the types of long waves. The following briefly considers the various types of long waves,
which are described by the equations derived in Section 4.2. To distinguish the different types of long
waves, first the equation of motion is considered, written in terms of u and TI:

au + uau + ga" + gulul = 0
at ax ax c2R
LJ L.J
local convective

acceleration acceleration (acceleration when traveling with the fluid particIes)

inertia
+ I +

gravity friction
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Long waves inone dimension

Indifferent types of long waves, the different terms play a more or less important role. Thee types
of long waves will be considered:
- Translation waves, wbere inertia tenns are most important and the friction term can he neglected;
- Flood waves (rtver), wbere friction is tbc most important term, and inertia terms can be neglected;

TidaI waves, wbere bath tbe inertia terms and the friction term are of importance (in some cases,
friction can he neglected to obtain simple solutions).

A translation wave is a disturbance that propagates without any significant deformation . It is caused
by a sudden relief or wtthdraw ofwater in a channel, for instance by opening of sluices. A translation
wave can be positive (increase by water level) in the case of arelief (see Figure 4.14). Figure 4.15
shows a negative translation wave, which occurs in case of a witbdrawal.

r---------------------------~

4.3.2 Translation waves

//////////////////////

Figure 4.14 Positive translation wave
resulting from opening a sluice

/
/

/ - -////
/
/
/
/
/
/

'/7-/";-/"7/--:;--'/;-/7""/7/"7""":/""'/;-/";-////--:/;-/";-/"7,-;/"""'/;-/7""/7/""'-;/

Figure 4.15 Negative translation wave, in

case of a witbdrawal

Now consider the situation as sketched in Figure 4.16.

- - "'( ~
'l ~ 'L _l.

\-- ----------- -~-------I-- .... - -j
I--
I-- CI--

hO0 I--
I-- u=I--
I--

1
I--

U u=OI--

////// ////////

h

cdt

o

Figure 4.16 Symbols used for translation waves
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Long waves in one dimension

Figure 4.16 shows a part ofa channel with depth ho. The height ofthe translation wave is Tl. The
wave bas a steep front. The propagation speed ofthe wave front is c, which is called the celerity. The
veloeities at the right hand side of the wave front are zero; the veloeities at the left hand side are
small. Therefore, bottom friction. Can be neglected.

Equation forthis specific case can he derived by considering the box, indicated in Figure 4.16.At the
left hand side ofthe box, the water velocity is u,whereas at the right hand side the water velocity is
zero.

1 Continutty
The fust equation that can he derived is the equation of continuity. Continuity for the box in Figure
4.16 means:

Injlow - Outflow =Storage
So:

pg udt (ho + 7J) - 0 = pg cdt P

From this relation, the following expression for velocity u can befound:
u = c Tl_

ho + Tl

ForTl«ho:

GJ Equation of continuity

Il. Equation of motion
Applying Newton's law (F =ma) to the box inFigure 4.16 gives:

F = ma = mdu = d(mu)
dt dt

or
Fdt = d(mu)

Here, term mu is the momentum. Newton's law in this form says:

Force during dt =Net increase of momentum in time dt
(on the box) (inside the box)

= Increase of momentum inside the box
= inflow of momentum - outflow of momentum

Applying this to the box in Figure 4.17 gives (neglecting the friction force):

Tides and tidal currents (March 19, 1997) !HE-Delft 4 - 14



Long waves inone dimension

udt
t--I cdt

- -------~~~~----r_--_=~--_r--~-
- -

/////////
~gho

Figure 4.17 Increase of momenturn inside the box

.!..pg(ho + ,,)2
2
1 2Pressure at the right hand side: -pgho
2

Pressure at the left hand side :

The net pressure force is equaI 10: ~pg(h, + ~)' - ~pgh,' ~ pghD~(1 + 2h,J
The increase ofmomenturn inside the box is: p.edt (ho + 7])u
Inflow of momenturn - outflow of momentum is: p udt (ho + 7])u- 0
The net increase of momentum in the box is the difference between both terms:

p (e - uldt (ho + PJu

Now Fdt = d (mu) can be written as:

pgho,,( 1 + _2l_)dt = p(e-u)dt(ho+")u
2ho

Assuming that " « ho, then this expression reduces to:
pgho"dt = p(e - u)houdt

or

1 KTJ = (e - u)u Equation of motion

Tides and tidal currents (March 19, 1997) mE-Delft 4 - 15
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Long waves in one dimension

lIl. Combining equations of continuity and motion
The equations of continuity and motion are:

u = c..!l.
ho

gT) = (c - u)u

Continuity

Motion

Elimination u by substituting u from the equation of continuity in the equation of motion gives an
expression for the celerity c:

gT) = (c - c..!L] CTl
ho ho

c = /iho
~

~ & h~

When 11 « ho, then c z Jgho

Substitution of c into the equation of continuity gives for
the velocity u:

u = !lJgho • 'l~ g
ho ho

From the equation of continuity, it cao be seen that:
uho = CTl

This is the discharge through the plane at the left hand
side ofthe box, denoted as q in Figure 4.18.
So:

q = uho = CTl and Tl = !1
c

Some important properties ofthe translation waves are:
- Reflection against avertical wall. The height ofthe

reflected wave is equal to the height of the original
wave (see Figure 4.19);

- "Dyingout" at a boundary where the water depth or
width largely increases (see Figure 4.20);

- Partially reflecting and partially transmitting at
sudden changes in width and depth (see Figure 4.21).

_<

'I. ------- I=- ------.----

q - t-

u

Figure 4.18 Discharge q

-
'I, E '1.2 :~

~~
Figure 4.19 Reflection against a

vertical wall

___ 2 u __hm_1"
neg-

Figure 4.20 Dying out oftransl. waves
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Long waves in one dimension

--------~------- ---~
I

/////////////////////

//////////////////////~

®r-------------------~---

longitudinal section

Figure 4.21 Sudden changes in width and depth ofa channel

The conditions in cross section A are:
- Th + 113 = 112 (same water levels left and right of A);

- Ql - Q3 = Q2 (continuity in A)

The general expression for Q is:
Q = C11b in which c = .fih

Substitution in the continuity relation Ql - Q3 = Q2 gives:

11lblVghl - 113blM = 112b2M

(111 - 113)b1Vghl = 112b2.(ih;.

When 111 is known, 112 and 113 can be solved:

112 = 111 2b1Jiii;
blM + b2M

113 = 111bIg - b2M
blVghl + b2vgh2

4.3.3 Flood wave

In this type of wave, the friction term is most important. The inertia terms can be neglected. The
changes of u in x and t are small and the changes of 11 and h in x and t are small.

Tides and tidal currents (March 19, 1997) mE-Delft 4 - 17



Long waves in one dimension

The equations for this wave are:

aQ + b a" = 0 (continuity)ar at
.!. aQ + g a" - gI + g QIQI = 0 (motion)
A at ax C2A 2R

The inertia term.!. aQ and the slope of wave g ah are small and cao be neglected.
A at ax

In general, rivers have a
difference between the
discharge width and the
storage width ( Figure 4.23).

The flood wave in a river bas
the shape as sketched in
Figure 4.22. The flood wave
bas a propagation speed c.

The water is stored over a
width b,which is term binthe
equation of continuity. The
part of the river that is
transporting the discharge bas
a width bso

Figure 4.22 Flood wave in a river

b

erees-secnon of a river

Figure 4.23 Cross section ofa river

Neglecting the inertia and the slope ofthe wave in the equation of motion gives:
g QIQI = gI
C2A2R

Q2 = C2RI
A2

As u = Q u 2 = C2RIA' ,

or I u = C,fiij Iwhich is Chézy's Jaw, which holds for unifunn steady flow.

Chézy's law cao also be written in terms ofQ: Q = CAPÜ

Tides and tidal currents (March 19, 1997) mE-Delft 4 - 18



Long waves inone dimension

Introducing A = bh, (A is the cross section that transports the discharge Q) and when bs» h then:
R=h

So:
Q = Cb6".fiii

The propagation speed (or celerity) c ofthe flood wave is associated with the progress of a certain
discharge Q. SOthe celerity (speed ofthe top ofthe wave) is the speed ofthe property dQ = 0 (no
change inQ).

AsQ=f(r,t), dQ = i!dx + ~~dt = 0

The celerity of the wave is :
c = dx _ aQ/at

dt aQ/ar

Expressions for aQ and aQ can be found by:
at ar

Continuity: aQ = -b a" or aQ = -b ahar at ar at

Motion (reduced to Chézy's law): aQ = .È...(Cbh 3121112) = Cb l..h 112ah 1112
at at S S 2 at

= l..b C.fiiiah = l..b u ah
2 S at 2 S at

The celerity ofthe flood wave becomes:

l..b uah
c = _ aQ/at = _ 2 S at

aQ/ar _bah
at

3 bs
+--u
2 b

In the expression b > b., so b s < 1.
b

When for instanee b = 2b s' than c = l..u.
4

The propagation speed of the flood wave is less than the velocity of the water which is often the case.
The.m1;ÏQbjb bas a large influence on the propagation speed of the flood wave. Important from this
consideration is that the propagation speed is not equal to Jiii.
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Long waves in one dimension

4.3.4 Tidalwave

Tidal waves are described by the equation of continuity and the equation of motion. As both inertia
andfriction are important, the complete equations should be considered:

aQ + bar, =0
ax at

.!.aQ + g ar, + g QIQI = 0
A at ax C2A2R

It is, however, impossible to solve tbe complete equations analytically. Analytical solutions can only
be found for simplified equations, which will be treated in Chapter 7. It is possible to solve the
complete equation numerically by using computers Chapter 8).

To get insight in tbe behavior oftidal waves, first some simplified equations will be discussed which
describe the socalled harmonie waves.

4.4 Harmoniewaves

Harmonie waves are:
- periodic in time;
- sinusoidally shaped;
- and have amplitudes which are much smaller compared to the water deptb.

Tbe small amplitude, relative to the water deptb, means that tbe current veloeities are small.
Tberefore tbe friction term in tbe equation of motion can be neglected. Tbe equations reduce to:

aQ + bar, =0
ax at

aQ + gA ar, = 0
at ax

Tbe objective is to derive an equation for tbe water elevation ". Tberefore, the first equation is
differentiated to t:

~Q + b~ = 0
axat at2

and the second equation is differentiated to x:

~Q + gA~ = 0
axat ax2

Subtracting tbese equations gives:

b~ - gA~ = 0 or ~
at2 ax2 at2
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Long waves in one dimension

The general solution of this equation for harmonie waves is :

So :===~:)~is a function ofx and t, r---;-j'-î\-' -------/-,('\----,
which rneans tbat it varies in place and time. Wben I; I1 \ Ij
wt = constant = ex, it means that wave 1") is a
function ofx for a certain time (see Figure 4.24): \ /

1")(x,t) = ftcos(ex - Ja) = ftcos(Ja - ex),
where: ~J

1
21tk = - (L = wave length).
L Figure 4.24 Sketch of TJ for c.x = constant

Wben Ja = constant = p, the wave is a function of
time at a certain location (see Figure 4.25):

1")(x,t) = ftcoS(Wf - P)
where:

W = 21t (T = wave period)
T

/~
/
/

Looking at the wave in time shows that the top (or
the total shape) has a certain
propagation speed or celerity c, see
Figure 4.26.

Figure 4.25 Sketch of TJ for Ja = constant

During period T the top of the wave
travels over a distance L, sa:

Lc = - or L = cT
T

L

This is the well-known relation for
wave phenomena.

The celerity c can be expressed in Figure 4.26 Celerity c ofa tidal wave
terrns of ca and k:

L 21tc=-andw=-
T T

W 21ttr L Wsa -=--=-orc=-
k 21t/L T k

thus k = 21t
L

The first and second order derivatives ofthe general equationn = ftcoS(Wf - Ja) to x and f are:

a" = wftsin(Wf - Ja) and &" = w1îcoS(Wf - Ja)af af2
a" = kftsin(Wf - Ja) and &" = -k1îcoS(Wf - Ja)
~ ~2
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Long waves in one dimension

Substitution of these derivatives in the equation:
~_gA~=O
at2 b ax2

gives:

-w~cos(wt - la) - gA x -k2xftcos(wt - la) = 0
b

or

w2 AThus: - = g-
k2 b

As the celerity of the wave is c

c' = gA or c = ±~ gA
b b

k

This general solution represents two harmonie waves, one propagating in the positive x-direction
and one propagating in the negative x-direction, each with a propagation speed or celerity

c » ~~

Note that c = propagation speed ofthe wave shape and not the velocity ofthe water particles!

The general solution cao also be written as:
" = ftcos(wt-la)

~ ( k)·th co= "cosw t - -x W1 c = -
w k

= ~cos<ol(t - .:.) with c = ± ~ gA
c b

So the complete solution with the two waves propagation in the positive and negative x-direction is:

Tl = ficosw(t - .:.) + ~co""(t + ':'), inwbich c = ~ gA
c c b

Now the solution ofthe discharge Q for the hannonic wave will hediscussed. This solution is similar
to the solution of the water elevation r]:

Q = Qcos(wt - la + a)

For substitution in the equation of continuity:
aQ+ba,,=Oax at

the first order derivative of Q to x and the first order derivative of 1J to t are needed:

aQ = Qksin(wt - la + a), and a" = ftwsin(wt - la).ax at
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Long waves in one dimension

Substitution in tbe equation of continuity gives:
Qksin(wt - lex + a) - bfJwsin(wt - lex) = 0

This means that
a=Oand
Qk - bfJw = 0

So: Q = bfJe

The general solution for discharge Q becomes:

Q : IriiCOOSOl(t - .!::) with c : ±~ gA
e b

The complete solution for the two waves, propagating in the positive and negative x-direction, is:

Q • b1\ccom.{ t - ;) - lriiccom.{ t + ;) with C : ~ ~

This can also be written as:
A ,.1 x) A ( x) AQ = QcoS1t -; - Qcosw t +; with Q = bfJe.

4.4.1 Single progressive harmonie wave

Aspecific solution is obtained by introducing boundary conditions. For example:
at x = 0 : 11 = fJCOSW(

The general solution becomes:
11 = fJcOS(Wf- lex) + fJcOS(Wf+ lex)

for x = 0:
11 = fJCOSWf
wave travelling
in the positive
x-direction

+ fJCOSW(
wave travelling
in the negative
x-direction

The boundary condition can hold for one of the two waves: for the single progressive wave in the
positive x-direction or the single progressive wave in the negative x-direction. Consider the single
progressive harmonie wave, propagating in the positive x-direction, which is described by:

11 = fJcosw(t - ~) or 11 = fJcoS(Wf - lex)
e

To illustrate that this formula describes, a wave is considers which propagates in the positive
x-direction (see Figure 4.27). The starting point is at x = XO' Some further to the right (at x; + .dx)
the phase is earlier.
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Long waves in one dimension

This means that after some
time the top will arrive there.
So for a small positive .ar and
constant t, the phase
difference:

d[~t - ;) 1
should be negative.

With c= ~~ = positive,

this is true for the wave:

11 = 1ÎCOS~ t - ;)

c ..

I \
Figure 4.27 Wave propagating in positive x-direction

The second wave

11 = 1Îcos~ t + ;)

is the other wave, travelling in the negative x-direction.

Length of a tidal wave
The wave length of a tidal wave is large. The wave length is given by:

L = cT

Take for instanee the wave corresponding with the M2-tidal component:
T= 12 h 25 min= 44700 sec.

For a water depthh = 10m, C = ~ ~ = Iih = VIOO • 10 mil

so: L = 10 * 44700 = 447.000 m = 450 km.

Indeep oceans the wave length is even much larger, because the wave length L is proportional to the
square root of the depth.

A hannonic wave propagates over large distances, thereby keeping its original shape. The faet that
the wave does not deform is a consequence of neglecting the friction. Innature we will never find
pure harmonie waves. Inshallow seas estuaries the following effects occur:
- friction;
- damping;
- reflection, and so on.

Discharge in a single progressive harmonie wave
Consider the motion of the water particles in a single progressive harmonie wave that propagates in
the positive x-direction.
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The water elevation is given by: " = ftcoswt
The discharge is given by: Q = Qcos(wt - Ier) witb Q = bef)

So "and Q are in phase. This
means that:
- when " = max. positive,

tben Q = max. positive;
- when n = 0 tben Q = O~
- when ,,= max. negative,

tben Q = max. negative.

The relation between "and Q
is given inFigure 4.28.

The discharge (or velocities)
of tbe water particles are in
phase witb tbe water
elevation. The veloeities are

c

////////////////////////,

Figure 4.28 Relation between wave" and discharge Q

maximum positive under tbe
top or crest oftbe wave. The veloeities are maximum negative under the trough oftbe wave.

Consider now the ratio of tbe veloeitiesofthe water particles and the propagation speed of tbe wave.
Q = bef)

and: Q = ûA
where:

Û = maximum velocity water particles;
A = bh (cross section).

S lbh bcî; Û ft0: u = CT) or - = -
c h

The amplitude" is small compared to tbe water deptb h. So tbe velocity u is small compared to tbe
propagation speed c. This means that tbe assumption to neg/eet thefriction term in tbe equation of
motion was correct. The veloeities oftbe water particles appear to be small.

It was derived rnathematically that the veloeities are maximum positive under tbe crest of tbe wave,
and maximum negative under tbe trough of tbe wave. This can be illustrated by considering
continuity or tbe mass balance for a wave, propagating inpositive x-direction (Figure 4.29). Consider
a wave at time t,and some time later at to + Llt. Inthis time tbe wave shape propagates. The water
particles move back antiforth, but in tbe mean, tbey stay in tbe box.
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t c t o+e t

X

I I I
~ I ~ I I

Q I Q I Q I cl>
I I ~ I~ I I I ~ I

<? I <? ~ <? I <?I I IQ ~ Q ,._L- Q ~ Q
'i'///\ 1\ 1\ //,/,If/////v v v

water stays water stays water stays
inthis box inthis box in this box

Figure 4.29 Mass balance for a propagating wave

4.4.2 Standing harmonie wave

Standing waves can he observed in rivers or estuaries, which are closed at one end, and where total
reflection takes place. In that case the complete solution ofthe harmonie wave applies.

Consider a wave propagating in the positive x-direction and a reflected wave propagating in the
negative x-direction (see Figure 4.30).

reflectionagainst a wall

e

,.
'l.. = 't cos (c.) t - kx)

c..
"'t = 'leos (wt + loc)

Figure 4.30 Incoming and reflected waves
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If case of complete reflection, the amplitude of the reflected wave is equal te tbe amplitude of the
incoming wave. The resultant wave is the sum of the two progressive waves.

11 = ftcos(Ca>t- h) + ftcos(Ca>(+ h)

a+b a-bcosa + cosb = 2cos--cos--
2 2

c = fAX - lex, b = fAX + lex
a+b = 2Ca>(= Ca>tand a-b
2 2 2

Using tbe relation:

and:

so that:

gives: 11 = 2ftcosCa>tcos(-lex)

-2kx
= -kx

2

Consider the expression for the complete solution oftbe discharge:
Q = Qcos(Ca>t - lex) - Qcos(Ca>t+ lex)

Applying the above relations gives:
Q = Qx( -2)sinCa>tsin(-h) or
Q = 2Qsinkx sineer witb Q = bftc

To interpret tbese results, fust a closer look is taken to the expression for the water elevation:
11 = 2ftcoslexcosCa>t

L_j

amplitude is a
function of x

The water elevations have the same phase wt for aU values of x. The amplitude of the water elevation
is a function ofx. There are locations where tbe amplitude is always 0:

1t 31tcoskx = 0 for lex = -, -, .....
2 2

k 21t bsti . lds IL 3L= -, su sntuuon yte x = - , - , ....
L 4 4

These locations are called nodes.

There are locations where tbe amplitude is maximum: coskx = ±l for kx = 0, n, 21t, ....
These locations are called antinodes .

At certain instances, all
elevations are 0, namely when
coseer = O.
At certain instances all
elevations are maximum,
namely when coseer = ± I .

The resulting water elevation
in tbe standing harmonie wave
are indicated in Figure 4.31.
At a certain moment in time,
tbe wave bas the slope given

IJ.
antinode antinode
/' .....

node / \ node

I

x

...!...L J__L ~L L
4 2 4

~L
4

o

Figure 4.31 Standing wave witb nodes and antinodes
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by the drawn line. A quarter period later all elevations are O.After a halfperiod the wave bas the
shape of the dashed line. After three quarter of the period all elevations are 0 again, and so on.

Considering the expression for the discharge gives:
Q = 2Qsinla: sinwt

L_j

amplitude is a
function of x

The discharges have the same phase (IX for all values of x. The amplitude of this discharge is a
function of x (see Figure 4.32).

There are locations where the
amplitude is always 0:

sin kx = °
for kx = 0, tt,2rr, .

As k = 2n/l; it means that
x= 0, !/zL, L .

which is in the antinodes.

Locationswherethe amplitude
is always maximum are:

sinkx = ± 1 .
for kx = rrl2, 3 rrl2, ....

a
node node node

antinode antinode
/' -,

/ -,

/

/ -, /
-, / /

0 ..!...L ...!..l 2-l L 2L
4 2 4 4

Figure 4.32 Nodes and antinodes ofthe discharge

As k = 2rr1L,it means that amplitude is maximum for x = 0, YJ., 3/4L, which is inthe nodes.

As saidbefore, standingwaves can be observed in rivers and estuaries which are closed at one end.
lt is logical that the antinode (whereQ = °all the time) is located at the closed end.

Figure 4.33 shows the time history of a standing wave.
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Q=O 0=0 \=0 Q=O "''l= 2'lcos kx coswt,.
0= 2Qsinkx singt

~

t = 0

~ =max

0=0

t=.1.T
4

'l..=0

O=max

t=..1.T
2

tz.=max

0=0

t= ~ T
4

tt = 0

O=max

'l.= 0

antinode node antinode node antinode
/'------./

o~
/

o o~~
o 0 0 ~

o 0 0 0 0/
o 0 0 0 0/

////////////////////////////////////~

/'
~

o~
~ -: ~ : 0 ~~
o ___,.. 0 ~ o~
o ~ 0 ~ ~~

////////////////////////////////////~

:/
~----------~~------~or-------~------~~

o 0 0 ~~
o 0 0 0 0/
o 0 0 0 o~
o 0 0 0 o_j/

//////////////////////////////////////

/'
~

------------------------------------~~o ._ 0 ... 0/
o ._ 0 ~ o/~
o ._ 0 ~ o~
o ._ 0 ~ ~~

/////////////////////////////////////_

Figure 4.33 Time history ofa standing wave

Tides and tidal currents (March 19, 1997) !HE-Delft 4 - 29



Long waves in onedimension

Resonance of a standing wave
The mode of oscillation in a
bay or estuary, which is
closed at one end, is govemed
by the ratio of the length of
the tidal wave and the length
of the bay. Consider a bay
with a length 1 (see
Figure 4.34).

If the length of the bay
approaches Y.d., %, 5/;..
(where L is the length of the
tidal wave), then a ~
occursat the sea entranceand
an antinode at the closed end
(see Figure 4.35).

In that case, resonanceoccurs.
The water levels in the
antinodes become wO' lame
(theoretically infinite). In
nature, friction win prevent
that the amplitude of the water
levels becomes infinite.

Ha
or

ocean

node
antinode
Q=O

Figure 4.34 Bay with length 1

tI>rcc=-- ____..J~ I -: l

cIosedopen
end end

Thus the friction should be Figure 4.35 Resonance in the bay of Figure 4.34
taken into account with the
computation ofthe resultingwave height. For this, mathematicalmodels are available.

Resonance win take place if 1= Y.d., o/.d., 5/;.., ..... A general expression is:
2n + 1 .1 = L with n = 0, 1,2, 3, 4, .....

4

I _3 L

'"

The natural pertod of oscillation of a bay with length 1can be found from:
L LL = c.T - T = - = -
c{ih

T = 41 , with n = 0,1,2,3, ...
(2n + 1){ih

1 = 2n + 1L _ L = 41
4 2n + 1

In this way it can be checkedif a bay or estuary win have resonanceproblems for certain periods
from the tide at sea.

An example ofa standing wave, in which the length ofthe bay is about one quarter ofthe wave
length (Y4L) is found in the Bay of Fundy at the east coast of Canada (see Figure 4.36).
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'BAY OF FUNOY- .

A
'I ~I.S ""

50 KM

e -

Figure 4.36 Bay of Fundy, Canada

The bay is connected to the open sea and bas a closed end. The tidal amplitude increases considerably
between the open end and the closed end of the bay,

At the open end the amplitude is about 1.5m.At the closed end the amplitude is about 6 m. The high
waters and low waters occur in the whole bay almost simultaneously. Both features indicate a
standing wave in resonance. This can be checked as follows:
- length ofthe bay: 1= 300 km;
- average depth: h = 75 m;
- principal tide: Mj-tide (period of 12 h 25 min, so T = 44700 s).

L = cT = {ihT
{ih = Vl0x75 = 27mls
T =44700 s

so: L = 27 • 44700 = 120600 m= 1200 km.

The length ofthe bay is about a quarter ofthe wave length (Y.d.), so resonance occurs.
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Seiches
Resonance does not happen only due to the tidal wave with periods ofhours (like the M2-component
witb 12 h 25 min.), there are also periodic long waves of relative short periods, ranging from
5-30 minutes, which are called seiches. Seiches are caused by meteorological phenomena, like
moving depressions. The amplitudes of seiches are small compared to tbe water depth, which means
that tbe friction can be neglected and that the harmonie wave solution can be applied. Seiches are
especially of relevanee for harbour basins and should be taken into account.

As exam Ie, considerthe harbour area ofFi re 4.37.

sea

';( velocities
%
~/////////////// ///////////////////~

~ - tide
T = 12h25 min

seiches

T= 20 min

harbour basin

d = 10m

~////////~///~

vertical movement of water level

Figure 4.37 Harbor area along a tidal river

Seiches can occur witb periods ofabout 20 minutes. Tbe depth ofthe harbour area is 10 m. The
criticallength oftbe harbour basin can he determined as follows:

Length ofthe seiches wave (superimposed on the tidal wave) is:
L = cT = .fihT = JI0x 10x20x60 = 12000m = 12km

So the critical lengthofthe basin 1= YJ. = 3 km,which means that with such a length resonance due
to seiches can be expected. Practical consequences can be:
- high veloeities at tbe mouth of the harbour basin and cross currents on tbe river;
- important vertical movements ofmoored ships.

Transverse oscillatton
For completeness also a third mode of oscillation, a transverse oscillation in seas or bays, is
considered (sec Figure 3.38). This occurs between two closed ends. The length between tbe two
c10sed ends should be YzL,L, 3/~. Insuch a case, antinodes are located at both ends and resonance
mayoccur, with large amplitudes ofthe water levels in the antinodes.

Tides and tidal currents (March 27, 1997) IHE-Delft 4 - 32



Long waves in onedimension

Resonance will take place if
1= YzL,L, 3/2L, ..... A general
expression is:

l = ~L with n = 1, 2, 3, .....

Tbe nanuru period of
oscillation of a basin witb
lengtb I can he derived
through:

LL = cT - T = - =
c

L
{ih

n 2/l = -L - L = -
2 n

2Lso: T =--
n{ih

It is also possible that tbe
lengtb of a bay or estuary,
closed at one end equals
YlL, L, ..... (see Figure 4.39).
In this case also resonance
will take place, caused by a
standing wave. In this case,
however, no amplification of
tbe tide occurs.

~ , IIIIJIDY <ZIJ1]] I ! ~ I =..!..L
2

1= L

Figure 4.38 Transverse oscillation

Tbe tide at tbe closed end has
the same amplitude as tbe tide Figure 4.39 Oscillationfor 1= 0.5 L
at tbe open end. It may
become somewhat smaller due 10friction.

An application of resonancebetweentwo closed ends is
a lake, which is exposed to a heavy wind for a certain
time and suddenlytbe wind stops (see Figure 4.40).

Tbe wind causes a shear stress over tbe water surface:
't =Ls»?w Ja a

in which:
'tw shear stress;
fa friction coefficient;
pa density of air;
w wind velocity (mis).

~ ~w

~ - ~~ ~ fW
~~ // -

/ -//);;;;;;;;;;777/)//////,'//,'/>-,-(/

Figure 4.40 Lake exposed to wind

As reactionto the wind a slope in tbe water level of tbe lake occurs. Tberefore, consider an element
oftbe lake witb lengthdx, see Figure 4.41.
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x

slope = ~ hax

dx

Figure 4.41 Sloping water level as reaction to the wind

The shear stress will balance with a pressure gradient due to the slope in the water surface. The shear
force (per unit width) is: 'twdx

The net pressure force (per unit width) is: p,.g ~ dx=h

Equilibrium ofthe forces means:

P,.gh~ = faPaw2dx

So the slope ofthe water level is:

Öl1 = faPaw2
öx p,.gh

Note that the slope is reverse proportional to the depth (l/h), which means that:
- in shallow lakes the wind can cause an important set-up;
- in deep lakes (or seas, or oceans) the slope will be very small.

This means that storm wind willlead to storm surges (= set-up due to storm) in shallow seas, and
not in deep oceans. Figure 4.4 shows the equilibrium situation during heavy wind, which is a more
or less constant slope.

When the wind stops, the shear force at the surface bas ceased. The pressure gradient forces the
water to flow back. Now the effect of inertia becomes visible: the lake starts to oscillate (see
Figure 4.42). Of course this motion wiIl be damped due to friction.

The period of oscillation can be computed from the discussed theory:
- length of the lake I;
- depth of the lake h.

The oscillation is performed by a half wave length:

1 = ~L, L = cT = T.fih

So: T = .L.
.fih

21

.fih
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L

Figure 4.42 Oscillation in a lake after a storm
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5 Tidal propagation in one dimension

5.1 Introduction

The discussions on the hannonic wave gave some insight in the behaviour of a tidal wave. This
Chapter treats some types of tidal propagation in one dimension, namely a tidal wave travelling on
a river in upstream direction and a tidal bore. Tidal waves in seas and oceans are discussed in
Chapter 6.

5.2 Tidal wave on a river

A tidal river is tbe lower reach ofa river, wbich is under influence ofthe tide. Here, interaction takes
place between the oscillating flow caused by the tide at sea and the run-off ofthe river. One ofthe
effects is that the amplitude of the tide decreases in the upstream direction.

Consider the situation of
Figure 5.1. The assumptions
for the river are:
- a uniform cross section;
- constant slope I;

discharge Qo = constant.

The x-axis is parallel to the
bed ofthe river and positive in
tbe downstream direction. The
discharges Qo is positive; the Figure 5.1
slope 1is also positive.

tida! wave

tide

sea

The run-offflow in the river is basically balanced by the friction force (Chézy's law holds). Thus the
equation of motion for this problem should contain the friction term. The equations describing this
problem are:

aQ + b c1r) = 0 Equation of continuityax at
..!_ aQ + g c1r) - gI + g QIQI Equation of motion
A at ax C2A2

Assume that the deviations from the mean water level are small, implies that C, A, R can be
considered as constants. The friction term is non-linear, which causes problems in the analytical
solution. Therefore, this term is linearized:

g QIQI glQI xQ = mQ
C2A 2R C2A2R
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glQI
C2A2R

As g, C, A, R are considered as constants, m is a mean of discharge IQI over a tidal cycle. So m is
a kind of mean value of the friction over a tidal cycle. As a consequenee of the linearization, the
solution will not show any distortion of the tidal wave due to the quadratic friction.

where m =

The linearized equations now become:

aQ + b a" = 0 Equation of continuityar at

.!.aQ + g a" - gI + mQ = 0 Equation of motion
A at ar

From these equations, an equation for the water elevation 1] cao be derived. For that, the first
equation is differentiated to t and the second to x:

&Q + b~ = 0
arat at2

1 &Q ~ aQ &Q &Tt aQ--- + g- + m- = 0, or - + gA- + mA- = 0
A arat ar 2 ar arat ar 2 ar

(5.1)

(5.2)

Subtracting Equations 5.1 and 5.2 gives:

b~ -gA~ _mAaQ =0
at2 ar2 ar

Replacing aQ by (-b a,,) (equation of continuity) gives a relation with independent variabie 1]:ar at

b ~ - gA~ + mAb a" = Oor (dividing by b) ~ - gA ~ + mA a" = 0
at2 ax2 at at2 b ar2 at

As gA = c; (propagation speed), this equation becomes:
b

~ - c;~ + mAa" = 0, which is knOWD as the telegraph equation .
at2 ar2 at

(5.3)

Oscillating solutions ofthis linear equation are ofthe form:
:loMTl = 'lieo cos(c&>t ± lex)

in which:
'lio: reference wave amplitude for x = 0

'lioe :loM: amplitude of the wave, fuoction of x

Ä, k: unknown.
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It is not likely that a wave with a very high amplitude occurs for x = .....(up the river), so only e+ÀX

satisfies. The wave on the river, is a progressive wave in the negative x-direction, so only
cos(wt + kx) should he considered.

The solution of the equation is :
'11 = 'ÎÎoeMCOS(wt + kx)

This is a single progressive wave, propagating in the upstream direction, with decreasing
amplitude.

Factors). and k cao be obtained by substituting the solution in the telegraph equation. The
derivatives of n are:

àTJ = 1Î eh. -sinüor + kxï-t» = -1Î wehsin(wt + /ex)at 0 0

cf" = -1Î w· eh. cos(w( + /ex) = -1Î w2e hooS(w( + /ex)at2 0 0

àTJ = 1Î p.eh·cos(wt + /ex) + eh. -sin(W( + /ex)'k] = 1Î)..ehoos(wt + /ex) - 1Îokehsin(w( + /ex)ax 0

cf" = 1Î À[Àeh·cos(W(+/ex) + eh. -sin(w(+/ex)'k] -1Î k[À'eh'sin(w(+/ex) + eh'cos(w(+/ex)'k)ax2 0 0

= 1ÎoÀ2ehCOS(W(+ /ex) - 1ÎoÀkehSin(w( + /ex) -1ÎiÀe hsin(wt + /ex) - 1Îok2ehooS(W( + /ex)

= 1ÎoÀ2ehCOS(W(+ /ex) - 2ijiÀe hSin(W( + kxï - 1Îi2e hooS(W( + /ex)

Substitution of these derivatives inEquation 5.3 yields:
-";ow2e""cos(wl+kx) - c;[";oÀ2e""cos(wl+kx) - 2fJokÀe""sin(WI+kx)- fJi2e""cOs(WI+kx)] - mA";owe""sin(wl+kx) = 0

Dividing by'ÎÎo and eM gives:

cos(w( + kx)[ -w2 - c;).2 + c;k2] + sin(W( + kx)[2c;H - mA(I)] = 0

This equation cao only be fulfilledwhen:
(_(1)2 - ). 2c; + k2c;) = 0 (1)

(2k)'c; - mA(I) = 0 (2)

Now .À. and k cao be solved:

From equation (2): k = mA(I)2).c;
Equation (1) cao be written as C;).2 - c;k2 + (1)2 = 0

2 2m2A 2(1)2Substitution of k gives: co).2 - Co + (1)2 = 0
4).2C:
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Multiplying witb .01(2:

This is aquadratic equation oftbe type :

-b ± Jb2 - 4acax 2 + bx + c = 0 with roots X1,2 = __ ...!..- _

20
Applying this:

2 m2A 2(J.)2
_(J.)2 ± (J.)4 + 4c

o 2
2 4co

[Ä] = ---'-------1,2 2
2co

.;l2 is positive, which means that only the positive root holds:

A' = w' [-1 + ~ 1 + ~ La Ä hl ~ -[ +~ [

2c2 'o

(5.4)

In a similar way, the solutionfor k becomes:

+I+ Il + _m_2_A_2
~ üik = _....:-_...l-- _

Co {ï
(5.5)

5.2.1 Celerity of the wave

For investigating the celerity of a wave, the above solutions can be used. Substitution of k
(Equation 5.5) in the expressionfor celerityc gives:

Cl) Co {ï
C = = --;::::==========k

From this relation it can be conc1udedthat:

coli /iÄ- m = 0 (no friction): c = -- = c =--12 0 b

Co 12- m v: 0 (friction): C = < C
term >12 0

So in case of friction, the celerityofthe wave is smaller than without friction.
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Example

m = glQI (mean value over a tidal cycle)
C2A2R

So: mA = glui
C2R

Substitution of:
g = 10 rn Is2
lul = 1mis
C = 50 rnl12/s
R = 5 rn
wM =0.00014 rad/s

2

grves:
mA = glui = 1Ox1 = 0.0008

C2R (50)2x5

m 2A 2 _ 0.00082 = 32
w2 0.000142

Substitution in the expression for C gives:

CoP CoP
C = = 0.54co

~ 1 + ~ 1 + m~~ 2 VI + J33

This shows that the celerity or propagation speed of a tidal wave is to a large extent reduced by the
friction.

5.2.2 Attenuation of the wave

The attenuation of a tidal wave is determined by the factor eÀX in the general solution:

" = Ttoe .l.xcos(W! + lex)

Substituting the numerical values ofthe above example inEquation 5.4 gives for À:

m2A2-- = 32
w2

Co = [ih = /5ö
À = 0.000I4V-1+JTI = 3xl0-5 m "

JIOO

The attenuation ofthe amplitude is indicated in Figure 5.2.
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Figure 5.4 gives an example
of tidal wave propagation in
one of the branches of the
river Rhine. The amplitude
decrease from location I to 7
(see water level curves), Figure 5.3 Mouth ofthe river
which confinns the theory.

At r = 0 (mouth of the river;
see Figure 5.3), the amplitude
is '10

The decrease in amplitude in
in upstream direction can be
determined as follows:
- r= - 33 km

À,?' = -1, so e-I = 0.37;
- r=-67km

À,?' = -2, so e-2 = 0.l4;
- r= -100 km

À.;c. = -3, so e-3 = 0.05

Thus, after 100 km only 5%
of the amplitude is left.

5.2.3 Discharge of tidal river

X:O . x

Figure 5.2 Development ofthe amplitude ofa wave traveling in
upstream direction

sea

The discharge of a tidal can be derived from the equation of continuity:
aQ+ba,,=Oar at

in which:
" = iioe Àxcos(Ca>t+ Ier)

a" = -ii Ca>e Àxsin(Ca>t+ Ier)at 0

Substitution in the equation of continuity yields:

aQ = -b a" = bii Ca>eÀxsin(Ca>t+ Ier)ar at 0

Integrating this equation gives:
faQ = biioCa>fe Àxsin(Ca>t+ kxïdx

The solution ofthis integral can be found in standard books:

Tides and tidal currents (March 20, 1997) lliE-Delft 5 - 6



Tidal propagation in ODedimension

3
~
~

"J ö
e

~
~

...
! I.l:

I
" :r I,
2 ~

L/')
N

.c
~
"cs
f

!\ tol
f>
Q

~ -0

~
..

E~ ~ 0 '" 0 ol'- ei 0 oCj 0
0 ~

A. ~

Figure 5.4 Tidal wave, propagating in upstream direction in a branch ofthe river Rhine
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The integration step gives :
Àr

Q = Q + hilow e [Jo. sin(wt + lex) - kcos(wt + lex)]
o ).2 + k2

in which Qois the integration constant, being the COnstant run-off discharge of the river. The second
term is the oscillating part, which is superimposed on the constant discharge. The solution of the
discharge for a given point x along the river cao be found as follows:

A. Neglecting thefriction
When it is assumed that the friction can he neglected, then factor m = 0, which means that À. = 0. The
expression for Q becomes:

hil w
Q= Qo - Tcos(wt + lex)

This expression shows that the oscillating part of the discharge is in phase with the amplitude of the
water level:

" = iloeÀrcos(wt + lex)

The solutions for the discharge and the water level for a given point x along the river are given in
Figure 5.5. These solutions correspond with the behaviour of a single progressive wave. The
moments, during which tbe currents are 0, are called slack water.We see that the moments of slack
water move to the moments ofHW, because ofthe constant discharge.

slack
water

slack
water ebb

~ t HW HW

~I LW ~
I I I
I I

• t

a

flood flood

Figure 5.5 Discharge and water level for a given location x along a river
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Tidal propagation in one dimension

B. Friction taken into account
Taking friction into account implies tbat bath tenns ofthe oscillating part should be considered. Now
the expression for Q is:

eL:
Q = Qo - b~ow kcos(wt + kx)

À2 + k2

L:
+ b~ w e Àsin(wt + kx)

o À2 + k2

The different tenns ofthe discharge are given in Figure 5.6. The term with the sinus function is due
to the friction. The effect of that term is that slack water occurs earlier.

f100d
slack
water

slack
water

Figure 5.6 Discharge when friction is taken into account

When the amplitude of the
oscillating part is equal to Qo,
slack waters occurs at HW
(see Figure 5.7). This means
that there is no flood flow.

When the amplitude of the
oscillating part is smaller than
Qo, slack waters do not occur
(see Figure 5.8). In this case,
only ebb flow can be
observed.

Q

HW HW

Tides and tidal currents (March 20, 1997)

Figure 5.7 Amplitude of oscillating part = Qo
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Tidal propagation in one dimension

Looking to the discharge of
tidal wave propagation of
Figure 5.4, it can be seenthat
at location (4) only ebb flow
OCCUI'S. This location is called
the limit of the jlood jlow. i
Downstream of this location
floodlow and ebb flowoccur,
whereas upstream only ebb
flow can be observed.

a
HWHW

ao~-----,-;-444~~~~~---------- __ i

~L.J...J...L.L.U~____"- ti
Figure 5.8 Amplitudeoftbe oscillatingpart < Qo

5.3 Tidal bare

For the discussion oftidal bores, a gradually varied steady flow situation is considered. For the
element of Figure 5.9, Newton's law holds:

FF=maora=-
m

Figure 5.9 Elementfor a gradually varied flow situation

For steady flow, the accelerationis:
du du dx dua = -- = _x __= u-
dt dx dt dx

The force per unit mass can be expressedby (see also Figure 5.9):
F dh . u2
- = -- - gz - g-- = pressure - gravity - friction
m dx C2h

The equation that describes steady flow is:
du dh . u2u- + g- + gz + g-- = 0 iequatton ofmotion)
dx dx C2h

(5.6)
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The continuity equation shows that for constant q, d(uh) = o.
fix

This can hewritten as:
dh du du udhu- + h- = 0 --
dx fix fix h dx

Substitution inEquation 5.6 gives:
u2dh dh . u2

--- + g- + gz + g-- = 0
h fix fix C2h

Dividing by g and rearranging leads to:

gh

(5.7)dh
fix

Expression of a tidal bore=

Note that~ is the Froude number, withc = {ih (celerity ofthe wave).
{ih

Figure 5.10 shows the development ofa tidal bore.

------------~~~~
Figure 5.10 Development ofa tidal bore

The development can be explained with Equation 5.7:

I For a current in upstream direction (subcritical flow: u < c or Fr < 1): dh is negative;
fix

n dh u2Slope- can become =when I - - = 0 - u = {ih - u = c;
fix gh

Tides and tidal currents (March 20, 1997) lliE-Delft 5 - 11
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m When the front propagates into the estuary, generallythe depth will decrease. This means that:
velocity u will increase;
celerity c will decrease.

Now the wave front becomes unstable: a bore is formed (u> c).

5.4 Resonance

Text not yet available.
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6 Tidal propagation in two dimensions

6.1 Basic equations for waves in two dimensions

The tidal motion in seas differs from the cases of the previous Chapters, as:
- The flow is two-dimensional;
- The rotation ofthe Earth bas effect on the flow.

To describethe influences of these efIects, fust the water motions in two-dimensions are described.
The water motion in two dimensions can be described by three equations:
A continuity;
B motion inx-direction;
C motion in z-direction.

6.1.1 Equation of continuity

Forthe Equation of continuity, a square box with lengths dx and dy is considered (see Figure 6.1).

velocities

h hO

bottom

Figure 6.1 Box in sea, with length dx and dy

The symbols used in the box have the following meaning:
TJ water level
h local depth (h = ho+ TJ)

The inflow at the left-hand side and the front in time increment dt is:
uhdydt + vndxdt

Tides and tidal currents (March 21, 1997) llIE-Delft 6 - I
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The outflow at the right-hand side and the back in a time increment dt is:

(Uh + a~)dx)dydt + (Vh + ~)dxdt

During time increment dt, water is stored in the box at the water surface:
c3'fldtdxdy
at

Conservation of mass, over a time increment dt, means:
Injlow - Outflow = Storage

So:

(uhdydt + vhdxdt) - (UhdYdt + a~h) dxdydt + vhdxdt + a~h) dYdxdt») = c3'fldtdxdy
at

After some elaboration:
c3'fl + a(uh) + a(vh) = 0 Equationofcontinuityfortwo-dimensionaljlow (6.l)
at ar ay

6.1.2 Equation ofmotionin x- and y-direction

The equation of motion in r-direction cao be derived by
considering a box of water with horizon tal dimensions dx
and dy, and applying Newton's law in r-direction (see
Figure 6.2):

Force = mass * acceleration (in x-direction), thus
duF = ma = m-

x x dt

I _­-I-

u =f(r,y,t)
au au au _' /du = :::::..cJr + -dy + -dt var ay at ://{t.///'/ dy Ludu au ar au dy au- = - +- +-- + - veloeities

dt ar at ay dt at

As dx = u dy = v it follows that Figure 6.2 Box with x,y and u,v
dt 'dt '
du au au au- - - + u- + v-
dt at ar ay

'I.

~~~-r-----X

Substitution in the relation for F,gives:
Fx au au av

- - + u- + v-
m at ar ay

The forces Frwhich act on the box are pressure, bottom friction, fluid friction along the walls (called
turbulent viscosity), wind force (shear stress over the surface), Coriolis force (due to rotation ofthe
earth), and tractive force.
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For a fust approximation it is sufficient to pay attention to:
- Pressure force;
- Bottom friction;
- Coriolis force.

a. Pressureforce
The pressure force can be derived ina similar way as for the one-dimensional case (see Figure 6.3) .

.,Y

dx

J:--7"-\//

Pg (h +_è>hdx)
I.. ~x

Figure 6.3 Symbols used for pressure force

Left-hand side
- Water depth:
- Pressure at the bottom:
- Resultant pressure force inx-direction:

Right-hand side

- Water depth: h + È!!.dx.ax
pg (h + È!!.dx).ax
.!pg(h + ahdx)2dy.
2 ax

- Pressure at the bottom

- Resultant pressure force inx-direction

Net force in x-directton
.!pgh 2dy - .!pg(h 2 + 2h~ + (È!!.dx)2)dy = - pghahdxdy
2 2 ax ax ax
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The mass of tbe box is phdxdy, so tbe net force per unit of mass is:
_pgh_ahdxdyax

= -----
phdxdy

Fx ah-g-axm

Because h = ho+ ", this can also be written as:
Fr = _g~
m ax

b. Bottomfriction
Consider tbe same box of water (see Figure 6.4). The
velocity of the water in the box is V witb components u
aru1 v. The friction force 1" (per unit of surface ) is
oppositetotbe direction oftbe velocity. The components
are 1"%and 1"y

Consider the friction force in x-direction:
-'trdxdy

The derivation for the one-d.irnensional case showed that
1" can be expressed in terms of velocity V and the
coefficient of Chézy C by:

V2't = pg-
C2

The component in z-direction is:
V2 VcosmV't = 'tcoscp = pg-coscp = pg._ _..:..T_

x C2 C2
The friction force in x-direction is:

u.Ju2 + y2
'trdxdy = -pg v dxdy

C2

(6.2)

'l.

,,
v).-~v

~/u :~

Figure 6.4 Symbols used for bottom
friction

The mass of the box is phdxdy
The net force per unit of mass is:

uJu2 + y2-pg dxdy
Fr C2=-------

phdxdym
(6.3)

c. Coriolis force
The Coriolis force is caused by the rotation of the Earth. It is significant in oceans, seas and wide
estuaries. A rotating coordinate system introduces additional acceleration forces, which can be
illustrated with the example of Figure 6.5. This Figure shows a rotating disk with angular speed lIJ.
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From this relation it can be concluded that
- For simp = positive (Northem Hemisphere), the Figure 6.6

Coriolis force is directed to the right;
- For simp = negative (Southem Hemisphere) the

Coriolis force is directed to the left;
- At the poles sintp= maximum. Here the Coriolis

force is maximum;
- At the equator sintp = O. Thus, here the Coriolis force

IS zero.

The Coriolis force per unit mass in x-direction is:
F
_:_ = 2u>vsinep= fv (6.4)
m

in which f = 2(d;in~, which is called the Coriolis Figure 6.7 Effect of Coriolis force
parameter. on Point P

At location A, a person throws a ball (with mass m and
velocity v) to a personin location B. Ifthe disk would not
rotate, the ballwould arrive in location B after Llt s. From
S = vt it follows that AB = vLir. However, as the disk
rotates, the hallwill actually arrive in location C after dt
s. Apparentlyan acceleration DCa causes the ball to arrive
inC and not inB.

From S = l.at2 it follows thatB IC = l.ac (dt)2.
2 2 ~

So: B 'c = A 'cs« = ABda. = (vdt)(wdt)

Thus: 1-a. (dt)2 = VW(M)2- a. = 2vw2 CDr CDr

Therefore, the Coriolis force becomes:
FCor = ma.cor = 2mvw

The Coriolis force is directed perpendicular to the
direction ofmotion (see Figure 6.6). It is directed to the
right, if the plane is turning anticlockwise

Consider a point P moving on the Earth surface (see
Figure 6.7). Point P bas a latitude ({J. Partiele P bas
velocity V in the tangent plane. The rotation of the Earth
is Wo The angular speed ofthe tangent plane is casintp.

This means that the force acting on partiele Pis:
Foor = 2mvllJsin~

Inx-direction, the Coriolis force F, is directed to the right
on velocity + v: F; = 2mClNsintp

Figure 6.5 Symbols used for the
Coriolis force

m

Cl corr

Direction of Coriolis
force
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Equation of motion
Tbe Equation ofmotion in x-direction (6.1) can now be written in terms ofpressure force (6.2),
bottom friction (6.3) and Coriolis force (6.4) per unit ofmass:

au au au dil uJu2 + v2 f+ u- + v- -g- - g +at ax ay ax C2h

au au au ~ u·lu2 + v2or + u- + v- + g_V_'I + g V - fv =at ax ay ax C2h
(6.5)

Ina similar way, the equation of motion in y-direction can be written as:
av av av dil vJu2 + v2+ u- + v- + g- + g - + Ju =at ax ay ay c2h (6.6)

Figure 6.8 shows the direction of u and v in
relation to x and y.

..... Fx

v,
I1 u

.. x

y

Equations 6.5 and 6.6, together witb the
Equation of continuity (6.1) describe the water
motion in two dimensions. These can be used for
describing tidal waves in large estuaries, seas
and oceans.

Figure 6.8 Directions of u, v and x, y

6.2 Effect of the Coriolis force

Tbe effect of the Coriolis force on the tidal system in seas and oceans can be illustrated by
considering a river (see Figure 6.9).

The equation ofmotion in the y-direction is:
av av av dil v "ru"2 -+-v~2
- + u- + v- + g- + g - + Ju =at ax ay ay C2h

In the river: v = 0 av = 0 av = 0 av = 0, at ' ax ' ay
So the equation of motion reduces to:

gdll + Ju = 0ay

It can be concluded that the Coriolis force is balanced by the cross-slepe of the water level in the
river:

2wsinq>- u
g
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y

LxSOOm -- ....~ u = 1 rn/sec

///////////
Corriolis Force

/////////////

cross section

Corriolis Force

500 Northem Hemisphere

Figure 6.9 Effect of Coriolis force in a river

Example
- Width of the river:
- Velocity:
- Latitude:

500m;
1mis;
50° (Northem Hemisphere).
c3TJ _ 2xO.73xI0-4xO.71 x l lO-s
~ 10

Substitution gives:

So the difference inwater level in cross direction is: ä" = lO-sx500 m = 5 mmo The influence
on the main flow in the river can thus be neglected. The situation, however, changes if the width
increases to many kilometers. Then also cross veloeities mayoccur, caused by the CorioIis forces.

Iflarge water bodies are considered (like the North Sea), the gravity terms and the Coriolis terms in
the Equations of motion can he of the same order of magnitude. Then so-called Kelvin waves can be
observed. For arbitrarily configurations no analytical solutions are known. However, numerical
solutions can be obtained very accurately.

An example of such an analytical solution is presented in
Figure 6.10, which shows a rectangular channel of constant
depth, rotatingaround a vertical axis with angular speed (A). The
x-axis is located along the bank of the channel; the y-axis
perpendicular to it.

~///////////////////////~////////;~

1
Assuming small water level elevations, compared to the depth,
a harmonie solution of the two-dimensional equations is: Figure 6.10 Ree t a n gul ar

channel with
rotation (A)

Tides and tidal currents (March 21, 1997) mE-Delft 6 - 7
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Tidal propagation in two dimensions

.i,
" = ile C cosw(t - -=-)

c
in which:
iJ: amplitude at the wall (for y = 0)
f Coriolis parameter
c: celerity (fih)

Further:
v=O
u = ..!l
c h

The amplitude ofthis wave is an exponential function ofy. At the wall the amplitude is highest.

Assume a wide channel, with the following data:
- Latitude 50° (Northem Hemisphere);
- Depth 100 m;
- Wave amplitude for y = 0 iJ = 1 m

The wave amplitude as a functioo of y. Table 6.1 shows some values, whereas Figure 6.11 shows
this Kelvin wave.

T bI 61a e . ave amphtu e as a cnon 0 stance_y

Distance y from the wall (kml Wave am....Q.litude_ftJm_1

0 1
1 0.997
10 0.966
100 0.71
1000 0.03

W r d fun' fdi

6.3 Amphidromic systems

Kelvin waves cao be reflected as Kelvin waves too. This is illustrated in Figure 6.12, which shows
the effect ofthe Coriolis force 00 a standing wave. To explain this Figure, Figure 6.13 is needed,
which shows the motion of a standing wave without rotation. This is also indicated at the left-hand
side of Figure 6.13.

The effect of rotation can be explained as follows. The Coriolis force is acting to the right on the
moving water particles (see Figure 6.13).

t=O
The veloeities in the length direction are zero. So the Coriolis force in cross direction is also zero,
which means that the water surf ace in cross direction is horizontal.
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Figure 6.11 Kelvin wave

It = - 3 hours
4

The veloeities in length direction at the node are maximum. The Coriolis force in cross direction is
acting toward the wall at the left-hand side. HW occurs at that wall.

t = ..!. (6 hours)
2

The veloeities in the length direction are again zero. So the Coriolis force in cross direction is also
zero and the water surface in cross direction is horizontal.

t = ~ (9 hours)
4

The veloeities in length direction at the node are maximum. The Coriolis force indirection is acting
toward the wall at the right-hand side. HW occurs at that wall.
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t = 0

t=_!_r
4

t=~r
4

L

I .~
H

~Ivelocities = 0

'//////////////////////////

I~ : ~I
'//////////////////////////

max. velocities at node

H

velocities = 0

///////////////////////////

I~ : ~Imax. velocities at node

///////////////////////////

+node
Figure 6.12 Effect of Coriolis force on a standing wave

So HW and LW are tuming around in the basin:
- This rotation is anticlockwise on the Northem hemisphere;
- This rotation is clockwise on tbe Southem hemisphere.

It can also be observed that cross currents are introduced by the waves in cross-direction, on which
also the Coriolis force is acting.

The effect ofthe rotation of the earth on such a standing oscillation is that the nodalline is reduced
to a nodal point. At the nodal point the water level is constant. That point is called the Amphidromic
point. The wave system is called the Amphidromic system.

Around Amphidromic points, lines of equal phases can be seen (for instanee for the M2-tide).These
are called the co-tidal lines. Also lines of equal tidal ranges can be drawn, which are called the
co-range lines.

Innature, many Amphidromic systems can be found. Inthe North Sea, three Amphidromic points
for the M2-tide occur (see Figure 6.14). One point is located in the Soutbern part of the North Sea,
one nearthe coast ofDenmark and one near the Norwegian coast. The co-tidallines (equal phases)
are shown as solid lines. The co-range lines (equal range)are indicated as dashed lines.

Figure 6.15 shows the M2 co-tidal and co-range lines for the entire world.
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Figure 6.13 Standing wave without rotation
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3
I
I

~

Figure 6.J 4 Amphidromic points for the M2 tide
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Figure 6.15 Mz co-tidal and co-range lines for the world
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Analytical tidal computations

7. Analytical tidal computatiöns

So far, properties of tidal propagation were considered, for which simplified equations were used. In
addition the geometry and the boundary conditions were simplified as weil. In this way, insight was
obtained of the fundamental aspects of tidal motion.

Engineering problems, however, are not that simpie. For concrete and complex situations, predictions
should be made as accurately as possible. This also refers 10 the prediction of effects of civil
engineering works in the coastal area on the tidal motion. Several approaches are available:
I. For fust guesses and insight in a problem:

- Simplified analytical computations;
2. For accurate predictions in complex situations:

- Hydraulic scale models;
- Numerical tidal computations (mathematical models).

In hydraulic scale models the water in the models provides the solution. These models have been used
extensively in the past. However, they are expensive and it is time consuming 10 investigate
altematives, as it takes a lot of effort to make changes in the geometry.

In mathematical models the equations are not simplified. The advantages are:
- The geometry is schematized accurately;
- Boundary conditions can be used from measurements;
- The computations are made by computers;
- Depending on the problem, one-dimensional, two-dimensional and even three-dimensional models

can be utilized.

Nowadays, tidal problems aremainly investigated with mathematical models, Hydraulic scale models
are an exception; they are still used to study complicated three-dimensional current situations.

This Chapter, however, focuses on simplified analytical computations, which gives a first guess
approach for an engineering problem.

7.1 SmaU basin

The fust problem concerns the tidal motion in a short basin, which can be a harbor along a tidal river,
or a relative short bay along a sea or ocean. Figure 7.1 shows such a small basin, with the following
characteristics:
I length of the basin;
b width;
h depth h.

The x-axis is directed positive to the right: x = 0 is located at the mouth; x = I at the end of the basin.
At the mouth there is a sinusoidal tide, with amplitude 1Î and period T. The length of a tidal wave can
be computed by:

L =cT
in which c = .fih

!HE-Delft 7 - 1Tides and tidal currents (March 24, 1997)
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A

amplitude 'l
period T

-4:r- tb depth h

tide

sea
x

x=o x=L

Figure 7.1 Short basin

The term short basin is related to the parameter:
I length basin
L length tidal wave

Ifthis ratio is small (smaller than 0.02) the basin wiIl be fiIled in horizontallayers. A small increase
of the water level at the mouth can be considered as a disturbance. So a small translation wave will
run through the basin. The time to propagate to the end ofthe bay and back to the mouth is:

21
2't = -

c
As 1= cr and Z = cT,the ratio liL (= rl1) becomes:

't I
- = - < 0.02
T L

This means that the time for a disturbance to propagate to the end of the basin and back is small
compared to the period ofthe tidal wave.

As the basin is filled in horizontallayers, the equation of motion is reduced to:

c3Tt =0ax
Figure 7.2 shows a sketch ofthe longitudinal section ofthe basin. To compute the discharge at the
mouth of the basin, the equation of continuity can be used:

aQ +bc3Tt =0ax at
As c3Tt = 0 c3Tt = liTlax 'at dt

So: aQ = -b liTlax dt
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x
'x = 0 x=L

Figure 7.2 Longitudinal section of the short basin of Figure 7.1

To obtain the discharge at the mouth ofthe basin, this equation should be integrated with respect to x:
la I d ,/.n

f ~ = f-b-.!ldx - Q - Q = -b_w'IIar dt 1 0 dt
o 0

For a closed basin at the end, Q I = 0

So: Q = bl dT}
o dt

(Note that bl is the surface area ofthe basin).

Taken = ficoswt then:
Qo = -Qsinwt , with Q = blfiw

Figure 7.3 presents this relation between 1J and Q at the mouth ofthe short basin. From this Figure
it can be observed that:
- A decrease in water level means the emptying of the basin;
- An increase in water level means the filling of the basin;
- The phase difference between 1J and Q is 900.

This relatively simple approach can often be used for basins of short length.

7.2 Lorentz method

The second analytical computation method is the Lorentz Method. This method bas been named after
Prof. Lorentz, who was a famous physicist at the beginning ofthe 20th century. He developed the
method fortidal computations, to be implemented before the former Zuiderzee (now Lake IJssel) was
closed of! from the Waddenzee in 1932. At that time, no computers were available, so all the
computations had to be carried out by hand.
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decreasing increasing
watenevel watenevel

'l. A-

'l= 'l..coswt

Q
I I
I I
I filling I:~ I

I
I I

I I I
I I I
I I \I

\ v -

"- V
!,...V'

emptying

A
Q = -Q. sine.,t

t

Figure 7.3 Relation between water level and discharge at the mouth of a short basin

The description ofthe Lorentz method starts with the basic equations for long waves. As was shown
in previous Chapters, the equation ofmotion can be simplified for small Froude numbers. The Froude
numberwas:

u2Fr = - « 1
gh

This is often the case. For example:
h = 10 m, u = Imls - Fr = 0.01.

The equations for small Froude numbers are:

aQ +b a" =0ex at
1. aQ + g 8Tl + g QIQI = 0
A at ax C2A2R

These equations can be applied for tidal calculations. The equations look simpie, but analytical
solutions do not exist, because of the quadratic friction term. However, for small deviations in the
mean water level of a uniform horizontal channel, than b, A, R, C can be considered as constants.
Now, analytical solutions can be formulated when the friction term is linearised. This linearisation of
the friction term was introduced by Lorentz.
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7.2.1 Linearization ofthe friction

Tbe idea of Loreotzwas that tbe calcuJation would oot he too inaccurate ifa linear friction term would
dissipate the same amount of energy during a tidal cycle, as the original quadratic term does:

Eq=EI

in which:
Eq energy dissipated by the quadraticfriction term during one tidal cycle;
EI energy dissipated by the linearfriction term during one tidal cycle.

The terms in the equation of motion are forces per unit mass. They can be seen as forces acting on a
water partiele with velocity u. The work did by a force F during period dt equals to:

Work =Force x Distance

So: dE = Fdx = Fudt = Ffl.cJt
A

The original quadratic friction term was written as:
g QIQI .
C2A2R

This term is now replaced by the linear term mQ.
So:

qdE = gQIQI Qdt = gQ21Qldt
C2A2RA C2A3R

dE = mQ~t = mQ2dt
1 A A

Assume a sinusoidal flow with Q = Qcoscut.The energy dissipated during a tidal cycle by the friction
terms is:

T A3 2
E = fgQ cos cutlcoscutldt
q C2A 3Ro

T A2 2
E = f mQ cos cutdt
I A

o

First the energy dissipated by the quadraticfriction term is further elaborated.
T A3 Sl 21' • 3 • 3 nf2

E = f gQ co (&)t!COS<a>t!dt = f R._..!.coSl(&)t!coS<a>t!d«(&)t) = 4R._'! f co~(&)td«(&)t)
q C2A 3R C2A 3R (&) C2A 3R (&)

,-0 ""-0 (0)'-0

This integral can be solved as follows:
nf2 nf2 nf2 nf2f co~(&)td«(&)t) = f (1 - sin2(&)t)coS<a>td«(&)t) = f coS<a>td«(&)t) - f sin2(&)td(sin (&)t) =
(0)'-0 (0)'-0 ""-0 (0)'-0

nf2 1 1'f2 1 2
sineer / - -sin3(&)t / = (1 - 0) - -(1 - 0) = -

(0)'-0 3 (0)'-0 3 3
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So the energy dissipated by the quadratic friction term becomes:
A 3 A3

E=4 gQ 2_~gQ
q w C2A 3R 3 3w C2A 3R

The energy dissipated by the linear friction term can be elaborated as follows:
T A2 s2 211 A2 A2 1tI2

El = J mQ co wl dl = J mQ .!.cor;2wld(w/) = 4mQ .!. J cos2wtd(W/)
A A w A w

'-0 ",'-0 ",'-0

Solving the integral gives:
1tI2 1tI2J COS2Wld(W/)= J t(l
",'-0 ",'-0

+ cos2wt)d(wl) = 7td(W/) + 7 iCOS2WId(2w/)
",'-0 ..,,-0

1 1tI2 1. 1tI2 1 1t 1t
= -wl I + -sm2wl I = -- + 0 =-

2 ..,,-0 4 ",'-0 2 2 4

So the energy dissipated by the linear friction term becomes:
A2 A2

EI = .!mQ 2!. = !!.. mQ
. wA 4 wA

The assumption is: E, =El
A3 A2

Thus: 8 gQ =!!.. mQ
3w C~ 3R co A

Dividing ith 1 1 QA 2 .IVl WI -, -, grves:
w A

m = 8 gQ
31t C2A 2R

The coefficient _!_ is called the number of Lorentz.
31t

Two remarks should be made about the linearised friction:
1. With the value for m the correct amount of energy is taken out of the system during a tidal cycle.

During maximum velocities, the force is underestimated. During low velocities, the force is
overestimated. So the distribution of the energy loss over a tidal cycle is not correct. The correct
distribution (by the quadratic friction term) of the energy loss over the tidal cycle causes a
distortion ofthe tidal wave.
The result of introducing the linear frictions is:
- The damping of the tidal wave is correct;
- The distortion of the tidal wave is not taken into account.

2. In the expression for m, Q is a variabie to be calculated. The procedure is to estimate Q, and
afterwards check this estimate. In case of deviation in Q, the calculation bas to be repeated with
a better guess. A small difference between the computed Q and the estimated Q is acceptable.
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7.2.2 Harmonie solution

The equations with the linearize friction term linearize are:
aQ + b at] = 0ax at
1 aQ at]-- + g- + mQ = 0
A at ax

As was shown in a previous Chapter, differentiation of the fust equation to t and of the second
equation to x, and eliminating Q results in the telegraph equation:

il'1] _ c'il'1] + mA à1] • 0 with c = ~ gAat 2 0 ax2 at 0 b

This is a linear differential equation ofthe second order. A hannonic solution ofthe equation is one
in which the amplitude and the phase depend on x:

l1(x,t) = 1Î(x)cos(u>t + $(x»)

To determine the unknown parameters 1Î(x) and $(x) , the derivations ofl1(x,t) can be substituted in
the telegraph equation, as was done for the tidal wave travelling on a river. A simpler solution
procedure is introduced by Lorentz using complex numbers.

First, a short review of some relevant characteristics of complex numbers is given:
e je = cosê + isine
e -je = cosê - isine, in which i = Ff

in which:
cos8 real part;
i sinfJ imaginary part.

Figure 7.4 shows the complex plane can
be defined, with the real axis displayed
horizontally and the imaginary axis
vertically. In Figure 7.4, ei8 is
represented as a vector in the complex
planewith:
- real component cos9,
- imaginary component 1sin 8.

The same holds for e-i8.

A complex number w can be written as:
w =ss"
with fJ real and g complex ..

g can be written as: g = Ig I eia = a + ib

Im

isine

eicose

Tides and tidal currents (March 24, 1997)

Figure 7.4 Complex plane
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Analytical tidal computations

FOrTl(x)e iljl(x) can be written as Ce rx, in which r is
a complex number, which must be solved. So the
expression to be substituted in the telegraph
equation is: Figure 7.7

n!&:.ll = Ce rxe ir.>1 = Ce ilo>l + rx

Figure 7.5 shows the vector g with length Ig I
and an angle witb the real axis a.

The same holds for tbe complex number w
(see Figure 7.6): w = g ei9 = Ig I ei« ei9 =
Ig I ei(a+6J

When the angle 9 varies uniformly in time
(9= c.x) tben:

w = Ig Iei(a+u)
= Ig Icos (ca + a) + Ig II sin( c.x+ a)

The real part of wis:
Re {w} = Iglcos (c.x+ a)

It represents a harmonie motion witb:
Ig I amplitude;
(A) angular speed;
a phase lag.

This is similar to:
T1(x,t) = ~(x)cos((J)t + 4>(x»)

This can be written in complex form as:
T)(x,t) = Re 0(x)e i«(o)1 + +(x»} = Re (i1(x)e i+(x)xe ic.ll)

Term ~(x)e icjl(x) can be represented in the complex
plane as shown in Figure 7.7. This Figure shows the
phase - amplitude diagram for a certain location x
witb:

~(x) amplitude;
4>(x) phase.

For substitution in the telegraph equation, T](x,t) can
be written as:

T1(x,t) = ~(x)e i(r.>1 + cjI(x» = i1(x)e icjl(X)eilo>l

which includes the imaginary part:
~(x)i sin«(J)t + 4>(x»

Im

ib

a f?e

Figure 7.5 Vector gin the complex plane

Im

w

"Re

Figure 7.6 Vector g in the complex plane

Im

ib

a Re

Presentation of i1(x) in the
complex plane
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Analytical tidal computations

Incomplex notation, the derivatives of ,,(x, t) are relatively simpie:
at} = icuCe illll+ rx at} = rCe if.lt+ rxat ' ar
~ = -CilCeif.lt + rx ~ = ,2Ceillll + rx

at2 ' ar2

Substituting these derivatives in the telegraph equation gives an equation for the unknown r. The
telegraph equation is given by:

~ - C2~ + mA at} = 0at2 0 ax2 at
Substitution ofthe derivatives yields:

(-(,ic - cg,2C + mAi(.l)C)e ilo>t+ rx = 0

_(.1)2 - c2,2 + imA(.I) = 0o
,2 = _1_(_(.1)2 + imA(.I)

c2o
This equation for r yields two complex roots. The complex number z can be written as:

r = p + iq
(.1)2

,2 = p2 _ q2 + 2ipq = _
c2o

imA(.I)
+--

c2o

The real parts are equal to:
2 2 (.1)2P -q =-_

C 2o
The imaginary parts are equal to:

mA(.I)
2pq =--

C 2o
By eliminating p or q, the following quadratic equations can be derived::

co2 ~2f + (.I)~2] _ m:~ :(.1)2 = 0
o

r II ~] m2A 2(.1)2C02Lq2J - (.I) Lq2 - = 0
4c 2o

The roots from these equations are:

_ (.I) J -1 + JI+ (mA/(.I)2 d (.I)b + ..jI + (mA/(.I)2PI,2 - ± , an ql,2 = ± --'--......_--'--~
cofi cofi

Similar expressions were found for the tidal wave on the river in Section 5.2, with .À. instead of p and
kofq.

The roots of, are '1,2 = ± (p + iq).
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The final resu1t for the solution of n(x,t) is composed of a linear combination of terms with the positive
and negative root.

T)(x,l) = Cle i!.>t+ 1%C2ei!.>t- 1%

TI(x I) = C e j(,)t + I»' + iqx + C e i!.>t- I»' - iqx = C el»'xe i(!.>t+qx) + C e -I»'xe i(!.>t- qx)
'1' I 2 1 2

The real part of the fust term is:
Cl eF costea + qx) which is a wave propagating in the negative x-direction, with

increasing amplitude for increasing x.

The real part of the second term is:
C2 e -F cos (a-qx) which is a wave propagating in the positive x-direction, with

decreasing amplitude for increasing x.

Both arts ofthe solution are drawn in Fi re 7.8.

first term secondterm

e+PX

Figure 7.8 Solution for ,,(x,t)

Tbe term e?"and e"F representthe damping or attenuation ofthe tidal wave. The celerity ofthe wave

isc = ~ (substitution of k instead of q gives the known c = CI.».
q k

So far the water level" was considered. A formula for the discharge Q can be found too with the
equation of continuity:

aQ = _ b~
ax al

Substitution ofthe solution for " (x, I) (= Cl ei"+", + C2 ei"-"') gives:
aQ = -biU>eiwt(C1erx + C2e-"")ax

Integration yields:
bii» .Q (x,l) = -_e!!'>'(CleTX - C2e-"")
r

This result is similar to " (x,I).
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Harmonie solutions can be found for various boundary conditions, through which tbe integration
constants CJ and C 2 can be solved. Two integration constants must be solved, so two boundary
conditions are needed. Different combinations ofboundary conditions are possible:
- 2 water levels at different locations;
- 1 water level and 1 diseharge;

2 diseharges at different locations.

Some examples where tbe Lorentz method can be applied:

1. Channel closed at one end.

2. Channel connecting two oceans.

3. Channel connecting an ocean,
witb tideless large lake.

4. Channel at one side to infinity.
(There is only a wave propagating
in tbe positive x-direction. One
integration constant bas to be
solved. So one boundary condition
is suffieient).

5. Channel witb known water level
and discharge at one location

71(t) Q = 0
.// // / / / / / / / // / / / / / / / /"

71(t)
1//////////////////////1

p/////////////////////I

t////////////////////o
71(t) 71= 0

j/////////////////////>--_

v/////////////////////

71(t) - oe
~////////////////////.

~//////////////////////

71(t) 1// / / / / / / / / / / / / / / / / / / / /
Q(t) . .

Case 5 is considered as tbe standard case. Tbe otber cases can be derived from it. Case 4 represents
tbe tidal wave on a river. Special attention is paid to Case 1 in Section 7.3.3.

FiTStstandard case 5 is considered witb tbe following equations:
" (x, t) = C1e ililt + I'X + C2e ililt - I'X

bii» . tQ(x, t) = --e!IIl(C1eI'X - C2e-~
r

Tbe boundary conditions at x = 0 are:
1] (0, t) = 1] (0) eit.X
Q (0, t) =Q (0) e'"

"
~/////////////////////////////"

x
x=o
1://///////////////////////////'
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1J(O)and Q(O) are complex quantities, representing the amplitudes and phases. Substitution of these
boundary conditions gives:

1")(O,t) - C te i"" + C2e ilJJt= 1")(O)e"", so
bu» ..• .

Q(O,t) - --e' ....(CI - C2) = Q(O)e'lJJt, so
r

Ct + C2 = 1")(0)

- biW(C - C) = Q(O)
r I 2

CJ and Cl therefore become:
1 1

Ct = 21")(0) - 2' biw Q(O)

1 1,
C2 = 21")(0) + 2 biw Q(O)

A. Water level
Knowing that:

1")(x, t) = Cte""t+rx + C2eilJJt-rx,and1")(x,t) = 1")(x)eilJJt,thus1")(x) = Cle rx + Cie ?",

and substituting the values for CJ and Cl gives:
1")(x) = Yz1")(O)erx - Yz-'-Q(O)e rx + Yz1")(O)e-rx + Yz-'-Q(O)e-rx

fuw fuw
= 1")(0)e rx + e -rx _ _,_ Q(O) e rx - e -rx

2 bis» 2

As:
e rx + e -rx e rx - e -rx
---- = cosh(rx), and· = sinh(rx)

2 2

the water level amplitude can be written as function of x:
1")(x) = 1")(O)cosh(rx)- ~ Q(O)sinh(rx)

bica

B. Discharge
Knowing that:

bita . t .,- .Q(x,t) = --e'IJJ(Cte""' - C2-~,andQ(x,t) = Q(x)e'lJJt,thus Q(x) =
r

- bit» (C e -rx - C e -~_,_ t 2

and substituting the values for CJ and Cl gives:
biW~( 1 1 r 1 - 1, - )1Q(x) = -- -1")(O)erx - -_Q(O)erx - -1")(O)e rx - --Q(O)e rx
r 2 2 bit» 2 2 biia

= _ biW[Tl(O) e rx - e -rx _ 2.Q(O) e rx + e -rx]
, 2 fuw 2

This formula can be written as:
Q(x) = - biw Tl(O)sinh(rx)+ Q(O)cosh(rx)

r
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So the formulas for T/ (x) and Q (x) for the standard case are:

Tf(x) = Tf(O)cosh(n) - _'-Q(O)sinh(n)
biw

Q(x) = - biw Tf(O)sinh(n) + Q(O)cosh(n)
r

7.2.3 Tide in a channel which is closed at one end

The case of a channel, closed at one end, is of special interest, because under certain circumstances
high amplitudes cao occur at the closed endand high discharges cao occur at the mouth. The following
approach applies to tides (with periods ofhours), but also to seiches in harbours (with periods of 5-30
minutes). Consider the prismatic channel of Figure 7.9with length I.

Ll -
r. 'LO,t) •V

I
x=L

-

Q=O

x x=O

Figure 7.9 Prismatic channel

The location of x = 0 is at the end ofthe channel. The x-axis is directed to the sea. The verticaI tide
is given at the mouth by T/(l,t). The discharge Q at the end is zero. To find the water levels and
discharges, the equations for the standard case cao be used:

Tf(x) = Tf(O)cosh(n) - _,_ Q(O)sinh(n)
bit»

Q(x) = - biw ,,(O)sinh(n) + Q(O)cosh(n)
r

The boundary condition for x = 0 is given by Q (0) = o. The equations now reduce to:
Tf(x) = ,,(O)cosh(n)

Q(x) = - biw ,,(O)sinh(n)
r

The second boundary condition is formed by the water level at x = I:
Tf(l) = Tf(O)cosh(,l)

Looking closer to the behaviour ofthe amplitude ofthe water level at the closed end as a fuoction of
the lengtb ofthe channel. The amplitude ofthe water level is given by the modules ofthe complex
number T/ (see Figure 7.10).
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I 'L(I) 1= 1'1.(0) cosh r1 I b

Im

Figure 7.10 Behaviour of the amplitude of the water level at the closed end of the channel

For finding the ratio of the amplitudes, the phases are taken equal to 0 (see Figure 7.11). Then:
il(1) = il(O)I cosh(rl)I = il(O)lcosh(P + iq)ll

= il(O)lcosh(Pl)cosql + isinh(pl)sinqll

I 'l (I) 1= ~ (I) = real

I 'L(0)1= ~ (0) = real "_TL
~------------ ..~~------~: .. Re

Im

Figure 7.11 Ratio of amplitudes

The value ofthe modulus ofthe complex number is the square root ofthe squared real and imaginary
parts (c = Ja2 + b2):

il(1) = il(O),j,-co-sh-::::2-(p-l)co----:s2:"""ql-+-sinh-'-::2'-(P-l)-sin-::2"'-ql

= il(O)Jcosh2(pl)cos2ql + (cosh2(pl) - 1)(1 - cos2ql)

= il(O)Jcos2ql + cosh2(p1) - 1

= il(O)Jcos2ql + sinh2(p1)

Defining the amplificationfactor as the ratio of the amplitude of the water level at the end of the
channel and at the mouth, then:

il(O) = I
il(1) Jcos2ql + sinh2(pl)

inwhich:

Tides and tidal currents (March 24, 1997) !HE-Delft 7 - 14



Analytical tidal computations

pi = C~~ 1 + ~ 1 + (7)'
ql = C~~ 1 + ~ 1 + ( <"::»'

Tbe amplification factor is determined by the parameters
CJ>I-: parameter for the length of the channel;
Co

mA: parameter for the friction.
CJ>

Figure 7.12 shows a plot of the amplification factor:

f)(O) = i CJ>/, mA J.
f)(l) J lCo CJ>

Along the vertical axis the amplification factor is given. Along the horizontal axis the length parameter

CJ>/. Tbe friction parameter mA is found as parameter in Figure 7.l2.
Co CJ>

From Figure 7.12 it can he observed that the friction bas a reducing effect on the amplification factor.
The amplification factor tends to go to infinity if the friction term becomes zero for certain values of

CJ>I
Co

If m = 0 (no friction) than pI = 0 and ql = CJ>I
Co

Tbe amplification factor in case of no friction is:
f)(O) __ 1_
f)(l) CJ>Icos-

Co

Tbe amplification factor is ""if cos CJ>I = 0, which is the case for:
Co

~ ~
= ~/2, 3~/2, 5~/2....... = (2n + 1)- with n = 0, 1, 2, 3....

Co 2

Knowing that:
2~ L. CJ> 2~/T 2~

CJ> = T' andL = Co T, or Co = T grves Co = L/T = L
CJ>I ISo: - = 2~-
Co L
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9

- I cei=- e::

t
8

'1
I7
I
IJ- ';.7-0.2

6

~
3 2'1/2 i. 3~5

c

1 1 t
"2 L L

-L

Figure 7.12 Amplication factor

The amplification factor is Ol> if:
I rt I21t- = (2n + 1)- or -
L 2 L

2n + 1---, for n = 0, 1, 2, 3, ....
4

ISo resonance occurs for -
L

135
- -, -, - .....

444
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Infinite amplitudes will never occur, as the friction will prevent that.

Now the second equation for the discharge will be looked in further detail:
Q (x) = - biCJ> ,,(O)sinh(rx)

r

The discbarge at the moutb is noted as Q (I). In the above equation, ,,(0) is noted as 1Î(0). Further
x = land r = p + iq. So:

Q(l) = - biCJ> 1Î(O)sinh(P + qi)I
P + iq

As1Î(O) is related 10 1Î(l), tbe amplitude of'the discharge can be computed. Consider the case with no
friction. Take m = 0, sop = O. Then Q (I) can be written as:

Q(l) = - bCJ>1Î(O)sinh(iql)
q

Because sinhûx) = I sinx, Q(I) becomes:
Q(l) = - ibCJ>1Î(O)sinq/.

q

For the case without friction it was found that q = CJ>
Co

Substitution gives:
Q(l) = -ibco1Î(O)sin CJ>/

Co

The amplitude for the complex number Q (1) is:

Q(l) = IQ(l) I = bCo1Î(O)sin CJ>/
Co

For the case without friction, the amplitude oftbe water level1Î(O) was determined as:

1Î(0) = 1Î(l)_1_
CJ>Icos-

Substitution inQ (l) yields:
A CJ>IQ(l) = bCo1Î(/)tan-

Co

This result shows that high discharges can be expected if:

CJ>I = rr/2, 3rr/2, 5rr/2 = (2n + I) rr witb n = 0, 1, 2, 3, 4
~ 2

/ 1 3 5or - = -, -, - .
L 4 4 4

When tbe length of an estuary is changed (for instanee by building a dam at x = Y2I) the flow regime
can change considerably. The possibility ofresonance should tberefore always be checked.
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8 Numerical tidal computations

8.1 Introduction

To solve engineering problems, different tools can be used:
I. Simplified analytical cornputations for fust guess/insight in the problem;
2. Numerical tidal computations for accurate prediction in complex geometries.

In the second group also hydraulic scale models should be mentioned, but their use is an exception
nowadays. In the simplified analytical computations:

the equations are simplified;
the geometry is simplified.

In the numerical tidal computations:
the complete equations are used (without simplifications);
the complete complex geometry is schematized accurately.

For numerical tidal computations, mathematical models are used. Tbe following types of models can
be distinguished:
1. The computer program, which is general and can solve all kinds of problems (from small scale

flow computations to complete continentaI shelf seas);
2. The area considered, which is schematized and for which data have been gatbered like deptb's,

Chézy values (bottom friction) etc.

Tbe term mathematical model is often used for botb elements, which may be confusing. In these
lecture notes, tbe term mathematical model concerns the area considered, witb all the data that
characterize the geometry and which is used as input for the computer program.

Different types of mathematical models can be distinguished:
ID-models for rivers, canals;
2D-models-horizontal for sea-areas;
3D-models when tbe verticaI current distribution is important, e.g. in areas witb

density currents.

Experiences with numerical computations depend on the type of engineer:
I. Engineers, who are interested in numerical computation procedures, like stability, accuracy,

efficiency ofthe computation schernes. Tbey build tbe computer programs;
2. Model engineers, who schematize tbe area considered and build the mathematical model. Tbey

are responsibie for the computations;
3. Engineers, who use the results of tbe mathematical modeis. Tbey must be able to judge if their

questions are solved with the correct type of mathematical model. Tbey should have a generaI
knowledge ofthe characteristics ofmathematical models,

This part of the lectures is directed to the second and third categories of engineers (model engineers).
First, some genera} aspects reIated to numerical computations are made, followed by tbe illustration
of some aspects witb some practical examples.
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The numerical computations ofthis chapter focus on the complete equations, without simplifications.
Thus, the examples on 2D-models consider the 2D-equations as derived in Chapter 6:
a" + a(uh) + a(vh) = 0 Continuityat ar ay
au au au a" uJu2 + v2 - .tv = Motion in x-direction+ u- + v- + g- + g c-»at ar ay ar
av av av a" vJu2 + v2

+fu Motion in y-direction+ u- + v- + g- + gat ar ay ay c2h

For numerical computations the space steps and time step are made discrete:
dx LIx
dy Liy
dt Lil

The partial derivatives are replaced by difference quotients (see Figure 8.1).
u

ou
-=6t

Ut-.ó.t-Ut

.6.t

(forward älfference)

~----~~-~-~t

.È...i- Ilx-'lx-.ó.x
ox- .ó.X

(backward difference)

x -,6X x x +,6X

Better approximation by:

(centra! difference)

X-,6X x X +,6X

Figure8.1 Examples of discrete time steps

With the different possible combinations of forward, backward and central differences, the equations
can be transformed into many difference schernes. With that difference schernes, u, v, and n are
solved for discrete space steps LIx, Liy and time steps .1t (see Figure 8.2).
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To summarize:
The equations are
transformed into a difIerence
seheme. With that scheme, u,
v, 71are computed for every ,
location on the .4x-Ay grid Y
for every time step At. In '------------------------'
most cases a rectangular grid Figure 8.2 Grid for computation

is chosen with .4x = Ay. The
computation of the variables on the grid is performed by a computer.

The following schemes can
be distinguished:

explicit schemes;
implicit schemes.

This can he illustrated for the
l-dimensional case, where 71
(and u) is a function of x,
(see Figure 8.3). A variabie,
like 71,is computed at t + At.

t

grid for computation
of u, v,tz_

8.2 Set-up of a mathematical model

This Section focuses on the building of a mathematical model. For this, first the purpose of the model
must be formulated. Therefore, a sound description of the required output is needed.

Aspects to be included are:
area considered (location ofthe boundaries);
rate of detail (grid size);
type of reliable output (water levels, velocities);
wind as parameter to be included or not;
what data are available for boundary conditions, for calibration and validation?

An important remark is that the right type of model should be selected, For instance, do not use a
3D-model when the problem can simply be solved by a manual calculation.

Location of boundaries
The boundaries of the model follow from the area under consideration. Sometimes the boundaries
of the model must be chosen outside the area of interest.

Two examples:
I. If a model is used to study the effect of civil engineering works on the tidal motion, the

boundaries should he located.,where the change in geometry due to the civil engineering works
bas no effect on the water levels (when the water level is used as boundary condition);
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t t
j !l

t +~t t +~t <t /~\ t V
x- l:iX X X +6)( X x- l:iX X X +1:iX xl

ExpJiciteScheme JmpliciteScheme

't x, t + ~ t computed trom lz. x, t + ~ t computed trom

ll,x - ~x t }
tix, t' at time t

rtx - ~x, t

'Lx - ~x, t }
'1. x, t
'l. x - .6X,t

at time t
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n at time t +~t
''-X +c x. t +~t

Courant - condition

C . .6t Scheme is unconditionalJystabJe.
(any ~t possibJe)

but be careful,.6t has effect on
the accuracy

-- <1~x

(restrictionfor~t)

Figure 8.3 Explicit versus implicit schemes

2. Ifa model bas to be built ofan area, inwhich the effect of wind is important, the boundaries
should he located at deep water. At tbe boundaries, the water levels known from tidal prediction
(without wind effect) should be used, The effect oftbe wind on the water levels is computed in
the model (generated in the shallow areas).

The data neededfor building the model
After the boundaries oftbe model have been chosen, a choice for the grid size ..1X = ..1y should be
made. The grid size can range from lOm' s - 50 km (Eastem Scheldt model - Sunda Shelf model; see
Section 8.4 and Figure 8.4).
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• ~

'"r--.....• r-...-.
• ...........boy '-• \.b,X
•
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........
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......... r---.. l_......-'V

Figure 8.4 Example of a schematization of an estuary

The choice of the grid size depends on:
required level of detail (small gullies in the model);
size of the available computer (maximum number of grid points);
efficiency (computing time is proportional to (..dX)3).

Sometimes a small .a is needed for the required level of detail, but the area should be large because
civil engineering works have effect on the water levels at the boundaries. Insuch a case, the models
should be nested see Fi re 8.5 .

Areawith civ. engineering works

Largemodel, large.6 x

Boundary conditions .
for

Smallmodel, small.6 x

Figure 8.5 "Nested"models

Assume the area ofFigure 8.4 and a grid size .dX. Then the area can be schernatized to square boxes
with grid size .dX = .dy. Along the shore the boundary is closed; the velocity perpendicular to the
shore is zero. Along the open boundary, boundary conditions like water levels as function of time are
needed.
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Further information is needed on:
depth per box. Depth values may originate from echo-soundings or sea maps. Data from sea
maps should be interpreted with care, as they are prepared for ships. Often the depths taken
from sea maps are too sma1l;
Chézy value per box. Often the model starts with a uniform Chézy value for the entire area,
which is based on experienceof that area.

Boundary conditionsare neededat the open boundary. These may originate from:
measurements (directly);
measurements (analyzed):tidal analysis - harmonie components - tidal prediction;
from other models (via "nesting"; see Figure 8.5);
from literature (Schwiderskipublished tidal componentsfor the entire world for every degree
by degree area on the globe).

For running the model, time step At should be selectedas follows:
explicit schemes: At is restricted by the stability criterion
cAt < I _ At < Ax
Ax c

implicit schemes: there is no restrietion for stability. But the accuracy is less for large At
(chosen by trial and error or experience).

8.3 Calibration of a model

To calibrate a model,the followingdata are needed:
1. Boundary conditions (likewater levels at the open boundary);
2. Observedwater levels/veloeitiesin the model area.

The data should cover the same period. They can originate from:
measurements;
tidal prediction (from known components).

Figure 8.6 showsa schematicpresentationoftbe Eastem Scheldt, The Netherlands. As an example,
tbe calibration of this estuary will be presented.

Location A

Figure 8.6 Schematic presentation of tbe Eastem Scheldt estuary, The Netberlands
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Consider:
1. observed water levels as boundary condition in A~
2. observed water levels somewhere in the estuary in B.

With the fust set of depths, Chézy values, and a chosen .Lit, computations with the model are made.
Such a computation is called the base case.

The observed water levels in A and B are decomposed into tidal components: diumal, semi-diumal,
quarter diumal, etc. Per component a plot is made of the amplification versus the time lag (see
Figure 8.7).

amprrfication

A~B
IObs·~rI

depth
(+10%) 1

• Chezy 6t (*"2)'\1.0/.
•------1base caseChezy •

(-10%)

• depth (-10%)•
b.t (....2)

time by A B

Figure 8.7 Plot of amplification versus time lag for points A and B of Figure 8.6

The next step is to vary the following parameters:
depth: ± 10%;
Chézy value ± 10%;
time step .Lit multiplied with Y2and 2.

The decomposed results are also plotted in Figure 8.7. It cao be concluded which parameter must be
changed for a good simulation (in this case, .Lit should be smaller).

Inthe calibration, the computed results are compared with:
local water level measurements;
local velocity measurements;
known tidal pattern (from tidal atlases);
known locations of Amphidromic points;

After the calibration of model, a validation computation should be made, for which boundary
conditions and observed data from another period are used. Inthis way a check is made on computed
and measured water levels and velocities.
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8.4 Examples of mathematical models

This Section discusses two examples of models:
small scale models, like the above model for the Eastem Scheldt (with emphasis on detailed
flow computation);
large scale models, whichwere for instanee used for the Sunda Shelf (with emphasis on large
scale tidal computation).

8.4.1 Mathematical models used for the Eastem Scheldt estuary

A storm surge barrier had to be constructed in the mouth of the Eastem Scheldt. The construction
of such a civil engineeringwork has far reaching efIects on the surrounding area, as it influences:

tidal motion;
exchange betweenthe estuary and the sea;
morphology.

The storm surge barrier is part of the so-called Delta Project, which was planned to offer a better
proteetionofthe southwestemregionofThe Netherlands (see Figure 8.8) against high storm surges.
Undernonna! conditions,the barrier is open; it will be closedwhen high storm surges are expected.

- 50lt
5tognont

1IIIIIIII150lttidol
• 1 • • •• __ -_
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In the process of realization of the project, three stages were distinguished:
planning stage, inwhich the lay out and general characteristics ofthe structure are detemrined
design stage, in which the structure is designed;
execution stage, in which the structure is constructed.

Ineach of the stages, models played an important role to provide answers on questions the designers
face, like:
1. Planning stage

What is the effect of the aperture of the barrier on the tidal regime in the area?
What is the reduction of the tidal amplitude in the Eastem Scheldt?

2. Design stage
Which are the boundary conditions for the design of the barrier?

3. Execution stage
(What are) the detailed flow patterns at the barrier site during different construction phases?

Computations to answer those questions were carried out with a tidal computation model with an
implicit scherne. That means that there was freedom in the choice of the time step, but careful
interpretation was needed regarding the accuracy of the computed results.

Figure 8.9 shows a 2-dimensional overall modelofthe Eastem Scheldt, which has the following
characteristics:

grid size:
number of grid points:
typical time step

400m;
about 14,000;
At = 1.5 minutes.

Figure 8.9 also shows the computed velocity field during maximum ebb for the situation without a
barrier.

Boundary conditions were obtained from four tidal gauges at the boundary. For this, the following
checks were made:

for the selection of the boundary, fust with a model of the larger area it was investigated ifthe
water levels would be affected by the barrier;
for the tide at the location of the tidal gauges, a tidal analysis of the measured water levels was
made. From that analysis the components were obtained. With these components, a prediction
could hemade of the tide for any day inthe future. This procedure was used, as the tidal motion
during certain critical construction phases ofthe barrier were to be predicted in advance.

The model was calibrated extensively with observed water levels in the Eastem Scheldt and with
measured discharges in the three tidal channels.
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Figure 8.9 Two-dimensional model of the Eastem Scheldt estuary
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Cahbration started witb
a base case comput­
ation with the fust set
ofdepths, Chézy values
and time step ~t. The
components of the
decomposed water
levels were plotted in a
graph (Figure 8.10),
which shows tbe ampli­
fication and phase lag
for location 2 relative
to location I (at tbe
botmdary of the model;
see Figure 8.11).

Figure 8.11 shows the
semi-diurnal compo­
nent. The amplification
and phase lag for the
observed water level is
plotted with symbol O.
Tbe amplification and
phase lag for the base

..,
rric..... "" de c re as in9 t I c.",
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case computation is
plotted with symbol o. Figure8.10 Decomposed water levels

Tbe next step was to vary
the depth, the friction and
~t. It appeared that
decreasing the time step ~t
was the most effective way
to bring the base case
closer to tbe observed data
(in this example!).

.

Tbe overall model (Figure
8.9) was used in the
planning stage. For
detailed flow compu­
tations, models with
smaller grid sizes were
utilized, which were nested Figure 8.11 Locations 1and 2 in the Eastem Scheldt estuary
in the overall model (see
Figure 8.12). The overall
model bad a grid size of 400 m. For tbe flow computations during tbe successive building stages of
the harriers, models with a grid size of 45 m's were needed, being tbe distance between the piers of
the barrier.
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Figure 8.12 Models with smaller grid sizes nested in the overall model of the Eastem Scheldt
estuary

For each tidal cbannel,a modelwith a grid sizeof 45 mwas made. The step from 400 m to 45 m was
too large for the transfer ofboundary conditionsin the area with complexgeometry. Therefore, also
models with 90 m grids weremade.

Figure 8.13 presents the models in the
mouthofthe Eastem Scheldt.The boundary
conditions for the 90 m grid models were
obtained from the overall model, whereas
the boundary conditions for the 45 m grid
models were obtained from the 90 m grid
models.A special techniquewas developed
for the transfer of the boundary conditions
to the small scale models in this area.

Figure 8.14 shows the results of a flow
computation in the most northem tidal
channel: the computed flow pattem during
maximumebb. The executionstage, with all
piers placed, is investigatedhere.

~190"-NOJ

==

Figure 8.13 Models for the mouth of the Eastem
Scheldt estuary
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Figure 8.14 Results of flow computation in the northem tidal channel of the EasternScheldt
estuary

8.4.2 Matbematical models used for tbe Sunda Sbelf, Soutb-East Asia

The second exarnple concerns the model of the Sunda Sbelf, South-East Asia. A model was needed
ofthe coastal zone ofthe island of Java, Indonesia (see Figure 8.15). To obtain boundary conditions
for that model, it had to be nested into a larger model of the Java Sea.

For the Java Sea model it was possible to compose boundary conditions from known components of
the harmonie tide. However, monsoon winds play an important role in this sea, so the water levels
at the shallow boundaries are affected by wind-set up.

To get proper boundary conditions for the wind situations of the Java Sea model, the boundaries had
to he located indeep water. Therefore, fust the Sunda ShelfModel had to be made, which is the large
model of Figure 8.15.
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Figure 8.15 Coastal Zone model, Java Sea model and Sunda Sea model for the island of Java,
Indonesia

Figure 8.16 shows the Sunda ShelfModel. Each dot represents the center of a grid celloAt the dots
depths must be known, for which sea maps were used.

Some characteristics ofthe model are:
grid size: 50 knr';
number of grid points: 4000;
time step 10 minutes .

Figure 8.17 shows the locations ofthe boundary conditions for the model. The black dots represent
the composed water levels (.).

The water levels were composed (by a tidal prediction program) with the data ofthe constituents:
diurnal Oh KI;
semi-diurnal M2' S2' K2' N2·

The data originate from Schwiderski, who published harmonie constituents for every degree by
degree area on the globe.
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Figure 8.16 Sunda Shelf model
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Figure 8.18 shows a table from Sehwiderski with amplitudes oftbe M2-component. The amplitudes
are given per degree by degree area. This Table covers tbe area from Sri Lanka to tbe Philippines.
There are also tables for:

other constituents;
otber areas.

For a fust calibration of the Sunda Shelf model, computed and "observed" water levels for tbe
locations Bulan Island and North Danger Reef were used (see Figure 8.19; Bulan Island and North
Danger Reefare shown in Figure 8.17; tbey are located in the North-Westem part oftbe model). The
solid line in Figure 8.19 is the outcome oftbe computations, whereas tbe dotted line represents tbe
"observed" data. The agreement is reasonably, but not very good.

Tbe term "observed" refers to tbe fact that no measured water levels were available in this area.
Therefore, the observed water levelswere composed ofknown harmonie components from tbe British
Admiralty Tide Tables. These tables give amplitudes and phases for a series of components for many
loeations in tbe world. A tidal predication program was used for tbe composition of tbe observed
water levels.
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Figure 8.18 Table of the M2 component for the area Sri Lanka to Philippines (after
Schwiderski)
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Figure 8.19 Computed and "observed" water levels for Bulan Island and North Danger Reef
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