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for Differentiable Surface Splatting
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Abstract. We propose an efficient and GPU-accelerated sampling
framework which enables unbiased gradient approximation for differen-
tiable point cloud rendering based on surface splatting. Our framework
models the contribution of a point to the rendered image as a prob-
ability distribution. We derive an unbiased approximative gradient for
the rendering function within this model. To efficiently evaluate the pro-
posed sample estimate, we introduce a tree-based data-structure which
employs multipole methods to draw samples in near linear time. Our
gradient estimator allows us to avoid regularization required by previ-
ous methods, leading to a more faithful shape recovery from images.
Furthermore, we validate that these improvements are applicable to real-
world applications by refining the camera poses and point cloud obtained
from a real-time SLAM system. Finally, employing our framework in a
neural rendering setting optimizes both the point cloud and network
parameters, highlighting the framework’s ability to enhance data driven
approaches.

Keywords: Differentiable rendering · Point cloud · Multipole
method · Shape recovery · Scene reconstruction

1 Introduction

Inverse rendering, i.e. the inference of scene parameters such as scene geome-
try, reflectance or illumination as well as imaging parameters based on obser-
vations [4], has become a central problem in Computer Vision and Graphics. A
wide range of applications utilize inverse rendering; including reflectance estima-
tion [47], object reconstruction, face remapping, body pose estimation and teeth
modeling [23]. Additionally, inverse rendering can improve scene understanding
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in robotics [57] and can be applied to a variety of problems in Geodesy [12].
A current approach that receives a lot of attention from the research commu-
nity is differentiable rendering. It describes rendering methods that provide a
gradient of a rendering function with respect to scene and imaging parameters,
which promises a general purpose solution to the inverse rendering problem.
Intuitively, the gradient conveys information about how parameters have to be
changed to match a reference observation. The potential of this approach has
led to the development of a variety of differentiable rendering algorithms, cat-
egorized by rendering technique or geometry representation: differentiable light
transport [40,44,49], implicit neural representations [41], voxel-based [20,37,69],
mesh-based [30,36,39] and point-based representations [31,61,66]. Differentiable
light transport uses Monte-Carlo sampling which makes the approach computa-
tionally expensive. Recent advances made NeRF approaches real-time capable
[42], however, these techniques are view synthesis methods and currently do not
focus on generalization between scenes. Voxel-based methods can be combined
with 3D-CNNs to augment data-driven approaches [17,20,37,60], however, voxel
methods are memory constrained which prevents accurate representation of fine
geometric details. Differentiable rendering of mesh representations [25,30,36,39]
is more scalable but is constrained by the discrete topology of meshes which
requires a work-around to allows for strong shape deformations.

Our approach relies on point-based representations, which do not require the
initialization to approximate the final topology and are memory efficient com-
pared to voxel-based representations. The method interprets a Gaussian kernel
in a point’s tangent space, which was introduced in surface splatting [16,77], as a
probability density of the points’ influence on the overall image. Our method does
not require a truncation of the kernels to allow for efficient rendering but instead
adapts the concept of importance sampling to point cloud rendering. Without a
truncation step there are fewer discontinuities in our rendering pipeline. Impor-
tantly, our stochastic interpretation allows to derive an unbiased gradient esti-
mator which is not limited to a local region around each point but approximates
the gradient over the complete image space. This allows our method to over-

Fig. 1. Illustration of our proposed algorithm to draw per-pixel samples while still
scaling linear with respect to image and point cloud size. The construction steps builds
a BVH tree and computes Hermite coefficients on the GPU. Afterwards the tree is
traversed for each pixel in parallel and the Hermite coefficients are used to identify
points with a high contributions to the pixels. Hermite coefficients might be converted
into Taylor expansions to improve performance.
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come the major challenge of defining an useful surrogate gradient which often
requires additional regularization. Previous methods only accumulate local gra-
dients around a surfel [31,61] or rely on a finite-differences surrogate gradient
[66]. To efficiently evaluate our sample estimate, we augment a radix-tree [22]
to provide an approximation of cumulative inclusion probabilities via Hermite
expansions. This yields a space partitioning scheme that is used to draw sam-
ples for each pixel while scaling linearly with instance size. An overview of this
framework is presented in Fig. 1. Furthermore, it is designed with the constraint
of shared-memory multiprocessors in mind, consequently maps well to GPUs
and is publicly available1. Our overall contributions can be summarized as:

– We introduce a stochastic interpretation of surface splatting that abstains
from kernel truncation and the resulting discontinuity. This interpretation
allows us to derive an unbiased estimator for the sampling based renderer
without relying on surrogates such as finite-differences [66] or sub-gradients
[61].

– The proposed sampling algorithm used to generate the necessary samples
per pixel scales near linearly with respect to the image size and number of
points. By design, it allows parallelization of data processing and maps well to
the constraints of shared memory multiprocessors, which allows for a GPU-
accelerated implementation.

– We demonstrate that our approach yields a differentiable renderer that does
not require regularization and improves the fidelity of shape reconstructions
over current point-based differentiable rendering methods. We further demon-
strate the framework’s flexibility by exploring its use to improve scene recon-
struction and train it in conjunction with a neural network.

2 Related Works

In this section, we briefly review work on the topics of differentiable rendering
and discrete Gaussian transform approximation.

Differentiable Rendering. A large body of work exists which proposes
applica-tion-specific methods that can be classified as differentiable rendering
[1,21,27,53,63,71,74]. However, these methods use domain-specific knowledge
whereas our approach is not limited to a specific application. Another parallel
research direction is differentiable simulation of light transport via computa-
tionally expensive Monte-Carlo estimation to render images and propagate the
gradients [43,44]. Recently, this method has been extended to also provide a
gradient for any scene parameter including geometry and camera parameters
[3,40,72,73]. In this work, we focus on fast shape recovery from RGB images
and integration into deep neural networks, instead of using more computation-
ally expensive differentiable light transport techniques. In the remainder of this
paragraph, we focus on related work that is comparable to our method.
1 https://github.com/muellerju/unbiased-differentiable-splatting.

https://github.com/muellerju/unbiased-differentiable-splatting
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Voxel, Signed Distance (SDF) and Implicit Representations. Early
approaches use a differentiable projection to obtain a silhouette from a voxel grid
[64,75,76]. Recent approaches use differentiable ray marching through a density
voxel field [64,75,76] or sphere tracing in an opaque voxel field [20]. However,
voxel-based representations require large amounts of memory in order to repre-
sent fine geometric details. Deformations of the voxel-grid have been explored
to address this drawback [8,37,38]. “Neural Radiance Field” (NeRF) [41] has
been demonstrated to reproduce finer details with a smaller memory footprint
and has been improved by increasing inference performance [13,51,69], making
it real-time capable [42,70] or enabling scene relighting [7,58]. Point-based rep-
resentations are more memory efficient than dense voxel-grids and scale to larger
scenes without workarounds. Furthermore, our point based method can be incor-
porated into deep neural networks as opposed to real-time “NeRF” approaches
for which the integration into neural networks appears to be non-trivial since
they are designed for novel view synthesis of individual scenes. In addition, our
rendering pipeline does not entangle geometry and reflectance representations
which significantly simplifies scene relighting.

Mesh-Based Representations. Mesh-based representations have non-
continuous boundaries that can be circumvented with surrogate gradients [25,39]
which require regularization to avoid object shrinkage [24]. The “Soft Rasterizer”
[36] proposes a probabilistic approximation of the rendering pipeline and has
been improved to enable optimization of diffuse shading [10,48] and to increase
performance [49]. Recently, flexible mesh-based differentiable rendering frame-
works have been introduced [50] which includes hardware accelerated deferred
rendering [30]. However, mesh-based differentiable renderers have been demon-
strated to be unable to perform complex deformations [66]. This is an inherent
problem of their discrete topology, which does not exist in an unstructured point
cloud. Similar to the “Soft Rasterizer” [36], our proposed method uses a prob-
abilistic interpretation to mitigate discontinuities. However, the our sampling
method avoids the quadratic scaling of the “Soft Rasterizer” and has a lower
variance than mesh rendering which uses uniform sampling [52]. Our implemen-
tation does not utilize any graphics hardware specific instructions, which allows
it to be run on any general purpose computing hardware.

Point-Based Representations. Several point-based methods have been pro-
posed which do not present a general purpose renderer [18,34,54]. Smoothed
boundary approaches similar to the “Soft Rasterizer” [36] have only been demon-
strated to render low resolution patches [33] or truncate the smoothed boundary
to render full images but use a sub-gradient approximation at the boundary [61].
“Pulsar” [31] associates a sphere with each point similar to [33] but proposes a
more efficient acceleration structure. In contrast to these surfel methods, our
method also takes the surface normal into consideration which allows for a more
accurate representation of a surface given the same number of points. “Differen-
tiable surface splatting” (DSS) [66] adapts surface splatting [77] into a general
differentiable renderer by introducing a surrogate gradient. In our evaluation, we
will highlight that our stochastic framework yields a more faithful shape recov-
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ery compare to previous methods. Additionally, our unbiased estimator avoids
the use of expensive finite-differences surrogate gradients [66] which enables its
application to room-scale scenes. Several works combine point-rendering with
neural rendering [2,29,55]; either by rendering pixel-sized points [2,55] or by
utilizing DSS in “Point-based neural graphics” [29]. Pixel-sized methods render
sparse images at multiple resolutions and require a rendering network to per-
form hole-filling. This necessitates a per-scene training of the rendering network
whereas our method allows for direct optimization of large-scale scenes. Since we
improve upon results obtained with DSS and demonstrate that our method can
be used in conjunction with a neural rendering network, our framework should
be a drop-in replacement into the “Point-based neural graphics” pipeline.

Discrete Gaussian Transform Approximation. The discrete Gaussian
Transform (DGT) is a finite mixture of Gaussians (whereas a Gaussian mixture
model is a convex combination). “Fast Gaussian Transform” [15] proposes a “fast
multipole method” (FMM) based on Hermite and Taylor expansions and a spa-
tial grid to approximate the DGT for large numbers of source and target points
in linear time. Subsequent works proposed improvements to the spatial data-
structure [14,32,65] and generalize to larger classes of kernel functions [11,56].
In particular, [32] proposes the use of a dual kD-tree and a coupled traversal
of both trees to evaluate the DGT. More recently, task-based threading models
have been proposed to improve throughput on CPUs [68] and shared memory
architectures [35,62]. Our algorithm builds on previous ideas [15,32], however, we
adapt these concepts to not only provide an approximation of DGT at the root
node but potentially at every node in the source tree. Furthermore, we employ
domain-specific knowledge by replacing the target-tree with a grid structure,
since the pixels are uniformly distributed. Lastly, we use a BVH-tree that can
be efficiently constructed on the GPU [22] to store source points, which is in con-
trast to previous techniques [35,62] that only accelerate the traversal with GPUs.

3 Statistical Splatting with Unbiased Gradient Estimator

In our rendering algorithm we avoid the additional discontinuity that comes
with truncating the Gaussian kernel introduced in “surface splatting” [77]. This
removes the bias that leads to shrinkage in previous “DSS” [66]. However, a naive
evaluation of the complete Gaussian kernel scales quadratic (i.e. number of pixels
times number of points); to obtain an efficient renderer we approximate pixel
and gradient values using unbiased sample estimates. “Surface splatting” is a re-
sampling framework for aliasing-free point cloud rendering that associates each
point with a resampling kernel ρk(x). This kernel is approximated by projecting
a Gaussian basis function from a point’s tangent plane into screen-space. Let Nx

be the set of points that describe the surface at a pixel x and fk an attribute
value for each point k (e.g. albedo color). Surface splatting computes the pixel
value fc(x) at position x as the weighted sum of pixel contributions:



286 J. U. Müller et al.

fc(x) :=
∑

k∈Nx

fkρk(x) with ρk(x) :=
1

|J−1
k |GJkVkJT

k +I(x − m(uk)) (1)

where m(uk) is the projection of the point position uk into screen space, J−1
k is

the Jacobian of the camera transformation and perspective projection, Vk is a
diagonal matrix to control the splat sizes and GA(x) is the multivariate Gaussian
density function with covariance matrix A. For more details, we refer to Zwicker
et al. [77]. Previous methods [77,78] truncate the Gaussian kernel ρk(x) to obtain
an elliptical splat. Limiting the Gaussian kernel to have a local support decreases
the algorithm’s runtime but requires a finite-differences approach [66] to compute
a gradient. In the following, we detail a stochastic framework used in the forward
and backward pass as well as an algorithm to efficiently evaluate this framework.

Forward Pass. First, we identify a set of candidate points which could have
an effect on the pixel’s filtered attribute value without taking occlusion into
consideration. We propose to draw this set of points Ñx for each pixel x by
sampling without replacement (SWOR) such that the inclusion probability of
point k at pixel x is proportional to its influence on the pixel: p̃k(x) ∼ fkρk(c).
Afterwards, our method evaluates the contributions of the sampled points Ñx

at pixel x according to Eq. 1 and resolves the occlusion in a depth filtering step
to determine the set of visible points Nx. Our algorithm uses an alpha-blending
method, which was originally introduce by Zwicker et al. [78], to perform the
depth-filtering. The alpha-based methods sorts the points in Ñx by descending
distance from the camera and accumulates the contributions of a point such that
its contribution is at most one minus all previous contributions. Wiles et al. [61]
have demonstrated that alpha-blending yields an improved gradient propagation
compared to the z-Buffer approximation in DSS [66].

Backward Pass. Second, our novel backward pass utilizes of an unbiased esti-
mator to compute the gradient using the samples computed during the forward
pass as follows: Let L be a differentiable image loss function. The derivative of a
point parameter ωk (e.g. position or normal) can be computed by accumulating
its derivative over the complete image

∂L
∂ωk

=
∑

x

∂L
∂fc(x)

∂fc(x)
∂ωk

. (2)

However, at pixel x we only consider the points in Ñx which have been drawn by
SWOR such that P (k ∈ Ñx) = p̃k(x). To obtain an unbiased estimator for Eq. 2,
we make the following observations: First, the set of pixels Nk := {x | k ∈ Ñx}
that are influenced by point k contains no duplicates, since Ñx was drawn with
SWOR and does not have any duplicates. Second, the probability that a pixel
is included in Nk is equal to P (k ∈ Ñx) by construction. Finally, note that
the size of the set Nk is a random variable. This allows us to use a modified
Horvitz-Thompson estimator [9] to approximate the derivative in Eq. 2 as
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Algorithm 1: Our adaption of the Sequential Poisson sampling algorithm
to generate a sample for each pixel in parallel.

for all all pixels x in parallel do
Let Sx be an empty list of size s to store sampled indices.
Initialize ξ = ∞ the upper bound of transformed random numbers.
while ε ≤ ξ · cx,r · σr(x) do

Let n be the root of the tree T with point indices In ⊆ [1 : N ].
while |In| > m do

Let nl, nr be the left and right child node of n.
Set n ← nl if cx,nlσnl(x) > cx,nrσnr (x) else set n ← nr.

Compute and sort ξk in ascending order for all k ∈ In.
Merge In with Sx to obtain a SPS sample.
Set ξ ← maxk∈Sxξk.
Initialize the path probability β = 1.
while n is not the root do

Update the capacity cx,n ← max{0, cx,n − β}.
Let n′ be the node which shares a parent with the node n.
Set β ← β · σn(x)

σn(x)+σn′ (x) and n ← parent(n).

∂L
∂ωk

≈ 1
|Nk|

∑

x∈Nk

1
p̃k(x)

∂L
∂fc(x)

∂fc(x)
∂ωk

(3)

if |Nk| > 0 and ∂L/∂ωk = 0 otherwise. Note that the inclusion probability
is not strictly proportional-to-size, since p̃k is not scaled according to the loss
derivative ∂L/∂ωk. However, the gradient is dominated by the exponential decay
of the Gaussian kernel ρk(x) that outweighs the unaccounted scaling term even
for pixels close to a point.

3.1 Efficient Pixel-Wise Sampling

In order to evaluate our sampling-based splatting framework efficiently we intro-
duce a tree-based sampling algorithm that serves two purposes: First, the algo-
rithm allows to approximate the total contribution fc(x) of all points at each
pixel x (i.e. Nx = [1 : N ]) which allows for proportional-to-size sampling in the
forward step. Second, it allows us to draw the set Ñx for each pixel and provide
the inclusion probabilities of points within the samples.

In order to achieve these objectives, our algorithm utilizes a fast multipole
method (FMM) [15,32] which was originally introduced for N-body simulations
to approximate a sum of Gaussians (DGT) at multiple points in linear instead of
quadratic time. The idea of FMM is that a DGT of nearby points can be approx-
imated with a truncated Hermite expansion which provides a global approxima-
tion. This Hermite expansion can be converted into a truncated Taylor expan-
sion, which approximates the DGT only locally but is more efficient to evaluate
for multiple points:
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fc(x) ≈
∑

0≤α≤n

Aαhα

(
x − xH√

2h2

)

︸ ︷︷ ︸
truncated Hermite expansion

and fc(x) ≈
∑

0≤β≤n

Bβ

(
x − xT√

2h2

)β

︸ ︷︷ ︸
truncated Taylor expansion

where hα = e−t2Hα(t) is a Hermite function of the Hermite polynomial Hα, Aα

are the coefficients of a truncated Hermite expansion at point XH which can be
converted into coefficients Bβ of a truncated Taylor expansion at point XT and h
is the Gaussian’s bandwidth parameter. For details on computing and converting
the coefficients we refer to Lee et al. [32]. Since FMM assumes isotropic Gaussians
with bandwidth h, we derive a best fit bandwidth for the multivariate Gaussians.
For further details on this step we refer to the supplemental.

Tree Construction. For each batch of points, we construct a bounding-
volume-hierarchy (BVH) tree using a radix-sort based algorithm [22]. The algo-
rithm enables the BVH-tree construction in near linear time on the GPU. We
extend the last step of the construction in this algorithm which propagates the
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Fig. 2. Shape reconstruction from images using the proposed method compared to
results obtained using previous methods. Our method exhibits fewer outliers, more
accurate normal directions and an improved reconstruction of extremities. Images were
rendered after converged optimization based on the lighting conditions used in Yifan
et al. [66], which was not provided but manually recreated.
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bounding-boxes (BB) from leafs to the root, to also compute an Hermite expan-
sion for each node within the tree: If the nodes’ BB has a side length smaller than
2 h a Hermit expansion can be computed. The expansion point XH is chosen to
be the average of the child nodes’ expansion points and the Hermite degree is
increased until the approximation error is smaller than a user-defined threshold
ε. Finally, the Hermite coefficients of the children are shifted and accumulated
at the new expansion point. Otherwise, the BB side length is greater or equal
to 2 h and the node is marked to have no valid Hermite expansion. The shift
operation between nodes, bound for the approximation error have been estab-
lished by Lee et al. [32] for the use in dual-trees. In contrast to this method,
our algorithm computes the Hermite coefficients during the tree construction in
parallel whereas Lee et al. [32] only compute the coefficients during sequential
depth first traversal.

Sampling. Poisson sampling performs sampling without replacement and by
design provides an element’s inclusion probability. Therefore it satisfies the
requirements introduced by our gradient estimator in Eq. 3, but its sample
size is a random variable which is not well-suited for regular shaped tensor
objects used in deep-learning frameworks. Instead we generate the samples by
adapting sequential Poisson sampling (SPS), which returns a fixed size sample
with user specified size m and has been demonstrated empirically to approxi-
mate proportional-to-size sampling without replacement [45]. SPS computes a
transformed random number ξx,k = ux,k/p̃k(x) where ux,k is a uniform sample
between [0, 1] and returns the indices which have the m smallest transformed
random numbers. However, drawing a SPS sample for each pixel with this naive
algorithm has at least quadratic runtime.

Our algorithm returns a sample and its inclusion probability for each pixel,
which has size m and is with probability 1 − ε a SPS sample. The algorithm
searches for nodes in the tree which have a high likelihood to include points
that are contained in a SPS sample and merges them with the current sample.
It terminates if the likelihood of all remaining points to be in a SPS sample
is smaller than a user-defined threshold ε. The search traverses the tree from
the root to leaf by choosing the node n with the largest cumulative probability
σn(x) =

∑
i∈In

fkρk(x) where In are the indices of points contained in node n.
We describe the evaluation of σn(x) in the next paragraph. Duplicate samples
are avoided by reducing the capacity cx,n along the path. Our parallel SPS
procedure is described in detail in Algorithm 1. The runtime of our algorithm
is a random variable. Our algorithm scales linearly in an average case, since the
expected likelihood for a point to be included in the SPS drops exponentially
with distance to a pixel. For a detailed analysis we refer to the supplemental.

Approximating Cumulative Inclusion Probabilities. Our implementation
of Algorithm 1 maps each pixel to a thread on the GPU. We choose this mapping
such that a thread-block processes a rectangular block of pixels whose size is
chosen to maximize processor occupancy. We utilize this spatial relationship
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Table 1. Quantitative comparison between the reconstructed and ground-truth
pointsets using the Hausdorff (HD) and Chamfer (CD) distance. Our method with
non-visible point repositioning outperforms previous methods significantly. The values
are an average of 10 runs with a maximum std. deviation of at most 0.0121. Further
details are provided in the supplemental.

Dataset Bunny Teapot Yoga1 Yoga6

HD ↓ CD ↓ HD ↓ CD ↓ HD ↓ CD ↓ HD ↓ CD ↓
DSS [66] 7.73 1.817 12.766 1.586 14.039 6.351 12.631 3.84

SynSin [61] 75.806 4.074 13.019 4.771 7375.3279 572.224 7861.088 344.151

Pulsar [31] 4.463 1.371 17.036 15.478 25241.71 7746.145 43641.085 12621.735

Ours 0.442 0.125 0.453 0.289 3.355 1.385 1.551 0.517

by pre-computing Taylor expansions for nodes that are close to the root. In a
pre-processing sub-routine to Algorithm 1 the first k′ threads within a block
compute a Taylor expansion for the first k′ nodes in level order and store them
in shared memory. The number of pre-computed Taylor coefficients depends on
the available shared memory. This accelerates the evaluation of the CDF σn(x)
for frequently visited nodes during the execution of Algorithm 1. After the pre-
processing step Algorithm 1 is executed and uses the following heuristic to select
between the evaluation techniques:

– The thread searches via linear probing for Taylor coefficients of node n in
shared memory. If a local expansions exists, it is used to evaluate σn(x).

– Otherwise, if node n has a valid Hermite expansion, its Hermite coefficients
are used to evaluate the CDF.

– If the node has neither expansion, the algorithm traverses the sub-tree and
evaluates the Hermite expansions of the nodes’ children to compute the CDF.

Implementation. Our framework is implemented as two CUDA extensions for
“PyTorch” [46] where each extension combines multiple kernels. An implemen-
tation as a custom “PyTorch” extension provides flexibility when exploring the
choice of optimizer, learning rate schedule or loss function. It further allows our
method to be easily combined with existing neural network building blocks. The
majority of the extensions are written as native CUDA kernels in CUDA-C and
use the “PyTorch” C++ wrapper to provide memory management as well as
a Python wrapper; only the construction of the tree is implemented using the
“Thrust” library [5]. We keep track of the capacity values for each pixel and
node combination required in Algorithm 1 by using a hash map. This map can
be substantially smaller than the number of pixels times the number of points
since the algorithm only needs to store the capacity of visited nodes. Additional
details regarding our implementation are provided in the supplementary.
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Fig. 3. Comparison between test images in the dataset by Mildenhall et al. [41] and
the inference from the neural renderer which uses our method as an intermediate layer.
The dataset was scaled to 256 × 256 pixels due to limited hardware.
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PSNR :18.095,SSIM :0.681 PSNR :23.257,SSIM :0.799

Fig. 4. Comparison between the reference image by Bode et al. [6], a rendered image
from the initial SLAM reconstruction and a rendered image after refining the scene
using our method. The masked areas in the reference image are a result of calibration
and are not considered in the loss, PSNR or SSIM. The pixel-wise difference between
the reference image and the rendered images is also depicted (darker values correspond
to a smaller error). These highlight an improved alignment of the geometry with the
reference image, the removal of outliers and the restoration of sharper textures after
the refinement.
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Reference Image Refinement using DSS
PSNR :15.412,SSIM :0.541

Refinement using Ours
PSNR :19.282,SSIM :0.683

Fig. 5. Comparison between the refinement of the SLAM reconstruction performed
using either DSS or our proposed method. DSS [66] requires a downsampling by a
factor of 10 to be run on the available hardware; DSS was also unable to align the pose
correctly (compare the upper corner of the checkerboard).

4 Applications and Results

We provide a qualitative and quantitative comparison between our method and
previous differentiable point renderer in Fig. 2 and Table 1. Furthermore, we
demonstrate that our method can be applied to room-scale scenes with mod-
erate hardware requirements (Fig. 4) whereas DSS is unable to do so (Fig. 5).
Finally, we integrate our method into a neural rendering pipeline (Fig. 3). Unless
otherwise specified we use the “Adam” optimizer [28] with decay-rates β1 = 0.9
and β2 = 0.999 to minimize a simple L1-image loss with a batch size of 12
without further regularization. The learning rate is initially set to be 0.01 and
reduced 5 times by a factor of 2 at regular intervals during the 300 epochs. All
experiments use m = 40 samples per pixel, an error threshold ε = 0.01 and are
run on a Nvidia GTX 1080 with 8GB VRAM. If points have no visual contribu-
tion from any viewing direction, the point is projected into the neighbourhood
of a randomly selected visible point. “Pulsar” [31] uses a similar technique but
prunes non-contributing points which decreases the point cloud resolution.

Comparison - Image-Based Shape Reconstruction. To compare our
method’s ability to reconstruct shapes from images against previous point-based
approaches, we use the dataset published in Yifan et al. [66]. Note that this
dataset originally contained 5 objects, however, only 4 of them have been pub-
lished. Based on the setup in [66], the images used for the shape reconstruction
are rendered from the ground-truth point cloud with randomly sampled poses.
For DSS [66] we compare against the results obtained using its published imple-
mentation [67]. For “SynSin” [61] and “Pulsar” [31] we use the implementations
provided in [50] and apply them using our setup described in the previous para-
graph.

The results in Fig. 2 demonstrate that the proposed method is able to suc-
cessfully reconstruct all objects. When comparing the results to reconstruction
obtained with DSS, SynSin or Pulsar, it is apparent that the results obtained
with our approach exhibit fewer outliers, holes in the surface and reconstructs
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smaller details more faithfully. The distances between the reconstructed and
ground-truth point clouds reported in Table 1 emphasize that the improved
reconstruction accuracy is not limited to the viewing direction in Fig. 2. The
proposed method achieves distances that are smaller by a factor of at least 2.9
and 2.8 for the Hausdorff and Chamfer distance when compared to previous
methods and indicates more faithfully recovered shapes. For a additional com-
parisons and the runtime we refer to the supplementary.

Application - Room-Scale Scene Refinement. To demonstrate that our
meth-od scales well to room-scale scenes, we utilize sequence RGB-D datasets
by Steinbrucker et al. [59] and Bode et al. [6]. The latter registers RGB and
depth measurements by masking RGB pixels which have no corresponding depth
values. For the refinement we use point-based SLAM [26] to obtain an initial
estimate for the point cloud and camera poses and optimize geometry, shading
and camera parameters to improve the alignment between RGB images and
observations using our method. Further details on this setup and results are
provided in the supplementary. After the refinement, the SSIM improves by
17.33% compared to a frame rendered directly after SLAM reconstruction. The
improvements exemplified in Fig. 4 are a result of an improved pose alignment
between frames and an improvement of shading and geometry. We would like to
highlight the improved alignment of the table edge and the checkerboard pattern
as a result of improved camera poses, which allows for sharper texture details.
Furthermore, outliers near the table and chair were removed in the refinement
using our method. In addition to the improvements of the camera poses, albedo
values, and spherical harmonics coefficients, improvements to the geometry can
be observed which contribute to the lower error. In contrast to “Adop” [55],
which demonstrate a similar application, our method does not require training a
network and avoids this overhead. We conduct the same experiments using DSS
[66]. However, we found that DSS requires to downscale the point cloud by a
factor of 10 to avoid out-of-memory exceptions on the used hardware. Figure 5
demonstrates that our method allows the refinement of room-scales scenes with
higher fidelity compared to DSS on the same hardware.

(a) (b) (c) (d)

Fig. 6. The neural rendering framework suffers from overfitting, as indicated by the
discrepancy between the training and validation loss curve (a). The neural renderer
fails to reproduce certain test views (b) but is able to accurately reproduce its nearest
training view; compare (c) and (d).
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Application - Neural Rendering. To demonstrate the flexibility of our frame-
work beyond shape reconstruction/refinement, we combine it with a neural shad-
ing network and train the model on the synthetic dataset by Mildenhall et al. [41].
The design of the neural shading pipeline follows an approach similar to Lassner
and Zollhöfer [31]: The shading network is a U-Net generator and the model is
trained to minimize an image loss and adversarial loss based on a Patch-GAN
discriminator which we adapted from Isola et al. [19]. A detailed description of
the initialization, architecture and all parameters is provided in the supplemen-
tal. Figure 3 depicts the results obtained by evaluating the trained model on the
test split of the dataset. The neural shading network allows the model to render
fine details for which the point cloud resolution would not suffice. However, the
failure case in Fig. 6 indicates that the neural shading model does not generalize
equally well to every camera pose. Lassner and Zollhöfer [31] report a similar
problem when demonstrating “Pulsar” as part of their neural rendering model.
This suggests that overfitting is not a problem of our renderer but a limitation
of neural shading models.

Scaling and Ablation. To study the effect of the user-defined parameters on
the shape recovery results, we use the results on the bunny dataset as a baseline.
We report the effect of the per-pixel sample size m in Table 2 and the algorithm’s
robustness with respect to the number of viewing direction in Table 3. While
increasing the sample size improves the reconstruction, a sample size beyond 40
is not possible in our implementation since it is constraint by the amount of
shared memory. We found that increasing the number of views beyond 100 does
result in significant improvements on this scene. We further demonstrate that
Algorithm 1 scales linearly with respect to the number of points and pixels in
Fig. 7. We provide a more detailed study of the runtime in the supplementary.

Table 2. Influence of
the number of samples
on Hausdorff and Cham-
fer distance.

#Samples HD ↓ CD ↓
1 8.287 6.766

3 8.87 3.532

5 8.189 2.717

20 1.07 0.105

40 0.442 0.125

Table 3. Influence of the
number of views on Haus-
dorff and Chamfer dis-
tance.

#Views HD ↓ CD ↓
16 49.159 20.138

64 1.097 0.156

124 0.442 0.125

300 0.409 0.13
Fig. 7. Linear scaling of
the our algorithm with
respect to instance size.

5 Conclusion

Our stochastic framework for differentiable point-rendering addresses the inher-
ent bias or locality in the gradient computation of previous methods by deriving
an unbiased gradient estimator. To evaluate this estimator we introduce a near
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linear-time algorithm to perform efficient sampling in image space. We empiri-
cally verified that our proposed method enables more faithful image-based object
reconstruction without relying on regularization. Furthermore, we demonstrated
the scalability and flexibility of our approach by its application for room-scale
scene refinement and integrating it into a neural rendering pipeline.

Future Work. Although the current implementation of the sampling algo-
rithm is hardware-agnostic, we anticipate that the integration into a hardware-
accelerated rendering pipeline may be beneficial. This is in light of recent
developments in neural implicit representations [42], which have significantly
improved their efficiency. We believe that reducing the hardware requirements
makes methods more accessible and can yield more energy-efficient models.

Acknowledgments. This work was partially funded by the DFG (German Research
Foundation) KL 1142/11–2 (FOR 2535 Anticipating Human Behavior).

References

1. Aberman, K., Shi, M., Liao, J., Lischinski, D., Chen, B., Cohen-Or, D.: Deep video-
based performance cloning. In: Computer Graphics Forum, vol. 38, pp. 219–233.
Wiley Online Library (2019)

2. Aliev, K.-A., Sevastopolsky, A., Kolos, M., Ulyanov, D., Lempitsky, V.: Neural
point-based graphics. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.)
ECCV 2020. LNCS, vol. 12367, pp. 696–712. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-58542-6 42

3. Bangaru, S.P., Li, T.M., Durand, F.: Unbiased warped-area sampling for differen-
tiable rendering. ACM Trans.Graphics (TOG) 39(6), 1–18 (2020)

4. Beigpour, S., Kolb, A., Kunz, S.: A comprehensive multi-illuminant dataset for
benchmarking of intrinsic image algorithms. In: Proc. IEEE International Confer-
ence on Computer Vision (ICCV), pp. 172–180 (12 2015)

5. Bell, N., Hoberock, J.: Thrust: A productivity-oriented library for cuda. In: GPU
computing gems Jade edition, pp. 359–371. Elsevier (2012)

6. Bode, L., Merzbach, S., Stotko, P., Weinmann, M., Klein, R.: Real-time multi-
material reflectance reconstruction for large-scale scenes under uncontrolled illu-
mination from rgb-d image sequences. In: 2019 International Conference on 3D
Vision (3DV), pp. 709–718. IEEE (2019)

7. Boss, M., Braun, R., Jampani, V., Barron, J.T., Liu, C., Lensch, H.: Nerd:
Neural reflectance decomposition from image collections. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 12684–12694 (2021)

8. Bozic, A., Zollhofer, M., Theobalt, C., Nießner, M.: Deepdeform: Learning non-
rigid rgb-d reconstruction with semi-supervised data. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7002–
7012 (2020)

9. Brewer, K.R., Early, L., Joyce, S.: Selecting several samples from a single popula-
tion. Australian J. Stat. 14(3), 231–239 (1972)

10. Wengzheng, C., et al.: Learning to predict 3d objects with an interpolation-based
differentiable renderer. Adv. Neural. Inf. Process. Syst. 32, 9609–9619 (2019)

https://doi.org/10.1007/978-3-030-58542-6_42
https://doi.org/10.1007/978-3-030-58542-6_42


296 J. U. Müller et al.

11. Curtin, R., March, W., Ram, P., Anderson, D., Gray, A., Isbell, C.: Tree-
independent dual-tree algorithms. In: International Conference on Machine Learn-
ing, pp. 1435–1443. PMLR (2013)

12. Dave, C.P., Joshi, R., Srivastava, S.: A survey on geometric correction of satellite
imagery. Int. J. Comput. Appl. 116(12), 24–27 (2015)

13. Garbin, S.J., Kowalski, M., Johnson, M., Shotton, J., Valentin, J.: Fastnerf: High-
fidelity neural rendering at 200fps. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 14346–14355 (2021)

14. Greengard, L., Huang, J., Rokhlin, V., Wandzura, S.: Accelerating fast multipole
methods for the helmholtz equation at low frequencies. IEEE Comput. Sci. Eng.
5(3), 32–38 (1998)

15. Greengard, L., Strain, J.: The fast gauss transform. SIAM J. Sci. Stat. Comput.
12(1), 79–94 (1991)

16. Heckbert, P.S.: Fundamentals of texture mapping and image warping (1989)
17. Henzler, P., Mitra, N.J., Ritschel, T.: Escaping plato’s cave: 3d shape from adver-

sarial rendering. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 9984–9993 (2019)

18. Insafutdinov, E., Dosovitskiy, A.: Unsupervised learning of shape and pose with
differentiable point clouds. arXiv preprint arXiv:1810.09381 (2018)

19. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1125–1134 (2017)

20. Jiang, Y., Ji, D., Han, Z., Zwicker, M.: Sdfdiff: Differentiable rendering of signed
distance fields for 3d shape optimization. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 1251–1261 (2020)

21. Kappel, M., et al.: High-fidelity neural human motion transfer from monocular
video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 1541–1550 (2021)

22. Karras, T.: Maximizing parallelism in the construction of bvhs, octrees, and k-d
trees. In: Proceedings of the Fourth ACM SIGGRAPH/Eurographics conference
on High-Performance Graphics, pp. 33–37 (2012)

23. Kato, H., Beker, D., Morariu, M., Ando, T., Matsuoka, T., Kehl, W., Gaidon, A.:
Differentiable rendering: A survey. arXiv preprint arXiv:2006.12057 (2020)

24. Kato, H., Harada, T.: Learning view priors for single-view 3d reconstruction. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 9778–9787 (2019)

25. Kato, H., Ushiku, Y., Harada, T.: Neural 3d mesh renderer. In: Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 3907–3916
(2018)

26. Keller, M., Lefloch, D., Lambers, M., Izadi, S., Weyrich, T., Kolb, A.: Real-time 3d
reconstruction in dynamic scenes using point-based fusion. In: 2013 International
Conference on 3D Vision-3DV 2013, pp. 1–8. IEEE (2013)

27. Kim, H., et al.: Deep video portraits. ACM Trans. Graphics (TOG) 37(4), 1–14
(2018)

28. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

29. Kopanas, G., Philip, J., Leimkühler, T., Drettakis, G.: Point-based neural render-
ing with per-view optimization. In: Computer Graphics Forum. vol. 40, pp. 29–43.
Wiley Online Library (2021)

http://arxiv.org/abs/1810.09381
http://arxiv.org/abs/2006.12057
http://arxiv.org/abs/1412.6980


Unbiased Differentiable Splatting 297

30. Laine, S., Hellsten, J., Karras, T., Seol, Y., Lehtinen, J., Aila, T.: Modular primi-
tives for high-performance differentiable rendering. ACM Trans. Graphics (TOG)
39(6), 1–14 (2020)

31. Lassner, C., Zollhofer, M.: Pulsar: Efficient sphere-based neural rendering. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 1440–1449 (2021)

32. Lee, D., Moore, A.W., Gray, A.G.: Dual-tree fast gauss transforms. In: Advances
in Neural Information Processing Systems, pp. 747–754 (2006)

33. Li, L., Zhu, S., Fu, H., Tan, P., Tai, C.L.: End-to-end learning local multi-view
descriptors for 3d point clouds. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 1919–1928 (2020)

34. Lin, C.H., Kong, C., Lucey, S.: Learning efficient point cloud generation for dense
3d object reconstruction. In: proceedings of the AAAI Conference on Artificial
Intelligence, vol. 32 (2018)

35. Lingg, M.P., Hughey, S.M., Dikbayir, D., Shanker, B., Aktulga, H.M.: Exploring
task parallelism for the multilevel fast multipole algorithm. In: 2020 IEEE 27th
International Conference on High Performance Computing, Data, and Analytics
(HiPC), pp. 41–50. IEEE (2020)

36. Liu, S., Li, T., Chen, W., Li, H.: Soft rasterizer: A differentiable renderer for image-
based 3d reasoning. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 7708–7717 (2019)

37. Lombardi, S., Simon, T., Saragih, J., Schwartz, G., Lehrmann, A., Sheikh, Y.:
Neural volumes: Learning dynamic renderable volumes from images. arXiv preprint
arXiv:1906.07751 (2019)

38. Lombardi, S., Simon, T., Schwartz, G., Zollhoefer, M., Sheikh, Y., Saragih, J.:
Mixture of volumetric primitives for efficient neural rendering. arXiv preprint
arXiv:2103.01954 (2021)

39. Loper, M.M., Black, M.J.: OpenDR: an approximate differentiable renderer. In:
Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol.
8695, pp. 154–169. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10584-0 11

40. Luan, F., Zhao, S., Bala, K., Dong, Z.: Unified shape and svbrdf recovery using
differentiable monte carlo rendering. arXiv preprint arXiv:2103.15208 (2021)

41. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: NeRF: representing scenes as neural radiance fields for view synthesis. In:
Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol.
12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
58452-8 24

42. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives
with a multiresolution hash encoding. arXiv preprint arXiv:2201.05989 (2022)

43. Nimier-David, M., Speierer, S., Ruiz, B., Jakob, W.: Radiative backpropagation:
an adjoint method for lightning-fast differentiable rendering. ACM Transactions
on Graphics (TOG) 39(4), 146–1 (2020)

44. Nimier-David, M., Vicini, D., Zeltner, T., Jakob, W.: Mitsuba 2: A retargetable
forward and inverse renderer. ACM Trans. Graph. (TOG) 38(6), 1–17 (2019)

45. Ohlsson, E.: Sequential poisson sampling. J. Official Stat. 14(2), 149 (1998)
46. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning

library. Adv. Neural. Inf. Process. Syst. 32, 8026–8037 (2019)
47. Patow, G., Pueyo, X.: A survey of inverse rendering problems. In: Computer graph-

ics forum. vol. 22, pp. 663–687. Wiley Online Library (2003)

http://arxiv.org/abs/1906.07751
http://arxiv.org/abs/2103.01954
https://doi.org/10.1007/978-3-319-10584-0_11
https://doi.org/10.1007/978-3-319-10584-0_11
http://arxiv.org/abs/2103.15208
https://doi.org/10.1007/978-3-030-58452-8_24
https://doi.org/10.1007/978-3-030-58452-8_24
http://arxiv.org/abs/2201.05989


298 J. U. Müller et al.

48. Petersen, F., Bermano, A.H., Deussen, O., Cohen-Or, D.: Pix2vex: Image-to-
geometry reconstruction using a smooth differentiable renderer. arXiv preprint
arXiv:1903.11149 (2019)

49. Poursaeed, O., Fisher, M., Aigerman, N., Kim, V.G.: Coupling explicit and implicit
surface representations for generative 3D modeling. In: Vedaldi, A., Bischof, H.,
Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12355, pp. 667–683.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58607-2 39

50. Ravi, N., Reizenstein, J., Novotny, D., Gordon, T., Lo, W.Y., Johnson, J., Gkioxari,
G.: Accelerating 3d deep learning with pytorch3d. arXiv preprint arXiv:2007.08501
(2020)

51. Reiser, C., Peng, S., Liao, Y., Geiger, A.: Kilonerf: Speeding up neural radiance
fields with thousands of tiny mlps. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 14335–14345 (2021)

52. Rhodin, H., Robertini, N., Richardt, C., Seidel, H.P., Theobalt, C.: A versatile
scene model with differentiable visibility applied to generative pose estimation.
In: Proceedings of the IEEE International Conference on Computer Vision, pp.
765–773 (2015)

53. Rossler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Nießner, M.: Face-
forensics++: Learning to detect manipulated facial images. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 1–11 (2019)

54. Roveri, R., Rahmann, L., Oztireli, C., Gross, M.: A network architecture for point
cloud classification via automatic depth images generation. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 4176–4184
(2018)

55. Rückert, D., Franke, L., Stamminger, M.: Adop: Approximate differentiable one-
pixel point rendering. arXiv preprint arXiv:2110.06635 (2021)

56. Ryan, J.P., Ament, S., Gomes, C.P., Damle, A.: The fast kernel transform. arXiv
preprint arXiv:2106.04487 (2021)

57. Sengupta, S.: Constraints and Priors for Inverse Rendering from Limited Observa-
tions. Ph.D. thesis, University of Maryland, College Park (2019)

58. Srinivasan, P.P., Deng, B., Zhang, X., Tancik, M., Mildenhall, B., Barron, J.T.:
Nerv: Neural reflectance and visibility fields for relighting and view synthesis. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 7495–7504 (2021)
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