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Persistence of Member Contribution Under Churn

Luka Roginić, Bart Cox, Jérémie Decouchant
Delft University of Technology

Abstract—Decentralized learning is a paradigm that enables
machine learning in a distributed and decentralized manner. A
common challenge in this setting is the presence of non-identically
and independently distributed (non-IID) data across clients. Under
such conditions, it has been shown that node churn, where clients
leave and rejoin the system, leads to reduced generalization
performance and slower convergence. This degradation occurs
because certain data classes may exist only on a few clients.
Thus, if those clients drop out, the global model may lose
access to important parts of the data distribution. This setting
poses an important question: How can we mitigate the impact of
node churn in decentralized learning systems to maintain some
persistence of member contributions? To address this challenge,
we empirically study the effectiveness of data augmentation,
specifically extending local datasets with small synthetic datasets
received from neighbors and generated using their local data. We
further enhance this approach with supervised contrastive loss
applied to synthetic and local data together, to which we refer to
as synthetic anchors. Through experiments on the MNIST and
CIFAR10 datasets, we demonstrate that data augmentation and
synthetic anchors effectively mitigate the effects of churn and
help preserve member contribution in decentralized learning.

I. INTRODUCTION

Decentralized learning is a paradigm to perform machine
learning from multi-source data in a distributed and decentral-
ized manner. Decentralized learning is strongly connected to
federated learning in which a central server orchestrates the
learning of each member. Some advantages of decentralized
learning over federated learning include increased ownership,
privacy, and scalability [1–3]. One of the possible use cases
of decentralized learning is utilizing data generated by edge
devices, such as mobile phones and Internet of Things devices.
Such data is often proprietary, discouraging owners from
sharing it [4, 5]. Additionally, the increase in data protection
regulations may legally prohibit the transmission of such data
from devices, particularly when it contains sensitive personal
information [6]. The need for decentralized learning solutions
is further supported by research indicating the necessity of
such approaches, as shown by Wang et al. [7].

Decentralized learning has been extensively studied, and
many algorithms have been proposed to enable collaborative
model training in a decentralized setting [8]. Various aspects
of decentralized learning have been investigated, including its
complexity [9], comparisons with federated learning [1–3], its
performance under non-independent and identically distributed
(non-IID) data [10–12], and its robustness to node churn [13].
Although churn is a well-known issue in distributed systems,
and it has been thoroughly studied how to mitigate or prevent
it [14, 15], there is still room for exploring it in decentralized

learning. There is a lack of a systematic approach to studying
how churn impacts decentralized learning and how it can be
mitigated such that some member contribution is preserved,
especially under non-IID conditions, where it becomes most
evident [13]. A possible situation where churn appears in
decentralized learning is when data is coming from mobile
phones which often switch between being online and offline [3].
Existing efforts often treat performance of decentralized learn-
ing under churn as secondary issue, overlooking its significance.
This leads us to our research question: How can we mitigate
the impact of node churn in decentralized learning systems to
maintain some persistence of member contributions?

In this work, we aim to answer this research question by
empirically investigating how decentralized learning aided
by methods based on dataset condensation performs under
churn and non-IID settings. Before training starts each member
synthesizes a small synthetic dataset that carries condensed
information about their local data. This synthetic dataset is then
exchanged with neighbors to be used in further training. In
the first method, called data augmentation, members augment
the synthetic datasets received from their neighbors to their
local train set. Then they continue training as in the baseline
algorithm. The second method builds upon data augmentation.
After augmenting the neighbors’ synthetic datasets, the loss
function is extended to include supervised contrastive loss.
This loss encourages samples of the same class to be pulled
closer together, making the synthetic data act as anchors to the
local dataset. We refer to this approach as synthetic anchors.
This method is inspired by DeSA [10]. The overview of
both methods can be found in Figure 1. To the best of our
knowledge, we are the first to conduct an empirical study
on how decentralized learning aided by dataset condensation
based methods performs under churn and non-IID conditions,
and how they help preserve member contributions. This work
makes the following contributions:

• We empirically evaluate how data augmentation with
dataset condensation performs under churn and contributes
to preserving client contribution.

• We empirically evaluate how synthetic anchors perform
under churn and contribute to preserving client contribu-
tion.

Our results show that data augmentation improves performance
under churn across both MNIST and CIFAR10 datasets.
On MNIST, test accuracy increases by up to 6.73%, from
90.67% to 97.40%, while accuracy on missing members’
data(MMD) improves by as much as 6.67%. On CIFAR10, data
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Fig. 1: Overview of Data Augmentation and Synthetic Anchors

augmentation yields test accuracy gains of up to 5.32% and
improvements of up to 7.89% on MMD accuracy. Additionally,
data augmentation improves the stability of the model, reflected
by lower standard deviations. Similarly, synthetic anchors
provide improvements of up to 9.29% in test accuracy and
6.75% in MMD accuracy, while also reducing the standard
deviation of average accuracy across the network.

II. BACKGROUND

A. Decentralized Learning

Decentralized learning is a collaborative machine learning
approach where members train a model without relying on a
central server. Each member trains its own local model and
exchanges information, usually model weights, with neighbors
during communication rounds. Upon receiving information
from their neighbors, each member uses it to infer knowledge
about the global model.

A popular example of decentralized learning is gossip
learning [8]. Gossip learning is characterized by its sampling
strategy, online learning model, and ensembling method. During
training, each node updates its local model, most often using
stochastic gradient descent(SGD). Afterward, the node selects
neighbors to send its model to using a sampling method. Upon
receiving models from its neighbors, the node combines them
with its own model using an ensembling method. A common
ensembling method is plain averaging, where a node updates its
model by averaging it with those received from its neighbors.
Let Ni denote the set of neighbors of node i, and let θ(t)j

represent the model parameters received from neighbor j at
time t. The updated model at node i is given by:

θ
(t+1)
i = 1

|Ni|+1

(
θ
(t)
i +

∑
j∈Ni

θ
(t)
j

)
,

where θ
(t)
i is the current model of node i. This averaging

strategy treats all models equally.
Decentralized learning systems are further characterized by

data distribution among the members. Two distinct cases are
identically and independently distributed (IID) data and non-
IID data. Non-IID data is often modeled using a Dirichlet
distribution, which is characterized by an α parameter indi-
cating the degree of non-IID-ness [16] with a lower value
of α resulting in more unbalanced distribution across clients.
Another important aspect of decentralized systems is network

topology. Denser topologies can accelerate convergence, while
sparser networks may have the opposite effect. A common
setting in decentralized learning involves sparse network
topologies.

The advantages of decentralized systems compared to
centralized ones include the absence of a single point of failure,
which makes the system more resilient; improved scalability,
since no new infrastructure is needed when new members join;
and enhanced privacy, as there is no central node aggregating
all the information [1–3].

B. Churn

In distributed systems, it is inevitable that members will
join and leave over time, which is known as churn. Every
robust decentralized system must be designed to handle churn.
Members may leave permanently or rejoin the system at
later stages. Systems must define how to respond when
members leave gracefully (e.g., by sending a leave message)
or unexpectedly due to failures. While graceful departures can
often be treated similarly to failures, they may still warrant
separate handling in systems where graceful exits are common,
potentially allowing for better performance. Churn is further
characterized by dropout rate, how often members leave the
system, and the offline duration, how long members stays
outside the system after leaving [13]. We distinguish a special
case of churn, in which members do not return, from other
churn patterns. A popular way to model churn is by using
traces from real devices, for example smartphones [3].

C. Dataset Condensation

The computational cost of training state-of-the-art models
across various fields has been rapidly increasing due to the
growing size of models and datasets. Designing or adapt-
ing deep learning models to new tasks requires even more
computational resources, as it often involves training multiple
models on the same dataset to evaluate design choices such as
loss functions, architectures, and hyperparameters. Therefore,
there is a need for solutions that can reduce model training
time [17]. One approach is to create smaller training sets
that preserve the essential information of the original dataset
to a predetermined degree. Dataset condensation generates a
compact synthetic dataset on which models can be trained
to achieve performance comparable to models trained on
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the full dataset. Common strategies for dataset condensation
include gradient matching, aligning gradients between real and
synthetic data, and distribution matching, which aligns their
feature embeddings [17, 18]. The goal of dataset condensation
can be formalized as:

Ex∼PD
[ℓ (ϕθT (x), y)] ≃ Ex∼PD

[ℓ (ϕθS (x), y)] ,

where PD is the real data distribution, ℓ is the loss function, ϕ is
a model parameterized by θ, and ϕθT , ϕθS are networks trained
on the real dataset T and the synthetic dataset S , respectively.

III. RELATED WORK

A. Decentralized learning

One of the most widely studied decentralized learning
approaches is gossip learning [2, 8]. Decentralized learning has
also been extensively compared to centralized methods such as
federated learning [1–3]. Lu et al. provide tight lower bounds
on the time complexity of decentralized learning algorithms,
as well as an algorithm that achieves it [9]. However, these
works do not address churn or non-IID data

B. Churn

Liu et al. study gossip learning under different churn
scenarios, such as non-IID data, offline duration, and dropout
rates [13]. Their study shows that churn is most impactful
in non-IID scenarios. However, they do not address how to
mitigate the impact of churn or preserve member contributions.
Dinani et al. propose two novel approaches for modeling
dynamic networks with churn using time-varying graphs based
on the Erdős–Rényi and Barabási–Albert models [19]. Their
results suggest churn may help if nodes rejoin intelligently.
However, their work considers dynamic topologies, while ours
assumes static. Hegedűs et al. compare the performance of
federated learning and gossip learning under various conditions,
including churn [2]. Their findings indicate that churn delays
convergence and introduces noise in gossip learning. However,
they do not explore methods to mitigate churn or preserve
client contributions. Stutzbach et al. study churn in peer-to-
peer networks, while Berta et al. provide an empirical study
of churn in mobile systems [24, 25]. Rhea et al. address
churn in distributed hash tables [14], and Godfrey et al.
study how to reduce churn by selecting a subset of available
nodes [15]. These works do not focus on decentralized learning
specifically but contribute to a broader understanding of churn
in decentralized systems.

C. Decentralized learning and non-IID data

Huang et al. propose DeSA, a decentralized learning algo-
rithm that uses synthetic anchors to address non-IID data [10].
Although they use synthetic data as anchors, they do not focus
on how these techniques help preserve client contributions
or mitigate the impact of churn. Chengxi Li et al. introduce
Def-KT, an algorithm that leverages knowledge distillation to
improve model generalization under non-IID conditions [11].
SS-DGST uses gradient tracking and snapshots to improve
convergence in decentralized SGD with random topologies [20].

However, these works neither address churn nor incorporate
synthetic data. De Luca et al. apply data augmentation to
address non-IID data in federated learning, whereas our focus
is on decentralized learning [21]. Furthermore, they do not use
dataset condensation. Sha et al. propose a novel algorithm to
minimize the effect of non-IID data in federated learning by
utilizing Centered Kernel Alignment-based member selection
and dataset condensation [22]. ShiMao et al. use dataset
condensation with the principle of least privilege to construct
FLiP, an algorithm designed to help preserve privacy in
federated learning[26]. Song et al. propose FedD3, a one-
shot federated method using dataset condensation for non-IID
settings [23]. The works of Sha et al., Song et al., and ShiMao
et al. are not applicable to decentralized learning and do not
model churn. A summary of similarities between our work and
the studies in this section can be found in table I.

D. Dataset Condensation

Zhao et al. developed a new method for dataset condensation
based on distribution matching, with improved computational
complexity compared to previous work [17]. Another method
for dataset condensation is gradient matching, proposed by
Zhao et al. [18]. Dhasade et al. introduce Quickdrop, an
algorithm that uses dataset condensation to improve unlearning
in federated learning [27]. Dong et al. show that data con-
densation preserves privacy [28]. Carlini et al. question the
privacy properties of dataset condensation [29]. The works in
this section do not touch the topic of decentralized learning,
unlike ours.

IV. SYSTEM MODEL

The network topology in this experiment is a static, regular
graph, where no edges are added or removed during training.
The network is closed, meaning all members are present before
training begins and no new members join or leave.

Training proceeds with synchronized iterations: each node
must receive messages from all of its neighbors before
proceeding to the next iteration. Churn is simulated by having
nodes skip training and send a "churned" message to their
neighbors. Although nodes do not actually leave, this approach
effectively captures the impact of churn. Churn is simulating
members leaving due to failure, and we assume that all
members behave consistently toward all other members.

Each method is evaluated against a baseline and assessed
by test accuracy on the global test set and on MMD.

V. METHODOLOGY

A. Churn

Permanent churn is modeled using a schedule, which
determines which members will permanently leave in which
iteration. All members that leave do so before convergence
of the model. Furthermore, it is guaranteed that the schedule
leaves the network connected. Probabilistic churn is modeled
using a Bernoulli distribution: in each round, a node has a
certain probability of leaving the training process and, if absent,
probability of rejoining.
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Title Decentralized
learning

Modeling
churn

Mitigating
churn

Preserving member
contribution

Mitigating
non-iid data

Dataset
condensation

DeSA [10] ✓ ✗ ✗ ✗ ✓ ✓

Liu et al. [13] ✓ ✓ ✗ ✗ ✗ ✗

Dinanai et al. [19] ✓ ✓ ✗ ✗ ✗ ✗

Def-KT [11] ✓ ✗ ✗ ✗ ✓ ✗

SS-DSGT [20] ✓ ✗ ✗ ✗ ✓ ✗

Luca et al. [21] ✗ ✗ ✗ ✗ ✓ ✗

DCFL [22] ✗ ✗ ✗ ✗ ✓ ✓

FedD3 [23] ✗ ✗ ✗ ✗ ✓ ✓

This work ✓ ✓ ✓ ✓ ✓ ✓

TABLE I: Related work

B. Data Augmentation

Intuition. Churn is most impactful in decentralized learning
under non-IID settings because exit of a client can cause the
loss of entire data classes from the training process. To address
this, each client generates a small synthetic dataset representing
the client’s local data distribution. This synthetic dataset is
then transmitted to neighbors, who use it in their local training.
We hypothesize that the aggregated synthetic dataset from the
neighbors will provide a more balanced data distribution and
preserve member contributions.

Approach. Luca et al. demonstrated that data augmentation
can improve federated learning under non-IID conditions [21].
However, their approach applies only minor transformations
to local data, which limits information selected samples
carry. This limitation does not exist in dataset condensation,
where synthetic samples can be more information dense [17].
We combine dataset condensation with augmentation in a
decentralized learning setting. At the start, each member
generates a small synthetic dataset that reflects its local data
distribution. These synthetic datasets are significantly smaller
than the original datasets, and their size per class is determined
by:

synthetic_sizei,c = max
(
10, 0.01×

∣∣original_datai,c
∣∣)

where i denotes the member and c denotes the class. To generate
the synthetic dataset, we apply distribution matching by Zhao
et al. [17], which leverages the empirical Maximum Mean
Discrepancy loss [30], defined as:

DSyn
i = argmin

D

∥∥∥∥∥∥ 1

|Di|
∑

(x,y)∈Di

ψrand(x|y)− 1

|D|
∑

(x,y)∈D

ψrand(x|y)

∥∥∥∥∥∥
2

(1)
Here, ψrand denotes a feature extractor, which is a randomly

initialized neural network. We used three different networks:
CNN, LeNet, and ResNet which are periodically exchanged to
provide diverse views of the data and improve generalization.
The dataset Di represents the local data available to client i,
while DSyn

i corresponds to the synthetic dataset being optimized.
We use the Adam optimizer [31], while Zhao et al. use
stochastic gradient descent. Lastly, each data point is augmented
with color, crop, cutout, scale, and rotate transformations during
loss computation to enhance performance. This formulation

allows the construction of the synthetic anchor dataset in a
class-balanced manner, avoiding label distribution bias toward
any particular subset of classes. A diagram illustrating the
overall procedure is shown in Figure 2.

After generating the synthetic dataset, each member sends
their synthetic dataset to their neighbors. Received datasets
are collected before training begins and augmented to the
local dataset. Afterwards, training proceeds as in the baseline
algorithm. Detailed algorithm can be found in appendix A.

C. Synthetic Anchor

Intuition. Synthetic anchors extend the data augmentation
approach by leveraging the idea that synthetic samples are more
information dense than local data by incorporating supervised
contrastive loss. This loss brings embeddings of the same
class closer and pushes apart those of different classes. By
keeping synthetic data fixed during training, local data is
drawn toward them, effectively turning synthetic samples into
anchors for global information. We hypothesize that combining
cross entropy loss, which focuses on classification accuracy,
with supervised contrastive loss, which emphasizes semantic
clustering, will yield complementary objectives that improve
generalization and preserve member contribution.

Approach. Huang et al. [10] demonstrated that synthetic
anchors can improve model’s generalizability under non-IID
data setting. Our approach adapts their algorithm, DeSA, to
mitigate impact of churn and help preserve client contribution.
The method begins by generating synthetic data using distribu-
tion matching, as in the data augmentation approach. Synthetic
data is then exchanged with neighbors, who, upon receiving the
data merge it with their own synthetic data, in contrast to data
augmentation where synthetic data is merged into the local
train set. This design choice enables us to leverage the global
information encoded in synthetic samples through supervised
contrastive loss [32]. By detaching synthetic samples (i.e.,
not updated) during training, they become anchors for global
information, aligning local features with global ones. Due to
the difference in size between the local training set and the
synthetic dataset, batches from each set are sampled separately
to ensure synthetic data is used in every training round. This
allows each client to align its local private data with the global
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Fig. 2: Synthetic Data Generation

data distribution. The final supervised contrastive loss is defined
as follows:

LSCL(ψi) = E[d(ψi(D
syn)∥ψi(Di))],

Where d stands for supervised contrasted loss distance com-
puted as follows:

d(ψi;D
syn, Di) =

∑
j∈B

1

|Bj
yj |

∑
xp∈Bj

yj

log
exp(ψi(xj) · ψi(xp)/τtemp)∑

xa∈Bj
exp(ψi(xj) · ψi(xa)/τtemp)

(2)

Here, Bj represents a batch that includes both the local raw
data Di and the global synthetic anchor data Dsyn, but without
the specific sample j. The subset Bjyj

⊂ Bj includes only
those samples with label yj . The scalar τtemp is a temperature
parameter controlling the sharpness of the distribution. The
final loss is then a composition of cross entropy loss and
supervised contrastive loss and is defined as follows:

L = λCELCE(Di, D
syn,Mi) + λSCLLSCL(Di, D

syn,Mi)

Here, LCE is the standard cross-entropy loss computed on the
union of the local dataset Di and the synthetic dataset Dsyn.
The term LSCL denotes the supervised contrastive loss. The
scalars λCE and λSCL control the strength of cross entropy loss
and supervised contrastive loss, respectively. Detailed algorithm
can be found in appendix A.

VI. EXPERIMENTAL SETUP

We built our solutions on top of the decentralizepy frame-
work [33]. We used decentralizepy’s implementation of De-
centralized Parallel Stochastic Gradient Descent (DPSGD) as
the baseline. Each node locally trains a LeNet model using
SGD, with learning rate of 0.01. The communication protocol
between the members is TCP. The network is a static, regular
graph with 16 nodes of either degree 3 or 5. Churn is simulated
via a predefined schedule where 3, 5, or 8 members leave before
convergence. The schedule can be seen in table II. Churn is
further modeled as a Bernoulli process, where each node has
a probability of 80%, 90%, or 95% of leaving the system and
a 50% probability of returning. Each method is evaluated in
both settings.

Data synthesis is run for 15,000 iterations using the Adam
optimizer, with a learning rate of 0.01 and β values set to 0.5

and 0.9, which control the first and second moments of the
gradients, respectively. We evaluate on MNIST and CIFAR-10
datasts. MNIST consists of 60,000 grayscale images of size
28 × 28 across 10 classes, while CIFAR-10 contains 50,000
RGB images of size 32×32, also spanning 10 classes. training
runs for 500 iterations on MNIST and 3,000 on CIFAR-10.
For synthetic anchors, static weights are set as λCE = 1 and
λSCL = 2. We also experiment with dynamic weights, defined
as:

λCE =
current iteration
total iterations

, λSCL = 2 · (1− λCE)

Data is distributed using Dirichlet partitioning with a concen-
tration parameter α = 0.01. The same random seed was reused
to avoid regenerating synthetic data. Data distribution for each
node can be found in appendix B.

Scenario Churn Schedule (node : leaving iteration)

3 churn 3:6, 7:11, 12:22
5 churn 2:5, 4:10, 6:13, 10:25, 14:30
8 churn 0:28, 1:3, 3:8, 6:13, 8:18, 12:19, 14:23, 15:20

TABLE II: Churn schedule for permanent churn experiments.
VII. RESULTS AND EVALUATION

A. Dataset Condensation

The quality of synthetic data plays a significant role in
our approach, so it is important to first demonstrate that it
is of sufficient quality. In Figure 3, we compare DPSGD
trained solely on local data versus DPSGD trained only on
synthetic data generated from each node’s local data. The
results show that both models achieve similar final accuracy,
with the synthetic-data-trained models exhibiting significantly
less noise. This validates the effectiveness of the synthetic data.

In our experiments, we use DPSGD augmented with syn-
thetic data under no churn as the baseline. A comparison of
final accuracies between augmented and unaugmented DPSGD
in the no-churn setting is shown in Table III.

B. Experiments with MNIST

In Table IV, we present the final accuracies for training on
the MNIST dataset, evaluated against the baseline. One can
observe that data augmentation improves accuracy in 11 out
of 12 cases. It increases accuracy from 90.93% to 95.52%
when 8 members leave in the 3-degree topology, and from
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(a) MNIST (b) CIFAR

Fig. 3: Test accuracy of model trained on synthetic vs local data.

Fig. 4: Data augmentation in 3 degree 3
members leaving scenario.

DPSGD CIFAR10 MNIST
Degree 3 Degree 5 Degree 3 Degree 5

Not Aug. 49.2±5.4% 54.8±4.0% 94.8±2.5% 96.9±0.6%
Aug. 55.9±2.8% 56.8±4.4% 97.6±0.4% 98.2±0.2%

TABLE III: Test accuracy of unaugmented(not Aug.) and
augmented(Aug.) DPSGD under no churn on CIFAR-10 and
MNIST datasets.

90.67% to 97.40% when the probability of being active is 80%
in the 5-degree topology. Data augmentation also improves
convergence, as illustrated in Figure 4. It also reduces variance
in 8 out of 12 cases. When testing on missing members’ data
(MMD), data augmentation provides comparable results, most
notably when 8 members leave in the 3-degree topology, raising
the accuracy from 87.39% to 94.06%, as seen in Table IV.

However, there are several scenarios where the system is not
heavily impacted by churn, especially in the 5-degree topology.
This motivates us to move to the CIFAR10 dataset and limit
MNIST testing to data augmentation. Plots for the full training
runs can be found in Appendix C.

C. Experiments with CIFAR10

In Table V, we present a comparison of models trained on
the CIFAR10 dataset using data augmentation and synthetic
anchors under permanent churn. Our results show that data
augmentation consistently improves test set and MMD accuracy
compared to unaugmented DPSGD under churn. The improve-
ments range from 2.47% to 5.32% in test accuracy and from
0.77% to 7.91% in MMD accuracy.

While synthetic anchors are designed to build upon data
augmentation, they fail to outperform it in 4 out of 6 scenarios
in test accuracy and in 5 out of 6 scenarios in MMD accuracy.
Synthetic anchors improve accuracy from -0.98% to 5.17% in
test accuracy and from -1.08% to 5.88% in MMD accuracy
compared to DPSGD under churn. One area where synthetic
anchors outperform data augmentation is stability, with lower
standard deviation in 9 out of 12 cases across both test and
MMD accuracy. However, Table V does not reveal the full
picture. As shown in Figure 5, which illustrates the 3-degree,

3-members-leaving scenario, synthetic anchors converge much
faster compared to data augmentation. This trend is consistent
across all churn settings, as further illustrated in plots provided
in Appendix C.

This observation motivated the introduction of dynamic
weights for the cross-entropy and supervised contrastive
losses composing synthetic anchors. We define the weights
as linear functions of the current iteration and the total
number of iterations, hence naming this approach Linear
Synthetic Anchors. The benefits of this method are evident
in Figure 5. These are further supported by Table V, where
linear synthetic anchors outperform both data augmentation
and synthetic anchors when 3 or 5 members leave, across both
test and MMD accuracy, except for data augmentation when 3
members leave in the 5-degree topology. The most significant
improvements occur in the 3-degree, 3-members-leaving case,
where test accuracy increases from 41.36% to 50.82% and
MMD accuracy from 39.26% to 46.01%. However, the benefits
diminish when 8 members leave, with linear synthetic anchors
outperforming synthetic anchors only in the 3-degree topology.
Nevertheless, linear synthetic anchors exhibit the best overall
stability, showing lower standard deviation than both data
augmentation and synthetic anchors in 21 out of 24 pairwise
comparisons across test and MMD accuracy.

Lastly, Table VI presents the performance of data augmen-
tation, synthetic anchors, and linear synthetic anchors under
probabilistic churn. While the impact of churn is generally
lower in this setting, all proposed methods outperform DPSGD
under churn in every scenario. Moreover, linear synthetic
anchors achieve the highest test accuracy in 5 out of 6 settings
and the lowest standard deviation in 3 out of 6 cases. The most
notable gain is observed when the probability of being active
is 95%, with an improvement of 2.02%. Plots of training runs
corresponding to accuracies reported in Table V and Table VI
can be found in Appendix C.

VIII. DISCUSSION

The results clearly show that data augmentation helps
mitigate the impact of churn and preserve member contributions.
Although accuracy improves on missing members’ data, it
remains lower than on the regular test set. This suggests current
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Degree 3 Degree 5
Setting Acc. (%) MMD Acc. (%) ∆ DPSGD Acc. (%) MMD Acc. (%) ∆ DPSGD

DPSGD 97.56 ± 0.42 – – 98.23 ± 0.21 – –

DPSGD - 3 members leaving 92.99 ± 2.05 93.84 ± 3.41 -4.57 95.93 ± 0.65 92.95 ± 1.16 -2.30
Data Augmentation 94.99 ± 2.24 95.15 ± 2.70 -2.57 97.19 ± 0.67 94.90 ± 1.06 -1.04

DPSGD - 5 members leaving 96.81 ± 0.55 95.07 ± 1.38 -0.75 96.46 ± 1.37 95.53 ± 1.45 -1.77
Data Augmentation 95.44 ± 5.78 95.12 ± 3.38 -2.12 96.72 ± 1.91 96.34 ± 0.98 -1.51

DPSGD - 8 members leaving 90.93 ± 5.04 87.39 ± 8.47 -6.63 95.20 ± 1.43 93.07 ± 2.42 -3.03
Data Augmentation 95.52 ± 2.45 94.06 ± 3.81 -2.04 96.76 ± 0.70 96.15 ± 0.84 -1.47

DPSGD- pactive=0.80 93.10 ± 4.36 – -4.46 90.67 ± 9.06 – -7.56
Data Augmentation 94.96 ± 3.60 – -2.60 97.40 ± 0.50 – -0.83

DPSGD- pactive=0.90 95.41 ± 2.25 – -2.15 96.14 ± 3.01 – -2.09
Data Augmentation 95.56 ± 2.91 – -2.00 97.79 ± 0.51 – -0.44

DPSGD- pactive=0.95 96.90 ± 1.02 – -0.66 97.61 ± 0.43 – -0.62
Data Augmentation 97.49 ± 0.54 – -0.07 98.07 ± 0.32 – -0.16

TABLE IV: Final test and missing members data (MMD) accuracies for MNIST dataset under permanent and probabilistic
churn. ∆ DPSGD denotes the difference in test accuracy from the DPSGD baseline.

(a) Data Augmentation (b) Synthetic Anchors (c) Linear Synthetic Anchors

Fig. 5: Accuracy throughout training of Data Augmentation, Synthetic Anchors, and Linear Synthetic Anchors under 3-degree,
3-members leaving scenario.

Degree 3 Degree 5
Setting Test Acc. (%) MMD Acc. (%) ∆ DPSGD Test Acc. (%) MMD Acc. (%) ∆ DPSGD

DPSGD Augmented 55.94 ± 2.76 – – 56.84 ± 4.39 – –

DPSGD - 3 members leaving 41.43 ± 4.20 39.26 ± 7.76 -14.51 46.89 ± 4.73 45.31 ± 4.53 -9.94
Data Augmentation 45.95 ± 6.94 44.08 ± 10.75 -10.00 50.85 ± 3.43 53.22 ± 4.80 -5.99
Synthetic Anchors 46.60 ± 2.61 41.95 ± 5.38 -9.34 48.45 ± 3.16 44.80 ± 2.88 -8.38
Linear Synthetic Anchors 50.82 ± 1.75 46.01 ± 4.27 -5.12 50.68 ± 2.88 49.72 ± 1.74 -6.15

DPSGD - 5 members leaving 40.37 ± 9.18 39.64 ± 7.23 -15.57 46.19 ± 4.18 33.08 ± 9.43 -10.65
Data Augmentation 45.69 ± 10.36 40.41 ± 12.12 -10.25 48.66 ± 5.37 38.11 ± 7.98 -8.17
Synthetic Anchors 42.80 ± 9.64 40.35 ± 12.35 -21.31 48.95 ± 2.26 36.98 ± 6.14 -7.88
Linear Synthetic Anchors 47.29 ± 10.90 41.82 ± 11.32 -8.65 50.79 ± 2.08 40.97 ± 5.51 -6.05

DPSGD - 8 members leaving 44.20 ± 6.67 32.91 ± 8.03 -11.74 44.77 ± 6.15 32.60 ± 6.34 -12.07
Data Augmentation 47.32 ± 5.92 37.76 ± 6.84 -9.52 49.72 ± 5.56 37.34 ± 8.62 -7.11
Synthetic Anchors 43.22 ± 4.17 31.86 ± 4.72 -12.72 47.72 ± 3.85 35.69 ± 4.01 -9.12
Linear Synthetic Anchors 46.46 ± 4.18 35.33 ± 5.07 -9.48 45.89 ± 3.68 35.53 ± 3.99 -10.95

TABLE V: Final test and missing members data(MMD) accuracies for CIFAR10 dataset under permanent churn. ∆ from
DPSGD denotes change in test accuracy from the baseline.
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Setting Degree 3 Degree 5

DPSGD Augmented 55.94 ± 2.76 56.84 ± 4.39

DPSGD - pactive=0.80 52.07 ± 3.27 54.67 ± 3.12
Data Augmentation 52.32 ± 4.74 55.83 ± 2.14
Synthetic Anchors 51.86 ± 4.25 55.14 ± 2.65
Linear Synthetic Anchors 53.79 ± 2.71 54.68 ± 2.72

DPSGD - pactive=0.90 50.64 ± 4.13 52.33 ± 2.52
Data Augmentation 51.41 ± 5.26 53.26 ± 2.38
Synthetic Anchors 49.70 ± 2.61 54.67 ± 1.56
Linear Synthetic Anchors 52.63 ± 3.56 55.41 ± 1.62

DPSGD - pactive=0.95 47.83 ± 4.66 50.02 ± 3.20
Data Augmentation 48.86 ± 3.57 51.82 ± 3.12
Synthetic Anchors 46.26 ± 3.63 51.29 ± 2.82
Linear Synthetic Anchors 49.42 ± 2.95 52.04 ± 2.77

TABLE VI: Final test accuracies for CIFAR10 dataset under
probabilistic churn. ∆ from DPSGD denotes change in test
accuracy from the baseline.

methods cannot fully recover missing members’ contributions.
It would be interesting to investigate whether alternative data
condensation methods can better preserve client contributions
and further mitigate the effects of churn. Data augmentation
also improves the performance of the baseline model showing
promise in enhancing performances of models.

The results also show that while synthetic anchors with static
weights offer much faster convergence compared to plain data
augmentation, they do not yield improved final accuracy. Faster
convergence likely comes from the higher information density
of synthetic data. However, the lack of improvement in final
performance may be due to the total information contained in
the synthetic data being less than the information transmitted
and stored in the local data. Therefore, over-reliance on it
prevents fully utilizing all available information. In contrast,
synthetic anchors with dynamic weights show the most promise.
Relying heavily on synthetic data to learn quickly at the
beginning , then shifting toward local data for fine-tuning,
appears to be a more effective strategy. It would be interesting
to explore different dynamic weighting strategies between the
cross-entropy loss and supervised contrastive loss composing
synthetic anchors. The performance drop observed in the
dynamic approach when 8 members leave, compared to the
static approach, could be explained by a misalignment between
the linear weight transition and the actual churn schedule.

One can also notice that models consistently perform better
in denser graph topologies, likely due to increased information
flow compared to sparser counterparts, as well as more synthetic
data being shared.

The communication overhead is minimal since synthetic
datasets are small and sent only once. However, the compu-
tational overhead remains substantial in single-model training
scenarios, potentially limiting practical use. Exploring computa-

tionally lighter data synthesis methods, shorter training runs, or
replacing dataset condensation with simpler augmentations (e.g.,
transformations of local data) would be worthwhile. However,
such alternatives are likely to retain less information about the
departing members. Another potential extension would be to
propagate synthetic data further through the network, although
this could pose scalability challenges in larger topologies.

Current results are limited by network size, dataset complex-
ity, and model architecture. Additionally, probabilistic churn
is modeled in a simplified manner. It would be valuable to
explore how data augmentation performs in more complex
settings. Lastly, permanent leaving was modeled using a single
permanent churn schedule. This was done to obtain reliable data
for one representative scenario, given computational and time
constraints. Future work could explore how data augmentation
and synthetic anchors behave in larger networks and across a
variety of churn scenarios.

IX. CONCLUSION

We empirically analyzed how data augmentation and syn-
thetic anchors help mitigate churn and preserve member
contributions. By extensively testing on the MNIST and
CIFAR-10 datasets and using different network topologies,
we found that these methods mitigate the impact of churn
and help preserve member contributions. Our findings indicate
that data augmentation enhances model performance under
churn for both datasets. On MNIST, it leads to test accuracy
improvements of up to 6.73%, from 90.67% to 97.40%.
Furthermore, missing members data accuracy improves as much
as 6.67%. For CIFAR-10, data augmentation increases test
accuracy by up to 5.32% and improves missing members’ data
accuracy by up to 7.89%. Moreover, it contributes to greater
model stability, as evidenced by reduced standard deviation.

While synthetic anchors with static weights under perform
compared to data augmentation, synthetic anchors with dynamic
weights show the most promise. Dynamic synthetic anchors
outperform both data augmentation and static anchors in test
and missing members’ data accuracy when 3 or 5 members
leave, with the exception of the 3-member case in the 5-degree
topology, where data augmentation remains superior. Their
improvement go up to 9.29% on test accuracy and 6.75% on
MMD accuracy. Although their advantage diminishes when
8 members leave, linear synthetic anchors demonstrate the
highest overall stability, achieving lower standard deviations
than both data augmentation and static anchors in 21 out of 24
pairwise comparisons across test and missing members’ data
accuracy.

Nevertheless, we see many directions for future research
such as how data augmentation and synthetic anchors perform
in more complex settings, how they interact with different data
condensation methods, and how different balances between
loss functions affect performance.

X. RESPONSIBLE RESEARCH

Reproducibility. To ensure reproducibility, we explicitly
define all parameter values used in our experimental setup. The
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complete codebase is publicly available in a TU Delft GitLab
repository. The repository includes all scripts and configuration
files necessary to reproduce the experiments. A README file
is provided to ease navigation and usage.

Integrity. This research adheres to the principles outlined in
the Netherlands Code of Conduct for Research Integrity [34],
specifically Chapter 3 on standards for good research practices.

We address a relevant scholarly question and transparently
disclose funding sources and stakeholders, aligning with the
principles for research design. The empirical method used
is well-suited to our research objectives, and the results are
presented accurately and without fabrication, in accordance
with the standards for research conduct. All contributors have
been clearly acknowledged, and the implications of our findings
are discussed transparently, thereby adhering to the standards
for reporting results.

Ethics. All experiments were conducted on publicly available
datasets; therefore, there are no ethical concerns related to data
collection. However, there are potential privacy risks associated
with sharing synthetic data, as highlighted by Nicholas Carlini
et al. [29]. These risks should be further investigated.

Use of AI. Large language models (ChatGPT) were used to
correct grammar and sometimes styling of the text. Furthermore,
they were used as help in the implementation of the experiments
and algorithms.
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[8] R. Ormándi, I. Hegedűs, and M. Jelasity. “Gossip learning
with linear models on fully distributed data”. In: Concurrency
and Computation: Practice and Experience 25.4 (May 2012),
pp. 556–571.

[9] Y. Lu and C. D. Sa. “Decentralized Learning: Theoretical
Optimality and Practical Improvements”. In: J. Mach. Learn.
Res. 24 (2023), 93:1–93:62.

[10] C.-Y. Huang, K. Srinivas, X. Zhang, and X. Li. “Over-
coming Data and Model Heterogeneities in Decentralized
Federated Learning via Synthetic Anchors”. In: arXiv preprint
arXiv:2405.11525 (2024).

[11] C. Li, G. Li, and P. K. Varshney. “Decentralized Feder-
ated Learning via Mutual Knowledge Transfer”. In: CoRR
abs/2012.13063 (2020).

[12] B. Cox, L. Y. Chen, and J. Decouchant. “Aergia: leveraging
heterogeneity in federated learning systems”. In: Proceedings
of the 23rd ACM/IFIP International Middleware Conference.
2022, pp. 107–120.

[13] T. Liu, Y. Cui, X. Hu, Y. Xu, and B. Liu. “On the Convergence
of Gossip Learning in the Presence of Node Inaccessibility”. In:
ICC 2024 - IEEE International Conference on Communications.
2024, pp. 4197–4202.

[14] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling
Churn in a DHT. Tech. rep. UCB/CSD-03-1299. Dec. 2003.

[15] P. B. Godfrey, S. Shenker, and I. Stoica. Minimizing Churn
in Distributed Systems. Tech. rep. UCB/EECS-2006-25. Mar.
2006.

[16] B. Cox, J. Galjaard, A. Shankar, J. Decouchant, and L. Y. Chen.
“Parameterizing Federated Continual Learning for Reproducible
Research”. In: Joint European Conference on Machine Learning
and Knowledge Discovery in Databases. Springer. 2023,
pp. 478–486.

[17] B. Zhao and H. Bilen. Dataset Condensation with Distribution
Matching. 2022.

[18] B. Zhao, K. R. Mopuri, and H. Bilen. “Dataset Condensation
with Gradient Matching”. In: CoRR abs/2006.05929 (2020).

[19] M. A. Dinani, A. Di Maio, and G. Rizzo. “Gossip Learning
in Edge-Retentive Time-Varying Random Graphs with Node
Churn”. In: 2024 IEEE Annual Congress on Artificial Intelli-
gence of Things (AIoT). 2024, pp. 53–59.

[20] H. Di, H. Ye, X. Chang, G. Dai, and I. Tsang. “Double
Stochasticity Gazes Faster: Snap-Shot Decentralized Stochastic
Gradient Tracking Methods”. In: Proceedings of the 41st
International Conference on Machine Learning. Vol. 235.
Proceedings of Machine Learning Research. PMLR, 21–27
Jul 2024, pp. 10765–10791.

[21] A. B. de Luca, G. Zhang, X. Chen, and Y. Yu. Mitigating Data
Heterogeneity in Federated Learning with Data Augmentation.
2022.

[22] S. Sha and Y. Sun. DCFL: Non-IID awareness Data Conden-
sation aided Federated Learning. 2023. arXiv: 2312.14219
[cs.LG].

[23] R. Song, D. Liu, D. Z. Chen, A. Festag, C. Trinitis, M. Schulz,
and A. Knoll. Federated Learning via Decentralized Dataset
Distillation in Resource-Constrained Edge Environments. 2023.
arXiv: 2208.11311 [cs.LG].

[24] D. Stutzbach and R. Rejaie. “Understanding churn in peer-to-
peer networks”. In: Proceedings of the 6th ACM SIGCOMM
Conference on Internet Measurement. IMC ’06. New York, NY,
USA: ACM, 2006, pp. 189–202.

[25] Á. Berta, V. Bilicki, and M. Jelasity. “Defining and under-
standing smartphone churn over the internet: A measurement
study”. In: 14-th IEEE International Conference on Peer-to-
Peer Computing. 2014, pp. 1–5.

[26] S. Xu, X. Ke, X. Su, S. Li, H. Wu, S. Zhong, and F. Xu. Privacy-
Preserving Federated Learning via Dataset Distillation. 2024.
arXiv: 2410.19548 [cs.LG].

[27] A. Dhasade, Y. Ding, S. Guo, A.-m. Kermarrec, M. D. Vos,
and L. Wu. QuickDrop: Efficient Federated Unlearning by
Integrated Dataset Distillation. 2024.

[28] T. Dong, B. Zhao, and L. Lyu. Privacy for Free: How does
Dataset Condensation Help Privacy? 2022. arXiv: 2206.00240
[cs.CR].

9



[29] N. Carlini, V. Feldman, and M. Nasr. No Free Lunch in "Privacy
for Free: How does Dataset Condensation Help Privacy". 2022.
arXiv: 2209.14987 [cs.LG].

[30] A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf, and
A. Smola. “A Kernel Two-Sample Test”. In: The Journal of
Machine Learning Research 13 (Mar. 2012), pp. 723–773.

[31] D. P. Kingma and J. Ba. Adam: A Method for Stochastic
Optimization. 2017. arXiv: 1412.6980 [cs.LG].

[32] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola,
A. Maschinot, C. Liu, and D. Krishnan. “Supervised Contrastive
Learning”. In: CoRR abs/2004.11362 (2020).

[33] A. Dhasade, A.-M. Kermarrec, R. Pires, R. Sharma, and
M. Vujasinovic. “Decentralized Learning Made Easy with
DecentralizePy”. In: Proceedings of the 3rd Workshop on
Machine Learning and Systems. EuroMLSys ’23. Rome, Italy:
Association for Computing Machinery, 2023, pp. 34–41.

[34] Association of Universities in the Netherlands (VSNU), KNAW,
NFU, NWO, and TO2 Federation. Netherlands Code of Conduct
for Research Integrity. Version: 2018. Published under CC-BY
4.0 license. 2018.

10



APPENDIX A
ALGORITHM PSEUDOCODE

Algorithm 1 Data Augmentation for client i

1: for all j ∈ N (Ci) do
2: trainset ← trainset ∪ ReceiveSyntheticSet(Cj)
3: end for
4: for t = 1, . . . , T do
5: Receive models {Mj | j ∈ N (Ci)}
6: Mi ← Average(Mi, {Mj})
7: LCE ← CrossEntropyLoss(trainset,Mi)
8: Mi ←Mi − η∇Mi

LCE
9: end for

Fig. 6: Pseudocode for the data augmentation executed by
client i.

Algorithm 2 Synthetic Anchor for client i

1: for all j ∈ N (Ci) do
2: Dsyn ← Dsyn ∪ ReceiveSyn(Cj)
3: end for
4: for t = 1, . . . , T do
5: Receive models {Mj | j ∈ N (Ci)}
6: Mi ← Average(Mi, {Mj})
7: LCE = CrossEntropyLoss(Di ∪Dsyn,Mi)
8: // Detach synthetic data
9: LSCL = SupervisedContrastiveLoss(Di, D

syn,Mi)
10: L = LCE + λSCLLSCL
11: Mi =Mi − η∇MiL
12: end for

Fig. 7: Pseudocode for the synthetic anchors executed by client
i.
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APPENDIX B
DATASET DISTRIBUTION

MNIST

Member 0 Member 1 Member 2 Member 3

Member 4 Member 5 Member 6 Member 7

Member 8 Member 9 Member 10 Member 11

Member 12 Member 13 Member 14 Member 15

Fig. 8: MNIST local data distribution per member.

APPENDIX C
EXPERIMENTS
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CIFAR10

Member 0 Member 1 Member 2 Member 3

Member 4 Member 5 Member 6 Member 7

Member 8 Member 9 Member 10 Member 11

Member 12 Member 13 Member 14 Member 15

Fig. 9: CIFAR10 local data distribution per member.
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Data Augmentation on MNIST with Degree 3

Test Acc — Members leaving: 3 Test Acc — Members leaving: 5 Test Acc — Members leaving: 8

MMD Acc — Members leaving: 3 MMD Acc — Members leaving: 5 MMD Acc — Members leaving: 8

Probability active: 0.80 Probability active: 0.90 Probability active: 0.95

Fig. 10: Data augmentation performance on MNIST dataset in 3 degree topology. In the first row we can see permanent churn
test accuracy, in the second row MMD accuracy, and in the third test accuracy on probabilistic churn.
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Data Augmentation on MNIST with Degree 5

Test Acc — Members leaving: 3 Test Acc — Members leaving: 5 Test Acc — Members leaving: 8

MMD Acc — Members leaving: 3 MMD Acc — Members leaving: 5 MMD Acc — Members leaving: 8

Probability active: 0.80 Probability active: 0.90 Probability active: 0.95

Fig. 11: Data augmentation performance on MNIST dataset in 5 degree topology. In the first row we can see permanent churn
test accuracy, in the second row MMD accuracy, and in the third test accuracy on probabilistic churn.
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Data Augmentation on CIFAR10 with Degree 3

Members leaving: 3 Members leaving: 5 Members leaving: 8

Members leaving: 3 MMD Members leaving: 5 MMD Members leaving: 8 MMD

Probability active: 0.80 Probability active: 0.90 Probability active: 0.95

Fig. 12: Data augmentation performance on CIFAR10 dataset in 3 degree topology. In the first row we can see permanent
churn test accuracy, in the second row MMD accuracy, and in the third test accuracy on probabilistic churn.
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Data Augmentation on CIFAR10 with Degree 5

Members leaving: 3 Members leaving: 5 Members leaving: 8

Members leaving: 3 MMD Members leaving: 5 MMD Members leaving: 8 MMD

Probability active: 0.80 Probability active: 0.90 Probability active: 0.95

Fig. 13: Data augmentation performance on CIFAR10 dataset in 5 degree topology. In the first row we can see permanent
churn test accuracy, in the second row MMD accuracy, and in the third test accuracy on probabilistic churn.
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Synthetic Anchors on CIFAR10 with Degree 3

Members leaving: 3 Members leaving: 5 Members leaving: 8

Members leaving: 3 MMD Members leaving: 5 MMD Members leaving: 8 MMD

Probability active: 0.80 Probability active: 0.90 Probability active: 0.95

Fig. 14: Synthetic anchors performance on CIFAR10 dataset in 3 degree topology. In the first row we can see permanent churn
test accuracy, in the second row MMD accuracy, and in the third test accuracy on probabilistic churn.
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Synthetic Anchors on CIFAR10 with Degree 5

Members leaving: 3 Members leaving: 5 Members leaving: 8

Members leaving: 3 MMD Members leaving: 5 MMD Members leaving: 8 MMD

Probability active: 0.80 Probability active: 0.90 Probability active: 0.95

Fig. 15: Synthetic anchors performance on CIFAR10 dataset in 5 degree topology. In the first row we can see permanent churn
test accuracy, in the second row MMD accuracy, and in the third test accuracy on probabilistic churn.
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Linear Anchors on CIFAR10 with Degree 3

Members leaving: 3 Members leaving: 5 Members leaving: 8

Members leaving: 3 MMD Members leaving: 5 MMD Members leaving: 8 MMD

Probability active: 0.80 Probability active: 0.90 Probability active: 0.95

Fig. 16: Linear synthetic anchors performance on CIFAR10 dataset in 3 degree topology. In the first row we can see permanent
churn test accuracy, in the second row MMD accuracy, and in the third test accuracy on probabilistic churn.
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Linear Anchors on CIFAR10 with Degree 5

Members leaving: 3 Members leaving: 5 Members leaving: 8

Members leaving: 3 MMD Members leaving: 5 MMD Members leaving: 8 MMD

Probability active: 0.80 Probability active: 0.90 Probability active: 0.95

Fig. 17: Linear synthetic anchors performance on CIFAR10 dataset in 3 degree topology. In the first row we can see permanent
churn test accuracy, in the second row MMD accuracy, and in the third test accuracy on probabilistic churn.
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