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Abstract: In this work, we find a reduced-order model for the wake of a wind turbine controlled
with dynamic induction control. We use a physics-informed dynamic mode decomposition algorithm
to reduce the model complexity in a way such that the physics of the wake mixing can be investigated
and that the model itself can be easily embedded into control-oriented frameworks.

After discussing the advantage of forcing the linear system resulting from the algorithm to be con-
servative (as a consequence of the periodicity of the pitch excitation) and the choice of observables,
we describe a procedure for calculating the energy associated with individual modes. The considered
data-set is composed of large eddy simulation (LES) results for a single DTU 10 MW wind turbine in
uniform flow. Simulations were performed first with baseline control (for reference) and then with the
Pulse and the Helix approaches with constant excitation amplitude and different excitation frequencies.
The frequencies and energies associated with the resulting modes are discussed.

Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. INTRODUCTION

As the installed wind energy capacity grows, both on-shore
and off-shore, the general issue of how turbines influence the
atmospheric boundary layer (ABL) and each other through it
become more and more relevant. In a context where turbines
are part of larger and larger wind farms and even those will be
installed closer and closer together, any non-holistic approach
to power maximization and blade load reduction (the two main
objectives of wind farm control) will be sub-optimal.

This work focuses on Dynamic Induction Control (DIC), a
flourishing new branch of wind farm control. The underlying
idea is that time-varying control inputs can increase wake
mixing and consequently improve the velocity recovery rate of
the flow and the power production of downstream turbines.

The first instance of DIC, presented by Goit and Meyers (2015)
relied on an unbounded optimal signal and was able, in numeri-
cal simulations, to increase power gains up to 21% with respect
to greedy control. Munters and Meyers (2018), based on the
observation that the optimal thrust coefficient signal in Goit and
Meyers (2015) resembled a sinusoid, simplified the optimiza-
tion problem significantly and reduced the detrimental effect
on loads caused by a non-smooth control signal. In Frederik
et al. (2020a), the sinusoidal variation of the thrust coefficient
was obtained by exciting the collective pitch of the blades. This
technique was called the Pulse because of the thrust magnitude
variation’s effect on the wake shape. The Helix (Frederik et al.,
2020b) uses simple sinusoidal Individual Pitch Control (IPC)

* This work was not supported by any organization

signals to impose yaw and tilt moments on the rotor and force
wake meandering (Kimura et al., 2019). The strategy is called
helix because it results in a helicoidal velocity field. If tilt and
yaw angles have a phase offset equal to 7/2, the Helix rotates
in a counter clockwise (CCW) direction; if it is equal to 37 /2,
the Helix rotates in a clockwise (CW) direction. Preliminary
tests show that the CCW-Helix leads to faster wake recovery
than CW-Helix (Frederik et al., 2020b). This was confirmed in
arecent study and it was found that the optimal signal frequency
is equal to or higher than St = 0.4 for a signal amplitude of 4°
(Muscari et al., 2022). The Strouhal number St, is often used in
this context because it makes the analysis independent from the
rotor diameter D and the free stream velocity Us.

The preliminary wind tunnel experiments (Frederik et al.,
2020c) and numerical studies produced striking evidence of
the potential of DIC, but further characterization of these
techniques requires the development of reduced-order models
(ROMs). We cannot possibly think of relying on large, com-
putationally expensive, multiscale CFD simulations -let alone
experimental campaigns! - in this explorative phase. Moreover,
since the mixing mechanism is not clear yet, it would be helpful
to isolate and observe the dominant structures in the wake.
Although wakes are complex, high-dimensional, non-linear dy-
namical systems, they often exhibit low-dimensional behav-
ior. In these cases, a data-driven perspective can complement
more traditional model-based approaches. By applying modal
decomposition techniques, we can represent the system with
a number of modes orders of magnitude lower than the state
dimension of the system.

2405-8963 Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license.
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We chose to apply Dynamic Mode Decomposition (DMD),
a data-driven technique native to the fluid-dynamics research
community (Schmid, 2010). It is used to extract coherent pat-
terns from high-dimensional flow data and obtain reduced-
order models (ROMs) of the phenomena captured by the data.
The modes and eigenvalues obtained are, in general, approxi-
mations of the ones of the Koopman operator, and the advantage
with respect to proper orthogonal decomposition (POD) is the
intrinsic temporal behavior associated with each mode. Also,
because the modes are, in principle, non-orthogonal, they can
sometimes be more physically meaningful than modes com-
puted with POD.

These methods have been applied to wind turbine and wind
farm flows in several forms and with various purposes. In [ungo
et al. (2015), DMD is applied to actuator line (AL) simula-
tions performed under uniform flow conditions and to actua-
tor disk (AD) ones performed under turbulent flow. Sun et al.
(2021) consider a two-bladed turbine and apply DMD on data
from fully resolved CFD simulations in two different reference
frames. In Cassamo and van Wingerden (2020), Input-Output
Dynamic Mode Decomposition (IODMD) was used to derive
a ROM for wake steering, and this was extended in Cassamo
and van Wingerden (2021) with Koopman modes for wind farm
control.

When we have some relevant information on the system’s
behavior, we can restrict the family of admissible data-driven
models to a matrix manifold that respects the system’s physical
structure. A DMD algorithm with this constraint is called
physics-informed (pi-DMD). In the case of DIC, Data-driven
models of the wake flow could benefit from the periodicity of
the pitch signals.

In this study, we apply conservative pi-DMD to large eddy
simulation (LES) data of a single DTU 10 MW wind turbine
in uniform flow, first with a baseline control (this will be our
reference) and then with the Pulse and the Helix approach. To
our knowledge, this is the first instance of a pi-DMD algorithm
applied to DIC.

The remainder of this paper is structured as follows: Section
2 presents the theory behind pi-DMD following Baddoo et al.
(2021), in Section 3 we describe the CFD simulations ran to
produce the DMD snapshots. Finally, in Section 4 we analyze
the results dedicating some space to the choice of observables
(4.1) before diving into the energy analysis (4.2).

Since our objective was to investigate and explain the con-
nection of frequencies and energies associated with the modes
to the pitch excitation frequency, we defined a procedure for
computing the energy of the individual modes and, thus, their
contribution to the full reconstruction.

DMD proves to be a valid instrument for gathering a deep un-
derstanding of the physics of dynamically manipulated wakes
as well as a simplified analytical model to embed in control-
oriented frameworks such as FLORIDyn (Becker et al., 2022).

2. METHODOLOGY

In this section, we summarize the formulation of physics-
informed DMD first presented in Baddoo et al. (2021) adapting
it to our application.
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2.1 Physics-informed DMD

DMD is definitely growing in popularity, but it has certain
drawbacks that should be considered, the main two being a high
sensitivity to noise and a tendency to over-fit.

Embedding physics into the learning framework can help in ad-
dressing these challenges. Let us suppose that we are studying
a dynamical system defined by

X/%AX (xk+1 :Axk). (])

What DMD does is identify the best linear approximation of A.
The matrices X and X’ are built by collecting m snapshots of
the considered flow field. For the particular case considered in
this study, these state vectors are given by:

T
xe = [u(n)" vin)" wn)" p)'] €R™L ()
where u(t;), v(f ), w(t;) represent the vectorized velocity fields
in the 3 dimensions at time instance #;, and p(#) contains

the pressure field in the whole computational domain. We can
organize the snapshots into the matrices X and X'

X = [x1 X2 X3 ... xm_l] ERnxmil,
X' =[x X3 X4 ... Xp] € RV

3

with n € Z* being the state dimension and m € Z* being
the number of snapshots. The DMD problem can then be
formulated as:
argmin || X' — AX||F. 4)
rank(A)=r
where || x || is the Frobenius norm. After approximately solv-
ing Eq. (4), the DMD process computes the dominant spectral
properties of the learned linear operator. The rank-r constraint
in Eq. (4) is motivated by the assumed modal structure of
the system but does not account for other important physical
properties.
For example, one limitation of DMD is that the solution of Eq.
(4) lies within the span of X', so the learned model rarely gen-
eralizes outside the training regime. It is possible to incorporate
physical principles into the optimization by constraining the
solution matrix A to lie on a matrix manifold .# € R™":

argmin|| X’ — AX||F. )
ACH

The particular manifold .# depends on the physical properties
we want to enforce. The constraints make the learned model
easier to generalize, reduce sensitivity to noise and reduce the
demand for large training sets. The optimization problem given
by Eq. (5) is known in the literature as a Procrustes problem
and can be tackled as such.

A group of laws that can be easily incorporated into the DMD
framework is conservation laws. Suppose that we are studying
a system that we know conserves energy. In applications of
DMD, it is implicitly assumed that measurements of the state
have been suitably weighted so that the square of the 2-norm
corresponds to the energy of the state: E(x) = ||x||3.

In these variables, the original optimization problems presented
in Equations (4) and (5) equate to finding the model A that
minimizes the energy of the error between the true and the pre-
dicted states (x;; and Axy, respectively). Thus, if A represents
a discrete-time linear dynamical system (x| = Axy), then A is
an energy preserving operator, if and only if,

E(Ax) = [|Ax[7 = [lx[} =E(x) ~ VxeR" (6)
This means that A does not change the temporal energy of

the system but merely redistributes energy between the states.
Equation (6) holds, if and only if, A is unitary. This corresponds
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to the orthogonal Procrustes problem. A will be constrained to
be a unitary matrix, and the minimization problem will become:

argmin|| X’ — AX||r @)
A*A=]

with solution, derived by Schonemann (1966):
A = UyxVyy, (3)

where UyxXyxVyy = YX* is a full singular value decomposi-
tion. The eigenvalues of A lie on the unit circle, and the eigen-
vectors are orthogonal. Thus, the eigenvectors oscillate in time
with no growth or decay. Since the solution of the orthogonal
Procrustes problem requires the full SVD of a n X n matrix, it
can be more computationally efficient to first project onto the
leading POD modes and build a model therein. In this case, the
model is only energy preserving within the subspace spanned
by the leading POD modes. The version of DMD that does this,
with omitting the physics-informed step, is called exact DMD.

3. CASE SETUP

In this section, we describe the setup of the LES case used to
build the data set. We ran a total of 9 simulations that only
differed for the turbine control settings.

The DMD snapshots contained quantities extracted from LES
performed in SOWFA (Churchfield et al., 2012) coupled to the
super controller described in Fleming et al. (2013) to impose
the sinusoidal pitching of the blades. The rotor is modeled with
the Actuator Line Model (ALM), which substitutes the physical
blades with body forces distributed along lines that represent
them and the Atmospheric Boundary Layer (ABL) flow is gov-
erned by an incompressible formulation of the Navier-Stokes
(NS) equations. The body forces, obtained through tabulated
airfoil data, are projected back into the domain employing a
three-dimensional smearing Gaussian function to prevent nu-
merical issues. The main advantage of this kind of simulation
is that it drastically reduces the computational cost while main-
taining high-fidelity results. The inflow profile is uniform, with
a wind speed at hub height equal to 9m/s (below rated) to
isolate the effect of the pitch actuation. The rotational speed
is 7.12 rpm. Although these conditions are not representative
of realistic working conditions in an actual wind farm, they are
perfectly suited to visualize the effects of DIC on the wake.

The considered simulations employ the Pulse and counter
clockwise Helix technique with different frequencies for the
excitation, specifically S = [0.2,0.25,0.3,0.4], and a 4° ampli-
tude. An additional simulation with baseline control is used as
a reference. The considered rotor is the DTU 10 MW reference
turbine (Bak et al., 2013), which has a diameter of 178.3m. The
simulated time is 2000 s but, for our snapshots, we discard the
transient part, corresponding to the initial 400s. The simulation
time step is 0.2s and a snapshot is taken once every 2s. The
base mesh has the characteristics described in Table 1 and was
locally refined to reach a characteristic cell dimension in the
rotor area of 3.125m. The final number of cells is 9 millions.
For the snapshots, we considered a sub-domain downstream of
the rotor and further decimated the data in space by considering
one out of four elements in x, y, and z. A fixed value of velocity
and pressure is imposed at the inlet of the domain (west patch);
velocity at the outlet (east patch) responds to the inletoutlet
condition and to the slip condition on the remaining patches
(lower, upper, south). The inletoutlet condition imposes a zero
gradient of the quantity in general and a fixed value whenever

Claudia Muscari et al. / IFAC PapersOnLine 56-2 (2023) 8414-8419

Table 1. Base mesh characteristics. Direction x is
stream-wise, y is vertical, z is perpendicular to x

and y.

X y z
domain extension 2500 m  1000m 600 m
number of cells 50 20 12

backflow happens. The gradient of pressure is set to zero in the
direction perpendicular to the patch for all patches except the
inlet.

3.1 ALM optimal parameters

The requirements on the parameters imposed by the use of
the ALM were respected: the projection function width was
set to circa twice the characteristic cell dimension, i.e. 6m.
The choice of the correct value for this parameter is of the
utmost importance. The reason is quite intuitive: if a very
large value is chosen, the actuator line model will appear to
recover an aerodynamic power exceeding the Betz limit, and
if too small a value is chosen, the predicted power will be well
below measurements or BEM calculations. The number of cells
along a blade was higher than 50, which guaranteed an accurate
description of the tip vortices.

4. RESULTS

In this section, after a brief detour on the topic of observables,
we report the frequencies and energies associated with the
obtained modes and discuss the results.

4.1 The choice of observables

When introducing DMD in Section 1 we said that the modes
are approximations of the ones of the Koopman operator. The
Koopman operator is an infinite dimensional linear operator
that completely characterizes the dynamics of a nonlinear sys-
tem. Its connection to DMD was first presented in Rowley et al.
(2009), and it is strictly related to the notion of observable: a
scalar-valued function of the state x. Intuitively we can think of
them as the measurements we make. In section 2.1, we defined
the state vector for our application as

3= ()" v()" w(t)" pa)’]" € R )
The DMD performs a linear fit to the data coming from a
nonlinear system. The conditions that must hold for DMD
eigenvalues to be eigenvalues of the Koopman operator are
discussed and proven in Tu (2013). A fundamental one is to
have a sufficiently rich set of observables. Rowley and Dawson
(2017) gives an extensive review of the topic and illustrates with
an example how an incorrect choice of observables can lead us
to draw false conclusions on the system dynamics. However,
the procedure of choosing the observable is still addressed as
an “art” rather than a science, which means that we decided to
look at different combinations for the current study.

Table 2 shows the Strouhal numbers associated with the first
seven modes obtained applying DMD to three different snap-
shot matrices: one containing only the measurements of the
stream-wise component of the velocity, one containing all three
and a third one accounting for the pressure as well. From our
knowledge of the physics, we expect to find that the dominant
modes are related to the DIC. They are indeed in all cases, but,
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in the case where the full state vector is considered, some extra
modes appear, clearly introduced by the pressure (considering
the pressure only, leads to the same exact result).

Table 2. Strouhal numbers of the obtained DMD
modes for the St=0.4 Helix simulation.
DMD was performed on snapshots containing only
the stream-wise velocity component, all three ve-
locity components, and all tree velocity compo-
nents plus pressure

Strouhal

Onlyu uwv,w wv,wp
mode0) O 0 0
model 04 0.4 0.4
mode2 0.8 0.8 0.8
mode3 1.2 1.2 1.2
mode4 1.6 1.6 1.454
modeS5 2 2 1.6
mode 6 2.4 2.4 2.841
mode 7  2.828 2.8 4.3181

Thus, when considering the full state vector, we will have
mode 0, representative of the mean flow, mode 1 with the same
Strouhal as the DIC excitation signal, modes 2,3 and 5 which
are higher harmonics and what we can say about modes 6 and
7 is that, since their frequencies resemble respectively 1P and
2P they must be somehow related to the blade rotation around
the stream-wise axis. This is confirmed by the fact that the
frequencies of these modes vary only slightly with the Strouhal
number for both Pulse and Helix cases and baseline as well.
Table 3 shows the Pulse results and Figure 1 shows a recon-
struction for the Helix case with St=0.2. It also reports energy

09
08
07
08
05 '
: ’
03
02

28

24

Fig. 1. Reconstruction of modes 6 and 7 represented via a
convenient iso-surface of stream-wise velocity for the
Helix case with St = 0.2. These modes appear when
pressure is one of the observables.

values. The procedure for energy calculation will be presented
in Section 4.2, but, for now, what matters that these values
are not negligible, which means that we should ask ourselves
whether they mean something or come from an incorrect choice
of observables. Notice that, while in the example presented
in Rowley and Dawson (2017), we could say that the choice
of observables had lead to wrong results because we knew,
a priori, what those results should look like; in this case, we
do not have that knowledge. We will dismiss these additional
modes for now, but the reason for their appearance should be
investigated.
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4.2 Energy analysis

The choice of the rank of our ROM is not as trivial as it
would be with POD. POD modes are ordered based on their
contribution to the main flow in terms of an energy computed
as:

E = diag(S)>. (10)
The order of DMD modes should reflect their contribution
to the flow field and separate relevant structures from noise-
contaminated ones. There is no agreement in the literature on
how to do that. In a previous work (Muscari et al., 2022)
we converted the autonomous dynamic Equation (1) into its
continuous time equivalent:

dx -
— =A.x, 11
7 X 1n

and took advantage of the physics of the system to get to a
description of the flow from a given set of initial conditions
o(11) at time instance 7 into a response at time instance #, as a
summation of modes:

=

(r2) v

2) | _ &) 0 Lo @] [ cos(wiAr)  sin(w;Ar) )
.Etzg = ) g0 (ll)“r; {‘bl o, ] |:7 sin(@;Ar) COS(Q),-AZ‘)] |:06ii)(tl)
)40

s <

with At =1, —t; and a,s*)(tl) the initial condition of a corre-

sponding mode at time instance #;. The normalization of the
mode shapes gives us the modal amplitudes:

Hq)(o) o0 l|F for mode 0

R \/O ‘Clbgi)afi)(tl )‘ ‘i + HCI><2i) (xéi) (n )‘ )i) for the second order modes
12)

Following the approach commonly used for POD, we can relate
the energy of a mode to the square of its mean modal amplitude.
The results presented in this section refer to a snapshot matrix
containing the three velocity components. Tables 4 and 5 show
the frequencies of modes O to 7 and their energies normalized
with respect to the energy of mode O for the baseline, for all St
numbers considered and r = 15. The chosen rank gives a good
trade-off between computational effort and energy retrieval.

Modes frequencies behave as expected for all of the Strouhal
numbers. As we had done for Figure 1, we can plot iso-

surfaces of stream-wise velocity reconstructed as CID(ll)al(')(tl )
where i is the number correspondent to the reconstructed mode.
We use the information on the energy content for the choice
of representative iso-values for the plot. We can recognize
pulsating and helicoidal structures in correspondence with the
excitation frequency and its integer multiples (Figure 2).

Let us now look back at either Table 4 or 5 to focus on the
energy. The first thing we notice is how the baseline case could
be reconstructed based on mode zero only, while, for the DIC
cases, we would be losing around 1% of the total energy by
doing that. Further comparison between the DIC cases and the
baseline gives important insight into the accelerated recovery
mechanism. Since the total energy is always higher for DIC
cases than for the baseline, some of it is unequivocally intro-
duced from the boundary layer. We already knew that mixing
was at the base of the mechanism, but by looking at the energies
of individual modes, we also see that it does not seem to be a
redistribution of energy amongst the modes, which could also,
in principle, be a part of the story. The effectiveness of DIC
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Table 3. Frequencies and energies of the DMD modes 6 and 7 for the Pulse cases. The energy values
are normalized with respect to the energy of mode 0 for the baseline. DMD was applied to full-state

snapshots.
Pulse St=0.2 Pulse St=0.25 Pulse St=0.3 Pulse St=0.4
Frequency  Energy  Frequency Energy Frequency Energy Frequency  Energy
mode 6  0.1355 0.005 0.1342 0.0049  0.1342 0.0048  0.1341 0.0051
mode 7  0.2293 0.0017  0.2311 0.0017  0.2326 0.0016  0.2329 0.0017

Table 4. Frequencies and energies of the obtained DMD modes for the Pulse simulations. The energy
values are normalized with respect to the energy of mode O for the baseline.

Baseline Pulse St=0.2 Pulse St=0.25 Pulse St=0.3 Pulse St=0.4
Frequency  Energy  Frequency  Energy Frequency  Energy Frequency  Energy Frequency  Energy

mode 0 0 1 0 1.02275 0 1.02455 0 1.02411 0 1.02194
mode 1 0.0339 0 0.01 0.00991 0.0125 0.01021 0.015 0.00983 0.02 0.00881
mode2  0.0391 0 0.02 0.00364 0.025 0.0032 0.03 0.00268 0.04 0.00209
mode 3 0.0422 0.0001  0.03 0.00151 0.0375 0.00122 0.045 0.00107 0.06 0.00079
mode 4 0.0435 0 0.04 0.00075 0.05 0.0006 0.06 0.00055 0.08 0.00043
mode 5  0.0457 0 0.05 0.00046 0.0625 0.00038 0.075 0.00032 0.1 0.00023
mode 6 0.0835 0 0.06 0.00028 0.075 0.00023 0.09 0.00021 0.12 0.00012
mode 7 0.1399 0 0.0703 0.0002 0.0881 0.00015 0.1054 0.00014 0.1401 0

sum 1 1.039489 1.040544 1.038908 1.03449

Table 5. Frequencies and energies of the obtained DMD modes for the Helix and baseline simulations.
The energy values are normalized with respect to the energy of mode O for the baseline.
Baseline Helix St=0.2 Helix St=0.25 Helix St=0.3 Helix St=0.4
Frequency  Energy  Frequency  Energy Frequency  Energy Frequency  Energy Frequency  Energy

mode0 0 1 0 1.023177 0 1.031096 0 1.035575 0 1.03767
mode 1 0.0339 0 0.01 0.010656  0.0125 0.011848  0.015 0.012123  0.02 0.011909
mode2  0.0391 0 0.02 0.003103  0.025 0.003363  0.03 0.003425 0.04 0.003012
mode 3 0.0422 0.0001  0.03 0.001116  0.0375 0.001208  0.045 0.001131  0.06 0.000856
mode 4  0.0435 0 0.04 0.000474  0.05 0.00052 0.06 0.000489  0.08 0.000306
mode 5  0.0457 0 0.05 0.00026 0.0625 0.000245  0.075 0.000245 0,1 0.000138
mode 6 0.0835 0 0.06 0.000153  0.075 0.000138  0.09 0.000138 0,12 0

mode 70,1399 0 0.0703 0.000107  0.0881 0 0.1054 0 0.1401 0

sum 1 1.039045 1.048509 1.053202 1.053997

Pulse Helix
Mode 1
Mode 2

Fig. 2. Reconstruction of modes 1 and 2 represented via a convenient iso-surface of stream-wise velocity for the Pulse and Helix
cases with St =0.2
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approaches is once more confirmed: previous evaluations of
how it increases the energy content in the wake were done based
on what was retrieved by a second turbine positioned down-
stream or by observing what was flowing through a selected
plane parallel to the rotor one. The indication we get from mode
0, instead, is global. The Pulse still reaches an optimum for
St = 0.25 and then the mean energy content decreases, for the
Helix, until further studies, we can observe that it still increases
for St =0.4.

5. CONCLUSIONS

In this paper, we made a further step in characterizing the
dynamic response of wakes manipulated with DIC techniques.
We used a pi-DMD algorithm to force a conservative behavior
of the obtained approximate linear systems. The data used to
train the ROMs came from numerical simulations of the DTU
10 MW model turbine. Its operation under a uniform inflow was
reproduced using the CFD framework SOWFA with the blades
modeled as actuator lines.

We have shown how the choice of observables influences the
results. By defining an energy associated with individual modes
and comparing the results to a reference case with baseline
control, we were able to generalize prior findings on both the
Pulse and the Helix, such as the higher effectiveness of the
latter at all excitation frequencies and the difference in optimal
frequency.

The main conclusion of the work is that with DMD, we can
obtain a ROM for dynamically controlled wake that can easily
be embedded into control-oriented frameworks. In particular,
from the energy evaluation, we see how one or two modes, in
addition to mode 0, are sufficient to reconstruct the flow field
appropriately. Emerging patterns in frequencies and energies
for different excitation frequencies suggest that it might not
be necessary to re-run CFD simulations and re-apply DMD for
every change in conditions (flow and operating ones).

The analysis, for the Helix in particular, should be extended
to higher St numbers and different excitation amplitudes. It
is also our intention to apply the same pi-DMD procedure to
experimental data. Finally, it is vital that all results are re-
evaluated with a turbulent inflow.

REFERENCES

Baddoo, PJ., Herrmann, B., McKeon, B.J., Kutz, J.N., and
Brunton, S.L. (2021). Physics-informed dynamic mode
decomposition (pidmd). arXiv preprint arXiv:2112.04307.

Bak, C., Zahle, F., Bitsche, R., Kim, T., Yde, A., Henriksen, L.,
Hansen, M., Blasques, J., Gaunaa, M., and A, N. (2013). The
DTU 10-MW reference wind turbine. In Danish Wind Power
Research 2013.

Becker, M., Ritter, B., Doekemeijer, B., van der Hoek, D.,
Konigorski, U., Allaerts, D., and van Wingerden, J.W.
(2022). The revised floridyn model: Implementation of
heterogeneous flow and the gaussian wake. Wind Energy
Science Discussions, 1-25.

Cassamo, N. and van Wingerden, J. (2020). On the potential
of reduced order models for wind farm control: A koopman
dynamic mode decomposition approach. Energies, 13(24).
doi:10.3390/en13246513.

Cassamo, N. and van Wingerden, J. (2021). Model predictive
control for wake redirection in wind farms: a koopman

8419

dynamic mode decomposition approach. In 2021 American
Control Conf. (ACC), 1776-1782. IEEE.

Churchfield, M., Lee, S., and Moriarty, P. (2012). Overview of
the simulator for wind farm application (sowfa). National
Renewable Energy Laboratory.

Fleming, P., Gebraad, P., van Wingerden, J., Lee, S., Church-
field, M., Scholbrock, A., Michalakes, J., Johnson, K., and
P, M. (2013). SOWFA super-controller: A high-fidelity tool
for evaluating wind plant control approaches. Technical re-
port, National Renewable Energy Lab.(NREL), Golden, CO
(United States).

Frederik, J., Weber, R., Cacciola, S., Campagnolo, F., Croce,
A., Bottasso, C., and van Wingerden, J. (2020a). Periodic dy-
namic induction control of wind farms: proving the potential
in simulations and wind tunnel experiments. Wind Energy
Science, 5(1), 245-257. doi:10.5194/wes-5-245-2020.

Frederik, J.A., Doekemeijer, B.M., Mulders, S.P., and van
Wingerden, J.W. (2020b). The helix approach: Using dy-
namic individual pitch control to enhance wake mixing in
wind farms. Wind Energy, 23(8), 1739-1751.

Frederik, J.A., Weber, R., Cacciola, S., Campagnolo, F., Croce,
A., Bottasso, C., and van Wingerden, J.W. (2020c). Peri-
odic dynamic induction control of wind farms: proving the
potential in simulations and wind tunnel experiments. Wind
Energy Science, 5(1), 245-257.

Goit, J.P. and Meyers, J. (2015). Optimal control of energy
extraction in wind-farm boundary layers. Journal of Fluid
Mechanics, 768, 5-50.

Iungo, G.V., Santoni-Ortiz, C., Abkar, M., Porté-Agel, F.,
Rotea, M.A., and Leonardi, S. (2015). Data-driven reduced
order model for prediction of wind turbine wakes. In Journal
of Physics: Conference Series, volume 625, 012009. IOP
Publishing.

Kimura, K., Tanabe, Y., Matsuo, Y., and M, 1. (2019). Forced
wake meandering for rapid recovery of velocity deficits in a
wind turbine wake. In AIAA Scitech 2019 Forum, 2083.

Munters, W. and Meyers, J. (2018). Towards practical dynamic
induction control of wind farms: analysis of optimally con-
trolled wind-farm boundary layers and sinusoidal induction
control of first-row turbines. Wind Energy Science, 3(1),
409-425.

Muscari, C., Schito, P., Viré, A., Zasso, A., van der Hoek, D.,
and van Wingerden, J. (2022). Physics informed dmd for
periodic dynamic induction control of wind farms. In Journal
of Physics: Conference Series, volume 2265, 022057. IOP
Publishing.

Rowley, C.W. and Dawson, S.T. (2017). Model reduction for
flow analysis and control. Annu. Rev. Fluid Mech, 49(1),
387-417.

Rowley, C.W., Mezi¢, 1., Bagheri, S., Schlatter, P, and Hen-
ningson, D.S. (2009). Spectral analysis of nonlinear flows.
Journal of fluid mechanics, 641, 115-127.

Schmid, P.J. (2010). Dynamic mode decomposition of numer-
ical and experimental data. Journal of fluid mechanics, 656,
5-28.

Schonemann, P.H. (1966). A generalized solution of the or-
thogonal procrustes problem. Psychometrika, 31(1), 1-10.
Sun, C., Tian, T., Zhu, X., Hua, O., and Z, D. (2021). Investiga-
tion of the near wake of a horizontal-axis wind turbine model

by dynamic mode decomposition. Energy, 227, 120418.

Tu, J.H. (2013). Dynamic mode decomposition: Theory and

applications. Ph.D. thesis, Princeton University.



