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Summary
This dissertation focuses on the frequency response analysis and design of Linear Time-
Invariant systems (LTI) reset feedback control systems for precision motion applications.
In the precision motion industry, there is a growing demand for control systems that de-
liver higher positioning resolution, faster response, and enhanced stability. However, in-
herent limitations in linear controllers, such as the “waterbed effect” and the Bode phase-
gain trade-off, limit their performance, posing challenges in meeting these evolving re-
quirements.

Reset feedback control has emerged as an effective solution to address the limitations
of linear control systems in precision motion applications. The practical implementation
of control strategies relies on reliable analysis methods. Among these, frequency response
analysis stands out as an effective and widely utilized method across industries. However,
existing frequency response analysis methods for both open-loop and closed-loop reset
control systems face challenges, including accuracy limitations and restrictions to specific
control system structures. The first category of contributions in this dissertation addresses
these challenges by introducing frequency response analysis methods for open-loop and
closed-loop Single-Input and Single-Output (SISO) LTI reset control systems within a gen-
eralized control system structure. Moreover, to further realize the potential of reset con-
trol, the second category of contributions focuses on proposing novel reset control designs
to enhance system performance. The content is organized into nine chapters.

The first topic of this dissertation centers on the development of frequency response
analysis methods for both open-loop and closed-loop SISO LTI reset control systems. First,
in Chapter 2, the Higher-Order Sinusoidal Input Describing Function (HOSIDF) for open-
loop reset systems within a generalized control system structure, is developed. Simulation
results validate the accuracy of the proposed HOSIDF. The HOSIDF offers an analytical
decomposition of the system’s response into linear and nonlinear components, forming a
critical foundation for subsequent closed-loop analysis.

Before conducting frequency response analysis for closed-loop systems, Chapter 3
introduces a two-reset condition. This condition identifies scenarios under which the
Sinusoidal-Input Describing Function (SIDF) provides reliable analysis for closed-loop
systems. Simulation and experimental results validate the effectiveness of the proposed
approach. Additionally, the method demonstrates measurable time-saving benefits com-
pared to time-domain simulations.

Building on this foundation, Chapter 4 develops HOSIDFs for SISO closed-loop reset
systems operating under the two-reset condition. Simulation and experimental results on
a precision motion stage confirm the accuracy of the closed-loop HOSIDFs. Together, the
open-loop and closed-loop HOSIDF analyses presented in Chapters 2 through 4 address
the lack of frequency response analysis methods for generalized reset control structures.
Moreover, the proposedHOSIDFs establish a frequency-domain connection between open-
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loop and closed-loop reset systems, enabling the application of loop-shaping techniques
to reset feedback control design.

To provide a practical and user-friendly platform for engineers to design reset control
systems effectively, the frequency response analysis methods presented in Chapters 2 to
4 are integrated into a MATLAB application (app), as detailed in Chapter 5. Then, an illus-
trative case study is presented to demonstrate the application of the app. The case study,
conducted on a precision motion stage, achieves a 21.4% reduction in maximum steady-
state error and requires 85.6% less maximum actuation force compared to previous reset
systems, underscoring the app’s effectiveness in designing reset systems with enhanced
performance.

The second topic of this dissertation focuses on reset control design aimed at enhanc-
ing steady-state and transient performance in precision motion systems. Reset control
inherently introduces both first-order and high-order harmonics. The proposed designs
optimize these harmonics to improve system performance.

The first design, presented in Chapter 6, utilizes a phase lead element to fine-tune the
phase of the reset instants. This approach enhances the phase and gain benefits of first-
order harmonics while preserving the properties of high-order harmonics. Case studies
are conducted through experiments on a precision motion stage. In a representative case
study, zero overshoot is achieved by leveraging phase improvements, compared to 36.0%
overshoot with previous reset control and 64.0% overshoot with linear control. In another
illustrative case study, with enhancements in gain, a 37.5% improvement in steady-state
precision is achieved compared to previous reset control.

The second design, detailed in Chapter 7, incorporates a PID shaping filter to refine
the reset action. This approach effectively reduces the detrimental high-order harmonics
while preserving the benefits of the first-order harmonics, leading to improved steady-
state precision. A representative case study demonstrates a 51.8% improvement in steady-
state precision compared to the previous reset control. Additionally, limit cycles in the
step response of the reset control system are eliminated.

Current reset controllers typically use the zero-crossings of filtered feedback error sig-
nals as reset instants. To broaden the application scope of reset control, Chapter 8 intro-
duces a novel reset element: Fixed-Phase Reset Control (FPRC).The FPRC distributes reset
instants based on a predefined signal. HOSIDFs are developed to analyze the frequency
properties of the FPRC, and their validity is confirmed through simulations. While the
FPRC offers phase lead advantages over previous reset control, it introduces higher-order
harmonics. Further research is needed to explore its practical implementation.

Finally, Chapter 9 summarizes the key contributions of this thesis, including the de-
velopment of frequency response analysis methods for both open-loop and closed-loop
SISO reset feedback control systems, along with the proposal of advanced reset control
designs that enhance the transient and steady-state performance of precision motion sys-
tems. Additionally, the chapter provides general concluding remarks and recommenda-
tions for future research, based on the insights and limitations identified throughout this
thesis.
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Samenvatting
Dit proefschrift richt zich op de frequentieresponsanalyse en het ontwerp van lineaire
tijd-invariante reset feedback regelsystemen voor precisiebewegingstoepassingen. In de
precisiebewegingsindustrie is er een groeiende vraag naar regelsystemen die een hogere
positioneringsresolutie, snellere respons en verbeterde stabiliteit bieden. De inherente
beperkingen van lineaire regelingen, zoals het ”waterbed-effectën de Bode fase-amplitude
compensatie, beperken echter hun prestaties, wat uitdagingen met zich meebrengt bij het
voldoen aan deze veranderende vereisten.

Reset feedbackregeling is naar voren gekomen als een effectieve methode om de be-
perkingen van lineaire regelsystemen in precisiebewegingstoepassingen aan te pakken.
De praktische implementatie van regelstrategieën steunt op betrouwbare analysemetho-
den. Van dezemethoden steekt frequentieresponsanalyse eruit als een effectieve en veelge-
bruikte techniek in verschillende industrieën. Echter, bestaande frequentieresponsanalyse-
methoden voor zowel open-lus als gesloten-lus resetregelsystemen kampen met uitdagin-
gen, waaronder nauwkeurigheidsbeperkingen en restricties tot specifieke regelsysteem-
structuren. De eerste categorie bijdragen in dit proefschrift behandelt deze uitdagingen
door frequentierespons analysemethoden in te voeren voor open-lus en gesloten-lus Single-
Input en Single-Output (SISO) lineaire tijd-invariante (LTI) resetregelsystemen binnen een
gegeneraliseerd regelsysteemstructuur. Bovendien richt de tweede categorie bijdragen
zich op het voorstellen van nieuwe resetregelontwerpen om de systeemprestaties verder
te verbeteren en het potentieel van resetregeling te benutten. De inhoud is georganiseerd
in negen hoofdstukken.

Het eerste onderwerp van dit proefschrift concentreert zich op de ontwikkeling van
frequentieresponsanalysemethoden voor zowel open-lus als gesloten-lus SISO LTI reset-
regelsystemen. Eerst wordt in Hoofdstuk 2 de Higher-Order Sinusoidal Input Describing
Function (HOSIDF) voor open-lus resetregelsystemen binnen een gegeneraliseerd regel-
systeemstructuur ontwikkeld. Simulatie-resultaten bevestigen de nauwkeurigheid van de
voorgestelde HOSIDF. De HOSIDF biedt een analytische dekompositie van de respons van
het systeem in lineaire en niet-lineaire componenten, wat een cruciale basis vormt voor
de daaropvolgende gesloten-lus analyse.

Voordat frequentieresponsanalyse voor gesloten-lus systemen wordt uitgevoerd, in-
troduceert Hoofdstuk 3 een twee-resetvoorwaarde. Deze voorwaarde identificeert sce-
nario’s waarbij de Sinusoidal-Input Describing Function (SIDF) een betrouwbare analyse
voor gesloten-lus systemen biedt. Simulatie- en experimentele resultaten bevestigen de
effectiviteit van de voorgestelde aanpak. Bovendien toont de methode meetbare tijdsbe-
sparingen aan in vergelijking met tijdsdomeinsimulaties.

Gebouwd op deze basis, ontwikkelt Hoofdstuk 4 HOSIDF’s voor SISO gesloten-lus
resetregelsystemen die werken onder de twee-resetvoorwaarde. Simulatie- en experi-
mentele resultaten op een precisiebewegingsmechanisme bevestigen de nauwkeurigheid
van de gesloten-lus HOSIDF’s. Samen adresseren de open-lus en gesloten-lus HOSIDF-
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analyses, gepresenteerd in de hoofdstukken 2 tot 4, het gebrek aan frequentierespons
analyse hulpmiddelen voor gegeneraliseerde resetregelstructuren. Bovendien leggen de
voorgestelde HOSIDF’s een frequentiedomeinverbinding vast tussen open-lus en gesloten-
lus resetregelsystemen, waardoor de toepassing van loop-shapingtechnieken op resetfeed-
backregelontwerpen mogelijk wordt.

Om een praktisch en gebruiksvriendelijk platform te bieden voor ingenieurs om reset-
regelsystemen effectief te ontwerpen, worden de frequentieresponsanalysehulpmiddelen
gepresenteerd in Hoofdstukken 2 tot 4 geïntegreerd in een MATLAB-app, zoals gedetail-
leerd in Hoofdstuk 5. Vervolgens wordt een illustratieve casestudy gepresenteerd om de
toepassing van de app te demonstreren. De casestudy, uitgevoerd op een precisiebewe-
gingsmechanisme, realiseert een vermindering van 21,4% in de maximale stationaire fout
en vereist 85,6% minder maximale actuatiekracht in vergelijking met eerdere resetsyste-
men. Dit onderstreept de effectiviteit van de app bij het ontwerpen van resetsystemen
met verbeterde prestaties.

Het tweede onderwerp van dit proefschrift richt zich op het ontwerp van resetrege-
ling met als doel de steady-state en transiënte prestaties in precisiebewegingssystemen te
verbeteren. Resetregeling introduceert inherent zowel eerste-orde als hogere-orde harmo-
nischen. De voorgestelde ontwerpen optimaliseren deze harmonischen om de systeem-
prestaties te verbeteren.

Het eerste ontwerp, gepresenteerd in Hoofdstuk 6, maakt gebruik van een fase voor-
sprong element om de fase van de resetmomenten fijn af te stemmen. Deze benadering
verbetert de fase- en versterkingsvoordelen van eerste-orde harmonischen, terwijl de ei-
genschappen van hogere-orde harmonischen behouden blijven. Case studies worden uit-
gevoerd door middel van experimenten op een precisiebewegingsmechanisme. In een
representatieve casestudy wordt zero overshoot behaald door gebruik te maken van fa-
severbeteringen, in vergelijking met 36,0% overshoot bij eerdere resetregeling en 64,0%
overshoot bij lineaire regeling. In een andere illustratieve casestudy wordt, door verbe-
teringen in de amplitude, een verbetering van 37,5% in de steady-state precisie bereikt in
vergelijking met eerdere resetregeling.

Het tweede ontwerp, gedetailleerd in Hoofdstuk 7, maakt gebruik van een PID vorm-
gevings filter om de resetactie te verfijnen. Deze aanpak vermindert effectief de schade-
lijke hogere-orde harmonischen terwijl de voordelen van de eerste-orde harmonischen
behouden blijven, wat leidt tot een verbeterde steady-state precisie. Een representatieve
casestudy toont een verbetering van 51,8% in de steady-state precisie ten opzichte van de
vorige resetregeling. Bovendien worden de limietcycli in de staprespons van het resetre-
gelsysteem geëlimineerd.

Huidige resetregelaars gebruiken doorgaans de nuldoorgangen van gefilterde feed-
backfoutsignalen als resetmomenten. Om het toepassingsbereik van resetregeling te ver-
breden, introduceert Hoofdstuk 8 een nieuw resetelement: Fixed-Phase Reset Control
(FPRC). De FPRC verdeelt resetmomenten op basis van een vooraf bepaald signaal. HO-
SIDF’s worden ontwikkeld om de frequentie-eigenschappen van de FPRC te analyseren,
en de geldigheid wordt bevestigd door middel van simulaties. Hoewel de FPRC voorde-
len in faselijn biedt ten opzichte van eerdere resetregeling, introduceert het hogere-orde
harmonischen. Verder onderzoek is nodig om de praktische implementatie ervan te ver-
kennen.
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Ten slotte vat Hoofdstuk 9 de belangrijkste bijdragen van dit proefschrift samen, waar-
onder de ontwikkeling van frequentieresponsanalyse-methoden voor zowel open-lus als
gesloten-lus SISO resetfeedbackregelsystemen, evenals het voorstel van geavanceerde re-
setregelontwerpen die de transiënt- en steady-state prestaties van precisiebewegingssys-
temen verbeteren. Daarnaast biedt het hoofdstuk algemene conclusies en aanbevelingen
voor toekomstig onderzoek, gebaseerd op de inzichten en beperkingen die gedurende dit
proefschrift zijn geïdentificeerd.
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1

1
Introduction

This chapter begins by introducing precision motion control and highlighting the importance
of frequency response analysis as a powerful tool for designing high-performance precision
motion control systems. It then discusses the inherent limitations of linear controllers and
introduces reset control systems as a nonlinear alternative to overcome these challenges. Next,
the chapter identifies the motivation and key research problems addressed in this dissertation,
focusing on the lack of reliable frequency response analysis methods for reset control systems.
Finally, an overview of the dissertation’s structure is provided.
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2 1 Introduction

Inmechatronics industries such as semiconductormanufacturing, robotics, and optical
systems, the demands for higher positioning resolution, speed, and stability are continu-
ally increasing [1]. For example, in semiconductor manufacturing industries, accurate
positioning is crucial for the precise placement of microchip components, where slight
precision errors can result in defective circuitry and impaired device functionality [2].

Feedback control, such as the classical Proportional-Integral-Derivative (PID) feedback
control, has proven effective in achieving these goals in industries [1, 3]. A typical closed-
loop feedback control system is depicted in Fig. 1.1.

Feedback Control D/A Plant+- ++

SensorA/D ++

Process Disturbance

Sensor Noice

Reference Output

Figure 1.1: Block diagram of a closed-loop feedback control system.

However, inherent limitations of linear controllers, including the Bode gain-phase
trade-off and thewaterbed effect, limit their ability tomeet the growing demands ofmecha-
tronics industries. To address these limitations, reset feedback control offers a nonlinear
alternative that can break the constraints of linear systems and enhance overall system
performance [4–9].

To meet the growing demands for system performance, effective analysis and design
methodologies for control systems are essential, with frequency response analysis serving
as a powerful tool for this purpose [1, 10]. Frequency response analysis includes both open-
loop and closed-loop analyses. By leveraging the connection between these analyses and
utilizing the loop-shaping technique [1, 11], control engineers can design control systems
in the frequency domain to meet specific time-domain requirements.

Currently, Higher-Order Sinusoidal Input Describing Function (HOSIDF) analysismeth-
ods, as developed in [12–15], were employed to analyze open-loop reset feedback control
systems. Additionally, a HOSIDF analysis method for closed-loop reset systems was pro-
posed in [13]. However, the applicability of these open-loop and closed-loop HOSIDF
analysis methods is constrained to specific reset control structures. To overcome this lim-
itation, this dissertation develops new HOSIDF analysis methods for both open-loop and
closed-loop reset feedback control systems within a generalized structure. Additionally,
a frequency-domain relationship between open-loop and closed-loop HOSIDFs is estab-
lished, enabling the application of loop-shaping in reset feedback control systems. Addi-
tionally, a MATLAB app has been developed to integrate these HOSIDF analysis methods,
enhancing their accessibility for control engineers.

Using frequency-domain analysis methods, this thesis develops strategies to fine-tune
the phase and gain characteristics of both first-order and high-order harmonics in reset
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control. These advancements improve both transient and steady-state performance in
precision motion applications.

1.1 Precision Motion Control
Figure 1.2 shows the experimental setup used in this dissertation, which features a three-
degree-of-freedom (3-DoF) precision positioning stage ( 1⃝). The stage consists of three
masses, 𝑀1, 𝑀2, and 𝑀3, each connected to a voice coil actuator labeled 𝐴1, 𝐴2, and 𝐴3.
These masses are attached to a central base mass 𝑀𝑐 via dual leaf flexures.

The voice coil actuators operate based on electromagnetic principles, where a coil
within a magnetic field generates linear motion according to Ampere’s Law. These ac-
tuators are driven by a linear current source power amplifier ( 5⃝). Position feedback is
provided by Mercury M2000 linear encoders (labeled as Enc), which convert linear mo-
tion into digital signals with a resolution of 100 nm. To minimize external vibrations from
environmental sources, such as machinery or foot traffic, a vibration isolation table ( 2⃝) is
used.

Control systems are implemented on a National Instruments CompactRIO (cRIO) plat-
form ( 3⃝), a modular embedded system comprising a real-time processor, an FPGA, and
interchangeable I/O modules. The real-time processor executes control algorithms and fa-
cilitates communicationwith external devices, while the FPGA enables high-speed parallel
processing for real-time signal manipulation and timing-critical operations at a sampling
frequency of 10 kHz. The I/O modules handle interfaces for analog and digital signals,
ensuring precise control and data acquisition.

5

4

1

1

2
6

3

1 The 3-DoF Precision Motion Stage

2 Vibration Isolation Table

3 CompactRIO

4 Lab Power Supply

5 Amplifier

6 Computer

7

7 Power Outlet

Figure 1.2: Planar precision positioning setup.

In this thesis, the actuator 𝐴1 is used to drive the mass rigidly connected to it. Figure
1.3 shows the measured Frequency Response Function (FRF) of the stage, which exhibits a
response characteristic similar to that of a collocated double mass-spring-damper system,
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Figure 1.3: The FRF data from actuator 𝐴1 to attached mass 𝑀1.

along with additional high-frequency parasitic dynamics. Using MATLAB’s system iden-
tification tools, the system dynamics are modeled as a Linear Time-Invariant (LTI) system,
denoted as P(𝑠), given by

P(𝑠) = 6.615×105
83.57𝑠2 +279.4𝑠 +5.837×105 . (1.1)

This model captures the core behavior of the actuator-mass system and is used to validate
the effectiveness of the proposed frequency response analysis methods and the designed
reset control systems in this thesis.

Large Overshoot

Long Settling Time

Steady-State Error

Figure 1.4: Step response of the plant P(𝑠) (1.1).

The step response of the precision motion stage P(𝑠) in (1.1) is shown in Fig. 1.4,
highlighting two issues: (1) the pronounced oscillations during the transient phase and
(2) a steady-state error between the output and the reference signal. The goal of precision
motion control is to design controllers that address these issues, including reducing over-
shoot, shortening response time during transients, and minimizing steady-state errors,
while ensuring system stability and robustness. In practice, these challenges are typically
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first addressed through feedforward control, which manages predictable inputs and dis-
turbances, and then feedback control is used to correct unanticipated residual errors and
deviations [16]. This thesis specifically focuses on feedback control to enhance overall
system performance.

1.2 Frequency Response Analysis
To achieve the desired precision motion control performance, effective analysis and de-
sign tools for control systems are essential. Frequency response analysis is one of the
most widely adopted methods in industrial applications for this purpose [17]. It provides
phase and magnitude information of linear time-invariant (LTI) systems by assessing the
system’s steady-state response to sinusoidal inputs across operating frequencies. Addi-
tionally, frequency response analysis allows engineers to predict closed-loop behavior
without requiring precise parametric models of the plant. This characteristic is particu-
larly beneficial when obtaining an accurate plant model is challenging or impractical.

The frequency response analysis includes both open-loop and closed-loop analysis,
connected through loop-shaping techniques [18]. Based on the loop-shaping connection,
control engineers can design controllers in the open loop to ensure control systems meet
desired closed-loop performance criteria, such as minimizing steady-state errors and en-
hancing transient response [19]. By doing so, in precision motion control, maintaining
high gain for open-loop control systems at low frequencies ensures steady-state precision,
including accurate reference tracking and effective disturbance rejection [20]. Conversely,
reducing gain at high frequencies helps enhance robustness against sensor noise and in-
terference [1]. Additionally, ensuring a proper phase margin near the system’s bandwidth
is essential for stability and transient response [21]. In closed-loop analysis, the modulus
margin, or sensitivity margin, indicates robustness, with a higher margin implying greater
tolerance to gain variations. The following example uses a linear PID control system to
demonstrate the application of open-loop and closed-loop frequency response analysis,
along with the loop-shaping technique, in precision motion systems.

Figure 1.5 presents the Bode plot of the plantP(𝑠) from (1.1) (in gray). A PID controller
C(𝑠) is designed for this plant, structured as follows:

PID = 𝑘𝑝 ⋅ (1+
𝜔𝑖
𝑠 ) ⋅ ( 𝑠/𝜔𝑑 +1

𝑠/𝜔𝑡 +1
). (1.2)

Then, the sensitivity function of the closed-loop PID control system is given by:

S(𝑠) = 1
1+C(𝑠)P(𝑠) . (1.3)

The Bode plots of the open-loop transfer function C(𝑠)P(𝑠) (in blue) and the closed-
loop sensitivity function S(𝑠) (in black) are shown in Fig. 1.5. The open-loop transfer
function is designed with a phase margin of 50 degrees and a crossover frequency of 100
Hz. The phase margin ensures system stability and contributes to improved transient re-
sponse. The high gain below 100 Hz enhances precise reference tracking and disturbance
rejection, while the low gain above 100 Hz effectively mitigates noise, improving noise re-
jection. Additionally, the maximum sensitivity gain in the closed-loop Bode plot indicates
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Plant: P(s) Open-loop: C(s)P(s) Closed-loop: 1/(1+C(s)P(s))

Stability

Tracking
Disturbance rejction Noise rejection

Robustness

Figure 1.5: Bode plots of the plant P(𝑠), the open-loop control system C(𝑠)P(𝑠), and closed-loop system 1/(1 +
C(𝑠)P(𝑠)).

the system’s robustness, highlighting its ability to handle disturbances and noise while
maintaining stability and performance across a wide frequency range.

Figure 1.6 compares the step responses of the plant P(𝑠) and the closed-loop system.
The designed PID controller effectively reduces overshoot, settling time, and steady-state
error, improving upon the plant’s open-loop response, as shown in Figure 1.4. This exam-
ple demonstrates that designing control systems to meet frequency-domain requirements
can effectively ensure the desired time-domain steady-state and transient responses.

Figure 1.6: Step responses of the plant and the closed-loop control system.

1.3 Limitations of Linear Feedback Control
In spite of thewidely recognized effectiveness of linear feedback control, its performance is
constrained by two fundamental limitations: the waterbed effect and the Bode gain-phase
relationship, as illustrated below.
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1.3.1 Waterbed Effect
For a Linear Time-Invariant systems (LTI) that has at least two more poles than zeros and
no poles in the right half-plane (i.e., it is stable), the integral of the sensitivity function of
the closed-loop control system meets the following condition:

∫
∞

0
ln(|S(𝑗𝜔)|)𝑑𝜔 = 0. (1.4)

Equation (1.4) implies that any reduction in sensitivity (improvement in performance)
over some frequency rangemust be compensated by an increase in sensitivity over another
frequency range. This is the well-known waterbed effect phenomenon [22].

1.3.2 Bode Phase-Gain Trade-Off
Moreover, minimum-phase linear systems are subject to the Bode phase-gain trade-off, as
illustrated below using the Proportional-Integrator (PI) and Derivative (D) elements, with
transfer functions defined as follows:

PI = 1+ 𝜔𝑖
𝑠 , D = 𝑠/𝜔𝑑 +1

𝑠/𝜔𝑡 +1
, (1.5)

where 𝜔𝑖 = 𝑘𝑖 ⋅𝜔𝑐 , 𝜔𝑑 = 𝜔𝑐/𝑎, 𝜔𝑡 = 𝜔𝑐 ⋅ 𝑎, 𝑘𝑖 ∈ ℝ, 𝑎 ∈ ℝ+, 𝜔𝑐 ∈ ℝ+. In the example, we choose
𝜔𝑐 = 20𝜋 [rad/s].

The PI element is used to achieve high gain at low frequencies, thereby reducing steady-
state errors. As shown in Fig. 1.7(a), increasing the 𝑘𝑖 value enhances the integrator’s low-
frequency gain but reduces the phase margin. In the time domain, while this improves
steady-state precision, it can adversely affect system stability and transient performance.

The D control element is used to introduce phase lead, thereby improving transient
response and ensuring stability. As shown in Fig. 1.7(b), increasing the 𝑎 value in (1.5)
enhances the phase lead but reduces low-frequency gain. In the time domain, while this
improves system stability and transient response, it limits the system’s ability to track
low-frequency references and reject low-frequency disturbances.
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Figure 1.7: (a) Bode plots of PI controllers with different 𝑘𝑖 values. (b) Bode plots of D controllers with different
𝑎 values.

To summarize, both the waterbed effect and the Bode phase-gain trade-off highlight
the inherent performance limitations of linear control systems: enhancing performance
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in one frequency band often compromises it in others, limiting the controller’s ability
to optimize performance across the entire frequency spectrum. Specifically, improving
steady-state performance by increasing integral action introduces phase lag, which can
result in slower rise times and higher overshoot in the transient response. Conversely,
increasing transient performance can degrade steady-state performance.

Therefore, while linear controllers, such as the PID, achieve notable improvements in
system performance, as demonstrated in Fig. 1.6, they encounter fundamental trade-offs
that constrain their ability to satisfy the growing demands for faster and more precise con-
trol in high-precision mechatronic applications. Consequently, nonlinear control strate-
gies that surpass the performance limitations of linear controllers are required.

1.4 Reset FeedbackControl System: OvercomeLinear Lim-
itations

Nonlinear control strategies, such as reset controllers, variable-gain control, split-path
nonlinear integrals, and hybrid integrator-gain control, have shown promise in address-
ing the limitations of linear systems, offering improved performance across diverse in-
dustries including chemical process control, teleoperation, and mechatronic systems [5, 7,
23–33]. This thesis focuses on applying reset feedback control in high-precision mecha-
tronic systems. The following subsection provides an overview of reset control, covering
its definition, stability and convergence conditions, and commonly used reset elements.

1.4.1 Definition of Reset Control Systems
Figure 1.8 illustrates the block diagram of a generalized reset control system. In this config-
uration, the signals 𝑟(𝑡), 𝑒(𝑡), 𝑢(𝑡), 𝑑(𝑡), 𝑛(𝑡), and 𝑦(𝑡) correspond to the reference, error,
control input, disturbance, noise, and output signals, respectively. The reset controller
C𝑟 processes the input signal 𝑧(𝑡) to generate the output signal 𝑚(𝑡). The reset-triggered
signal 𝑧𝑠(𝑡) is obtained by passing 𝑧(𝑡) through the LTI shaping filter C𝑠 . Systems C1, C2,
and C3 are LTI controllers integrated into the feed-through loop that leads to the output
signal 𝑦(𝑡). The LTI controller C4 is positioned within the feedback loop, and the plant is
denoted by P .

+-
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Figure 1.8: Block diagram of the generalized reset control system, with the resetting action denoted by blue lines.

The reset controller C𝑟 is a hybrid system that combines a linear controller with a
reset mechanism [33, 34]. The state-space representation of a reset controller, with state
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𝑥𝑐(𝑡) ∈ ℝ𝑛𝑐×1, input 𝑧(𝑡), and output 𝑚(𝑡), is given by:

C𝑟 =
⎧
⎨
⎩

̇𝑥𝑐(𝑡) = 𝐴𝑅𝑥𝑐(𝑡) +𝐵𝑅𝑧(𝑡), 𝑡 ∉ 𝐽 ,
𝑥𝑐(𝑡+) = 𝐴𝜌𝑥𝑐(𝑡), 𝑡 ∈ 𝐽 ,
𝑚(𝑡) = 𝐶𝑅𝑥𝑐(𝑡) +𝐷𝑅𝑧(𝑡),

(1.6)

wherematrices𝐴𝑅 ∈ ℝ𝑛𝑐×𝑛𝑐 , 𝐵𝑅 ∈ ℝ𝑛𝑐×1, 𝐶𝑅 ∈ ℝ1×𝑛𝑐 , and𝐷𝑅 ∈ ℝ1×1 define the flow dynamics
of the reset controller C𝑟 , referred to as its Base-Linear Controller (BLC) C𝑙 , whose transfer
function is given by:

𝐶𝑙(𝜔) = 𝐶𝑅(𝑗𝜔𝐼 −𝐴𝑅)−1𝐵𝑅 +𝐷𝑅 , (1.7)
where 𝜔 ∈ ℝ+ represents the angular frequency. By replacing C𝑟 with C𝑙 (1.7), the system
in Fig. 1.8 is termed its Base-Linear System (BLS).

The reset controller C𝑟 (1.6) in this thesis employs the zero-crossing resetting law as its
reset mechanism [33], where the state 𝑥𝑐(𝑡) is reset to 𝑥𝑐(𝑡+) at the zero-crossings of the
reset trigger signal 𝑧𝑠(𝑡). The signal 𝑧𝑠(𝑡) is obtained by filtering the reset control input
signal 𝑧(𝑡) through the LTI system C𝑠(𝑠), expressed as

{ ̇𝑥𝑠(𝑡) = 𝐴𝑠𝑥𝑠(𝑡) +𝐵𝑠𝑧(𝑡),
𝑧𝑠(𝑡) = 𝐶𝑠𝑥𝑠(𝑡) +𝐷𝑠𝑧(𝑡),

where state-space matrices 𝐴𝑠 , 𝐵𝑠 , 𝐶𝑠 , and 𝐷𝑠 describe the LTI system C𝑠(𝑠) and 𝑥𝑠(𝑡)
represents the state vector of C𝑠(𝑠). The set of reset instants is defined as 𝐽 = {𝑡𝑖 ∣ 𝑧𝑠(𝑡𝑖) =
0, 𝑖 ∈ ℕ}. At each reset instant 𝑡𝑖 ∈ 𝐽 , the jump dynamics of C𝑟 are determined by the reset
matrix 𝐴𝜌 , given by

𝐴𝜌 = [𝛾 𝐼𝑛𝑐−1
] ∈ ℝ𝑛𝑐×𝑛𝑐 , 𝛾 ∈ (−1,1]. (1.8)

The matrix 𝐴𝜌 in (1.8) defines on reset controllers with a single reset state. Common
examples of such controllers include the CI, First-Order Reset Element (FORE), and Second-
Order Single State Reset Element (SOSRE) [35]. When 𝛾 = 1 and thus 𝐴𝜌 = 𝐼𝑛𝑐 in (1.8), the
reset controller C𝑟 is identical to C𝑙 in (1.7).

1.4.2 Stability and Convergence Conditions for Reset Control Sys-
tems

Although stability and convergence conditions are not the primary focus of this disser-
tation, they are needed for frequency response analysis [36, 37]. Following established
literature [24, 33, 38–40], we adopt Assumptions 1 and 2 to ensure the stability and con-
vergence conditions for open-loop and closed-loop reset systems, respectively.

The literature [24] demonstrates that the reset controller defined in (1.6), when sub-
jected to an input 𝑧(𝑡) = |𝑍 |sin(𝜔𝑡 + ∠𝑍), where |𝑍 | and ∠𝑍 denote the magnitude and
phase of the signal 𝑧(𝑡) respectively, exhibits a globally asymptotically stable 2𝜋/𝜔-periodic
solution and converges globally if and only if:

|𝜆(𝐴𝜌𝑒𝐴𝑅𝛿 )| < 1, ∀𝛿 ∈ ℝ+, (1.9)

where 𝜆(⋅) represents the eigenvalues of the matrix.
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To ensure the HOSIDF analysis for open-loop reset control systems, the following
assumption is introduced:

Assumption 1. The reset controller C𝑟 (1.6), with an input 𝑧(𝑡) = |𝑍 |sin(𝜔𝑡 +∠𝑍), is as-
sumed to satisfy the condition in (1.9). The LTI systems C1, C2, C3, C4, and C𝑠 are Hurwitz.

For a closed-loop reset control system, to ensure that the frequency response is well-
defined, the following assumption is made:

Assumption 2. The closed-loop reset control system is asymptotically stable in the ab-
sence of inputs, bounded-input bounded-output (BIBO) stable, and exponentially conver-
gent. The reset controller C𝑟 in (1.6) has zero initial conditions, i.e., 𝑥𝑐(0) = 0. Furthermore,
there exist infinitely many reset instants 𝑡𝑖 such that lim𝑖→∞ 𝑡𝑖 = ∞, and the system does
not exhibit Zeno behavior.

The stability and convergence conditions required to satisfy Assumption 2 have been
extensively studied in the literature, including the 𝐻𝛽 condition discussed in [38, 41] and
other criteria presented in [40]. Additionally, this assumption can be ensured through
appropriate design considerations, as detailed in [13, 33, 42].

For a closed-loop reset control system subjected to a sinusoidal input signal with fre-
quency 𝜔, satisfying Assumption 2, the system exhibits a periodic steady-state response.
This response can be expressed as 𝑥(𝑡) =S(sin(𝜔𝑡),cos(𝜔𝑡),𝜔) for some functionS ∶ℝ3→
ℝ𝑛𝑐𝑙 [40], where 𝑛𝑐𝑙 denotes the number of states in the closed-loop reset system.

Hybrid systems may encounter the Zeno phenomenon, where infinitely many actions
occur within a finite time span [43]. According to research [44], the outputs of a reset
system are Zeno-free (non-Zeno) if the reset time interval 𝜎𝑖 = 𝑡𝑖+1 − 𝑡𝑖 , 𝑖 ∈ ℤ+ between
any two consecutive reset instants (𝑡𝑖 , 𝑡𝑖+1) is lower bounded:

𝜎𝑖 > 𝜎min, 𝜎min ∈ ℝ+, (1.10)

at least in some working domain Ω [44].

1.4.3 Reset Elements
Reset control originates from the Clegg Integrator (CI). The CI builds upon a linear inte-
grator by incorporating a reset mechanism, introduced by Clegg in 1958 [45]. A linear
integrator accumulates system errors over time and contributes to the control signal to
minimize steady-state error. However, this cumulative action creates a memory effect,
where even if the current error becomes zero or small, the integrator may still output a
non-zero value due to past accumulated errors. This behavior can lead to overshoot and
stability issues. The CI addresses this challenge by implementing the zero-crossing re-
setting law [33], which resets the integrator’s output to zero whenever the input signal
crosses zero.

The CI
The matrices for the generalized CI are given by:

𝐴𝑅 = 0,𝐵𝑅 = 1,𝐶𝑅 = 1,𝐷𝑅 = 0,𝐴𝜌 = 𝛾 ∈ (−1,1), (1.11)
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Sinusoidal-Input Describing Function (SIDF) analysis [24] reveals that the first-order
harmonic of the CI with 𝛾 = 0 introduces a phase lead of 51.9°, while maintaining the gain
characteristics of a linear integrator, as shown in Fig. 1.9. The phase-gain characteristic of
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Figure 1.9: Bode plots of the the linear integrator and the first-order harmonic of the CI.

CI illustrates the ability of reset control to surpass the Bode gain-phase limitation inherent
in linear controllers [22].

The FORE and SORE
Since then, flourish reset elements have been developed, including the First-order Reset
Element (FORE) and the Second-order Reset Element (SORE).

The state-space matrices of the FORE [46, 47] are defined as

𝐴𝑅 = −𝜔𝑟 , 𝐵𝑅 = 𝜔𝑟 , 𝐶𝑅 = 1, 𝐷𝑅 = 0, 𝐴𝜌 = 𝛾 . (1.12)

The state-space matrices of the SORE [48] are defined as

𝐴𝑅 = [−2𝛽𝜔𝑟 −𝜔2𝑟
1 0 ] , 𝐵𝑅 = [10] , 𝐶𝑅 = [0 𝜔2𝑟 ] , 𝐷𝑅 = 0, 𝐴𝜌 = [𝛾 0

0 1] . (1.13)

Other reset elements also add flexibility to control design, including partial reset tech-
niques [38], Proportional-Integral (PI) + CI [49], reset control systems with reset bands
[50], Fractional-order Reset Element (FrORE) [51–53], and Constant in gain Lead in phase
(CgLp) [25].

Compared to linear control systems, reset control systems can be designed to exhibit
phase lead while preserving gain characteristics, or maintain phase margin while improv-
ing gain properties. By leveraging the gain-phase advantages, reset elements have shown
improvements in both steady-state and transient performance in mechatronics applica-
tions, including enhanced disturbance rejection, improved tracking, and reduced over-
shoot [5, 7, 25, 32, 54–57].
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1.5 Motivation and Research Problem Statement
Reset elements have demonstrated potential in enhancing system performance compared
to linear systems. To fully realize this potential, as discussed in Section 1.2, effective fre-
quency response analysis tools are essential. However, three main challenges exist in the
frequency response analysis of reset control systems.

1. In frequency response analysis of open-loop reset feedback control systems, the
Higher-Order Sinusoidal Input Describing Function (HOSIDF) analysis methods, as
introduced in [12–14], are utilized. The HOSIDF analysis aligns with the SIDF anal-
ysis when higher-order harmonics (beyond the first-order) are negligible [24]. How-
ever, the applicability of existing HOSIDF methods is restricted to specific configu-
rations. For instance, no precise analysis tools are available for systems like the one
depicted in Fig. 1.8 when the reset-triggering signal 𝑧𝑠(𝑡) differs from the input sig-
nal 𝑧(𝑡) to the reset controller. Therefore, an accurate open-loop HOSIDF analysis
method for the generalized reset control systems presented in Fig. 1.8, as introduced
in this thesis, is necessary.

2. In addition to open-loop analysis, closed-loop frequency response analysis is crucial
for designing reset control systems and applying loop-shaping techniques. In linear
systems, the sensitivity function S(𝑠) in (1.3) connects the open-loop and closed-
loop systems. Furthermore, the sensitivity function evaluates steady-state errors
and the modulus margin, which indicates the system’s robustness to variations in
gain within the control loop [1]. However, this loop connection is not valid in re-
set control due to the cross-effects between first-order and high-order harmonics
within the closed-loop. In [13], a HOSIDF method was introduced for closed-loop
reset systems, establishing a connection between open-loop and closed-loop anal-
yses. However, this approach neglected the effects of reset actions on high-order
harmonics within the feedback loop, leading to inaccuracies. Additionally, no es-
tablished frequency response analysis methods currently exist for the generalized
closed-loop reset control systems as depicted in Fig. 1.8. Therefore, a reliable closed-
loop HOSIDF method is required for this system, coupled with frequency-domain
connections to the open-loop HOSIDF. This combination will facilitate the applica-
tion of loop-shaping techniques, enabling more effective design and optimization of
reset control systems.

3. Additionally, in the sinusoidal-input frequency response analysis of closed-loop sys-
tems, two scenarios can arise: two-reset control systems, where the system experi-
ences two resets per steady-state cycle, and multiple-reset control systems, where
more than two resets occur per cycle. Current closed-loop SIDF analysismethods for
reset control systems typically assume the system operates with two resets per cycle
[13, 15]. This assumption will lead to deviations in SIDF analysis for multiple-reset
systems. Moreover, multiple-reset actions introduce high-order harmonics, which,
when excessive, can degrade system performance and should be avoided [58]. Thus,
before performing closed-loop SIDF analysis, it is necessary to develop a method
to identify whether the system is a two-reset or multiple-reset system. Ensuring a
two-reset system guarantees the reliability of the closed-loop SIDF analysis.



1.6 Thesis Outline

1

13

Motivated by the limitations in open-loop and closed-loop frequency response analysis
for reset feedback control systems, this dissertation aims to address the following research
problems:

• First, to develop an accurate open-loop HOSIDF analysis method for the reset con-
trol systems in Fig. 1.8.

• Second, to propose a method to identify the two-reset condition for sinusoidal-input
reset control systems. By applying this method, the reliability of the closed-loop
SIDF analysis for reset control systems can be ensured.

• Third, to develop closed-loop HOSIDF for the reset control systems in Fig. 1.8, in-
cluding the formulation of sensitivity functions, complementary sensitivity func-
tions, and control sensitivity functions for each harmonic in closed-loop reset con-
trol systems. Moreover, to establish a frequency-domain link between open-loop
and closed-loop HOSIDFs.

Furthermore, motivated by the performance improvements of reset control in preci-
sion motion systems compared to linear control, this dissertation explores methods to
further enhance reset control performance by improving the gain and phase properties of
both first-order and high-order harmonics. Enhancing the gain of first-order harmonics
and mitigating the negative impact of high-order harmonics improves steady-state per-
formance, such as tracking precision and noise and disturbance rejection. Additionally,
improving the phase margin results in better transient performance, including reduced
overshoot and shorter settling times.

1.6 Thesis Outline
This dissertation contributes to two main areas of reset feedback control systems with
applications to precision motion systems, as outlined below.

1. Development of Frequency Response Analysis Tools for Reset feedback Control
Systems:

• Chapter 2: Developing frequency response analysismethod for open-loop reset feed-
back control systems.

• Chapter 3: Proposing two-reset conditions for ensuring the reliability of sinusoidal-
input Describing Function analysis of closed-loop reset feedback control systems.

• Chapter 4: Developing a frequency response analysis method for closed-loop reset
control systems and establishing a connection with open-loop analysis.

• Chapter 5: Developing a MATLAB app that consolidates the analysis methods pre-
sented in Chapters 2 to 4, providing an intuitive interface for control engineers to
utilize these methods effectively.

2. Design Reset Control Systems for Improved Performance on PrecisionMotion Stage
Using Frequency Response Analysis Methods:
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• Chapter 6: The development of a phase lead element-shaped reset control to provide
phase lead or enhanced gain performance of the first-order harmonic, while main-
taining high-order harmonics, compared to previous reset control. The phase lead
benefit improves the system’s transient performance, while the gain enhancement
improves steady-state performance.

• Chapter 7: The development of a PID-shaped reset control aimed at improving
steady-state precision by reducing high-order harmonics, while maintaining the
first-order harmonic in reset control systems. Additionally, this method addresses
the limit cycle issues in the step responses of reset systems.

The reset elements discussed in Chapters 2 to 6 use filtered feedback error signals as
their reset-triggered signals. In contrast, Chapter 8 introduces a predefined reset-triggered
signal that distributes different reset instances within one period. This proposed reset ele-
ment is referred to as Fixed-Phase Reset Control (FPRC). Additionally, the chapter devel-
ops frequency response analysis methods for the FPRC element. The FPRC shows phase
lead benefits but introduces higher-order harmonics compared to previous reset control.
The further application of the FPRC requires future exploration.

An overview of the main contributions from Chapter 2 to Chapter 8 in this dissertation
is provided in Fig. 1.10. Finally, the conclusions of this thesis and future recommendations
are presented in Chapter 9.

Reset Feedback Control

Open-Loop Analysis Closed-Loop Analysis

MATLAB App

Design: Application to Precision Motion Systems

Enhance First-Order 
Harmonic

Reduce High-Order 
Harmonics

Reset Instants: Zero-Crossings of Filtered Feedback Errors
Other Reset 

Elements...

Fixed-Phase
Reset 

Control

Figure 1.10: Overview of the main contributions in this dissertation.
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2
FrequencyResponseAnalysis for

Open-LoopResetControl Systems
Frequency response analysis is an effective tool in control system design, offering critical
gain and phase information that helps characterize system behavior. Establishing a
connection between open-loop and closed-loop frequency responses is crucial for designing
open-loop controllers that meet specific closed-loop performance specifications. A critical
prerequisite for this process is an accurate method for analyzing open-loop frequency
responses. However, no precise analysis methods are available for the generalized reset
systems studied in this work. To address this gap, this chapter introduces Higher-Order
Sinusoidal Input Describing Functions (HOSIDFs) for open-loop generalized reset systems.
The accuracy of the proposed HOSIDFs is validated through simulation results. Moreover,
the HOSIDFs decompose the frequency response of open-loop reset control systems into two
components: a base-linear element and a filtered-pulse nonlinear term. This decomposition
not only enhances understanding of reset system dynamics but also provides a foundation
for subsequent closed-loop frequency response analysis.

 This chapter is based on the paper:
Zhang, Xinxin, Marcin B. Kaczmarek, and S. Hassan HosseinNia. “Frequency response analysis for reset
control systems: Application to predict precision of motion systems.” Control Engineering Practice 152
(2024): 106063.



2

20 2 Frequency Response Analysis for Open-Loop Reset Control Systems

2.1 Introduction
Reset control elements have shown superior performance over linear controllers in
both steady-state and transient response characteristics, exhibiting better disturbance
rejection, tracking accuracy, and reduced overshoot, as evidenced by [1–8]. To
facilitate the practical implementation of reset control systems in the mechatronics
industry, effective analysis tools are essential. Frequency response analysis is among
the most commonly and effectively used techniques for this purpose in industrial
applications [9]. It evaluates a system’s steady-state response to sinusoidal inputs
across varying frequencies, offering insights into phase and magnitude characteristics
of linear time-invariant (LTI) systems. Frequency response analysis covers both
open-loop and closed-loop analysis. By leveraging the connection between the
open-loop and closed-loop analysis through loop-shaping techniques [10], control
engineers can design controllers in the open loop, ensuring that the system meets
specified closed-loop performance requirements, such as reducing steady-state errors
and improving transient response [11]. Additionally, frequency response analysis
allows engineers to predict closed-loop behavior without requiring precise parametric
models of the plant. This characteristic is particularly beneficial when obtaining an
accurate plant model is impractical.

For open-loop frequency response analysis of reset feedback control systems,
Higher-Order Sinusoidal Input Describing Function (HOSIDF) methods have been
introduced in [12–15]. The HOSIDF methods converge with the SIDF analysis [16]
when the impact of high-order harmonics beyond the first order is negligible. However,
the accuracy of these existing HOSIDF methods for open-loop reset control systems
is limited to specific configurations. For instance, these methods cannot be directly
applied to the generalized reset feedback structure depicted in Fig. 1.8 when the reset
controller’s input signal differs from its reset-triggering signal.

Motivated by the constraints of current frequency response analysis approaches for
open-loop reset control systems, this chapter introduces accurate frequency-domain
analysis methods for such systems. The presented method analytically separates the
frequency response of open-loop reset control systems into a base-linear component
and nonlinear elements, facilitating the derivation of closed-loop frequency response
analysis methods for reset control systems.

The remainder of this chapter is organized as follows: Section 2.2 presents the
frequency response analysis for the open-loop reset control system. It begins with
the development of an analytical model for the CI, followed by an extension of this
model to the reset controller, and concludes with the formulation of the HOSIDFs for
reset controller and open-loop reset systems. Section 2.3 applies two case studies to
validate the accuracy of the proposed open-loop HOSIDFs. Finally, Section 2.4 offers
concluding remarks.

2.2 Method: Frequency Response Analysis for Open-
loop Reset Systems

Figure 2.1 illustrates the block diagram of the open-loop reset control system. This
section develops the Higher-Order Sinusoidal Input Describing Functions (HOSIDFs)
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for the reset controller C𝑟 as defined in (1.6), and for the open-loop reset control
system. These HOSIDFs characterize the steady-state behavior of each harmonic in
nonlinear systems subjected to sinusoidal inputs [12].
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Figure 2.1 The block diagram of the open-loop reset system.

Given that the reset controller C𝑟 in (1.6) is built upon the primitive Clegg
Integrator (CI) [17], this section begins by presenting an analytical model of the CI. The
model illustrates that the output of a sinusoidal-input CI consists of two components:
the output of its base-linear controller (which is a linear integrator), and a square wave.

This model is then extended to a general reset controller C𝑟 , where the output
of a sinusoidal-input reset controller is decomposed into its base-linear output and a
filtered pulse signal. The “filtered pulse signal” refers to a signal generated by passing
a normalized pulse through a finite-dimensional LTI transfer function. Next, using this
analytical framework, the HOSIDFs for both the reset controller and the open-loop
reset control systems are developed.

2.2.1 Analysis Model for the Sinusoidal-Input Clegg Integrator
The Generalized Clegg Integrator (GCI) is defined as the reset controller C𝑟 described
by (1.6), with the following parameter settings: 𝐴𝑅 = 0, 𝐵𝑅 = 1, 𝐶𝑅 = 1, 𝐷𝑅 = 0, and
𝐴𝜌 = 𝛾 ∈ ℝ where 𝛾 ∈ (−1,1).

Lemma 1 shows that the output of the sinusoidal-input GCI consists of two
components: the base-linear output and a square wave component.

Lemma 1. Consider a Generalized Clegg Integrator (GCI) subjected to a sinusoidal
input signal 𝑒(𝑡) = |𝐸1|sin(𝜔𝑡), which satisfies the condition in (1.9). The steady-state
output signal 𝑢𝑐𝑖(𝑡) of the GCI consists of two components: the output of the
base-linear integrator 1/𝑠 denoted as 𝑢𝑖(𝑡), and a square wave component 𝑞𝑖(𝑡),
expressed as:

𝑢𝑐𝑖(𝑡) = 𝑢𝑖(𝑡) +𝑞𝑖(𝑡), (2.1)

where
𝑢𝑖(𝑡) = −|𝐸1|[cos(𝜔𝑡)−1]/𝜔,

𝑞𝑖(𝑡) = {−2|𝐸1|𝛾 (𝛾 +1)
−1/𝜔, for 𝑡 ∈ [2𝑘,2𝑘 +1) ⋅ 𝜋/𝜔, 𝑘 ∈ ℕ,

−2|𝐸1|(𝛾 + 1)−1/𝜔, for 𝑡 ∈ [2𝑘 +1,2𝑘 +2) ⋅ 𝜋/𝜔,
(2.2)

Proof. The proof can be found in Appendix 2.A.



2

22 2 Frequency Response Analysis for Open-Loop Reset Control Systems

Figure 2.2 displays the simulated steady-state output 𝑢𝑐𝑖(𝑡) of the GCI with the
input signal 𝑒(𝑡) = sin(𝜔𝑡) (𝜔 = 𝜋 rad/s and 𝛾 = 0), the base-linear output 𝑢𝑖(𝑡) and the
square wave 𝑞𝑖(𝑡). In this case, 𝑞𝑖(𝑡) is a square wave with a period of 2 seconds and
amplitudes of 0 and 0.64, as calculated by (2.2).
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Figure 2.2: The steady-state outputs 𝑢𝑐𝑖(𝑡) (solid line), 𝑢𝑖(𝑡) (dotted line), and 𝑞𝑖(𝑡) (dashed line) of the
GCI with the input signal 𝑒(𝑡) = sin(𝜔𝑡).

2.2.2 Higher-Order Sinusoidal Input Describing Functions (HOSIDFs)
for Reset Controllers

Building upon the analysis model for the GCI in Lemma 1, Theorem 1 develops the
analysis model for the reset controller C𝑟 as defined in (1.6).

Theorem 1. Consider a reset controller C𝑟 described by (1.6), which is subjected
to a sinusoidal input signal 𝑧𝑛(𝑡) = |𝑍𝑛 |sin(𝑛𝜔𝑡 +∠𝑍𝑛) and a reset trigger signal
𝑧𝑠(𝑡) = |𝑍𝑠 |sin(𝜔𝑡 +∠𝑍𝑠), generating an output signal 𝑚𝑛(𝑡), where ∠𝑍𝑛 ,∠𝑍𝑠 ∈ (−𝜋,𝜋]
and 𝑛 = 2𝑘 + 1, 𝑘 ∈ ℕ. Assuming that the condition in (1.9) is satisfied, the Fourier
transform of 𝑚𝑛(𝑡), denoted as 𝑀𝑛(𝜔), is given by:

𝑀𝑛(𝜔) = 𝑀𝑛
𝑙 (𝜔)+∑

∞
𝜂=1𝑀

𝜂𝜌 (𝜔), 𝜂 = 2𝑘 +1, 𝑘 ∈ ℕ (2.3)

where
𝑀𝑛

𝑙 (𝜔) = C𝑙(𝑛𝜔) ⋅ 𝑍𝑛(𝜔),
Δ𝑙(𝑛𝜔) = (𝑗𝑛𝜔𝐼 −𝐴𝑅)−1𝐵𝑅 ,
Δ𝑥 (𝜂𝜔) = 𝐶𝑅(𝑗𝜂𝜔𝐼 −𝐴𝑅)−1𝑗𝜂𝜔,
Δ𝑛𝑐 (𝜔) = |Δ𝑙(𝑛𝜔)|sin(∠Δ𝑙(𝑛𝜔)+∠𝑍𝑛 −𝑛∠𝑍𝑠),

𝑀𝜂𝜌 (𝜔) =
2|𝑍𝑛 |Δ𝑥 (𝜂𝜔)Δ𝑛𝑞(𝜔)

𝜂𝜋 ⋅F [sin(𝜂𝜔𝑡 +𝜂∠𝑍𝑠)],

Δ𝑛𝑞(𝜔) = (𝐼 + 𝑒𝐴𝑅𝜋/𝜔)(𝐴𝜌𝑒𝐴𝑅𝜋/𝜔 + 𝐼 )−1(𝐴𝜌 − 𝐼 )Δ𝑛𝑐 (𝜔).

(2.4)

and the function C𝑙(𝑛𝜔) is defined in (1.7).

Proof. The proof is provided in Appendix 2.B.

Corollary 1. From Theorem 1, the output signal 𝑚𝑛(𝑡) of the reset controller C𝑟
described by (1.6), subjected to a sinusoidal input signal 𝑧𝑛(𝑡) = |𝑍𝑛 |sin(𝑛𝜔𝑡 +∠𝑍𝑛) and
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a reset trigger signal 𝑧𝑠(𝑡) = |𝑍𝑠 |sin(𝜔𝑡 +∠𝑍𝑠) is expressed as:

𝑚𝑛(𝑡) = 𝑚𝑛
𝑙 (𝑡) +∑

∞
𝜂=1𝑚

𝜂𝜌(𝑡), (2.5)

where
𝑚𝜂𝜌(𝑡) = F −1[𝑀𝜂𝜌 (𝜔)],
𝑚𝑛
𝑙 (𝑡) = |𝑍𝑛 ⋅C𝑙(𝑛𝜔)|sin(𝑛𝜔𝑡 +∠𝑍𝑛 +∠C𝑙(𝑛𝜔)).

(2.6)

Building on Theorem 1, Theorem 2 introduces the HOSIDF for the reset controller
C𝑟 , as defined in (1.6), where the input signal 𝑧𝑜(𝑡) and the reset trigger signal 𝑧𝑠(𝑡)
share the same period 2𝜋/𝜔, as shown in Fig. 2.1.

Theorem 2. Consider a reset controller C𝑟 described in (1.6), with an input signal 𝑧𝑜(𝑡) =
|𝑍𝑜 |sin(𝜔𝑡 +∠𝑍𝑜) and a reset-triggered signal 𝑧𝑠(𝑡) = |𝑍𝑜C𝑠(𝜔)|sin(𝜔𝑡 +∠𝑍𝑜 +∠C𝑠(𝜔)),
generating the output signal 𝑚𝑜(𝑡), satisfying the condition in (1.9). Utilizing
the “Virtual Harmonic Generator” approach [12], the input signal 𝑧𝑜(𝑡) generates
harmonics 𝑧𝑛𝑜 (𝑡) = |𝑍𝑜 |sin(𝑛𝜔𝑡 +𝑛∠𝑍𝑜), with Fourier transforms represented as 𝑍𝑛𝑜 (𝜔).
The output 𝑚𝑜(𝑡) comprises 𝑛 harmonics, denoted by 𝑚𝑛𝑜 (𝑡), with corresponding
Fourier transforms 𝑀𝑛𝑜 (𝜔). The Higher-Order Sinusoidal Input Describing Function
(HOSIDF) of C𝑟 describes the transfer function from 𝑍𝑛𝑜 (𝜔) to 𝑀𝑛𝑜 (𝜔), given by:

C𝑛𝑟 (𝜔) =
𝑀𝑛𝑜 (𝜔)
𝑍𝑛𝑜 (𝜔)

=
⎧
⎨
⎩

C𝑙(𝜔)+C1𝜌(𝜔), for 𝑛 = 1,
C𝑛𝜌 (𝜔), for odd 𝑛 > 1,
0, for even 𝑛 ⩾ 2,

(2.7)

where
Δ𝑙(𝜔) = (𝑗𝜔𝐼 −𝐴𝑅)−1𝐵𝑅 ,

Δ𝑥 (𝑛𝜔) = 𝐶𝑅(𝑗𝑛𝜔𝐼 −𝐴𝑅)−1𝑗𝑛𝜔𝐼 ,
Δ1𝑐 (𝜔) = |Δ𝑙(𝜔)|sin(∠Δ𝑙(𝜔)−∠C𝑠(𝜔)),
C𝑛𝜌 (𝜔) = 2Δ𝑥 (𝑛𝜔)Δ𝑞(𝜔)𝑒𝑗𝑛∠C𝑠(𝜔)/(𝑛𝜋),
Δ𝑞(𝜔) = (𝐼 + 𝑒𝐴𝑅𝜋/𝜔)(𝐴𝜌𝑒𝐴𝑅𝜋/𝜔 + 𝐼 )−1(𝐴𝜌 − 𝐼 )Δ1𝑐 (𝜔).

(2.8)

Proof. The proof is provided in Appendix. 2.C.

2.2.3 HOSIDFs for Open-Loop Reset Control Systems
By integrating the HOSIDF analysis for the reset controller C𝑟 into the open-loop reset
control systems, as shown in Fig. 2.1, Theorem 3 presents the HOSIDF analysis for the
open-loop reset control system in Fig. 2.1.

Theorem 3. Consider an open-loop reset control system illustrated in Fig. 2.1
under Assumption 1, subject to an input signal 𝑒𝑜(𝑡) = |𝐸|sin(𝜔𝑡 +∠𝐸), generating
an output signal 𝑦𝑜(𝑡), under Assumption 1. Using the concept of the “Virtual
Harmonic Generator” [13], the input signal 𝑒𝑜(𝑡) generates harmonics expressed as
𝑒𝑛𝑜 (𝑡) = |𝐸|sin(𝑛𝜔𝑡 +𝑛∠𝐸), with the corresponding Fourier transform denoted as 𝐸𝑛𝑜 (𝜔).
The output signal 𝑦𝑜(𝑡) consists of 𝑛 harmonics, represented as 𝑦𝑛𝑜 (𝑡), which have
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Fourier transforms 𝑌 𝑛𝑜 (𝜔). The HOSIDF of the open-loop reset control system,
describing the transfer function from 𝐸𝑛𝑜 (𝜔) to 𝑌 𝑛𝑜 (𝜔), is given as follows:

L𝑛(𝜔) =
𝑌 𝑛𝑜 (𝜔)
𝐸𝑛𝑜 (𝜔)

=
⎧
⎨
⎩

C1(𝜔)[C𝑙(𝜔)+C1𝜌(𝜔)+C2(𝜔)]C3(𝜔)P(𝜔), for 𝑛 = 1
C1(𝜔)C𝑛𝜌 (𝜔)C3(𝑛𝜔)P(𝑛𝜔)𝑒𝑗(𝑛−1)∠C1(𝜔), for odd 𝑛 > 1,
0, for even 𝑛 ⩾ 2,

(2.9)

where C𝑙(𝜔) is given in (1.7) and C𝑛𝜌 (𝜔) is given in (2.8).

Proof. The proof is provided in Appendix. 2.D.

Based on Theorem 3, Fig. 2.3 presents the block diagram of the open-loop
reset control system for the HOSIDF analysis. Subsequently, Remark 1 provides the
calculation for the output 𝑦𝑜(𝑡) of the sinusoidal-input open-loop reset control system.
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Figure 2.3: The new block diagram of the open-loop reset control system.

Remark 1. Consider an open-loop reset control system with the input signal
𝑒𝑜(𝑡) = |𝐸|sin(𝜔𝑡 +∠𝐸), under Assumption 1. The steady-state output signal 𝑦𝑜(𝑡) is
given by

𝑦𝑜(𝑡) =∑∞
𝑛=1 𝑦𝑛𝑜 (𝑡) =∑∞

𝑛=1 |𝐸L𝑛(𝜔)|sin(𝑛𝜔𝑡 +𝑛∠𝐸 +∠L𝑛(𝜔)), 𝑛 = 2𝑘 +1(𝑘 ∈ ℕ).
(2.10)

2.3 Results: Validation of Open-Loop HOSIDFs
This section validates the accuracy of HOSIDFs for the reset controller C𝑟 in Theorem
2 and for the open-loop reset control system in Theorem 3.

2.3.1 Case Study 1
This section validates the accuracy of HOSIDFs for the reset controller C𝑟 using an
illustrative reset controller C𝑟 characterized by the following design parameters: the
BLC C𝑙 = ( 30𝜋𝑠 +1) with a reset value of 𝛾 = 0, and the shaping filter defined as

C𝑠 = 𝑠/(30𝜋)+1
𝑠/(6000𝜋)+1 .
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(a)

(b)

Figure 2.4 (a) The output signal 𝑚𝑜(𝑡) = ∑399
𝑛=1𝑚𝑛𝑜 (𝑡) and its first five harmonics 𝑚𝑛𝑜 (𝑡) (for 𝑛 = 1,3,5,7,9) for

the illustrative open-loop reset controller under a sinusoidal input 𝑧𝑜(𝑡) = sin(20𝜋𝑡), obtained
based on Theorem 2. (b) The output signal 𝑚𝑜(𝑡), obtained from simulation, the previous
prediction [14], and the new prediction based on Theorem 2 for the reset controller.

Figure 2.4(a) displays the output signal 𝑚𝑜(𝑡) = ∑399
𝑛=1𝑚𝑛𝑜 (𝑡) and its first five

harmonics 𝑚𝑛𝑜 (𝑡) (for 𝑛 = 1,3,5,7,9), obtained using Theorem 2. Additionally, Fig. 2.4(b)
compares the reset output 𝑚𝑜(𝑡) obtained through simulation with predictions from
Theorem 2. The results confirms the accuracy of the HOSIDF for C𝑟 .

2.3.2 Case Study 2
To validate the accuracy of Theorem 3, this section uses an illustrative system to verify
the accuracy of the open-loop HOSIDF, L𝑛(𝜔), derived in (2.9). The illustrative system
is based on the structure shown in Fig. 2.1, with the following design parameters:
the reset controller C𝑟 is based on a BLC C𝑙 = 30𝜋/𝑠 with a reset value 𝛾 = 0,
C1 = (𝑠/(150𝜋))/(𝑠/(3000𝜋)+1), C2 = C4 = 1, C𝑠 = 1/(𝑠/5+1), and C3 = 1/(𝑠/(150𝜋)+1). The
plant P is given in (1.1).

The input to the system is a sinusoidal signal 𝑒𝑜(𝑡) = sin(8𝜋𝑡). Figure 2.5(a)
illustrates the output signal 𝑦𝑜(𝑡) = ∑399

𝑛=1 𝑦𝑛𝑜 (𝑡) along with its first five harmonic
components 𝑦𝑛𝑜 (𝑡) (𝑛 = 1,3,5,7,9), computed using Theorem 3 and Remark 1. Moreover,
Figure 2.5(b) compares the output signal 𝑦𝑜(𝑡) obtained from simulation with the
prediction generated by the HOSIDFs analysis method. The close agreement between
the simulated and predicted results demonstrates the accuracy of the proposed HOSIDF
analysis method for predicting the behavior of open-loop reset control systems.

The accuracy of the HOSIDFs analysis method in Theorem 3 depends on the number



2

26 2 Frequency Response Analysis for Open-Loop Reset Control Systems

(a)

(b)

Figure 2.5 (a) The output signal 𝑦𝑜(𝑡) = ∑399
𝑛=1 𝑦𝑛𝑜 (𝑡) and its first five harmonics 𝑦𝑛𝑜 (𝑡) (for 𝑛 = 1,3,5,7,9)

for the illustrative open-loop reset control system under a sinusoidal input 𝑒𝑜(𝑡) = sin(8𝜋𝑡),
obtained based on Theorem 3. (b) Simulated, previous prediction [14], and Theorem 3-predicted
output signal 𝑦𝑜(𝑡).

of harmonics denoted as 𝑁ℎ included in the analysis. Define the prediction error
as the difference between the prediction provided by Theorem 3 and the simulation
results. Figure 2.6 illustrates the relationship between the prediction error and the
number of harmonics 𝑁ℎ. The results demonstrate that incorporating a higher number
of harmonics in the calculations enhances prediction accuracy. Given that the true
nonlinear output signal 𝑦𝑜(𝑡) of the reset control system contains an infinite number
of harmonics, ideally, as the number of harmonics approaches infinity, the prediction
error converges to zero.

After validating the accuracy of the open-loop analysis method, Theorem 3 is
utilized to perform a frequency-domain analysis of the open-loop reset control sytems
depicted in Fig. 2.1. Figure 2.7 displays the Bode plot of the open-loop HOSIDF L𝑛(𝜔)
for the illustrative open-loop reset control system. This HOSIDF provides critical
magnitude and phase information for each harmonic, which is vital for effective system
design.
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Figure 2.6 The relationship between the prediction error and the number of harmonics 𝑁ℎ considered in
the calculation, with values 𝑁ℎ = 1, 2, 10, and 200.
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Figure 2.7 The HOSIDF L𝑛(𝜔) of the open-loop reset system with the first (𝑛 = 1), third (𝑛 = 3), and fifth
(𝑛 = 5) order harmonics.

2.4 Conclusion
To summarize this chapter, Theorem 2 and Theorem 3 present HOSIDFs for reset
controllers and open-loop reset control systems. More importantly, the methods
analytically decompose the HOSIDF of the reset controller into its linear and nonlinear
components. This decomposition serves as the foundation for the development of the
closed-loop HOSIDF analysis, which will be elaborated upon in Chapter 4.
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Appendix

2.A Proof of Lemma 1
Proof. Consider a Generalized Clegg Integrator (GCI) defined as the reset controller C𝑟
in (1.6) with the following parameters: 𝐴𝑅 = 0, 𝐵𝑅 = 1, 𝐶𝑅 = 1, 𝐷𝑅 = 0, and 𝐴𝜌 = 𝛾 ∈ (−1,1).
This controller is subjected to a sinusoidal input signal 𝑒(𝑡) = |𝐸1|sin(𝜔𝑡) at steady state,
under the condition in (1.9).

From (1.6), the output signal 𝑢𝑐𝑖(𝑡) of the GCI is given by

{ ̇𝑢𝑐𝑖(𝑡) = 𝑒(𝑡), 𝑒(𝑡) ≠ 0,
𝑢𝑐𝑖(𝑡+) = 𝛾𝑢𝑐𝑖(𝑡), 𝑒(𝑡) = 0. (2.11)

For its BLS (which is an integrator), we have

̇𝑢𝑖(𝑡) = 𝑒(𝑡). (2.12)

Define 𝑞𝑖(𝑡) = 𝑢𝑐𝑖(𝑡) −𝑢𝑖(𝑡). From (2.11) and (2.12), we have

{ ̇𝑞𝑖(𝑡) = ̇𝑢𝑐𝑖(𝑡) − ̇𝑢𝑖(𝑡) = 0, 𝑒(𝑡) ≠ 0,
𝑞𝑖(𝑡+) = 𝛾𝑞𝑖(𝑡) + (𝛾 −1)𝑢𝑖(𝑡), 𝑒(𝑡) = 0. (2.13)

The reset instants of the GCI with a sinusoidal input signal 𝑒(𝑡) = |𝐸1|sin(𝜔𝑡) are given
by 𝑡𝑖 = 𝑖 ⋅ 𝜋/𝜔, where 𝑖 ∈ ℤ+ and 𝑒(𝑡𝑖) = 0. Utilizing (2.13), the signal 𝑞𝑖(𝑡) between
two consecutive reset instants [𝑡+𝑖 , 𝑡𝑖+1] (where 𝑡+𝑖 denotes the after-reset instant) is
expressed as follows:

𝑞𝑖(𝑡) = 𝑞𝑖(𝑡+𝑖 ) +∫
𝑡

𝑡𝑖
̇𝑞𝑖(𝜏)𝑑𝜏 = 𝑞𝑖(𝑡+𝑖 ), 𝑡 ∈ [𝑡+𝑖 , 𝑡𝑖+1]. (2.14)
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From (1.6), the output signal 𝑢𝑖(𝑡𝑖) at the reset instant 𝑡𝑖 = 𝑖 ⋅ 𝜋/𝜔 of the base-linear
integrator with the input signal 𝑒(𝑡) = |𝐸1|sin(𝜔𝑡), is given by:

𝑢𝑖(𝑡𝑖) = {0, for even 𝑖,
2|𝐸1|/𝜔, for odd 𝑖. (2.15)

Combining (2.13), (2.14), and (2.15), 𝑞𝑖(𝑡+𝑖 ) is given by

𝑞𝑖(𝑡+𝑖 ) = 𝛾𝑞𝑖(𝑡+𝑖−1) + (𝛾 −1)𝑢𝑖(𝑡𝑖)

= {𝛾𝑞𝑖(𝑡
+𝑖−1), for even 𝑖,

𝛾𝑞𝑖(𝑡+𝑖−1) + 2|𝐸1|(𝛾 − 1)/𝜔, for odd 𝑖.
(2.16)

Based on (2.16), for an odd 𝑖, 𝑞𝑖(𝑡+𝑖 ) is given by

𝑞𝑖(𝑡+𝑖 ) = 𝑞𝑖(𝑡+𝑖+2)
= 𝛾𝑞𝑖(𝑡+𝑖+1) + 2|𝐸1|(𝛾 − 1)/𝜔
= 𝛾 2𝑞𝑖(𝑡+𝑖 ) + 2|𝐸1|(𝛾 − 1)/𝜔.

(2.17)

Equations (2.16) and (2.17) can be concluded that

𝑞𝑖(𝑡+𝑖 ) = {−2|𝐸1|𝛾 (𝛾 +1)
−1/𝜔, for even 𝑖,

−2|𝐸1|(𝛾 + 1)−1/𝜔, for odd 𝑖. (2.18)

Combining (2.14) and (2.18), 𝑞𝑖(𝑡) in the time domain is obtained as follows:

𝑞𝑖(𝑡) = {−2|𝐸1|𝛾 (𝛾 +1)
−1/𝜔, for 𝑡 ∈ [2𝑘,2𝑘 +1) ⋅ 𝜋/𝜔,

−2|𝐸1|(𝛾 + 1)−1/𝜔, for 𝑡 ∈ [2𝑘 +1,2𝑘 +2) ⋅ 𝜋/𝜔. (2.19)

Here, we conclude the proof.

2.B Proof of Theorem 1
Proof. Consider a reset controller C𝑟 (1.6) with an 2𝜋/(𝑛𝜔)-periodic input signal of
𝑧𝑛(𝑡) = |𝑍𝑛 |sin(𝑛𝜔𝑡 +∠𝑍𝑛), where 𝑛 = 2𝑘 + 1, 𝑘 ∈ ℕ, and a 2𝜋/𝜔-periodic reset trigger
signal 𝑧𝑠(𝑡) = |𝑍𝑠 |sin(𝜔𝑡 +∠𝑍𝑠), where ∠𝑍𝑛 ,∠𝑍𝑠 ∈ (−𝜋,𝜋], generating output signal
𝑚𝑛(𝑡). This proof derives the Fourier transform of 𝑚𝑛(𝑡), denoted as 𝑀𝑛(𝜔).

Let 𝑥𝑐(𝑡) and 𝑥𝑏𝑙(𝑡) denote the state of the reset controller C𝑟 and its BLC C𝑙 ,
respectively. Define

𝑥𝑛𝑙(𝑡) = 𝑥𝑐(𝑡) − 𝑥𝑏𝑙(𝑡) (∈ ℝ𝑛𝑐×1), (2.20)

where 𝑛𝑐 is the number of states of the reset controller C𝑟 .
From (1.6), the base-linear state 𝑥𝑏𝑙(𝑡) is given by

𝑥𝑏𝑙(𝑡) = |𝑍𝑛Δ𝑙(𝑛𝜔)|sin(𝑛𝜔𝑡 +∠𝑍𝑛 +∠Δ𝑙(𝑛𝜔)), (2.21)

where
Δ𝑙(𝑛𝜔) = (𝑗𝑛𝜔𝐼 −𝐴𝑅)−1𝐵𝑅 (∈ ℝ𝑛𝑐×1). (2.22)
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Based on (1.6) and (2.20), we have:

{ ̇𝑥𝑛𝑙(𝑡) = 𝐴𝑅𝑥𝑛𝑙(𝑡), 𝑧𝑠(𝑡) ≠ 0,
𝑥𝑛𝑙(𝑡+) = 𝐴𝜌𝑥𝑛𝑙(𝑡) + (𝐴𝜌 − 𝐼 )𝑥𝑏𝑙(𝑡), 𝑧𝑠(𝑡) = 0. (2.23)

For the reset controller C𝑟 with a reset-triggered signal 𝑧𝑠(𝑡) = |𝑍𝑠 |sin(𝜔𝑡 +∠𝑍𝑠), the set
of reset instants is denoted by 𝐽𝑜 ∶= {𝑡𝑖 ∣ 𝑡𝑖 = (𝑖𝜋 −∠𝑍𝑠)/𝜔, 𝑖 ∈ ℤ+}. Therefore, the reset
interval is given by 𝜎𝑖 = 𝑡𝑖+1 − 𝑡𝑖 = 𝜋/𝜔. According to (2.23), between two consecutive
reset instants [𝑡+𝑖 , 𝑡𝑖+1] where 𝑧𝑠(𝑡) ≠ 0, the expression for 𝑥𝑛𝑙(𝑡) is defined as

𝑥𝑛𝑙(𝑡) = 𝑒𝐴𝑅(𝑡−𝑡𝑖)Δ𝑖𝑛(𝜔), for 𝑡 ∈ [𝑡+𝑖 , 𝑡𝑖+1], (2.24)

where Δ𝑖𝑛(𝜔) ∈ ℝ𝑛𝑐×1 represents a constant matrix independent of time 𝑡 , which will be
derived in the following content.

From the expression in (2.24), we have:

𝑥𝑛𝑙(𝑡𝑖+1) = 𝑒𝐴𝑅𝜋/𝜔Δ𝑖𝑛(𝜔). (2.25)

Under Assumption 1, the state of the reset controller with a 2𝜋/𝜔-periodic input
signal is a 2𝜋/𝜔-periodic signal, denoted as 𝑥𝑐(𝑡) = 𝑥𝑐(𝑡 + 2𝜋/𝜔). From (2.21), it follows
that 𝑥𝑏𝑙(𝑡) is also a 2𝜋/𝜔-periodic signal. Consequently, from (2.20), the nonlinear
component 𝑥𝑛𝑙(𝑡) = 𝑥𝑐(𝑡) − 𝑥𝑏𝑙(𝑡) must also be a 2𝜋/𝜔-periodic signal. Since the reset
instants satisfy 𝑡𝑖+1 − 𝑡𝑖−1 = 2𝜋/𝜔, it implies 𝑥𝑛𝑙(𝑡𝑖−1) = 𝑥𝑛𝑙(𝑡𝑖+1). From (2.25), we have:

Δ𝑖−1𝑛 (𝜔) = Δ𝑖+1𝑛 (𝜔). (2.26)

Based on (2.24), at the reset instant 𝑡𝑖+1 ∈ 𝐽𝑜 , 𝑥𝑛𝑙(𝑡𝑖+1) is given by

𝑥𝑛𝑙(𝑡𝑖+1) = 𝑒𝐴𝑅(𝑡𝑖+1−𝑡𝑖)Δ𝑖𝑛(𝜔) = 𝑒𝐴𝑅𝜋/𝜔Δ𝑖𝑛(𝜔). (2.27)

From (2.23) and (2.24), 𝑥𝑛𝑙(𝑡+𝑖+1) is given by

𝑥𝑛𝑙(𝑡+𝑖+1) = 𝐴𝜌𝑥𝑛𝑙(𝑡𝑖+1) + (𝐴𝜌 − 𝐼 )𝑥𝑏𝑙(𝑡𝑖+1). (2.28)

Substituting 𝑥𝑛𝑙(𝑡𝑖+1) from (2.27) into (2.28), 𝑥𝑛𝑙(𝑡+𝑖+1) is obtained as

𝑥𝑛𝑙(𝑡+𝑖+1) = 𝐴𝜌𝑒𝐴𝑅𝜋/𝜔Δ𝑖𝑛(𝜔)+ (𝐴𝜌 − 𝐼 )𝑥𝑏𝑙(𝑡𝑖+1). (2.29)

From (2.24), 𝑥𝑛𝑙(𝑡+𝑖+1) ∈ [𝑡+𝑖+1, 𝑡𝑖+2] can be expressed as

𝑥𝑛𝑙(𝑡+𝑖+1) = Δ𝑖+1𝑛 (𝜔). (2.30)

Let (2.29) and (2.30) be equal to each other, we have

Δ𝑖+1𝑛 (𝜔) = 𝐴𝜌𝑒𝐴𝑅𝜋/𝜔Δ𝑖𝑛(𝜔)+ (𝐴𝜌 − 𝐼 )𝑥𝑏𝑙(𝑡𝑖+1). (2.31)

From (2.31), we can obtain

Δ𝑖𝑛(𝜔) = 𝐴𝜌𝑒𝐴𝑅𝜋/𝜔Δ𝑖−1𝑛 (𝜔)+ (𝐴𝜌 − 𝐼 )𝑥𝑏𝑙(𝑡𝑖). (2.32)



2

33

From (2.26) and (2.31), we have

Δ𝑖−1𝑛 (𝜔) = 𝐴𝜌𝑒𝐴𝑅𝜋/𝜔Δ𝑖𝑛(𝜔)+ (𝐴𝜌 − 𝐼 )𝑥𝑏𝑙(𝑡𝑖+1). (2.33)

From (2.21) and for an odd number 𝑛, at the reset instant 𝑡𝑖 = (𝑖𝜋 −∠𝑍𝑠)/𝜔, the
base-linear state is given by:

𝑥𝑏𝑙(𝑡𝑖) = {|𝑍𝑛 |Δ
𝑛𝑐 (𝜔), for even 𝑖,

−|𝑍𝑛 |Δ𝑛𝑐 (𝜔), for odd 𝑖, (2.34)

where
Δ𝑛𝑐 (𝜔) = |Δ𝑙(𝑛𝜔)|sin(∠Δ𝑙(𝑛𝜔)+∠𝑍𝑛 −𝑛∠𝑍𝑠) (∈ ℝ𝑛𝑐×1). (2.35)

From (2.34), we have the relation: 𝑥𝑏𝑙(𝑡𝑖+1) = −𝑥𝑏𝑙(𝑡𝑖). Substituting this relation into
(2.33), we get:

Δ𝑖−1𝑛 (𝜔) = 𝐴𝜌𝑒𝐴𝑅𝜋/𝜔Δ𝑖𝑛(𝜔)− (𝐴𝜌 − 𝐼 )𝑥𝑏𝑙(𝑡𝑖). (2.36)

From (2.32) and (2.36), we obtain

Δ𝑖𝑛(𝜔) = (𝐴𝜌𝑒𝐴𝑅𝜋/𝜔 + 𝐼 )−1(𝐴𝜌 − 𝐼 )𝑥𝑏𝑙(𝑡𝑖). (2.37)

From (2.34)and (2.37), we obtain

Δ𝑖𝑛(𝜔) = {|𝑍𝑛 |Δ
𝑛𝑣(𝜔), for even 𝑖,

−|𝑍𝑛 |Δ𝑛𝑣(𝜔), for odd 𝑖, (2.38)

where
Δ𝑛𝑣(𝜔) = (𝐴𝜌𝑒𝐴𝑅𝜋/𝜔 + 𝐼 )−1(𝐴𝜌 − 𝐼 )Δ𝑛𝑐 (𝜔) (∈ ℝ𝑛𝑐×1). (2.39)

From (2.25) and (2.38), 𝑥𝑛𝑙(𝑡𝑖) is given by

𝑥𝑛𝑙(𝑡𝑖) = {−|𝑍𝑛 |𝑒
𝐴𝑅𝜋/𝜔Δ𝑛𝑣(𝜔), for even 𝑖,

|𝑍𝑛 |𝑒𝐴𝑅𝜋/𝜔Δ𝑛𝑣(𝜔), for odd 𝑖, (2.40)

From (2.24) and (2.38), at the time instant 𝑡+𝑖 , 𝑥𝑛𝑙(𝑡+𝑖 ) is given by

𝑥𝑛𝑙(𝑡+𝑖 ) = {|𝑍𝑛 |Δ
𝑛𝑣(𝜔), for even 𝑖,

−|𝑍𝑛 |Δ𝑛𝑣(𝜔), for odd 𝑖. (2.41)

From the time instant 𝑡𝑖 to 𝑡+𝑖 , 𝑥𝑛𝑙(𝑡𝑖) jumps to 𝑥𝑛𝑙(𝑡+𝑖 ). From (2.40) and (2.41), this
jump is given by

𝑥𝑛𝑙(𝑡+𝑖 ) −𝑥𝑛𝑙(𝑡𝑖) = {|𝑍𝑛 |(𝐼 + 𝑒
𝐴𝑅𝜋/𝜔)Δ𝑛𝑣(𝜔), for even 𝑖,

−|𝑍𝑛 |(𝐼 + 𝑒𝐴𝑅𝜋/𝜔)Δ𝑛𝑣(𝜔), for odd 𝑖. (2.42)

Substituting Δ𝑛𝑣(𝜔) from (2.39) into (2.42), the jump at the time instant 𝑡+𝑖 is expressed
as

𝑥𝑛𝑙(𝑡+𝑖 ) −𝑥𝑛𝑙(𝑡𝑖) = {|𝑍𝑛 |Δ
𝑛𝑞(𝜔), for even 𝑖,

−|𝑍𝑛 |Δ𝑛𝑞(𝜔), for odd 𝑖. (2.43)
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where
Δ𝑛𝑞(𝜔) = (𝐼 + 𝑒𝐴𝑅𝜋/𝜔)(𝐴𝜌𝑒𝐴𝑅𝜋/𝜔 + 𝐼 )−1(𝐴𝜌 − 𝐼 )Δ𝑛𝑐 (𝜔) (∈ ℝ𝑛𝑐×1), (2.44)

where Δ𝑛𝑐 is given by (2.35).
Let the state and output of the reset controller during the time interval [𝑡+𝑖 , 𝑡𝑖+1] be

denoted as 𝑥𝑖+1(𝑡) and 𝑢𝑖+1(𝑡), respectively. The jump in (2.43) indicates that a step
signal ℎ𝑖(𝑡) is introduced to the state 𝑥𝑖+1(𝑡) during [𝑡+𝑖 , 𝑡𝑖+1], given by:

ℎ𝑖(𝑡) = [𝑥𝑛𝑙(𝑡+𝑖 ) −𝑥𝑛𝑙(𝑡𝑖)]ℎ(𝑡 − 𝑡𝑖) = {|𝑍𝑛 |Δ
𝑛𝑞(𝜔)ℎ(𝑡 − 𝑡𝑖), for even 𝑖,

−|𝑍𝑛 |Δ𝑛𝑞(𝜔)ℎ(𝑡 − 𝑡𝑖), for odd 𝑖, (2.45)

where ℎ(𝑡) ∶= [𝑡 ≥ 0] is a Heaviside step function.
From (1.6) and (2.45), Fig. 2.8 shows the state-space block diagram of the reset

controller C𝑟 during the time interval [𝑡+𝑖 , 𝑡𝑖+1].
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Figure 2.8: State-space block diagram of the reset controller C𝑟 during the time interval [𝑡+𝑖 , 𝑡𝑖+1].

The reset instant is given by 𝑡𝑖 = (𝑖𝜋 − ∠𝑍𝑠)/𝜔, where 𝑖 ∈ ℤ+. Within a
single 2𝜋/𝜔-steady-state period, there are two reset instants: 𝑡𝑖 = (𝑖𝜋 −∠𝑍𝑠)/𝜔 and
𝑡𝑖+1 = ((𝑖 + 1)𝜋 −∠𝑍𝑠)/𝜔, separated by a reset interval of 𝜋/𝜔. From (2.45), at 𝑡𝑖 , a step
signal ℎ𝑖(𝑡) = |𝑍𝑛 |Δ𝑛𝑞(𝜔)ℎ(𝑡 − 𝑡𝑖) is introduced. At the subsequent instant 𝑡𝑖+1, a step
signal ℎ𝑖+1(𝑡) = −ℎ𝑖(𝑡) is introduced. Consequently, over one steady-state period, a
square wave is generated, denoted as:

𝑞𝑛(𝑡) =
|𝑍𝑛 |Δ𝑛𝑞(𝜔)

2 𝑞0(𝑡), (2.46)

where 𝑞0(𝑡) represents a normalized square wave shown in Fig. 2.9 and expressed as

𝑞0(𝑡) =
4
𝜋 ∑∞

𝜂=1 (
1
𝜂 ⋅ sin(𝜂𝜔𝑡 +𝜂∠𝑍𝑠)), 𝜂 = 2𝑘 +1(𝑘 ∈ ℕ), (2.47)

Thus, the reset controller C𝑟 with a single sinusoidal input signal 𝑧𝑛(𝑡) =
|𝑍𝑛 |sin(𝑛𝜔𝑡 +∠𝑍𝑛) at steady states, behaves equivalently to its base-linear controller
C𝑙 (given in (1.7)) with two inputs: the sinusoidal input 𝑧𝑛(𝑡) and the square wave
𝑞𝑛(𝑡) defined in (2.46), as illustrated in Fig. 2.10. The contributions from 𝑧𝑛(𝑡) and
𝑞𝑛(𝑡) to 𝑚𝑜(𝑡) are denoted as 𝑚𝑧𝑜(𝑡) and 𝑚𝑞𝑜 (𝑡), respectively. This model serves as the
foundation for deriving the HOSIDF of C𝑟 through the following steps.
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Figure 2.9: Plot of 𝑞0(𝑡) in (2.47) over two periods.
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Figure 2.10: State-space block diagram of the reset controller C𝑟 at steady states.

Under Assumption 2, the system is guaranteed to be convergent, ensuring that the
trajectories of the system are integrable. This integrability implies that the system’s
time-domain signals have well-defined Fourier transforms. Let 𝑍𝑛(𝜔), 𝑄𝑛(𝜔), 𝑀𝑛(𝜔),
𝑀𝑧𝑜 (𝜔), and 𝑀𝑞𝑜 (𝜔) represent the Fourier transforms of the signals 𝑧𝑛(𝑡), 𝑞𝑛(𝑡), 𝑚𝑜(𝑡),
𝑚𝑧𝑜(𝑡), and 𝑚𝑞𝑜 (𝑡), respectively.

Based on the model in Fig 2.10, 𝑀𝑛(𝜔) is given by

𝑀𝑛(𝜔) = 𝑀𝑧𝑜 (𝜔)+𝑀𝑞𝑜 (𝜔)

= 𝑀𝑧𝑜 (𝜔)
𝑍𝑛(𝜔)

⋅ 𝑍𝑛(𝜔)+
𝑀𝑞𝑜 (𝜔)
𝑄𝑛(𝜔)

⋅𝑄𝑛(𝜔).
(2.48)

From Fig. 2.10, when 𝑞𝑛(𝑡) = 0, the transfer function 𝑀𝑧𝑜 (𝜔)
𝑍𝑛(𝜔)

is given by

𝑀𝑧𝑜 (𝜔)
𝑍𝑛(𝜔)

= C𝑙(𝜔), (2.49)

and when 𝑧𝑛(𝑡) = 0, it follows that

𝑀𝑞𝑜 (𝜔)
𝑄𝑛(𝜔)

= Δ𝑥 (𝜔) = 𝐶𝑅(𝑗𝜔𝐼 −𝐴𝑅)−1𝑗𝜔 (∈ ℝ1×𝑛𝑐 ), (2.50)

Then, substituting (2.49) and (2.50) into (2.48), 𝑀𝑛(𝜔) is given by

𝑀𝑛(𝜔) = C𝑙(𝜔) ⋅ 𝑍𝑛(𝜔)+Δ𝑥 (𝜔) ⋅𝑄𝑛(𝜔). (2.51)
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From the definition of 𝑧𝑛(𝑡), the function 𝑍𝑛(𝜔) is given by

𝑍𝑛(𝜔) = |𝑍𝑛 |∑
∞
𝜂=1F [sin(𝑛𝜔𝑡 +∠𝑍𝑛)]. (2.52)

From (2.46) and (2.47), the function 𝑄𝑛(𝜔) is given by

𝑄𝑛(𝜔) =
2|𝑍𝑛 |Δ𝑛𝑞(𝜔)

𝜋 ∑∞
𝜂=1 (

1
𝜂F [sin(𝜂𝜔𝑡 +𝜂∠𝑍𝑠)]). (2.53)

By substituting (2.52) and (2.53) into (2.51), 𝑀𝑛(𝜔) is given by

𝑀𝑛(𝜔) = 𝑀𝑛
𝑙 (𝜔)+∑

∞
𝜂=1𝑀

𝜂𝜌 (𝜔), (2.54)

where
𝑀𝑛

𝑙 (𝜔) = C𝑙(𝑛𝜔) ⋅ 𝑍𝑛(𝜔),

𝑀𝜂𝜌 (𝜔) =
2|𝑍𝑛 |Δ𝑥 (𝜂𝜔)Δ𝑛𝑞(𝜔)

𝜂𝜋 ⋅F [sin(𝜂𝜔𝑡 +𝜂∠𝑍𝑠)].
(2.55)

Here, we concludes the proof.

2.C Proof of Theorem 2
Proof. Consider a reset controller C𝑟 described by the state-space equation (1.6). The
controller processes an input signal 𝑧𝑜(𝑡) and a reset-triggered signal 𝑧𝑠(𝑡), given by

𝑧𝑜(𝑡) = |𝑍𝑜 |sin(𝜔𝑡 +∠𝑍𝑜),
𝑧𝑠(𝑡) = |𝑍𝑜 ||C𝑠(𝜔)|sin(𝜔𝑡 +∠𝑍𝑜 +∠C𝑠(𝜔)).

(2.56)

The reset controller C𝑟 generates the output signal 𝑚𝑜(𝑡), which includes 𝑛-order
harmonics, expressed as 𝑚𝑜(𝑡) = ∑∞

𝑛=1𝑚𝑛𝑜 (𝑡). To derive the Higher-Order Sinusoidal
Input Describing Function (HOSIDF) for the reset controller C𝑟 , the “Virtual Harmonics
Generator” approach is first employed to allow the input signal 𝑧𝑜(𝑡) to produce 𝑛
harmonics, given by:

𝑧𝑛𝑜 (𝑡) = |𝑍𝑜 |sin(𝑛𝜔𝑡 +𝑛∠𝑍𝑜). (2.57)
From Theorem 1, the Fourier transform of the output signal 𝑚𝑜(𝑡) denoted as 𝑀𝑜(𝜔) is
given by

𝑀𝑜(𝜔) = 𝑀𝑙(𝜔)+∑
∞
𝑛=1𝑀𝑛𝜌 (𝜔),𝑛 = 2𝑘 +1,𝑘 ∈ ℕ, (2.58)

where
𝑀𝑙(𝜔) = C𝑙(𝜔)𝑍𝑜(𝜔),
𝑀𝑛𝜌 (𝜔) = Δ𝑥 (𝑛𝜔)𝑄𝑛(𝜔),
Δ𝑙(𝜔) = (𝑗𝜔𝐼 −𝐴𝑅)−1𝐵𝑅 ,

Δ𝑥 (𝑛𝜔) = 𝐶𝑅(𝑗𝑛𝜔𝐼 −𝐴𝑅)−1𝑗𝑛𝜔𝐼 ,
𝑍𝑛𝑜 (𝜔) = |𝑍𝑜 |F [sin(𝑛𝜔𝑡 +𝑛∠𝑍𝑜)],
𝑄𝑛(𝜔) = 2𝑍𝑛𝑜 (𝜔)Δ𝑞(𝜔)𝑒𝑗𝑛∠C𝑠(𝜔)/(𝑛𝜋),
Δ1𝑐 (𝜔) = |Δ𝑙(𝜔)|sin(∠Δ𝑙(𝜔)−∠C𝑠(𝜔)),
Δ𝑞(𝜔) = (𝐼 + 𝑒𝐴𝑅𝜋/𝜔)(𝐴𝜌𝑒𝐴𝑅𝜋/𝜔 + 𝐼 )−1(𝐴𝜌 − 𝐼 )Δ1𝑐 (𝜔).

(2.59)
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Note that in (2.58), 𝜂 in Theorem 1 is replaced with the notation 𝑛. Both notations
represent odd numbers, and this change does not affect the results. The notation
𝑛 is used specifically for consistency with the closed-loop analysis presented in the
following chapters.

From (2.58), 𝑀𝑜(𝜔) can be written as the format of the sum of its harmonics,
expressed as:

𝑀𝑜(𝜔) =∑∞
𝑛=1𝑀𝑛𝑜 (𝜔), (2.60)

where

𝑀𝑛𝑜 (𝜔) =
⎧
⎨
⎩

𝑀𝑙(𝜔)+𝑀1𝜌 (𝜔), for 𝑛 = 1,
𝑀𝑛𝜌 (𝜔), for odd 𝑛 > 1,
0, for even 𝑛 ≥ 2.

(2.61)

The 𝑛-th HOSIDF for the reset controller C𝑟 is defined as C𝑛𝑟 (𝜔) to describe the transfer
function from the input harmonics 𝑧𝑛𝑜 (𝑡) to the output signal 𝑚𝑛𝑜 (𝑡). From (2.58) and
(2.61), C𝑛𝑟 (𝜔) is given by

C𝑛𝑟 (𝜔) =
𝑀𝑛𝑜 (𝜔)
𝑍𝑛𝑜 (𝜔)

=
⎧
⎨
⎩

C𝑙(𝜔)+C1𝜌(𝜔), for 𝑛 = 1
C𝑛𝜌 (𝜔), for odd 𝑛 > 1,
0, for even ⩾ 2,

(2.62)

where
C𝑛𝜌 (𝜔) = 2Δ𝑥 (𝑛𝜔)Δ𝑞(𝜔)𝑒𝑗𝑛∠C𝑠(𝜔)/(𝑛𝜋). (2.63)

Thus, the proof is concluded.

2.D Proof of Theorem 3
Proof. Consider an open-loop reset control system with an input 𝑒𝑜(𝑡) = |𝐸|sin(𝜔𝑡 +∠𝐸)
and output 𝑦𝑜(𝑡) as depicted in Fig. 2.1, satisfying Assumption 1. This proof derives
the HOSIDFs for the open-loop system. The derivation process proceeds sequentially
from the input signal 𝑒𝑜(𝑡) on the left to the output signal 𝑦𝑜(𝑡) on the right.

First, the block C1 receives the input 𝑒𝑜(𝑡) and generates the output signal 𝑧𝑜(𝑡).
Define 𝑒𝑜(𝑡) with its Fourier transform 𝐸𝑜(𝜔). Then, the output signal 𝑧𝑜(𝑡) and its
Fourier transform 𝑍𝑜(𝜔) are given by:

𝑧𝑜(𝑡) = |𝐸C1(𝜔)|sin(𝜔𝑡 +∠𝐸 +∠C1(𝜔)),
𝑍𝑜(𝜔) = 𝐸𝑜(𝜔)C1(𝜔).

(2.64)

From (2.57) and (2.64), 𝑍𝑛𝑜 (𝜔) is given by

𝑍𝑛𝑜 (𝜔) = 𝐸𝑜(𝜔)C1(𝜔)𝑒𝑗(𝑛−1)(∠C1(𝜔)+∠𝐸). (2.65)

Next, the signal 𝑧𝑜(𝑡) in (2.64) is filtered by the block C2, producing the output signal
𝑎𝑜(𝑡). The signal 𝑎𝑜(𝑡) and its Fourier transform 𝐴𝑜(𝜔) are given by the following
equations:

𝑎𝑜(𝑡) = |𝐸C1(𝜔)C2(𝜔)|sin(𝜔𝑡 +∠𝐸 +∠C1(𝜔)+∠C2(𝜔)),
𝐴𝑜(𝜔) = 𝑍 1𝑜 (𝜔)C2(𝜔) = 𝐸𝑜(𝜔)C1(𝜔)C2(𝜔).

(2.66)
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From Fig. 2.1, the signal 𝑣𝑜(𝑡) and its Fourier transform denoted as 𝑉𝑜(𝜔) are given by

𝑣𝑜(𝑡) = 𝑎𝑜(𝑡) +𝑚𝑜(𝑡),
𝑉𝑜(𝜔) = 𝐴𝑜(𝜔)+𝑀𝑜(𝜔).

(2.67)

From (2.65) and (2.67), 𝑉𝑜(𝜔) is given by

𝑉𝑜(𝜔) = 𝐸𝑜(𝜔)C1(𝜔)C2(𝜔)+∑
∞
𝑛=1 𝐸𝑜(𝜔)C1(𝜔)𝑒𝑗(𝑛−1)(∠C1(𝜔)+∠𝐸)C𝑛𝑟 (𝜔). (2.68)

From (2.68), 𝑉𝑜(𝜔) can be written as the sum of its harmonics, denoted by 𝑉 𝑛𝑜 (𝜔),
expressed as:

𝑉𝑜(𝜔) =∑∞
𝑛=1𝑉 𝑛𝑜 (𝜔), (2.69)

where

𝑉 𝑛𝑜 (𝜔) =
⎧
⎨
⎩

𝐸𝑜(𝜔)C1(𝜔)[C2(𝜔)+C1𝑟 (𝜔)], for 𝑛 = 1,
𝐸𝑜(𝜔)C1(𝜔)𝑒𝑗(𝑛−1)(∠C1(𝜔)+∠𝐸)C𝑛𝑟 (𝜔), for odd 𝑛 > 1,
0, for even 𝑛 ≥ 2.

(2.70)

The output signal 𝑦𝑜(𝑡) of the open-loop system shown in Fig. 2.1 exhibits nonlinear
behavior and comprises 𝑛 harmonic components, defined as 𝑦𝑜(𝑡) = ∑∞

𝑛=1 𝑦𝑛𝑜 (𝑡). Let
𝑌𝑜(𝜔) and 𝑌 𝑛𝑜 (𝜔) denote the Fourier transforms of 𝑦𝑜(𝑡) and 𝑦𝑛𝑜 (𝑡), respectively. Based
on Fig. 2.1, 𝑌𝑜(𝜔) and 𝑌 𝑛𝑜 (𝜔) are given by

𝑌𝑜(𝜔) =∑∞
𝑛=1𝑌 𝑛𝑜 (𝜔),

𝑌 𝑛𝑜 (𝜔) = 𝑉 𝑛𝑜 (𝜔)C3(𝑛𝜔)P(𝑛𝜔).
(2.71)

By employing the “Virtual Harmonics Generator (VHG)” [12], the input signal
𝑒𝑜(𝑡) = |𝐸|sin(𝜔𝑡 +∠𝐸) generates 𝑛 harmonics, given by

𝑒𝑛𝑜 (𝑡) = |𝐸|sin(𝑛𝜔𝑡 +𝑛∠𝐸). (2.72)

Let 𝐸𝑜(𝑤) and 𝐸𝑛𝑜 (𝑤) denote the Fourier transforms of 𝑒𝑜(𝑡) and 𝑒𝑛𝑜 (𝑡), respectively.
From (2.72), 𝐸𝑛𝑜 (𝜔) is given by

𝐸𝑛𝑜 (𝑤) = 𝐸𝑜(𝑤)𝑒𝑗(𝑛−1)∠𝐸 . (2.73)

Thus, from (2.70), (2.71), and (2.73), the 𝑛-th transfer function L𝑛(𝜔) for the open-loop
reset system is given by

L𝑛(𝜔) =
𝑌 𝑛𝑜 (𝜔)
𝐸𝑛𝑜 (𝜔)

=
⎧
⎨
⎩

C1(𝜔)[C1𝑟 (𝜔)+C2(𝜔)]C3(𝜔)P(𝜔), for 𝑛 = 1,
C1(𝜔)𝑒𝑗(𝑛−1)∠C1(𝜔)C𝑛𝑟 (𝜔)C3(𝑛𝜔)P(𝑛𝜔), for odd 𝑛 > 1,
0, for even 𝑛 ⩾ 2.

(2.74)

Thus, the proof is concluded.
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3
Identifying theReliabilityof
Closed-LoopSIDFAnalysis

The Sinusoidal Input Describing Function (SIDF) is an effective tool for control system
analysis and design, with its accuracy directly influencing the performance of the resulting
control systems. Current SIDF analysis methods are based on the assumption of two
reset actions per steady-state cycle in sinusoidal-input closed-loop reset control systems.
However, when applied to systems that exhibit multiple (more than two) reset actions
per cycle, these SIDF methods will yield inaccurate results. To address this challenge,
this chapter presents a method for distinguishing between two-reset and multiple-reset
systems. This identification method is used for determining the reliability of SIDF analysis
in closed-loop reset systems. The effectiveness and time-saving benefits of this method are
demonstrated through simulations and experiments on a precision motion stage, validated
across six case studies.

 This chapter is based on the paper:
Zhang, Xinxin, and S. Hassan HosseinNia. “Enhancing the Reliability of Closed-Loop Describing Function
Analysis for Reset Control Applied to Precision Motion Systems.” arXiv preprint arXiv:2412.00502 (2024).
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3.1 Introduction
While reset control enhances gain-phase margins for the first-order harmonic, it
also introduces high-order (beyond the first order) harmonics. To evaluate these
harmonics in closed-loop reset systems, Higher-Order Sinusoidal Input Describing
Function (HOSIDF) analysis is effectively used [1–3]. The HOSIDF analysis quantifies
the magnitude and phase of the harmonics in reset systems by measuring the systems’
steady-state responses to sinusoidal inputs over a frequency range [1]. When only
the first-order harmonic is considered and high-order harmonics are neglected, this is
referred as the First-Order Sinusoidal Input Describing Function (FOSIDF) [4]. In this
chapter, both HOSIDF and FOSIDF are collectively termed SIDF analysis methods.

Current SIDF analysis methods for closed-loop reset systems [2–4] assume that
only two reset actions per steady-state cycle in sinusoidal-input reset systems.
However, sinusoidal-input closed-loop reset systems can exhibit either two reset
actions or multiple (more than two) reset actions per steady-state cycle, referred to as
two-reset systems and multiple-reset systems, respectively. The two-reset assumption
in SIDF analysis introduces inaccuracies when applied to multiple-reset systems, as
demonstrated in Section 3.2. In such cases, the validity of the SIDF analysis is
compromised, and thus the reliability of the reset control system design based on this
analysis is not guaranteed.

To improve the reliability of SIDF analysis in closed-loop reset systems, this
chapter introduces a method to identify frequency ranges where the validity of
SIDF analysis is compromised due to multiple resets. To do so, we begin by
deriving piecewise expressions for the steady-state trajectories of sinusoidal-input
closed-loop reset control systems. These expressions are then used to evaluate
whether the two-reset assumption in SIDF analysis holds for closed-loop systems.
Unlike previous methods, which required extensive time-domain simulations across
the entire frequency spectrum—making the process computationally intensive—the
proposed approach simplifies the evaluation. Experimental results from six case studies
demonstrate the efficiency and time-saving advantages of the new method.

The remainder of this chapter is organized as follows: Section 3.2 outlines
the research problem through illustrative examples. Section 3.3 presents a method
to differentiate between two-reset and multiple-reset actions in sinusoidal-input
closed-loop reset systems, establishing conditions for applying SIDF analysis to
two-reset systems. Section 3.4 validates the proposed method through simulations and
experimental results. Finally, Section 3.5 provides concluding remarks.

3.2 Problem Statement via Illustrative Examples
This section uses an example to illustrate the research problem. PID controllers are
commonly employed in mechatronics applications, and when the integrator in the PID
controller is replaced with the generalized Clegg Integrator (CI), the system becomes
a reset PID control system. The generalized CI is defined by (1.6), with the matrices
𝐴𝜌 = 𝛾 ∈ (−1,1) and (𝐴𝑅 ,𝐵𝑅 ,𝐶𝑅 ,𝐷𝑅) = (0,1,1,0). In this example, a reset PID control
system is employed to demonstrate the research problems addressed in this chapter.

The block diagram of the reset PID control system used in this chapter is depicted
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in Fig. 3.1. The parameter 𝜁 denotes the number of integrators in the system, with
this chapter utilizes cases where 𝜁 = 0 and 𝜁 = 1, referred to as Proportional-Clegg
Integrator-Derivative (PCID) and PCI-PID control systems, respectively. More
discussion on employing multiple integrators (𝜁 > 1) is beyond the scope of this work
and can be found in [5].
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Figure 3.1: Block diagram of the reset PID control system.

A PCID control system is designed as the illustrative example with the following
parameters: 𝑘𝑝 = 17.8, 𝜔𝑐 = 300𝜋 [rad/s], 𝜔𝑟 = 0.1𝜔𝑐 , 𝑘𝑟 = 0.85, 𝛾 = 0, 𝜔𝑑 = 𝜔𝑐/3.8,
𝜔𝑡 = 3.8𝜔𝑐 , 𝜔𝑓 = 10𝜔𝑐 , 𝜁 = 0, and C𝑠 = 1. A PID controller is also designed for
comparison with the following parameters: 𝑘𝑝 = 17.8, 𝜔𝑐 = 300𝜋 [rad/s], 𝜔𝑖 = 0.084𝜔𝑐 ,
𝜔𝑑 = 𝜔𝑐/3.8, 𝜔𝑡 = 3.8𝜔𝑐 , and 𝜔𝑓 = 10𝜔𝑐 . In this chapter, the bandwidth frequency refers
to the crossover frequency of the first-order harmonic of the control system.

The Bode plots for the PID and the first-order harmonic of the PCID control
systems are presented in Fig. 3.2. To ensure a fair comparison, both the PID and
PCID controllers are designed to maintain the same bandwidth of 100 Hz and a phase
margin of 50° with the plant P(𝑠) in (1.1). However, the PCID controller exhibits a
higher gain at frequencies below 100 Hz and a reduced gain at frequencies above 100
Hz. This design aims to enhance low-frequency tracking and disturbance rejection, and
high-frequency noise suppression.
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Figure 3.2: Bode plots of the PID and the first-order harmonic of the PCID control systems.

To evaluate the performance of closed-loop reset control systems, SIDF analysis
is commonly used. Consider a closed-loop reset system with a sinusoidal input
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𝑟(𝑡) = |𝑅|sin(𝜔𝑡), which satisfies Assumption 2. The magnitude of the closed-loop
sensitivity function |S(𝜔)| for the PCID control system, analyzed using SIDF analysis
[4], is presented in Fig. 3.3. This analytical result is validated by comparing it with
the simulated values of |S(𝜔)|, obtained by computing ||𝑒||∞/||𝑟 ||∞ at each frequency 𝜔.
Here, 𝑒(𝑡) represents the steady-state error, and 𝑟(𝑡) denotes the input signal.
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Figure 3.3: The value of |S(𝜔)| in the PCID control system, obtained from simulation and the SIDF
analysis. Multiple-reset and two-reset systems are shaded in gray and white, respectively.

In closed-loop reset systems with a sinusoidal input 𝑟(𝑡) = |𝑅|sin(𝜔𝑡), a two-reset
system is defined by exactly two reset events within each 2𝜋/𝜔 steady-state cycle,
whereas a multiple-reset system has more than two reset events per cycle. In Fig.
3.3, the region associated with multiple-reset systems is shaded in gray, where notable
discrepancies between SIDF analysis and simulation results are observed. These
differences arise because the two-reset assumption in the SIDF analysis, does not hold
in systems exhibiting multiple-reset actions.

Hence, to ensure the reliability of the SIDF analysis for closed-loop reset systems,
it is crucial to establish a two-reset condition. This chapter addresses this issue by the
following contribution: Consider a closed-loop reset system subjected to a sinusoidal
input signal defined by 𝑟(𝑡) = |𝑅|sin(𝜔𝑡), where |𝑅| represents the amplitude and 𝜔
denotes the frequency. As 𝜔 sweeps through the operational frequency range, the
proposed method identifies the frequency ranges where multiple reset actions lead to
deviations in the SIDF analysis, as illustrated by the gray area in Fig. 3.3.

3.3 Method for Identifying the Reliability of SIDF Anal-
ysis

This section introduces two main contributions. First, Lemma 2 provides the
piecewise expressions for the steady-state trajectories of sinusoidal-input closed-loop
reset systems. Building on these expressions, Theorem 4 presents a method for
identifying the frequency ranges corresponding to multiple-reset and two-reset actions
in sinusoidal-input closed-loop reset systems.

3.3.1 Piecewise Expressions for Sinusoidal-Input Reset Systems
Consider a closed-loop reset system with a sinusoidal input 𝑟(𝑡) = |𝑅|sin(𝜔𝑡) and
satisfying Assumption 2. In order to conduct steady-state analysis, to establish a
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reference point for one steady-state cycle is needed. This reference point 𝑡0 = 0 is
defined at the time instant where 𝑟(𝑡0) = 0 and ̇𝑟 (𝑡0) > 0.

Lemma 2 provides a piecewise expression of steady-state trajectories in
sinusoidal-input closed-loop reset systems.

Lemma 2. Consider a closed-loop reset control system as shown in Fig. 1.8, with
a sinusoidal reference input 𝑟(𝑡) = |𝑅|sin(𝜔𝑡), and satisfying Assumptions 2. Within
one steady-state period (0,2𝜋/𝜔], the reset instant 𝑡𝑖 , at which 𝑧𝑠(𝑡𝑖) = 0, divides the
system trajectories into piecewise functions. Let 𝑥𝑖(𝑡), 𝑧𝑖(𝑡), and 𝑧𝑖𝑠(𝑡) denote the
state, reset input, and reset-triggered signal, within the intervals (𝑡𝑖−1, 𝑡𝑖], where 𝑖 ∈ ℤ+,
respectively. They are expressed as follows:

𝑥𝑖+1(𝑡) = 𝑥𝑖(𝑡) −ℎ𝑠(𝑡 − 𝑡𝑖)𝑥𝑖(𝑡𝑖),
𝑧𝑖+1(𝑡) = 𝑧𝑖(𝑡) −ℎ𝛼 (𝑡 − 𝑡𝑖)𝑥𝑖(𝑡𝑖),
𝑧𝑖+1𝑠 (𝑡) = 𝑧𝑖𝑠(𝑡) −ℎ𝛽 (𝑡 − 𝑡1)𝑥𝑖(𝑡𝑖),

(3.1)

where
ℎ𝑠(𝑡) = F −1[T𝑠(𝜔)],
ℎ𝛼 (𝑡) = F −1[T𝛼 (𝜔)],
T𝛼 (𝜔) = C𝜎 (𝜔)𝐶𝑅T𝑠(𝜔),
S𝑙(𝜔) = 1/(1+L𝑙(𝜔)),
ℎ𝛽 (𝑡) = F −1[C𝑠(𝜔)T𝛼 (𝜔)],
C𝜎 (𝜔) = C3(𝜔)P(𝜔)C4(𝜔)C1(𝜔),
T𝑠(𝜔) = S𝑙(𝜔)(𝑗𝜔𝐼 −𝐴𝑅)−1(𝐴𝜌 − 𝐼 ),
L𝑙(𝜔) = C1(𝜔)(C𝑙(𝜔)+C2(𝜔))C3(𝜔)P(𝜔)C4(𝜔).

(3.2)

Proof. The proof is provided in Appendix 3.A.

3.3.2 Identifying Two-Reset Conditions in SIDF Analysis
Consider a closed-loop reset system with a sinusoidal input 𝑟(𝑡) = |𝑅|sin(𝜔𝑡) that
satisfies Assumption 2. Let 𝑡1 denote the first reset instant within a single steady-state
cycle. Before reaching steady-state responses, the system experiences transient
responses. Although transient responses do not influence the steady-state trajectories
in linear systems, they do affect the steady-state trajectories of reset systems. The
zero-crossings of the steady-state trajectory during the steady-state interval (0, 𝑡1)
affect the multiple-reset identification results. To streamline the analysis and obviate
the need for transient response calculations, the following assumption is introduced to
consider the transient effects during the steady-state time interval (0, 𝑡1) as negligible,
by assuming that during this time interval, the reset system dynamics are identical to
its BLS.

Assumption 3. The closed-loop reset control system depicted in Fig. 1.8, under
the sinusoidal reference input 𝑟(𝑡) = |𝑅|sin(𝜔𝑡) and satisfying Assumption 2, follows
the same steady-state trajectory as its BLS during the time interval (0, 𝑡1), where 𝑡1
represents the first reset instant of this system within one steady-state cycle.
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Assumption 3 may introduce deviations in multiple-reset system identification due
to transient effects. In practical reset system designs, these transient effects are often
mitigated using techniques such as feedforward control and high-bandwidth feedback
loops. Moreover, these deviations will be assessed through case studies in Section 3.4.

Define

sign(𝑥) = {0, if 𝑥 > 0,
1, if 𝑥 ≤ 0,

S𝑙𝑠(𝜔) = C𝑠(𝜔)C1(𝜔)S𝑏𝑙(𝜔),
Θ𝑏𝑙(𝜔) = (𝑗𝜔𝐼 −𝐴𝑅)−1𝐵𝑅C1(𝜔)S𝑏𝑙(𝜔),

𝑡𝑚 = ∠S𝑙𝑠(𝜔)/𝜔 +𝜋/𝜔 ⋅ sign(S𝑙𝑠(𝜔)),
Θ𝑠(𝜔) = |Θ𝑏𝑙(𝜔)|sin(∠S𝑙𝑠(𝜔)−∠Θ𝑏𝑙(𝜔)).

(3.3)

Under Assumption 3, Theorem 4 and Remark 2 delineate the condition for ensuring the
two-reset condition in the SIDF analysis methods for closed-loop reset control systems
[2–4].

Theorem 4. Consider a closed-loop reset control system illustrated in Fig. 1.8 with a
sinusoidal reference input 𝑟(𝑡) = |𝑅|sin(𝜔𝑡), satisfying Assumption 2 and 3. The system
is a multiple-reset system if there exists at least one time instant 𝑡𝛿 ∈ (0, 𝑡𝑚), such that:

Δ(𝑡𝛿 ) = |S𝑙𝑠(𝜔)|sin(𝜔𝑡𝛿 ) +ℎ𝛽 (𝑡𝛿 )Θ𝑠(𝜔) = 0, (3.4)

where S𝑙𝑠(𝜔) and Θ𝑠(𝜔) are given in (3.3), and ℎ𝛽 (𝑡) is given in (3.2).

Proof. The proof is provided in Appendix 3.B.

Theorem 4 is applicable to model-based reset control. To use it, first, the FRF data
of the plant P(𝑠), is measured, and system identification methods are employed to
derive the system model. Then, Theorem 4 is applied to identify the multiple-reset
frequency range in sinusoidal-input closed-loop reset systems. However, if the system
identification is inaccurate, the accuracy of Theorem 4 may also be compromised.
Additionally, deviations may arise from Assumption 3 if the transient response exhibits
large impact on the steady-state behavior. These deviations will be discussed and
validated through case studies in Section 3.4.

Based on Theorem 4, Remark 2 establishes the two-reset condition for the SIDF
analysis of closed-loop reset systems.

Remark 2. The SIDF analysis for closed-loop reset systems assumes a two-reset
condition. This condition holds if, for all frequencies 𝜔 within the SIDF analysis
frequency range, the criteria outlined in Theorem 4 is not met.

3.4 Results: Validation of Two-Reset Conditions
In this section, simulations and experiments are conducted to validate the effectiveness
of the approach introduced in Theorem 4. Specifically, six CI-based reset control
systems are designed and implemented on the precision motion system P(𝑠), as defined
in (1.1), serving as case studies.
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CI-based reset control systems are selected for this validation due to their straight-
forward implementation within the classical PID control framework, underscoring
their potential for practical applications. However, these systems often experience
multiple-reset actions in SIDF analysis [2], which complicates reliable analysis and
hinders their broader practical adoption. The systems are configured with the following
parameters:

1. Case1: a PCID control system, using the same design parameters outlined in
Section 3.2.

2. Case2: C𝑟 is built on a BLC C𝑙(𝑠) = 125.7/𝑠 with 𝛾 = 0, C1(𝑠) = C2(𝑠) = C𝑠(𝑠) = C4(𝑠) = 1,
C3(𝑠) = 40.0 ⋅ (𝑠/711.1+1)(𝑠/(8.8×103) + 1) ⋅ 1/(𝑠/(2.5×104) + 1).

3. Case3: C𝑟 is built on a BLC C𝑙(𝑠) = 125.7/𝑠 with 𝛾 = 0, C1(𝑠) = C2(𝑠) = C𝑠(𝑠) = C4(𝑠) = 1,
C3(𝑠) = 25.0 ⋅ (𝑠/327.7+1)(𝑠/(4.8×103) + 1) ⋅ 1/(𝑠/(1.3×104) + 1).

4. Case4: C𝑟 is built on a BLC C𝑙(𝑠) = 47.1/𝑠 with 𝛾 = 0, C1(𝑠) = C2(𝑠) = C𝑠(𝑠) = C4(𝑠) = 1,
C3(𝑠) = 24.0 ⋅ (𝑠/216.6+1)/(𝑠/(4.1×103) + 1) ⋅ (1+94.2/𝑠) ⋅ 1/(𝑠/(9.4×103) + 1).

5. Case5: C𝑟 is built on a BLC C𝑙(𝑠) = 94.2/𝑠 with 𝛾 = 0.3, C1(𝑠) = C2(𝑠) = C𝑠(𝑠) = C4(𝑠) =
1, C3(𝑠) = 20.5 ⋅ (𝑠/196.1+1)/(𝑠/(4.5×103) + 1) ⋅ (1+94.2/𝑠) ⋅ 1/(𝑠/(9.4×103) + 1).

6. Case6: reset controller has a BLC C𝑙 = (30𝜋)/𝑠 with the reset value 𝛾 = 0,
C1(𝑠) = 1/(𝑠/(150𝜋)+1), C𝑠(𝑠) = (𝑠 +1)/(𝑠 + 2), C2(𝑠) = 1, C3(𝑠) = 20.5 ⋅ (𝑠/(150𝜋) +
1)/(𝑠/(3000𝜋)+1) ⋅ (𝑠/(62.5𝜋)+1)/(𝑠/(1440𝜋)+1) ⋅ (1+15𝜋/𝑠) ⋅ 1/(𝑠/(3000𝜋)+1).

All systems have been verified to be stable and convergent.
In these six case studies, multiple-reset actions are observed at low frequencies.

Let 𝑓𝑏 represent the boundary frequency distinguishing two-reset and multiple-reset
systems, as determined by Theorem 4, and 𝑓 ′𝑏 denote the boundary frequency identified
through simulations. The deviations between these values, expressed as |𝑓𝑏 − 𝑓 ′𝑏 |, are
summarized in Table 3.1. Both prediction and simulation methods sweep the frequency
range from 1 Hz to 50 Hz with a step of 1 Hz. At each frequency, the sampling rate
is set to 104. The analysis reveals discrepancies between 1 and 4 Hz across the cases,
mainly due to the exclusion of transient response effects, as outlined in Assumption 3.
In practice, the reset system should be designed to minimize transient response effects,
for instance, by ensuring an appropriate bandwidth.

Despite deviations of 1–4 Hz between the simulation results and the predictions
from Theorem 4, the prediction method offers substantial time-saving benefits.
Identifying multiple-reset occurrences through simulation or using the numerical
method in [6] requires calculating the time response at each frequency across the
entire operational frequency range via a for loop in MATLAB, followed by counting
the reset instants per steady-state cycle. In contrast, Theorem 4 streamlines this
process. Table 3.1 presents a comparison of computation times for the prediction and
simulation methods. Results show that Theorem 4 achieves a reduction in computation
time by around 300-fold compared to the simulation approach.

If extreme precise identification of multiple-reset actions is needed, Theorem 4
can be utilized for initial estimation. Subsequent simulations can then focus on
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Table 3.1: The Theorem 4-predicted and simulated boundary frequencies 𝑓𝑏 and 𝑓 ′𝑏 that separate the
two-reset and multiple-reset systems, as well the computation time in Case1 to Case6.

Systems 𝑓𝑏 [Hz] 𝑓 ′𝑏 [Hz] |𝑓𝑏 −𝑓 ′𝑏 | [Hz] Prediction Time [s] Simulation Time [s]
Case1 30 32 2 1.38 356.63
Case2 39 40 1 1.00 422.51
Case3 37 41 4 1.32 386.97
Case4 34 32 2 1.56 413.28
Case5 37 33 4 1.28 502.76
Case6 38 42 4 0.96 370.60
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Figure 3.4: Experimental measured reset triggered signal 𝑧𝑠(𝑡) for reset control systems: Case1 with the
input frequencies at (a1) 20 Hz, (b1) 𝑓𝑏 = 30 Hz, and (c1) 40 Hz. Steady-state reset triggered signal
𝑧𝑠(𝑡) for Case6 with the input frequencies at (a2) 28 Hz, (b2) 𝑓𝑏 = 38 Hz, and (c2) 48 Hz. The regions
corresponding to multiple-reset systems are shaded in gray.

the predicted frequency range, ensuring both accuracy and efficiency in pinpointing
multiple-reset occurrences.

To further validate Theorem 4, Figure 3.4 presents experimentally measured
reset-triggered signals 𝑧𝑠(𝑡) for systems Case1 and Case6 in response to a reference
input of 𝑟(𝑡) = 1×10−6 sin(2𝜋𝑓 𝑡) [m]. Testing was conducted at the predicted threshold
frequency 𝑓 = 𝑓𝑏 Hz, as well as at 𝑓 = 𝑓𝑏 ± 10 Hz, over two steady-state cycles.
The results show that at (𝑓𝑏 − 10) Hz, the systems exhibit multiple-reset behavior,
while at (𝑓𝑏 + 10) Hz, they display two reset instants per cycle, characteristic of a
two-reset system. At the predicted threshold frequency 𝑓𝑏 , the systems demonstrate
3–4 reset instants per cycle, indicating a transitional behavior between two-reset and
multiple-reset categories. These observations confirm that 𝑓𝑏 serves as a boundary
frequency for distinguishing two-reset from multiple-reset actions, thereby validating
Theorem 4 within a 10 Hz tolerance.

3.5 Conclusion
In conclusion, this chapter introduces a method for identifying multiple-reset and
two-reset regions in sinusoidal-input closed-loop reset systems, providing engineers
with a practical tool to evaluate the reliability of Sinusoidal Input Describing Function
(SIDF) analysis. The effectiveness and time-saving advantages of this method have
been validated through simulations and experimental results across six case studies.
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Appendix

3.A Proof of Lemma 2
Proof. Consider a closed-loop reset control system in Fig. 1.8 under a sinusoidal
reference input 𝑟(𝑡) = |𝑅|sin(𝜔𝑡), and satisfying Assumption 2.

Within each steady-state period (0,2𝜋/𝜔], the reset instant 𝑡𝑖 is defined as the time
at which the reset-triggered signal 𝑧𝑠(𝑡𝑖) reaches zero. Let 𝑥𝑖(𝑡), 𝑚𝑖(𝑡), 𝑧𝑖(𝑡), and 𝑧𝑖𝑠(𝑡)
represent the state of the reset controller C𝑟 , the reset output, the reset input, and the
reset-triggered signal, during the intervals (𝑡𝑖−1, 𝑡𝑖], where 𝑖 ∈ ℤ+, respectively. This
proof presents the piecewise expressions for the steady-state trajectories of the system,
following the three steps outlined below.

Step 1: Derive the Piecewise Expression for 𝑥𝑖(𝑡).
From (1.6), the system operates without any reset actions during the time interval

(𝑡𝑖−1, 𝑡𝑖]. At the reset instant 𝑡𝑖 ∈ 𝐽 , the state 𝑥𝑖(𝑡𝑖) undergoes a reset (or jump) to a new
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state 𝑥𝑖(𝑡+𝑖 ), given by
𝑥𝑖(𝑡+𝑖 ) = 𝐴𝜌𝑥𝑖(𝑡𝑖). (3.5)

The jump in (3.5) introduces a step input signal ℎ𝑖(𝑡) into the system, impacting the
trajectories during the subsequent time interval (𝑡𝑖 , 𝑡𝑖+1] [3]. The signal ℎ𝑖(𝑡) is given
by

ℎ𝑖(𝑡) = [𝑥𝑖(𝑡+𝑖 ) −𝑥𝑖(𝑡𝑖)]ℎ(𝑡 − 𝑡𝑖) = (𝐴𝜌 − 𝐼 )𝑥𝑖(𝑡𝑖)ℎ(𝑡 − 𝑡𝑖), (3.6)
where ℎ(𝑡) is a unit step signal given by

ℎ(𝑡) = {1, 𝑡 > 0
0, 𝑡 ≤ 0 , (3.7)

with the Fourier transform 𝐻(𝜔) = F [ℎ(𝑡)] = (𝑗𝜔)−1.
Based on (1.6) and (3.6), the block diagram of the controller C for the time interval

(𝑡𝑖 , 𝑡𝑖+1] is illustrated in Fig. 3.5.
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Figure 3.5: State-space block diagram of C𝑟 during the time interval (𝑡𝑖 , 𝑡𝑖+1].

From Fig. 3.5, the signal 𝑥𝑖+1(𝑡) is derived from two inputs: 𝑧𝑖(𝑡) and ℎ𝑖(𝑡). The
respective contributions to 𝑥𝑖+1(𝑡) from 𝑧𝑖(𝑡) and ℎ𝑖(𝑡) are labeled as 𝑥𝑧𝑖+1(𝑡) and 𝑥ℎ𝑖+1(𝑡),
respectively.

Under Assumption 2, the system’s steady-state trajectories are guaranteed to
have well-defined Fourier transforms. This integrability implies that the system’s
time-domain signals have well-defined Fourier transforms. Let 𝑍𝑖(𝜔), 𝐻𝑖(𝜔), 𝑋𝑖(𝜔),
𝑋 𝑧𝑖+1(𝜔), and 𝑋ℎ𝑖+1(𝜔) represent the Fourier transforms of the signals 𝑧𝑖(𝑡), ℎ𝑖(𝑡), 𝑥𝑖(𝑡),
𝑥𝑧𝑖+1(𝑡), and 𝑥ℎ𝑖+1(𝑡), respectively.

Since no reset actions occur during the time interval (𝑡𝑖 , 𝑡𝑖+1], the superposition law
holds. Therefore, 𝑋𝑖+1(𝜔) is express as

𝑋𝑖+1(𝜔) = 𝑋 𝑧𝑖+1(𝜔)+𝑋ℎ𝑖+1(𝜔)

= 𝑋 𝑧𝑖+1(𝜔)
𝑍𝑖(𝜔)

⋅ 𝑍𝑖(𝜔)+
𝑋ℎ𝑖+1(𝜔)
𝐻𝑖(𝜔)

⋅𝐻𝑖(𝜔).
(3.8)

Based on Figs. 1.8 and 3.5, within the closed-loop reset system, when ℎ𝑖(𝑡) = 0, we have
𝑋 𝑧𝑖+1(𝜔)
𝑍𝑖(𝜔)

= (𝑗𝜔𝐼 −𝐴𝑅)−1𝐵𝑅 , (3.9)
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and when 𝑧𝑖(𝑡) = 0, it follows that

𝑋ℎ𝑖+1(𝜔)
𝐻𝑖(𝜔)

= S𝑙(𝜔)(𝑗𝜔𝐼 −𝐴𝑅)−1𝑗𝜔, (3.10)

By combining (3.8), (3.9), and (3.10), we derive

𝑋𝑖+1(𝜔) = (𝑗𝜔𝐼 −𝐴𝑅)−1𝐵𝑅𝑍𝑖(𝜔)+S𝑙(𝜔)(𝑗𝜔𝐼 −𝐴𝑅)−1𝑗𝜔𝐻𝑖(𝜔). (3.11)

According to (1.6), during the reset interval (𝑡𝑖 , 𝑡𝑖+1], we obtain 𝑋𝑖(𝜔) = (𝑗𝜔𝐼 −
𝐴𝑅)−1𝐵𝑅𝑍𝑖(𝜔). Substituting this 𝑋𝑖(𝜔) into (3.11) yields

𝑋𝑖+1(𝜔) = 𝑋𝑖(𝜔)+S𝑙(𝜔)(𝑗𝜔𝐼 −𝐴𝑅)−1𝑗𝜔𝐻𝑖(𝜔). (3.12)

From (3.6), the Fourier transform of ℎ𝑖(𝑡) is given by

𝐻𝑖(𝜔) = F [ℎ𝑖(𝑡)] = (𝐴𝜌 − 𝐼 )(𝑗𝜔)−1𝑒−𝑗𝜔𝑡𝑖𝑥𝑖(𝑡𝑖). (3.13)

Substituting (3.13) into (3.12), we obtain

𝑋𝑖+1(𝜔) = 𝑋𝑖(𝜔)+T𝑠(𝜔)𝑒−𝑗𝜔𝑡𝑖𝑥𝑖(𝑡𝑖), (3.14)

where
T𝑠(𝜔) = S𝑙(𝜔)(𝑗𝜔𝐼 −𝐴𝑅)−1(𝐴𝜌 − 𝐼 ). (3.15)

Conducting the Fourier transforms of equation (3.14), we obtain:

𝑥𝑖+1(𝑡) = 𝑥𝑖(𝑡) +ℎ𝑠(𝑡 − 𝑡𝑖)𝑥𝑖(𝑡𝑖), where ℎ𝑠(𝑡) = F −1[T𝑠(𝜔)]. (3.16)

Till here, the state of the reset controller during the time interval (𝑡𝑖 , 𝑡𝑖+1] denoted as
𝑥𝑖+1(𝑡) is derived.
Step 2: Derive the Piecewise Expression for 𝑧𝑖(𝑡).

Similarly to Step 1, from Fig. 3.5, the signal 𝑚𝑖+1(𝑡) is derived from two inputs:
𝑧𝑖(𝑡) and ℎ𝑖(𝑡). The contributions to the output 𝑚𝑖+1(𝑡) from 𝑧𝑖(𝑡) and ℎ𝑖(𝑡) are denoted
as 𝑚𝑧𝑖+1(𝑡) and 𝑚ℎ𝑖+1(𝑡), respectively. Let 𝑀𝑖(𝜔), 𝑀𝑧𝑖+1(𝜔), and 𝑀ℎ𝑖+1(𝜔) represent the
Fourier transforms of the signals 𝑚𝑖(𝑡), 𝑚𝑧𝑖+1(𝑡), and 𝑚ℎ𝑖+1(𝑡), respectively. Using the
same calculation process as in Step 1, 𝑀𝑖+1(𝜔) is expressed as:

𝑀𝑖+1(𝜔) =
𝑀𝑧𝑖+1(𝜔)
𝑍𝑖(𝜔)

⋅ 𝑍𝑖(𝜔)+
𝑀ℎ𝑖+1(𝜔)
𝐻𝑖(𝜔)

⋅𝐻𝑖(𝜔), (3.17)

where 𝑀𝑧𝑖+1(𝜔)
𝑍𝑖(𝜔)

= 𝐶𝑅(𝑗𝜔𝐼 −𝐴𝑅)−1𝐵𝑅 +𝐷𝑅 = C𝑙(𝜔),

𝑀ℎ𝑖+1(𝜔)
𝐻𝑖(𝜔)

= S𝑙(𝜔)𝐶𝑅(𝑗𝜔𝐼 −𝐴𝑅)−1𝑗𝜔.
(3.18)

Substituting (3.18) into (3.17), 𝑀𝑖+1(𝜔) is simplified to

𝑀𝑖+1(𝜔) = C𝑙(𝜔)𝑍𝑖(𝜔)+S𝑙(𝜔)𝐶𝑅(𝑗𝜔𝐼 −𝐴𝑅)−1𝑗𝜔𝐻𝑖(𝜔). (3.19)
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From (1.6), during the reset interval (𝑡𝑖 , 𝑡𝑖+1], we have

𝑀𝑖(𝜔) = C𝑙(𝜔)𝑍𝑖(𝜔). (3.20)

Substituting (3.13) and (3.20) into (3.19), 𝑀𝑖+1(𝜔) is given by

𝑀𝑖+1(𝜔) = 𝑀𝑖(𝜔)+𝐶𝑅T𝑠(𝜔)𝑒−𝑗𝜔𝑡𝑖𝑥𝑖(𝑡𝑖). (3.21)

From Fig. 1.8, in the closed-loop reset system, the following relation holds:

𝑍𝑖(𝜔) = 𝑅(𝜔)− (𝐴(𝜔)+𝑀𝑖(𝜔))C𝜎 (𝜔),
𝑍𝑖+1(𝜔) = 𝑅(𝜔)− (𝐴(𝜔)+𝑀𝑖+1(𝜔))C𝜎 (𝜔),

(3.22)

where 𝐴(𝜔) = F [𝑎(𝑡)] and

C𝜎 (𝜔) = C3(𝜔)P(𝜔)C4(𝜔)C1(𝜔). (3.23)

From (3.22), the following equations are derived

𝑀𝑖(𝜔) = [𝑅(𝜔)−𝑍𝑖(𝜔)] ⋅C𝜎 (𝜔)−1 −𝐴(𝜔),
𝑀𝑖+1(𝜔) = [𝑅(𝜔)−𝑍𝑖+1(𝜔)] ⋅C𝜎 (𝜔)−1 −𝐴(𝜔).

(3.24)

Substituting 𝑀𝑖+1(𝜔) and 𝑀𝑖(𝜔) from (3.24) into (3.21), 𝑍𝑖+1(𝜔) is obtained as

𝑍𝑖+1(𝜔) = 𝑍𝑖(𝜔)−T𝛼 (𝜔)𝑒−𝑗𝜔𝑡𝑖𝑥𝑖(𝑡𝑖), (3.25)

where
T𝛼 (𝜔) = C𝜎 (𝜔)𝐶𝑅T𝑠(𝜔). (3.26)

Conducting the Fourier transforms of equation (3.25), we obtain:

𝑧𝑖+1(𝑡) = 𝑧𝑖(𝑡) −ℎ𝛼 (𝑡 − 𝑡𝑖)𝑥𝑖(𝑡𝑖), where ℎ𝛼 (𝑡) = F −1[T𝛼 (𝜔)]. (3.27)

Up to this point, the input of the reset controller during the time interval (𝑡𝑖 , 𝑡𝑖+1]
denoted as 𝑧𝑖+1(𝑡) is derived.
Step 3: Derive the Piecewise Expression for 𝑧𝑖𝑠(𝑡).

During the reset intervals (𝑡𝑖−1, 𝑡𝑖] and (𝑡𝑖 , 𝑡𝑖+1], no reset action takes place. Let
𝑍 𝑖𝑠 (𝜔) denotes the Fourier transforms of 𝑧𝑖𝑠(𝑡). Therefore, the following relationship
holds:

𝑍 𝑖𝑠 (𝜔) = C𝑠(𝜔)𝑍𝑖(𝜔), and 𝑍 𝑖+1𝑠 (𝜔) = C𝑠(𝜔)𝑍𝑖+1(𝜔). (3.28)
Substituting (3.28) into (3.25), we obtain

𝑍 𝑖+1𝑠 (𝜔) = 𝑍 𝑖𝑠 (𝜔)−C𝑠(𝜔)T𝛼 (𝜔)𝑒−𝑗𝜔𝑡𝑖𝑥𝑖(𝑡𝑖). (3.29)

Conducting the Fourier transforms of equation (3.29), we obtain:

𝑧𝑖+1𝑠 (𝑡) = 𝑧𝑖𝑠(𝑡) −ℎ𝛽 (𝑡 − 𝑡𝑖)𝑥𝑖(𝑡𝑖), (3.30)

where
ℎ𝛽 (𝑡) = F −1[C𝑠(𝜔)T𝛼 (𝜔)]. (3.31)

Till here, the expression of the reset triggered signal during the time interval (𝑡𝑖 , 𝑡𝑖+1]
denoted as 𝑧𝑖+1𝑠 (𝑡) is derived. We conclude the proof.
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3.B Proof of Theorem 4
Proof. Consider the reset control system shown in Fig. 1.8 with a sinusoidal reference
input 𝑟(𝑡) = |𝑅|sin(𝜔𝑡) and satisfies Assumptions 2 and 3. This proof derives the
multiple-reset conditions in the sinusoidal-input reset system. It is organized into four
steps as follows.
Step 1: Derive the First Reset Instant 𝑡1 Within One Steady-State Cycle.

Under Assumption 3, the state and reset-triggered signal of the reset system during
the interval (0, 𝑡1], denoted as 𝑥1(𝑡) and 𝑧1𝑠 (𝑡), are equivalent to those of its BLS,
denoted as 𝑥𝑏𝑙(𝑡) and 𝑧𝑏𝑙(𝑡), respectively, as expressed by:

𝑥1(𝑡) = 𝑥𝑏𝑙(𝑡) = |𝑅Θ𝑏𝑙(𝜔)|sin(𝜔𝑡 +∠Θ𝑏𝑙(𝜔)),
𝑧1𝑠 (𝑡) = 𝑧𝑏𝑙(𝑡) = |𝑅S𝑙𝑠(𝜔)|sin(𝜔𝑡 +∠S𝑙𝑠(𝜔)),

(3.32)

where ∠Θ𝑏𝑙(𝜔) ∈ (−𝜋, 𝜋] and ∠S𝑙𝑠(𝜔) ∈ (−𝜋, 𝜋]. Functions Θ𝑏𝑙(𝜔) and S𝑙𝑠(𝜔) are
given in (3.3).

From Assumption 3 and (3.32), the first reset instant denoted as 𝑡1 within
one steady-state cycle, which corresponds to the first zero-crossing point of the
reset-triggered signal 𝑧1𝑠 (𝑡), is expressed as:

𝑡1 = {(𝜋 −∠S𝑙𝑠(𝜔))/𝜔, if ∠S𝑙𝑠(𝜔) ∈ (0, 𝜋],
(−∠S𝑙𝑠(𝜔))/𝜔, if ∠S𝑙𝑠(𝜔) ∈ (−𝜋, 0].

(3.33)

From (3.33), we have 𝑡1 ≤ 𝜋/𝜔.
Step 2: Draw the Conclusion that Reset Instants Occurring 𝜋/𝜔-Periodically.

Under Assumption 2, the reset-triggered signal 𝑧𝑠(𝑡) in the sinusoidal-input reset
system can be represented as an infinite series of harmonics [7], denoted by 𝑧𝑠𝑛(𝑡), and
is given by

𝑧𝑠(𝑡) =∑∞
𝑛=1 𝑧𝑠𝑛(𝑡) =∑∞

𝑛=1 |𝑍𝑠𝑛 |sin(𝑛𝜔𝑡 +∠𝑍𝑠𝑛), (3.34)

where |𝑍𝑠𝑛 | denotes the magnitude and ∠𝑍𝑠𝑛 represents the phase of each harmonic
component 𝑧𝑠𝑛(𝑡).

From (8.9), we obtain
𝑧𝑠(𝑡𝑖) = −𝑧𝑠(𝑡𝑖 ±𝜋/𝜔) = 0. (3.35)

From (3.35), the reset instant 𝑡𝑖 , where 𝑧𝑠(𝑡𝑖) = 0, occurs periodically with a period of
𝜋/𝜔.
Step 3: Establish the Condition for Multiple-Reset Systems: The Reset
Triggered Signal 𝑧2𝑠 (𝑡) Must Exhibit at Least One Zero-Crossing Within the
Interval (𝑡1,𝜋/𝜔).

From (3.35), within a steady-state period (0,2𝜋/𝜔], we obtain two conclusions:

1. At the time instant 𝑡1 and 𝑡1 +𝜋/𝜔, we have 𝑧𝑠(𝑡1) = 𝑧𝑠(𝑡1 +𝜋/𝜔) = 0.
2. Since 𝑡1 represents the first reset instant within a steady-state cycle (0,2𝜋/𝜔],

there is no zero-crossings of 𝑧𝑠(𝑡) in the both the time intervals (0, 𝑡1) and
(𝜋/𝜔, 𝑡1 +𝜋/𝜔).
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Figure 3.6: Plot of the steady-state reset-triggered signal 𝑧𝑠(𝑡), with regions of same color indicating the
same number of zero-crossings and opposite-sign trajectories. Green areas indicate no zero-crossings,
while yellow areas show regions with zero-crossings.

From these two conclusions, Fig. 3.6 shows the green area that have no reset
actions within a steady-state period (0,2𝜋/𝜔].

A system is classified as a multiple-reset system if it exhibits more than two
zero-crossings per 2𝜋/𝜔 steady-state cycle in response to a sinusoidal reference input
𝑟(𝑡) = |𝑅|sin(𝜔𝑡). If the reset-triggered signal 𝑧𝑠(𝑡) has no zero-crossings within the
interval (𝑡1,𝜋/𝜔), it will lack zero-crossings within (𝑡1 +𝜋/𝜔,2𝜋/𝜔). This results in
exactly two zero-crossings at 𝑡1 and 𝑡1 +𝜋/𝜔 over one steady-state cycle, (0,2𝜋/𝜔].

Therefore, a system exhibits multiple-reset behavior if the reset-triggered signal
𝑒𝑠(𝑡) has at least one zero-crossing within (𝑡1,𝜋/𝜔), as illustrated in the yellow-shaded
area of Fig. 3.6.

From Lemma 2, 𝑧𝑠(𝑡) can be broken down into piecewise components 𝑧𝑖𝑠(𝑡) over
intervals (𝑡𝑖 , 𝑡𝑖+1]. Thus, for 𝑧𝑠(𝑡) to have at least one zero-crossing within (𝑡1,𝜋/𝜔),
the second piece 𝑧2𝑠 (𝑡) must include at least one zero-crossing within the interval
𝑡 ∈ (𝑡1,𝜋/𝜔).
Step 4: Formulate the Multiple-Reset Condition.

From (3.1), the reset-triggered signal 𝑧2𝑠 (𝑡) during the time interval (𝑡1, 𝑡2] can be
expressed as:

𝑧2𝑠 (𝑡) = 𝑧1𝑠 (𝑡) −ℎ𝛽 (𝑡 − 𝑡1)𝑥1(𝑡1), for 𝑡 ∈ (𝑡1, 𝑡2]. (3.36)

From (3.32) and (3.33), 𝑥1(𝑡1) is given by

𝑥1(𝑡1) = |𝑅Θ𝑏𝑙(𝜔)|sin(𝜔𝑡1 +∠Θ𝑏𝑙(𝜔))

= {|𝑅| ⋅Θ𝑠(𝜔), if ∠S𝑙𝑠(𝜔) ∈ (0, 𝜋],
−|𝑅| ⋅Θ𝑠(𝜔), if ∠S𝑙𝑠(𝜔) ∈ (−𝜋, 0],

(3.37)

where

Θ𝑠(𝜔) = |Θ𝑏𝑙(𝜔)|sin(∠S𝑙𝑠(𝜔)−∠Θ𝑏𝑙(𝜔)). (3.38)
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By defining 𝑡 = 𝑡𝛿 + 𝑡1 and substituting 𝑥1(𝑡1) from (3.37) into (3.36), along with 𝑧1𝑠 (𝑡)
defined from (3.32), we obtain:

𝑧2𝑠 (𝑡𝛿 + 𝑡1) = {−|𝑅|Δ(𝑡𝛿 ), if ∠S𝑙𝑠(𝜔) ∈ (0, 𝜋],
|𝑅|Δ(𝑡𝛿 ), if ∠S𝑙𝑠(𝜔) ∈ (−𝜋, 0],

(3.39)

where
Δ(𝑡𝛿 ) = |S𝑙𝑠(𝜔)|sin(𝜔𝑡𝛿 ) +ℎ𝛽 (𝑡𝛿 )Θ𝑠(𝜔). (3.40)

The multiple-reset condition requires that 𝑧2𝑠 (𝑡) has at least one zero-crossing within
the time interval (𝑡1,𝜋/𝜔). Using the relation 𝑡 = 𝑡𝛿 + 𝑡1 and from (3.39), this condition
is transformed to: there exists a time interval 𝑡𝛿 ∈ (0,𝜋/𝜔 − 𝑡1) such that 𝑧2𝑠 (𝑡𝛿 + 𝑡1) has
at least one zero-crossing.

From (3.33), the value of 𝜋/𝜔 − 𝑡1 is given by

𝜋/𝜔 − 𝑡1 = {(∠S𝑙𝑠(𝜔))/𝜔, if ∠S𝑙𝑠(𝜔) ∈ (0, 𝜋],
(𝜋 +∠S𝑙𝑠(𝜔))/𝜔, if ∠S𝑙𝑠(𝜔) ∈ (−𝜋, 0].

(3.41)

From (3.41), 𝜋/𝜔 − 𝑡1 can be expressed as

𝑡𝑚 = 𝜋/𝜔 − 𝑡1 = ∠S𝑙𝑠(𝜔)/𝜔 +𝜋/𝜔 ⋅ sign(S𝑙𝑠(𝜔), (3.42)

where

sign(𝑥) = {0, if 𝑥 > 0,
1, if 𝑥 ≤ 0. (3.43)

Since a zero-crossing is independent of amplitude, the multiple-reset condition is
simplified to verifying the existence of a time interval 𝑡𝛿 ∈ (0, 𝑡𝑚) such that Δ(𝑡𝛿 ) = 0.
This completes the proof.
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4
FrequencyResponseAnalysis for

Closed-LoopResetControl Systems
Building on the open-loop Higher-Order Sinusoidal Input Describing Functions (HOSIDFs)
presented in Chapter 2 and the two-reset conditions provided in Chapter 3, this chapter
develops HOSIDFs for closed-loop two-reset control systems. The closed-loop HOSIDFs
correct the inaccuracies in previous analysis methods and establish a connection with
open-loop HOSIDFs analysis. The accuracy and effectiveness of the proposed methods
are successfully validated through simulations and experiments conducted on a precision
motion system.

 This chapter is based on the paper:
Zhang, Xinxin, and S. Hassan HosseinNia. “Higher-Order Sinusoidal Input Describing Functions for
Open-Loop and Closed-Loop Reset Control with Application to Mechatronics Systems.” arXiv preprint
arXiv:2412.13086 (2024).
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4.1 Introduction
For frequency response analyses of reset control systems, both open-loop and
closed-loop analyses are crucial. Based on their connection, controllers are designed
in open-loop to shape and optimize closed-loop system performance [1, 2]. Chapter
2 introduced accurate Higher-Order Sinusoidal Input Describing Functions (HOSIDFs)
for open-loop reset control systems. However, performing frequency response analysis
for closed-loop reset feedback control systems is challenging, as high-order harmonics
introduce additional harmonics through the feedback loop, disrupting the superposition
principle and complicating system dynamics. The study in [3] introduced HOSIDFs
analysis for such systems and established open-loop and closed-loop HOSIDFs
connection. However, it failed to account for the effects of reset actions on high-order
harmonics within the feedback loop, leading to inaccuracies. Furthermore, no HOSIDFs
currently exist for analyzing the closed-loop generalized reset control systems in Fig.
1.8.

Motivated by the limitations in closed-loop frequency response analysis, this
chapter develops new HOSIDFs for closed-loop generalized reset control systems,
addressing the inaccuracies found in previous research. Additionally, it establishes
a connection between open-loop and closed-loop HOSIDFs in the frequency domain.
The chapter is structured as follows: Section 4.2 introduces the analysis model for
closed-loop reset systems and formulates the HOSIDF analysis method. Section
4.3 presents simulations and experimental validations on a precision motion stage
to demonstrate the effectiveness of the proposed approach. Finally, Section 4.4
summarizes the findings and conclusions.

4.2 Method: Frequency Response Analysis for Closed-
loop Reset Systems

4.2.1 Sinusoidal-Input Closed-Loop Reset Systems Analysis Models
Consider a closed-loop reset control system depicted in Fig. 1.8, operating under the
conditions specified in Assumption 2 and subjected to a sinusoidal input signal of
frequency 𝜔. Under these conditions, the system’s trajectories—namely 𝑒(𝑡) (error),
𝑧(𝑡) (input to the reset controller), 𝑧𝑠(𝑡) (reset-triggered signal), 𝑢(𝑡) (control input),
and 𝑦(𝑡) (output)—become periodic and share the same fundamental frequency as the
input signal 𝜔 [4, 5]. These signals can be expressed as:

𝑒(𝑡) =∑∞
𝑛=1 𝑒𝑛(𝑡) =∑∞

𝑛=1 |𝐸𝑛 |sin(𝑛𝜔𝑡 +∠𝐸𝑛),
𝑧(𝑡) =∑∞

𝑛=1 𝑧𝑛(𝑡) =∑∞
𝑛=1 |𝑍𝑛 |sin(𝑛𝜔𝑡 +∠𝑍𝑛),

𝑧𝑠(𝑡) =∑∞
𝑛=1 𝑧𝑛𝑠 (𝑡) =∑∞

𝑛=1 |𝑍𝑛𝑠 |sin(𝑛𝜔𝑡 +∠𝑍𝑛𝑠 ),
=∑∞

𝑛=1 |𝑍𝑛C𝑠(𝑛𝜔)|sin(𝑛𝜔𝑡 +∠𝑍𝑛 +∠C𝑠(𝑛𝜔)),
𝑢(𝑡) =∑∞

𝑛=1 𝑢𝑛(𝑡) =∑∞
𝑛=1 |𝑈𝑛 |sin(𝑛𝜔𝑡 +∠𝑈𝑛),

𝑦(𝑡) =∑∞
𝑛=1 𝑦𝑛(𝑡) =∑∞

𝑛=1 |𝑌𝑛 |sin(𝑛𝜔𝑡 +∠𝑌𝑛),

(4.1)
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where the phase for each signal, such as the ∠𝐸𝑛 , is defined within the range of
(−𝜋,𝜋]. The Fourier transforms of the signals and their 𝑛th harmonic are denoted as
𝐸(𝜔) (𝐸𝑛(𝜔)), 𝑍(𝜔) (𝑍𝑛(𝜔)), 𝑍𝑠(𝜔) (𝑍𝑛𝑠 (𝜔)), 𝑈(𝜔) (𝑈𝑛(𝜔)), and 𝑌(𝜔) (𝑌𝑛(𝜔)).

During the design phase of reset control systems, we utilize the method outlined in
Chapter 3 to ensure that the system exhibits two reset instances per steady-state period.
This configuration indicates that the first-order harmonic 𝑧1𝑠 (𝑡) is predominant in the
reset-triggered signal 𝑧𝑠(𝑡) in (4.1), while the contributions of higher-order harmonics
𝑧𝑛𝑠 (𝑡) for 𝑛 > 1 are minimal. Consequently, we introduce the following assumption:

Assumption 4. In the closed-loop reset control system with a sinusoidal input signal
sin(𝜔𝑡), the reset-triggered signal is given by 𝑧𝑠(𝑡) = 𝑧1𝑠 (𝑡).

While this assumption may introduce some deviation in the closed-loop analysis,
such deviations are expected to be minor, as will be demonstrated in the forthcoming
examples.

Under Assumption 4, the set of reset instants of the closed-loop reset control
system is given by 𝐽 ∶= {𝑡𝑐 = (𝑐 ⋅ 𝜋 − ∠𝑍 1𝑠 )/𝜔|𝜂 ∈ ℤ+}. Since the reset interval
𝜎𝑖 = 𝑡𝑖+1 − 𝑡𝑖 = 𝜋/𝜔 > 𝛿min [6], the trajectories for the reset control system are Zeno-free.

Consider a closed-loop reset control system, as illustrated in Fig. 1.8, subjected to
a sinusoidal input signal 𝑟(𝑡) = |𝑅|sin(𝜔𝑡). The system operates under the conditions
specified in Assumptions 2 and 4. This subsections presents two analysis models for
this system. The following content outlines the process of deriving the first analytical
model for this system, as depicted in Fig. 4.1.
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Figure 4.1: Block diagram of the closed-loop reset control system, showing the decomposition of 𝑣(𝑡)
into its 𝑛-th harmonic components, expressed as 𝑣(𝑡) = ∑∞

𝑛=1 𝑣𝑛(𝑡). The colored blocks correspond to the
equations with matching colors.

First, using the concept of the “Virtual Harmonic Separator” [7], the error signal
𝑒(𝑡), is decomposed into its harmonic components, denoted by 𝑒𝑛(𝑡), where 𝑛 = 2𝑘 +1
and 𝑘 ∈ ℕ, as defined in (4.1). Next, each harmonic 𝑒𝑛(𝑡) filtered by the LTI system C1,
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generates the output signal 𝑧𝑛(𝑡) given by

𝑧𝑛(𝑡) = |𝑍𝑛 |sin(𝑛𝜔𝑡 +∠𝑍𝑛),
|𝑍𝑛 | = |𝐸𝑛C1(𝑛𝜔)|,
∠𝑍𝑛 = ∠𝐸𝑛 +∠C1(𝑛𝜔).

(4.2)

Signals 𝑧𝑛(𝑡), processed through the blocks C𝑟 and C2, produce outputs 𝑚𝑛(𝑡) and
𝑎𝑛(𝑡), respectively. We first derive the expression for 𝑚𝑛(𝑡).

The reset trigger signal 𝑧1𝑠 (𝑡) is given by

𝑧1𝑠 (𝑡) = |𝑍 1𝑠 |sin(𝜔𝑡 +∠𝑍 1𝑠 ),
|𝑍 1𝑠 | = |𝑍1(𝜔)| ⋅ |C𝑠(𝜔)| = |𝐸1C1(𝜔)C𝑠(𝜔)|,
∠𝑍 1𝑠 = ∠𝑍1 +∠C𝑠(𝜔) = ∠𝐸1 +∠C1(𝜔)+∠C𝑠(𝜔).

(4.3)

Based on Corollary 1, the reset controller C𝑟 under a sinusoidal input signal 𝑧𝑛(𝑡) in
(4.2) and a reset triggered signal 𝑧1𝑠 (𝑡) in (4.3) generates the output 𝑚𝑛(𝑡), given by

𝑚𝑛(𝑡) = 𝑚𝑛
𝑙 (𝑡) +𝑚𝑛𝜌 (𝑡), (4.4)

where 𝑚𝑛
𝑙 (𝑡) is the linear component, given by

𝑚𝑛
𝑙 (𝑡) = |𝑀𝑛

𝑙 |sin(𝑛𝜔𝑡 +∠𝑀𝑛
𝑙 ),

|𝑀𝑛
𝑙 | = |𝑍𝑛C𝑙(𝑛𝜔)| = |𝐸𝑛C1(𝑛𝜔)C𝑙(𝑛𝜔)|,

∠𝑀𝑛
𝑙 = ∠𝑍𝑛 +∠C𝑙(𝑛𝜔) = ∠𝐸𝑛 +∠C1(𝑛𝜔)+∠C𝑙(𝑛𝜔),

(4.5)

and 𝑚𝑛𝜌 (𝑡) is the nonlinear component given in (2.6).
Meanwhile, the LTI system C2 processes the input signal 𝑧𝑛(𝑡) in (4.2) and produces

the output 𝑎𝑛(𝑡), given by

𝑎𝑛(𝑡) = |𝐴𝑛 |sin(𝑛𝜔𝑡 +∠𝐴𝑛),
|𝐴𝑛 | = |𝑍𝑛 | ⋅ |C2(𝑛𝜔)| = |𝐸𝑛C1(𝑛𝜔)C2(𝑛𝜔)|,
∠𝐴𝑛 = ∠𝑍𝑛 +∠C2(𝑛𝜔) = ∠𝐸𝑛 +∠C1(𝑛𝜔)+∠C2(𝑛𝜔).

(4.6)

Finally, by summing 𝑚𝑛(𝑡) from (4.4) and 𝑎𝑛(𝑡) from (4.6), the signal 𝑣(𝑡) in Fig. 4.1, is
obtained as follows:

𝑣(𝑡) =∑∞
𝑛=1 𝑣𝑛(𝑡),

𝑣𝑛(𝑡) = 𝑚𝑛(𝑡) +𝑎𝑛(𝑡).
(4.7)

Here, the block diagram in Fig. 4.1 is constructed.
Then, building upon Fig. 4.1, Theorem 5 concludes the development of the second

analysis model for the closed-loop reset control system, visually in Fig. 4.2.

Theorem 5. Consider a closed-loop reset control system in Fig. 1.8 with the reset
controller C𝑟 (1.6), under a sinusoidal reference input signal 𝑟(𝑡) = |𝑅|sin(𝜔𝑡) and
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satisfying Assumptions 2 and 4. The steady-state signal 𝑣(𝑡) in Fig. 4.1 is given by:

𝑣(𝑡) = 𝑣𝑙(𝑡) + 𝑣𝜌(𝑡),
𝑣𝜌(𝑡) = Γ(𝜔)𝑚1𝜌(𝑡),
𝑣𝑙(𝑡) =∑∞

𝑛=1 𝑣
𝑛
𝑙 (𝑡),

𝑣𝑛𝑙 (𝑡) = F −1[C𝜆(𝑛𝜔)𝑍𝑛(𝜔)],
𝑚1𝜌(𝑡) =∑∞

𝑛=1F −1[|𝑍1C𝑛𝜌 (𝜔)|sin(𝑛𝜔𝑡 +𝑛∠𝑍1 +∠C𝑛𝜌 (𝜔))].

(4.8)

where

Ψ𝑛(𝜔) = |L𝜌(𝑛𝜔)|/|1 +L𝑙(𝑛𝜔)|,
Δ1𝑐 (𝜔) = |Δ𝑙(𝜔)|sin(∠Δ𝑙(𝜔)−∠C𝑠(𝜔)),
Γ(𝜔) = 1/(1−∑∞

𝑛=3Ψ𝑛(𝜔)Δ𝑛𝑐 (𝜔)/Δ1𝑐 (𝜔)),
L𝜌(𝑛𝜔) = C1(𝑛𝜔)C𝑛𝜌 (𝜔)C3(𝑛𝜔)P(𝑛𝜔)C4(𝑛𝜔),
Δ𝑛𝑐 (𝜔) = −|Δ𝑙(𝑛𝜔)|sin(∠Δ𝑙(𝑛𝜔)+∠L𝜌(𝑛𝜔)−∠(1+L𝑙(𝑛𝜔))−𝑛∠C𝑠(𝜔)), for 𝑛 > 1.

(4.9)

Function C𝑙(𝜔) is given in (1.7), C𝑛𝜌 (𝜔) and Δ𝑙(𝑛𝜔) can be found in (2.8), L𝑙(𝑛𝜔) is
defined in (3.2).

Proof. The proof is provided in Appendix 4.A.
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Figure 4.2: Block diagram of the closed-loop reset control system, showing the decomposition of 𝑣(𝑡)
into its linear component 𝑣𝑙 (𝑡) and nonlinear component 𝑣𝜌(𝑡). The colored blocks correspond to the
equations with the same colors referenced in the proof in Appendix 4.A.
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4.2.2 HOSIDFs for Closed-Loop Reset Systems
From the analysis model for the closed-loop reset control system as shown in Fig.
4.2 and Theorem 5, the HOSIDFs for closed-loop reset control systems are derived in
Theorem 6.

Theorem 6. Consider a closed-loop two-reset control system in Fig. 1.8, with the
input signal defined as 𝑟(𝑡) = |𝑅|sin(𝜔𝑡), under Assumptions 2 and 4. Utilizing
the “Virtual Harmonic Generator” approach [7], the input signal 𝑟(𝑡) generates
harmonics 𝑟𝑛(𝑡) = |𝑅|sin(𝑛𝜔𝑡) with Fourier transforms of 𝑅𝑛(𝜔) = |𝑅|F [sin(𝑛𝜔𝑡)]. The
𝑛th Higher-Order Sinusoidal Input Sensitivity Function (HOSISF) S𝑛(𝜔), Higher-Order
Sinusoidal Input Complementary Sensitivity Function T𝑛(𝜔), and the Higher-Order
Sinusoidal Input Control Sensitivity Function CS𝑛(𝜔) are given as follows:

S𝑛(𝜔) =
𝐸𝑛(𝜔)
𝑅𝑛(𝜔)

=
⎧
⎨
⎩

1/(1+L𝑜(𝜔)), for 𝑛 = 1,
−S𝑙(𝑛𝜔) ⋅ |S1(𝜔)|𝑒𝑗𝑛∠S1(𝜔) ⋅ Γ(𝜔)L𝑛(𝜔)C4(𝑛𝜔), for odd 𝑛 > 1,
0, for even 𝑛 ⩾ 2,

(4.10)

T𝑛(𝜔) =
𝑌𝑛(𝜔)
𝑅𝑛(𝜔)

=
⎧
⎨
⎩

L𝑜(𝜔)/[C4(𝜔) ⋅ (1+L𝑜(𝜔))], for 𝑛 = 1,
S𝑙(𝑛𝜔) ⋅ |S1(𝜔)|𝑒𝑗𝑛∠S1(𝜔) ⋅ Γ(𝜔)L𝑛(𝜔), for odd 𝑛 > 1,
0, for even 𝑛 ⩾ 2,

(4.11)

CS𝑛(𝜔) =
𝑈𝑛(𝜔)
𝑅𝑛(𝜔)

=
⎧
⎨
⎩

L𝑜(𝜔)/[C4(𝜔) ⋅P(𝜔) ⋅ (1+L𝑜(𝜔))], for 𝑛 = 1,
S𝑙(𝑛𝜔) ⋅ |S1(𝜔)|𝑒𝑗𝑛∠S1(𝜔) ⋅ Γ(𝜔)L𝑛(𝜔)/P(𝑛𝜔), for odd 𝑛 > 1,
0, for even 𝑛 ⩾ 2,

(4.12)
Where

L𝑜(𝑛𝜔) = L𝑛(𝜔)+ (Γ(𝜔)−1)L𝜌(𝑛𝜔). (4.13)
and the function S𝑙(𝑛𝜔) represents the base-linear sensitivity function defined in (3.2).
The functions Γ(𝜔) and L𝜌(𝑛𝜔) are specified in (4.9), while L𝑙(𝑛𝜔) is defined in (3.2).

Proof. The proof is provided in Appendix 4.B.

Following the derivation process outlined in Theorem 6 and its proof in Appendix.
4.B, Corollary 2 presents the Higher-Order Sinusoidal Input Process Sensitivity Function
PS𝑛(𝜔) for closed-loop reset control systems.

Corollary 2. Consider a closed-loop two-reset control system in Fig. 1.8, with the
disturbance input signal 𝑑(𝑡) = |𝐷|sin(𝜔𝑡), under Assumptions 2 and 4. Utilizing
the “Virtual Harmonic Generator” [7], the input signal 𝑑(𝑡) generates harmonics
𝑑𝑛(𝑡) = |𝐷|sin(𝑛𝜔𝑡) with Fourier transforms of 𝐷𝑛(𝜔) = |𝐷|F [sin(𝑛𝜔𝑡)]. The 𝑛th
Higher-Order Sinusoidal Input Process Sensitivity Function PS𝑛(𝜔) is given as follows:

PS𝑛(𝜔) =
𝐸𝑛(𝜔)
𝐷𝑛(𝜔)

=
⎧
⎨
⎩

−P(𝜔)C4(𝜔)/(1+L𝑜(𝜔)), for 𝑛 = 1,
−S𝑙(𝑛𝜔) ⋅ |PS1(𝜔)|𝑒𝑗𝑛∠PS1(𝜔) ⋅ Γ(𝜔)L𝑛(𝜔)C4(𝑛𝜔), for odd 𝑛 > 1,
0, for even 𝑛 ⩾ 2.

(4.14)



4.2 Method: Frequency Response Analysis for Closed-loop Reset Systems

4

61

Theorem 6 and Corollary 2 establish the relationship between the HOSIDFs for
open-loop and closed-loop reset control systems. The following remark illustrates this
connection for the sensitivity functions S𝑛(𝜔).
Remark 3. The sensitivity functions S𝑛(𝜔) in (4.10) for the closed-loop reset feedback
control system in Fig. 1.8 are related to the open-loop transfer function L𝑛(𝜔) in (2.9)
and the base-linear sensitivity function S𝑙(𝜔) in (3.2) as follows:

1. For the first-order harmonic (𝑛 = 1), the sensitivity function is given by:

S1(𝜔) =
SDF(𝜔)

1+Γ𝜌(𝜔)SDF(𝜔)
, (4.15)

where
SDF(𝜔) =

1
1+L1(𝜔)

,
Γ𝜌(𝜔) = (Γ(𝜔)−1)L𝜌(𝜔).

(4.16)

Here, SDF(𝜔) represents the sensitivity function derived using the SIDF analysis.
From (4.15) and (4.16), when Γ(𝜔) = 1, it follows that S1(𝜔) = SDF(𝜔). This
indicates that the first-order harmonic S1(𝜔) is directly related to the first-order
harmonic of the open-loop transfer function L1(𝜔), enabling the application
of linear loop-shaping techniques for the design of reset control systems [8].
Conversely, as Γ(𝜔) deviates further from 1, i.e., when |Γ(𝜔)− 1| becomes larger,
S1(𝜔) diverges from the predictions of DF analysis, indicating an increased
influence of high-order harmonics.

2. For higher-order harmonics where 𝑛 > 1, the magnitude ratio to the first-order
harmonic is expressed as:

|S𝑛(𝜔)|
|S1(𝜔)|

= |||S𝑙(𝑛𝜔) ⋅ Γ(𝜔)L𝑛(𝜔)C4(𝑛𝜔)|||. (4.17)

From (4.17), for a reset control system with a settled base-linear sensitivity
function S𝑙(𝑛𝜔), reducing |Γ(𝜔)L𝑛(𝜔)C4(𝑛𝜔)| in the open loop can decrease
|S𝑛(𝜔)|/|S1(𝜔)| in the closed loop.

Based on Theorem 6, Remark 4 provides a method for calculating the steady-state
trajectories of sinusoidal reference input in closed-loop reset control systems.

Remark 4. Under Assumptions 2 and 4, in a closed-loop reset control system in Fig.
1.8 with a sinusoidal reference signal 𝑟(𝑡) = |𝑅|sin(𝜔𝑡), the steady-state error signal
𝑒𝑟 (𝑡), output signal 𝑦𝑟 (𝑡), and control input signal 𝑢𝑟 (𝑡) are given by

𝑒𝑟 (𝑡) =∑∞
𝑛=1 |𝑅| ⋅ |S𝑛(𝜔)|sin(𝑛𝜔𝑡 +∠S𝑛(𝜔)),

𝑦𝑟 (𝑡) =∑∞
𝑛=1 |𝑅| ⋅ |T𝑛(𝜔)|sin(𝑛𝜔𝑡 +∠T𝑛(𝜔)),

𝑢𝑟 (𝑡) =∑∞
𝑛=1 |𝑅| ⋅ |CS𝑛(𝜔)|sin(𝑛𝜔𝑡 +∠CS𝑛(𝜔)).

(4.18)
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Based on Corollary 2, Remark 5 provides a method for calculating the steady-state
error in a closed-loop reset control system when subjected to a sinusoidal disturbance
input.

Remark 5. Under Assumptions 2 and 4, the steady-state error signal 𝑒𝑑 (𝑡) of a
closed-loop reset control system in Fig. 1.8, with a sinusoidal disturbance input
𝑑(𝑡) = |𝐷|sin(𝜔𝑡), is given by:

𝑒𝑑 (𝑡) =∑∞
𝑛=1 |𝐷| ⋅ |PS𝑛(𝜔)|sin(𝑛𝜔𝑡 +∠PS𝑛(𝜔)). (4.19)

4.3 Results: Validation of Closed-Loop HOSIDFs
4.3.1 Case Study 1
This subsection uses illustrative examples and conducts simulations and experiments
to validate the accuracy of Theorem 6 and Corollary 2.

The parameters of the illustrative system are as follows: C1(𝑠) = 𝑠/(150𝜋)+1
𝑠/(3000𝜋)+1 ,

C𝑠(𝑠) = 1/(𝑠/100 + 1), reset controller is built with a BLS system C𝑙 = 1/(𝑠/(300𝜋) + 1)
with a reset value 𝛾 = 0, C2(𝑠) = C4(𝑠) = 1, C3(𝑠) = 45 ⋅ (𝑠/(300𝜋)+1)/(𝑠/(30000𝜋)+1) ⋅
(𝑠 + 30𝜋)/𝑠 ⋅ (𝑠/(130𝜋)+1)/(𝑠/(699𝜋)+1) ⋅ 1/(𝑠/(3000𝜋)+1), and the plant P(𝑠) is the
precision motion stage given in (1.1). The two-reset condition discussed in Chapter 3
is applied to ensure that this reset control system, when subjected to sinusoidal inputs,
exhibits two reset instants per steady-state cycle across the entire operating frequency
range.

To validate the accuracy of Theorem 6, let ||𝑒𝑟 ||∞/||𝑟 ||∞ and ||𝑢𝑟 ||∞/||𝑟 ||∞ denote the
ratios of the L∞ norms of the steady-state error 𝑒𝑟 and control input 𝑢𝑟 to the
sinusoidal reference input 𝑟 = sin(𝜔𝑡), respectively. Figures 4.3(a) and (b) compare
the values derived from simulations with those predicted by Theorem 6. The results
confirm that Theorem 6 accurately predicts system dynamics across the frequency
range [1,1000] Hz. Similar to the open-loop HOSIDF analysis in Fig. 2.6, prediction
accuracy improves with the number of harmonics 𝑁ℎ considered in the computation.
In this chapter, 𝑁ℎ = 100 is used to ensure reliable predictions.

Next, experimental validation of Theorem 6 is conducted. Figures 4.3(c) and (d)
compare the steady-state error 𝑒𝑟 (𝑡) and control input 𝑢𝑟 (𝑡) of the system under a
reference input 𝑟(𝑡) = 6×10−7 sin(400𝜋𝑡) [m], obtained from simulations, experimental
measurements, and predictions based on Theorem 6. The results demonstrate good
agreement between the predictions and and simulation data. Minor discrepancies
between the experimental and simulation results can be attributed to approximations
in system identification and noise in the measurements.

Similarly, the accuracy of Corollary 2 is validated. Figure 4.4(a) compares the
||𝑒𝑑 ||∞/||𝑑||∞ values derived from predictions and simulations. Figure 4.4(b) compares the
steady-state error 𝑒𝑑 (𝑡) of the system under a disturbance input 𝑑(𝑡) = 1×10−4 sin(40𝜋𝑡)
[m], obtained from predictions, simulations, and experiments. The results confirm that
Corollary 2 accurately predicts the system’s response to sinusoidal disturbances.

After validating the accuracy, Theorem 6 and Corollary 2 can be reliably employed
to predict the behavior of closed-loop two-reset control systems. For illustration, Fig.
4.5 presents the Bode plots of the sensitivity functions and the process sensitivity
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(a) (b)

(c) (d)

Figure 4.3: Theorem 6-predicted and simulated values for (a) ||𝑒𝑟 ||∞/||𝑟 ||∞ and (b) ||𝑢𝑟 ||∞/||𝑟 ||∞ of the reset
control system across the frequency range [1,1000] Hz. Comparison of Theorem 6-predicted, simulated,
and experimentally measured closed-loop (c) steady-state error signal 𝑒𝑟 (𝑡) and (d) control input signal
𝑢𝑟 (𝑡) under the reference input signal 𝑟(𝑡) = 6×10−7 sin(400𝜋𝑡) [m].

(a)

(b)

Figure 4.4: (a) Corollary 2-predicted and simulated ||𝑒𝑑 ||∞/||𝑑||∞ values of the reset control system
across the frequency range [1,1000] Hz. (b) Comparison of Theorem 6-predicted, simulated, and
experimentally measured closed-loop steady-state error signal 𝑒𝑑 (𝑡) under the reference input signal
𝑑(𝑡) = 1×10−4 sin(40𝜋𝑡) [m].

function for the closed-loop reset control system. The magnitude and phase information
for each harmonic of the closed-loop reset control systems serve as the foundation for
system dynamic analysis.

4.3.2 Case Study 2
Though Theorem 6 effectively predicts the system dynamics in Case Study 1, it has
limitations, as demonstrated in Case Study 2. The design parameters for this case are
as follows: C1(𝑠) = C2(𝑠) = C4(𝑠) = C𝑠(𝑠) = 1, reset controller C𝑙 = 30𝜋/𝑠 with a reset value
𝛾 = 0, C3(𝑠) = 20.5 ⋅ (𝑠/(62.5𝜋)+1)/(𝑠/(1440𝜋)+1) ⋅ (1+30𝜋/𝑠) ⋅ 1/(𝑠/(3000𝜋)+1), 𝛾 = 0, and
the plant P(𝑠) is the precision motion stage given in (1.1).

Figure 4.6(a) compares the ||𝑒𝑟 ||∞/||𝑟 ||∞ values of this system, obtained from
simulations, with those predicted by Theorem 6. Figures 4.6(b) and 4.6(c) compare the
steady-state errors 𝑒𝑟 (𝑡) derived from simulations, experiments, and predictions for
an input signal of 𝑟(𝑡) = 107 sin(2𝜋𝑓 𝑡) [m] at input frequencies of 10 Hz and 100 Hz,
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Figure 4.5: (a) The sensitivity function S𝑛(𝜔) and (b) the process sensitivity function PS𝑛(𝜔) of a
closed-loop reset control system with 𝑛 = 1,3,5.

respectively.
Using the method from Theorem 4, the range of multiple-reset system behavior is

identified as (0, 33) Hz, shaded in gray. The results indicate that Theorem 6 accurately
predicts system behavior in two-reset control systems, such as for an input frequency
of 100 Hz, shown in Fig. 4.6(c). However, in multiple-reset control systems, such as for
an input frequency of 10 Hz, shown in Fig. 4.6(b), the theorem exhibits deviations.

1 10 33 100 1000
Frequency [Hz]

-60

-40

-20

0

||e
r||

/||
r||

 [d
B

]

Simulation
Prediction

(a)

(b)

(c)

Figure 4.6: (a) Theorem 6-predicted and simulated ||𝑒||∞/||𝑟 ||∞ value. The steady-state errors under input
signal of 𝑟(𝑡) = 107 sin(2𝜋𝑓 𝑡) [m] at input frequencies of (b) 10 Hz and (c) 100 Hz, obtained from
prediction, simulation, and the experiments.

Thus, to ensure the accuracy of Theorem 6, it is essential to apply Theorem 4 to
guarantee that the system operates within the two-reset range across the working
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frequency domain.

4.4 Conclusion and Discussions
In conclusion, this chapter introduces the HOSIDFs for closed-loop reset systems
with two reset instants per steady-state cycle. The accuracy and effectiveness of the
proposed methods are validated through simulations and experiments conducted on a
precision motion stage. The frequency response analysis methods in Theorems 3 to
6, developed for the generalized reset feedback control structure shown in Fig. 1.8,
enable the tuning of linear elements in parallel, in series before and after the reset
controller, and within the shaping filter to refine reset actions. This flexibility broadens
the potential for designing reset feedback control systems with enhanced performance
characteristics.

In linear systems, the analytical connection between open-loop and closed-loop
frequency-domain analysis in (1.3) serves as a powerful tool for system design and
performance prediction. However, in reset systems, this relationship does not hold
for either the first-order harmonic (𝑛 = 1) or higher-order harmonics (𝑛 > 1). Theorem
6 reveals that the interactions between open-loop and closed-loop harmonics are
mediated by the parameter Γ(𝜔), which captures the cross effects of first- and
higher-order harmonics. Previous SIDF analysis [9] and HOSIDF analysis [3] assume
Γ(𝜔) = 1 for all 𝜔, implying no reset actions on high-order harmonics (𝑛 > 1), resulting
in inaccuracies. Theorem 6 addresses this limitation by introducing Γ(𝜔) in (4.9).

Moreover, as discussed in Remark 3, achieving Γ(𝜔) → 1 allows the closed-loop
sensitivity function to be approximated using classical linear SIDF and loop-shaping
methods. Furthermore, ensuring |S𝑛(𝜔)|/|S1(𝜔)|→ 0 suppresses higher-order harmonics
to negligible levels, maintaining the benefits of first-order harmonics. Striking this
balance supports the application of the superposition principle in closed-loop,
multiple-input reset control systems, enhancing both design flexibility and system
performance.
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Appendix

4.A Proof of Theorem 5

Proof. Consider a closed-loop reset control system depicted in Fig. 1.8, with a
sinusoidal reference input signal 𝑟(𝑡) = |𝑅|sin(𝜔𝑡), satisfying Assumptions 2 and 4.

From (4.4) and (4.7), 𝑣𝑛(𝑡) is given by

𝑣𝑛(𝑡) = 𝑚𝑛
𝑙 (𝑡) +𝑚𝑛𝜌 (𝑡) +𝑎𝑛(𝑡). (4.20)
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From (4.7) and (4.20), the signal 𝑣(𝑡) can be expressed as

𝑣(𝑡) = 𝑣𝑙(𝑡) + 𝑣𝜌(𝑡), (4.21)

where
𝑣𝜌(𝑡) =∑∞

𝑛=1𝑚𝑛𝜌 (𝑡),
𝑣𝑙(𝑡) =∑∞

𝑛=1 𝑣
𝑛
𝑙 (𝑡),

𝑣𝑛𝑙 (𝑡) = 𝑚𝑛
𝑙 (𝑡) +𝑎𝑛(𝑡).

(4.22)

Define 𝑍𝑛(𝜔), 𝑉 (𝜔), 𝑉𝑛(𝜔), 𝑉𝑙(𝜔), 𝑉𝜌(𝜔), 𝑀𝑛𝜌 (𝜔), 𝑀𝑛
𝑙 (𝜔), and 𝐴𝑛(𝜔) as the Fourier

transforms of 𝑧𝑛(𝑡), 𝑣(𝑡), 𝑣𝑛(𝑡), 𝑣𝑙(𝑡), 𝑣𝜌(𝑡), 𝑚𝑛𝜌 (𝑡), 𝑚𝑛
𝑙 (𝑡), and 𝑎𝑛(𝑡), respectively.

From (4.5), (4.6), and (4.22), 𝑉𝑙(𝜔) is expressed as

𝑉𝑙(𝜔) =∑∞
𝑛=1𝑉

𝑛
𝑙 (𝜔), (4.23)

where
𝑉 𝑛
𝑙 (𝜔) = C𝑛𝜆 (𝜔)𝑍𝑛(𝜔),
C𝑛𝜆 (𝜔) = C𝑙(𝑛𝜔)+C2(𝑛𝜔).

(4.24)

From (4.21), we have 𝑉 (𝜔) = 𝑉𝑙(𝜔)+𝑉𝜌(𝜔). The function 𝑉𝑙(𝜔) is derived in (4.24). The
following content derives 𝑉𝜌(𝜔).

According to Theorem 1 and Corollary 1, the reset controller C𝑟 processes distinct
input signals 𝑧𝑛(𝑡) while relying on the same reset-triggered signal 𝑧1𝑠 (𝑡) generates
two components: 𝑚𝑛

𝑙 (𝑡) as given in (4.5) and the nonlinear output signal 𝑚𝑛𝜌 (𝑡), whose
Fourier transform is given by:

𝑀𝑛𝜌 (𝜔) =∑∞
𝜂=1

2|𝑍𝑛 |Δ𝑥 (𝜂𝜔)Δ𝑛𝑞(𝜔)
𝜂𝜋 ⋅F [sin(𝜂𝜔𝑡 +𝜂∠𝑍𝑠)], where 𝜂 = 2𝑘 +1,𝑘 ∈ ℕ.

(4.25)
where Δ𝑥 (𝜂𝜔) and 𝑄𝜂(𝜔) are given in (2.4).

We then define 𝑉𝜌(𝜔) = ∑∞
𝑛=1𝑀𝑛𝜌 (𝜔), and introduce a factor Γ(𝜔) to represent the

ratio of 𝑉𝜌(𝜔) to 𝑀1𝜌 (𝜔), defined as:

Γ(𝜔) = 𝑉𝜌(𝜔)
𝑀1𝜌 (𝜔)

= ∑∞
𝑛=1𝑀𝑛𝜌 (𝜔)
𝑀1𝜌 (𝜔)

, where 𝑛 = 2𝑘 +1,𝑘 ∈ ℕ. (4.26)

From (4.25), the nonlinear components 𝑀𝑛𝜌 (𝜔) for different 𝑛 share identical phase and
period. Therefore, Γ(𝜔) is a real number.

From (2.4), (4.25), and (4.26), Γ(𝜔) is expressed as

Γ(𝜔) = ∑∞
𝑛=1 |𝑍𝑛 |Δ𝑛𝑐 (𝜔)
|𝑍1|Δ1𝑐 (𝜔)

, (4.27)

where Δ𝑛𝑐 (𝜔) is given by

Δ𝑙(𝜔) = (𝑗𝜔𝐼 −𝐴𝑅)−1𝐵𝑅 ,
Δ𝑛𝑐 (𝜔) = |Δ𝑙(𝑛𝜔)|sin(∠Δ𝑙(𝑛𝜔)+∠𝑍𝑛 −𝑛∠𝑍 1𝑠 ).

(4.28)
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However, in (4.27) and (4.28), the ratio |𝑍𝑛 |/|𝑍1| and the value of (∠𝑍𝑛 −𝑛∠𝑍 1𝑠 ) remain
undetermined. Therefore, the subsequent analysis addresses these unknown parameters
by leveraging the underlying system dynamics and harmonic relationships, enabling
the determination of Γ(𝜔).

Consider the reset controller C𝑟 in Fig. 4.1 with the input signal 𝑧1(𝑡) =
|𝑍1|sin(𝜔𝑡 +∠𝑍1) and the reset triggered signal 𝑧1𝑠 (𝑡) = |𝑍1C𝑠(𝜔)|sin(𝜔𝑡 +∠𝑍1 +∠C𝑠(𝜔)).
Using the “Virtual Harmonics Generator”, the input signal 𝑧1(𝑡) generates 𝑛 harmonics,
defined as

𝑧𝑛1 (𝑡) = |𝑍1|sin(𝑛𝜔𝑡 +𝑛∠𝑍1), (4.29)

whose Fourier transform is 𝑍𝑛1 (𝜔) = F [𝑧𝑛1 (𝑡)].
According to Theorem 2, the reset controller C𝑟 with an input of 𝑧𝑛1 (𝑡) generates

two components: 𝑚1𝑙 (𝑡) calculated by (4.5) and the nonlinear output signal 𝑚1𝜌(𝑡),
whose Fourier transform is given by:

𝑀1𝜌 (𝜔) =∑∞
𝑛=1𝑍

𝑛1 (𝜔)C𝑛𝜌 (𝑛𝜔). (4.30)

From (4.30) and (4.26), 𝑉𝜌(𝜔) can be expressed as

𝑉𝜌(𝜔) =∑∞
𝑛=1 Γ(𝜔)C𝑛𝜌 (𝜔)𝑍

𝑛1 (𝜔). (4.31)

Let the 𝑛th harmonic component in 𝑉𝜌(𝜔) from (4.25) and (4.31) be equal to each other.
Then, 𝑀𝑛𝜌 (𝜔) is determined as

𝑀𝑛𝜌 (𝜔) = Γ(𝜔)C𝑛𝜌 (𝜔)𝑍𝑛1 (𝜔). (4.32)

From (4.21), (4.24), and (4.32), 𝑉𝑛(𝜔) is given by

𝑉𝑛(𝜔) = C𝑛𝜆 (𝜔)𝑍𝑛(𝜔)+Γ(𝜔)C𝑛𝜌 (𝜔)𝑍𝑛1 (𝜔). (4.33)

In the closed-loop system in Fig. 4.1, 𝑍𝑛(𝜔) is given by

𝑍𝑛(𝜔) = −C1(𝑛𝜔)C4(𝑛𝜔)P(𝑛𝜔)C3(𝑛𝜔)𝑉𝑛(𝜔). (4.34)

Substituting (4.33) into (4.34), we have

𝑍𝑛(𝜔) = −L𝑙(𝑛𝜔)𝑍𝑛(𝜔)−Γ(𝜔)L𝜌(𝑛𝜔)𝑍𝑛1 (𝜔), (4.35)

where
L𝑙(𝑛𝜔) = C𝑛𝜆 (𝜔)C3(𝑛𝜔)P(𝑛𝜔)C4(𝑛𝜔)C1(𝑛𝜔),
L𝜌(𝑛𝜔) = C𝑛𝜌 (𝜔)C3(𝑛𝜔)P(𝑛𝜔)C4(𝑛𝜔)C1(𝑛𝜔).

(4.36)

From (4.2), (4.29), the relation between 𝑍𝑛1 (𝜔) and 𝑍𝑛(𝜔) is given by

𝑍𝑛1 (𝜔) =
|𝑍1(𝜔)|𝑒𝑗(𝑛∠𝑍1(𝜔)−∠𝑍𝑛(𝜔))

|𝑍𝑛(𝜔)| 𝑍𝑛(𝜔). (4.37)
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From (4.35) and (4.37), the following equations can be deduced:

{|𝑍𝑛 | = Γ(𝜔)Ψ𝑛(𝜔)|𝑍1|, for 𝑛 > 1
∠𝑍𝑛 = 𝑛𝜋 +𝑛∠𝑍1 +∠L𝜌(𝑛𝜔)−∠(1+L𝑙(𝑛𝜔)), for 𝑛 > 1, (4.38)

where
Ψ𝑛(𝜔) = |L𝜌(𝑛𝜔)|/|1 +L𝑙(𝑛𝜔)|. (4.39)

By substituting the phase relationship between ∠𝑍1 and ∠𝑍𝑛 (𝑛 > 1) from (4.38) and
∠𝑍 1𝑠 = ∠𝑍1 +∠C𝑠(𝜔) from (4.3) into (4.28), we derive:

1. For 𝑛 = 1,

Δ1𝑐 (𝜔) = |Δ𝑙(𝜔)|sin(∠Δ𝑙(𝜔)−∠C𝑠(𝜔)). (4.40)

2. For 𝑛 = 2𝑘 +1 > 1,
Δ𝑛𝑐 (𝜔) = |Δ𝑙(𝑛𝜔)|sin(∠Δ𝑙(𝜔)+∠𝑍𝑛 −∠𝑍 1𝑠 )

= −|Δ𝑙(𝑛𝜔)|sin(∠Δ𝑙(𝑛𝜔)+∠L𝜌(𝑛𝜔)−∠(1+L𝑙(𝑛𝜔))−𝑛∠C𝑠(𝜔)).
(4.41)

Substituting Δ𝑛𝑐 (𝜔) from (4.40) and (4.41) into (4.27), we have

Γ(𝜔) = 1+ ∑∞
𝑛=3 |𝑍𝑛 |Δ𝑛𝑐 (𝜔)
|𝑍1|Δ1𝑐 (𝜔)

,𝑛 = 2𝑘 +1,𝑘 ∈ ℕ. (4.42)

Then, by substituting |𝑍𝑛 | = Γ(𝜔)Ψ𝑛(𝜔)|𝑍1| from (4.38) into (4.42), Γ(𝜔) is derived as

Γ(𝜔) = 1/(1−∑∞
𝑛=3Ψ𝑛(𝜔)Δ𝑛𝑐 (𝜔)/Δ1𝑐 (𝜔)) . (4.43)

Up to this point, Γ(𝜔) is derived and the block diagram of the closed-loop reset control
system in Fig. 4.2 is constructed. We conclude the proof.

4.B Proof of Theorem 6
Proof. Consider a closed-loop reset system in Fig. 1.8 with a sinusoidal reference input
signal 𝑟(𝑡) = |𝑅|sin(𝜔𝑡), under Assumption 2 and 4. This proof derives the HOSIDFs for
the closed-loop system.

By applying the “Virtual Harmonics Generator”, the input signal 𝑟(𝑡) = |𝑅|sin(𝜔𝑡)
generates 𝑛 harmonics, defined as

𝑟𝑛(𝑡) = |𝑅|sin(𝑛𝜔𝑡), (4.44)

whose Fourier transform is denoted as 𝑅𝑛(𝜔).
The output signal 𝑦(𝑡) of the closed-loop reset control system includes infinite

many harmonics 𝑦𝑛(𝑡), as defined in (4.1). Define 𝑌𝑛(𝜔) = F [𝑦𝑛(𝑡)]. From the block
diagram in Fig. 4.2, we have

𝑌1(𝜔) = [L𝑙(𝜔)+Γ(𝜔)L𝜌(𝜔)]/C4(𝜔)𝐸1(𝜔). (4.45)
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In the closed loop, the following relation holds:

𝐸1(𝜔) = 𝑅1(𝜔)−C4(𝜔)𝑌 1(𝜔). (4.46)

Combining (4.45) and (4.46), the first-order sensitivity function S1(𝜔) for the closed-loop
reset control system is defined as

S1(𝜔) =
𝐸1(𝜔)
𝑅1(𝜔)

= 1
1+L𝑜(𝜔)

, (4.47)

where
L𝑜(𝑛𝜔) = L𝑙(𝑛𝜔)+Γ(𝜔)L𝜌(𝑛𝜔) = L𝑛(𝜔)+ (Γ(𝜔)−1)L𝜌(𝑛𝜔). (4.48)

The subsequent content focuses on deriving the high-order sensitivity function
S𝑛(𝜔) for 𝑛 > 1 for the closed-loop reset control system.

From (4.29), 𝑍𝑛1 (𝜔) = F [𝑧𝑛1 (𝑡)] is expressed as

𝑍𝑛1 (𝜔) = |C1(𝜔)S1(𝜔)|𝑒𝑗𝑛(∠C1(𝜔)+∠S1(𝜔))𝑅𝑛(𝜔). (4.49)

From the block diagram in Fig. 4.2, the 𝑛th order harmonic 𝑍𝑛(𝜔) is given by

𝑍𝑛(𝜔) = −L𝑙(𝑛𝜔)𝑍𝑛(𝜔)−Γ(𝜔)L𝜌(𝑛𝜔)𝑍𝑛1 (𝜔). (4.50)

Substituting 𝑍𝑛1 (𝜔) from (4.49) into (4.50), we have

𝑍𝑛(𝜔) = −L𝑙(𝑛𝜔)𝑍𝑛(𝜔)−Γ(𝜔)|C1(𝜔)S1(𝜔)|𝑒𝑗𝑛(∠C1(𝜔)+∠S1(𝜔))L𝜌(𝑛𝜔)𝑅𝑛(𝜔). (4.51)

From (4.51), we obtain:

𝑍𝑛(𝜔)
𝑅𝑛(𝜔)

= −S𝑙(𝑛𝜔) ⋅ Γ(𝜔)|C1(𝜔)S1(𝜔)|𝑒𝑗𝑛(∠C1(𝜔)+∠S1(𝜔))L𝜌(𝑛𝜔), (4.52)

where S𝑙(𝑛𝜔) denotes the sensitivity function of the BLS, given by

S𝑙(𝑛𝜔) =
1

1+L𝑙(𝑛𝜔)
. (4.53)

From (4.2), 𝑍𝑛(𝜔) and 𝐸𝑛(𝜔) has the relationship of

𝑍𝑛(𝜔) = C1(𝑛𝜔)𝐸𝑛(𝜔). (4.54)

Thus, from (2.9), (4.36), (4.52), and (4.54), the 𝑛th order (for 𝑛 > 1) harmonic in the
sensitivity function for the closed-loop reset control system is given by

S𝑛(𝜔) =
𝐸𝑛(𝜔)
𝑅𝑛(𝜔)

= 𝑍𝑛(𝜔)
𝑅𝑛(𝜔)C1(𝑛𝜔)

= −S𝑙(𝑛𝜔) ⋅ |S1(𝜔)|𝑒𝑗𝑛∠S1(𝜔) ⋅ Γ(𝜔)L𝑛(𝜔)C4(𝑛𝜔).
(4.55)

The 𝑛th order complementary sensitivity function T𝑛(𝜔) and the control sensitivity
function CS𝑛(𝜔) can be derived through a same procedure as S𝑛(𝜔) from (4.45) to
(4.55). Here, we concludes the proof.
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5
MATLABApp“Reset Far”

In this chapter, we develop a MATLAB app called “Reset Far,” which integrates both
open-loop and closed-loop HOSIDFs for reset control systems. This app offers control
engineers a practical, user-friendly tool for analyzing and designing reset control systems.
A link to the app and a detailed description of its functionalities are provided. Then, the
utility of the app is demonstrated through a case studie that analyze and compare the
performance of three controllers: a linear PID controller, a reset controller, and a shaped
reset controller. Both analytical and experimental results on a precision motion stage
show that the proposed shaped reset controller offers superior tracking precision while
reducing actuation forces, outperforming both the reset and PID controllers. These findings
underscore the effectiveness of the proposed frequency-domain methods in analyzing and
optimizing the performance of reset-controlled mechatronic systems.

 The app is provided via the link and this chapter is based on the paper:
Zhang, Xinxin, and S. Hassan HosseinNia. “Higher-Order Sinusoidal Input Describing Functions for
Open-Loop and Closed-Loop Reset Control with Application to Mechatronics Systems.” arXiv preprint
arXiv:2412.13086 (2024).

https://github.com/XZ-TUD/MATLAB_App_for_Reset-TUD.git
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1

2

3

4

5

Figure 5.1: GUI of the frequency response analysis app for the generalized reset control system, named
“Reset Far”.

5.1 Introduction of the MATLAB App “Reset Far”
The contributions from Chapters 2 to 4 have been consolidated into a MATLAB
application called “Reset Far”, accessible via the link. The app’s graphical user interface
(GUI) is displayed in Fig. 5.1.

The app contains five panels, each providing specific functions as outlined below:

• Panel 1⃝: Displays the block diagram of the reset feedback control system in Fig.
1.8.

• Panel 2⃝: Allows users to specify system parameters, including the numerators
and denominators for systems C1, C2, C3, C4, C𝑠 , C𝑟 (entered as the parameters
of its base-linear counterpart C𝑙 ), along with the reset value 𝛾 , and the plant P .
Additionally, the panel includes input fields for defining the frequency range for
analysis (logarithmically spaced) and the number of harmonics to be considered.

• Panel 3⃝: Generates HOSIDFs for the reset controller C𝑟 and the open-loop
system L𝑛(𝜔) based on Theorems 2 and 3. Select either “Cr” or “Ln” until the
indicator turns green, then click the “Plot” button to display the function. Use

https://github.com/XZ-TUD/MATLAB_App_for_Reset-TUD.git
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the “Clear” button to clear plots and “Export” to save the HOSIDF data as a
“.mat” file to the workspace.

• Panel 4⃝: Identifies the frequency range where the sinusoidal-input closed-loop
reset control system exhibits multiple (more than two) reset instants per
steady-state cycle. To use, click the “Test” button, which turns green when
active, and select the sweeping step size, defaulting to 1 Hz. The output will
either indicate “There is No Multiple-Reset Region,” meaning the system operates
with only two reset instants per cycle across the tested frequency range, or
it will specify “Multiple-Reset Regions: 𝑓𝛼 to 𝑓𝛽 [Hz],” showing the frequency
range(s) where multiple resets occur, with 𝑓𝛼 and 𝑓𝛽 as the boundaries. If
multiple-reset regions are detected, subsequent closed-loop HOSIDF analysis may
yield inaccuracies, and adjusting system design parameters is recommended until
“There is No Multiple-Reset Region” is achieved.

• Panel 5⃝: Generates HOSIDFs for the closed-loop reset control system, including
S𝑛(𝜔), T𝑛(𝜔), CS𝑛(𝜔), and PS𝑛(𝜔) based on Theorem 6 and Corollary 2. First,
select “Sn”, “Tn”, “CSn”, or “PSn” until the indicator turns green, then click “Plot”
to display. The “Clear” button erases the plots, while “Export” saves the HOSIDF
data as a “.mat” file to the workspace.

In the provided link, more detailed instructions, along with an illustrative example,
are offered to guide users through the process of using the app. Note that the App
is specifically designed for closed-loop reset control systems with a single reset state,
as defined by (1.6) and (1.8). Extending its capabilities to systems with multiple
reset states could be an exciting avenue for future research, leveraging the derivation
methods outlined in this study.

Additionally, a key advantage of this App is its computational efficiency. Traditional
methods for obtaining the frequency response of open-loop and closed-loop reset
control systems, such as point-to-point time-domain simulations or the approach in [1],
which relies on time-domain calculations and Fourier transforms, are time-consuming.
For instance, in the case studies presented in Section 4.3, using time-domain methods
to sweep the same frequency range with a fixed time step can take tens of minutes or
even hours. In contrast, the frequency-domain analysis method employed in the App
eliminates the need for point-to-point calculations and completes the task in just a few
seconds.

5.2 Case Study: The Application of the MATLAB App
“Reset Far”

This section presents case studies to demonstrate the effectiveness of the MATLAB
app in the frequency-domain analysis of reset control systems, applied to the precision
motion stage P(𝑠) in (1.1).

We design three control systems—PID, CgLp-PID, and shaped CgLp-PID. Note that
these systems are primarily used to demonstrate the application of the proposed
methods in system analysis, rather than representing optimized designs. The stability
and convergence of the illustrative reset control system are verified.

https://github.com/XZ-TUD/MATLAB_App_for_Reset-TUD.git
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The Constant-in-gain-Lead-in-phase (CgLp) reset element, as proposed in [2], is
composed of a First-Order Reset Element (FORE) and a lead element, as illustrated in
Fig. 5.2(a). The PID system is defined as

PID = 𝑘𝑝(1+
𝜔𝑖
𝑠 )(𝑠/𝜔𝑑 +1

𝑠/𝜔𝑡 +1
)( 1

𝑠/𝜔𝑓 +1
). (5.1)

By leveraging the phase lead advantage of reset control, the CgLp-PID element in this

s/wr+1
1 s/wrc+1

s/(100wc)+1

FORE Lead

e

CgLp

yPID 

s/wr+1
1 s/wrc+1

s/(100wc)+1

e
y

PID s(s)

(a)

(b)

Shaped CgLp

Figure 5.2: Open-loop block diagram of the Shaped CgLp-PID control system.

study is designed to provide phase lead while maintaining similar gain properties to
a linear PID controller [2]. The design parameters for the CgLp-PID control system
are as follows: 𝑘𝑝 = 35.7, 𝜔𝑐 = 240𝜋 [rad/s], 𝜔𝑟 = 244.8𝜋 [rad/s], 𝛾 = 0, 𝜔𝑑 = 120𝜋 [rad/s],
𝜔𝑡 = 480𝜋 [rad/s], 𝜔𝑟𝑐 = 216𝜋 [rad/s], 𝜔𝑖 = 24𝜋 [rad/s], and 𝜔𝑓 = 2400𝜋 [rad/s]. As
depicted in the Bode plots in Fig. 5.3, both the CgLp-PID and PID systems achieve
a crossover frequency of 120 Hz and maintain the same low-frequency gain. The
cross-over frequency of L1(𝜔) from (2.9), where |L1(𝜔)| = 0 dB, is defined as the
bandwidth of the open-loop system. The PID system has a phase margin of 25.7
degrees, while the CgLp-PID system provides a phase margin of 40.7 degrees, offering
a 15-degree phase lead.

A shaping filter C𝑠(𝑠) is designed and integrated into the CgLp-PID control system
to form the shaped CgLp-PID control system, as shown in Fig. 5.2(b). Note that in
this case study, the shaping filter C𝑠(𝑠) is specifically designed to reduce high-order
harmonics of the CgLp-PID control system at the target frequency 100 Hz. By
adjusting the parameters of C𝑠(𝑠), high-order harmonics at other targeted frequencies
can be reduced as well. However, since this example primarily serves as an example
to illustrate the application of the proposed frequency response analysis methods, the
detailed design and tuning process of the shaping filter will be explored in future
research. The transfer function of C𝑠(𝑠) is given by

C𝑠(𝑠) =
𝑠/(660𝜋)+1
𝑠/(237.6𝜋)+1 . (5.2)

Then, Theorems 3 and 6 are employed to analyze and compare the frequency-domain
characteristics of the PID, CgLp-PID, and shaped CgLp-PID control systems.
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Figure 5.3: The open-loop block diagram of the Shaped CgLp-PID control system.

First, using Theorem 3 (Panel 3⃝ in Fig. 5.1), the parameters of the shaped
CgLp-PID system are tuned to 𝜔𝑟 = 466.8𝜋 [rad/s] and 𝛾 = 0.4, ensuring the same phase
margin as the CgLp-PID system. Figure 5.4 shows the Bode plots of the PID control
system along with the open-loop HOSIDF L𝑛(𝜔) for both the CgLp-PID and shaped
CgLp-PID control systems, with 𝑛 = 1 and 𝑛 = 3. For simplicity, higher-order harmonics
(𝑛 > 3) are omitted in the figure, as they have lower magnitudes than the third-order
harmonics but can be derived using Theorem 3.

As shown in Fig. 5.4, the shaped CgLp-PID system maintains the same phase
margin as the CgLp-PID system while offering a larger bandwidth. Additionally, it
effectively reduces high-order harmonics. Specifically, at an input frequency of 100 Hz,
the magnitude of the third-order harmonic is decreased from 0.0592 in the CgLp-PID
system to 9.14 × 10−5 in the shaped CgLp-PID system, representing a reduction of
99.85%.

Second, the multiple-reset control system identification tool introduced in Chapter
3 in Fig. 5.1) is applied to verify that both the sinusoidal-input CgLp-PID and shaped
CgLp-PID control systems operate as two-reset control systems within the working
frequency range of [1,1000] Hz. This verification ensures that the two-reset condition
is met for accurate closed-loop HOSIDF analysis.

Third, Theorem 6 (Panel 5⃝ in Fig. 5.1) is applied to perform the closed-loop
frequency response analysis for these three systems. Figures 5.5(a) and (b) show the
sensitivity function S𝑛 and the control sensitivity function CS𝑛 for the PID control
system with 𝑛 = 1, as well as for CgLp-PID and shaped CgLp-PID control systems, with
𝑛 = 1 and 𝑛 = 3.

From the analysis of the sensitivity function in Fig. 5.5(a), the CgLp-PID and
shaped CgLp-PID control systems exhibit similar first-order harmonics. However, in
the shaped CgLp-PID system, a reduction in the magnitude of high-order harmonics
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Figure 5.4: Bode plots of open-loop HOSIDF L𝑛 for the CgLp-PID and shaped CgLp-PID control systems.
The harmonics 𝑛 = 1 and 𝑛 = 3 (with dotted lines). The right zoom-in figure shows the first-order
harmonics during the frequency range [100,300] Hz.

(𝑛 = 3) is observed. Specifically, at an input frequency of 100 Hz, the value of |S3(𝜔)|
decreases drastically from 0.096 to 1.36×10−4, which corresponds to a 99.86% reduction.
This decrease in the sensitivity function will result in a corresponding reduction in
steady-state errors, as demonstrated by the subsequent experimental results.

Figures 5.5(c) and (d) present the experimentally measured steady-state error and
control input signals for the three control systems when subjected to a sinusoidal input
signal 𝑟(𝑡) = 1.2×10−7 sin(200𝜋𝑡) [m]. For a quantitative analysis, Table 5.1 summarizes
the 𝐿∞ and 𝐿2 norms of the steady-state errors and control inputs over one steady-state
cycle, denoted as ||𝑒||∞ [m], ||𝑒||2 [m], ||𝑢||∞ [V], and ||𝑢||2 [V], for the three control
systems. Additionally, the settling time for each system, defined as the time required
for the trajectory to reach steady-state performance, is also provided in Table 5.1.
Notably, the shaped CgLp-PID control system achieves a 21.43% reduction in maximum
error compared to the CgLp-PID control system at 100 Hz. This improvement in
precision is primarily attributed to the reduction in |S𝑛(𝜔)| at 100 Hz, as shown in Fig.
5.5(a).

The advantages of reducing high-order harmonics in the shaped CgLp-PID
system are more pronounced in the control input signal. The control sensitivity
function analysis in Fig. 5.5(b) shows that the CgLp-PID system exhibits substantial
high-magnitude high-order harmonics at 100 Hz, which are nearly equal to the
first-order harmonic. This results in noticeable spikes in the control input signal, as
observed in Fig. 5.5(d). In contrast, the shaped CgLp-PID system effectively reduces
these high-order harmonics, leading to a smoother, more linear control input signal. As
highlighted in Table 5.1, the maximum control input required by the shaped CgLp-PID
system is reduced by 85.64% compared to the CgLp-PID system.
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Figure 5.5: (a) The closed-loop Higher-Order Sinusoidal Input Sensitivity Function (HOSISF) S𝑛 and (b)
Control Sensitivity Function CS𝑛(𝜔) for the CgLp-PID and shaped CgLp-PID systems, where 𝑛 = 1,3. (c)
The experimentally measured steady-state errors and (d) control input signals for these two systems at
the input frequency of 100 Hz.

Table 5.1 The 𝐿∞ and 𝐿2 norms of the steady-state errors and control inputs over one steady-state cycle,
denoted as ||𝑒||∞ [m], ||𝑒||2 [m], ||𝑢||∞ [V], ||𝑢||2 [V], along with the settling time for the PID,
CgLp-PID, and shaped CgLp-PID control systems.

Systems ||𝑒||∞ [m] ||𝑒||2 [m] ||𝑢||∞ [v] ||𝑢||2 [v] Settling Time [s]
PID 1.80×10−7 5.51×10−7 0.35 1.09 6.90×10−3

CgLp-PID 1.50×10−7 4.46×10−7 1.88 1.73 7.50×10−3
Shaped CgLp-PID 1.20×10−7 3.34×10−7 0.27 0.76 7.00×10−3

5.3 Conclusion
The MATLAB app provides control engineers with an intuitive platform for designing
and analyzing reset control systems in both open-loop and closed-loop configurations
within the frequency domain.

Furthermore, in Section 5.2, we proposed a shaped reset control structure
that enhances tracking accuracy while reducing actuation demands at the targeted
frequency. Industrial mechatronics applications often face tracking challenges due
to dominant frequencies or specific disturbances with notable spectral characteristics,
such as friction, vibrations, actuator dynamics, and sensor noise [3–5]. The proposed
shaped reset control structure is well-suited to address these challenges. However, this
chapter primarily focuses on frequency response analysis; future research will explore
detailed parameter optimization and tuning for targeted frequencies across different
applications.
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6
Phase-LeadShapedResetControl

Systems
This chapter presents a shaped reset feedback control strategy to enhance the performance
of precision motion systems. The approach utilizes a phase-lead compensator as a
shaping filter to tune the phase of reset instants, thereby shaping the nonlinearity in
the first-order reset control. The design achieves either an increased phase margin while
maintaining gain properties or improved gain without sacrificing phase margin, compared
to reset control without the shaping filter. Then, frequency-domain design procedures are
provided for both Clegg Integrator (CI)-based and First-Order Reset Element (FORE)-based
reset control systems. Finally, the effectiveness of the proposed strategy is demonstrated
through two experimental case studies on a precision motion stage. In the first case,
the shaped reset control leverages phase-lead benefits to achieve zero overshoot in the
transient response. In the second case, the shaped reset control strategy enhances the gain
advantages of the previous reset element, resulting in improved steady-state performance,
including better tracking precision and disturbance rejection, while reducing overshoot for
an improved transient response.

 This chapter is based on the paper:
Zhang, Xinxin, and S. Hassan HosseinNia. “Enhancing Reset Control Phase with Lead Shaping Filters:
Applications to Precision Motion Systems.” arXiv preprint arXiv:2503.15020 (2025).
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6.1 Introduction
This chapter focuses on developing reset feedback control strategies to enhance the
performance of precision positioning systems. High-precision industries, such as
semiconductor manufacturing and robotics, demand systems capable of delivering
accurate positioning, effective disturbance and noise rejection, fast response times,
stability, and robustness [1]. To address these requirements, effective control strategies
are crucial.

Linear feedback control, particularly the classical Proportional-Integral-Derivative
(PID) controller, remains widely used due to its simplicity and effectiveness [2]. To
meet the demands of industrial precision motion control, the loop-shaping technique
is commonly employed in linear control design. This technique focuses on maintaining
high gain at low frequencies to ensure effective low-frequency reference tracking and
disturbance rejection [3]. At the same time, low gain at high frequencies is maintained
to reduce sensitivity to high-frequency sensor noise and external disturbances [1].
Additionally, achieving an appropriate phase margin around the system’s bandwidth is
crucial for ensuring stability and a desired transient response [4], thereby facilitating
reliable and smooth operation.

However, linear controllers face fundamental frequency-domain constraints, such
as the waterbed effect and the Bode gain-phase trade-off [5]. These limitations restrict
their ability to meet the increasingly stringent performance demands of precision
motion systems [6]. Consequently, advanced control strategies are needed to overcome
these trade-offs and achieve superior performance, addressing the evolving demands of
precision motion systems.

Nonlinear control strategies, specifically reset feedback control, have emerged as
a promising alternative [7]. The concept of reset control originated with the Clegg
Integrator (CI) in 1958, which resets the integrator’s output whenever the input crosses
zero. Sinusoidal-Input Describing Function (SIDF) analysis demonstrates that the CI
offers a 52° phase lead compared to a linear integrator while maintaining its gain
properties [8, 9]. Over time, other reset elements have been introduced to enhance
system performance, such as the First-order Reset Element (FORE), Second-order Reset
Element (SORE), reset elements with reset bands, and Fractional-order Reset Elements
(FrORE), and Constant in Gain Lead in Phase (CgLp) [6, 10–16].

This chapter focuses on first-order reset controllers, including CI- and FORE-based
reset elements such as PI+CI control systems [17], reset PID controllers [18, 19],
and CgLp controllers. Leveraging their gain and phase advantages, first-order reset
controllers have been extensively studied in the literature to enhance transient
performance—by reducing overshoot and settling time—and steady-state performance—
by improving tracking accuracy and disturbance rejection, particularly in precision
motion systems [5, 19–23].

Motivated by the performance of first-order reset controllers, this chapter aims to
further enhance their phase and gain characteristics. Reset control introduces both
first-order and high-order harmonics in the frequency domain, and by adjusting reset
instants, these harmonics’ characteristics can be tailored to improve overall system
performance. In closed-loop reset feedback systems, the feedback error signal has
traditionally been used as the reset-triggered signal that trigger reset actions. Recent
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studies have explored alternative reset-triggered signals to tune system performance
further. For instance, research in [24, 25] developed strategies to modify reset
actions to reduce high-order harmonics. However, these techniques focus on reducing
high-order harmonics within specific frequency ranges, at the expense of sacrificing
the phase and gain characteristics of both first-order and high-order harmonics in
other frequency ranges. These limitations restrict the applicability of these methods.
In contrast, this work contributes by optimizing the gain and phase of first-order
harmonics while preserving the properties of high-order harmonics, thereby improving
system performance. The main contributions are as follows:

• First, a linear time-invariant (LTI) phase lead component is proposed as a
shaping filter to tune the phase of reset instants, termed shaped reset control.
This approach improves the phase-gain margin of the first-order harmonic
performance while maintaining similar high-order harmonic characteristics
compared to previous reset control strategies. Leveraging the enhanced
phase-gain margin, it improves phase lead, resulting in better transient response,
or it can be designed to optimize gain properties, leading to superior steady-state
performance.

• Then, frequency-domain analysis and design procedures are provided for shaped
CI- and FORE-based reset elements to achieve phase lead and gain improvements
over previous reset control systems.

• Finally, two case studies on a precision motion stage experimentally validate
the effectiveness of the shaped reset control strategy. In the first case, the
shaped reset PID system introduces phase lead while retaining similar gain
properties compared to the reset PID system. This phase lead benefit results
in zero-overshoot transient performance, outperforming both the linear PID and
reset PID systems. In the second case, the shaped CgLp-PID system is designed
to preserve phase margin and high-frequency gain while achieving higher gain
at low frequencies and increased bandwidth. These gain enhancements improve
tracking precision and disturbance suppression compared to the CgLp-PID and
linear PID systems.

The remainder of the chapter is organized into four sections. Section 6.2 presents the
reset elements employed in this chapter and the frequency-domain design objectives for
reset control in precision motion systems. Section 6.3 presents the analysis and design
procedure of the shaped reset control, highlighting its frequency-domain benefits in
terms of phase lead and gain improvements. Section 6.4 details experimental results
conducted on a precision motion stage, validating the effectiveness of the shaped reset
control systems compared with linear and reset control systems. Finally, Section 6.5
summarizes the main findings and offers suggestions for future research directions.

6.2 Preliminaries
Figure 6.1 depicts the block diagram of a closed-loop reset feedback control system
used in this chapter. This system comprises a reset controller C defined by (1.6) and
(6.3), a LTI controller C𝛼 , and the plant P . The LTI system C𝑠 (where ∠C𝑠(𝜔) ∈ (−𝜋,𝜋])
is referred to as the “shaping filter” used to shape the reset actions. Signals 𝑟 , 𝑒, 𝑒𝑠 , 𝑣 ,
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𝑢, 𝑑 , 𝑛, and 𝑦 denote the reference, error, reset triggered, reset output, control input,
process disturbance, sensor noise, and system output signals, respectively.
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Figure 6.1: Block diagram of the closed-loop reset feedback control system, where the blue lines represent
the reset action.

6.2.1 Reset Elements
This chapter focuses on the first-order reset elements, including the CI- and FORE-based
reset elements, which are widely applied in the literature and have proven effective for
enhancing system performance. The state-space matrices for these reset elements are
defined as follows.

Generalized Clegg Integrator (CI)
The generalized Clegg Integrator (CI) is characterized by the following matrices:

𝐴𝑅 = 0,𝐵𝑅 = 1,𝐶𝑅 = 1,𝐷𝑅 = 0,𝐴𝜌 = 𝛾 ∈ (−1,1). (6.1)

When 𝛾 = 0, equation (6.1) characterizes the CI ([8]).

First-Order Reset Element (FORE)
The FORE is designed as a Low-Pass Filter (LPF) with a reset mechanism, whose
state-space matrices are defined as:

𝐴𝑅 = −𝜔𝑟 ,𝐵𝑅 = 𝜔𝑟 ,𝐶𝑅 = 1,𝐷𝑅 = 0,
𝐴𝜌 = 𝛾 ∈ (−1,1), where 𝜔𝑟 ∈ ℝ+. (6.2)

Generalized FORE
In this chapter, since both the generalized CI in (6.1) and the FORE in (6.2) are
first-order reset elements, we define a generalized FORE that collectively describes
these elements, with its matrices expressed as:

𝐴𝑅 = −𝜔𝛼 ,𝐵𝑅 = 𝜔𝛽 ,𝐶𝑅 = 1,𝐷𝑅 = 0,
𝐴𝜌 = 𝛾 ∈ (−1,1),where 𝜔𝛼 ≥ 0 ∈ ℝ, 𝜔𝛽 ∈ ℝ+.

(6.3)

In (6.3), a system with 𝜔𝛼 = 0 and 𝜔𝛽 = 1 corresponds to the generalized CI in (6.1),
while a system with 𝜔𝛼 = 𝜔𝛽 > 0 corresponds to the FORE in (6.2).
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6.2.2 HOSIDF for Generalized FORE
From (2.7) and (6.3), the HOSIDF for C, denoted as C𝑛(𝜔), is given by:

C𝑛(𝜔) =
⎧
⎨
⎩

(Ψ(𝜔)+1) ⋅𝜔𝛽 /(𝜔𝛼 + 𝑗𝜔), for 𝑛 = 1,
Ψ(𝜔) ⋅𝜔𝛽 /(𝜔𝛼 + 𝑗𝑛𝜔) ⋅ 𝑒𝑗(𝑛−1)∠C𝑠(𝜔), for odd 𝑛 > 1,
0, for even 𝑛 ≥ 2,

(6.4)

where
Λ(𝜔) = 𝜔2 +𝜔2𝛼 ,
Θ(𝜔) = 𝑒−𝜋𝜔𝛼 /𝜔 ,
Ψ(𝜔) = 2𝑗𝜔Ω(𝜔)𝛼(𝜔)/(𝜋Λ(𝜔)),
Ω(𝜔) = (1−𝛾) ⋅ (1+Θ(𝜔))/(1+𝛾Θ(𝜔)),
𝛼(𝜔) = 𝑒𝑗∠C𝑠(𝜔)[𝜔 cos(∠C𝑠(𝜔))+𝜔𝛼 sin(∠C𝑠(𝜔))].

(6.5)

6.2.3 Frequency-Domain Design Objective for Generalized FORE
From (6.4), the 𝑛th transfer function of the open-loop reset system shown in Fig. 6.1,
which satisfies Assumption 1, is defined as follows:

L𝑛(𝜔) = C𝑛(𝜔)C𝛼 (𝑛𝜔)P(𝑛𝜔). (6.6)

The bandwidth frequency 𝜔𝑐 ∈ ℝ+ of a reset control system is defined as the frequency
at which the magnitude of the first-order harmonic open-loop transfer function L1(𝜔),
as given in (6.6), reaches 0 dB, mathematically expressed as:

L1(𝜔𝑐) = 0dB. (6.7)

In this chapter, the proposed shaped reset control element is designed to enhance
the performance of precision motion systems by satisfying the first-order harmonic
L1(𝜔) requirements specified in Remark 6, while preserving similar high-order
harmonics L𝑛(𝜔) for 𝑛 > 1.
Remark 6. Inspired by the loop-shaping technique in linear precision motion control,
the design of the first-order harmonic L1(𝜔) in (6.6) for open-loop reset feedback
control systems aims to achieve the following key objectives:

(i) Ensuring a phase margin of ∠L1(𝜔𝑐) + 180∘ at the bandwidth frequency 𝜔𝑐
defined in (6.7), to guarantee system stability and optimize transient performance.

(ii) Maintaining a high gain |L1(𝜔)| at frequencies where 𝜔 < 𝜔𝑐 to ensure
low-frequency reference tracking precision and disturbance rejection.

(iii) Achieving low gain |L1(𝜔)| at frequencies where 𝜔 > 𝜔𝑐 to suppress
high-frequency noise and improve robustness.

6.3 Frequency-DomainAnalysis andDesignof the Shaped
Reset Systems

In this section, we first present the phase properties of the generalized FORE derived
from its HOSIDF, as detailed in Remark 7 and Remark 8. Subsequently, Lemmas 3 and
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4 outline the conditions necessary to enhance the phase margin of the generalized
FORE while maintaining similar gain properties. To fulfill these conditions, Theorems
7 and 8 establish the requirements for designing the shaping filter C𝑠 for CI and FORE
elements. Finally, design procedures are provided for the shaped generalized FORE to
improve system performance.

6.3.1 Phase Lead Benefits of Shaped Generalized FROE
From the HOSIDF expressions for the generalized FORE in (6.4) and (6.5), two key
properties of C𝑛(𝜔) are identified. First, Remark 7 highlights the impact of the shaping
filter C𝑠(𝜔) on the HOSIDF C𝑛(𝜔).
Remark 7. The phase of the shaping filter, ∠C𝑠(𝜔), and the HOSIDF of the generalized
FORE, C𝑛(𝜔), are related by C𝑛(∠C𝑠(𝜔)) = C𝑛(∠C𝑠(𝜔)+𝑘𝜋), where 𝑘 ∈ ℤ. Furthermore,
the magnitude of the shaping filter, |C𝑠(𝜔)|, has no effect on the HOSIDF.

The following Remark 8 derives the phase of the first-order harmonic, ∠C1(𝜔), at
the bandwidth frequency 𝜔𝑐 in the generalized FORE.

Remark 8. From (6.4) and (6.5), the phase of the first-order harmonic C1(𝜔) at the
bandwidth frequency 𝜔𝑐 is expressed as:

∠C1(𝜔𝑐) = {𝜙𝜆(𝜔𝑐), for 𝜔𝛼 = 0,
𝜙𝛼 (𝜔𝑐) − arctan(𝜔𝑐/𝜔𝛼 ), for 𝜔𝛼 > 0. (6.8)

where
𝜅𝜁 (𝜔𝑐) = 𝜔𝑐 ⋅Ω(𝜔𝑐)/(𝜋 ⋅Λ(𝜔𝑐)),

𝜙𝛼 (𝜔𝑐) = arctan( 1
(𝜅𝛾 (𝜔𝑐) ⋅ 𝜅𝜁 (𝜔𝑐))−1 − tan(∠C𝑠(𝜔𝑐))

) ,

𝜙𝜆(𝜔𝑐) = arctan( sin(2∠C𝑠(𝜔𝑐)) −𝜋(1+𝛾)/(2(1−𝛾))
cos(2∠C𝑠(𝜔𝑐)) + 1

) ,
𝜅𝛾 (𝜔𝑐) = 𝜔𝑐 ⋅ cos(2∠C𝑠(𝜔𝑐)) +𝜔𝛼 ⋅ sin(2∠C𝑠(𝜔𝑐)) +𝜔𝑐 .

(6.9)

Functions Λ(𝜔) and Ω(𝜔) are defined in (6.5).

The performance of the generalized FORE is mainly influenced by three main
parameters within the HOSIDF C𝑛(𝜔) as defined in (6.4), including: (1) the phase of
the first-order harmonic at the bandwidth frequency 𝜔𝑐 : ∠C1(𝜔𝑐) given in (6.8), (2) the
magnitude of the first-order harmonic: |C1(𝜔)|, and (3) the magnitude of the high-order
harmonics: |C𝑛(𝜔)|, for 𝑛 > 1.

In this chapter, the design of the shaping filter C𝑠 aims to provide a phase lead to
the first-order harmonic at the bandwidth frequency, ∠C1(𝜔𝑐) as defined in (6.8), while
preserving similar gain characteristics |C𝑛(𝜔)| compared to the system without the
shaping filter (i.e., C𝑠 = 1). To achieve this, Lemma 3 specifies the necessary conditions
for the shaping filter to effectively provide the phase lead advantage.

Lemma 3. The phase of the first-order harmonic in the generalized FORE at the
bandwidth frequency 𝜔𝑐 , represented as ∠C1(𝜔𝑐) ∈ (−𝜋,𝜋], is larger than that of the
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system without the shaping filter (i.e., C𝑠 = 1) if the phase of the shaping filter satisfies
the following conditions:

⎧
⎨
⎩

∠C𝑠(𝜔𝑐) ∈ (𝑘𝜋, 𝜋
2 − arctan(𝜋(1+𝛾)4(1−𝛾) )+𝑘𝜋) , for 𝜔𝛼 = 0,

∠C𝑠(𝜔𝑐) ∈ (𝑘𝜋, 𝜋
2 − arctan( 𝜔𝑐

𝜔𝛼
)+𝑘𝜋) , for 𝜔𝛼 > 0,

(6.10)

where 𝑘 = −1,0.
Proof. The proof is provided in Appendix 6.A.

The shaping filter can not only provide phase lead as demonstrated in Lemma 3,
but for the generalized CI with 𝜔𝛼 = 0, as derived from (6.8), it can also be designed
to ensure a phase greater than 0 by satisfying the condition outlined in the following
Remark.

Remark 9. The phase of the first-order harmonic in the generalized CI at the
bandwidth frequency 𝜔𝑐 exceeds 0, denoted as ∠C1(𝜔𝑐) ∈ (0,𝜋], provided that the phase
of the shaping filter ∠C𝑠(𝜔𝑐) satisfies the following conditions:

∠C𝑠(𝜔𝑐) ∈ (𝑘𝜋 +𝜃𝑝 , 𝑘𝜋 + 𝜋
2 −𝜃𝑝), (6.11)

where 𝑘 = −1,0, and

𝜃𝑝 =
arcsin(𝜋(1+𝛾)2(1−𝛾) )

2 . (6.12)

Lemma 3 outlines the conditions required for ∠C𝑠(𝜔𝑐) to achieve a phase lead.
However, from (6.4), altering C𝑠(𝜔) modifies the gain properties of |C𝑛(𝜔)|. To ensure a
fair comparison, it is essential to limit these gain variations, which can be achieved by
adhering to the constraints in Lemma 4.

Lemma 4. To limit the gain variation of |C𝑛(𝜔)| in the generalized FORE with a
shaping filter C𝑠 ≠ 1, compared to the system where C𝑠 = 1, the following condition
must be satisfied:

𝜅𝛼 (𝜔) ∈ (1−𝜎, 1+𝜎), for 𝜔 ≠ 𝜔𝑐 , (6.13)

where 𝜎 ∈ (0,1) ⊂ ℝ, and
𝜅𝛼 (𝜔) = |cos(∠C𝑠(𝜔))+ sin(∠C𝑠(𝜔)) ⋅𝜔𝛼 /𝜔|. (6.14)

Proof. The proof is provided in Appendix 6.B.

In practice, the value of 𝜎 ∈ (0,1) should be kept small. Specifically, when 𝜎 = 0,
the gain properties of the generalized FORE remain unchanged. By adhering to the
constraints in Lemma 4 and choosing an appropriate 𝜎 , the gain changes can be
effectively restricted, ensuring similar gain properties. The selection of 𝜎 depends on
the system’s gain requirements, as demonstrated in the case studies in Section 6.4.
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To illustrate the effects of 𝜎 , we examine the CI with a shaping filter that satisfies
the constraints in Lemmas 3 and 4, referred to as the shaped CI. Figure 6.2 presents
the magnitude |C1(𝜔)| and phase ∠C1(𝜔) of the first-order harmonic, along with the
magnitude |C3(𝜔)| of the third-order harmonic, for both the CI and the shaped CI with
𝛾 = 0. The analysis considers 𝜎 = 0.01,0.05,0.1,0.2.

For clarity, higher-order harmonics |C𝑛(𝜔)| for 𝑛 > 3 are omitted, as they exhibit the
same trend as |C3(𝜔)| but with smaller magnitudes and minimal variations. Additionally,
the shaping filters used in this example, while selected to satisfy Lemmas 3 and 4, are
not the only possible options. The design of C𝑠 will be further discussed in subsequent
sections.

The results in Fig. 6.2 demonstrate a distinct phase lead in ∠C1(𝜔) with minimal
variations in |C𝑛(𝜔)| for 𝑛 = 1,3. Specifically, for 𝜎 = 0.1, the phase lead at 100 Hz is 12.6
degrees, while the changes in |C1(𝜔)| and |C3(𝜔)| are negligible. The minimal effects of
these small changes will be further shown in the case studies presented in Section 6.4.
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Figure 6.2: The magnitudes |C1(𝜔)| and phases ∠C1(𝜔) of the first-order harmonic, along with the
magnitude |C3(𝜔)|of the third-order harmonic, for both the CI and the shaped CI with 𝛾 = 0 considering
𝜎 = 0.01,0.05,0.1,0.2.

To summarize, Lemmas 3 and 4 outline the conditions for enhancing the
phase margin of the generalized FORE while preserving similar gain benefits. To
simultaneously meet these requirements, Theorems 7 and 8 specify the conditions for
C𝑠(𝜔) in the generalized FORE, as defined in (6.3), for cases where 𝜔𝛼 = 0 (generalized
CI) and 𝜔𝛼 > 0 (FORE), respectively.

Theorem 7. In the generalized CI defined in (6.1), to achieve phase lead while
maintaining similar gain properties compared to the system with C𝑠 = 1, the shaping
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Figure 6.3: The three bounds, 𝜂1( ), 𝜂2( ), and 𝜂3( ), for ∠C𝑠(𝜔) are depicted as shaded regions. The
constraint on ∠C𝑠(𝜔) at the bandwidth frequency 𝜔𝑐 is highlighted with blue double arrows (↔). The
desired curve of ∠C𝑠(𝜔) for the generalized CI is shown in red, adhering to the constraints.

filter C𝑠 , where ∠C𝑠(𝜔) ∈ (−𝜋,𝜋], needs to satisfy the following conditions:

{∠C𝑠(𝜔𝑐) ∈ (𝑘𝜋, 𝜋
2 − arctan(𝜋(1+𝛾)4(1−𝛾) )+𝑘𝜋) , for 𝜔 = 𝜔𝑐 ,

∠C𝑠(𝜔) ∈ {𝜂1 ∪𝜂2 ∪𝜂3}, for 𝜔 ≠ 𝜔𝑐 ,
(6.15)

where 𝑘 = −1,0, and
𝜂1 = (−arccos(1−𝜎),arccos(1−𝜎)),
𝜂2 = (arccos(−1+𝜎),𝜋],
𝜂3 = [−𝜋,−arccos(−1+𝜎)), 𝜎 ∈ (0,1) ⊂ ℝ.

(6.16)

The ranges of 𝜂1, 𝜂2, and 𝜂3 are visualized in Fig. 6.3.

Proof. The proof is provided in Appendix 6.C.

From (6.16), we have
𝜂1 = {𝜂2 −𝜋} ∪ {𝜂3 +𝜋}. (6.17)

Since the effects of the shaping filter C𝑠(𝜔) on the HOSIDF of the generalized FORE are
𝜋-periodic, as noted in Remark 7, positioning ∠C𝑠(𝜔) within 𝜂2 ∪𝜂3 can be effectively
achieved by positioning it within 𝜂1. For reference, we plot a desired curve for ∠C𝑠(𝜔)
within 𝜂1 for 𝜔 ≠ 𝜔𝑐 , while ∠C𝑠(𝜔𝑐) satisfies the constraint outlined in Theorem 7.
However, the choice of ∠C𝑠(𝜔) is not unique; other curves for ∠C𝑠(𝜔) that remain
within the specified bounds can also achieve phase lead and preserve similar gain.

Theorem 8. In the FORE defined in (6.2), to achieve phase lead while maintaining
similar gain properties compared to the system with C𝑠 = 1, the shaping filter C𝑠 , where
∠C𝑠(𝜔) ∈ (−𝜋,𝜋], needs to satisfy the following conditions:

{∠C𝑠(𝜔𝑐) ∈ (𝑘𝜋, 𝜋2 − arctan( 𝜔𝑐
𝜔𝛼

) +𝑘𝜋), for 𝜔 = 𝜔𝑐 ,
∠C𝑠(𝜔) ∈ {𝛽1 ∪𝛽2 ∪𝛽3 ∪𝛽4}, for 𝜔 ≠ 𝜔𝑐 ,

(6.18)
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Figure 6.4: The four bounds, 𝛽1( ), 𝛽2( ), 𝛽3( ), and 𝛽4( ), for ∠C𝑠(𝜔) are depicted as shaded regions.
The constraint on ∠C𝑠(𝜔) at the bandwidth frequency 𝜔𝑐 is highlighted with blue double arrows (↔).
The desired curve of ∠C𝑠(𝜔) for the FORE is shown in red, adhering to the constraints.

where 𝑘 = −1,0, and
𝛽1 = (arctan𝜃𝛼 − arccos(𝜃𝛾 ),arctan𝜃𝛼 − arccos(𝜃𝜂)),
𝛽2 = (arctan𝜃𝛼 − arccos(−𝜃𝜂),arctan𝜃𝛼 − arccos(−𝜃𝛾 )),
𝛽3 = 𝛽1 +𝜋,
𝛽4 = 𝛽2 +𝜋,
𝜃𝛼 = 𝜔𝛼

𝜔 ,

𝜃𝛾 = 1−𝜎
√1+𝜃2𝛼

, 𝜃𝜂 =
1+𝜎
√1+𝜃2𝛼

, 𝜎 ∈ (0,1) ⊂ ℝ.

(6.19)

Note that the value of arccos(𝑥) is defined within the interval [0,𝜋]. The ranges of 𝛽1,
𝛽2, 𝛽3, and 𝛽4 are visualized in Fig. 6.4.

Proof. The proof is provided in Appendix 6.D.

Similar to Fig. 6.3, a desired curve for ∠C𝑠(𝜔) is plotted within the bounds of 𝛽1 ∪𝛽4
for 𝜔 ≠ 𝜔𝑐 , while ∠C𝑠(𝜔𝑐) is constrained by the condition outlined in Theorem 8.

6.3.2 Design Procedure for Shaped Generalized FROE
While various shaping filters C𝑠 satisfying the constraints in Theorems 7 and 8 can be
selected to achieve phase lead while maintaining similar gain properties, this chapter
adopts a derivative element:

C𝑠(𝑠) =
𝑠/𝜔𝜁 +1
𝑠/𝜔𝜂 +1

, where 𝜔𝜁 ,𝜔𝜂 ∈ ℝ+, (6.20)

which aligns with the desired phase curve shapes of ∠C𝑠(𝜔) illustrated in both Fig.
6.3 for the generalized FORE with 𝜔𝛼 = 0 and Fig. 6.4 for the generalized FORE with
𝜔𝛼 > 0, respectively.

However, implementing a single derivative element between the error signal
𝑒(𝑡) and the reset-triggered signal 𝑒𝑠(𝑡) can amplify high-frequency harmonics for
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frequencies 𝜔 > 𝜔𝜂 in 𝑒𝑠(𝑡). In practical scenarios, especially when high-frequency
noise from sensors or external interference is present, this amplification can increase
the system’s sensitivity to such noise, potentially compromising its steady-state
performance.

To address this issue, a low-pass filter 1
𝑠/𝜔𝜓+1

is needed to filter out high-frequency
harmonics in the reset-triggered signal 𝑒𝑠(𝑡). Therefore, the transfer function of the
shaping filter C𝑠(𝑠) is designed as:

C𝑠(𝑠) =
𝑠/𝜔𝜁 +1
𝑠/𝜔𝜂 +1

⋅ 1
𝑠/𝜔𝜓 +1 , (6.21)

where 𝜔𝜁 ,𝜔𝜂 ∈ ℝ+, and 𝜔𝜓 ∈ ℝ+ > 𝜔𝜂. To mitigate excessive sensitivity of the
shaped reset control to high-frequency noise, particularly at frequencies above the
crossover frequency 𝜔𝑐 , the design of 𝜔𝜓 ensures that for all 𝜔 > 𝜔𝑐 , the condition
|C𝑠(𝜔)|/|C𝑠(𝜔𝑐)| < 𝛿𝑛 holds, where 𝛿𝑛 ∈ (1,5) ⊂ ℝ. The choice of 𝛿𝑛 is based on the noise
characteristics and high-order harmonics in the practical shaped reset control systems.
Iterative tuning may be required in cases of unmeasured noise. In this study, we set
𝛿𝑛 = 2.1, thereby limiting the shaping filter’s amplification of high-frequency noise to
a factor below 2.1. This constraint has been validated to ensure robustness in the
case studies, both through simulations with white noise of magnitude 1 × 10−5 and
experimental validation.

Note that while using a second-order or higher-order phase-lead element as
the shaping filter can also provide phase lead, but it may exacerbate the issue of
high-frequency noise amplification in the reset-triggered signal 𝑒𝑠(𝑡), making the
system less robust to practical noise. The feasibility of using a higher-order lead
element is outside the scope of this chapter and requires further investigation.

The reset control system with a shaping filter, defined in (6.21) and satisfying the
conditions specified in Theorems 7 and 8, is referred to as the shaped reset control
system in this chapter. The phase lead at the bandwidth frequency 𝜔𝑐 , provided by the
shaping filter C𝑠 , is calculated as described in Remark 10.

Remark 10. The phase lead of the shaped generalized FORE with the shaping filter
C𝑠(𝑠) ≠ 1 compared to the generalized FORE where C𝑠(𝑠) = 1 is given by:

𝜙lead = ∠C1(𝜔𝑐) −∠C01 (𝜔𝑐), (6.22)

where ∠C1(𝜔𝑐) represents the phase of the shaped generalized FORE, which can be
calculated using (6.8), and ∠C01 (𝜔𝑐) represents the phase of the generalized FORE with
C𝑠 = 1, as given by:

∠C01 (𝜔𝑐) = {
arctan(−𝜋(1+𝛾)4(1−𝛾) ) , for 𝜔𝛼 = 0,
arctan(2𝜔𝑐𝜅𝜁 (𝜔𝑐))− arctan( 𝜔𝑐

𝜔𝛼
) , for 𝜔𝛼 > 0,

(6.23)

where 𝜅𝜁 (𝜔𝑐) is given in (6.9).
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MATLAB code for calculating the phase lead 𝜙lead in (6.22) is available at this link
to facilitate ease of use for readers. Next, Remark 11 presents the maximum phase lead
that can be achieved by the shaping filter under the constraints specified in Theorems
7 and 8.

Remark 11. From Lemma 3, the maximum phase of shaping filter ∠C𝑠(𝜔𝑐) ∈ (−𝜋,𝜋] is
given by

max∠C𝑠(𝜔𝑐) =
⎧
⎨
⎩

𝜋
2 − arctan(𝜋(1+𝛾)4(1−𝛾) ), for 𝜔𝛼 = 0,
𝜋
2 − arctan( 𝜔𝑐

𝜔𝛼
), for 𝜔𝛼 > 0.

(6.24)

By substituting max∠C𝑠(𝜔𝑐) from (6.24) into (6.22) and (6.23), the maximum phase lead,
denoted as max𝜙lead, of the shaped generalized FORE (where C𝑠 ≠ 1) compared to the
generalized FORE without the shaping filter (where C𝑠 = 1) can be determined.

Finally, summarizing the constraints in Theorems 7 and 8, along with conclusions
in Remarks 10 and 11, the design procedure for the shaping filter ∠C𝑠(𝑠) in the
shaped generalized FORE-based reset control system, aimed at achieving a phase lead
𝜙𝑑 ∈ (0,max𝜙lead] compared to the generalized FORE-based reset control system with
C𝑠 = 1, is outlined as follows:

(i) Design a generalized FORE-based reset control system without the shaping filter
(i.e., C𝑠 = 1) and set the bandwidth frequency 𝜔𝑐 .

(ii) Apply a shaping filter C𝑠 as defined in (6.21).

(iii) Choose 𝜎 ∈ (0,1). Next, tune 𝜔𝜁 , 𝜔𝜂, and 𝜔𝜓 in C𝑠(𝜔) to satisfy the conditions
specified in Theorem 7 if 𝜔𝛼 = 0, and in Theorem 8 if 𝜔𝛼 > 0.

(iv) Calculate the phase lead 𝜙lead provided by the shaping filter using (6.22). If
𝜙lead < 𝜙𝑑 , decrease 𝜔𝜁 or increase 𝜔𝜂, and repeat from step (iii) until 𝜙lead = 𝜙𝑑 .

If the system requirements prioritize gain improvement over phase margin
enhancement, the design procedure for shaping the filter C𝑠(𝑠) involves first following
the above steps to achieve phase lead, and then transferring this phase lead benefit
to gain improvement by relaxing the gain constraint in Lemma 4 for frequencies
𝜔 ≠ 𝜔𝑐 . The design procedure to obtain gain benefits while maintaining phase margin
compared to a generalized FORE-based reset control system with C𝑠 = 1 is outlined as
follows:

(i) Design a shaped generalized FORE-based reset control system to provide a phase
lead 𝜙lead.

(ii) Gradually adjust parameters such as 𝜔𝛼 and 𝛾 to increase the first-order
harmonic gain |C1(𝜔)| at frequencies below 𝜔𝑐 or reducing gain at higher
frequencies. As gain benefits increase, the phase lead 𝜙lead diminishes; tuning
continues until 𝜙lead = 0, where the shaped generalized FORE maintains phase
margin while maximizing gain benefits.

https://github.com/XZ-TUD/Code_Phase_Lead-TUD.git
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Note that for the generalized FORE with 𝜔𝛼 > 0, both 𝜔𝛼 and 𝛾 offer flexibility in
tuning; in contrast, systems with 𝜔𝛼 = 0 rely solely on 𝛾 . Therefore, the FORE-based
control systems with 𝜔𝛼 > 0 are preferable for providing enhanced gain benefits due to
their greater tuning flexibility.

In Section 6.4, two case studies are presented to demonstrate the design procedure
of shaped generalized FORE control systems, aiming to achieve phase and gain benefits,
respectively.

6.4 Illustrative Case Studies
In this section, two case studies are then conducted on this stage to demonstrate the
enhanced performance of the shaped generalized FORE-based reset control system:

• Case Study 1 uses a reset PID controller to showcase the phase lead advantages
provided by the shaped reset control.

• Case Study 2 employs a CgLp-PID control system to emphasize the gain benefits,
particularly achieving enhanced low-frequency gain.

Note that these cases may not represent the optimized designs; and the aim of
these cases is to illustrate how the shaped reset control can offer improvements over
previous reset control systems under a fair comparison framework. In both cases, the
systems are verified for stability and convergence.

6.4.1 Case Study 1: Phase Lead Benefit of Shaped Reset Control
In Case Study 1, a reset PID control system is designed to showcase the phase lead
benefit of shaped reset control within the framework of the generalized FORE-based
reset control when 𝜔𝛼 = 0. This design is informed by Theorem 7. The following
content illustrates the design and comparison process.

By replacing the Proportional Integrator (PI) with the Proportional Clegg Integrator
(PCI) in the PID control system, a Proportional Clegg Integrator Derivative (PCID)
system is built. However, the closed-loop PCID system tends to exhibit a limit cycle
behavior [18]. To mitigate this issue, one approach is to incorporate an additional
integrator, resulting in the PCI-PID system, whose block diagram is shown in Fig. 6.5.

PCI+ LPF

e us/wd+1

s/wt+1s/wf+1

s+wi

ss
1es

kps

PID 

s+wr kr

Figure 6.5: Block diagram of the PCI-PID control system.

By designing the PCI reset elements shown within the gray block in Fig. 6.5,
the PCI-PID system can leverage gain benefits while maintaining the same phase
characteristics as its base linear system, the PI2D system, as given by:

PI2D = 𝑘𝑝 ⋅ (
𝑠 +𝜔𝑖
𝑠 )

2
⋅ 𝑠/𝜔𝑑 +1
𝑠/𝜔𝑡 +1

⋅ 1
𝑠/𝜔𝑓 +1

. (6.25)
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The design parameters of the PCI-PID control system are: 𝜔𝑟 = 1.6 × 103 [rad/s],
𝑘𝑟 = 0.12, 𝑘𝑝 = 13.1, 𝜔𝑓 = 5.0 × 103 [rad/s], 𝜔𝑑 = 213.6 [rad/s], 𝜔𝑡 = 1.2 × 103 [rad/s],
𝜔𝑖 = 50.3 [rad/s], and 𝛾 = −0.3.

The bode plots of the first-order harmonic for the PCI-PID and PI2D control
systems, within the frequency range of [1,1000] Hz, are presented in Fig. 6.6.
Compared to the PI2D controller, the PCI-PID controller maintains the same phase
margin at the bandwidth frequency of 80 Hz but achieves a higher gain at frequencies
lower than 80 Hz and a lower gain at frequencies higher than 80 Hz. By designing
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Figure 6.6: Bode plots of the first-order transfer functions L1(𝜔) of open-loop linear PI2D, PCI-PID, and
shaped PCI-PID controllers. From here on, black arrows in this chapter indicate the improvement of
reset control over linear control, while green arrows represent the enhancement of shaped reset control
compared to reset control.

a shaping filter for the PCI-PID control system, the objective is to achieve phase lead
while controlling gain variations. Setting 𝜎 = 0.1 limits the gain variation. According
to Theorem 7, the phase bounds for ∠C𝑠(𝜔) are chosen as follows:

{∠C𝑠(𝜔𝑐) ∈ (0,67.08°), for 𝜔 = 𝜔𝑐 ,
∠C𝑠(𝜔) ∈ 𝜂1 = (−25.84∘, 25.84∘), for 𝜔 ≠ 𝜔𝑐 ,

(6.26)

The constraint for ∠C𝑠(𝜔) where 𝜔 ≠ 𝜔𝑐 in (6.26) are depicted by the shaded green
region in Fig. 6.7. To achieve the desired phase lead relative to the CI, a shaping filter
C𝑠(𝑠) is implemented. The transfer function of C𝑠(𝑠) is expressed as:

C𝑠(𝑠) =
𝑠/950+1
𝑠/3000+1 ⋅

1
𝑠/104 +1 . (6.27)

As shown in Fig. 6.7, the shaping filter defined in (6.27) introduces a phase of 15.5∘
at the bandwidth frequency of 80 Hz. Since the PCI-PID control system is built upon
the CI, the phase lead introduced by the shaping filter is initially applied to the CI
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Figure 6.7: Plot of ∠C𝑠(𝜔) and its bound for the shaped PCI-PID control system.

and subsequently influences the entire PCI-PID control system. The Bode plots of the
CI and the shaped CI, both with 𝛾 = −0.3, are presented in Fig. 6.8. The shaped CI
maintains a gain profile similar to the CI while introducing a phase lead at frequencies
below 665 Hz, as indicated by the green-shaded region. Specifically, at the bandwidth
frequency of 80 Hz, the shaped CI achieves a phase margin of −10.1∘, providing a 12.8∘
phase lead compared to the −22.9∘ phase margin of the CI.
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Figure 6.8: Bode plots of the CI and the shaped CI with the shaping filter C𝑠 in (6.27), where 𝛾 = −0.3.

This designed shaped CI in Fig. 6.8 is incorporated into the PCI-PID control system
to form the shaped PCI-PID control structure in Fig. 6.5. In this configuration, the
parameter 𝑘𝑟 = 0.13 is adjusted to ensure the same gain as the PCI-PID control system
at the 80 Hz bandwidth frequency. As shown in Fig. 6.6, the open-loop Bode plot of
the shaped PCI-PID controller closely matches the gain profile of the PCI-PID system
but provides a phase lead of 12.8∘.

Figure 6.9 displays the Bode plots for the PI2D, PCI-PID, and shaped PCI-PID
control systems, implemented on the stage shown in Fig. 1.2, including both the first-
and third-order harmonics. All three systems share the same bandwidth frequency of
80 Hz. Compared to the PI2D system, the PCI-PID system maintains the same phase
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margin of 27.2∘ but demonstrates higher gain at low frequencies and lower gain at
high frequencies. The shaped PCI-PID system behaves even better. It retains similar
gain characteristics as the PCI-PID system but achieves a phase margin of 40∘, with an
increased phase margin of 12.8∘ in the time domain. This 12.8∘ phase lead is expected
to improve the transient response of the system, a benefit that will be validated
through experiments.
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Figure 6.9: Bode plots of PI2D, PCI-PID, and shaped PCI-PID control systems. The third-order harmonics
of PCI-PID and shaped PCI-PID control systems are shown in dashed lines.

Figure 6.10 illustrates the experimentally measured step responses for the PI2D,
PCI-PID, and shaped PCI-PID control systems. The overshoot of the PI2D and
PCI-PID control systems are 64% and 36%, respectively, while the shaped PCI-PID
achieve the zero overshoot performance. These results highlight the improved
transient performance achieved with the shaped reset control, directly attributed to the
enhancement in phase lead.
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Figure 6.10: Experimentally measured step responses of the PI2D, PCI-PID, and shaped PCI-PID control
systems.



6.4 Illustrative Case Studies

6

99

6.4.2 Case Study 2: Gain Benefit of Shaped Reset Control
In Case Study 2, a reset CgLp-PID control system is designed to demonstrate the gain
benefits of shaped reset control within the generalized FORE-based reset control when
𝜔𝛼 > 0. The design follows Theorem 8.

The CgLp reset element consists of a FORE combined with a lead element, as
shown in Fig. 6.11.

FORE Lead
s/wtr+1

us/wd+1

s/wt+1

kp

s/wf+1
s+wi

s

e s/wdr+1kr

s/wr+1

CgLp

s

es

PID + LPF

Figure 6.11: Block diagram of the CgLp-PID control system.

Compared to a linear PID controller, the CgLp-PID can maintain the same phase
lead while benefiting from improved gain [6], as illustrated below. The design
parameters for the CgLp-PID controller are: 𝜔𝑟 = 160.2 [rad/s], 𝑘𝑟 = 1, 𝑘𝑝 = 6.5,
𝜔𝑑𝑟 = 336.8 [rad/s], 𝜔𝑡𝑟 = 3.14 × 104 [rad/s], 𝜔𝑓 = 3.1 × 103 [rad/s], 𝜔𝑑 = 143.9 [rad/s],
𝜔𝑡 = 685.6 [rad/s], 𝜔𝑖 = 31.4 [rad/s], and 𝛾 = −0.3. The design parameters for the PID
controller are: 𝑘𝑝 = 3.0, 𝜔𝑑 = 81.9 [rad/s], 𝜔𝑡 = 1.2 × 103 [rad/s], 𝜔𝑓 = 3.1 × 103 [rad/s],
and 𝜔𝑖 = 31.4 [rad/s].

Figure 6.6 shows the Bode plots of the first-order harmonic for these systems
within the frequency range of [1,1000] Hz. The CgLp-PID matches the PID in both
gain and phase at the bandwidth frequency 50 Hz, while exhibiting higher gain at
frequencies lower than 50 Hz and lower gain at frequencies higher than 50 Hz. The
following content designs a shaped CgLp-PID controller that maintains the same phase
and high-frequency gain properties as the CgLp-PID system while providing improved
low-frequency gain and bandwidth benefits.

The CgLp-PID control system is built upon the FORE. To design a shaped FORE
with phase lead, according to Theorem 8, by choosing 𝜎 = 0.1, the bound of ∠C𝑠(𝜔) is
chosen as

{∠C𝑠(𝜔𝑐) ∈ (0,27.02°), for 𝜔 = 𝜔𝑐 ,
∠C𝑠(𝜔) ∈ 𝛽1 ∪𝛽4, for 𝜔 ≠ 𝜔𝑐 ,

(6.28)

where
𝛽1 = (arctan𝜃𝛼 − arccos(𝜃𝛾 ),arctan𝜃𝛼 − arccos(𝜃𝜂)),
𝛽4 = (arctan𝜃𝛼 + arccos(𝜃𝜂),arctan𝜃𝛼 + arccos(𝜃𝛾 )),
𝜃𝛼 = 𝜔𝑟

𝜔 , 𝜃𝛾 = 0.9
√1+𝜃2𝛼

, 𝜃𝜂 =
1.1

√1+𝜃2𝛼
.

(6.29)

The bound specified in (6.28) for 𝜔 ≠ 𝜔𝑐 is depicted in Fig. 6.13. A shaping filter
C𝑠(𝑠) that adheres to this bound is designed as follows:

C𝑠(𝑠) =
𝑠/950+1
𝑠/2000+1 ⋅

1
𝑠/105 +1 . (6.30)
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Figure 6.12: Bode plots of the first-order transfer functions L1(𝜔) for the open-loop linear PID, CgLp-PID,
and shaped CgLp-PID controllers.

As shown in Fig. 6.13, the ∠C𝑠(𝜔) is 10∘ at the bandwidth frequency of 50 Hz.
According to (6.22), the phase of ∠C𝑠(𝜔𝑐) = 9.2∘ results in a 𝜙lead = 5.9∘ phase lead in
the shaped FORE, compared to the FORE with ∠C𝑠 = 1.
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Figure 6.13: Plot of ∠C𝑠(𝜔) and its bounds for the shaped CgLp-PID control system.

Then, to achieve the desired gain performance while retaining the phase margin,
the parameters of the shaped CgLp controller are adjusted to 𝜔𝑟 = 145.6 [rad/s], 𝑘𝑟 = 1.8,
and 𝛾 = 0.08. The Bode plots of the shaped CgLp-PID control system are presented in
Fig. 6.12.

Then, applying the PID, CgLp-PID, and shaped CgLp-PID controllers to the plant in
(1.1), the resulting open-loop Bode plots are presented in Fig. 6.14. All three systems
achieve an identical phase margin of 50∘ and similar gain at frequencies higher than
50 Hz. However, the shaped CgLp-PID control system exhibits higher gain than the
CgLp-PID at frequencies below 50 Hz. Additionally, the shaped CgLp-PID system
achieves a wider bandwidth of 61.6 Hz, compared to 50 Hz for the CgLp-PID system.
Although higher-order harmonics show a slight increase at frequencies below 50 Hz,
their magnitudes remain negligible relative to the first-order harmonics. The higher
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gain at low frequencies is expected to enhance precision in that frequency range,
which will be further validated through experimental results.
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Figure 6.14: Bode plots of PID, CgLp-PID, and shaped CgLp-PID control systems. The third-order
harmonics of CgLp-PID and shaped CgLp-PID control systems are shown in dashed lines.

Steady-State Performance: Improved Tracking Precision
As shown in Fig. 6.14, the shaped CgLp-PID system is designed to have higher gain
at frequencies lower than 50 Hz while maintaining similar gain at frequencies higher
than 50 Hz. Consequently, to compare the tracking precision of the PID, CgLp-PID,
and shaped CgLp-PID control systems, the steady-state errors at input frequencies of 3
Hz, 5 Hz, 10 Hz, and 30 Hz are measured. Additionally, to validate the high-frequency
performance is retained, the performance at a input frequency of 200 Hz is also tested.

Figure 6.15 presents the measured steady-state errors for the three control systems
when tracking a reference signal 𝑟(𝑡) = 1 × 10−5 sin(2𝜋𝑡) [m] at frequencies of 3 Hz,
5 Hz, 10 Hz, 30 Hz, and 200 Hz. The maximum errors ||𝑒||∞ [m] for each system
are summarized in Table 6.2. The results show that the shaped CgLp-PID system
achieves a steady-state performance improvement of 41.3%, 40.0%, 30.6%, 25.0%, and 0
at frequencies of 3 Hz, 5 Hz, 10 Hz, 30 Hz, and 200 Hz, respectively, compared to the
CgLp-PID system.

Table 6.1: Maximum steady-state errors ||𝑒||∞ [m] for the CgLp-PID and shaped CgLp-PID control systems
under reference signals 𝑟(𝑡) = 1× 10−5 sin(2𝜋𝑡) [m], where 𝑓 = 3 Hz, 5 Hz, 10 Hz, 30 Hz, and 200 Hz.
The precision improvement achieved by the shaped CgLp-PID compared to the CgLp-PID system are
highlighted.

Systems Frequency [Hz]
3 5 10 30 200

PID 1.4×10−6 1.6×10−6 1.2×10−6 6.5×10−6 9.4×10−6
CgLp-PID 8.0×10−7 1.0×10−6 9.8×10−7 8.0×10−6 9.3×10−6

Shaped CgLp-PID 4.7×10−7 6.0×10−7 6.8×10−7 6.0×10−6 9.3×10−6
Precision Improvement 41.3% 40.0% 30.6% 25.0% 0
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Figure 6.15: Experimentally measured steady-state errors of PID, CgLp-PID, and shaped CgLp-PID control
systems under reference signals 𝑟(𝑡) = 1×10−5 sin(2𝜋𝑡) [m], where 𝑓 = (a) 3 Hz, (b) 5 Hz, (c) 10 Hz, (d) 30
Hz, and (e) 200 Hz.

Steady-State Performance: Improved Tracking Precision and Disturbance
Rejection
To evaluate the disturbance rejection capability of the shaped CgLp-PID control system,
a disturbance signal 𝑑1(𝑡) = 1× 10−8[75.0sin(10𝜋𝑡) + 7.5sin(20𝜋𝑡) + 1.5sin(40𝜋𝑡)] [m] is
applied to the three control systems. The measured steady-state errors for the PID,
CgLp-PID, and shaped CgLp-PID control systems are displayed in Fig. 6.16. The
maximum errors for each system are summarized in Table 6.2. The results show that
the shaped CgLp-PID system achieves a precision improvement of 40.0% compared to
the CgLp-PID system.

Then, to assess both reference tracking and disturbance rejection performance,
a reference signal 𝑟2(𝑡) = 7.5 × 10−7 sin(10𝜋𝑡) [m] and a disturbance signal 𝑑2(𝑡) =
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Figure 6.16: Experimentally measured steady-state errors of PID, CgLp-PID, and shaped CgLp-PID control
systems under a disturbance signal 𝑑1(𝑡).

Table 6.2: Maximum steady-state errors ||𝑒||∞ [m] for the CgLp-PID and shaped CgLp-PID control systems
under the disturbance signal 𝑑1(𝑡) and multiple inputs 𝑟2(𝑡) +𝑑2(𝑡).

Systems Inputs
𝑑1(𝑡) 𝑟2(𝑡) +𝑑2(𝑡)

PID 1.7×10−7 1.5×10−7
CgLp-PID 1.0×10−7 8.0×10−8

Shaped CgLp-PID 6.0×10−8 5.0×10−8
Precision Improvement 40.0% 37.5%

1× 10−8[19.1sin(2𝜋𝑡) + 1.8sin(4𝜋𝑡) + 3.3sin(16𝜋𝑡)] [m] are applied to the three control
systems. The measured steady-state errors for the PID, CgLp-PID, and shaped
CgLp-PID systems are shown in Fig. 6.17. The maximum errors for each system are
summarized in Table 6.2. The results show that the shaped CgLp-PID system achieves
a precision improvement of 37.5% compared to the CgLp-PID system.
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Figure 6.17: Experimentally measured steady-state errors for PID, CgLp-PID, and shaped CgLp-PID control
systems under multiple inputs: reference signal 𝑟2(𝑡) and disturbance signal 𝑑2(𝑡).

These results highlight the improved steady-state precision of the shaped CgLp-PID
control system, which is attributed to the gain benefits conferred by the shaping filter
in the CgLp-PID design, as illustrated in Fig. 6.14.
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Transient Performance Improvement: Reduced Overshoot
In addition to enhancing steady-state performance, measurements of the step responses
of the three systems, shown in Fig. 6.18, reveal that the shaped CgLp-PID reduces the
overshoot observed in the CgLp-PID system, achieving a non-overshoot performance.

This transient performance improvement can be attributed to the introduction of
the phase lead element between the error signal 𝑒(𝑡) and the reset-triggered signal
𝑒𝑠(𝑡), as discussed in the research [26].
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Figure 6.18: Experimentally measured step responses of PID, CgLp-PID, and shaped CgLp-PID control
systems.

Thus, the phase-lead shaping filter not only contributes to better steady-state
performance but also improves the transient response of the CgLp-PID system.

6.5 Conclusion
In conclusion, this chapter introduces a phase-lead shaping filter to improve phase
and gain characteristics in CI-based and FORE-based reset control systems, referred
to as shaped reset control. Frequency-domain design procedures for both CI-based
and FORE-based reset control systems are provided. Experimental validation on two
reset control systems implemented on a precision motion stage demonstrated the
effectiveness of the proposed approach. In the first case study, the shaped reset control
enhances transient performance by achieving zero overshoot, benefiting from the phase
lead. In the second case study, the shaped reset control improves steady-state precision
in reference tracking and disturbance rejection tasks, due to the gain benefit.

However, the benefits of the phase lead shaping filter in (6.21) are limited by
high-frequency noise in practical systems. The phase lead element can amplify
high-frequency noise in the reset-triggered signal, making it necessary to integrate
a low-pass filter into the shaping filter. While this low-pass filter mitigates noise
amplification, it also reduces some of the benefits provided by the phase lead. When
system noise is minimized, the low-pass filter in (6.21) can be removed, allowing
the advantages of phase lead-shaped reset control to be more pronounced. Future
research could explore combining phase lead-shaped reset control with noise reduction
techniques, such as the Kalman filter, to further enhance system performance.
Investigating the potential of second-order phase lead shaping filters could also provide
a promising direction for improvement.
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Figure 6.19: Bode plots of the CI and the shaped CI with the shaping filter C𝑠 in (6.27), where 𝛾 = −0.632.

Furthermore, using the results from Remark 9, the shaped CI, designed with the
shaping filter from (6.27), achieves a positive phase of 5∘ at 80 Hz when 𝛾 = −0.632,
whereas the conventional CI exhibits a phase of −10.1∘, as depicted in Fig. 6.19.
Notably, the shaped CI demonstrates the ability to maintain a similar negative gain
slope as the integrator while achieving a positive phase through appropriate design.
This outcome highlights exciting potential for future applications.
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Appendix

6.A Proof of Lemma 3
Proof. This proof derives the condition for the shaping filter C𝑠 to increase the phase
of the first-order harmonic at the bandwidth frequency, denoted as ∠C1(𝜔𝑐). The proof
is divided into two steps: the first addresses the generalized CI when 𝜔𝛼 = 0, and the
second focuses on the FORE when 𝜔𝛼 > 0.
Step 1: Condition for the generalized FORE where 𝜔𝛼 = 0.

To ensure that the generalized FORE with a shaping filter C𝑠 ≠ 1 exhibits a phase
lead compared to the system with C𝑠 = 1, we need to ensure:

∠C1(𝜔𝑐) > ∠C01 (𝜔𝑐), (6.31)

where ∠C1(𝜔𝑐) is the phase of the shaped generalized FORE with the shaping filter
C𝑠(𝑠) ≠ 1, and ∠C01 (𝜔𝑐) is the phase of the generalized FORE with C𝑠(𝑠) = 1.

In the generalized FORE with 𝜔𝛼 = 0, from (6.8), we have ∠C1(𝜔𝑐) = 𝜙𝜆(𝜔𝑐).
Therefore, to meet the condition in (6.31), 𝜙𝜆(𝜔𝑐) needs to be larger than its value
when C𝑠(𝑠) = 1. From (6.9), the following condition needs to be satisfied:

sin(2∠C𝑠(𝜔𝑐)) −𝜋(1+𝛾)/(2(1−𝛾))
cos(2∠C𝑠(𝜔𝑐)) + 1

> −𝜋(1+𝛾)
4(1−𝛾) , (6.32)

where the right-hand side corresponds to the element in 𝜙𝜆(𝜔𝑐) when C𝑠(𝑠) = 1.
Then, solving (6.32), and given the 𝜋-period properties of ∠C𝑠(𝜔) from Remark 7,

the first condition for the ∠C𝑠(𝜔𝑐) in (6.10) is derived.

Step 2: Condition for the generalized FORE where 𝜔𝛼 > 0.
In the generalized FORE with 𝜔𝛼 > 0, from (6.8), we have

∠C1(𝜔𝑐) = 𝜙𝛼 (𝜔𝑐) − arctan( 𝜔𝑐
𝜔𝛼

) ,

where 𝜙𝛼 (𝜔𝑐) is an increasing function of 𝜅𝛾 (𝜔𝑐) ⋅ 𝜅𝜁 (𝜔𝑐), and tan(∠C𝑠(𝜔𝑐)).
Given the conditions 𝜔 > 0, 𝜔𝛼 > 0, 𝜔𝛽 > 0, 𝛾 ∈ (−1,1), and 𝜔 > 0, it follows from

the definition of 𝜅𝛾 (𝜔𝑐) in (6.9) that 𝜅𝜁 (𝜔𝑐) > 0. To ensure that the generalized FORE
with a shaping filter C𝑠 ≠ 1 achieves a phase lead, both the values of tan(∠C𝑠(𝜔𝑐)) and
𝜅𝛾 (𝜔𝑐) needs to exceed their respective values in the system where ∠C𝑠 = 0. This can
be achieved by satisfying the following conditions:

∠C𝑠(𝜔𝑐) ∈ (0,𝑘 ⋅ 𝜋/2), 𝑘 ∈ ℕ, (6.33)

and
𝜔𝑐 ⋅ cos(2∠C𝑠(𝜔𝑐)) +𝜔𝛼 ⋅ sin(2∠C𝑠(𝜔𝑐)) > 𝜔𝑐 . (6.34)

Solving (6.33) and (6.34), and given the 𝜋-period properties of ∠C𝑠(𝜔) from Remark 7,
the second condition for the ∠C𝑠(𝜔𝑐) in (6.10) is derived.
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6.B Proof of Lemma 4
Proof. This proof establishes the condition required to limit gain changes for a system
with a shaping filter compared to a system without the shaping filter at frequencies
𝜔 ≠ 𝜔𝑐 .

From (6.4) and (6.5), the phase ∠C𝑠(𝜔) determines the function 𝛼(𝜔), thereby
influencing the HOSIDF C𝑛(𝜔). The function 𝛼(𝜔) for the generalized FORE with and
without the shaping filter is given by

𝛼(𝜔) =
⎧
⎨
⎩

𝜔, for ∠C𝑠(𝜔) = 0,
𝑒𝑗∠C𝑠(𝜔)[𝜔 cos(∠C𝑠(𝜔))

+𝜔𝛼 sin(∠C𝑠(𝜔))], for ∠C𝑠(𝜔) ≠ 0.
(6.35)

To limit gain changes of the generalized FORE at frequencies 𝜔 ≠ 𝜔𝑐 , the change in
𝛼(𝜔) should be minimized. To evaluate the change in 𝛼(𝜔), the ratio of 𝛼(𝜔) for the
generalized FORE with and without the shaping filter in (6.35) is defined as:

Δ𝛼 (𝜔) = 𝑒𝑗∠C𝑠(𝜔)[cos(∠C𝑠(𝜔))+𝜔𝛼 /𝜔 sin(∠C𝑠(𝜔))]. (6.36)

When Δ𝛼 (𝜔)→ 1 at frequencies 𝜔 ≠ 𝜔𝑐 , the gain properties of the generalized FORE
tend to remain unchanged.

From (6.36), Δ𝛼 (𝜔) consists of two components: the phase ∠Δ𝛼 (𝜔) = ∠C𝑠(𝜔) and
the magnitude given by

𝜅𝛼 (𝜔) = |Δ𝛼 (𝜔)| = |||cos(∠C𝑠(𝜔))+
𝜔𝛼
𝜔 sin(∠C𝑠(𝜔))||| . (6.37)

To ensure that Δ𝛼 (𝜔) approaches 1, two requirements must be met: First, the phase
∠Δ𝛼 (𝜔) = ∠C𝑠(𝜔) should tend to 0. Based on Remark 7, ∠C𝑠(𝜔) affects C𝑛(𝜔) with a
period of 𝜋 , so ∠C𝑠(𝜔)→ 𝑘 ⋅𝜋 , where 𝑘 ∈ ℤ is required. Second, the magnitude 𝜅𝛼 (𝜔)
should tend to 1.

The constraint 𝜅𝛼 (𝜔) ∈ (1−𝜎,1+𝜎), where 𝜎 ∈ (0,1) ⊂ ℝ, ensures that both the phase
and gain conditions are satisfied. Additionally, as 𝜎 → 0, the change in |C𝑛(𝜔)| tends
to 0. This concludes the proof.

6.C Proof of Theorem 7
Proof. This proof derives the conditions for ∠C𝑠(𝜔) in the generalized CI where 𝜔𝛼 = 0
to meet the requirements specified in Lemmas 3 and 4.

In the generalized CI with 𝜔𝛼 = 0, from Lemma 3, the restriction on ∠C𝑠(𝜔) ∈ (−𝜋,𝜋]
at 𝜔𝑐 requires that ∠C𝑠(𝜔𝑐) lies within the bounds:

∠C𝑠(𝜔𝑐) ∈ (𝑘𝜋,
𝜋
2 − arctan(𝜋(1+𝛾)4(1−𝛾) )+𝑘𝜋) , 𝑘 = −1,0.

From (6.14), the value of 𝜅𝛼 (𝜔) is given by:

𝜅𝛼 (𝜔) = |cos(∠C𝑠(𝜔))|. (6.38)
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From Lemma 4 and (6.38), at frequencies where 𝜔 ≠ 𝜔𝑐 , the following condition needs
to be satisfied:

(1−𝜎) < |cos(∠C𝑠(𝜔))| < (1+𝜎), for 𝜔 ≠ 𝜔𝑐 . (6.39)
Given the inherent property of cos(∠C𝑠(𝜔)) ∈ [−1,1] and 𝜎 > 0, the condition from
(6.39) is expressed as:

(1−𝜎) < cos(∠C𝑠(𝜔)) ≤ 1, or
−1 ≤ cos(∠C𝑠(𝜔)) ≤ −1+𝜎, for 𝜔 ≠ 𝜔𝑐 .

(6.40)

Solving (6.40), the conditions for ∠C𝑠(𝜔) ∈ (−𝜋,𝜋] are given by

∠C𝑠(𝜔) ∈(−arccos(1−𝜎),arccos(1−𝜎))
∪ (arccos(−1+𝜎),𝜋]
∪ [−𝜋,−arccos(−1+𝜎)), for 𝜔 ≠ 𝜔𝑐 .

(6.41)

Defining 𝜂1, 𝜂2, and 𝜂3 as in (6.16) and substituting them into (6.41) concludes the
proof.

6.D Proof of Theorem 8
Proof. This proof derives the conditions for ∠C𝑠(𝜔) ∈ (−𝜋,𝜋] in the FORE where 𝜔𝛼 > 0
to meet the requirements specified in Lemmas 3 and 4.

From Lemma 3, at frequencies where 𝜔 = 𝜔𝑐 , the following condition needs to be
satisfied:

∠C𝑠(𝜔𝑐) ∈ (𝑘𝜋,
𝜋
2 − arctan( 𝜔𝑐

𝜔𝛼
)+𝑘𝜋) , 𝑘 = −1,0. (6.42)

From (6.14), the function 𝜅𝛼 (𝜔) can be written as

𝜅𝛼 (𝜔) = |cos(∠C𝑠(𝜔))+
𝜔𝛼
𝜔 sin(∠C𝑠(𝜔))|

= √1+𝜃2𝛼 |||cos(∠C𝑠(𝜔)− arctan𝜃𝛼 )|||,
(6.43)

where
𝜃𝛼 = 𝜔𝛼

𝜔 . (6.44)

From Lemma 4, at 𝜔 ≠ 𝜔𝑐 , the following condition needs to be satisfied:

(1−𝜎) < 𝜅𝛼 (𝜔) < (1+𝜎), for 𝜔 ≠ 𝜔𝑐 . (6.45)

From (6.43) and (6.45), at 𝜔 ≠ 𝜔𝑐 , the following condition needs to be satisfied:

0 < (1−𝜎)
√1+𝜃2𝛼

< cos(∠C𝑠(𝜔)− arctan𝜃𝛼 ) <
(1+𝜎)
√1+𝜃2𝛼

, or

(−1−𝜎)
√1+𝜃2𝛼

< cos(∠C𝑠(𝜔)− arctan𝜃𝛼 ) <
(−1+𝜎)
√1+𝜃2𝛼

< 0,
(6.46)

Solving (6.46), the resulting conditions for ∠C𝑠(𝜔) are given in (6.18). Note that
arccos(𝑥) is defined within the interval [0,𝜋]. This completes the proof.
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7
PID-ShapedResetControl Systems

Reset control introduces both first-order and high-order harmonics into the system,
where high-order harmonics with dominated magnitudes can degrade system performance.
In sinusoidal-input Describing Function (SIDF) analysis, multiple-reset control systems
are indicative of high-order harmonics with dominated magnitudes. To reduce these
problematic harmonics, the method outlined in Chapter 3 is first employed to identify the
frequency range where multiple-reset actions occur. Subsequently, this chapter proposes
a shaped reset control strategy that incorporates a shaping filter to refine reset actions
and reduce high-order harmonics in the identified range. A frequency-domain design
procedure for a PID shaping filter in a reset control system is then presented as a case
study. The PID filter effectively suppresses high-order harmonics and addresses limit-cycle
issues under step inputs. Finally, simulations and experimental results on a precision
motion stage validate the effectiveness of the proposed shaped reset control, demonstrating
enhanced SIDF analysis accuracy, improved steady-state precision compared to both linear
and reset controllers, and successful elimination of limit cycles under step inputs.

 This chapter is based on the paper:
Zhang, Xinxin, and S. Hassan HosseinNia. “Enhancing the Reliability of Closed-Loop Describing Function
Analysis for Reset Control Applied to Precision Motion Systems.” arXiv preprint arXiv:2412.00502 (2024).
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7.1 Introduction
Multiple-reset actions in sinusoidal-input reset systems indicate the presence of
high-order harmonics, which, when large, can increase the system’s sensitivity to
high-frequency noise and potentially lead to instability, thereby compromising overall
system performance. Chapter 3 introduces a method to pinpoint the frequency ranges
where high-magnitude higher-order harmonics arise.

Then, to address this issue, this chapter introduces a shaped reset control strategy
that employs a shaping filter to tune reset actions, effectively reducing high-order
harmonics while retaining the advantages of the first-order harmonic. A comprehensive
design procedure is presented for a PID-shaped reset control system, specifically aimed
at minimizing high-order harmonics in a CI-based reset framework. Furthermore, the
PID-shaped reset control resolves limit-cycle issues observed in reset systems under
step inputs. Experimental validation on a precision motion stage demonstrates that
mitigating the influence of high-order harmonics enhances the reliability of SIDF
analysis and improves steady-state precision, including superior reference tracking
accuracy, disturbance rejection, and noise suppression. Additionally, the approach
successfully eliminates limit-cycle phenomena.

The remainder of this chapter is organized as follows: Section 7.2 outlines the
research problem through illustrative examples. Section 7.3 presents the shaped reset
control strategy aimed at reducing high-order harmonics. Section 7.4 outlines a
design procedure for a PID shaping filter, showcased as a case study to decrease
high-order harmonics and eliminate limit cycles. Section 7.5 then provides simulation
and experimental results to validate the PID-shaped reset control system’s effectiveness
on a precision motion stage. Section 7.6 summarizes the main findings and offers
recommendations for future research directions.

7.2 Problem Statement via Illustrative Example
PID controllers are widely employed in the mechatronics industry due to their
simplicity and effectiveness. In this section, the PCID control system designed in
Section 3.2 is used to illustrate the high-order harmonics issues in closed-loop reset
feedback control systems. To ensure a fair comparison, both the PID and PCID
controllers are designed to maintain the same bandwidth of 100 Hz and a phase margin
of 50° with the plant P(𝑠) in (1.1).

The reset system does not only consist of the first-order harmonic but also
introduces higher-order harmonics. These large high-order harmonics can adversely
affect overall system performance and this detrimental effect is further illustrated in
Fig. 7.1.

The steady-state errors of the closed-loop PCID and PID control systems, subjected
to sinusoidal reference inputs 𝑟(𝑡) = sin(20𝜋𝑡) (10 Hz) and 𝑟(𝑡) = sin(100𝜋𝑡) (50 Hz), are
illustrated in Fig. 7.1. Additionally, the corresponding Power Spectral Density (PSD)
plots are presented. To facilitate a clearer comparison, the magnitude of the first-order
harmonic of the steady-state error in the PCID control system is normalized to 1, with
the same scaling factor applied to the PID control system for fair comparison.

At an input frequency of 50 Hz, as shown in Fig. 7.1(b2), the first-order harmonic
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component dominates, and the magnitudes of the high-order harmonics are relatively
small. In this scenario, as illustrated in Fig. 7.1(a2), the PCID control system
demonstrates two-reset actions and a lower steady-state error compared to the PID
control system.

In contrast, at an input frequency of 10 Hz, the error signal exhibits multiple
reset instants as shown in Fig. 7.1(a1), which are associated with the presence
of high-magnitude, high-order harmonics in Fig. 7.1(b1). These high-magnitude
high-order harmonics diminish the benefits of the first-order harmonic in the PCID
control system, leading to a larger steady-state error compared to the linear PID
control system in Fig. 7.1(a1).

(a1) (a2)

(b1) (b2)

Higher Error

High-Magnitude 
High-Order Harmonics

Figure 7.1: Steady-state errors 𝑒(𝑡) for the PID and PCID systems under two input signals: (a1)
𝑟(𝑡) = sin(20𝜋𝑡) and (a2) 𝑟(𝑡) = sin(100𝜋𝑡). The gray circles mark the reset instants per cycle. Panels (b1)
and (b2) display the PSD plots for the errors 𝑒(𝑡) in (a1) and (a2), respectively.

This chapter addresses this issue. First, the two-reset condition in Chapter 3 is
employed to identify the frequency ranges with high-magnitude high-order harmonics.
Following this, a shaped reset control is proposed to mitigate these harmonics, thereby
preventing system performance degradation, as illustrated in Fig. 7.1(a1). This shaped
reset control approach not only reduces higher-order harmonics but also effectively
resolves limit-cycle problems in reset control systems.

Note that though the practical applications extend beyond sinusoidal-input
systems, the sinusoidal-input analysis serves as an effective tool for investigating the
frequency-domain harmonic characteristics within these reset control systems.

7.3 Analysis andDesignof ShapedResetControl Systems
Multiple-reset actions in sinusoidal-input closed-loop reset systems are indicative of
high-order harmonics with dominated magnitudes. To reduce these harmonics, this
section introduces a shaped reset control strategy. First, Lemma 5 provides an
analytical decomposition of the steady-state reset-triggered signal 𝑧𝑠(𝑡) in such systems
into a base-linear trajectory and a nonlinear component. Building on this, Theorem
9 defines a function 𝛽𝑛(𝜔), which quantifies the presence of high-order harmonics in
𝑧𝑠(𝑡). This function serves as the foundation for designing a shaped reset control
approach to reduce high-order harmonics.
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Lemma 5. Consider a closed-loop reset control system as shown in Fig. 1.8, with
a sinusoidal reference input 𝑟(𝑡) = |𝑅|sin(𝜔𝑡) and adhering to Assumptions 2 and 3.
Let 𝜇 denote the number of reset instants occurring within a half 𝜋/𝜔-cycle. In this
system, the steady-state reset-triggered signal 𝑧𝑠(𝑡) is composed of two components: a
base-linear element 𝑧𝑏𝑙(𝑡) and a nonlinear element 𝑧𝑛𝑙(𝑡), expressed as

𝑧𝑠(𝑡) = 𝑧𝑏𝑙(𝑡) + 𝑧𝑛𝑙(𝑡),
𝑧𝑏𝑙(𝑡) = |𝑅| ⋅ |S𝑙𝑠(𝜔)|sin(𝜔𝑡 +∠S𝑙𝑠(𝜔)),
𝑧𝑛𝑙(𝑡) = −∑∞

𝑛=1F −1[C𝑠(𝑛𝜔)T𝛽 (𝑛𝜔)𝐷𝑛𝑠 (𝜔)],
(7.1)

where
T𝛽 (𝑛𝜔) = T𝛼 (𝑛𝜔) ⋅ 𝑗𝑛𝜔 (∈ ℝ1×𝑛𝑐 ),

𝐷𝑛𝑠 (𝜔) =
2(𝐴𝜌 − 𝐼 )

𝑛𝜋 ∑𝑖=𝜇
𝑖=1 F [𝑥𝑐(𝑡𝑖)sin(𝑛𝜔(𝑡 − 𝑡𝑖))] (∈ ℝ𝑛𝑐×1).

(7.2)

In (7.1) and (7.2), T𝛼 (𝜔) and S𝑙𝑠(𝜔) are defined as in (3.2) and (3.3), respectively, and
𝑥𝑐(𝑡𝑖) denotes the state of the reset controller C𝑟 at the reset instant 𝑡𝑖 .
Proof. The proof is provided in Appendix 7.A.

In the reset triggered signal 𝑧𝑠(𝑡), the nonlinear component 𝑧𝑛𝑙(𝑡) in (7.1) can be
represented as the sum of its harmonic components, expressed as:

𝑧𝑛𝑙(𝑡) =∑∞
𝑛=1 𝑧

𝑛
𝑛𝑙(𝑡),

𝑧𝑛𝑛𝑙(𝑡) =∑∞
𝑛=1 |𝑍

𝑛
𝑛𝑙 |sin(𝑛𝜔𝑡 +∠𝑍𝑛

𝑛𝑙),
(7.3)

where |𝑍𝑛
𝑛𝑙 | and ∠𝑍𝑛

𝑛𝑙 represent the magnitude and the phase of the signal 𝑧𝑛𝑛𝑙(𝑡).
Let 𝑍𝑛

𝑛𝑙(𝜔) represent the Fourier transform of the 𝑛-th harmonic 𝑧𝑛𝑛𝑙(𝑡) within 𝑧𝑛𝑙(𝑡).
The following theorem provides the magnitude ratio of the higher-order harmonics
(𝑛 > 1) to the first-order harmonic (𝑛 = 1) in 𝑧𝑛𝑙(𝑡).
Theorem 9. Consider the closed-loop reset control system depicted in Fig. 1.8, with a
sinusoidal reference input 𝑟(𝑡) = |𝑅|sin(𝜔𝑡), and assume it satisfies Assumptions 2 and
3. At the input frequency 𝜔, the magnitude ratio of the higher-order harmonics (where
𝑛 > 1) to the first-order harmonic (where 𝑛 = 1) in 𝑧𝑛𝑙(𝑡) in (7.1) is given by:

𝛽𝑛(𝜔) =
|𝑍𝑛
𝑛𝑙(𝜔)|

|𝑍 1𝑛𝑙(𝜔)|
= |C𝑠(𝑛𝜔)T𝛽 (𝑛𝜔)|

𝑛|C𝑠(𝜔)T𝛽 (𝜔)|
, where 𝑛 > 1. (7.4)

Proof. The proof is provided in Appendix 7.B.

Remark 12. According to (7.4), when 𝛽𝑛(𝜔) → 0, |𝑍𝑛
𝑛𝑙(𝜔)| ≪ |𝑍 1𝑛𝑙(𝜔)| holds for

𝑛 > 1. In this case, from (7.1), the reset-triggered signal 𝑧𝑠(𝑡) can be approximated
as 𝑧𝑠(𝑡) ≈ 𝑧1𝑛𝑙(𝑡) + 𝑧𝑏𝑙(𝑡), indicating that only the first-order harmonic is present
in 𝑧𝑠(𝑡). This ensures the low-pass filtering assumption [vander1968multiple,
khalil2002nonlinear] to ensure the accuracy of the SIDF analysis. Conversely, the
occurrence of multiple reset zero-crossings in 𝑧𝑠(𝑡), which indicates multiple-reset
actions within the system, is driven by high-order harmonics 𝑧𝑛𝑛𝑙(𝑡) for 𝑛 > 1.
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However, due to the inherent nonlinearity of reset control systems, it is not feasible
to completely eliminate high-order harmonics (i.e., achieve 𝛽𝑛(𝜔) = 0).

Although high-order harmonics do not always cause issues, they can lead
to multiple-reset actions in sinusoidal-input closed-loop systems, compromising the
accuracy of SIDF analysis and reducing the reliability of system design and performance
predictions. Additionally, high-order harmonics with dominated magnitude increase
the system’s sensitivity to high-frequency disturbances and noise. To address this, we
identify the multiple-reset frequency ranges as key areas where high-order harmonics
should be reduced. Decreasing 𝛽𝑛(𝜔) in these ranges improves the accuracy of SIDF
analysis and decreases the system’s sensitivity to high-frequency noise.

According to (7.1) and (7.4), when the base-linear component 𝑧𝑏𝑙(𝑡) remains
constant, maintaining 𝛽𝑛(𝜔) within a bound less than 1, i.e., 𝛽𝑛(𝜔) ≤ 𝜎𝛽 ∈ (0,1), ensures
that the ratio |𝑍𝑛

𝑛𝑙(𝜔)|/|𝑍 1𝑛𝑙(𝜔)| remains within a controlled range, thereby limiting the
impact of high-order harmonics.

Based on (7.4), to guide the design of a shaping filter that achieves 𝛽𝑛(𝜔) = 𝜎𝛽 , the
magnitude condition for C𝑠 is given as follows:

|C𝑠(𝜔)| = 𝑛𝜎𝛽 /|T𝛽 (𝜔) ⋅1𝑛𝑐×1|. (7.5)

Since the reset action is independent of the magnitude of C𝑠(𝜔) [1], the value of 𝑛
does not affect the system performance. By default, 𝑛 = 3 is used in (7.5). Then, the
following steps outline the design procedure for shaping filters in reset systems:

• Step 1: Start by designing the reset control system with C𝑠(𝜔) = 1, and use
Theorem 4 to identify the frequency range where multiple-reset actions occur.

• Step 2: Then, select a value 𝜎𝛽 ∈ (0,1), and design the shaping filter |C𝑠(𝜔)| using
(7.5) to achieve 𝛽𝑛(𝜔) = 𝜎𝛽 within the identified multiple-reset frequency range.

• Step 3: Since the introduction of C𝑠(𝜔) affects both the magnitude and phase
of the first-order harmonics, adjusting other system parameters to compensate
for these changes is needed in order to preserve the benefits of the first-order
harmonic.

A detailed design procedure of an illustrative example following these steps is
presented in Section 7.4.

7.4 Case Study: Design of PID-Shaping Filter in CI-Based
Reset Systems

This section details the analysis and design procedure for a shaped reset control
systems as an illustrative example. First, Subsection 7.4.1 outlines the design process
for a PID shaping filter aimed at reducing high-order harmonics in a CI-based reset
control system. Next, Subsection 7.4.2 shows that this PID-shaped reset control system
also addresses limit cycle issues in the step responses of reset control systems.
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7.4.1 Design Procedure for the PID Shaping Filter
The PCID control system, Case1, with design parameters outlined in Section 7.2, is
chosen as the example due to its high-order harmonic issues, as shown in Fig. 7.1(a1).

Following the steps outlined in Section 7.3, Theorem 4 is applied to identify the
multiple-reset frequency range for the PCID control system, Case1, as (0,30) Hz. The
value of 30 Hz is determined by sweeping the entire frequency range with a 1 Hz
step size. For improved accuracy, smaller step resolutions can be utilized. Within this
identified frequency range, reducing high-order harmonics is needed.

Next, by setting 𝜎𝛽 = 0.6 and applying equation (7.5), the resulting magnitude plot
of |C𝑠(𝜔)| is shown in Fig. 7.2. The value 𝜎𝛽 = 0.6 is chosen based on experimental
evaluations to achieve improved system performance, as demonstrated in Section 7.5.
In practice, other values of 𝜎𝛽 ∈ (0,1) may also be selected, depending on the specific
requirements for high-order harmonic reduction in the system.

1 10 30 100 1000
Frequency [Hz]
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Figure 7.2: The plot of |C𝑠(𝜔)| meeting the condition of 𝛽𝑛(𝜔) = 0.6 based on (7.5).

From Fig. 7.2, the shaping filter can be simplified as the LTI PI shaping filter, given
by

C𝑠(𝑠) = 1+𝜔𝛼 /𝑠, (7.6)

where 𝜔𝛼 = 2𝜋 ⋅ 30 = 60𝜋 [rad/s].
The objective of the shaping filter design is to attenuate high-order harmonics

while preserving the benefits of the first-order harmonic. However, as demonstrated in
Theorem 2, the integration of the PI shaping filter affects the phase of the HOSIDF in
the reset controller. It is crucial to ensure that the shaping filter does not introduce
phase lag but instead introduces phase lead, as achieved by the design outlined in
Remark 13.

Remark 13. The PID shaping filter C𝑠(𝑠) reduces 𝛽𝑛(𝜔) in (7.4) for frequencies 𝜔 < 𝜔𝛼 ,
while simultaneously introducing a phase lead at the bandwidth frequency of 𝜔𝑏 ,
compared to the system without the shaping filter (i.e., C𝑠 = 1), by the following design:

C𝑠(𝑠) = 𝑘𝑠 ⋅ (1+
𝜔𝛼
𝑠 ) ⋅ 𝑠/𝜔𝛽 +1

𝑠/𝜔𝜂 +1
⋅ 1
𝑠/𝜔𝜓 +1 , (7.7)

with ∠C𝑠(𝜔𝑏) meets the conditions presented in Lemma 3 and 𝜔𝑏 is the bandwidth
frequency.
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Since reset actions are amplitude-independent [1], the value of 𝑘𝑠 ≠ 0 ∈ ℝ does not
impact system performance. By default, 𝑘𝑠 = 1. The introduction of the derivative
element in (7.7) may amplify high-frequency noise, potentially causing multiple-reset
actions. Therefore, the low-pass filter is incorporated to attenuate high-frequency
components in 𝑧𝑠(𝑡). The cutoff frequency 𝜔𝜓 for the LPF is chosen based on the
characteristics of the noise present in practice.

In this chapter, reset systems incorporating the shaping filter from (7.7) are termed
PID-shaped reset control systems. CI-based reset systems, including Case1, are built
upon the generalized CI. Therefore, the phase margin introduced by the PID shaping
filter in the CI-based reset system is first applied to the shaped CI, and then propagated
throughout the entire system. Remark 10 provides the calculation of the phase lead
introduced by the shaping filter to the shaped CI in comparison to the CI.

Based on (7.6) and Remark 13, the shaping filter C𝑠(𝑠) (7.7) for Case1 is
designed with the following parameters: 𝜔𝛼 = 60𝜋 rad/s, 𝜔𝛽 = 1.05 ⋅ 𝜔𝑏 = 659.7 rad/s,
𝜔𝜂 = 12 ⋅𝜔𝑏 = 7.5 × 103 rad/s, 𝜔𝜓 = 75 ⋅𝜔𝑏 = 4.7 × 104 rad/s, and 𝑘𝑠 = 213. The Bode plot
of C𝑠(𝑠) is shown in Fig. 7.3. At frequencies 𝜔 < 𝜔𝛼 , C𝑠(𝑠) functions as a PI controller.
Noted that, due to the integral property of the shaping filter and the presence of an
integral buffer, the output signal of C𝑠 may exhibit an offset and lack zero-crossings
within specific frequency ranges. Under these conditions, the system operates linearly.
As the primary objective of the PI shaping filter is to attenuate high-order harmonics,
the transition to linear behavior does not degrade system performance. Instead,
it enhances performance, as linear control outperforms reset control within these
frequency ranges. Additionally, its phase at the bandwidth frequency 𝜔𝑏 = 200𝜋 rad/s
is ∠C𝑠(𝜔𝑏) = 21∘.

Without the shaping filter, the CI with 𝛾 = 0 has a phase of 𝜙0 = −38.1∘ at 𝜔𝑏 = 200𝜋
rad/s. In contrast, by applying the designed shaping filter C𝑠(𝑠), the phase of the
shaped CI improves to 𝜙𝑠 = −27.4∘, resulting in a phase lead of 𝜙lead = 10.7∘ in the PCID
control system, as determined using Remark 10. To preserve the phase margin and
gain properties of the first-order harmonic, the parameters are set to 𝜔𝑟 = 141.4 rad/s,
𝛾 = 0.13, and 𝑘𝑟 = 1.02. Under these settings, the phase lead is 𝜙lead = 0∘.

Applying the designed PID shaping filter, the Bode plots for the PID, PCID, and
shaped PCID controllers—showing both first- and third-order harmonics—are provided
in Fig. 7.4. Then, Fig. 7.5 provides the corresponding Bode plots when these controllers
are applied to the plant P(𝑠) in (1.1). Collectively, these figures demonstrate that the
shaped PCID control system reduces high-order harmonics within the frequency range
of (0, 30) Hz, while preserving the gain and phase benefits of the first-order harmonic,
compared to the PCID control system. Note that the PID shaping filter amplifies
high-order harmonics in certain frequency ranges, such as [30, 100] Hz in this case
study, as shown in Fig. 7.4. However, this amplification is minimal, and within this
range, the first-order harmonics are also amplified. Therefore, this amplification does
not lead to system performance degradation, as will be validated by the experimental
results in Section 7.5.

Moreover, the plots of 𝛽3(𝜔) for both the closed-loop PCID and shaped PCID
control systems are shown in Fig. 7.6. The shaped PCID control system reduces 𝛽3(𝜔),
ensuring that 𝛽3(𝜔) < 0.6. Note that in this shaped PCID control system, the values
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Figure 7.3: Bode plot of the shaping filter C𝑠(𝑠).
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Figure 7.4: Bode plots of the PID controller, the first-order and third-order harmonics in the PCID,
and shaped PCID controllers. The multiple-reset region (0,30) Hz identified for the PCID system using
Theorem 4 is shaded in gray.

of 𝛽𝑛(𝜔) for 𝑛 > 3 are smaller than 𝛽3(𝜔) and, for clarity, are not displayed. However,
they can be computed using (7.4).

The results shown in Figures 7.4 to 7.6 indicate that the PID shaping filter designed
in this chapter reduces high-order harmonics while maintaining the advantages of
the first-order harmonic in the PCID system. These improvements are anticipated to
enhance the accuracy of SIDF analysis and improve the steady-state precision of the
PCID system. Further validation of these enhancements will be provided through
simulations and experimental results in Section 7.5.
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Figure 7.6: The plot of 𝛽3(𝜔) in the closed-loop PCID and shaped PCID control systems.

7.4.2 Limit Cycles Elimination of the PID Shaping Filter
In addition to reducing high-order harmonics, the PID shaping filter also eliminates
the limit cycle issues in the step responses of reset systems.

Consider a closed-loop reset control system in Fig. 6.1 subjected to an unit step
input ℎ(𝑡), with the Laplace transform of ℎ(𝑡) given by 𝐻(𝑠) = 1/𝑠. In this system, the
final value of 𝑧𝑠(𝑡) denoted by lim𝑡→∞𝑧𝑠(𝑡) is given by

lim𝑡→∞𝑧𝑠(𝑡) = lim𝑠→0 𝑠 ⋅ 𝑍𝑠(𝑠) = lim𝑠→0 𝑠C𝑠(𝑠)C1(𝑠)S𝑏𝑙(𝑠) ⋅ 1/𝑠 = lim𝑠→0C𝑠(𝑠)S𝛼 (𝑠), (7.8)

where
S𝛼 (𝑠) = C1(𝑠)S𝑏𝑙(𝑠). (7.9)

In the reset systems with the shaping filter C𝑠(𝑠) = 1, limit cycles occur when
the reset-triggered signal continues to trigger the reset actions at steady states,
characterized by:

lim𝑡→∞𝑧𝑠(𝑡) = lim𝑠→0S𝛼 (𝑠) = 0, (7.10)
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while the reset controller’s output 𝑚(𝑡) does not settle to a steady-state equilibrium at
zero; instead, it continues to oscillate persistently around certain non-zero values as
𝑡 →∞, i.e.,

lim𝑡→∞𝑚(𝑡) = lim𝑠→0 𝑠C1(𝑠)C𝑙(𝑠)S𝑏𝑙(𝑠)1/𝑠 = constant ≠ 0. (7.11)

The following content demonstrates that the PID shaping filter, as defined in (7.7),
can eliminate limit cycle issues in reset systems.

The PID shaping filter C𝑠(𝑠) in (7.7) can be expressed as:

C𝑠(𝑠) = 𝐹(𝑠)/𝑠, (7.12)

where
𝐹(𝑠) = 𝑘𝑠 ⋅ (𝑠 +𝜔𝛼 ) ⋅

𝑠/𝜔𝛽 +1
𝑠/𝜔𝜂 +1

⋅ 1
𝑠/𝜔𝜓 +1 . (7.13)

With the PID shaping filter in (7.12), lim𝑡→∞𝑧𝑠(𝑡) in (7.8) is written as

lim𝑡→∞𝑧𝑠(𝑡) = lim𝑠→0𝐹(𝑠) ⋅S𝛼 (𝑠)/𝑠. (7.14)

From (7.13), the value of 𝐹(𝑠) as 𝑠 → 0 is given by

lim𝑠→0𝐹(𝑠) = 𝑘𝑠 ⋅ 𝜔𝛼 = constant ≠ 0. (7.15)

From (7.10), the transfer function S𝛼 (𝑠) can be expressed in terms of polynomial terms,
given by

S𝛼 (𝑠) =
𝑛1𝑠𝑛 +𝑛2𝑠𝑛−1 +⋯+𝑛𝑞𝑠
𝑚1𝑠𝑚 +𝑚2𝑠𝑚−1 +⋯+𝑚𝑞

, 𝑛1,… ,𝑛𝑞 ,𝑚1,… ,𝑚𝑞 ∈ ℝ, 𝑚𝑞 ≠ 0, 𝑛𝑞 ≠ 0. (7.16)

From (7.16), we find that:

lim𝑠→0
S𝛼 (𝑠)
𝑠 = lim𝑠→0

𝑛1𝑠𝑛−1 +𝑛2𝑠𝑛−2 +⋯+𝑛𝑞
𝑚1𝑠𝑚 +𝑚2𝑠𝑚−1 +⋯+𝑚𝑞

= 𝑛𝑞/𝑚𝑞 = constant ≠ 0. (7.17)

Combining (7.14), (7.15), and (7.17), we derive:

lim𝑡→∞𝑧𝑠(𝑡) = lim𝑠→0𝐹(𝑠) ⋅S𝛼 (𝑠)/𝑠 = constant ≠ 0. (7.18)

Thus, from (7.18), by applying the PID shaping filter C𝑠(𝑠), as specified in (7.7), the
limit-cycle behaviors in reset systems are eliminated.

7.5 Results: Improved Performance of the PID-Shaped
Reset Control System

This section presents simulation and experimental results to validate the effectiveness
of the PID-shaped reset system designed in Section 7.4 in comparison to both linear
and reset systems, as applied to the precision motion stage in Fig. 1.2.
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Figure 7.7: Plots of simulated ||𝑒||∞/||𝑟 ||∞ for the PID, PCID, and shaped PCID control systems, alongside
the SIDF-predicted ||𝑒||∞/||𝑟 ||∞ for the shaped PCID control system.

7.5.1 Simulation Results: Enhanced Steady-State Performance
To evaluate the closed-loop performance of the shaped PCID control system, Fig. 7.7
presents the simulated ||𝑒||∞/||𝑟 ||∞ for the PID, PCID, and shaped PCID systems. The
shaped PCID system demonstrates the lowest ||𝑒||∞/||𝑟 ||∞ compared to the other two
systems, indicating improved precision. This enhancement is attributed to the shaped
PCID control system’s superior gain properties in the first-order harmonic compared
to the PID control system, while reducing high-order harmonics relative to the PCID
control system, as demonstrated in Figures 7.4 and 7.5.

Table 7.1 presents a quantitative comparison of ||𝑒||∞/||𝑟 ||∞ for the PID, PCID, and
shaped PCID systems at selected frequencies: 5 Hz, 10 Hz, 30 Hz, and 200 Hz. The
choice of 5, 10, and 30 Hz validates the improved precision resulting from high-order
harmonics reduction in the shaped PCID system within the targeted frequency range of
(0,30) Hz. Additionally, the inclusion of 200 Hz ensures that high-frequency precision
has also been attained. Across all frequencies, the shaped PCID system consistently
exhibits lower steady-state errors, highlighting its effectiveness.

Table 7.1: The ||𝑒||∞/||𝑟 ||∞ values for the PCID and shaped PCID systems under sinusoidal inputs at
frequencies of 5, 10, 30, and 200 Hz.

Systems Input Frequencies [Hz]
5 10 30 200

PID 1.5×10−2 1.3×10−2 1.7×10−1 1.28
PCID 4.8×10−2 1.9×10−2 1.6×10−1 1.26

Shaped PCID 1.0×10−2 8.9×10−3 1.5×10−1 1.25
Precision Improvement 79.17% 53.16% 6.25% 0.79%

Another notable observation from Fig. 7.7 is that the SIDF analysis provides more
accurate predictions for the shaped PCID system compared to the PCID system in
Fig. 3.3. Here, |S(𝜔)| = ||𝑒||∞/||𝑟 ||∞, and the Relative Prediction Error (RPE) of the
SIDF analysis is defined as RPE = ||Ssim(𝜔)| − |Ssidf(𝜔)||/|Ssidf(𝜔)|, where |Ssim(𝜔)| and
|Ssidf(𝜔)| are derived from simulations and the SIDF analysis [2], respectively. Table
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7.2 compares the RPE values at six frequencies, reinforcing this observation. The
enhanced reliability of SIDF analysis in the shaped PCID system is attributed to the
reduction in high-order harmonics. However, discrepancies persist between SIDF
predictions and simulation results, as SIDF only accounts for the first-order harmonic.
To mitigate this, restricting 𝛽𝑛(𝜔)→ 0 can help preserve the two-reset condition, and
employing HOSIDF methods from [3, 4] can achieve greater accuracy by incorporating
higher-order harmonics.

Table 7.2: Relative Prediction Error (RPE) of the SIDF analysis for PCID and shaped PCID control systems
at frequencies of 1, 10, 50, 100, 500, and 1000 Hz.

Systems Input Frequencies [Hz]
1 10 50 100 500 1000

PCID 15.51 0.97 0.03 0.02 2.35×10−3 3.21×10−3
Shaped PCID 0.03 0.18 0.02 0.01 8.39×10−4 3.15×10−3

7.5.2 Experimental Results: Improved Tracking Precision
Figure 7.8 illustrates the experimentally measured steady-state errors for the PID,
PCID, and shaped PCID systems in response to a normalized sinusoidal input signal
defined as 𝑟(𝑡) = 1×10−5 sin(2𝜋𝑓 𝑡) [m], with frequencies 𝑓 = 5,10,30,200 Hz. Note that
during practical experiments, the magnitudes of input signals employed for these four
frequencies were different; however, for the purposes of comparison, the magnitude of
all input signals have been normalized to 1×10−5 [m].

Table 7.3 presents the maximum steady-state errors at the three test frequencies
for the PID, PCID, and shaped PCID systems. The results demonstrate that the shaped
PCID system achieves lowest position errors among the three systems, especially at
low frequency range of (0,30) Hz. Notably, at 5 Hz, the shaped PCID system improves
precision by 72.56% compared to the PCID system.

Table 7.3: The maximum steady-state errors ||𝑒||∞ [m] in the reset PID system and shaped PCID systems
under single sinusoidal inputs at frequencies of 5, 10, 30, 200 Hz.

Systems Input Frequency [Hz]
5 10 30 200

PID 2.03×10−7 1.41×10−7 1.72×10−6 1.23×10−5
PCID 5.03×10−7 2.16×10−7 1.65×10−6 1.21×10−5

Shaped PCID 1.38×10−7 9.30×10−8 1.56×10−6 1.14×10−5
Precision Improvement 72.56% 56.94% 5.45% 7.00%

Real-world input signals are often more complex than a single sinusoid. In this
subsection, the results of the single sinusoidal reference inputs serve to illustrate
the steady-state performance of the three systems across varying frequencies. To
comprehensively evaluate the positioning performance of the shaped reset control
system, multiple inputs—including disturbances and noise—will be applied to the three
systems in the next subsection.
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(a)

(b)

(c)

(d)

Figure 7.8: Normalized experimental measured steady-state errors of the PID, PCID, and shaped PCID
control systems under sinusoidal input 𝑟(𝑡) = 1×10−5 sin(2𝜋𝑡) [m].

7.5.3 Experimental Results: Enhanced Disturbance and Noise
Rejection

This subsection presents the steady-state errors of three systems under multiple input
conditions.

Figure 7.9(a) shows the measured steady-state errors of the three systems in
response to a disturbance input signal defined as 𝑑1(𝑡) = 1 × 10−7[149.3sin(4𝜋𝑡) +
1.2sin(16𝜋𝑡) +11.9sin(16𝜋𝑡) +3.0sin(40𝜋𝑡)] [m].

Next, a white noise input 𝑛(𝑡) with a power bound of 3×10−12 [m] is added to the
disturbance input 𝑑1(𝑡). The resulting steady-state errors for the three systems are
presented in Fig. 7.9(b). Table 7.4 summarizes the maximum steady-state errors for
the PID, PCID, and shaped PCID systems under these inputs. The results show that
the shaped PCID system improves precision by 80.07% compared to the PCID system,
effectively rejecting both the disturbance and noise.
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+

Figure 7.9: Experimental measured steady-state errors of PID, PCID, and shaped PCID control systems
under 𝑑1(𝑡) +𝑛(𝑡).

Table 7.4: The maximum steady-state errors ||𝑒||∞ [m] in the PID, PCID, and shaped PCID control systems.

Systems Input Signals
𝑑1(𝑡) +𝑛(𝑡) 𝑟2(𝑡) +𝑑2(𝑡) +𝑛(𝑡) 𝑟3(𝑡) +𝑑3(𝑡) +𝑛(𝑡)

PID 1.80×10−7 1.22×10−7 1.17×10−7
PCID 5.52×10−7 3.63×10−7 2.00×10−7

Shaped PCID 1.10×10−7 8.80×10−8 9.64×10−8
Precision Improvement 80.07% 75.78% 51.79%

To evaluate both the reference tracking, as well as the disturbance and noise
rejection of the closed-loop shaped PCID control system, Figure 7.10 compares the
steady-state errors of the PID, PCID, and shaped PCID systems under multiple input
signals. In Fig. 7.10(a), the inputs include a reference signal 𝑟2(𝑡) = 6×10−6 sin(10𝜋𝑡) [m],
alongside the disturbance 𝑑2(𝑡) = 1×10−8[49.0sin(4𝜋𝑡)+5.5sin(16𝜋𝑡)+1.1sin(40𝜋𝑡)] [m]
and white noise 𝑛(𝑡) with a power bound of 3 × 10−12 [m]. In Fig. 7.10(b),
the inputs consist of a reference signal 𝑟3(𝑡) = 6 × 10−6 sin(20𝜋𝑡) [m], a disturbance
𝑑3(𝑡) = 1 × 10−7[2.7sin(10𝜋𝑡) + 3.7sin(14𝜋𝑡) + 3.0sin(30𝜋𝑡)] [m], and the white noise
noise 𝑛(𝑡) with a power bound of 3×10−12 [m]. The maximum steady-state errors for
these two cases are summarized in Table 7.4, indicating that the shaped PCID system
improves precision by 73.5% and 53.06% in the two scenarios, respectively.

Moreover, Figure 7.11 illustrates the control inputs for these two cases,
demonstrating that the shaped PCID system requires the least control input force while
achieving the lowest steady-state error. Together, Figures 7.10 and 7.11 highlight the
improved control efficiency of the shaped PCID system, which can be attributed to the
reduction of high-order harmonics.
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(a)

(b)

Figure 7.10: Experimental measured steady-state errors of PID, PCID, and shaped PCID control systems
under (a) 𝑟2(𝑡) +𝑑2(𝑡) +𝑛(𝑡) and (b) 𝑟3(𝑡) +𝑑3(𝑡) +𝑛(𝑡).

(a)

(b)

Figure 7.11: Experimental measured control input of PID, PCID, and shaped PCID control systems under
(a) 𝑟2(𝑡) +𝑑2(𝑡) +𝑛(𝑡) and (b) 𝑟3(𝑡) +𝑑3(𝑡) +𝑛(𝑡).

7.5.4 Experimental Results: Eliminated Limit Cycles
The shaped reset system also eliminates the limit cycle issues in the step responses of
reset PID systems. Current solutions for addressing the limit cycle problem include
the “PI+CI” structure [5] and the PCI-PID structure in Fig. 3.1. To provide a fair
comparison of the effectiveness of five control structures—PID, PCID, shaped PCID,
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Figure 7.12: Experimental measured step responses of PID, PCID, shaped PCID, PCI-PID, PI+CI D control
systems.
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Figure 7.13: Experimental measured steady-state errors of the PCI-PID, PI+CI D, and shaped PCID control
systems under sinusoidal input 𝑟(𝑡) = 1×10−5 sin(20𝜋𝑡) [m].

PI+CI D, and PCI-PID—we designed these systems with the same bandwidth of 100 Hz
and phase margin of 50° of the first-order harmonics for fair comparison.

Figure 7.12 presents the step responses of the five systems, highlighting the
effectiveness of the shaped PCID, PI+CI D, and PCI-PID systems in mitigating the limit
cycle issues observed in the PCID system. These systems also exhibit lower overshoot
compared to the PID system. However, the PI+CI D and PCI-PID structures address
limit cycle problems at the cost of reduced steady-state performance.

For example, as shown in Fig. 7.13, under a sinusoidal input signal
𝑟(𝑡) = 1×10−5 sin(20𝜋𝑡) [m], the steady-state errors of the PI+CI D and PCI-PID systems
are larger than those of the shaped PCID system. This occurs because the PI+CI D
and PCI-PID systems exhibit high-order harmonics with dominated magnitudes at low
frequencies, similar to the PCID system. In contrast, the shaped PCID system reduces
these high-order harmonics, leading to improved steady-state performance.

In summary, the proposed shaped PCID control system improves positioning
accuracy and control efficiency compared to both PID and PCID control systems on
the precision motion stage. Additionally, it effectively eliminates limit cycles, leading
to enhanced overall system performance.
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7.6 Conclusion and Discussions
In conclusion, this chapter introduces a shaped reset control strategy to reduce
high-order harmonics. As an illustrative example, the procedure for designing a PID
shaping filter in CI-based reset systems is presented. The resulting PID-shaped reset
control system reduces high-order harmonics while preserving the benefits of the
first-order harmonic compared to the reset control system. Experimental results from
precision motion stages highlight three key benefits of the PID-shaped reset system:
(1) Improved SIDF analysis accuracy; (2) Enhanced tracking precision, disturbance and
noise rejection, and overall control efficiency; and (3) Elimination of limit-cycle issues
in the step responses of reset systems.

In Chapter 6, a phase lead element (PD) was introduced to provide phase lead while
limiting gain variation, as guided by Lemma 4. Unlike that approach, this chapter
incorporates an integrator into the shaping filter, forming a PID structure. Although
the integrator introduces phase lag to the system, it enhances gain improvement by
relaxing the gain constraints outlined in Lemma 4. Both structures in Chapters 6 and
7 achieve gain or phase improvements based on system requirements by adjusting
the phase of the reset instants. Future research could explore applying the shaped
reset control system design method from Section 7.3 to other reset control structures,
aiming to achieve further performance enhancements.
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Appendix

7.A Proof of Lemma 5
Proof. Consider a closed-loop reset control system as shown in Fig. 1.8, with a
sinusoidal reference input 𝑟(𝑡) = |𝑅|sin(𝜔𝑡) and satisfying Assumptions 2 and 3. This
proof demonstrates that the steady-state reset-triggered signal 𝑧𝑠(𝑡) is composed of
a base-linear component 𝑧𝑏𝑙(𝑡) and a nonlinear component 𝑧𝑛𝑙(𝑡), where 𝑧𝑛𝑙(𝑡) is
obtained by filtering a stair-step signal 𝑑𝑠(𝑡) through an LTI transfer function. The
proof is organized into three steps.

Step 1: Prove that Reset Actions Introduce Square Waves into Systems.
The state 𝑥𝑐(𝑡) of the reset controller C𝑟 is nonlinear and can be represented as the

sum of its harmonics [6], expressed as

𝑥𝑐(𝑡) =∑∞
𝑛=1 𝑥𝑛𝑐 (𝑡) = |𝑋 𝑛𝑐 |sin(𝑛𝜔𝑡 +∠𝑋 𝑛𝑐 ), (7.19)

where |𝑋𝑛𝑐 | and ∠𝑋𝑛𝑐 represent the magnitude and phase of each harmonic 𝑥𝑛𝑐 (𝑡) in
𝑥𝑐(𝑡).

From (7.19), the following relation holds

𝑥𝑐(𝑡𝑖) = −𝑥𝑐(𝑡𝑖 ±𝜋/𝜔). (7.20)
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Based on (3.35), the reset instant 𝑡𝑖 occurs 𝜋/𝜔-periodically. At each reset instant
𝑡𝑖 , according to (3.6), the state 𝑥𝑐(𝑡𝑖) undergoes a jump to 𝐴𝜌𝑥𝑐(𝑡𝑖), generating a step
input defined by ℎ𝑖(𝑡) = (𝐴𝜌 − 𝐼 )𝑥𝑐(𝑡𝑖)ℎ(𝑡 − 𝑡𝑖).

Then, based on (7.20), a step input with an opposite sign ℎ′𝑖 (𝑡) = −ℎ𝑖(𝑡) =
−(𝐴𝜌 − 𝐼 )𝑥𝑐(𝑡𝑖)ℎ(𝑡 − 𝑡𝑖 ±𝜋/𝜔) is introduced at the time instant 𝑡𝑖 +𝜋/𝜔. Signals ℎ𝑖(𝑡) and
−ℎ𝑖(𝑡) together produce a square wave signal over each steady-state cycle, beginning
at 𝑡𝑖 with an amplitude of (𝐴𝜌 − 𝐼 )𝑥𝑐(𝑡𝑖) and a period of 2𝜋/𝜔, as illustrated in Fig.7.14.

Time (s)

qi(t) [abs]

hi(t)
-hi(t)

ti ti+p/w Time [s]ti+1 ti+1+p/w

+ hi+1(t)
-hi+1(t)

+...

qi+1(t) [abs]

ds(t)

Figure 7.14: Plots of signals 𝑞𝑖(𝑡) in (7.21) and 𝑑𝑠(𝑡) in (7.25).

Step 2: Formulate the Square Waves.
The square wave introduced at the time instants 𝑡𝑖 and 𝑡𝑖 +𝜋/𝜔 is expressed as

𝑞𝑖(𝑡) = (𝐴𝜌 − 𝐼 )𝑥𝑐(𝑡𝑖)𝑞(𝑡 − 𝑡𝑖), (7.21)

where 𝑞(𝑡) is a square wave with an amplitude of 1 and a period of 2𝜋/𝜔, defined as:

𝑞(𝑡) =∑∞
𝑛=1 2 ⋅ sin(𝑛𝜔𝑡)/𝑛𝜋, 𝑛 = 2𝑘 +1,𝑘 ∈ ℕ. (7.22)

From (7.21) and (7.22), 𝑞𝑖(𝑡) is expressed as

𝑞𝑖(𝑡) =∑∞
𝑛=1 𝑞

𝑛𝑖 (𝑡), (7.23)

where
𝑞𝑛𝑖 (𝑡) = 2(𝐴𝜌 − 𝐼 )𝑥𝑐(𝑡𝑖)sin(𝑛𝜔(𝑡 − 𝑡𝑖))/(𝑛𝜋). (7.24)

Step 3: Illustrate that Square Waves 𝑞𝑖(𝑡) Combine to Form a Stair-Step Signal
𝑑𝑠(𝑡), Contributing to the Reset-Triggered Signal 𝑧𝑠(𝑡).

At each reset instant 𝑡𝑖 within the half-cycle (0,𝜋/𝜔], a square wave 𝑞𝑖(𝑡) is
introduced. Let the number of reset instants within each half-cycle (0,𝜋/𝜔] be denoted
by 𝜇. From (7.23) and (7.24), a stair-step signal 𝑑𝑠(𝑡) is generated within one 2𝜋/𝜔
period. This signal is illustrated in Fig. 7.14 and is expressed as:

𝑑𝑠(𝑡) =∑𝑖=𝜇
𝑖=1 𝑞𝑖(𝑡) =∑𝑖=𝜇

𝑖=1∑
∞
𝑛=1 𝑞

𝑛𝑖 (𝑡). (7.25)

From (7.25), 𝑑𝑠(𝑡) can be written as

𝑑𝑠(𝑡) =∑∞
𝑛=1∑

𝑖=𝜇
𝑖=1 𝑞

𝑛𝑖 (𝑡). (7.26)
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Define 𝑑𝑛𝑠 (𝑡) as the 𝑛th harmonic of 𝑑𝑠(𝑡), from (7.24) and (7.26), 𝑑𝑠(𝑡) is expressed as

𝑑𝑠(𝑡) =∑∞
𝑛=1 𝑑𝑛𝑠 (𝑡),

𝑑𝑛𝑠 (𝑡) = 2(𝐴𝜌 − 𝐼 )/(𝑛𝜋) ⋅∑
𝑖=𝜇
𝑖=1 𝑥𝑐(𝑡𝑖)sin(𝑛𝜔(𝑡 − 𝑡𝑖)),

(7.27)

with their Fourier transforms given by

𝐷𝑠(𝜔) =∑∞
𝑛=1𝐷𝑛𝑠 (𝜔),

𝐷𝑛𝑠 (𝜔) = 2(𝐴𝜌 − 𝐼 )/(𝑛𝜋) ⋅∑
𝑖=𝜇
𝑖=1 F [𝑥𝑐(𝑡𝑖)sin(𝑛𝜔(𝑡 − 𝑡𝑖))].

(7.28)

Under Assumption 3, the reset-triggered signal 𝑧𝑠(𝑡) follows its base-linear
trajectory 𝑧𝑏𝑙(𝑡) within the interval (0, 𝑡1), as defined in (7.1). At time 𝑡1, reset actions
introduce a stair-step signal 𝑑𝑠(𝑡) into the system. By replacing the signal ℎ𝑖(𝑡) (whose
Fourier transform is 𝐻𝑖(𝜔) = 1/(𝑗𝜔)) with the stair-step signal 𝑑𝑠(𝑡) (whose Fourier
transform is 𝐷𝑠(𝜔)) in Fig. 3.5, and following the derivation process outlined in 3.A,
the nonlinear component 𝑧𝑛𝑙(𝑡) is derived. Finally, 𝑧𝑏𝑙(𝑡) and 𝑧𝑛𝑙(𝑡) combine to form
𝑧𝑠(𝑡), as expressed in (7.1). This concludes the proof.

7.B Proof of Theorem 9
Proof. Consider a closed-loop reset control system as illustrated in Fig. 1.8, with a
sinusoidal reference input 𝑟(𝑡) = |𝑅|sin(𝜔𝑡), satisfying Assumptions 2 and 3. This proof
derives the magnitude ratio of the higher-order harmonics (for 𝑛 > 1) relative to the
first-order harmonic (for 𝑛 = 1) in the nonlinear component 𝑧𝑛𝑙(𝑡) as defined in (7.1).

From (7.1) and (7.3), the signal 𝑧𝑛𝑛𝑙(𝑡), representing the 𝑛th harmonic component of
𝑧𝑛𝑙(𝑡), is given by:

𝑧𝑛𝑛𝑙(𝑡) = −F −1[C𝑠(𝑛𝜔)T𝛽 (𝑛𝜔)𝐷𝑛𝑠 (𝜔)]. (7.29)

From (7.29), the Fourier transform of 𝑧𝑛𝑛𝑙(𝑡) is given by

𝑍𝑛
𝑛𝑙(𝜔) = −C𝑠(𝑛𝜔)T𝛽 (𝑛𝜔)𝐷𝑛𝑠 (𝜔). (7.30)

From (7.28) and (7.30), we obtain:

𝛽𝑛(𝜔) =
|𝑍𝑛
𝑛𝑙(𝜔)|

|𝑍 1𝑛𝑙(𝜔)|
= |C𝑠(𝑛𝜔)T𝛽 (𝑛𝜔)|

𝑛|C𝑠(𝜔)T𝛽 (𝜔)|
. (7.31)

Here, the proof is concluded.
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8
AFixed-PhaseResetControl System
Current reset elements reset based on the zero-crossings of the reset trigger signal, which
often shares the same period as the steady-state error. To further explore the potential
of reset control, this chapter investigates alternative reset trigger signals. Specifically,
it introduces a reset element with a trigger signal whose period differs from the
steady-state error. This control element is termed Fixed-Phase Reset Control (FPRC). A
Higher-Order Sinusoidal Input Describing Function (HOSIDF) is then developed to analyze
the frequency-domain properties of FPRC. The accuracy of this analytical approach is
validated through simulations on three systems. The analysis reveals that FPRC provides
phase lead compared to previous reset control methods but introduces nonlinearities at low
frequencies.

 This chapter is based on the conference paper:
Zhang, Xinxin, Hsing-Li Hsu, and S. Hassan HosseinNia. “Frequency-Domain Analysis of the Fixed-Phase
Reset Control System.” 2024 IEEE Conference on Control Technology and Applications (CCTA). IEEE, 2024.
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8.1 Introduction
The mechatronics industry places a substantial emphasis on attaining precise
positioning and high-speed performance in its systems, necessitating the optimization
of controllers [1]. Linear controllers, such as Proportional-Integral-Derivative (PID)
controllers, are extensively employed in industrial settings due to their effectiveness
and ease of tuning. However, their performance is constrained by the inherent linear
limitations outlined in Bode’s phase-gain relationship [2]. In the quest for alternatives,
reset control has emerged as a promising approach to surmount these linear limitations.

The pioneering work of Clegg in the 1950s introduced the simplest form of a reset
controller, known as the Clegg Integrator (CI) [3]. Notably, the first-order harmonic
of the CI exhibits a 52-degree phase lead while maintaining the same slope (-20
dB/decade) as the linear integrator. This characteristic challenges Bode’s phase-gain
relationship and shows potential for enhancing control system performance. To
expand the applicability of reset control, Horowitz introduced the first-order reset
element (FORE) [4, 5]. The FORE has demonstrated promising outcomes in mitigating
high-frequency noise. Ongoing research in the realm of reset control has yielded
various reset controller variants, as exemplified by works such as [6], [7], [8], [9].
Most preceding reset elements operate on the classical “Zero-crossing Law” resetting
mechanism, where the reset controller’s output resets to zero upon crossing zero by
the input signal.

Research efforts have explored the different resetting mechanisms. Studies such
as [10, 11] demonstrate that manipulating the timing of reset actions can enhance
the performance of systems like PZT positioning stages. Other research indicates
that pre-defining reset conditions can optimize a reset adaptive observer [12] and
improve tracking capabilities in hard disk drive systems [13]. Despite these efforts,
the application of the new resetting mechanism to reset controllers remains unclear.
Furthermore, for the effective implementation of the new reset controller, there is a
need for a frequency-domain analysis method. To the best of the authors’ knowledge,
there are currently no available tools for analyzing the frequency responses of reset
controllers that utilize non-zero-crossing resetting mechanisms.

This chapter aims to overcome these limitations, and its structure is outlined as
follows. The three primary contributions of this research are presented as follows:

1. In Section 8.2, we introduce a novel reset controller termed as Fixed-Phase
Reset Control (FPRC). The FPRC incorporates an innovative resetting mechanism
that enables the reset controller’s output to reset to a predefined value when a
specified phase-based signal crosses zero. This mechanism is applied to common
reset elements, including the CI [14], the FORE [15], and the Second-Order
Single-State Reset Element (SOSRE) [7].

2. Section 8.3 formulates a Higher-Order Sinusoidal Input Describing Function
(HOSIDF) for analyzing the frequency response of the Single-Input-Single-Output
(SISO) FPRC under sinusoidal inputs. The accuracy of the HOSIDF for FPRC is
validated through simulation. This HOSIDF method enables the analysis of the
frequency domain properties of the open-loop FPRC.
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3. In Section 8.4, The HOSIDF analysis shows the superior phase lead of the FPRC
compared to zero-crossing reset control, but it introduces nonlinearities at low
frequencies.

Finally, Section 8.5 delivers the conclusions of this chapter and delineates potential
avenues for future research.

8.2 New Reset Element: Fixed-Phase Reset Control
(FPRC)

8.2.1 The Definition of the Fixed-Phase Reset Control
We introduce a novel reset element termed Fixed-Phase Reset Control (FPRC). This
reset mechanism involves multiple resets within a single steady-state period, evenly
spaced in terms of phase. Our emphasis in this paper is on the SISO FPRC system,
specifically designed for sinusoidal inputs.

Definition 1. The state-space representation for the FPRC, denoted as C, under a
sinusoidal input signal 𝑒(𝑡) = |𝐸|sin(𝜔𝑡) is given by:

C =
⎧
⎨
⎩

̇𝑥𝑟 (𝑡) = 𝐴𝑅𝑥𝑟 (𝑡) +𝐵𝑅𝑒(𝑡), 𝑡 ∉ 𝑈 ,
𝑥𝑟 (𝑡+) = 𝐴𝜌𝑥𝑟 (𝑡), 𝑡 ∈ 𝑈 ,
𝑣(𝑡) = 𝐶𝑅𝑥𝑟 (𝑡) +𝐷𝑅𝑒(𝑡).

(8.1)

The set of reset instants 𝑈 = {𝑡𝑖 = 2𝜋𝑖
𝜔𝑘 , 𝑖 ∈ ℕ} is an unbounded time sequence increasing

monotonously with respect to 𝑖 ∈ ℕ, i.e., 𝑡𝑖 < 𝑡𝑖+1 for any 𝑖 ∈ ℕ and lim𝑖→∞ = +∞. In
traditional reset controller C𝑟 defined in (1.6), the set of reset instants is defined as
{𝑡𝑖} = {𝑡𝑖 |𝑒(𝑡𝑖) = 0, 𝑡𝑖 < 𝑡𝑖+1}. However, in our new proposed reset controller C, the reset
triggered signal is denoted as 𝑒𝑠 = sin(𝑘𝜔𝑡), where the variable 𝑘 denotes the number
of reset instants per steady-state cycle, with 𝑘 = 2ℎ, ℎ ∈ ℤ+. When 𝑘 = 2, the FPRC C is
equivalent to the conventional reset controller C.

The stability of the system and the existence of steady-state solutions are essential
for proving the main results in this paper. To establish the necessary conditions, we
introduce the following assumption.

Assumption 5. The FPRC defined in (8.1), is assumed to satisfy the condition specified
in (1.9). The reset actions are assumed to be finite in any finite time. The initial
condition of the reset controller is zero, i.e., 𝑥𝑟 (0) = 0.

In practice, the base-linear system of C in (8.1) is usually designed to be stable. In
this case, the bounded constraint on {Δ𝑡𝑖} can be relaxed [10].

8.2.2 Fixed-Phase Reset Control Elements
In this chapter, we integrate the novel Fixed-Phase (FP) resetting mechanism into
three reset control structures: the CI, the FORE, and the SOSRE, with their state-space
matrices defined in Section 1.4.3. Applying the new reset mechanism defined in
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(8.1) to the three control structures, the resulting reset control elements are termed
as “Fixed-Phase CI (FP-CI)”, “Fixed-Phase FORE (FP-FORE)”, and “Fixed-Phase SOSRE
(FP-SOSRE)”.

8.3The Frequency-domain Analysis of the FPRC
8.3.1 The Open-loop HOSIDF for FPRC systems
Due to the nonlinearity of the FPRC, the reset output signal 𝑣(𝑡) is characterized by
an infinite series of harmonics, defined as 𝑣(𝑡) = ∑∞

𝑛=1 𝑣𝑛(𝑡). In the Fourier domain, it
is expressed as 𝑉 (𝜔) = ∑∞

𝑛=1𝑉𝑛(𝜔). As illustrated in Fig. 8.1, to generate 𝑣𝑛(𝑡), we
employ the “Virtual Harmonics Generator” [16] to produce harmonics 𝑒𝑛(𝑡) from the
input 𝑒(𝑡) = |𝐸|sin(𝜔𝑡), expressed as:

𝑒𝑛(𝑡) = |𝐸|sin(𝑛𝜔𝑡),𝑛 ∈ ℤ+. (8.2)

Define 𝐸(𝜔) and 𝐸𝑛(𝜔) as the Fourier transforms of 𝑒(𝑡) and 𝑒𝑛(𝑡), respectively.
Theorem 10. The Higher-Order Sinusoidal Input Describing Function (HOSIDF) for
the FPRC system in (8.1) with a sinusoidal input 𝑒(𝑡) = |𝐸|sin(𝜔𝑡) and a reset triggered
signal 𝑒𝑠(𝑡) = sin(𝑘𝜔𝑡)(𝑘 = 2ℎ, ℎ ∈ ℤ+), under Assumption 5, is denoted as 𝐻𝑛(𝜔). It is
defined to describe the transfer function from the input 𝑒𝑛(𝑡) to the output 𝑣𝑛(𝑡). The
expression for H𝑛(𝜔) is as follows:

H𝑛(𝜔) =
𝑉𝑛(𝜔)
𝐸𝑛(𝜔)

=
⎧
⎨
⎩

C𝑏𝑙(𝜔)+Φ(𝜔), for 𝑛 = 1,
Φ(𝑛𝜔), for odd 𝑛 > 1,
0, for even 𝑛 ≥ 2,

(8.3)

with
Φ(𝑛𝜔) = 2

𝑛𝜋|𝐸|Δ𝑙(𝑛𝜔)Θ(𝑛𝜔),
Δ𝑙(𝑛𝜔) = 𝐶𝑅(𝑗𝑛𝜔𝐼 −𝐴𝑅)−1𝑗𝑛𝜔𝐼 ,

Θ(𝑛𝜔) = (𝛾 −1)∑
𝑘
2 −1
𝑖=1 𝑚𝑖𝑒𝑗

2𝑛𝜋𝑖
𝑘 ,

(8.4)

where 𝑚0 = 0 and 𝑚𝑖 (where 𝑖 ∈ ℤ+) for C with different state numbers 𝜁𝑐 are provided
as follows.

1. For the FR-CI and FR-FORE with 𝜁𝑐 = 1,

𝑚𝑖 = 𝑚𝑖−1𝑒𝐴𝑅𝑡𝑖 + [𝐵𝑅𝑒𝐴𝑅𝑡 ∗ 𝑒(𝑡)]|𝑡𝑖 . (8.5)

2. For the FR-SOSRE with 𝜁𝑐 = 2,
𝑚𝑖 = L−1[Ω𝑖(𝑠)/𝑠]|𝑡𝑖−1 ,

Ω𝑖+1(𝑠) =
𝐸(𝑠) + (𝑠 +2𝛽𝜔𝑟 )L−1[Ω𝑖(𝑠)]|𝑡𝑖

𝑠2 +2𝛽𝜔𝑟 𝑠 +𝜔2𝑟
.

(8.6)
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Figure 8.1: The HOSIDF for FPRC systems.

Proof. The proof is divided into scenarios with 𝜁𝑐 = 1 for the FP-CI and FP-FORE, and
with 𝜁𝑐 = 2 for the FP-SOSRE. Note that the FP-CI is identical to the FP-FORE when
𝜔𝑟 = 0 in (1.12). When 𝜁𝑐 = 1, 𝑚𝑖 is set to 𝑥𝑟 (𝑡𝑖). When 𝜁𝑐 = 2 for the FP-SOSRE,
𝑥𝑟 (𝑡) = [𝑥2(𝑡) 𝑥1(𝑡)]𝑇 . In this case, 𝑚𝑖 = 𝑥2(𝑡𝑖). We set 𝑚0 = 0 due to the zero-initial
condition of the reset controller. Here, we first present the scenario with 𝜁𝑐 = 1.

Between two reset instants (𝑡𝑖 , 𝑡𝑖+1], the FPRC experiences no reset. It can be
seen as the base-linear system with an initial condition inherent from the time interval
(𝑡𝑖−1, 𝑡𝑖]. From (8.1), during (𝑡𝑖 , 𝑡𝑖+1], we have

̇𝑥𝑟 (𝑡) = 𝐴𝑅𝑥𝑟 (𝑡) +𝐵𝑅𝑒(𝑡). (8.7)

The Laplace transform of (8.7) is given by

𝑠𝑋𝑟 (𝑠) −𝑥𝑟 (𝑡𝑖−1) = 𝐴𝑅𝑋𝑟 (𝑠) +𝐵𝑅𝐸(𝑠)⇔
𝑋𝑟 (𝑠) = (𝑠 −𝐴𝑅)−1(𝑥𝑟 (𝑡𝑖) +𝐵𝑅𝐸(𝑠)),

(8.8)

where 𝑥𝑟 (𝑡𝑖) is the initial condition of 𝑥𝑟 (𝑡) for 𝑡 ∈ (𝑡𝑖 , 𝑡𝑖+1].
The inverse Laplace transform of (8.8) is given by

𝑥𝑟 (𝑡) = 𝑥𝑟 (𝑡𝑖)𝑒𝐴𝑅𝑡 + [𝐵𝑅𝑒𝐴𝑅𝑡 ∗ 𝑒(𝑡)](𝑡). (8.9)

From (8.9), the state 𝑥𝑟 (𝑡) at the reset instant 𝑡𝑖+1 can be derived as follows:

𝑥𝑟 (𝑡𝑖+1) = 𝑥𝑟 (𝑡𝑖)𝑒𝐴𝑅𝑡𝑖 + [𝐵𝑅𝑒𝐴𝑅𝑡 ∗ 𝑒(𝑡)]|𝑡𝑖+1 . (8.10)

From (8.10), for the FPRC with 𝜁𝑐 = 1 and 𝑚𝑖 = 𝑥𝑟 (𝑡𝑖), we have

𝑚𝑖 = 𝑚𝑖−1𝑒𝐴𝑅𝑡𝑖 + [𝐵𝑅𝑒𝐴𝑅𝑡 ∗ 𝑒(𝑡)]|𝑡𝑖 . (8.11)

This concludes the 𝑚𝑖 for the FP-CI and FP-FORE with 𝜁𝑐 = 1.
From (8.1), at 𝑡𝑖 = 2𝜋𝑖/(𝜔𝑘), the reset action introduces a pulse signal into the 𝑥𝑟 (𝑡),

given by
Ω𝑖 = 𝑥𝑟 (𝑡+𝑖 ) −𝑥𝑟 (𝑡𝑖) = (𝐴𝜌 − 𝐼 )𝑥𝑟 (𝑡𝑖). (8.12)

When 𝜁𝑐 = 1, 𝐴𝜌 = 𝛾 .
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Substituting 𝑚𝑖 = 𝑥𝑟 (𝑡𝑖) into (8.12), we have

Ω𝑖 = 𝑥𝑟 (𝑡+𝑖 ) −𝑥𝑟 (𝑡𝑖) = (𝛾 −1)𝑚𝑖 . (8.13)

Equation (8.13) indicates that the reset action introduces a pulse signal Ω𝑖 to the state
𝑥𝑟 (𝑡). Since the periodic property of the base-linear and reset output, the reset actions
in the time domain introduce a square wave denoted as 𝑞(𝑡) with an amplitude of
(𝛾 − 1)𝑚𝑖/2, a period of 2𝜋/𝜔, and a phase shift of 𝑖2𝜋/𝑘 to 𝑥1(𝑡), which can be seen
as a disturbance [17]. Define a normalized square wave with an amplitude of 1 and a
period of 2𝜋/𝜔, and a phase shift of 0 as 𝑞0(𝑡) given by

𝑞0(𝑡) =
4
𝜋 ∑∞

𝑛=1
sin(𝜔𝑡)

𝑛 . (8.14)

The Fourier transform of 𝑞0(𝑡), denoted as 𝑄0(𝜔), is given by:

𝑄0(𝜔) =
4
𝜋 ∑∞

𝑛=1
𝐸(𝑛𝜔)
𝑛|𝐸| . (8.15)

Thus, 𝑞(𝑡) and its Fourier transform are given by

𝑞(𝑡) = F −1[𝑄(𝜔)],

𝑄(𝜔) = (𝛾 −1)
2|𝐸| ∑

𝑘
2 −1
𝑖=1 𝑚𝑖𝑒𝑗

2𝑛𝜋𝑖
𝑘 𝑄0(𝜔).

(8.16)

From (8.15) and (8.16), the 𝑛-th harmonic in 𝑄(𝜔) defined as 𝑄𝑛(𝜔) is given by

𝑄(𝜔) =∑∞
𝑛=1𝑄𝑛(𝜔),

𝑄𝑛(𝜔) =
2(𝛾 −1)
𝜋|𝐸| ∑

𝑘
2 −1
𝑖=1

𝑚𝑖𝑒𝑗
2𝑛𝜋𝑖
𝑘 𝐸(𝑛𝜔)
𝑛 .

(8.17)

From (8.1), the transfer function from the 𝑥𝑟 (𝑡) to 𝑣(𝑡) is defined as

Δ𝑙(𝜔) = 𝐶𝑅(𝑗𝜔𝐼 −𝐴𝑅)−1𝑗𝜔𝐼 . (8.18)

Taken consider the 𝑞(𝑡) as a disturbance adding to the 𝑥𝑟 (𝑡), the reset output signal
𝑣(𝑡) is given by

𝑣(𝑡) = 𝑣𝑏𝑙(𝑡) + 𝑣𝑛𝑙(𝑡),
𝑣𝑏𝑙(𝑡) = F −1[C𝑏𝑙(𝜔)𝐸(𝜔)],
𝑣𝑛𝑙(𝑡) = F −1[Δ𝑙(𝜔)𝑄(𝜔)].

(8.19)

From (8.15), (8.17), and (8.19), 𝑉𝑛𝑙(𝜔) = F −1[𝑣𝑛𝑙(𝑡)] is given by

𝑉𝑛𝑙(𝜔) =∑∞
𝑛=1

2(𝛾 −1)Δ𝑙(𝑛𝜔)
𝑛𝜋|𝐸| ∑

𝑘
2 −1
𝑖=1 𝑚𝑖𝑒𝑗

2𝑛𝜋𝑖
𝑘 𝐸(𝑛𝜔). (8.20)
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Define 𝑉 𝑛
𝑛𝑙(𝜔) as the 𝑛-th harmonic in 𝑉𝑛𝑙(𝜔). From (8.20), we have

𝑉𝑛𝑙(𝜔) =∑∞
𝑛=1𝑉

𝑛
𝑛𝑙(𝜔),

𝑉 𝑛
𝑛𝑙(𝜔) =

2(𝛾 −1)Δ𝑙(𝑛𝜔)
𝑛𝜋|𝐸| ∑

𝑘
2 −1
𝑖=1 𝑚𝑖𝑒𝑗

2𝑛𝜋𝑖
𝑘 𝐸(𝑛𝜔).

(8.21)

Based on (8.19) and (8.21), the first-order harmonic in 𝑉 (𝜔) = F [𝑣(𝑡)] is obtained as

𝑉1(𝜔) = 𝑉𝑏𝑙(𝜔)+𝑉 1𝑛𝑙(𝜔). (8.22)

From (8.19) and (8.22), the first-order (𝑛 = 1) transfer function of FPRC is defined as

𝐻1(𝜔) =
𝑉1(𝜔)
𝐸(𝜔) = C𝑏𝑙(𝜔)+

2(𝛾 −1)Δ𝑙(𝜔)
𝜋|𝐸| ∑

𝑘
2 −1
𝑖=1 𝑚𝑖𝑒𝑗

2𝑛𝜋𝑖
𝑘 . (8.23)

From (8.19) and (8.21), the 𝑛-th (𝑛 > 1) order harmonic in 𝑉 (𝜔) is given by

𝑉𝑛(𝜔) = 𝑉 𝑛
𝑛𝑙(𝜔). (8.24)

Then, based on (8.24), the 𝑛-th transfer function of FPRC is defined as

H𝑛(𝜔) =
𝑉𝑛(𝜔)
𝐸(𝑛𝜔) =

2(𝛾 −1)Δ𝑙(𝑛𝜔)
𝑛𝜋|𝐸| ∑

𝑘
2 −1
𝑖=1 𝑚𝑖𝑒𝑗

2𝑛𝜋𝑖
𝑘 . (8.25)

By defining Φ(𝑛𝜔) and Θ𝑛(𝑛𝜔) in (8.4), equation (8.3) is obtained. Here The proof for
the FPRC with 𝜁𝑐 = 1 is concluded. The following content derives 𝑚𝑖 for the FP-SOSRE
with 𝜁𝑐 = 2.

In FP-SOSRE, we have 𝑥𝑟 (𝑡) = [𝑥2(𝑡) 𝑥1(𝑡)]𝑇 , where 𝑥2(𝑡) and 𝑥1(𝑡) denote the first
and the second state of the controller, respectively. From (8.1) and (1.13), during the
time interval (𝑡𝑖 , 𝑡𝑖+1], the state-space representation of FP-SOSRE can be written as
follows:

{ ̇𝑥1(𝑡) = 𝑥2(𝑡),
̇𝑥2(𝑡) = −2𝛽𝜔𝑟𝑥2(𝑡) −𝜔2𝑟 𝑥1(𝑡) + 𝑒(𝑡).

(8.26)

The Laplace transforms of both sides from Equation (8.26) with the inital condition of
𝑥1(𝑡𝑖) are given by

𝑠2𝑋1(𝑠) − 𝑠𝑥1(𝑡𝑖) = −2𝛽𝜔𝑟 (𝑠𝑋1(𝑠) −𝑥1(𝑡𝑖)) −𝜔2𝑟𝑋1(𝑠) +𝐸(𝑠). (8.27)

From (8.27), 𝑋1(𝑠) is obtained as

𝑋1(𝑠) =
𝐸(𝑠) + (𝑠 +2𝛽𝜔𝑟 )𝑥1(𝑡𝑖)

𝑠2 +2𝛽𝜔𝑟 𝑠 +𝜔2𝑟
. (8.28)

By conducting the inverse Laplace transform of (8.28), we have

𝑥1(𝑡) = L−1{𝐸(𝑠) + (𝑠 +2𝛽𝜔𝑟 )𝑥1(𝑡𝑖)
𝑠2 +2𝛽𝜔𝑟 𝑠 +𝜔2𝑟

}, for 𝑡 ∈ (𝑡𝑖 , 𝑡𝑖+1]. (8.29)
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Define
Ω𝑖(𝑠) =

𝐸(𝑠) + (𝑠 +2𝛽𝜔𝑟 )𝑥1(𝑡𝑖)
𝑠2 +2𝛽𝜔𝑟 𝑠 +𝜔2𝑟

. (8.30)

Substituting Ω𝑖(𝑠) into (8.29), 𝑥1(𝑡) is given by

𝑥1(𝑡) = L−1[Ω𝑖(𝑠)], for 𝑡 ∈ (𝑡𝑖 , 𝑡𝑖+1]. (8.31)

From (8.29), 𝑥1(𝑡𝑖+1) is given by

𝑥1(𝑡𝑖+1) = L−1[Ω𝑖(𝑠)]|𝑡𝑖 . (8.32)

Based on (8.30) and (8.32), we have

Ω𝑖+1(𝑠) =
𝐸(𝑠) + (𝑠 +2𝛽𝜔𝑟 )L−1[Ω𝑖(𝑠)]|𝑡𝑖

𝑠2 +2𝛽𝜔𝑟 𝑠 +𝜔2𝑟
. (8.33)

From (8.31) and ̇𝑥1(𝑡) = 𝑥2(𝑡), 𝑥2(𝑡) is given by

𝑥2(𝑡) = L−1[Ω𝑖(𝑠)/𝑠], for 𝑡 ∈ (𝑡𝑖 , 𝑡𝑖+1]. (8.34)

From (8.34), 𝑥2(𝑡𝑖+1) is given by

𝑥2(𝑡𝑖+1) = L−1[Ω𝑖(𝑠)/𝑠]|𝑡𝑖 . (8.35)

Since 𝑚𝑖 = 𝑥2(𝑡𝑖), from (8.35), 𝑚𝑖 is given by

𝑚𝑖 = L−1[Ω𝑖(𝑠)/𝑠]|𝑡𝑖−1 . (8.36)

This completes the derivation of 𝑚𝑖 for the FP-SOSRE with 𝜁𝑐 = 2. The subsequent
steps for deriving H𝑛(𝜔) for the FP-SOSRE follow the same process as the derivations
from (8.14) to (8.25). Here, we conclude the proof.

In practical scenarios, the system in (8.1) with a sinusoidal input 𝑒(𝑡) = |𝐸|sin(𝜔𝑡)
and under Assumption 5 will initially undergo a transient response before reaching the
steady-state. The frequency response analysis in Theorem 10 is applicable to systems at
steady-states. Therefore, we calculate 𝑚𝑖 until the cycle has a reset instant 𝑡𝑖 meeting
the condition of 𝑚𝑖 = 𝑚𝑖+𝑘 . This cycle is denoted as the first valid steady-state cycle.

8.4 Results
8.4.1 Validation of the Accuracy of the HOSIDF
We verify the accuracy of the HOSIDF method in Theorem 10 by applying it to analyze
three FPRC examples. Figures 8.2(a)-(c) depict the simulated and predicted outputs
of three FPRC systems under the input signal 𝑒(𝑡) = sin(2𝜋𝑓 𝑡), including the FP-CI
(with 𝛾 = 0 and 𝑘 = 20) at an input frequency of 𝑓 = 1 Hz, the FP-FORE (with 𝜔𝑟 = 1,
𝛾 = 0, and 𝑘 = 4) at an input frequency of 𝑓 = 10 Hz, and the FP-SOSRE (with 𝜔𝑟 = 1,
𝛽 = 1, 𝛾 = 0, and 𝑘 = 4) at an input frequency of 𝑓 = 10 Hz. The results indicate a close
alignment between the predicted and simulated outputs, confirming the accuracy of
Theorem 10.
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(a)

(b)

(c)

Figure 8.2: The simulated and Theorem 10-predicted outputs for (a) the FP-CI, (b) the FP-FORE, and (c)
the FP-SOSRE.
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Figure 8.3: The prediction error (PE) of the FP-CI when (a) 𝑁ℎ = 100 and (b) 𝑁ℎ = 1000.

The small differences between the simulation and prediction results stem from the
fact that the output of the reset system includes an infinite number of harmonics,
whereas in practice, only a finite number (set to 1000 in Fig. 8.2) of harmonics is
considered in the calculation. Figure 8.3 illustrates the prediction error (PE) between
the prediction and simulation in the context of the FP-CI shown in Fig. 8.2(a). It
shows that as the number of harmonics 𝑁ℎ increases, the PE decreases. Ideally, the
PE approaches zero as 𝑁ℎ tends to infinity. Research [18] also demonstrates that the
accuracy of the HOSIDF analysis improves as 𝑁ℎ, the number of harmonics considered
in the analysis, increases.
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8.4.2 Frequency-domain Properties of the FPRC
We employ the HOSIDF analysis to investigate the frequency-domain properties of the
FPRC. The reset control system (RCS) employing the FPRC is referred to as FP-RCS
and the reset system employing the “Zero-crossing (ZC) law” is denoted as ZC-RCS.

Figure 8.4(a) compares the frequency responses of the FP-CI (with 𝑘 = 4 and 𝛾 = 0)
and the traditional ZC-CI (with 𝑘 = 2 and 𝛾 = 0). Their gain-frequency (slope) is the
same, but the first-order harmonic in FP-CI provides an 8.4° phase lead compared to
that of the CI.

Figure 8.4(b) illustrates the relationship between the number of reset instants 𝑘
and the phase of the FP-CI (with 𝛾 = 0). As the number of reset instants increases,
the phase lead provided by the FP-CI also increases. This characteristic of the FP-CI
demonstrates the potential benefits for improved performance achieved by the phase
lead of the FPRC.

However, a large number of reset instants 𝑘 will generate higher-order harmonics.
As shown in Fig. 8.4(c), when setting 𝑘 = 20, the three dominant harmonics in the
FP-CI are the first, 19th, and 21st harmonics. Although it eliminates the 3rd and 5th
harmonics, it introduces higher-order harmonics.
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Figure 8.4: (a) The first three dominant harmonics in the FP-CI (with 𝑘 = 4) and the ZC-CI. (b) The
relationship between the phase of the first-order harmonic and the number of reset instants 𝑘 in the
FP-CI. (c) The first three dominant harmonics in the FP-CI (with 𝑘 = 20).
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8.5 Conclusion
This chapter introduces a reset element termed Fixed-Phase Reset Control (FPRC),
designed for Single-Input-Single-Output (SISO) systems with sinusoidal inputs. The
FPRC resets based on a signal with a fixed phase, distributing 𝑘 reset instants per
steady-state period. A Higher-Order Sinusoidal Input Describing Function (HOSIDF) is
developed to analyze the frequency-domain properties of the FPRC. Simulation results
validate the accuracy of the analysis method. The findings indicate that the FPRC
provides a phase lead compared to previous reset controllers with the zero-crossing
law. Increasing the value of 𝑘 tends to provide a larger phase benefit; however,
higher values of 𝑘 introduce high-order harmonics into the system. The applicability
of the FPRC with the phase benefits to practical closed-loop systems needs further
investigation in future studies.
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9
Conclusions and Recommendations
This chapter summarizes the contributions of this thesis and, based on the insights gained
from these contributions and their associated limitations, provides recommendations for fu-
ture research directions.
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9.1 Conclusions
In this dissertation, we have addressed two main research problems: frequency-domain
analysis for SISO LTI reset feedback control systems and frequency-domain design of reset
control for improving the performance of precision motion systems.

Frequency Response Analysis of Reset Control Systems
Frequency response includes both gain and phase information for open-loop and closed-
loop systems. In Chapter 2, we began by developing Higher-Order Sinusoidal Input De-
scribing Functions (HOSIDFs) for reset controllers and open-loop generalized reset control
systems in Fig. 2.1. We then compared the simulation results with the predictions made
by the HOSIDFs in case studies, and the results confirmed their accuracy.

The proposed open-loop HOSIDFs provide crucial frequency-domain gain and phase
information for each harmonic of reset control, serving as an essential reference for con-
trol system design. Additionally, we have analytically decomposed the HOSIDFs of reset
controllers into their base-linear transfer functions and nonlinear components. This de-
composition offers new insights into the behavior of reset controllers in the frequency
domain and lays the foundation for subsequent closed-loop HOSIDF analysis.

Since Sinusoidal-Input Describing Function (SIDF) analysis exhibits deviations in closed-
loop multiple-reset control systems, we have proposed a method in Chapter 3 to differen-
tiate between two-reset and multiple-reset control systems. This method helps assess the
reliability of SIDF analysis. Additionally, by comparing the time consumption between
the proposed method and the point-to-point time-domain simulation method, we have
found that the proposed method demonstrated approximately 300 times greater efficiency
in case studies.

Then, building on themethod introduced in Chapter 3, we have developed theHOSIDFs
for closed-loop reset systems with two reset instants per steady-state cycle in Chapter 4.
The accuracy of the HOSIDFs was validated through simulations and experiments. To-
gether, the open-loop and closed-loop HOSIDFs address the gap in frequency-domain
analysis for generalized reset systems, as shown in Fig. 1.8. Additionally, the closed-loop
HOSIDFs establishes a frequency-domain relationship between open-loop and closed-loop
reset control systems, enabling the application of loop-shaping techniques in reset sys-
tems.

Finally, in Chapter 5, we have developed a MATLAB application that consolidated
the tools introduced in Chapters 2–4. This application provides an intuitive platform for
control engineers to analyze reset control systems in the frequency domain, aiding in the
design of high-performance systems. We then showcased the use of the app through a case
study. The case study achieved a 21.4% reduction in maximum steady-state error while
requiring 85.6% less maximum actuation force on a precision motion stage, compared to
the previous reset control. These results highlight the effectiveness of the app in designing
reset control for enhanced performance.
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Frequency-Domain Design of Reset Control Systems for Improved
Precision Motion Performance
Reset control systems introduce both first-order and high-order harmonics in the fre-
quency domain. While the first-order harmonic provides gain-phase advantages over lin-
ear control systems, high-order harmonics, when their magnitudes are large, may degrade
overall system performance. Using the frequency response analysis tools, we have pro-
posed new reset control strategies to shape these harmonics, thereby achieving enhanced
system performance compared to both previous reset and linear control systems.

To achieve this, in Chapter 6, we have introduced a phase-lead shaped reset control
element designed to modify the phase of reset instants. This design offers two key advan-
tages. First, it provides phase lead for the first-order harmonic while preserving the gain
properties. Leveraging this benefit, a case study has demonstrated improved transient sys-
tem performance, achieving zero overshoot compared to the previous reset control with
36.0% overshoot and linear control with 64.0% overshoot. Second, it can be configured to
enhance the gain benefits of the first-order harmonic while maintaining both the phase
of the first-order harmonic and the gain properties of high-order harmonics, contribut-
ing to better steady-state precision. Benefiting from this gain enhancement, a case study
demonstrated a 37.5% reduction in maximum steady-state error compared to previous re-
set control, in the presence of reference tracking and disturbances.

Instead of tuning the first-order harmonic, in Chapter 7, we retained the benefits of the
first-order harmonic while reducing problematic high-order harmonics by introducing a
PID-shaped reset control element. This design has resulted in improved steady-state preci-
sion. Two representative case studies conducted on a precisionmotion stage demonstrated
that the PID-shaped reset design resulted in a 75.8% and 51.8% reduction in maximum
steady-state errors compared to the previous reset control, under reference, disturbance,
and noise inputs. Additionally, we have proved that this design effectively eliminated
limit cycle issues in the step responses of the reset control systems.

Up to this point, the reset elements discussed in this thesis trigger reset actions at the
zero-crossings of filtered feedback errors. To further explore the potential of reset con-
trol systems, we have introduced a reset element called Fixed-Phase Reset Control (FPRC)
in Chapter 8, specifically designed for sinusoidal inputs. This element triggers reset ac-
tions at the zero-crossings of a signal with predefined frequency. Then, we have devel-
oped its open-loop HOSIDF analysis method with validation of its accuracy. Through
the HOSIDF analysis, we have founded that by increasing the frequency of the prede-
fined reset-triggered signal within the FPRC, greater phase lead was achieved compared
to previous reset elements. However, this improvement came at the cost of introducing
high-magnitude high-order harmonics, presenting a trade-off. The practical application
of FPRC in closed-loop systems remains a promising direction for future research.

9.2 Concluding Remarks
These contributions not only advanced the theoretical framework of frequency-domain
analysis for reset control but also demonstrated practical value in precision motion con-
trol applications. We have summarized the main concluding remarks from the thesis as
follows:
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• In this thesis, we have established a reliable frequency-domain connection between
open-loop and closed-loopHOSIDFs. Worth noting is that in the closed-loopHOSIDFs,
we introduced a factor Γ(𝜔) in (4.9), which modulates cross-effects between the first-
order and high-order harmonics. Prior literature often assumed that Γ(𝜔) = 1, im-
plying that the closed-loop Describing Function (DF) in reset control can be derived
by closing the loop of the open-loop DF, similar to the linear system relationship
illustrated in (1.3), where the closed-loop DF represents the first-order harmonic in
the closed loop. However, this assumption holds true only in the absence of high-
order harmonics. As |Γ(𝜔) − 1| increases, the closed-loop DF deviates further from
the linear closed-loop relationship of the open-loop DF, emphasizing the increasing
impact of high-order harmonics, as analytically demonstrated in Remark 3. This
observation suggests that Γ(𝜔) can serve as a robustness factor in future research.

• For closed-loop frequency response analysis of reset control systems, the SIDF anal-
ysis assumes two resets per cycle. However, this assumption becomes invalid for
many reset controllers, such as the Clegg Integrator (CI)-based reset systems, when
operating at low frequencies. In these multiple-reset frequency ranges, the relia-
bility of the SIDF analysis is compromised. In Chapters 3 and 7, we have demon-
strated that by identifying the frequency ranges where multiple reset actions occur
and incorporating appropriate shaping filter designs, this limitation was effectively
addressed, and the reliability of SIDF analysis was ensured. Furthermore, in re-
set systems where multiple-reset actions occur and high-order harmonics become
large, such as CI-based reset systems operating at low frequencies, several issues
arise. These include compromised steady-state precision, excessively sharp control
inputs, and the occurrence of limit cycle problems. Such challenges may lead to the
perception in some previous literature that reset control is unsuitable for achieving
desired low-frequency steady-state precision. However, in Chapter 7, we demon-
strated that the designed shaping filter effectively reduced problematic high-order
harmonics, addressing these issues. Hence, the potential of reset control to achieve
high-performance steady-state behavior, when properly designed, is preserved.

• We have explored the application of linear filters to improve the nonlinearity of
reset controllers. One such design is the PID shaping filter, where the integral el-
ement reduces high-order harmonics, while the derivative element enhances the
phase lead of the controller. Specifically, through appropriate design, the shaping
filter can achieve improved phase margin of the first-order harmonic while main-
taining similar gain properties across harmonics, or enhanced gain of the first-order
harmonic while preserving its phase margin and the gain of high-order harmonics,
or preserved first-order harmonic properties while reducing high-order harmonics.
These frequency-domain properties allow the shaping filter to enhance system per-
formance based on specific system requirements. While linear shaping filter designs
push the boundaries of gain-phase trade-offs, there is a limit to tuning the nonlin-
earity. Moreover, the extent to which this benefit can be leveraged depends on the
specific demands of the systems.
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9.3 Discussions and Future Recommendations
The proposed frequency response analysis methods for generalized reset control systems
provide greater tuning flexibility for improved system performance. Building on this con-
tribution, we have identified a promising direction for future research: integrating loop-
shaping techniques with reset control.

Loop-shaping is an effectivemethod for relating time-domain closed-loop performance
to frequency-domain properties through SIDF analysis. However, the nonlinear nature of
reset control generates both first-order and high-order harmonics, complicating the appli-
cation of loop-shaping techniques. The proposedHOSIDFs describe the frequency-domain
properties (gain and phase) of reset control systems. We expect that this information will
facilitate the application of loop-shaping techniques to reset control. For instance, the in-
formation from the HOSIDF can be used to explore the trade-off between bandwidth and
robustness. Furthermore, practical applications of reset feedback control in advanced en-
gineering fields include Multiple-Input Multiple-Output (MIMO) systems. The proposed
HOSIDFs can be utilized to design reset controllers that effectively suppress high-order
harmonics to negligible levels while preserving the advantages of first-order harmonics.
Achieving this balance will finally enhance the reliability of the superposition principle
and enables the effective implementation of loop-shaping techniques in closed-loopMIMO
reset control systems.

One note is that while high-order harmonics can degrade system performance by in-
creasing sensitivity to high-frequency noise, they are not always detrimental. This raises
the question: what are the thresholds or margins within which high-order harmonics con-
tribute positively or negatively to system performance? Answering this question may
deepen our understanding of their role in reset control and provide further insights into
the interplay between first-order and high-order harmonics, ultimately guiding the refine-
ment of loop-shaping techniques for reset feedback control.

Though the proposed frequency response analysis method effectively analyzes reset
control systems, we have encountered one main limitation: the closed-loop HOSIDFs op-
erate under the assumption that there are two reset instants per steady-state cycle in
sinusoidal-input closed-loop reset control systems. This assumption does not hold true
for multiple-reset systems. While multiple-reset systems are typically avoided in practice
due to their association with high-magnitude high-order harmonics, such harmonics are
not always problematic, as discussed in the previous paragraph. Future work is encour-
aged to extend the frequency response analysis method to accommodate multiple-reset
systems, including the derivation of the magnitude and phase for each harmonic. Inte-
grating these advancements with the findings of this dissertation would provide a more
complete understanding of the relationship between open-loop and closed-loop reset sys-
tems, offering deeper insights that can enhance the design of loop-shaping techniques for
reset control systems.

In the second major contribution of this dissertation, we have developed reset control
strategies with enhanced gain-phase margin of reset control systems. Though these strate-
gies have enhanced the overall performance of reset systems, we expect future research
to push the performance margin further by leveraging the proposed frequency response
analysis methods. This can be achieved through two primary approaches: one is tuning
the reset elements, which involves optimizing the reset controller structure and designing
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the shaping filter to refine and enhance reset actions. The other approach is tuning the
linear elements, including adjusting linear components placed in parallel, in series (before
or after the reset controller), or within the feedback loop to improve overall system per-
formance. These tuning strategies aim to achieve an optimal trade-off between the gain
and phase of the first-order harmonics and high-order harmonics, ultimately resulting in
enhanced system performance.
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