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A B S T R A C T

Operational forest fire danger rating systems rely on the recent evolution of meteorological variables to estimate
dead fuel condition. Further combining the latter with meteorological and environmental variables, they predict
fire occurrence and spread. In this study we retrieved live fuel condition from MODIS multispectral measure-
ments in the near infrared and shortwave infrared. Next, we combined these retrievals with an extensive dataset
on actual forest fires in Campania (13,595 km2), Italy, to determine how live fuel condition affects the prob-
ability distribution functions of fire characteristics. Accordingly, the specific objective of this study was to de-
velop and evaluate a new approach to estimate the probability distribution functions of fire burned area,
duration and rate of spread as a function of the Perpendicular Moisture Index (PMI), whose value decreases with
decreasing live fuel moisture content (LFMC). To this purpose, available fire data was intersected with MODIS 8-
day composited reflectance data so to associate each fire event with the corresponding pre-fire PMI observation.
Fires were then grouped in ten decile bins of PMI, and the conditional probability distribution functions of
burned area, fire duration and rate of spread were determined in each bin. Distributions of burned area and rate
of spread vary across PMI decile bins, while no significant difference was observed for fire duration. Further
testing this result with a likelihood ratio test confirmed that PMI is a covariate of burned area and rate of spread,
but not of fire duration. We defined an extreme event as a fire whose burned area (respectively rate of spread)
exceeds the 95th percentile of the frequency distribution of all observed fire events. The probability distribution
functions in the ten decile bins of PMI were combined to obtain a conditional probability distribution function,
which was then used to predict the probability of extreme fires, as defined. It was found that the probability of
extreme events steadily increases with decreasing PMI. Overall, at the end of the dry season the probability of
extreme events is about the double than at the beginning. These results may be used to produce frequently (e.g.
daily) updated maps of the probability of extreme events given a PMI map retrieved from e.g. MODIS reflectance
data.

1. Introduction

Wildfires are a widespread factor of ecosystem disturbance (Bond
et al., 2005), causing invaluable human casualties, negative effects on
carbon sequestration and substantial economic loss (FAO, 2007;
Montagné-Huck and Brunette, 2018; Pellegrini et al., 2018). Scientific
evidence supports the hypothesis that climate change may alter fire
dynamics through the direct and indirect effects it exerts on fuel
moisture and availability (Pausas and Ribeiro, 2013; Seidl et al., 2017;
Williams and Abatzoglou, 2016) and ultimately on the probability
distribution of dependent variables such as fire occurrence, burned area
and rate of spread (Flannigan et al., 2016; Podschwit et al., 2018;

Syphard et al., 2018).
Fire behaviour is determined by a diverse array of static and dy-

namic factors (Barrett et al., 2016; Faivre et al., 2016; Falk et al., 2007;
Lasslop and Kloster, 2017; Littell et al., 2016; Viegas and Viegas, 1994).
Among these, weather is an active driver of fuel moisture (Ustin et al.,
2009), which in turn affects ignition delay (and thus ease of inception)
and flames propagation (Chuvieco et al., 2009; Rothermel, 1972). In-
deed, fire danger models rely on meteorological input to process in-
dicators of fuel water content and assess fire behaviour.

The National Fire Danger Rating System used in the United States is
a collection of fuel conditions and fire behaviour indicators computed
from meteorological measurements, fuel models, climate class and
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slope (Burgan, 1988; Deeming et al., 1977). Fuel condition components
are a collection of descriptors of the water content of two classes of live
fuels and four classes of dead fuels. The McArthur Forest Fire Danger
Index used in Australia works along similar principles, but only con-
tains one drought index related to dead fuels moisture (Griffiths, 1999;
Keetch and Byram, 1968; McArthur, 1967). The Canadian Forest Fire
Weather Index (FWI) System is based on the progressive processing of
meteorological measurements for the production of three dead fuels
moisture codes and three fire behaviour indices, and does not include
any model of live fuels moisture (Van Wagner, 1987).

The role of live fuels moisture is indeed crucial in predicting fire
behaviour, as it can inhibit or promote the spread of fires (Rossa et al.,
2016; Rossa and Fernandes, 2017; Ustin et al., 2009). Nevertheless, its
value is not adequately represented by fire danger models as it depends,
further to the variability of meteorological conditions, also on plant
response to it, which is species and landscape specific (Ruffault et al.,
2018). This opens to the adoption of Earth observation technologies in
fire danger mapping (Leblon, 2005; Stow et al., 2006; Yebra et al.,
2018, 2013), as water in leaf tissues affects the radiometric properties
of live fuels in a distinguishable way, that can be captured by optical
sensors (Bowyer and Danson, 2004; Buitrago Acevedo et al., 2017,
2018; Hunt and Rock, 1989; Mousivand et al., 2014). Pixel-based
mapping of fire danger would then be made possible by the wide
availability of instruments providing global coverage on a daily basis,
such as MODIS on board Terra and Aqua satellites, VIIRS on Suomi NPP
and NOAA-20, and SLSTR on Sentinel-3A and -3B.

Several approaches were proposed for the use of remote sensing to
evaluate fire danger. A few authors related indirect estimates of plant
water stress to fire activity, e.g. through the analysis of time series of
optical spectral indices (Bajocco et al., 2015; Burgan et al., 1998;
Maselli, 2003), land surface temperature (LST) (Maffei et al., 2018;
Menenti et al., 2016), or an integration of both (Jang et al., 2006; Pan
et al., 2016). A more direct method is the inversion of radiative transfer

models for the estimation of water content in vegetation (Cheng et al.,
2014; Verrelst et al., 2015; Zarco-Tejada et al., 2003), but it needs
extensive ground measurements to constrain the solutions space (Quan
et al., 2015; Riaño et al., 2005; Yebra et al., 2018; Yebra and Chuvieco,
2009). A different approach is the use of spectral indices for the esti-
mation of moisture content, such as the Normalised Difference Water
Index (NDWI) (Gao, 1996), the Global Vegetation Moisture Index
(GVMI) (Ceccato et al., 2002), and the Perpendicular Moisture Index
(PMI) (Maffei and Menenti, 2014).

NDWI and GVMI have been reported in literature as predictors of
fire occurrence. NDWI was used along with remotely sensed LST and
atmospheric columnar water vapour to predict fire danger (Abdollahi
et al., 2018), while time series of this index documented the seasonality
of fire occurrence and demonstrated good forecasting capabilities
(Huesca et al., 2014, 2009). GVMI was used along with LST, normalised
difference vegetation index (NDVI), topography, land cover and human
settlements to predict fire occurrence (Pan et al., 2016), although in
specific land cover types other spectral indices had a better perfor-
mance (Cao et al., 2013).

Both NDWI and GVMI were designed to evaluate canopy water
content measured as equivalent water thickness (EWT):

=EWT W W A( )/f d

where Wf is the mass of the fresh leaf, Wd is its corresponding oven
dried mass, and A is leaf area. EWT has a direct effect on the optical
properties of vegetation, and indeed it is a parameter of leaf radiative
transfer models such as PROSPECT (Feret et al., 2008; Jacquemoud and
Baret, 1990). The more recently introduced PMI (Maffei and Menenti,
2014) was specifically constructed as sensitive to live fuel moisture
content (LFMC). This quantity expresses water content as a percentage
of dry leaf mass:

=LFMC W W W( )/ ·100f d d

Nomenclature

BUI Build Up Index
CLC CORINE Land Cover
DC Drought Code
DMC Duff Moisture Code
EWT Equivalent Water Thickness
FFMC Fine Fuel Moisture Code
FWI Fire Weather Index

GEV Generalised Extreme Value
GVMI Global Vegetation Moisture Index
ISI Initial Spread Index
LFMC Live Fuel Moisture Content
LST Land Surface Temperature
NDVI Normalised Difference Vegetation Index
NDWI Normalised Difference Water Index
PMI Perpendicular Moisture Index

Fig. 1. Study area location map and elevation.
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LFMC, along with the corresponding dead fuel moisture content, is a
parameter in fire propagation models (Andrews et al., 2013; Finney,
1998; Rothermel, 1991, 1972), and affects probability distribution of
burned area and rate of spread (Flannigan et al., 2016; Podschwit et al.,
2018). The accuracy of a spectral index in retrieving biophysical
quantities is typically assessed against field measurements (Gao et al.,
2015; Ullah et al., 2014). However, in the context of the identified need
to improve fire danger models through the estimation of LFMC
(Ruffault et al., 2018), it would be relevant to investigate the effec-
tiveness of PMI based estimation of LFMC in predicting fire behaviour
characteristics that contribute to fire danger such as burned area,
duration and spread (Dasgupta et al., 2007), and to evaluate its per-
formance against traditional and trusted fire weather danger rating
systems.

The objective of this study was to develop and evaluate a new ap-
proach to estimate the probability distribution functions of fire burned
area, duration and rate of spread as a function of pre-fire PMI. To this
aim, a dataset of ten years of forest fires recorded in the study area of
Campania, Italy, was used along PMI maps computed from MODIS re-
flectance data. The effectiveness of PMI as a covariate of fire behaviour
characteristics was then compared against FWI components retrieved
from global meteorological reanalysis data. Finally, probability of ex-
treme events conditional to ignition as a function of PMI was evaluated.

2. Materials and methods

2.1. Study area

Campania, Italy (40.83°N, 14.13°E, 13,595 km2, Fig. 1), is one of the
most densely populated and fire affected regions in Mediterranean
Europe (Modugno et al., 2016; San-Miguel-Ayanz et al., 2018). Land-
scape is divided in two main geomorphological areas. Western Cam-
pania alternates rocky coasts and alluvial plains. The climate is typi-
cally Mediterranean, with average yearly rainfall between 800 and
1000 mm. Summers are hot and dry, while maximum rainfall is recoded
in winter. The eastern part of the region comprises mountains and hills.
Temperature patterns are determined by altitude, while yearly rainfall
reaches 1500 mm, with a maximum in autumn and a minimum in
summer (Amato and Valletta, 2017; Fratianni and Acquaotta, 2017).
Land cover is dominated by agricultural lands (56% of regional surface)
and by forests and semi-natural areas (38%).

2.2. Data

2.2.1. MODIS reflectance data
Satellite reflectance data used in this study is the 8-day composited

Aqua-MODIS product (MYD09A1) collection 6 at 500 m resolution
(Vermote et al., 1997; Vermote and Vermeulen, 1999). Granules cov-
ering months June to September of years 2002–2011 were downloaded
from NASA’s Land Processes Distributed Active Archive Centre, re-
sulting in a dataset of 163 granules. Retrieved reflectance data were
masked against MYD09A1 quality assurance layer, to ensure only the
highest quality retrievals are retained. These correspond to band
quality assurance bits = 0000 (highest reflectance band quality) and
state quality assurance bits 0,1 = 00 (cloud state is clear) (Vermote
et al., 2015).

2.2.2. Fire data
The Natural Resources Unit of Carabinieri provided a database of

9127 fires that occurred in Campania between 2002 and 2011. The
dataset details for each event, among other information, cartographic
coordinates, date and time of initial spread and fire extinction, and final
burned area. 913 fires are recorded on average each year, with a mean
burned area of 6.2 ha (Table 1). Year 2007 appears to be exceptional in
terms of mean burned area (14.7 ha), as this is more than the triple of
the mean burned area of all other years (4.2 ha). In this sense year 2011

is representative of baseline mean burned area, although characterised
by a high fire occurrence. 99.8% of fires are of anthropic source, either
arson or unintentional. The phenomenon peaks in the summer season,
with 82% of fires recorded between June and September.

Fires in the dataset were selected for further analyses based on land
cover and month of the year. To this purpose, data points were first
overlaid over a CORINE Land Cover (CLC) map (European Environment
Agency, 2007) to select fires that occurred in natural areas only
(Table 2). CLC maps are updated every six years since 2000, so fires
were intersected with the closest prior land cover map. Finally, only
fires occurring between June and September were selected, leading to a
final number of 5005 fires actually retained for subsequent analyses.

This research focussed on burned area, fire duration and rate of
spread as fire characteristics potentially related to remote sensing ob-
servations of vegetation moisture and meteorological fire danger in-
dices. While burned area is available as a field in the provided database,
the latter two variables were computed from available data. Fire
duration was evaluated as the difference, in hours, between fire in-
ception and extinction. Rate of spread was calculated from burned area
and fire duration in the simplified assumption of a circular fire growing
at a constant rate in every direction throughout its duration on a flat
and uniform surface.

Burned area, fire duration and rate of spread span over several or-
ders of magnitude, and their distributions appear to be extremely
skewed. Prior to any further analysis and to facilitate model fitting,
their observations were log-transformed base 10 and shifted, so to have
positive values only.

2.2.3. The Canadian Forest Fire Weather Index (FWI) System
The Canadian Forest Fire Weather Index (FWI) System is a collec-

tion of six indicators, computed from daily measurements of 24-hour
cumulated precipitation, wind speed, relative humidity and air tem-
perature to represent the effect of dead fuels moisture content and of
wind on fire behaviour in a standardised fuel type and in no slope
conditions (Van Wagner, 1987). It was initially developed to provide a
fire danger rating in Canada based solely on weather conditions.
Nevertheless, it proved to be a robust mean to effectively map fire
danger beyond Canadian climates and biomes (de Groot and Flannigan,
2014; Dowdy et al., 2009; San-Miguel-Ayanz et al., 2012; Taylor and
Alexander, 2006).

In detail, the FWI system is composed of: Fine Fuel Moisture Code
(FFMC), Duff Moisture Code (DMC) and Drought Code (DC), which are
representative of the moisture content of three different classes of dead
fuels; Initial Spread Index (ISI), providing a measure of rate of spread,
independently of the variable quantity of fuels; Build-Up Index (BUI), a
descriptor of the fuels available for combustion; Fire Weather Index
(FWI), a comprehensive indicator related to fire intensity.

These indicators develop over different ranges of values, and danger
thresholds are usually identified locally based on fire history (Van
Wagner, 1987). Each component of the FWI system carries a different
layer of information on fire danger. FFMC provides a measure of ease of

Table 1
Summary statistics of forest fires in the study area.

Year Number of
fires

Mean burned
area (ha)

Proportion of fires exceeding 95th
percentile of burned area

2002 310 3.8 1.9%
2003 1323 4.1 2.3%
2004 803 3.9 2.5%
2005 669 2.9 1.2%
2006 423 4.1 3.5%
2007 1757 14.7 13.4%
2008 776 4.4 3.6%
2009 895 5.8 5.6%
2010 537 3.7 1.9%
2011 1634 4.2 3.0%
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fire inception and flammability of the top fuel layer, where initial ig-
nition usually occurs. DMC and DC are rather related to fuel con-
sumption of medium and large sized woody material. ISI is generally
related to burned area, as it combines fine fuel moisture content and
wind speed, both relevant to this fire characteristic. BUI is a good
predictor of fire behaviour and fuel consumption. FWI, as a synthesis of
the other five indices, is generally related to several descriptors of fire
activity.

In this research, FWI layers were retrieved from the Global Fire
Weather Database (Field et al., 2015). These layers are computed from
NASA Modern Era Retrospective Analysis for Research and Applications
version 2 global meteorological reanalyses of air temperature, relative
humidity, wind speed and precipitation (Molod et al., 2015), and dis-
tributed at a resolution of 0.25° × 0.25° (about 21 × 28 km2 at the la-
titude of the study area).

2.3. The Perpendicular Moisture Index

The Perpendicular Moisture Index (PMI) was developed from the
observation that in a plane reporting MODIS reflectance at 0.86 µm
(channel 2) and 1.24 µm (channel 5), isolines of LFMC are straight and
parallel (Maffei and Menenti, 2014). The PMI is thus evaluated as the
distance of reflectance points from a reference line:

=PMI R R0.73·( 0.94· 0.028)µm µm1.24 0.86

In this sense, PMI is a direct measure of LFMC, with higher values
corresponding to higher moisture content.

2.4. Parametric distributions of fire characteristics

To evaluate the distribution of fire characteristics conditional to
PMI and FWI components, parametric distributions describing burned
area, fire duration and rate of spread in the study area were first
identified. Tested distributions were selected from existing literature
(Baker, 1989; Corral et al., 2008; Cumming, 2001; Haydon et al., 2000;
Moritz, 1997; Reed and McKelvey, 2002; Weber and Stocks, 1998), and
included normal, log-normal, exponential, gamma, generalised extreme
value (GEV) and Weibull. Available fire data were fitted to the named
distribution through the minimisation of the Anderson-Darling distance
(Anderson and Darling, 1954), and the closest fitting model for each fire
characteristic was retained as a basis for further analyses (Hernandez
et al., 2015; Maffei et al., 2018).

2.5. Conditional distributions of fire characteristics

PMI maps were produced from available MYD09A1 data and sam-
pled at fire locations on the compositing period prior to the event.

Table 2
CORINE Land Cover (CLC) classes associated with fires for subsequent analyses.

CLC code Description

231 Pastures
243 Land principally occupied by agriculture, with significant areas of

natural vegetation
311 Broad-leaved forest
312 Coniferous forest
313 Mixed forest
321 Natural grassland
323 Sclerophyllous vegetation
324 Transitional woodland shrub
333 Sparsely vegetated areas
334 Burnt areas

Fig. 2. Selected PMI maps derived from Aqua-MODIS 8-day reflectance composites showing intra- and inter-annual variability: 4–11 July 2007 (a), 5–12 August
2007 (b), 4–11 July 2011 (c), 5–12 August 2011 (d).
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Similarly, maps of the six FWI components were sampled on the day of
the event. This resulted in each fire in the database being associated
with the corresponding PMI recorded in the raster cell where it oc-
curred in the antecedent 8-day MODIS compositing period as well with
the corresponding daily value of the six FWI components in the re-
spective raster cell.

To understand whether PMI and the six FWI components may be
considered a covariate of fire characteristics, their observations were
divided in ten decile bins. The parameters of the corresponding dis-
tributions were then retrieved in each bin with the Anderson-Darling
maximum goodness of fit criterion, and their 95% confidence intervals
were determined by means of 1000 bootstrap estimations (Hernandez
et al., 2015; Maffei et al., 2018).

To assess the significance of observed distribution parameters across
the decile bins, a likelihood ratio test was performed comparing, for
PMI and for each of the FWI components, the sum of the likelihoods of
the ten models fitted in the individual bins (alternative models) to the
likelihood of the unconditional model fitting all log-transformed burned
area, fire duration and rate of spread data (null models). Test sig-
nificance was set at 0.05.

2.6. Conditional probability of extreme events

The identified conditional probability distribution functions were
further used to evaluate the probability of extreme events conditional to
ignition as a function of PMI. Probabilities were computed by modelling
the dependence of the corresponding distribution parameters on PMI.
For the purpose of this study, an event was considered extreme if it
exceeded the 95th percentile of burned area, fire duration and rate of
spread values observed in the study area. The 95th percentile of burned
area of summer fires in natural areas is 30.0 ha, of fire duration is
28.2 h, of rate of spread is 48.4 m/h.

3. Results

3.1. Temporal and spatial variability of PMI

Maps of PMI exhibit significant inter- and intra-annual variability,
as for example the four PMI maps representing compositing periods
4–11 July and 5–12 August of years 2007 and 2011 (Fig. 2). Spatial
patterns of PMI in the 5–12 August period show lower values as com-
pared to 4–11 July in both years, corresponding to lower LFMC.
Moreover, both compositing periods show in 2007 lower values than
the corresponding periods in 2011.

To synthetically visualise seasonal evolution, median PMI was
computed in each of the selected land cover classes (Table 2) across the
dry season of years 2002–2011. While maps are characterised by a

continuity of values, discretised in raster cells, this synthesis approach
has the advantage of highlighting differences across land cover classes
in observed PMI (and indirectly LFMC) values. A consistent reduction of
PMI, corresponding to a reduction in LFMC, is observed throughout the
dry season for all classes in all years, as for example in 2007 and 2011
(Fig. 3). The dynamic of such reduction shows inter-annual variability,
as it can be here noticed with the higher medians (higher LFMC) re-
corded in 2011.

The observed diverse median values recorded in each CLC class are
reflected in the PMI values recorded at fire locations (Fig. 4). Indeed,
lower PMI observations (and thus lower LFMC) are recorded at fires
occurring in pastures and sparsely vegetated areas. Conversely, fires
tend to be recorded with higher PMI values (higher LFMC) in broad
leaved, coniferous and mixed forests.

3.2. Probability models of fire characteristics

Log-transformed burned area, fire duration and rate of spread were
fitted to normal, log-normal, exponential, gamma, GEV and Weibull
distributions, and the corresponding Anderson-Darling statistics are
reported in Table 3. Normal is the closest fitting distribution of log-
transformed burned area, while GEV is the closest model for log-
transformed fire duration and Weibull for log-transformed rate of
spread. The corresponding Q-Q plots are reported in Fig. 5.

3.3. Conditional distributions of fire characteristics

The mean of the normal distribution of log-transformed burned area
conditional to PMI in ten decile bins shows a significant (p < 0.001)

Fig. 3. Evolution of the median PMI value in CLC classes (Table 2) during the dry season in two selected years: 2007 (a), 2011 (b).

Fig. 4. Boxplot of PMI observed at fire location in each CLC class (Table 2).
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decreasing (r2 = 0.80) trend with increasing PMI (Fig. 6a). The varia-
tion of standard deviation appears non-significant when evaluated
against a linear model, and the confidence intervals of this parameter
are consistent with a constant value across most PMI bins (Fig. 6b). For
log-transformed fire duration, no significant trend was observed in lo-
cation and shape of GEV distribution conditional to PMI, and a weak
increasing trend (r2 = 0.53, p < 0.05) in scale (Fig. 7). Both para-
meters of the Weibull distribution of log-transformed rate of spread
show significant (p < 0.001) decreasing trends (r2 = 0.84 and
r2 = 0.96 respectively) with increasing PMI (Fig. 8). These observations
support the idea that PMI is a covariate of burned area and rate of
spread, while its contribution to fire duration probability distribution is
weak or not significant.

The variability of the parameters of the normal distribution of
burned area in ten decile bins of FWI components support the idea that
all six components are a covariate of burned area (Fig. 9). Mean in-
creases linearly with all components with p < 0.001 and r2 ranging
between 0.84 and 0.96, substantially covering the same range of values
covered against PMI. A significant linear variation of the standard de-
viation is observed only with DMC and BUI (p < 0.001 and p < 0.01
respectively). Similar observations can be drawn for fire duration, with
location, scale and shape of GEV distribution varying linearly with the
respective FWI components with significance at least p < 0.001 for
location and at least p < 0.05 for scale and shape (Fig. 10). The con-
tribution of FWI components to the variability of the Weibull dis-
tribution of log-transformed rate of spread is less evident as compared
against the other fire characteristics (Fig. 11). Shape shows significant
trends only conditional to DMC (r2 = 0.50, p < 0.05), DC (r2 = 0.66,
p < 0.01) and BUI (r2 = 0.46, p < 0.05), while scale shows sig-
nificant trends only conditional to DC (r2 = 0.59, p < 0.01) and BUI
(r2 = 0.67, p < 0.01). Moreover, the observed trends show limited
sensitivity as compared to PMI (Fig. 8).

The likelihood ratio test (Table 4) confirms that all models condi-
tional to PMI and to the six FWI components (alternative models) allow
the rejection of the null model fitting all log-transformed burned area
data. Among the alternative models, PMI ensures the highest summed

likelihood. The test confirms that the alternative fire duration model
conditional to PMI fails to reject the null model, while DMC shows the
highest summed likelihood among the FWI components. FFMC, DMC
and DC fail to reject the null model of rate of spread, while PMI ensures
the alternative model with the highest likelihood. These results confirm
PMI is a covariate of burned area and rate of spread, but not of fire
duration.

3.4. Conditional probability of extreme events

From the observations above, a linear relationship was adopted to
model the dependence of the mean of the normal distribution of log-
transformed burned area on PMI, while for the standard deviation the
constant value of the general model was adopted (Fig. 6). For log-
transformed rate of spread, a linear model was adopted for both the
shape and the scale of the Weibull distribution (Fig. 8). The resulting
conditional probabilities over a range of PMI values are plotted in
Fig. 12. With decreasing PMI (and thus decreasing LFMC) the prob-
ability of a fire larger than 30 ha conditional to ignition increases from
1.8% to 7.4%. Similarly, the probability of a rate of spread higher than
48.4 m/h conditional to ignition raises from 1.2% to 10.5%.

4. Discussion

This study had the stated objective of developing and evaluating a
new approach to estimate the probability distribution functions of fire
behaviour characteristics as a function of PMI. Those investigated
herein, as allowed by the available fire data, included rate of spread,
burned area and duration. With climate change altering weather pat-
terns worldwide, and ultimately affecting fire regimes (Seidl et al.,
2017), there is an increasing need to improve fire danger rating models
and use synergistically the information they deliver (Chowdhury and
Hassan, 2015; Ruffault et al., 2018; Yebra et al., 2013). To support their
preparedness activities, fire managers are interested in predicting fire
occurrence and behaviour. Our approach, as based on probabilities of
event properties rather than on their deterministic modelling, suits the
need to predict fire danger.

Precondition for fire occurrence is the ease of ignition, which is
determined by dead fuel moisture content (Aguado et al., 2007; Bianchi
and Defossé, 2014; de Groot et al., 2005). Operational fire danger rating
systems estimate this parameter from meteorological measurements
(Burgan, 1988; Deeming et al., 1977; Keetch and Byram, 1968;
McArthur, 1967; Van Wagner, 1987). Fire behaviour depends on a di-
verse array of factors, among which the moisture content of both dead
and live fuels plays a significant role as it directly affects flame pro-
pagation (Rothermel, 1972). Vegetation moisture content is determined
by plant active response to weather conditions as regulated by tran-
spiration, and by dry mass changes associated with phenology, both
processes being species specific. For this reason, the simplified ap-
proach for the estimation of LFMC in fire danger models results in lack

Table 3
Anderson-darling statistic values for tested distributions. Lower values indicate
a closer fit.

Model Log-transformed
burned area

Log-transformed
fire duration

Log-transformed
rate of spread

Normal 7.2 52.3 20.3
Log-normal 16.7 20.4 40.8
Exponential 1347 1387 1559
Gamma 11.0 28.7 33.1
Generalised

Extreme Value
(GEV)

10.5 10.5 39.6

Weibull 25.2 134 8.2

Fig. 5. Q-Q plots of the normal distribution of log-transformed burned area (a), of the GEV distribution of log-transformed fire duration (b) and of the Weibull
distribution of log-transformed rate of spread (c). Red circles indicate the deciles of the distributions.
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of generality (Jolly and Johnson, 2018; Nolan et al., 2018; Pellizzaro
et al., 2007b; Ruffault et al., 2018).

In this research we use the Perpendicular Moisture Index (PMI) as
an indicator of LFMC. Indeed, remote sensing measurements in the near
infrared and in the shortwave infrared allow for the quantification of
water content in leaf tissues (Gates et al., 1965; Gausman and Allen,
1973; Tucker, 1980; Woolley, 1971). Among the various broadband
spectral indices of vegetation moisture, the focus on the PMI is moti-
vated by its initial development with respect to general spectral index
development methods (Ceccato et al., 2002; Dasgupta and Qu, 2009;
Huete, 1988; Verstraete and Pinty, 1996) maximising its sensitivity to
LFMC variations (Maffei and Menenti, 2014). This feature allows for its
use along with existing fire danger models. Our approach is opposed to
that of the Wildland Fire Assessment System services of the US Forest
Service, which is based on the processing of time series of the NDVI for
the evaluation of relative greenness (Preisler et al., 2009). Indeed, the
Fire Potential Index produced by the Wildland Fire Assessment System

is a predictor of fire occurrence, and is not integrated in fire behaviour
components of the National Fire Danger Rating System (Chowdhury
and Hassan, 2015).

The analyses were conducted in the study area of Campania
(13,595 km2), an Italian region characterised by the diversity of its
landscape and listed as one of the most fire prone in the Mediterranean.
Fire data was provided by Carabinieri, a law enforcement agency, and
as such it can be considered official and correct. Provided data points
correspond to the centroid of the burned area, but the exact burnt scar
perimeters were not part of the dataset. While in general this might
arise concerns around positional accuracy of the available coordinates
against gridded MODIS reflectance composites, it must be observed that
fire regime is dominated by a large number of small fires, and indeed
only 4.5% of fires in the database resulted in a burned area larger of a
500 × 500 m2 MODIS pixel, and 0.7% larger than 1 km2. This means
that positional accuracy of fire data is substantially of the same order of
magnitude of positional accuracy of MODIS data (Wolfe et al., 2002).
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Fig. 6. Plots of mean (a) and standard deviation (b) of normal distribution of log-transformed burned area, and their 95% confidence intervals, in ten decile bins of
PMI. Regression lines refer to the estimated parameters.
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Fig. 7. Plots of location (a), scale (b) and shape (c) of GEV distribution of log-transformed fire duration, and their 95% confidence intervals, in ten decile bins of PMI.
Regression lines refer to the estimated parameters.
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Fig. 8. Plots of shape (a) and scale (b) of Weibull distribution of log-transformed rate of spread, and their 95% confidence intervals, in ten decile bins of PMI.
Regression lines refer to the estimated parameters.
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Adding to this, as a consequence of the coarse MODIS resolution, the
PMI value associated with each fire does not correspond to the PMI
value of the specific vegetation patch where fire was ignited. This is not
relevant for the purpose of this study, as the retrieved PMI was hereby
regarded as a measure of the environmental conditions in the cell in-
cluding the centroid of the burned area (Pyne et al., 1996). This is
consistent with our use of PMI values to estimate the parameters of the
probability distribution functions of fire characteristics applying to a
cell, rather than for the construction of deterministic models linking
satellite observations of LFMC to burned area and rate of advancement
of flames.

For its nature, the fires dataset does not contain information on fire
behaviour. However, it reports burned area and duration, while rate of
spread was computed from these factors under the simplified assump-
tion of a circular fire growing at a constant rate in every direction
throughout its duration on a flat and uniform surface. Rate of spread is
generally defined as “the relative activity of a fire in extending its
horizontal dimensions”, and the way it is expressed depends on the
intended use of this information (FAO, 1986). As used in this research,
rate of spread is the rate of advancement of fire perimeter, in metres per
hour. While this quantity does not directly relate to the local rate of
advancement of flames, it is a measure of the average growth rate of a
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Fig. 9. Plots of mean and standard deviation of normal distribution of log-transformed burned area, and their 95% confidence intervals, in ten decide bins of the
Canadian Forest Fire Weather Index System components: FFMC (a, b), DMC (c, d), DC (e, f), ISI (g, h), BUI (i, j), FWI (k, l). Regression lines refer to the estimated
parameters.
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fire, and indirectly of the difficulty to control it. In fact, fire danger
models are aimed at segmenting landscape in fire danger classes and
not at modelling the propagation of flames.

Fires in the database were associated with the PMI values recorded
in the pre-fire 8-day MODIS compositing period. The choice of sampling
PMI from the antecedent compositing period was dictated by the need
to ensure reflectance data is not contaminated by burnt scar, while si-
mulating a typical operational scenario where this MODIS product
would be used in the period building towards the availability of the
following composite. The length of the compositing period and the use
of the pre-fire composited granule do not pose a problem with regards
to variations in LFMC. Indeed, vegetation moisture is not subject to
abrupt changes over short periods of time (Leblon et al., 2001; Vicente-
Serrano et al., 2013). With operational scenarios in mind, FWI maps
were sampled on the day of the event, as this type of product is typically
available on a daily basis and produced from weather forecasts.

Spatial patterns of PMI show clear seasonal and interannual varia-
bility, as for the example shown in Fig. 2. Moreover, the temporal
evolution of the median PMI per land cover class shows a steady de-
creasing trend throughout the dry season in each observation year,
although at a different rate, with Fig. 3 reporting the examples of years
2007 and 2011. This observation corresponds to a reduction of LFMC
throughout the dry season, and is in line with findings on the seasonal
evolution of LFMC in Mediterranean ecosystems (Pellizzaro et al.,
2007a, 2007b; Ruffault et al., 2018). The increase in PMI, and thus in
LFMC, observed in September 2011 is likely due to abundant rainfall
registered in the region (data from http://agricoltura.regione.
campania.it/meteo/agrometeo.htm, last accessed 17th October 2019).

Fire events are recorded at PMI values that appear to depend on
land cover classes (Fig. 4). The highest PMI values, corresponding to
higher LFMC, are observed in coniferous forests whereas the lowest
values are observed in pastures. This result was expected (Barrett et al.,
2016; Faivre et al., 2014) and it is due to the varying effect of species
composition and structure on their flammability (Dimitrakopoulos,
2001; Dimitrakopoulos and Panov, 2001; Dimitrakopoulos and
Papaioannou, 2001).

This study is based on the initial identification of the probability
distribution functions fitting available data on burned area, fire dura-
tion and rate of spread (Hernandez et al., 2015; Maffei et al., 2018).

Several probability models fitting fire data are reported in literature
(Baker, 1989; Corral et al., 2008; Cumming, 2001; Haydon et al., 2000;
Moritz, 1997; Reed and McKelvey, 2002; Weber and Stocks, 1998).
Indeed, fire behaviour is determined by a wide array of factors, most of
which are related to the specific physical and environmental conditions
of the area under investigation. This suggested the ad hoc identification
of the probability distributions that best adapted to describe fire char-
acteristics as shaped by the unique combination of landscape and en-
vironmental factors in Campania (Cui and Perera, 2008; Reed and
McKelvey, 2002). It was found that log-transformed burned area is
described by a normal distribution, log-transformed fire duration by a
GEV distribution, and log-transformed rate of spread by a Weibull
distribution.

The mean of the normal distribution of log-transformed burned area
conditional to PMI shows a significant decreasing linear trend, whereas
the standard deviation can be safely be assumed to be constant (Fig. 6).
This would be expected, as a lower moisture content leads to a quicker
propagation of flames and ultimately to a larger burned area
(Rothermel, 1972). Likelihood ratio test (Table 4) confirms that the
summed likelihood of the ten models constructed in decile bins of PMI
(alternative model) allows the rejection with significance 0.05 of the
null model where PMI is not a covariate of burned area. In other terms,
the alternative model is a better probability model for observed burned
area. Overall, these findings confirm that PMI is a covariate of burned
area. Rate of spread shows similar results, with both parameters of the
Weibull distribution conditional to PMI reporting decreasing trends
(Fig. 8) and the likelihood ratio test confirming rejection of the un-
conditional model (Table 4).

Scale is the only parameters of the GEV distribution of log-trans-
formed fire duration exhibiting a significant trend across the ten decile
bins of PMI, yet over a limited range of values (Fig. 7). Indeed, con-
fidence intervals of this parameter are consistent with a constant value
across most PMI bins. In fact, the alternative (conditional) model fails to
reject the null model (Table 4), and PMI can’t be considered a covariate
of fire duration.

These comments support the potential role of remote sensing mea-
surements in contributing to fire danger mapping, as probability dis-
tributions of burned area and rate of spread are clearly affected by PMI
variability. This is the same effect that would be expected from the
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Fig. 9. (continued)
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variability of fuel moisture content (Flannigan et al., 2016; Podschwit
et al., 2018; Syphard et al., 2018). This potential was further assessed
through comparison with FWI. The reanalysis data adopted herein has a
resolution of 0.25° × 0.25° (about 21 × 28 km2 at the latitude of the
study area), while operational services are available at a resolution of
10 km (San-Miguel-Ayanz et al., 2018). This results in a substantial lack
of detail, as opposed to MODIS reflectance data available at 500 m re-
solution. However, resolution of FWI data used herein is still capable of
capturing broad weather differences typically occurring in the study
area, especially across its geomorphologic and climatic East-West gra-
dient (Amato and Valletta, 2017; Fratianni and Acquaotta, 2017).

The mean of the normal distribution of log-transformed burned area
conditional to the six FWI components increases with all of them, while
standard deviation can be assumed constant, as justified by most

confidence intervals for all indices (Fig. 9). All FWI components were
designed on individual scales, but with the clear meaning of higher
values corresponding to higher danger. This finding implies that at
increasing danger values the mean burned area of occurred fires was
higher. The closer fit with fire behaviour indices can be explained by
the fact that ISI, BUI and ultimately FWI combine information from
drought indices and weather inputs, and thus tend to be better in-
dicators of several aspect of fire activity (Van Wagner, 1987).

A similar observation can be drawn for log-transformed fire dura-
tion (Fig. 10), where the variability of the parameters of the GEV dis-
tribution conditional to FWI components justify increasing probability
of longer fire duration with increasing danger, and where BUI and FWI
show the closest fits. This is reflected in the corresponding likelihood
ratio tests, with all conditional distributions (alternative models)
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Fig. 10. Plots of location, scale and shape of GEV distribution of log-transformed fire duration, and their 95% confidence intervals, in ten decide bins of the Canadian
Forest Fire Weather Index System components: FFMC (a, b, c), DMC (d, e, f), DC (g, h, i), ISI (j, k, l), BUI (m, n, o), FWI (p, q, r). Regression lines refer to the estimated
parameters.
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rejecting the null model, and the FWI components showing to be a
covariate of fire duration where PMI is not (Table 4).

The relationship between FWI components and the parameters of
the Weibull distribution of log-transformed rate of spread shows some
ambiguities, with no trends against FFMC, ISI and FWI, and slightly
decreasing trends against DMC, DC and BUI (Fig. 11). The latter result
is counterintuitive, as is corresponds to a substantial decrease in rate of
spread with increasing fire danger. Moreover, it contrasts with findings
against PMI, where rate of spread increases with decreasing PMI
(Fig. 6). In fact, BUI is an indicator of fire activity and its value, along
with its contributing factors DMC and DC, slowly increases throughout
the dry season. This means that other seasonal dependent factors re-
levant to rate of spread, such as winds, might be having a predominant
effect with BUI and the two moisture codes here acting as a proxy for
them (Van Wagner, 1987).

The likelihood ratio tests on the probability models of rate of spread
show that the alternative models conditional to FFMC, DMC and DC fail
to reject the null model, as opposed to those conditional to ISI, BUI and
FWI (Table 4). The most problematic are the alternative models con-
ditional to ISI and FWI, which allow the rejection of the corresponding
null models although conditional model parameters do not exhibit any
significant trend. The result of the likelihood ratio test may be ex-
plained by an overfitting caused by the wide variability observed in the
values of the conditional shape across the bins (Fig. 11 g and k). Indeed,
rejection of the null model does not directly imply that the alternative

model is to be preferred. On the other side, the alternative model
conditional to DC fails to reject null model, despite the significant
trends observed in both shape and scale (Fig. 11 e and f). In this case, it
can be observed that a constant value fits most of the confidence in-
tervals in both parameters. The latter comment also applies to BUI
(Fig. 11 i and j), although the corresponding alternative model allows
for the rejection of the null model. Overall, these notes contrast with the
net trend of parameters conditional to PMI and to their narrower con-
fidence intervals (Fig. 8). In fact, the alternative model conditional to
PMI shows a likelihood higher than any FWI component (Table 4).

These results allow the computation of actionable information
(Preisler et al., 2004) in the form of probability of extreme events
conditional to ignition as a function of PMI (Fig. 12). Clearly, forest
fires in the study area are relatively small as compared to other areas
worldwide. Yet defining as extreme events those that are above the
95th percentile in terms of burned area or rate of spread is appropriate
in this specific context, as it refers to the most demanding events the
local authorities are faced with in terms of deployed resources for their
containment in a highly anthropized and fragmented landscape.
Bearing in mind that several other factors contribute to fire behaviour,
and thus to the probability distribution functions of burned area and
rate of spread, it is here observed an increasing probability of extreme
events conditional to ignition with a reduction in PMI, and thus in
LFMC. This is in line with expectations, and indirectly confirms the role
of LFMC in driving fire behaviour (Nolan et al., 2016; Pimont et al.,
2019; Ruffault et al., 2018). When compared against the observed
evolution of median PMI across the fire season (Fig. 3), the probability
of extreme events at the end of the fire season is about the double than
at the beginning.

5. Conclusions

This study demonstrated that satellite observations of LFMC by
means of the PMI contribute to the prediction of the probability dis-
tributions of forest fires burned area and rate of spread, and that
probability distribution functions conditional to PMI describe ob-
servations with a higher likelihood than the unconditional models. In
other terms, it was demonstrated that PMI is a covariate of both burned
area and rate of spread. Remote sensing measurements in the solar
spectrum are thus a viable mean to complement existing fire danger
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Fig. 10. (continued)

Table 4
Results of the likelihood ratio test. Null model is the one fitting all data.
Alternative model is the collection of ten models in decile bins of the candidate
covariate. Significance level is 0.05. In bold the alternative models showing the
highest likelihood for each fire characteristic.

Burned area Duration Rate of spread

PMI Rejection Non-rejection Rejection
FFMC Rejection Rejection Non-rejection
DMC Rejection Rejection Non-rejection
DC Rejection Rejection Non-rejection
ISI Rejection Rejection Rejection
BUI Rejection Rejection Rejection
FWI Rejection Rejection Rejection
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mapping tools, contributing to the prediction of the probability of ex-
treme events conditional to ignition.

Analyses described herein were performed on MODIS data.
However, any sensor collecting measurements in the near infrared and
shortwave infrared can be used to compute the PMI. Adding to MODIS,
daily global observations are available from the two pairs of VIIRS and
SLSTR sensors. This enables the daily availability of PMI maps at a
resolution that is one order of magnitude higher than existing opera-
tional fire danger services based on meteorological data (Burgan, 1988;
San-Miguel-Ayanz et al., 2012). Similar bands are also available in
higher resolution sensors such as OLI on board Landsat 8 and MSI on

Sentinel-2A and -2B, with resolutions of 30 and 10–20 m respectively.
The development of an harmonised Landsat and Sentinel-2 reflectance
product (Claverie et al., 2018) is indeed supporting the synergistic use
of these platforms, towards a global mapping of vegetation properties
contributing to fire danger at a spatial resolution that is three orders of
magnitude higher than operational services, although with longer re-
visit times as compared to coarser resolution optical sensors.

The study was conducted on a specific study area, for which ad hoc
probability distribution functions fitting fire data were identified. The
need to determine site-specific statistical models is acknowledged in the
scientific literature (Cui and Perera, 2008; Reed and McKelvey, 2002),

Fig. 11. Plots of shape and scale of Weibull distribution of log-transformed rate of spread, and their 95% confidence intervals, in ten decide bins of the Canadian
Forest Fire Weather Index System components: FFMC (a, b), DMC (c, d), DC (e, f), ISI (g, h), BUI (i, j), FWI (k, l). Regression lines refer to the estimated parameters.
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suggesting that the applicability of a single global statistical model is
unlikely. Nevertheless, the method developed in our study can be im-
plemented elsewhere, as long as similar fire data is available to identify
the local probability distribution functions. This is the case of several
regional or national fire inventories that are either publicly available on
the web, e.g. the Prométhée database in Mediterranean France, the
Instituto da Conservação da Natureza e das Florestas (ICNF) fire in-
ventory in Portugal, and the United States Geological Survey (USGS)
fire occurrence data in the USA, or are provided upon request by re-
levant authorities, e.g. the Natural Resources Unit of Carabinieri in Italy
and the National Statistical Service in Greece. Such data, along satellite
retrievals of PMI, would then serve as a basis for the construction of the
local probability distribution functions of burned area and rate of
spread conditional to PMI. This in turn would allow the mapping (e.g.
daily) of the probability of events exceeding any given threshold, as
deemed relevant by fire managers. From an application point of view,
fire management and preparedness activities are conducted at regional
scales, suggesting that the implementation of regional models for the
integration of satellite retrievals in fire danger mapping systems is a
viable option.
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