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Abstract

The unique six-legged swarming rover Lunar Zebro is designed and produced by students from the Delft
University of Technology. The objective of the rover is to accomplish an autonomous mission on the Lu-
nar surface by 2024. This thesis evaluates a path planning algorithm that is designed for autonomous
navigation in the Lunar environment. The thesis studies existing path planning algorithms and deter-
mines the essential functionalities of the algorithm and the unique requirements of Lunar Zebro. It is
found that an Artificial Potential Field based path planning algorithm accommodates the determined
needs and requirements. With the help of the Artificial Potential Field path planning algorithm and the
unique requirements, a vector field based algorithm is developed. The algorithm uses an attractive
vector field to attract the rover to the determined target. Meanwhile, obstacles or other obstructions are
denoted by a repulsive rotational vector field around the edge of the obstacles. This rotational repul-
sive force ensures obstacle avoidance and prevention of the local minimum trap, which often occurs in
Artificial Potential Field path planning. Improvements are suggested to increase reachability and de-
crease path length and planning time of the rotational vector field algorithm. In the Python developed
simulation, the improved algorithm accomplishes a 62% reduction in planning time compared with the
original Artificial Potential Field algorithm and achieves similar path length results. Moreover, the pro-
posed algorithm has a reachability of 90% where the Artificial Potential Field algorithm just reaches
a success rate of 55%. The thesis concludes with the future work recommendations for a low level
implementation in C or either C++ to facilitate the deployment in a microcontroller.

Keywords: Lunar navigation, Path finding, Obstacle avoidance, Lunar Zebro, Swarming, Vector field
path planning, Rotational Vector Field.
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Preface

In 1969 Neil Armstrong was the first person ever to set foot on the moon surface. When touching the
moon surface he spoke the famous words: “one small step for man, one giant leap for mankind”. Ever
since this first moon landing, exploration has been a trending topic. Plenty of research is done towards
the expansion of the physical exploration of the moon. Both humans and rovers have explored the
Lunar surface multiple times after the first moon landing and it is for sure that this will continue in the
future. This thesis is presenting a path planning algorithm that is able to navigate a Lunar rover through
the Lunar environment. With the presentation of this thesis, mankind will again be one small step closer
to the autonomous exploration of the moon.
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1
Introduction

In July 1969 the Apollo 11 spacecraft landed the first humans on the moon for an exploring mission
of the Lunar surface. Shortly after this moon mission, the first Lunar rover was deployed. In 1970
the Lunokhod 1(Russian for ”Moonrover 1”) touched the Lunar surface for further research. The rover
had a length of 2.3 metres and a mass of 756 kilograms. Several other Lunar rovers have landed on
the moon surface for exploration and research since 1970 [7]. Each rover of similar size and weight
as the first one that was ever landed on the moon. Positioning and navigating of these rovers have
been a challenge since the early exploration missions [31]. The non-existence of a Global Positioning
System (GPS) or any other form of global positioning, makes localization and navigating a challenging
task for Lunar rovers. Several studies have been proposing different techniques that could be applied
to solve these problems [22]. Extensive research, testing and moon missions are needed to validate
a concept that enables the possibilities of exploring the full Lunar surface. The Lunar Zebro project,
carried out by students on the Delft University of Technology, develops a rover that overcomes these
challenges and continues where other rovers stop.

Lunar Zebro mission
Lunar Zebro is a unique six-legged nano-rover that is build for a mission on the moon. The unique
properties of the rover can be found in the size, walking behaviour and swarming capabilities. The
rover is a so called nano-rover the typical length, width and height which are less than 400mm by
300mm by 200mm respectively. The rover is equipped with six legs instead of wheels, that enables the
rover to move forward and backward. The legs ensure a robust but slow walking behaviour. The rover
is initially designed to operate in a swarm with multiple rovers. A swarm is said to be the cooperation
of multiple rovers with the same objective, but individual behaviour. The size, walking behaviour and
swarm capabilities make the Lunar Zebro a unique moon exploration rover with objectives that have
never been achieved before.

The objective of the first mission will be a single rover on the moon to explore the possibilities and
validate the concept of the rover. The focus will be on traveling 200 meters in one lunar day, which is
roughly 29.5 earth days. During this mission the rover must successfully survive the moon conditions
and transmit data with the lander. Moving on the Lunar surface must be executed autonomously. In
other words, the rover must navigate and operate without the interference of external inputs. Achieving
autonomous navigation of the rover will open up the possibilities for operation in a swarm.

Thesis objective
Positioning and navigating is not only a challenge for past lunar exploration rovers, but also challenges
the Lunar Zebro. Navigating is said to be the guidance on the lunar surface, where possible obstacles
must be avoided and set target locations must be reached. At this moment in time the Lunar Zebro (LZ)
navigation problem is not yet solved and obstructs the possibility to execute the mission. The thesis
will address this problem and proposes a suitable implementation for navigating the rover through the
Lunar environment.
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Thesis synopsis
The remainder of this thesis is divided in seven chapters. The first two Chapters (Ch.2 and Ch.3) are
focused on gathering all existing information on LZ and on state of the art algorithms for path planning in
robots respectively. Chapter 4 is defining the problem that can be deducted from the LZ requirements
and state of the art path planning algorithms. This is followed by Chapter 5 that is giving a detailed
analysis on a suitable basic planning algorithm for swarming moon rovers. Chapter 6 proposes a rele-
vant improved algorithm that uses the concepts of the basic algorithm explained in Ch.5. The long term
goal is an LZ implemented path planning algorithm, Chapter 7 therefore discusses the implementation
of the proposed algorithm in a low level programming language that can run on the hardware of LZ.
Finally the conclusion is drawn and further work is proposed in Chapter 8.



2
Lunar Zebro

One of the remaining challenges in the LZ project is the navigation of the rover through the moon
environment. As this problem is to be tackled in this thesis, the focus will be on the latter and the
adjacent issues that are required to identify the problem. Before a problem can be clearly defined, the
functional state of LZ must be determined. The functional state can be described by a hardware state
and a software state. The hardware and software states give an indication on the detailed issues that
still need to be solved to obtain a solution for the problem. This chapter will first describe these states
in detail. An even more important aspect of the LZ project are the unique objectives. These objectives
make the project one of a kind. The corresponding unique features will be discussed after the functional
state description. The chapter will conclude with LZ requirements and a detailed problem definition.

2.1. Hardware state
As hardware is a widespread concept, for the sake of simplicity, it will be defined as the physical com-
ponents that must interact with software to obtain full functioning. The hardware state of LZ is therefore
limited to the processor, actuators and sensors that are part of the rover. The software for the nav-
igation problem is running on the processor and only interacting with actuators and sensors and not
with other hardware like the chassis or the payload. Within the LZ project there are two types of rovers.
One that is actually prepared for launching to the moon(moon rover) and one that is used for testing
on earth(terrestrial rover). The one for the moon is build with strictly essential hardware as everything
adds up to the weight and energy consumption. The rover for testing on earth has more freedom in
processing power and gives the possibility to add some hardware for testing.

2.1.1. Processor
The processor is quite important regarding the software algorithm possibilities. Simple rule-based
algorithms or deterministic algorithms use less computational power, while machine learning algorithms
have a relatively high computational demand. The capabilities of the processor are therefore of great
importance in the software decision process.

The Terrestrial Rover is equipped with a Raspberry Pi as processor. When using a machine learning
based algorithm, the training of the algorithm will be done on external hardware. In other words the
training will not be done on the processor in LZ. A Raspberry Pi is perfectly able to execute an externally
trained machine learning algorithm and is therefore also suitable for simple Rule-based or deterministic
algorithms. Implementing state of the art algorithms is therefore not considered to be a problem.

The Moon Rover is equipped with the CP400.85 and is called the Zebro Processing Unit (ZPU).
This processor has less computational power compared to a Raspberry Pi. It is hard to say how much
process power is exactly available asmultiple programs and/or algorithms are running on this processor

3
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during operation. However, it can be said that the lack of computational power should be taken into
account during the design of the algorithm. Computational power will most likely be a limiting factor.

2.1.2. Sensors
Currently there are multiple sensors available on the rover that could or must be used for the execution
of a navigation algorithm. However, this is based on the implementation of the current rovers. It is not
yet clear if these will change in upcoming versions. It might be able to add or replace sensors in the
upcoming versions if this is strictly necessary for the optimal operation of a navigation algorithm.

The Terrestrial Rover is equipped with 2 camera’s for stereo vision. Stereo vision enables the possi-
bility to estimate dept and therefore to estimate the distance to objects in the field of view. The software
that processes the data from this camera’s and gives the possibility for dept analysis is also known as
Stereo Vision Obstacle Processing ALgorithm (OPAL) [29]. Furthermore it is equipped with a Light De-
tection and Ranging (LIDAR) that is not working due to the lack of supporting software. Finally the earth
rover has two times an Inertial measurement unit (IMU) and an ultra sonic sensor to determine distance
between the rover and objects.

TheMoonRover has a similar sensor configuration but is missing the LIDAR and the ultrasonic sensor.
The ultrasonic sensor is not able to perform on the moon environment as it has a different atmosphere
composition. In addition, the moon rover has a solar sensor to determine the perfect angle of the solar
panel to yield maximum solar energy.

2.1.3. Actuators
The only actuators that are influenced by the navigation algorithm are the motors that enable LZ to
walk. The rover has six separately controller legs, each directly connected to an individual motor. This
means the systems controls six motors individually to ensure the movement of the rover. Each motor
is connected to a motor driver and each motor driver is controlled by software. The software to control
these drivers is called the locomotion algorithm [23]. The actuators and their control are identical for
the terrestrial rover and the moon rover.

2.2. Software state
The second researched subject is the available software for LZ and the level of completion. The level
of completion is characterized by the deployment of software that is written and tested. To obtain
a detailed problem formulation, an overview of all software modules in LZ is given and an extensive
explanation is given on the software modules that are involved in the navigation of LZ.

2.2.1. Software overview
The software of LZ is divided in modules which communicate with the ”brain” of LZ. This brain, or
master control, is called TRON. Both TRON and all adjacent sub-modules are running on the ZPU.
All sub-modules are connected via TRON and can only communicate with TRON and not with the
other sub-modules. Fig.2.1 shows all connected modules and building blocks of TRON. The modules
involved in navigation are shown in red. This includes the OPAL software module for processing camera
data and the locomotion software with the leg modules for movement of the robot. There are no other
software modules that are related to the navigation of LZ. This means that these two modules form the
available LZ software on the navigation problem and taking these modules into account can be defined
as the complete search area for a detailed thesis problem.

2.2.2. Navigation software
Navigation is still a relatively broad concept that can be divided in multiple smaller problems. The
problem can be divided in three parts: Obstacle detection, obstacle avoidance and path planning. This
is based on two assumption, the first one being that a rover is facing a known direction and is given a
target location(goal) that needs to be reached by the rover. The second being that the generated path
is executed by one or multiple algorithms that ensures the correct motion of the rover. Looking from this
perspective the steps that are involved in making a rover move, are shown in Fig.2.2. It starts with a
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Figure 2.1: Overview of software modules in the ZPU

direction or target from the starting position. A path is formed between the start and the target, which is
typically a straight path. When the rover moves to the target, it encounters detected obstacles. When
an obstacle is detected it should be avoided and a new path should be created with the knowledge of
this newly detected obstacle(s). Finally the rover should move over the generated path. The algorithm
that ensures the movement of the rover is divided in a locomotion algorithm and the individual motor
control algorithm as the rover consists over multiple motors.

For the LZ project it holds that the yellow block shows the part that still needs to be determined
or defined. Green blocks show the modules that are (almost fully) completed or are currently build.
Excluding the yellow block from the problem, as this is determined later in the project, the problem is
defined between the existing(green) blocks. These can therefore be seen as the boundaries in the
search toward a detailed thesis problem proposal. The red blocks, ”Obstacle avoidance” and ”Path
Planning”, form the yet undefined problem. Before taking a closer look on the definition of this problem,
the functioning and the level of implementation of the remaining blocks must be defined.

Obstacle detection
The obstacle detection module can again be divided in smaller sub-modules to simplify the concept and
implementation of the complete obstacle detection module. The first sub-module enables stereo vision
such that depth estimation is possible. The second sub-module is the detection of multiple objects
in the field of view instead of just one. The last sub-module ensures the estimation on the distance
to the objects. Together these sub-modules forms the obstacle detection, also referred to as the OPAL
software. Tab.2.1 shows these sub-modules and shows which parts have been written and tested. Note
that the software is coded in a low level language (C++) and is tested in a high level language(Python).
This is done because C++ is extremely powerful and efficient on processor level to ensure optimal
usage of the processor on the moon rover. Python on the other hand is very powerful when used
for data processing while training and testing machine learning algorithms. For training and testing of
the OPAL software, pictures from the actual moon are used. Such pictures are shown in Fig.2.3. The
”Stereo vision” and ”Multi object detection” is working and tested. The algorithm placed boxes around
(multiple) detected rocks in the shown pictures. Currently the distance to obstacles part in the code is
written but not yet tested. This means that the true distance to the obstacles can not be determined.



2.2. Software state 6

Figure 2.2: Sequential software building blocks needed for the movement of a rover

This cannot be determined as the dept projection of the pictures is not verified to be equal to the true
distance between the object and the rover. Remaining steps would be to test the distance calculations
to objects and to train and test the algorithm while the robot is in motion.

In short, a preliminary conclusion shows that when the obstacle detection algorithm is finished, the
robot should be able to detect obstacles and to determine the distance to the edge of the obstacle.
The actual size or radius and the middle point of the obstacle are not yet known. It requires additional
software to transform the known information from the obstacle detection to relevant information for a
navigation algorithm. To clarify the problem Fig.2.4 shows the top view of LZ in front of a rock(obstacle).
LZ is drawn in the 2D XY-plane where the positive Z axis comes out of the paper. Navigation will be
done in the 2D XY-plane and the rock will have a midpoint (blue dot) and a radius around this midpoint,
which denotes the ”forbidden” area for the rover. However, right now the rock is detected only in the 2D
YZ-plane (red line) where the midpoint is also defined in the 2D YZ-plane only (green dot on red line).
Therefore to make the obstacle information relevant for a navigation algorithm it should be mapped
form the YZ-plane to information on the XY-plane. The software to map this information to the relevant
plane is still to be made. However, it is assumed that the output of this software would be a midpoint
and the size of an object in the 2D XY-plane. At this point an object that is detected denotes an obstacle
for LZ and the corresponding midpoint and size information is therefore considered as the input for the
navigation algorithm.

Table 2.1: Sub-modules from obstacle detection written and tested

Part Written(C++) Tested(Python)
Stereo Vision x x

Multi object detection x x
Distance to objects x

Locomotion
The Lunar Zebro direction control, called the locomotion module, is focused on controlling the motion of
LZ as a complete entity. This module is responsible for walking a trajectory in a given field. The inputs
of the locomotion algorithm are the outputs of the problem that is defined by the red blocks in Fig.2.2.
At the time of writing the locomotion module is not yet completely finished, which therefore requires a
clear definition of the boundaries between these modules.

Currently the locomotion algorithm is able to move the rover forward and backward and statically
change directions. This results in the rover not being able to walk curved paths but only change di-
rections while standing still. This characteristic can collide with a path smoothing algorithm. Going
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(a) Single Rock detection (b) Multiple Rocks detection

Figure 2.3: Rock detection on pictures from the moon

Figure 2.4: LZ in front of a detected object(rock)

only forward, backwards, left and right would bring an unusual complexity and inefficiency to the path
planning as this is against the function of most optimal path planning algorithms. It is therefore chosen
that statically changing directions could be done in degrees left or right instead of only going left(-90°)
or right(90°). This ensures the possibility of an optimal path and the correct functioning of LZ. Beside
direction changing, the amount of steps, standard deviation and speed are dependent on the settings
and hardware of the individual rover. For these problems a more detailed analysis on the actual LZ
rovers is needed and currently unavailable. As the solution for these problems can be generated with
a clear defined path and the individual rover parameters, it is chosen that a generated path would be
a sufficient input for the locomotion module. This path would be generated from the starting position
and would be generated again when an obstacle is detected. When the rover detects an obstacle and
a new path is generated, the new starting position will be the place of the rover at the time of detecting
the obstacle. This path would be the output of the path planning module. By outputting a path, the loco-
motion module could generate a distance(steps), a direction and if desired a speed to achieve the goal.
Possible inaccuracy or slippage of the rover could therefore be taken into account in the locomotion
algorithm.

The output of the locomotion module is defined as the input of the individual motor control module,
where each leg is controlled. Each individual leg motion contributes to the movements of the rover as
a complete entity. This results in the locomotion module being one control level above the individual
motor driver control module.

Individual motor driver control
The other end of the navigation problem is the low level control of the legs. Each of the six legs are
connected to a brushless DC motor. This motor is driven by a motor driver. The low level controls for
these drivers are written and give the opportunity to control each leg separately. The input of these
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drivers is the output of the locomotion module. The drivers can be given a position of the brushless
motor and a 𝛿𝑡 to move to the desired position. In other words the speed and position of the leg can be
controlled. When requested, the drivers can give their temperature, the leg position and a fault status.

2.2.3. Obstacle avoidance and path planning
From Sec.2.2.2 it can be concluded that a relevant and academic problem is designing and testing
the obstacle avoidance and path planning software modules. The stated navigation problem can be
scaled down to the design of these two software modules. Looking at Fig.2.1, it shows the modules
that are involved in the navigation surrounded by red blocks. The actual path planning and obstacle
avoidance algorithm is not particularly defined in either of these modules. It can therefore be said that
either the definition of the modules need to be rephrased or an additional module for navigation should
be introduced as shown in green. In the past, this module was already defined, but it was taken out to
keep the first models of LZ simple. To keep the original software and modules structured and accessible
by the current software architecture, it is chosen to add a new module instead of rephrasing the existing
modules. This additional module was and will be defined as ”Navigation”. It will host the algorithm that
at least defines a path from start to goal while avoiding obstacles. As input this module will use data
from the OPAL module and information on the goal that is set for the rover.

2.3. Unique features
As stated in the beginning of this chapter, Lunar Zebro is a one-of-a-kind project that comes with several
unique objectives. These unique objectives result in requirements for the final navigation algorithm.
Lunar Zebro has three unique features that will be discussed in this section; ability to operate in the
moon environment, swarming capabilities and the walking behaviour.

2.3.1. Moon environment
As stated, the main objective of LZ is to perform missions and tasks on the moon. The moon envi-
ronment is much more challenging than the well known earth environment. This results in some strict
hardware requirements to ensure operation on the moon. Beside hardware requirements it also im-
pacts the software requirements. When the rover is on the moon it is almost impossible to tweak, reset
or help the rover in any way. For this reason the software must be build in a robust way such that
software module failure will not automatically lead to mission failure.

2.3.2. Swarming behaviour
Looking from the bigger picture, the rover is built with the objective of swarming. In other words the
rover operates in a group of rovers that perform swarm behaviour regarding the set target or goal of the
mission. There will not be a central agent which controls the swarm. Each rover must therefore have
autonomous capabilities to navigate, walk and perform other tasks. Moreover, it must also be able to
perform swarm tasks. The navigation algorithm that will be deployed in the LZ rover must be capable of
performing swarm tasks and autonomous rover tasks. Swarming can add additional boundaries to the
design but can also result in less weight on an individual rover requirement. As a result of operating in
a swarm, the impact of an event on individual rovers could be reduced. This relaxation of requirements
duo to swarm capabilities will be further explained in Ch.4.

2.3.3. Walking behaviour
The walking behaviour of LZ brings in some relevant designing aspects. LZ has legs instead of wheels,
these legs control the motion of LZ. Two important behaviours are the result of using legs. The first
behaviour is the relatively slow movement. Second, the completion of a step is not similar to wheel
behaviour.

Slow movement
Moving with legs results in a relatively slow but robust movement as it is simple to control slow move-
ments. Compensation for the desired path is relatively small as the deviation of the path is happening
slowly. However, the locomotion algorithm will still not be able to walk the path with a 100% accuracy.
Naturally there are small deviations that need to be compensated. This impacts the free boundary that
has to be formed around LZ while navigating.
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For the navigation of LZ a certain distance between the obstacle and the center of LZ should be
considered. Naturally the first assumption would be that this distance should be half the length andwidth
of LZ. However, because of the inaccuracy of the locomotion algorithm the maximum path deviation
should be added to the clearance area around an obstacle. As this deviation is yet unknown and
depending on individual rover specification, it is assumed to be an input parameter of the navigation
algorithm.

Step movement
Wheels can be very accurate as you could rotate them on every position. To fulfil a step with LZ, one
rotation of the legs must be completed. This means the steps of LZ can have a maximum accuracy
that is equal and thus limited to the step size. The navigation algorithm must be able to supply a path
that can be as accurate as the step size of the rover. However, an accuracy that is better than the step
size has no additional benefits as it is limited by the hardware. [2] proposes a formula to calculate the
step size of LZ. The step size is not a fixed variable as it is dependent on the height of the rover. The
formula to calculate the step size is shown in Eq.2.1, where 𝑠 is the step size in cm and ℎ is the height
of the rover in mm.

𝑠(ℎ) = 29 ∗ 𝑐𝑜𝑠(2.1ℎ − 1.5)
2 + 𝑠𝑖𝑛(2.4ℎ) − 7 ∗ 𝑠𝑖𝑛(9ℎ)20 (2.1)

Taking a maximum height of 35mm results in the smallest step size of 5.723 centimeters. An accu-
racy of 5 centimeters would therefore be more than enough to accommodate the needs of LZ.

2.4. Problem definition and requirements
Sections 2.1, 2.2 and 2.3 give a clear insight on the unsolved issues and the unique requirements cor-
responding to the LZ project. A problem statement and the corresponding requirements are presented
below.

2.4.1. Problem statement
Concluding on the open issues of obstacle avoiding and path planning, an algorithm has to be made
that covers both. The result would form the connection between the ”Obstacle detection” and the ”Loco-
motion” modules. This connecting module would be named the ”Navigation” module. The ”Navigation”
module hosts the algorithm that is the answer to the research question: ”Develop a 2D path finding
and obstacle avoiding algorithm, which can run on a single Lunar Zebro and supports possible swarm
behaviour.”

2.4.2. MoSCoW analysis
An overview of the resulting requirements for an LZ navigation algorithm will be listed according to the
MoSCoW method. The MoSCoW method is divided in several priorities that highlight the relevance or
irrelevance for a final design. The different priorities are:

• Must Have (M): These requirements must be in the final design. Without these requirements the
algorithm is useless in its field of application.

• Should Have (S): These requirements are important but not mandatory for delivery of the algo-
rithm in the current delivery timeline.

• Could Have (C): These requirements are desirable but do not add to the functionality of the algo-
rithm. It could improve user experience or freedom of implementation.

• Won’t Have (W): It is agreed by the stakeholders that this requirement will not be part of the
algorithm.

Below, all requirements for the navigation algorithm are listed according to the MoSCoW method.
The requirements are ordered according to their priority. In Must have, Should have and Could have
the lowest number is the highest priority.
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Must Have
1. Path planning from starting point to end point,

2. Ability to operate in swarming behaviour,

3. Online/Local path planning (avoiding obstacles),

4. Accuracy of the path planning algorithm should be less than the accuracy of the rover caused by
the walking behaviour,

5. Inputs: Target location(with respect to itself), Distance to obstacle center and Shape of obstacles,

6. Outputs: Path points with respect to starting point,

7. Fully tested and simulated navigation algorithm,

8. Ability to run on the terrestrial rover,

9. State of the art software/algorithms to ensure academic level.

Should Have
1. Ability to run on current moon rover.

Could Have
1. Dynamic obstacle avoidance,

2. Path planning that avoids the shadow of rocks,

3. Global planning in advance.

Won’t Have
1. Software or algorithms that are related to the blocks that are not coloured green or red in Fig.2.1,

2. Solar panel angle control,

3. Obstacle detection, classification and localization,

4. Low level control of the motors,

5. Locomotion algorithm, which makes the robot controllable as one entity,

6. Position Control to follow desired path,

7. Any form of control that deals with the rover inaccuracy that causes the rover to deviate from the
desired path (slippage, standard direction deviation, etc),



3
State of the Art Navigation algorithms

Knowing the problem that is stated in Ch.2, applicable algorithms can be researched. With the know-
ledge of all available algorithms and their characteristics, it can be determined which algorithms are
applicable for Lunar Zebro navigation. An overview of state of the art navigation algorithms is presented
first. This will be followed by a classification of the presented algorithms. The chapter will conclude
with three possible base algorithms that are chosen according to the classification and the unique LZ
requirements.

3.1. State of the art algorithms
There are two types of path planning, global and local path planning. Global path planning requires
the environment to be static and already known. So the controller can define the complete path before
execution of the path. For local path planning, the environment is not known and is determined during
the movement of the robot. The robot can therefore define a (new) path with real-time input of the
environment. On the first hand it seems that global path planning is not suitable for the Lunar Rover as it
has to avoid obstacles that are detected during the mission. However, this is not entirely true. Literature
proposes algorithms which are a combination of global and local algorithms and will therefore work in
local conditions as well. Another aspect that is involved in navigation is the environmental modeling.
Before an algorithm can find an optimal path, it first has to be chosen how the environment is modeled.

3.1.1. Environment modeling
An environmental model is an abstract or formal description of the structure and function of the en-
vironmental system [17]. This model is constructed before the actual path planning and is modeling
the environment in a suitable form such that the algorithm can optimise a path. Optimising the way of
modeling could reduce calculations and can therefore increase the speed of the algorithm. The most
common and well known method is the grid model, which makes use of an evenly distributed grid that
is placed on the field. This is a discrete model where each grid point is used as a place where the rover
could be located and a path point could be formed. [17] and [40] propose several other ways to model
the environment. These approaches are listed below and are extensively discussed in AppA.1.

• Grid model,

• Cell tree model or decomposition approach,

• Voronoi diagram model,

• Tangent graph Method,

• Visibility graph model,

• Free space approach,

• Topological method,

• Probabilistic roadmap method.

11
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3.1.2. Navigation Algorithms
Modeling the environment is the first step in the navigation from start to goal, but is not resulting in
an actual route. For obtaining a path between the start and the goal, the points that are created in
the environment model need to be connected. Connecting the points between the start and the goal is
done by a navigation algorithm, which yields in a path. Each algorithm differs in their problem approach
and their used environmental model. Generated paths are therefore not similar between algorithms.
However, some algorithms work in a similar way or are based on the same principle. As the current
availability of navigation algorithms is very broad, it is chosen to group algorithms that have similarities
in their path generation characteristics. According to [17] navigation algorithms can be divided in four
categories; Methods based on a geometric model search, Probabilistic sampling-based algorithms,
Artificial potential field type algorithms and Bio-inspired Intelligence algorithms. A fifth category is added
as some of the available algorithms are only usable in combination with other algorithms. These are
named the miscellaneous algorithms and makes the classification categories complete. Unless stated
otherwise, all algorithm definitions are formed on the basis of the papers [4], [17], [40] and [38]. The
detailed explanation and functioning of the algorithms can be found in App.A.2.

Methods based on a geometric model search
Can be considered as the more classical path search algorithms. The map or environment of the robot
is made discreet with one of the environmental models. The robot is than localized with respect to
this geometric map [30]. From the localization point, the path to the goal is planned and executed
by determining the next optimal grid point according to the algorithm policy. The used environmental
model and accuracy of the model has a big influence on the performance of the planned path. The
following methods are considered to be based on a geometric model search.

• A* Algorithm

• D* Algorithm

• Dijkstra Algorithm

• Level set Method

• Fast marching algorithm

• Boustrophedon Decomposition Algorithm

• Internal Spiral Algorithm

Probabilistic sampling-based algorithms
These algorithms are based on, as the name already suggests, random samples that are independent
and identically distributed in the environment [12]. These samples, or nodes, are than used to construct
a path from the start location to the goal. These methods are non-optimal regarding path length and
make use of the random environment modeling technique. The two available method are shown below.

• Rapidly exploring Random Trees

• Probabilistic Roadmap Method

Artificial potential field type algorithms
A potential field is constructed, which is used as a map for path planning. The field in the neighborhood
of obstacles is repulsive and the field close to the target point is attractive[28]. The potentials ensure a
path around the edge of an obstacle, while being attracted to the actual target. Algorithms that make
use of repulsive and attractive potentials are shown below.

• Artificial potential field

• Bug algorithm

• Vector-polar histogram
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Bio-inspired Intelligence algorithms
This is a specific class that is not sharing a common approach but a common characteristic. These
methods are mimicking human, animal or organism behaviour to learn non-linear relations. When this
behaviour is either way trained or described in the algorithm, it is able to use this information to obtain
a solution in a new and unknown environment. A specific type of algorithms in this class, are the
swarming animal algorithms. These are deducted from swarm and colony behaviour of animals and
consist in multiple types. These types are further explained in App.A.2.

• Swarming animal algorithms

• Genetic Algorithm

• Differential Evolution

• Imperial competition algorithm

• Simulated annealing algorithm

• Q-learning/dynamic programming

• Tabu Search

• Reinforcement learning

• Deep Reinforcement learning

Miscellaneous algorithms
The last class of algorithms is also a class that is not based on a common path planning approach.
For full functionality they all require the use of another algorithm for either training or collaborated use.
An example is the use of an Artificial Neural Network (ANN), which requires extensive training based
on predefined data. This predefined training data is obtained based on paths that are created by other
navigation algorithms or by the user preferences. Relevant miscellaneous algorithms are shown below.

• Artificial neural network

• Fuzzy

• Cased-Based Learning Method

• Behaviour decomposition method

• Rolling Window Algorithm

• Simultaneous Localization And Mapping (SLAM)

3.2. Considered navigation algorithms
Sec.3.1 shows all the relevant state of the art navigation algorithms and the possible environmental
mapping methods. However, some of these navigation algorithms are more relevant for LZ than others
and some are even irrelevant for LZ. First the detailed scope for the navigation algorithm will be deter-
mined. With the use of this scope, irrelevant algorithms can be excluded from the problem. With the
reduction of possibilities, three algorithms will be chosen for further research.

3.2.1. Algorithm scope
Looking at all the presented algorithms there are two commonly made assumptions that change in the
scheme of LZ. The unique requirements stress the swarm functionality and the mission objective of
going to the moon. The moon environment brings requirements regarding robustness but on top of
that a problem with the localization of the rover.
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Navigation and swarm capabilities
The implemented navigation algorithm must not prevent the rover from functioning in a swarm. How-
ever, this requirement does not mean that the navigation algorithm has to be a swarm algorithm itself.
In fact, the rover must be autonomous and must be able to navigate without the information of the
swarm. [1] proposes an example of a robot with swarming capabilities but also a separation between
the actual navigation and swarm algorithms. Looking at the software architecture of LZ as stated in
Sec.2.2.1, it fits the way of implementation to split the navigation and swarm algorithms. The swarming
algorithm can be implemented in a different software block, as long as the navigation software block
keeps the ability to reset the target if this is desired by the swarming algorithm.

Localization problem
Most of the presented solutions for navigation problems make use of the fact that the position of the
vehicle or robot is known somehow. On earth this can be done with GPS for example. A yet unsolved
problem for a lunar rover is the unknown position because there is no GPS available on the moon.
This could be solved with for example a SLAM solution. Taking a closer look at when the localization
is used, it can be reduced to ensuring that the rover follows the generated path. Following the path
and staying on the path is part of the locomotion problem. As stated in the requirements from Sec.2.4,
any software development that is related to the locomotion software will not be part of the navigation
problem. Therefore the position problem is excluded from the navigation algorithm.

For the navigation algorithm it is assumed that the starting position is known (as the lander position
is known) and that the goal position is known. During the execution of the path, the rover should keep
track of the steps that are taken. This ensures the correct replanning starting point when an obstacle
is detected.

3.3. Consideration of algorithms
Sec.3.1 shows all the state of the art algorithms relevant for path planning. However, some of these
algorithms are more relevant for Lunar Zebro than others and some are even irrelevant in the use case
of Lunar Zebro. By looking at the algorithms functioning and the LZ requirements, the most suitable
algorithms can be determined.

3.3.1. Navigation algorithms overview
Tab.3.1 shows the algorithms divided in the corresponding categories. For the classes Methods based
on a geometric model search, Probabilistic sampling-based algorithms and Artificial potential field type
algorithms, the algorithms use similar search strategies. Each algorithm in these classes are improve-
ments on the others or use the same methods with emphasis on different aspects. Highlighted in green
are the three algorithms that represent a basic algorithms in each class. These are simple algorithms
that perform according to the path planning approach of the corresponding class and are widely re-
searched and described in papers.

The algorithms highlighted in red are discarded from further research. This is either because they
perform outside the described algorithm scope proposed in Sec.3.2.1 or exceed the basic design funda-
mentals as described in Sec.2.4.2. This results for example in discarding the miscellaneous algorithm
class. The algorithms in this class require the cooperation with another algorithm and are therefore not
suitable as stand alone algorithms. Moreover, all animal based bio-inspired intelligence algorithms are
very much focused on swarm behaviour of the animal colonies. As Sec.3.2.1 explains, the navigation
and swarm capabilities will not be programmed in the same algorithm. Therefore the animal based
bio-inspired intelligence algorithms will also not be considered in the further search towards a naviga-
tion algorithm. The reason for discarding the other highlighted algorithms can be found in the detailed
explanation of the algorithms, which is presented in App.A.2.

This leaves 16 possible algorithm for the implementation. As this is too much for further research a
distinguish between them is still to be made.

3.3.2. Base algorithms
Choosing a base algorithm in each of the four left over classes reduces the amount of algorithms
for further research, while still researching the navigation characteristics of each class. Furthermore,
common algorithm pitfalls can be observed in the early stage of algorithm development. When a pitfall
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occurs, it can be determined if either this can be fixed by improving the base algorithm or if the algorithm
should be rejected for the LZ application. The classes Methods based on a geometric model search,
Probabilistic sampling-based algorithms and Artificial potential field type algorithms have an obvious
base algorithm which is highlighted in green. The Bio-inspired Intelligence Algorithm category is a bit
different from the other three. This is less straight forward as almost all algorithms have individual
approaches that are not similar to each other. Furthermore these algorithms are less commonly used
and substantiated as navigation algorithms compared to the other three classes. For these reasons the
choice is made to exclude these algorithms for further research as well. The following three algorithms
are therefore chosen as the basic navigation algorithms that are applicable for the LZ mission and
project.

• A* Algorithm,

• Rapidly Exploring Random Trees,

• Artificial Potential Field.

Both the A* and the Artificial Potential Field algorithms make use of the grid model as environmental
model. This means they both work with a predefined grid and accuracy. The Rapidly Exploring Random
Trees algorithm makes use of the Probabilistic Roadmap Method, where each grid point is randomly
determined in the search field. The accuracy of this method can be defined as the maximum expand
distance between a known point and the next defined random point. The chosen grid and/or accuracy
plays an important role in the performance of all three algorithms.

The stated problem in Sec.2.4 is specifically focused on path planning and obstacle avoidance,
which is a subset of the navigation problem. The proposed basic algorithms are also limited to path
planning and obstacle avoidance. Obstacle avoidance can also be seen as a subset of path planning.
From now on the LZ navigation problem will therefore be addressed as a path planning problem. The
solution to this problem will therefore be a path planning algorithm.

Table 3.1: Classification of all considerable algorithms

Methods based on
a geometric
model search

Probabilistic
sampling-based

algorithms

Artificial
potential field
type algorithms

Bio-inspired
Intelligence algorithms

Miscellaneous
algorithms

A* Algorithm Rapidly exploring
random tree

Artificial
potential field Genetic Algorithm Artificial Neural

Network

D* Algorithm Probabilistic
Roadmap Method Bug algorithm Differential Evolution Fuzzy

Dijkstra
Algorithm

Vector-polar
histogram

Imperial competition
algorithm

Cased-Based Learning
Method

Level set Method Simulated annealing
algorithm

Behaviour decomposition
method

Fast marching
algorithm

Q-learning/
dynamic programming

Rolling Window
Algorithm

Boustrophedon
Decomposition

Algorithm
Tabu Search SLAM

Internal Spiral
Algorithm

Swarming
animal algorithms
Reinforcement

learning
Deep Reinforcement

learning



4
Basic path planning algorithms

Ch.3 states A* , Rapid Exploring Random Trees and Artificial Potential Field algorithm as the three pos-
sible basic path planning algorithms for LZ. This chapter will elaborate on the performance of these three
algorithms and will conclude which of the three is the most suitable base algorithm for the LZ applica-
tion. The elaboration is done by a detailed introduction to the functioning of the algorithm, an extensive
analysis and a simulation based results comparison of quantitative and qualitative performance met-
rics. These base algorithms can and probably must be improved before a proper implementation in LZ.
Therefore, last but not least, this chapter will elaborate on the potential improvements of each of the
three base algorithms.

4.1. Algorithm functioning
This Section will explain in detail how each algorithm operates and which mathematical functions are
used to determine the rover paths. Each algorithm is therefore written out in pseudo code(a repre-
sentation of the algorithm in words) and a detailed explanation about the pseudo code is given. The
pseudo code will solely describe the functioning of the algorithm and no additional code that is used for
simulating the rover or simulating the algorithm. Some variables and functions have the same purpose
in multiple algorithms. These common variables and functions are described in Tab.4.1 and Tab.4.2
respectively.

Table 4.1: Variables that are commonly used in the pseudo code descriptions

Variables Description

𝑁𝑜𝑑𝑒 A point that is either on a discreet grid or randomly generated.
Nodes are the only points that can be used as path points by the algorithms.

𝑁𝑆𝑡𝑎𝑟𝑡
The start node of the rover.

This is the point where the path search is starting.
𝑁𝐺𝑜𝑎𝑙 The goal node of the rover and therefore the point where the path search should stop

𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐿𝑖𝑠𝑡 List that holds all obstacles that are known or detected by the rover.
It has the following structure :(X-coordinate, Y-coordinate, radius in meters)

𝑅𝑜𝑣𝑒𝑟𝑅𝑎𝑑𝑖𝑢𝑠 Radius of the rover in meters
This includes the safety boundry that should be created around the rover

𝐴𝑟𝑒𝑎𝐵𝑜𝑢𝑛𝑑𝑠 The area size which contains the 𝑁𝑆𝑡𝑎𝑟𝑡 and 𝑁𝐺𝑜𝑎𝑙
It has the following stucture[min-x, max-x, min-y, max-y]

𝐺𝑟𝑖𝑑𝑆𝑖𝑧𝑒 Distance between the dicreet grid points in meters.
Deacreasing the 𝐺𝑟𝑖𝑑𝑆𝑖𝑧𝑒 results in a more accurate path.

𝐸𝑥𝑡𝑒𝑛𝑑𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 Maximum length the algorithm can extend with the addition of one path point.
This is somewhat similar to the 𝐺𝑟𝑖𝑑𝑆𝑖𝑧𝑒.

𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 Maximum number of times the algorithm may run to find a path.
This is used to prevent a loop of infinity tries.

16
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Table 4.2: Functions that are commonly used in the pseudo code descriptions

Functions Description

𝑅𝑜𝑣𝑒𝑟𝑀𝑜𝑡𝑖𝑜𝑛𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠 The 8 possible directions the rover can go when on a node.
These 8 directions are the adjacent nodes

𝐴𝑑𝑑𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑇𝑜𝑁𝑜𝑑𝑒 This function defines the possible next node
by adding the motions to the current node

𝐴𝑑𝑑𝑁𝑜𝑑𝑒𝑇𝑜𝐿𝑖𝑠𝑡 This function will add the next path node to a set or list.
This set or list will be used to form the final path.

𝑀𝑎𝑘𝑒𝑃𝑎𝑡ℎ𝐹𝑟𝑜𝑚𝑁𝑜𝑑𝑒𝐿𝑖𝑠𝑡 This function transforms a set or list with path points to an actual path.
This path can than be used by the rover.

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 Function to calculate the Euclidean distance between two nodes.

4.1.1. A* Algorithm
The A* algorithm is presented in Alg.1 as pseudo code. The explanation of the pseudo code, and
therefore the actual code, will be given in this chapter. A flowchart representation of the A* algorithm
is depicted in Fig.4.1. [16] and [8] present a similar code structure for the A* algorithm, while [16]
describes an A* algorithms for beginners to explain the basic principles of A*. [8] presents an improved
A* algorithm in the perspective of modern computer games.

Inputs and outputs
The require line in Alg.1 shows the needed inputs for the algorithm to function properly. The𝐴𝑠𝑡𝑎𝑟𝑁𝑜𝑑𝑒𝑠
are defined as a separate class. Each 𝐴𝑠𝑡𝑎𝑟𝑁𝑜𝑑𝑒 object holds a 𝑋 and 𝑌 position, a 𝐶𝑜𝑠𝑡 and a
𝑃𝑎𝑟𝑒𝑛𝑡𝐼𝑛𝑑𝑒𝑥. The 𝑃𝑎𝑟𝑒𝑛𝑡𝐼𝑛𝑑𝑒𝑥 is the previous node that is used to reach the current node. The
variables in an 𝐴𝑠𝑡𝑎𝑟𝑁𝑜𝑑𝑒 object form the information that is needed for the A* path planning. The
actual code has the ability to scale according to the 𝐺𝑟𝑖𝑑𝑆𝑖𝑧𝑒, but to keep the pseudo code readable
and structured this scaling is removed.

The output of the algorithm is a collision free path from the start node to the goal node. The path is
presented as a list of 𝑋, 𝑌 coordinates from the goal node to the start node.

Map initialization
On line 1 from the A* pseudo code, the area bounds are used to initialize a matrix. This matrix is
used to map and identify obstacles. First all matrix values are initialized to 𝐹𝑎𝑙𝑠𝑒, after which all nodes
that collide with an obstacle are set to 𝑇𝑟𝑢𝑒. This 𝑇𝑟𝑢𝑒 value is determined by checking the distance
between a node and all the obstacle centres. If the distance between a node and the the obstacle
centre is smaller or equal to the 𝑅𝑜𝑣𝑒𝑟𝑅𝑎𝑑𝑖𝑢𝑠 + 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑅𝑎𝑑𝑖𝑢𝑠 than the node is in collision and set
to 𝑇𝑟𝑢𝑒. This is shown between lines 2 and 9 of the pseudo code.

Path generation
The 𝐿𝑜𝑤𝑒𝑠𝑡𝐶𝑜𝑠𝑡𝑁𝑜𝑑𝑒 function finds the node in the list that has the lowest 𝑐𝑜𝑠𝑡 value and makes this
the 𝐴𝑠𝑡𝑎𝑟𝑁𝐶𝑢𝑟𝑟𝑒𝑛𝑡 in line 13 from the A* pseudo algorithm. The 𝑐𝑜𝑠𝑡 is always calculated as shown in
Eq.4.1. Where 𝑔(𝑛) is the exact cost from the 𝐴𝑠𝑡𝑎𝑟𝑁𝑆𝑡𝑎𝑟𝑡 to node 𝑛 and ℎ(𝑛) the estimated cost from
node 𝑛 to 𝐴𝑠𝑡𝑎𝑟𝑁𝐺𝑜𝑎𝑙. ℎ(𝑛) is chosen to be the Euclidean distance between node 𝑛 and 𝐴𝑠𝑡𝑎𝑟𝑁𝐺𝑜𝑎𝑙.
The Euclidean distance is set to be the length of a straight line between the two given points. After
determination of 𝐴𝑠𝑡𝑎𝑟𝑁𝐶𝑢𝑟𝑟𝑒𝑛𝑡, the 𝐴𝑠𝑡𝑎𝑟𝑁𝐶𝑢𝑟𝑟𝑒𝑛𝑡 is removed from the 𝑂𝑝𝑒𝑛𝑆𝑒𝑡 and added to the
𝐶𝑙𝑜𝑠𝑒𝑑𝑆𝑒𝑡. If the 𝐴𝑠𝑡𝑎𝑟𝑁𝐶𝑢𝑟𝑟𝑒𝑛𝑡 is the same as the 𝐴𝑠𝑡𝑎𝑟𝑁𝐺𝑜𝑎𝑙, the loop is terminated and a final path
is generated.

𝑐𝑜𝑠𝑡(𝑛) = 𝑔(𝑛) + ℎ(𝑛) (4.1)
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Figure 4.1: Flowchart of the A* algorithm. The initialization is denoted in yellow, path planning in green and the outputs in purple.

Algorithm 1 A* Algorithm [16]
Require: 𝐴𝑠𝑡𝑎𝑟𝑁𝑆𝑡𝑎𝑟𝑡 , 𝐴𝑠𝑡𝑎𝑟𝑁𝐺𝑜𝑎𝑙 , 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐿𝑖𝑠𝑡, 𝑅𝑜𝑣𝑒𝑟𝑅𝑎𝑑𝑖𝑢𝑠, 𝐴𝑟𝑒𝑎𝐵𝑜𝑢𝑛𝑑𝑠, 𝐺𝑟𝑖𝑑𝑆𝑖𝑧𝑒
Ensure: 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝐹𝑟𝑒𝑒 𝑃𝑎𝑡ℎ
1: 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑀𝑎𝑝 ← 𝐹𝑎𝑙𝑠𝑒 ∈ 𝐴𝑟𝑒𝑎𝐵𝑜𝑢𝑛𝑑𝑠𝑋,𝑌
2: for 𝐴𝑠𝑡𝑎𝑟𝑁𝑋,𝑌 ∈ 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑀𝑎𝑝 do
3: for 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑋,𝑌 , 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑅𝑎𝑑𝑖𝑢𝑠 ∈ 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐿𝑖𝑠𝑡 do
4: if 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑁𝑋,𝑌 , 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑋,𝑌) ≤ 𝑅𝑜𝑣𝑒𝑟𝑅𝑎𝑑𝑖𝑢𝑠 + 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑅𝑎𝑑𝑖𝑢𝑠 then
5: 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑀𝑎𝑝𝑋,𝑌 ← 𝑇𝑟𝑢𝑒
6: break
7: end if
8: end for
9: end for
10: 𝑂𝑝𝑒𝑛𝑆𝑒𝑡 ← [𝐴𝑠𝑡𝑎𝑟𝑁𝑆𝑡𝑎𝑟𝑡]
11: 𝐶𝑙𝑜𝑠𝑒𝑑𝑆𝑒𝑡 ← ∅
12: while 𝑂𝑝𝑒𝑛𝑆𝑒𝑡 ≠ ∅ do
13: 𝐴𝑠𝑡𝑎𝑟𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝐿𝑜𝑤𝑒𝑠𝑡𝐶𝑜𝑠𝑡𝑁𝑜𝑑𝑒(𝑂𝑝𝑒𝑛𝑆𝑠𝑒𝑡)
14: 𝑂𝑝𝑒𝑛𝑆𝑒𝑡 ← 𝑅𝑒𝑚𝑜𝑣𝑒𝑁𝑜𝑑𝑒𝐹𝑟𝑜𝑚𝐿𝑖𝑠𝑡(𝐴𝑠𝑡𝑎𝑟𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , 𝑂𝑝𝑒𝑛𝑆𝑒𝑡)
15: 𝐶𝑙𝑜𝑠𝑒𝑑𝑆𝑒𝑡 ← 𝐴𝑑𝑑𝑁𝑜𝑑𝑒𝑇𝑜𝐿𝑖𝑠𝑡(𝐴𝑠𝑡𝑎𝑟𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , 𝐶𝑙𝑜𝑠𝑒𝑑𝑆𝑒𝑡)
16: if 𝑁𝑜𝑑𝑒𝑠𝐴𝑟𝑒𝑆𝑎𝑚𝑒(𝐴𝑠𝑡𝑎𝑟𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , 𝐴𝑠𝑡𝑎𝑟𝑁𝑔𝑜𝑎𝑙) then
17: 𝐶𝑙𝑜𝑠𝑒𝑑𝑆𝑒𝑡 ← 𝐴𝑑𝑑𝑁𝑜𝑑𝑒𝑇𝑜𝐿𝑖𝑠𝑡(𝐴𝑠𝑡𝑎𝑟𝑁𝑔𝑜𝑎𝑙 , 𝐶𝑙𝑜𝑠𝑒𝑑𝑆𝑒𝑡)
18: 𝑃𝑎𝑡ℎ ← 𝑀𝑎𝑘𝑒𝑃𝑎𝑡ℎ𝐹𝑟𝑜𝑚𝑁𝑜𝑑𝑒𝐿𝑖𝑠𝑡(𝐶𝑙𝑜𝑠𝑒𝑑𝑆𝑒𝑡)
19: return 𝑃𝑎𝑡ℎ
20: end if
21: for 𝑅𝑜𝑣𝑒𝑟𝑀𝑜𝑡𝑖𝑜𝑛𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠 do
22: 𝐴𝑠𝑡𝑎𝑟𝑁𝑛𝑒𝑥𝑡 ← 𝐴𝑑𝑑𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑇𝑜𝑁𝑜𝑑𝑒(𝐴𝑠𝑡𝑎𝑟𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , 𝑅𝑜𝑣𝑒𝑟𝑀𝑜𝑡𝑖𝑜𝑛𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛)
23: if 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑀𝑎𝑝[𝐴𝑠𝑡𝑎𝑟𝑁𝑛𝑒𝑥𝑡(𝑋,𝑌)] 𝑖𝑠 𝑇𝑟𝑢𝑒 then
24: continue
25: end if
26: if 𝐴𝑠𝑡𝑎𝑟𝑁𝑛𝑒𝑥𝑡 ∈ 𝐶𝑙𝑜𝑠𝑒𝑑𝑆𝑒𝑡 then
27: continue
28: end if
29: if 𝐴𝑠𝑡𝑎𝑟𝑁𝑛𝑒𝑥𝑡 ∉ 𝑂𝑝𝑒𝑛𝑆𝑒𝑡 then
30: 𝑂𝑝𝑒𝑛_𝑠𝑒𝑡 ← 𝐴𝑑𝑑𝑁𝑜𝑑𝑒𝑇𝑜𝐿𝑖𝑠𝑡(𝐴𝑠𝑡𝑎𝑟𝑁𝑛𝑒𝑥𝑡 , 𝑂𝑝𝑒𝑛𝑆𝑒𝑡)
31: else
32: if 𝑁𝑜𝑑𝑒𝐶𝑜𝑠𝑡(𝑂𝑝𝑒𝑛𝑆𝑒𝑡[𝐴𝑠𝑡𝑎𝑟𝑁𝑛𝑒𝑥𝑡]) > 𝑁𝑜𝑑𝑒𝐶𝑜𝑠𝑡(𝐴𝑠𝑡𝑎𝑟𝑁𝑛𝑒𝑥𝑡) then
33: 𝑁𝑜𝑑𝑒𝐶𝑜𝑠𝑡(𝑂𝑝𝑒𝑛𝑆𝑒𝑡[𝐴𝑠𝑡𝑎𝑟𝑁𝑛𝑒𝑥𝑡]) = 𝑁𝑜𝑑𝑒𝐶𝑜𝑠𝑡(𝐴𝑠𝑡𝑎𝑟𝑁𝑛𝑒𝑥𝑡)
34: end if
35: end if
36: end for
37: end while
38: return 𝐹𝑎𝑙𝑠𝑒
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4.1.2. RRT Algorithm
The Rapidly Exploring Random Trees Algorithm is presented in Alg.2 as pseudo code. Variables and
functions that are shown in Tab.4.1 and Tab.4.2 are again used as common knowledge. Fig.4.2 depicts
the Rapidly exploring Random Trees (RRT) algorithm in a flowchart representation. [33] presents a
similar RRT base algorithm that can be used for robot path planning. In addition the paper presents
a significant improvement in computation time with the so called Node-Control RRT algorithm. This
improvement is neither considered in this thesis or pseudo code.

Inputs and outputs
For the RRT algorithm the 𝑅𝑅𝑇𝑁𝑜𝑑𝑒 class is used, which also has a 𝑋, 𝑌 and a 𝑃𝑎𝑟𝑒𝑛𝑡𝐼𝑛𝑑𝑒𝑥 variable.
Additional to these three variables, the 𝑅𝑅𝑇𝑁𝑜𝑑𝑒 class also holds the 𝑃𝑎𝑡ℎ𝑋 and 𝑃𝑎𝑡ℎ𝑌 variables.
These are used when the 𝐸𝑥𝑡𝑒𝑛𝑑𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is different from the desired path resolution. For example,
the 𝐸𝑥𝑡𝑒𝑛𝑑𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is taken as two meters but the output needs to have a resolution of one meter.
In this case the 𝐸𝑥𝑡𝑒𝑛𝑑𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is split up in to parts of one meter and consists of three coordinates
instead of two. The three sub-nodes are now saved in 𝑃𝑎𝑡ℎ𝑋, 𝑃𝑎𝑡ℎ𝑌. As the other base algorithm only
have the 𝑔𝑟𝑖𝑑𝑠𝑖𝑧𝑒 to represent the resolution, the RRT algorithm will also be compared with only the
𝐸𝑥𝑡𝑒𝑛𝑑𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 as resolution. This insures a fair comparison between the algorithm and means that
the 𝑃𝑎𝑡ℎ𝑋, 𝑃𝑎𝑡ℎ𝑌 variables are not used in the base algorithm.

The output is again defined as a collision free path from the start node to the goal node. The path
is presented as a list of 𝑋, 𝑌 coordinates from the goal node to the start node.

Path generation
The path generation starts on line 2. The 𝐺𝑒𝑡𝑅𝑎𝑛𝑑𝑜𝑚𝑁𝑜𝑑𝑒 function creates a random 𝑅𝑅𝑇𝑁𝑜𝑑𝑒
within the given area bounds. The closest available node that is previously generated is determined
by he 𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝑁𝑜𝑑𝑒𝐹𝑟𝑜𝑚𝐿𝑖𝑠𝑡 function. Obviously the likelihood of a random node being within the
𝐸𝑥𝑡𝑒𝑛𝑑𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is very small, therefore when the 𝑅𝑅𝑇𝑁𝑟𝑎𝑛𝑑 falls outside this 𝐸𝑥𝑡𝑒𝑛𝑑𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 the
random node is used as a guidance for the direction of the new node. A new node(𝑅𝑅𝑇𝑀𝑛𝑒𝑤) is
calculated by using the 𝑅𝑅𝑇𝑁𝑟𝑎𝑛𝑑𝑜𝑚 as direction and the 𝐸𝑥𝑡𝑒𝑛𝑑𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 as maximum distance from
𝑅𝑅𝑇𝑁𝑛𝑒𝑎𝑟𝑒𝑠𝑡. This 𝑅𝑅𝑇𝑀𝑛𝑒𝑤 is used for further calculations and connected to 𝑅𝑅𝑇𝑁𝑛𝑒𝑎𝑟𝑒𝑠𝑡. Whenever
the goal is within the 𝐸𝑥𝑡𝑒𝑛𝑑𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 the 𝐸𝑥𝑡𝑒𝑛𝑑 function is used to create 𝑅𝑅𝑇𝑁𝑓𝑖𝑛𝑎𝑙, which ends
the path search

Collision check
The 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒 function checks if a node is within the obstacle bounds and is further explained on
line 19 to 25 in Alg.2. Where again the Euclidean distance is used between the centre of an obstacle and
the 𝑅𝑅𝑇𝑁𝑜𝑑𝑒. This distance should be larger than the 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑅𝑎𝑑𝑖𝑢𝑠 and 𝑅𝑜𝑣𝑒𝑟𝑅𝑎𝑑𝑖𝑢𝑠 combined
to ensure a collision free path. If there is a collision between the node and an obstacle, the node is
discarded from the following path searches.

Figure 4.2: Flowchart of the RRT algorithm. The initialization is denoted in yellow, path planning in green, use of external
functions in blue and the outputs in purple.
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Algorithm 2 Rapidly exploring Random Trees Algorithm [33]
Require: 𝑅𝑅𝑇𝑁𝑆𝑡𝑎𝑟𝑡 , 𝑅𝑅𝑇𝑁𝐺𝑜𝑎𝑙 , 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐿𝑖𝑠𝑡, 𝑅𝑜𝑣𝑒𝑟𝑅𝑎𝑑𝑖𝑢𝑠, 𝐴𝑟𝑒𝑎𝐵𝑜𝑢𝑛𝑑𝑠, 𝐸𝑥𝑡𝑒𝑛𝑑𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒,

𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
Ensure: 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝐹𝑟𝑒𝑒 𝑃𝑎𝑡ℎ
1: 𝑁𝑜𝑑𝑒𝐿𝑖𝑠𝑡 ← [𝑅𝑅𝑇𝑁𝑠𝑡𝑎𝑟𝑡]
2: for 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
3: 𝑅𝑅𝑇𝑁𝑟𝑎𝑛𝑑 ← 𝐺𝑒𝑡𝑅𝑎𝑛𝑑𝑜𝑚𝑁𝑜𝑑𝑒(𝐴𝑟𝑒𝑎𝐵𝑜𝑢𝑛𝑑𝑠)
4: 𝑅𝑅𝑇𝑁𝑛𝑒𝑎𝑟𝑒𝑠𝑡 ← 𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝑁𝑜𝑑𝑒𝐹𝑟𝑜𝑚𝐿𝑖𝑠𝑡(𝑅𝑅𝑇𝑁𝑟𝑎𝑛𝑑 , 𝑁𝑜𝑑𝑒𝐿𝑖𝑠𝑡)
5: 𝑅𝑅𝑇𝑁𝑛𝑒𝑤 ← 𝐸𝑥𝑡𝑒𝑛𝑑(𝑅𝑅𝑇𝑁𝑛𝑒𝑎𝑟𝑒𝑠𝑡 , 𝑅𝑅𝑇𝑁𝑟𝑎𝑛𝑑𝑜𝑚 , 𝐸𝑥𝑡𝑒𝑛𝑑𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒)
6: if 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒(𝑅𝑅𝑇𝑁𝑛𝑒𝑤 , 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐿𝑖𝑠𝑡, 𝑅𝑜𝑣𝑒𝑟𝑅𝑎𝑑𝑖𝑢𝑠) then
7: 𝐴𝑑𝑑𝑁𝑜𝑑𝑒𝑇𝑜𝐿𝑖𝑠𝑡(𝑅𝑅𝑇𝑁𝑛𝑒𝑤 , 𝑁𝑜𝑑𝑒𝐿𝑖𝑠𝑡)
8: end if
9: if 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑅𝑅𝑇𝑁𝑛𝑒𝑤 , 𝑅𝑅𝑇𝑁𝐺𝑜𝑎𝑙) < 𝐸𝑥𝑡𝑒𝑛𝑑𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 then
10: 𝑅𝑅𝑇𝑁𝑓𝑖𝑛𝑎𝑙 ← 𝐸𝑥𝑡𝑒𝑛𝑑(𝑁𝑜𝑑𝑒𝐿𝑖𝑠𝑡[𝑙𝑒𝑛𝑔𝑡ℎ − 1], 𝑅𝑅𝑇𝑁𝑔𝑜𝑎𝑙 , 𝐸𝑥𝑡𝑒𝑛𝑑𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒)
11: if 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒(𝑅𝑅𝑇𝑁𝑓𝑖𝑛𝑎𝑙) then
12: 𝑃𝑎𝑡ℎ ← 𝑀𝑎𝑘𝑒𝑃𝑎𝑡ℎ𝐹𝑟𝑜𝑚𝑁𝑜𝑑𝑒𝐿𝑖𝑠𝑡(𝑁𝑜𝑑𝑒𝐿𝑖𝑠𝑡)
13: return 𝑃𝑎𝑡ℎ
14: end if
15: end if
16: end for
17: return 𝐹𝑎𝑙𝑠𝑒
18:
19: 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒(𝑅𝑅𝑇𝑁𝑜𝑑𝑒, 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐿𝑖𝑠𝑡, 𝑅𝑜𝑣𝑒𝑟𝑅𝑎𝑑𝑖𝑢𝑠) ∶
20: for 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑋,𝑌 , 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑅𝑎𝑑𝑖𝑢𝑠 ∈ 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐿𝑖𝑠𝑡 do
21: if 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑅𝑅𝑇𝑁𝑜𝑑𝑒𝑋,𝑌 , 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑋,𝑌) ≤ 𝑅𝑜𝑣𝑒𝑟𝑅𝑎𝑑𝑖𝑢𝑠 + 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑅𝑎𝑑𝑖𝑢𝑠 then
22: return 𝐹𝑎𝑙𝑠𝑒
23: end if
24: end for
25: return 𝑇𝑟𝑢𝑒

4.1.3. APF Algorithm
The Artificial Potential Field algorithm is presented in Alg.3 as pseudo code. Again the common vari-
ables and functions from Tab.4.1 and Tab.4.2 are used.

The first Artificial Potential Field algorithm for path finding was presented by [13]. The algorithm
as described in Alg.3 has the same structure, functioning, pitfalls and benefits. [18] present the base
algorithm in a similar way as Alg.3, but also present a possible improvement for robot path planning.

Inputs and outputs
The new node class is defined as 𝐴𝑃𝐹𝑁𝑜𝑑𝑒 and holds just two variables, the 𝑋 and the 𝑌 coordinates
of the node. No further information is needed for proper functioning of the Artificial Potential Field (APF)
algorithm. The output is again a collision free path from the 𝐴𝑃𝐹𝑁𝑆𝑡𝑎𝑟𝑡 to 𝐴𝑃𝐹𝑁𝐺𝑜𝑎𝑙.

Map initialization
The potential map is initiated on line 1 with zero’s and has the size that is given by the 𝐴𝑟𝑒𝑎𝐵𝑜𝑢𝑛𝑑𝑠
variable. The 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐴𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 calculates the attractive potential. The attractive potential
is defined as zero at the goal and becomes more positive when moving away from the goal. The
𝐶𝑎𝑙𝑐𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 calculates the repulsive potential and is defined as becoming positive large
when in and around an obstacle. Finally the 𝑇𝑜𝑡𝑎𝑙𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 function adds these two potentials which
results in a total potential. This is determined for each node in the 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑀𝑎𝑝.

Furthermore a list 𝑃𝑎𝑡ℎ is made of type 𝐴𝑃𝐹𝑁𝑜𝑑𝑒 to hold the nodes from the final path on line 2. A
second list, 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑁𝑜𝑑𝑒𝑠, is made for the 𝐴𝑃𝐹𝑁𝑜𝑑𝑒 type on line 3. However, this is a double-ended
queue list. This means that variables in the list can be added or removed from either the beginning or
the end of the list. At the end of this section the relevance of this list will be explained.
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Path generation
The 𝑅𝑜𝑣𝑒𝑟𝑀𝑜𝑡𝑖𝑜𝑛𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠 is similar to the one presented in Sec.4.1.1, but the cost of the nodes
is not used for the APF algorithm. Instead the next node is determined by checking the potentials of
all adjacent nodes. The 𝐺𝑒𝑡𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 function returns the potential value from an 𝐴𝑃𝐹𝑁𝑜𝑑𝑒 in the
𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑀𝑎𝑝. The next node is defined as the adjacent node with the lowest potential. If this node is
closer to the 𝐴𝑃𝐹𝑁𝐺𝑜𝑎𝑙 than the 𝐺𝑟𝑖𝑑𝑠𝑖𝑧𝑒 the loop is terminated and the 𝑃𝑎𝑡ℎ is returned.

Local minimum detection
It can occur that the 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑀𝑎𝑝 has two or three nodes next to each other with the same potential
value. In this case the algorithm will define its path back and forth between these two or three nodes
and starts oscillating. In other words the algorithm is stuck in a local minimum. This can happen in front
of an obstacle for example. To prevent the algorithm from crashing, a local minimum detection function
is written. If a local minimum is detected the algorithm will stop planning and fails to find a path. The
𝑁𝑜𝐿𝑜𝑐𝑎𝑙𝑀𝑖𝑛𝑖𝑚𝑢𝑚 function is presented on line 34, where a list is kept of the three previous nodes.
Every time the fourth node is added to this list, the 𝑅𝑒𝑚𝑜𝑣𝑒𝐹𝑖𝑟𝑠𝑡𝐼𝑡𝑒𝑚𝐹𝑟𝑜𝑚𝐿𝑖𝑠𝑡 removes the first added
node from the end of the list. For this reason the double ended list is used, such that a 𝐴𝑃𝐹𝑁𝑜𝑑𝑒 can
be added from one side and removed from the other side of the list. The 𝑁𝑜𝑑𝑒𝐼𝑛𝐿𝑖𝑠𝑡𝐼𝑠𝐷𝑜𝑢𝑏𝑙𝑒 function
checks if the three presented nodes in 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑁𝑜𝑑𝑒𝑠 are the same. If this is the case, than a local
minimum is detected and the algorithm will terminate.

Figure 4.3: Flowchart of the APF algorithm. The initialization is denoted in yellow, path planning in green, use of external functions
in blue and the outputs in purple.
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Algorithm 3 Artificial Potential Field Algorithm [13]
Require: 𝐴𝑃𝐹𝑁𝑆𝑡𝑎𝑟𝑡 , 𝐴𝑃𝐹𝑁𝐺𝑜𝑎𝑙 , 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐿𝑖𝑠𝑡, 𝑅𝑜𝑣𝑒𝑟𝑅𝑎𝑑𝑖𝑢𝑠, 𝐺𝑟𝑖𝑑𝑆𝑖𝑧𝑒, 𝐴𝑟𝑒𝑎𝐵𝑜𝑢𝑛𝑑𝑠
Ensure: 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝐹𝑟𝑒𝑒 𝑃𝑎𝑡ℎ
1: 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑀𝑎𝑝 ← 0 ∈ 𝐴𝑟𝑒𝑎𝐵𝑜𝑢𝑛𝑑𝑠𝑋,𝑌
2: 𝑃𝑎𝑡ℎ ← [𝐴𝑃𝐹𝑁𝑠𝑡𝑎𝑟𝑡]
3: 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑁𝑜𝑑𝑒𝑠 ← 𝑑𝑒𝑞𝑢𝑒()
4: for 𝑋, 𝑌 ∈ 𝐴𝑟𝑒𝑎 do
5: 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙(𝑋, 𝑌, 𝐴𝑃𝐹𝑁𝐺𝑜𝑎𝑙)
6: 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙(𝑋, 𝑌, 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐿𝑖𝑠𝑡, 𝑅𝑜𝑣𝑒𝑟𝑅𝑎𝑑𝑖𝑢𝑠)
7: 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑀𝑎𝑝 ← 𝑇𝑜𝑡𝑎𝑙𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙(𝑋, 𝑌, 𝑃𝑜𝑠𝑡𝑖𝑣𝑒𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙, 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙)
8: end for
9: 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐴𝑃𝐹𝑁𝐺𝑜𝑎𝑙 , 𝐴𝑃𝐹𝑁𝑆𝑡𝑎𝑟𝑡)
10: 𝐴𝑃𝐹𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝐴𝑃𝐹𝑁𝑆𝑡𝑎𝑟𝑡
11: while 𝑁𝑜𝐿𝑜𝑐𝑎𝑙𝑀𝑖𝑛𝑖𝑚𝑢𝑚 do
12: 𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 ← ∞
13: for 𝑅𝑜𝑣𝑒𝑟𝑀𝑜𝑡𝑖𝑜𝑛𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠 do
14: 𝐴𝑃𝐹𝑁𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑛𝑒𝑥𝑡 ← 𝐴𝑑𝑑𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑇𝑜𝑁𝑜𝑑𝑒(𝐴𝑃𝐹𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , 𝑅𝑜𝑣𝑒𝑟𝑀𝑜𝑡𝑖𝑜𝑛𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛)
15: if 𝐴𝑃𝐹𝑁𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑛𝑒𝑥𝑡 ∉ 𝐴𝑟𝑒𝑎𝐵𝑜𝑢𝑛𝑑𝑠 then
16: 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 ← ∞
17: else
18: 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 ← 𝐺𝑒𝑡𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙(𝐴𝑃𝐹𝑁𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙_𝑛𝑒𝑥𝑡 , 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑀𝑎𝑝)
19: end if
20: if 𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 > 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 then
21: 𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 = 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙
22: 𝐴𝑃𝐹𝑁𝑚𝑖𝑛𝑖𝑚𝑎𝑙_𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑛𝑒𝑥𝑡 = 𝐴𝑃𝐹𝑁𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑛𝑒𝑥𝑡
23: end if
24: end for
25: 𝐴𝑃𝐹𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝐴𝑃𝐹𝑁𝑚𝑖𝑛𝑖𝑚𝑎𝑙_𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑛𝑒𝑥𝑡
26: 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐴𝑃𝐹𝑁𝐺𝑜𝑎𝑙 , 𝐴𝑃𝐹𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
27: 𝑃𝑎𝑡ℎ ← 𝐴𝑑𝑑𝑁𝑜𝑑𝑒𝑇𝑜𝐿𝑖𝑠𝑡(𝐴𝑃𝐹𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , 𝑃𝑎𝑡ℎ))
28: if 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 < 𝐺𝑟𝑖𝑑𝑆𝑖𝑧𝑒 then
29: return 𝑃𝑎𝑡ℎ
30: end if
31: end while
32: return 𝑁𝑜𝑛𝑒
33:
34: 𝑁𝑜𝐿𝑜𝑐𝑎𝑙𝑀𝑖𝑛𝑖𝑚𝑢𝑚(𝐴𝑃𝐹𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ∶
35: 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑁𝑜𝑑𝑒𝑠 ← 𝐴𝑑𝑑𝑁𝑜𝑑𝑒𝑇𝑜𝐿𝑖𝑠𝑡(𝐴𝑃𝐹𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑁𝑜𝑑𝑒𝑠))
36: if 𝑙𝑒𝑛𝑔𝑡ℎ(𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑁𝑜𝑑𝑒𝑠) > 3 then
37: 𝑅𝑒𝑚𝑜𝑣𝑒𝐹𝑖𝑟𝑠𝑡𝐼𝑡𝑒𝑚𝐹𝑟𝑜𝑚𝐿𝑖𝑠𝑡(𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑁𝑜𝑑𝑒𝑠)
38: end if
39: if 𝑁𝑜𝑑𝑒𝐼𝑛𝐿𝑖𝑠𝑡𝐼𝑠𝐷𝑜𝑢𝑏𝑙𝑒(𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑁𝑜𝑑𝑒𝑠) then
40: return 𝑇𝑟𝑢𝑒
41: else
42: return 𝐹𝑎𝑙𝑠𝑒
43: end if
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4.2. Algorithm analysis
To determine the most suitable algorithm for LZ, a performance comparison is completed. To compare
the performance of the three base algorithms, performance metrics play a key role in defining which
of the three algorithms is the most suitable. The performance of the three algorithms is dependent on
the environmental factors that are present in the Lunar Zebro environment. Therefore the performance
metrics and environmental factors are defined first. The impact of the environmental factors on the
performance metrics for each algorithm is eventually evaluated with a simulation. This section will
conclude with the explanation of the build and used simulation to obtain the results.

4.2.1. Performance metrics
A performancemetrics is a way to analyze the strength and weaknesses of an algorithm. Different types
of algorithms could have different types of performance metrics. For path planning algorithms in the
scheme of Lunar Zebro the relevant metrics can be divided in two categories; quantitative metrics and
qualitative metrics. A quantitative metric can be calculated and is defined as number and can therefore
be compared directly. However, a qualitative metric is defined in a level of (im)possibility relative to
other algorithms. The first three presented metrics are quantitative metrics and the succeeding metrics
are qualitative metrics.

Path length
The first metric is the path length that is obtained by the algorithm. Different approaches used by
algorithms have different ways to avoid obstacles and different ways to reach goals. Each approach
comes with a different path length. The path length is an important performance metric as it plays a key
role in the capabilities of a robotic swarm. As a rover can only travel a fixed amount of distance due to
battery life or other factors, it is important this distance is used in an optimal way. During exploration
missions the swarm could cover a larger area if the path length is optimized.

Planning time
The second metric is the computation time of the planning algorithm. This gives an indication on
the computational complexity. The planning excludes time that is used for simulating and/or printing
anything regarding the rover or the algorithm. It is strictly reduced to the time that is needed to obtain
a path from the start to the goal while avoiding the known obstacles. Even if the path length is the
same for different runs, it is not guaranteed that the planning time is the same for the different runs.
This is due to the fact that this is highly dependent on scheduling, memory writing, interrupts, etc of
the running machine or processor. This will also be the case in the Lunar Zebro microcontroller. To
obtain a relevant value for this metric it is required to take a large amount of samples to get a realistic
comparison between the algorithms.

Success/Fail ratio
In some cases the algorithm is not able to find a path at all. Succeeding or failing can be considered
as an algorithm robustness measure. This success/fail ratio is also known as the reachability of an
algorithm. The higher the success/fail ratio, the higher the reachability. Robustness or reachability is
a relevant metric in the scheme of Lunar Zebro. When a rover is operating on its own, it is important
that it is not failing to find a path. However, when the rover is operated in a swarm, the influence of
one rover not finding a path to the goal is minor. When the majority of a swarm reaches the goal two
choices could be made, either leave the stuck rovers behind or help them find the right path by telling
them which path the succeeded rovers took. This way the robustness of a single rover in a swarm is
less relevant compared to the swarm robustness. Looking from this perspective the algorithm should
not create a situation where the rover is trapped in an unsolvable scenario.

Moving obstacles and target
Moving obstacles and targets are not relevant for LZ when on a single mission to the moon as the
environment is static. However, when operating in a swarm, the swarm rovers can be seen as moving
obstacles. Moreover, the swarm may be able to move the goal as the swarm can be relocating itself.
This is the first qualitative metric as it depends on the algorithm how easy the implementation of moving
obstacles and targets is.
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Path length predictability
As path length is already one of the performance metrics this may seem less relevant. However, when
the swarm is trying to cover a large area and must be able to come back to the base station, the rover
batteries should allow this. If the path length is very wide spread and the return to base station rate
should be 100%, than the maximum allowable distance to travel will always be on the low side of the
possible path lengths. When the path length is unpredictable there is a chance that a part of the rovers
are not able to find their way back to the base station. This unpredictability limits the possibilities of the
swarm. A predictable path length is therefore a relevant qualitative performance metric.

Possibility to improve path by swarm behaviour
This metric is based on the fact that a part of the swarm did find the goal and a part of the swarm didn’t.
The rovers that succeeded can mark the path they walked such that the rovers that didn’t succeed can
start following this path. This is easily done by tempering the potential field in the APF algorithm but
much more difficult to implement in the A* and RRT algorithms.

Swarm computation
Having multiple rovers also means the availability of multiple microcontrollers or ZPU’s. Combining the
computational power of the microcontrollers could make the path planning much easier for larger grids.
As multiple rovers could detect obstacles it is possible for A*, RRT and APF to combine this obstacle
information before planning the path and therefore share the processor workload. However, the A* and
RRT algorithms need separate path planning for each rover as this is dependent on the position of the
rover. The APF algorithm is making a potential map without the knowledge of the rover locations. As a
result the APF navigation is done independently of where the rover is placed in the map. Therefore each
rover could calculate a part of the map or improve the map. Combining these parts or improvements
can result in reduced APF computation time for the complete swarm. Swarm computation is therefore
beneficial for the APF algorithm but it has less impact on the A* and RRT algorithms.

4.2.2. Environmental factors
There are several factors that have influence on the above mentioned performance metrics. Again, the
environmental factors with influence are depending on the environment and application. From the LZ
perspective the applicable factors are discussed below.

Area size and gridsize
At first it seems that the area size and the gridsize are different factors. However, if you have a closer
look at the functioning of the algorithms it becomes clear that they dependent on the amount of samples
that have to be calculated. Making the gridsize two times smaller(more accurate) has the same effect
on the algorithm as making the width and height of the area two times larger. This assumption comes
with the minor side node that when the area size is changed, the obstacles, start and goal need to
change proportional with the area size. If the gridsize becomes two times larger than the obstacle
center X and Y coordinates and the obstacle size also become two times larger. Also, the start and the
goal are placed next to the corners of the expended area. This ensures that the obstacle locations and
sizes are relatively unchanged, such that only one factor(area size) can be analyzed. Therefore the
gridsize will have a predefined and unchanged value and the obstacle centers and sizes will be scaled
together with the area.

Obstacles size
The size of obstacles influences the complexity of the field that needs to be solved. The larger the
obstacles, the less space for a path to be planned. Each algorithm is handling this factor different and
it therefore is a relevant environmental factor.

Rover view distance
The maximal possible view distance is already constrained by the placed hardware in Lunar Zebro.
However, maximal view does not necessarily means better performance. The optimal view distance
has to be determined for each algorithm. In case the view distance must be decreased for better
performance, it could be decreased in software.
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Number of obstacles
Obviously changing the number of obstacles will change the path length and plan time. However, the
relation between the obstacle scenarios and between the different algorithms is unclear. Changing the
amount of obstacles shows a clear comparison between the algorithm performances in (non-)cluttered
environments. The obstacles can be placed on predefined spots or can be placed randomly on the
grid. When the field becomes cluttered due to the large amount of obstacles, the obstacle size should
be reduced. With a cluttered environment of large obstacles the field will be fully covered, which would
result in a 100% failure rate for all algorithms. In this case two factors are changed at once; size
and number of obstacles. However, cluttering is an important environmental factor for comparison the
algorithm performance. Therefore the choice is made to increase cluttering of obstacles and decrease
the obstacle size simultaneously.

4.2.3. Simulation
To determine the affect of the environmental factors on the described performance metrics, tests need
to be executed. These test could be done with the use of an actual rover that satisfies the requirements
that describe LZ. However, these tests must be executed a significant amount of times to gain relevant
data. As this would be extremely time consuming, it is chosen to build a simulation that executes the
tests. The simulation can test all three algorithms and the affect of the environmental factors on the
performance metrics. Not all performance metrics can be verified in a simulation as some of them
are qualitative instead of quantitative. The qualitative performance metrics must be verified with a
combination of the simulation results and the implementation possibilities.

Simulation environment
As described in Ch.2 the path finding algorithm should eventually be running on the ZPU. This requires
a low level implemented coding language to ensure efficient and optimal usage of the available pro-
cessing power. The implementation of the final algorithm should therefore be done in C or C++, which
are both low level programming languages. The simulation is created to obtain relevant data and re-
duce testing time. As C or C++ are neither powerful languages for data processing it is chosen to
make the simulation with a different coding language. The Python coding language on the other hand
is a powerful language when it comes to data processing. For this reason it is chosen to code the
simulation and the algorithms in Python. The final simulation is made in Python3 and runs on a local
machine. The local machine is a 𝐿𝑖𝑛𝑢𝑥 based system that runs 𝑈𝑏𝑢𝑛𝑡𝑢 18.04.5 with kernel version
5.4.0-120-𝑔𝑒𝑛𝑒𝑟𝑖𝑐. The used Integrated Development Environment (IDE) is Visual Studio Code (VSC)
with the required Python extensions.

Simulation design
The simulation consists of three components that are shown in a simple 2D top view. This top view
shows a field where the rover can move freely. Fig.4.4 shows an example of these field for all three
algorithms.

The first component is themapwhich shows three elements; the starting point, the goal point and the
obstacles. The start is presented as a black star and the goal is presented as a purple star. It is chosen
that the obstacle are presented by blue circles. Despite the fact that in reality obstacles are almost
never actual circles, it still satisfies its purpose. As long as the circle is larger than the actual obstacle
plus 𝑅𝑜𝑣𝑒𝑟𝑅𝑎𝑑𝑖𝑢𝑠, it denotes the desired safety area around an obstacle. A circle is chosen because
it simplifies the representation of obstacle for both the algorithm and the simulation. A simplification for
the algorithm results in a reduction of computation time and therefore computational complexity. The
obstacles shown by the map are not yet known for the rover as they are not yet detected.

Second, the characteristics of the rover are shown in the simulation. The rover characteristics
consist of three elements; the rover with a defined view area, the planned rover path and the actual
walked path. The rover is depicted by a single dot with a view area. The view area is shown as a
blue triangle in front of the rover. As soon as the blue triangle interferes with an obstacle, the obstacle
becomes detected and is saved in the know obstacle list. As long as an obstacle is not detected the
rover plans a path without the knowledge of this obstacle. The planned path is shown by a red line
between the start and the goal. The actual walked path is represented by the yellow dots on the red
lines. The reason that these two path are presented differently is due to the generation of a new path
when an obstacle is detected. The new path may not be able to continue on the old planned path, as
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an obstacle is blocking the way. Therefore the actual walked path can differ from the initially planned
paths.

The third component is the possibility to show the functioning of the path planning algorithm. For
A* this means showing the considered search points by light blue crosses. For the APF algorithm this
means showing the potential field and changes in potential when an obstacle is detected. A higher
potential results in a darker colour. Detected obstacles are therefore dark circles, while the goal is the
lightest point in the map. The RRT algorithm shows the random search tree that is generated from the
start to the goal. The search tree is shown in green.

Figure 4.4: Overview of path planning simulations

standard conditions
To set a benchmark, a set of standard environmental factors is chosen such that the influence of one
environmental factor can be determined easily. The following parameters are chosen to be the standard
conditions:

• 𝑁𝑜𝑑𝑒𝑆𝑡𝑎𝑟𝑡: [5,5] in meters

• 𝑁𝑜𝑑𝑒𝐺𝑜𝑎𝑙: [45,45] in meters

• 𝐴𝑟𝑒𝑎𝐵𝑜𝑢𝑛𝑑𝑠: 50x50 meters

• 𝐺𝑟𝑖𝑑𝑆𝑖𝑧𝑒: 1 meter

• 𝑉𝑖𝑒𝑤𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒: 3 meters

• 𝑅𝑜𝑣𝑒𝑟𝑅𝑎𝑑𝑖𝑢𝑠: 0 meters

• 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐿𝑖𝑠𝑡(x,y,Obstacle radius[m]): (13, 15, 3), (20,15, 3),(30,20, 3),(30, 33, 3),(43, 35, 3)

Unless specified otherwise, every simulation has only one of the above factors changed. This way
the influence of the individual environmental factors on the algorithm performances can be determined.
The simulation is done 500 times for each algorithm and for every metric and environmental factor
combination. When running the same simulation 500 times the results and distribution of results are
consistent. 500 runs for each performance metric and environmental factor combination gives there-
fore a reliable outcome, but meanwhile has reasonable simulation times. During the experiments the
𝑅𝑜𝑣𝑒𝑟𝑅𝑎𝑑𝑖𝑢𝑠 is set to zero. The radius of the rover is relatively small compared to the obstacles. Fur-
thermore, the rover radius is just to be added to the obstacle radius as a ”no-go” area, which in practice
has the same affect as changing the obstacle radius.

Random obstacles
One of the environmental factors is defined as the change of the obstacle scenario. This is the only
performance factor that results in different maps for each run of the simulation. The amount of obstacles
and their predefined size will be considered as the obstacle scenario. The actual placement of the
obstacles will result in the obstacle map. If, for example, the simulation runs two times with five random
placed obstacles the scenario is not changing over the runs. However, due to the random placement of
the obstacles, the first map will be different compared to the secondmap. As each scenario is simulated
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500 times, each scenario will also have 500 different randomly created obstacle maps. However, when
the simulation is needed again for comparison of algorithms, these maps must be the same. For this
specific reason the random generated location of the obstacles is saved in a file for multiple or future
use.

4.3. Quantitative performance
The output of the simulation are the results for the quantitative performance metrics. This section will
elaborate on all results gained from the simulation and will present an extensive Monte Carlo analysis
on the individual environmental factor and performance metric combinations.

4.3.1. Quantitative table
The quantitative performance of each algorithm for all environmental factors is shown in Tab.4.3. The
results are the mean values of the 500 simulations, as described in Sec.4.2.3. Notice that every first
row of the environmental factors is the standard condition configuration. This is to verify the consistency
of the system as the simulations are run over a longer period. Some of the simulations were not able
to find a path, either for all 500 runs or a part of it. This is shown in the table as a ratio of fails from the
total of 500 simulations. The higher the failure the lower the reachability of the algorithm. If a part of
the simulations failed, the performance metric value is still shown. However, this value is taken as the
mean of only the ”success” simulations. These results are therefore less reliable as they are deducted
from fewer simulations.

4.3.2. Quantitative analyses
Some results from Tab.4.3 are further detailed down to analyse algorithm performance. The analysis
will be substantiated with a Monte Carlo analyses or a boxplot representation of the dataset obtained by
500 runs. The Monte Carlo and the boxplot analysis on some specific environmental factors combined
with the data from Tab.4.3, will form the conclusions on the quantitative performance of algorithms.
The Monte Carlo figures and boxplot figures in this section will all have the same layout. The layout of
these figures will therefore only be explained once, combined with the first introduction of the figure. The
relevant results and their corresponding analysis will be discussed. A boxplot analysis of all different
environmental factors is presented in App.B.1

Standard conditions
The applicable standard conditions are described in Sec.4.2.3. The corresponding performance results
are shown in Fig.4.5 for all three base algorithms. The first row of Fig.4.5 shows all data corresponding
with the A* algorithm. From left the right it shows, a histogram of the planning time in milliseconds, a
histogram of the path length in metres and at the end a fail versus success ratio diagram. A fail means
that there was no path found from start to goal and success means there was a path found from start
to goal. On the second and third rows the same histograms are presented for the original APF and RRT
algorithms respectively. As the x-axis are scaled to the largest measured value of all three algorithm,
the histogram can become dense. For clarification an inset figure is placed at the histograms that show
an extremely dense distribution.

Both for A* and APF the path length stays identical in all 500 simulation, caused by a non changing
obstacle map over all 500 iterations. On every part of the path the algorithm makes the same choice.
The planning time for both algorithms shows a Poisson distribution. A high density on the lower planning
times and a majority of the outliers are located on the high side of the planning time. The histograms
show that A* converges faster in a solution than APF. The RRT algorithm has a random path planning
element, this results in different path lengths for different runs. This random path behaviour also results
in an almost normal distributed planning time. Both the A* and APF algorithms have a planning time
distribution that is not exceeding the first quartile of the normal distributed RRT planning time. This
shows that even when considering the outliers, A* and APF have much better planning time results.
Last but not least all algorithms have a success rate of 100% in the standard conditions.



4.3. Quantitative performance 28

Ta
bl
e
4.
3:

Ba
se

al
go
rit
hm

re
su
lts

fo
re
ve
ry
pe
rfo
rm
an
ce

m
et
ric

an
d
en
vi
ro
nm

en
ta
lf
ac
to
rc
om

bi
na
tio
n.

En
vi
ro
nm

en
t

Fa
ct
or

Pa
th

le
ng

th
[m

]
Pl
an

ni
ng

tim
e
[m

s]

Fa
ct
or

Va
lu
e

A
*a

lg
or
ith

m
[1
6]

R
R
T
al
go

rit
hm

[3
3]

A
PF

al
go

rit
hm

[1
3]

A
*a

lg
or
ith

m
[1
6]

R
R
T
al
go

rit
hm

[3
3]

A
PF

al
go

rit
hm

[1
3]

A
re
a

L
⋅W [m
]

50
x5
0

63
.2
5

76
.1
9

64
.6
7

91
23
4

14
2

25
x2
5

30
.8
7

40
.5
1

34
.6
3

12
90

38
10
0x
10
0

13
1.
38

16
4.
13

13
3.
14

20
1

17
48

44
1

20
0x
20
0

27
5.
14

33
8.
28

27
8.
66

15
62

89
30

12
02

ob
je
ct

si
ze

ra
di
us

[m
]

3
63
.2
5

76
.4
6

64
.6
7

89
24
0

14
1

1
56
.5
7

71
.9
9

57
.1
5

18
19
9

75
5

67
.6

83
.6
9

71
.6
0

10
8

28
4

10
8

8
15
6.
61

17
6.
57

50
0/
50
0
Fa
ils

19
4

46
7

50
0/
50
0
Fa
ils

10
50
0/
50
0
Fa
ils

50
0/
50
0
Fa
ils

50
0/
50
0
Fa
ils

50
0/
50
0
Fa
ils

50
0/
50
0
Fa
ils

50
0/
50
0
Fa
ils

Vi
ew

di
st
an
ce

[m
]

3
63
.2
5

75
.7
0

64
.6
7

89
23
8

13
9

1
67
.1
5

76
.0
4

72
.0
8

73
19
7

10
5

5
62
.4
3

76
.0
9

64
.6
7

96
27
8

13
9

8
61
.8
4

75
.3
2

64
.6
7

12
2

29
7

14
3

10
61
.2
5

76
.0
3

64
.6
7

14
2

32
3

14
7

N
um

be
r

of
ob

st
ac
le
s

si
ze
:

ra
di
us

[m
]

O
rig

in
al

si
ze

=
3

63
.2
5

76
.0
8

64
.6
7

90
24
5

14
2

0
56
.5
7

70
.0
9

56
.5
7

5
55

8
5
ra
nd

om
si
ze

=3
58
.5
7

74
.4
7

12
7/
50
0
Fa
ils

59
.6
6

30
18
7

12
7/
50
0
Fa
ils

59
10

ra
nd

om
si
ze

=
3

61
.0
7

79
.4
4

28
0/
50
0
Fa
ils

60
.9
5

68
32
5

28
0/
50
0
Fa
ils

10
7

15
ra
nd

om
si
ze

=
3

64
.6
6

84
.8
0

37
6/
50
0
Fa
ils

63
.0
4

11
8

46
9

37
6/
50
0
Fa
ils

18
7

15
ra
nd

om
si
ze

=
1

57
.3
1

74
.2
7

98
/5
00

Fa
ils

59
.1
5

38
33
5

98
/5
00

Fa
ils

13
2

30
ra
nd

om
si
ze

=
1

57
.8
8

77
.6

25
0/
50
0
Fa
ils

61
.2

88
61
6

25
0/
50
0
Fa
ils

31
7

60
ra
nd

om
si
ze

=
1

59
.3

1/
50
0
Fa
ils

83
.0
2

46
6/
50
0
Fa
ils

63
.9
8

24
1

1/
50
0
Fa
ils

11
97

46
6/
50
0
Fa
ils

80
5



4.3. Quantitative performance 29

Figure 4.5: Algorithm performance in standard conditions(500 runs)

30 random obstacles
The second Monte Carlo analysis is made with the data of one of the obstacle scenario’s. Placing ran-
dom obstacles has a significant influence on the performance of the three algorithms. The performance
table shows that the APF algorithm does not have a 100% success rate when the obstacles are placed
randomly. When increasing the amount of obstacles, also the RRT algorithm fails to find a path in some
of the simulations. As the obstacle maps are changing during the runs, path lengths of the A* and APF
algorithms are also changing. However, the path lengths of A* and APF algorithms are lower and more
predictable. The APF planning time becomes more distributed when the complexity of the obstacle map
is increased.

Figure 4.6: Algorithm performance on obstacle scenario with 30 random placed obstacles(500 runs)
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Area 200x200
The successive relevant results are obtained with the area of 200x200 simulation. These results are
shown with the help of boxplots and bar plots. Fig.4.7 shows the results for an area with size of 200x200
grid points. From left to right the figures present the planning time boxplots, path length boxplots and
success/fail ratio bar plots for the three base algorithms. All three algorithm have more difficulties to
form a path from start to goal. The planning time is much longer than the standard conditions planning
time. Another interesting observation is the lower planning time of APF compared to the planning time
of A*. A larger, and therefore more difficult area, results in APF being less computational heavy than the
A* algorithm. With smaller and simpler area’s, the A* algorithm outperforms the original APF algorithm.
The RRT algorithm has the worst performance with extreme outliers in both planning time and path
length. Again all algorithms have a success rate of 100%.

Figure 4.7: Algorithm performance with area of 200x200

Object radius 8 meters
From Tab.4.3 it becomes clear that increasing the obstacle size also increases the path length and
the planning time for all algorithms. Increasing the object size results in an increasing complexity of
the maps. When the object radius is set to five meters, the original APF algorithm performs similar to
the A* algorithm regarding planning time. It again holds that in more difficult environment, the original
APF algorithm shows more efficient results. However, an obstacle radius of eight meters becomes
too difficult, the APF algorithm is not able to find any path. Fig.4.8 shows the results of the algorithm
performance for an object radius of eight meters. The path length boxplot of the RRT algorithm shows
a small amount of paths that are clearly shorter than the rest. This is caused by the random choice of
the path, which is by coincidence going the right way around the large obstacles. This is not seen in
the A* results, which still have one single path length.

Viewdistance 8 meters
Tab.4.3 shows that increasing the view distance does not automatically imply that the performance of
the algorithms increase. The planning time of the algorithm even increases with large view distances.
From a view distance of five meters, the path length is not improving significantly for either of the
three algorithms. A view distance of one meter, on the other hand, results in path lengths that are
unnecessary long. The view distance of eight meters is further displayed in Fig.4.9. The boxplots show
that this relative large view distance is creating high outliers in the planning time, while the path length
is barely improved. A view distance of three meters is therefore optimal for all three algorithms.
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Figure 4.8: Algorithm performance with a object radius of 8 meters

Figure 4.9: Algorithm performance with a view distance of 8 meters
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4.4. Algorithm improvements
Choosing the base algorithm does not imply the algorithm is optimized for the Lunar Zebro application.
This section will elaborate on the possible improvements that could be made on the path finding algo-
rithms. The improvements are based on the results in Sec.4.2 and the requirements for LZ shown in
Sec.2.4. Identifying the improvements gives the possibility to define the qualitative performancemetrics
of the algorithms.

4.4.1. A* path planning improvements for Lunar Zebro
To fit in the Lunar Zebro specifications, several improvements could bemade on the A* algorithm. Some
of these improvements are already defined in literature(Ch.3) and are proposes as new algorithms.

D* lite and Field D*
D* lite and Field D* are two improved algorithms based on the classic A* algorithm. These two are
mainly used for robotic path planning in unknown environments. They are optimized on planning time
and efficiency and outperform A* in unknown environments. This could be a relevant improvement
looking at the environment conditions for Lunar Zebro. Extensive literature research towards their
application is needed to determine which of the two would match with the LZ requirements.

Gridsize adaptability
Knowing that Lunar Zebro will have to travel at least 200 meters on the moon and that the step size
accuracy needs to be around 5 centimeter (Sec.2.3.3), the grid becomes relatively large. Planning
the whole rover path with an accuracy of 5 centimeters, while the path is most likely to change due
to unknown obstacles, is quite a waste of computational power. Looking at the Cell Decomposition
Approach as described in Sec.3.1.1, it could be possible to only split up a specified area around the
rover in a grid with an accuracy of five centimeters. Outside this specified area the accuracy could be
smaller, which results in less computation time.

Outlier prevention
Looking at theMonte Carlo analysis done on the A* simulations in Sec.4.3.2, the computational planning
time has some extreme outliers which would ideally be prevented. This should be done by tracking the
exact reason for this outliers and use prevention measures to this rare cases.

Weighted grid points
In some cases the algorithm can go right or left from an obstacle without a big difference in path length
or planning time. From the MoSCoW analysis presented in Sec.2.4.2, it becomes clear that shadow
avoidance for optimal solar energy yield would be a ”could have”. This can be achieved with weighted
grid points that give a negative weight to shadowed area’s. Furthermore the weighted grid point could
be used to give a negative weight on grid points located in difficult terrain. This ensures the avoidance
of difficult terrain when possible.

Moving obstacles and goal
Looking at the swarm capabilities of Lunar Zebro it could be beneficial to have the possibility of moving
obstacles and a moving goal. The moving obstacles could be other rovers in the swarm and the goal
could be set and changed by the swarm. This way the swarm could constantly update the goal without
the necessity of replanning the complete rover path.

4.4.2. APF path planning improvements for Lunar Zebro
Also the Artificial Potential Field algorithm comes in several variants that could benefit Lunar Zebro.
Each variant is addressing different problems and improvements. The relevant improvements that can
be achieved are summed up below.

Escape local minima
The success/fail ratio in some cases is very low compared to the other algorithms. This is caused by
the algorithm that finds itself being stuck in a local minimum. This is causing a lot of path fails, while
the solution could be as simple as: always go left or right when stuck at a local minimum. There are
more advanced ways to escape these local minima that are straight forward to implement. This is a
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necessary but also relatively easy improvement to be a sufficient path planning algorithm for Lunar
Zebro. Implementing this improvement could improve the reachability and therefore the robustness
significantly.

Dynamic APF
An extensively researched improvement on the standard APF algorithm is the dynamic variant. This
variant has the ability to prevent collisions with dynamic obstacles(other swarm rovers) and the ability
to navigate on a moving target.

Gridsize adaptability
Also for the APF algorithm it could be very beneficial to adapt the grid according the place where Lunar
Zebro is located. This would have a similar structure as described in Sec.4.4.1. However, the classical
APF algorithm already outperforms the classical A* algorithm on larger grids. As a result of this, the
gridsize adaptability for an APF algorithm results in less reduction of the planning time compared to an
implementation on the A* algorithm.

Outlier prevention
Similar to the the A* algorithm, the classical APF has some path planning time outliers. These would
ideally be prevented to ensure a predictable and reliable operation of the rover.

4.4.3. RRT path planning improvements for Lunar Zebro
It becomes clear that the A* and APF algorithms are very close to each other regarding performance
for a Lunar Zebro path planning algorithm. Rapid exploring Random Trees is not able to keep up with
this performance regarding planning time, path length and path predictability. Some improvements are
listed that have the potential to optimise the performance metrics to the same level as the A* and APF
algorithms. However, this improvements ensure only similar results as A* and APF and not better. The
gained results for RRT are simply less compared to the gained results in A* and APF.

Path smoothing
The path length performancemetric results of RRT are relatively bad compared to the A* and APF results.
This is obviously caused by the randomness of the points taken as nodes for the path. An improvement
would be to make the path more smooth. This can be done by making a straight lines between non
adjacent nodes. As long as the new lines are not conflicting with obstacles, they could be used as
a path. The previously formed nodes between the two new connected nodes can be skipped. This
reduces the path length but it will still not be optimal.

RRT variants
There are many variants on the RRT algorithm(Ch.3) that could be implemented to improve the algo-
rithm. Most of the variants are focused on improving just one aspect. These variants improve path
length or planning time by for example starting the search from two sides (start and goal). Another
possibility would be to sample the goal more often when determining the random nodes. This ensures
a less expanding tree and lower path length. However, this introduces larger planning times.

Weighted grid points
The RRT algorithm can avoid obstacles by creating random nodes around an obstacle. However, the
algorithm can also create weighted nodes and paths around an obstacle. In case weighted areas are
introduced, the RRT algorithm could take the path with the lowest weight.

Moving goal and objects
Similar as for the other algorithms, the moving goal and obstacles can play a relevant role in swarming.
With the correct modification RRT is able to overcome the challenge of a moving goal and moving
obstacles. However, these modification need to be identified first in the proposed literature that is
described in Ch.3.
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4.5. Qualitative performance
From the results shown in Tab.4.3, the extensive analysis in Sec.4.3.2 and the possible improvements
presented in Sec.4.4, qualitative conclusions can be drawn for each performance metric. Based on
these conclusions and their analysis the decision on the base algorithm will be made.

4.5.1. Qualitative table
The qualitative performance results are shown in Tab.4.4. Each algorithm is graded against the perfor-
mance metrics for Lunar Zebro. Both the quantitative and qualitative performance metrics are shown.
However, the quantitative metrics are shown as qualitative metrics to ensure a valid comparison be-
tween the algorithms. Swarming metrics are specifically highlighted as the weight of these are sub-
stantial for a path planning application in LZ.

Table 4.4: Qualitative performance results with the required Lunar Zebro performance metrics

Performance metric A* Algorithm [16] RRT Algorithm [33] APF Algorithm [13]
Path length + - +
Robustness ++ +/- -

Computation Power
large (complex) grid +/- – +

Computational Power
small (simple) grid + - +/-

Swarming
capabilities

Moving Obstacles
(Other rovers)

+
(With improvements)

+
(With improvements)

+
(With improvements)

Moving target
(set by swarm)

+
(With improvements)

+
(With improvements)

+
(With improvements)

Path length
predictability + - +

Possibility to
improve path by
swarm behaviour

- - ++

Swarm
computation +/- +/- +

4.5.2. Qualitative analysis
Looking at Tab.4.4 a few conclusions can be drawn. Both A* and APF are performing in a similar way
but have their strengths and weaknesses on different metrics. The RRT algorithm, on the other hand, is
clearly outperformed by the other two algorithms. This means therefore that the RRT algorithm needs
individual improvements to gain the same performance as the other algorithms. The RRT algorithms is
therefore not favorable as an implemented path finding algorithm in LZ. To distinguish between A* and
APF, the value of the metrics must be determined. Looking at the swarming scheme of LZ it becomes
clear that individual rover robustness is less relevant when the rover is operating in a swarm. As
explained in Sec.4.2.1, the robustness of failing to find a path can be partly covered by the behaviour
of the swarm. This automatically implies that the swarming capabilities must be a higher valued metric
compared to the value of individual rover robustness. Looking at the swarming capabilities, the APF
algorithm is performing better than the A* and RRT algorithms.

4.6. APF type base algorithm
As already concluded, the RRT algorithm is not beneficial for Lunar Zebro compared with the other two
base algorithms. Giving more value to the swarming capabilities of the algorithm, APF outperforms
the A* algorithm. As the APF robustness can be simply improved by variations on the algorithm, the
Artificial Potential Field algorithm is chosen to be the most suitable base algorithm for Lunar Zebro.
The typical local minimum problem will be addressed first as the reachability of this algorithm is the
biggest pitfall. Improvements on the local minimum problem will therefore be the starting point for an
improved Artificial Potential Field type of path planning algorithm.
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The APF local minimum problem

Despite some common pitfalls, the Artificial Potential Field type of algorithm is the most suitable for
a Lunar Zebro application. Ch.4 states that a part of these APF pitfalls can be solved by the capabili-
ties of the swarm. Swarm robustness is therefore higher valued than the individual rover robustness.
However, the rover must still be able to complete a mission individually. From the extensive analysis
on this algorithm, it became clear that being trapped in a local minimum is the major cause for a low
reachability. This chapter will go in further detail on this local minimum problem and will present two
solutions. Each solution will again be tested with the help of the quantitative performance metrics. The
chapter will present the best improvement as a conclusion.

5.1. Escape the local minimum problem
To gain a better understanding of the problem, a detailed analysis will be given. Furthermore a state
of the art research will show some possible solutions to the described problem. The two implemented
and tested solution will be presented in Sec.5.1.2 and Sec.5.1.3. Each solutions will be substantiated
with the corresponding advantages, disadvantages and an algorithm implementation.

5.1.1. Problem analysis
Before going into the possible solutions to escape local minima, the common local minimum scenario’s
will be identified first. There are three common local minimum cases that occur often when running the
rover simulation. Those three cases are listed below and shown in Fig.5.1.

• Obstacle directly between goal and rover(Fig.5.1a),

• Goal right in front of obstacle(Fig.5.1b),

• Goal is in front of the rover and there are two obstacles left and right forming a narrow pas-
sage(Fig.5.1c).

State of the art solutions
The avoidance of these local minima has been researched extensively. Literature proposes a lot of
possible improvements which are able to, but not limited to escaping local minima. It can be concluded
that there are many ways of solving the local minima problem. However, the use case of Lunar Zebro
will determine what kind of solution would be most suitable. The requirements set in Sec.2.4 call for
a minimization in computational complexity where possible. This results in looking further in the more
simple solutions to avoid getting stuck in local minima. It can be the case that these relative simple
solutions are not as successful as for example Artificial Intelligence (AI) algorithms. However, this does
not automatically mean that the simple solutions are not fitting LZ. Below a few solutions proposed in
literature are presented.

A common way of solving the problem is by placing virtual attractive and/or repellent forces on
the route when encountering a local minimum. [14] proposes the implementation of multiple virtual

35
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(a) Local minimum when obstacle directly between goal and rover

(b) Local minimum when goal right in front of obstacle

(c) Local minimum when two obstacles are forming a narrow passage

Figure 5.1: Artificial Potential Field common local minima cases

goals along the route to guide the robot along the desired route. Where [25] propose the use of virtual
obstacles to create repellent forces to avoid getting stuck in local minima.

A second regular occurringmethod which has becomemore popular in recent years is the use of bio-
inspired intelligence algorithms to avoid local minima. [36] proposes an improvement on the classical
APF by looking from a reinforcement learning perspective. Furthermore, [11] shows an improvement
by making use of Fuzzy decision trees and [43] shows improvements by using Simulated Annealing to
escape local minima.

A third way, which is recently researched, is proposing a technique to avoid local minima in cluttered
environments. [9] proposes a solution that keeps track of the walked path and returns on this path when
a local minimum is detected. When returned, the algorithm starts finding a new path with knowledge
about the local minimum location.

A fourth way of solving the local minima problem is found in more simple solutions such as [10],
which is proposing a predefined shape and direction, hexagons, to avoid local minima. [37] proposes
simple wall-following algorithm when stuck in a local minimum, which is very similar to the traditional
Bug algorithm(Sec.A.2). This last category of solutions are the most attractive category as these simple
implementations are low on computational power.

5.1.2. Forced direction when stuck in local minima
One of the simplest solutions to this problem can be found in just moving away from the local minimum.
In practice this results in always walking a forced path when the rover gets stuck in a local minimum.
As already said, [10] uses a hexagon shape to determine this path. A more simple approach would
be to just go a certain amount of steps into one direction(”single line approach”) instead of following a
defined shape. After this movement is finished, the original APF algorithm can take over again and can
restart the search towards the goal. The simplicity of the forced direction approach comes with several
advantages and disadvantages.

Advantages
It is clear that this approach will reduce the chance of being stuck in a local minimum. Besides this
clear improvement, this improvement also comes with two other advantages:

1. Can be coded in a simple, fast and robust way,

2. Simple implementation and therefore low on computation power.
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Disadvantages
A predefined or forced approach for the local minimum problem sounds like a simple and good solution.
However, predefined solutions also come with several downsides which are listed below.

1. Forced steps can result in deviation from the optimal path,

2. If the forced steps end in an obstacle the algorithm will fail immediately, even though other paths
are still available,

3. Because the algorithm always chooses one direction it is even more likely to deviate from the
optimal solution,

4. The algorithm can create an infinity long path that just walks the same path again and again. For
example if the algorithm turns left four times with the same amount of steps it ends up in the same
location,

5. Forced paths are hard coded paths in software. This results in more hard coded software for
edge cases that need to be solved. Hard coding results in more hard coding!

Implementation
The more forced steps, the bigger the change of deviating from the optimal path. This especially holds
in a cluttered environment, where the local minimum problem has a high chance of occurring. The
single line approach minimizes the amount of steps, that are made without the original APF algorithm,
compared to the suggested hexagon approach. From this perspective the single line approach is
chosen instead of the hexagonal approach.

The affect of disadvantages two and three can be reduced by the introduction of multiple possible
directions instead of only one. This means that the rover will have the possibility to try walking the single
line in different directions if one isn’t working. It is chosen to have four different possible directions
relative to the rover: 90° left, 90° right, 135° left and 135° right. This will also be executed in this
particularly order. So, first the rover will try to go a predefined amount of steps 90° to the left, if this is
not possible the rover will try to go a predefined amount of steps 90° to the right and so on. An invalid
action, during the execution of the forced directions, is defined as setting a path point inside an obstacle
or closer to the obstacle than the 𝑅𝑜𝑣𝑒𝑟𝑅𝑎𝑑𝑖𝑢𝑠. In case of an invalid action, the next possible direction
is tried.

The infinity long path problem (disadvantage four), can be tackled by introducing a maximum num-
ber of steps that can be set while doing a forced action. If during path planning the forced direction
approach has to be used more than ten times, it is very likely the rover is stuck and makes an infi-
nite long path. When exceeding the maximum number of forced directions during path planning the
algorithm is stopped and returns a 𝑁𝑎𝑁, no possible paths.

Fig.5.2 shows a situation where the Forced direction APF escapes a detected local minimum. The
local minimum is detected at point (22,22), where the algorithm forces the rover to take five steps in
the direction that is 90° left to the rover orientation.

Figure 5.2: Forced direction APF escaping a local minimum at point (22,22)
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Forced direction algorithm
The algorithm presented in Alg.3 showed the base APF algorithm. As the forced direction is only an
addition to the base algorithm, the algorithm in Alg.3 is only extended. This extension is placed between
lines 27 and 28 in the original algorithm, and is shown in Alg.4.

It starts with checking if there is a local minimum, if this is not the case the algorithm will work
exactly as the original Artificial Potential Field algorithm. If a local minimum is detected, the points
in the list 𝑃𝑎𝑡ℎ are removed depending on the amount of times the 𝑃𝑎𝑡ℎ was swinging around the
local minimum(𝐿𝑜𝑐𝑎𝑙𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝐿𝑒𝑛𝑔𝑡ℎ). After the removal of these path points, the forced
directions can be tried to escape from the local minimum. This is achieved by determining the rover
angle, where from all possible path angles can be deducted. From line 9, the path will step in the
first calculated direction with a 𝑃𝑟𝑒𝑑𝑒𝑓𝑖𝑛𝑒𝑑𝐴𝑚𝑜𝑢𝑛𝑡𝑂𝑓𝑆𝑡𝑒𝑝𝑠. From line 12 it will be checked if these
steps are not colliding with obstacles. If they are colliding, the next direction in 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝐴𝑛𝑔𝑙𝑒𝑠 will
be checked instead. If the step is not colliding with obstacles, it will be added to the 𝑃𝑎𝑡ℎ list. When
the forced direction steps are added, the original artificial potential field algorithm takes over the path
planning from the last added point. The 𝑖𝑓 condition on line 30 prevents the main algorithm from
invoking the forced direction solution too many times. When the forced direction algorithm is invoked
more than ten times, the algorithm will set the 𝑁𝑜𝐿𝑜𝑐𝑎𝑙𝑀𝑖𝑛𝑖𝑚𝑢𝑚 Boolean to False. This results in the
termination of the main APF algorithm and thereby solving the 4th disadvantage presented in Sec.5.1.2.

Algorithm 4 Forced direction Algorithm
Require: Alg.3 between lines 27 and 28, 𝑃𝑟𝑒𝑑𝑒𝑓𝑖𝑛𝑒𝑑𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑢𝑛𝑡 = 0
Ensure: Higher Succes/Fail ratio for the APF algorithm
1: if 𝐿𝑜𝑐𝑎𝑙𝑀𝑖𝑛𝑖𝑚𝑢𝑚 == 𝑇𝑟𝑢𝑒 then
2: 𝑃𝑟𝑒𝑑𝑒𝑓𝑖𝑛𝑒𝑑𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑢𝑛𝑡 = +1
3: for 𝐿𝑜𝑐𝑎𝑙𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝐿𝑒𝑛𝑔𝑡ℎ do
4: 𝑅𝑒𝑚𝑜𝑣𝑒𝐿𝑎𝑠𝑡𝐼𝑡𝑒𝑚𝐹𝑟𝑜𝑚𝐿𝑖𝑠𝑡(𝑃𝑎𝑡ℎ)
5: end for
6: 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑅𝑜𝑣𝑒𝑟𝐴𝑛𝑔𝑙𝑒(𝑃𝑎𝑡ℎ)
7: 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝐴𝑛𝑔𝑙𝑒𝑠
8: for 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝐴𝑛𝑔𝑙𝑒𝑠 do
9: for 𝑃𝑟𝑒𝑑𝑒𝑓𝑖𝑛𝑒𝑑𝐴𝑚𝑜𝑢𝑛𝑡𝑂𝑓𝑆𝑡𝑒𝑝𝑠 do
10: 𝐴𝑃𝐹𝑁𝑥,𝑛𝑒𝑥𝑡 = 𝐴𝑃𝐹𝑁𝑥,𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑅𝑜𝑢𝑛𝑑(𝑠𝑖𝑛(𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝐴𝑛𝑔𝑙𝑒))
11: 𝐴𝑃𝐹𝑁𝑦,𝑛𝑒𝑥𝑡 = 𝐴𝑃𝐹𝑁𝑦,𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑅𝑜𝑢𝑛𝑑(𝑐𝑜𝑠(𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝐴𝑛𝑔𝑙𝑒))
12: if 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒(𝐴𝑃𝐹𝑁𝑛𝑒𝑥𝑡 , 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐿𝑖𝑠𝑡, 𝑅𝑜𝑣𝑒𝑟𝑅𝑎𝑑𝑖𝑢𝑠) then
13: 𝐴𝑃𝐹𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝐴𝑃𝐹𝑁𝑛𝑒𝑥𝑡
14: 𝑃𝑎𝑡ℎ ← 𝐴𝑑𝑑𝑁𝑜𝑑𝑒𝑇𝑜𝐿𝑖𝑠𝑡(𝐴𝑃𝐹𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , 𝑃𝑎𝑡ℎ))
15: 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐴𝑃𝐹𝑁𝐺𝑜𝑎𝑙 , 𝐴𝑃𝐹𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
16: if 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 < 𝐺𝑟𝑖𝑑𝑆𝑖𝑧𝑒 then
17: return 𝑃𝑎𝑡ℎ
18: end if
19: else
20: break
21: end if
22: if 𝑃𝑟𝑒𝑑𝑒𝑓𝑖𝑛𝑒𝑑𝐴𝑚𝑜𝑢𝑛𝑡𝑂𝑓𝑆𝑡𝑒𝑝𝑠 then
23: 𝐹𝑜𝑢𝑛𝑑𝑃𝑎𝑡ℎ = 𝑇𝑟𝑢𝑒
24: end if
25: end for
26: if 𝐹𝑜𝑢𝑛𝑑𝑃𝑎𝑡ℎ == 𝑇𝑟𝑢𝑒 then
27: break
28: end if
29: end for
30: if 𝑃𝑟𝑒𝑑𝑒𝑓𝑖𝑛𝑒𝑑𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑢𝑛𝑡 > 10 then
31: 𝑁𝑜𝐿𝑜𝑐𝑎𝑙𝑀𝑖𝑛𝑖𝑚𝑢𝑚 == 𝐹𝑎𝑙𝑠𝑒
32: end if
33: end if
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5.1.3. Enhanced curl-free vector field
A more advanced approach, but still relatively simple compared to all other improvements, is to start
following the wall of obstacles when stuck in a local minimum. This technique is very similar to the
traditional Bug algorithm. It is clearly chosen in Ch.4, that the path finding algorithm should be based
on a artificial potential field path finding technique. The Bug algorithm is part of the sub set ”Artificial
potential field type of algorithms”, so using this technique could be beneficial in terms of a Lunar Zebro
application. However, the traditional Bug algorithm is still based on the fact that a local minimum has to
be encountered first before the technique can be applied. Preventing being trapped in a local minimum
instead of solving it, has an obvious preference. A technique that can follow the trajectory of an obstacle
and makes sure that it can not end up in a local minimum is therefore highly preferable.

[5] proposes a technique called “Enhanced curl-free vector field”. This technique makes use of an
attractive vector field towards the goal and a circular vector field around obstacles. Every grid point
(multiple of the selected 𝐺𝑟𝑖𝑑𝑆𝑖𝑧𝑒) holds two values, an 𝑋 and a 𝑌 element. These two elements
together form the vector at that specific point. In the conventional APF method each specific point
holds just one value, which is the potential at that point. The original APF algorithm searches the lowest
potential in the field, while the enhanced curl-free vector field follows the direction of the vectors instead.
As the grid is still discreet, the vector direction is made discreet between the eight possible directions.
These directions are the eight adjacent grid points which can become the next point in the path.

Advantages
The main purpose of the Enhanced curl-free vector field is avoiding the existence of local minima.
There are more advantages to this approach which are listed below.

1. As every grid point has a direction (added degree of freedom) instead of potential, it is easier to
manipulate the field into a desired path. This benefits possible swarm behaviour,

2. It is more advanced than the ”Forced direction approach”, but still relatively simple compared to
AI algorithms,

3. The algorithm is able to decide in which direction the rover should pass the obstacle. This can
be decided according to implemented rules instead of hard coding.

Disadvantages
There are some clear advantages compared to the original APF algorithm as well as to the ”Forced
direction approach”. However, this improvement also comes with several downsides:

1. More degrees of freedom also leads into more possible bugs and can eventually results in more
failures,

2. Even though the implementation is relatively simple, it still increases the computational complexity
compared to ”Forced direction approach”,

3. The algorithm is not optimal in terms of path length,

4. The added degree of freedom also results in a more sensitive algorithm. In other words more
parameters and gains must be tweaked to ensure a proper working algorithm.

Implementation
From the advantages and disadvantages discussed, it becomes clear that the enhanced curl-free vector
field has a lot of potential benefits for the LZ application. To exploit these benefits, some improvements
on the base algorithm as proposed in [5] are required. Before getting into these improvements, the
basic principle and implementation of the enhanced curl-free vector field will be discussed. The main
differences, compared to the original APF algorithm, are the way the attractive and repulsive potentials
are defined and the corresponding decision on the direction of the next step.

The attractive potential is not much different compared to the traditional APF method. The tradi-
tional APF method calculated the potential by using the Euclidean distance to the goal multiplied by
an attractive gain. The enhanced curl-free vector field method defines the distance to the goal for the
𝑋 and 𝑌 component separately. These distances are used as the vector components. This vector is
than normalized and multiplied by a predefined attractive gain. This forms the attractive potential or
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attractive vector. A field of these attractive vectors point towards the goal. Fig.5.3a shows such and
attractive vector field with the goal located on (15,15).

The repulsive potential is calculated help of the circle gradient formula, as shown in Eq.5.1. The
gradient of a circle consists of two base vectors, the unit vector i in the positive direction of the 𝑥-axis
and the unit vector j in the positive 𝑦-direction. The constant 𝑐 is used to denote if the vector field
should be clockwise or counterclockwise around an obstacle. A positive 𝑐 results in a clockwise vector
field around an obstacle and a negative 𝑐 results in a counterclockwise vector field. The direction of the
rotation depends on how the rover approaches the obstacle. The correct rotation around an obstacle
must ensure that the rover is taking the shortest path around the obstacle. This is dependent on the
place of the obstacle, the place of the goal and the approaching side of the rover. Fig.5.3b shows a
vector field with an obstacle located in point (12.5,12.5). The circular field is clockwise and ensures
that the rover is forced around the obstacle in a clockwise direction. It is obvious that an increasing
Euclidean distance between the denoted coordinate and the obstacle midpoint, results in an increasing
repulsive vector size. As this is not necessarily needed, the vector is normalized before multiplied by
the desired repulsive gain. The application of the repulsive rotational vector field should be limited to a
certain distance from the obstacles. Within this distance the rover is forced in a circular motion around
the obstacle. This distance is depending on the desired clearance around an obstacle.

∇𝑓(𝑥, 𝑦) = 𝑐 ⋅ 𝑦i− 𝑐 ⋅ 𝑥j (5.1)

To form the actual vector field, the attractive vector and repulsive vector are added together on each
grid point. This results in a vector field that can be used for navigation in a similar way as the potential
field is used in the original APF algorithm. The last major difference compared to the original APF is how
to navigate through the formed vector field. As already said in Ch.4, there are eight discreet possible
directions when located on an arbitrary grid point. To keep this property, the angle of the vector in this
grid point is calculated. The angle is calculated with respect to the normal vector, which is defined as
the vector in the positive 𝑦-direction. The possible 360°is divided into eight equal segments, where
each segment represents one of the eight possible directions. Depending on the pointing direction of
the vector in these segments, the next point of direction is chosen. This next point(𝑁𝑜𝑑𝑒) is than added
to the 𝑃𝑎𝑡ℎ list. When this 𝑁𝑜𝑑𝑒 is added the algorithm will start the search to the next 𝑁𝑜𝑑𝑒 in exactly
the same way.

(a) Vector field towards goal (b) Vector field with a clockwise rotation around an obstacle

Figure 5.3: Vector fields corresponding with the Curl-Free vector field algorithm

Enhanced curl-free vector field algorithm
The basic principles of the enhanced curl-free vector field algorithm are shown in Alg.5. The functioning
of the original APF algorithm as shown in Alg.3 is not much different from the working of the enhanced
curl-free vector field algorithm. As said in the implementation section, mainly the calculations of the
attractive potential and repulsive potential are different. Only these two functions will therefore be
shown in Alg.5. Functions and variables that are already discussed in Tab.4.1 and Tab.4.2 will not be
highlighted as they have the same purpose in Alg.5.
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As only the attractive potential and repulsive potential functions are described in the pseudo algo-
rithm, Alg.3 is still a requirement. Furthermore, the initialization of the variable 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑀𝑎𝑝 will not
be done by single zero’s but by empty vectors ([0, 0]). A new category of nodes is introduced, the 𝑉𝐹𝑁
nodes for the vector field.

On line 1 the 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 function is described. It has a simple return value
which is a vector that represents the attractive gain at a specified 𝑋, 𝑌 coordinate. These are simply
created by the 𝑥, 𝑦 differences from the specified point to the goal. This results in a vector that is
normalized (𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟) and finally multiplied by a predefined gain, the 𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝐺𝑎𝑖𝑛.

The 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 is described from line 7 onward. To determine the direction of
the enhanced curl-free vector field around an obstacle, the obstacle location relative to the rover and
the 𝑉𝐹𝑁𝑔𝑜𝑎𝑙 is required.

The vector(𝑅𝑜𝑣𝑒𝑟𝐺𝑜𝑎𝑙𝑉𝑒𝑐𝑡𝑜𝑟) between the rover(𝑉𝑃𝐹𝑁𝑠𝑡𝑎𝑟𝑡) and 𝑉𝑃𝐹𝑁𝑔𝑜𝑎𝑙 is defined when a new
obstacle is detected. On line 12 the vector between the obstacle centre and the rover is defined,
the 𝑅𝑜𝑣𝑒𝑟𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑉𝑒𝑐𝑡𝑜𝑟. The 𝑅𝑜𝑣𝑒𝑟𝐺𝑜𝑎𝑙𝑉𝑒𝑐𝑡𝑜𝑟 and 𝑅𝑜𝑣𝑒𝑟𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑉𝑒𝑐𝑡𝑜𝑟 together result in the
𝐺𝑜𝑎𝑙𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐴𝑛𝑔𝑙𝑒, which is used to determine the direction of the enhanced curl-free vector field.
From line 19 onward this information is used to calculate the repulsive vector field within a certain
distance from the obstacles. The vector field is calculated by making use of the formula stated in
Eq.5.1. On line 28 the calculated vector is added to 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟 which may or may not already
have a value depending on the interference of other obstacles in the field. Finally the 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟
is returned multiplied by a predefined 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝐺𝑎𝑖𝑛.

Algorithm 5 Enhanced curl-free vector field attractive and repulsive potential calculations [5]
Require: Alg.3, An empty vector([0,0]) initialized array 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑀𝑎𝑝
Ensure: Higher reachability compared to the original APF algorithm
1: 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙(𝑋, 𝑌, 𝑉𝐹𝑁𝐺𝑜𝑎𝑙) ∶
2: 𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑋 = 𝑉𝐹𝑁𝐺𝑜𝑎𝑙,𝑋 − 𝑋
3: 𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑌 = 𝑉𝐹𝑁𝐺𝑜𝑎𝑙,𝑌 − 𝑌
4: 𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟 = [𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑋/𝑉𝑒𝑐𝑡𝑜𝑟𝐿𝑒𝑛𝑔𝑡ℎ, 𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑌/𝑉𝑒𝑐𝑡𝑜𝑟𝐿𝑒𝑛𝑔𝑡ℎ]
5: return 𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟 ∗ 𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝐺𝑎𝑖𝑛
6:
7: 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙(𝑋, 𝑌, 𝑉𝐹𝑁𝐺𝑜𝑎𝑙) ∶
8: 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟 = [0, 0]
9: 𝑅𝑜𝑣𝑒𝑟𝐺𝑜𝑎𝑙𝑉𝑒𝑐𝑡𝑜𝑟 ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑉𝑒𝑐𝑡𝑜𝑟(𝑉𝐹𝑁𝐺𝑜𝑎𝑙 , 𝑉𝐹𝑁𝑆𝑡𝑎𝑟𝑡)
10: for 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠 do
11: 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐶𝑒𝑛𝑡𝑟𝑒(𝑥,𝑦), 𝑉𝐹𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
12: 𝑅𝑜𝑣𝑒𝑟𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑉𝑒𝑐𝑡𝑜𝑟 ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑉𝑒𝑐𝑡𝑜𝑟(𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐶𝑒𝑛𝑡𝑟𝑒(𝑥,𝑦), 𝑉𝐹𝑁𝑆𝑡𝑎𝑟𝑡)
13: 𝐺𝑜𝑎𝑙𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐴𝑛𝑔𝑙𝑒 ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐴𝑛𝑔𝑙𝑒(𝑅𝑜𝑣𝑒𝑟𝐺𝑜𝑎𝑙𝑉𝑒𝑐𝑡𝑜𝑟, 𝑅𝑜𝑣𝑒𝑟𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑉𝑒𝑐𝑡𝑜𝑟)
14: if 𝐺𝑜𝑎𝑙𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐴𝑛𝑔𝑙𝑒 >= 0 then
15: 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐶𝑢𝑟𝑙𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 1
16: else
17: 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐶𝑢𝑟𝑙𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = −1
18: end if
19: if 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 <= (𝑅𝑜𝑣𝑒𝑟𝑅𝑎𝑑𝑖𝑢𝑠 + 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑅𝑎𝑑𝑖𝑢𝑠) ∗ 𝑆𝑎𝑓𝑒𝑡𝑦𝐹𝑎𝑐𝑡𝑜𝑟 then
20: if 𝑋, 𝑌 == 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐶𝑒𝑛𝑡𝑟𝑒(𝑥,𝑦) then
21: 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟 = [0, 0]
22: else
23: 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑋 = 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐶𝑢𝑟𝑙𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ∗ (𝑦 − 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐶𝑒𝑛𝑡𝑟𝑒(𝑦))
24: 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑌 = −𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐶𝑢𝑟𝑙𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ∗ (𝑥 − 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐶𝑒𝑛𝑡𝑟𝑒(𝑥))
25: 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑋 = 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑋/𝑉𝑒𝑐𝑡𝑜𝑟𝐿𝑒𝑛𝑔𝑡ℎ
26: 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑌 = 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑌/𝑉𝑒𝑐𝑡𝑜𝑟𝐿𝑒𝑛𝑔𝑡ℎ
27: end if
28: 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟+ = [𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑋 , 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑌]
29: end if
30: end for
31: return 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟 ∗ 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝐺𝑎𝑖𝑛
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5.2. Results
From Sec.5.1.2 and Sec.5.1.3 it becomes clear that both improvements are based on an artificial poten-
tial field method, but have an obvious difference in implementation. Before drawing any conclusions on
which algorithm would be most applicable for Lunar Zebro, the quantitative results of the algorithms will
be compared. Tab.5.1 shows the results of the two discussed improvement algorithms compared to the
original APF algorithm. It shows the three relevant performance metrics for the six different scenarios.
The scenario’s are the same obstacle scenario’s as used for the quantitative performance comparison
in Sec.4.3. Each scenario again consists of 500 runs with the saved obstacle maps. All other standard
conditions as described in Sec.4.2.3 are applied.

In summary, Tab.5.1 presents a conclusion on all three performance metrics. The last column of the
table adds up the planning times, path lengths and amount of failed paths from all obstacle scenario’s.
These total amounts can be used as a direct quantitative comparison between the algorithms. First,
The enhanced curl-free vector field algorithm needs around three times more computation time than
the original APF algorithm. The forced direction approach uses just around 20% more computation time
compared to the original APF algorithm.

Second, the path length of the forced direction algorithm is clearly longer that the other two algo-
rithms. As already concluded, this is mainly caused by the fact that the forced directions are deviating
from the optimal path. This can be observed in the path length results. The path length of the enhanced
curl-free vector field algorithm is slightly longer than the original APF algorithm.

Third, the amount of failed paths of the forced direction algorithm is almost halved compared to the
original APF algorithm, while the enhanced curl-free vector field algorithm just shows similar results.

Aminor note to these results is that a higher reachability alsomeans that the algorithm is able to form
more complex paths to the goal. A more complex path, most of the time, means the avoidance of more
obstacles. Avoiding more obstacles results in longer paths and longer computation time. Therefore
the results of the mean time and mean path length have a small biased upwards when it has a higher
reachability compared to other simulations. When comparing algorithms with similar results on the
mean time and on the path length, this bias needs to be considered in further conclusions.

Table 5.1: Result comparison between APF, forced direction APF and basic enhanced curl-free vector field

Number of Random obstacles,
Radius size in meters

#5 #10 #15 #15 #30 #60 Total of
all obstacle
scenario’s

Radius 3
(m)

Radius 3
(m)

Radius 3
(m)

Radius 1
(m)

Radius 1
(m)

Radius 1
(m)

Mean
Planning
time
(ms)

Original
APF [13] 223 470 789 552 1342 3869 7245

Forced
Direction 235 502 834 584 1566 4848 8569

Enhanced
curl-free [5] 1280 2162 3192 2501 4585 8853 22573

Mean
Path
length
(m)

Original
APF [13] 58.96 59.89 61.05 57.93 58.96 60.27 357.06

Forced
Direction 65.74 73.58 81.35 64.37 76.10 99.88 461.02

Enhanced
curl-free [5] 59.98 61.73 62.90 58.59 59.79 61.58 364.57

Amount
of

NaN’s
(Out of 500)

Original
APF [13] 98 235 348 79 186 390 1336

Forced
Direction 23 131 253 8 50 256 721

Enhanced
curl-free [5] 89 254 374 51 190 389 1347
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5.3. Conclusion on the APF local minimum improvements
Looking at the results from the three algorithms, it seems that the forced direction algorithm is the best
choice regarding reachability. However, when taking into consideration the importance of finding an
optimal path regarding path length, the forced direction algorithm is not suitable enough. Second, the
”hard-coded” direction approach results in more hard-coding when improvements are implemented.
This is obviously not desired over a rule based coded algorithm. Looking at the enhanced curl-free
vector field approach, it becomes clear that it needs improvements in planning time and reachability.
The algorithm shown in Alg.5 is a basic version of the enhanced curl-free vector field algorithm as
presented in [5]. This implies that changes to the algorithm can still be made to improve the planning
time and reachability.

The stated conclusions and improvements show that the enhanced curl-free vector field approach
is the most suitable for the Lunar Zebro application. When implementing improvements the algorithm
could be lower on computation time and higher on reachability. This improvements must be identified
and researched to ensure the desired operation of the enhanced curl-free vector field as a path planning
algorithm in LZ.



6
Rotational vector field

As suggested the enhanced curl-free vector field is a good solution for the implementation of a path
finding algorithm in Lunar Zebro. To improve the performance of the algorithm, a few adjustments
must be made to the basic enhanced curl-free vector field algorithm which is shown in Alg.5. These
adjustments result in the creation of a new algorithm, the Rotational Vector Field (RVF) algorithm. The
RVF algorithm has similar but not identical behaviour as the enhanced curl-free vector field algorithm.
This chapter will present the core improvements that will form the RVF algorithm. The improvements
will be mainly focused on decreasing the path planning time and to increase the reachability of the
algorithm. Beside the planning time and reachability improvements, a small path length improvement
will also be suggested. The chapter will conclude with the results of the improvements based on the
previously described quantitative performance metrics.

6.1. Time optimization
The basic algorithm has a planning time which is far from optimal compared to the other algorithms.
Even when taking the non-realtime system behaviour into account, the difference is a clear slow down
for the hosting system hardware. This also causes extreme long simulation times, which slow down
the generation of relevant data. Improving the RVF planning time will therefore also improve the time
that is needed to run the simulation. Improving the path planning time will be carried out first, as it will
benefit further computations.

6.1.1. Challenge
Taking a closer look at how the attractive and repulsive potentials are determined (calculated in the func-
tions 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 and 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙), they are both calculated for
every single grid point. Secondly, all grid points are recalculated every time the rover sees a new
obstacle. This results in some unnecessary computations. These computations are listed below:

1. As the attractive potential will always stay the same, it is not needed to recalculate the attractive
vectors when new obstacles are detected,

2. The rotation of the field around an obstacle does not have to be calculated every time the repulsive
gain for a new grid point is calculated,

3. When a new obstacle is detected it is not needed to calculate the repulsive gain for the already
seen obstacles.

These computations also happen for the original APF algorithm. However, because of the more ex-
tensive calculations for the RVF algorithm these parts are becoming highly inefficient. These slowdowns
are mainly caused by the generation of the potential(vector) map. Changing the structure and invoking
of this map, will have a significant influence on the planning time.

44
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6.1.2. Improvements
Looking at Alg.3, the potential map is calculated between lines 4 and 8. For improvement of challenges
one and two, this 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑀𝑎𝑝 calculation needs to be changed. Alg.6 shows the new calculation of
the 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑀𝑎𝑝 between lines 1 and 18. The rotation direction around an obstacle is now calculated
before the 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 of all grid points is determined. This results in calculating the rotation di-
rection only once when the obstacle is detected. Moreover, the 𝑃𝑜𝑠𝑖𝑠𝑡𝑖𝑣𝑒𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 is only determined
during the first map calculation and not every time a new obstacle is detected. Note that this is only
possible if the 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 is added to the 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑀𝑎𝑝, as the 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 needs to
be ”remembered” in the 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑀𝑎𝑝. If the attractive field is not remembered, it will be lost if a new
obstacle is detected.

For the third challenge a simple improvement is introduced on lines 2 and 23. The rotational direction
and 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟 is only determined for new detected obstacles instead of for all obstacles.

The path length and reachability of the algorithms stays the same when the time improvement is im-
plemented. This implies, as expected, that there were no (undesired) functional changes by improving
the planning time of the algorithm.

Algorithm 6 Rotational vector field with time improvement
Require: Alg.3 between lines 4 and 8
Ensure: Time improved rotational vector field algorithm
1: 𝑅𝑜𝑣𝑒𝑟𝐺𝑜𝑎𝑙𝑉𝑒𝑐𝑡𝑜𝑟 ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑉𝑒𝑐𝑡𝑜𝑟(𝑉𝐹𝑁𝐺𝑜𝑎𝑙 , 𝑉𝐹𝑁𝑆𝑡𝑎𝑟𝑡)
2: for 𝑁𝑒𝑤𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠 do
3: 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐶𝑒𝑛𝑡𝑟𝑒(𝑥,𝑦), 𝑉𝐹𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
4: 𝑅𝑜𝑣𝑒𝑟𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑉𝑒𝑐𝑡𝑜𝑟 ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑉𝑒𝑐𝑡𝑜𝑟(𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐶𝑒𝑛𝑡𝑟𝑒(𝑥,𝑦), 𝑉𝐹𝑁𝑆𝑡𝑎𝑟𝑡)
5: 𝐺𝑜𝑎𝑙𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐴𝑛𝑔𝑙𝑒 ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐴𝑛𝑔𝑙𝑒(𝑅𝑜𝑣𝑒𝑟𝐺𝑜𝑎𝑙𝑉𝑒𝑐𝑡𝑜𝑟, 𝑅𝑜𝑣𝑒𝑟𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑉𝑒𝑐𝑡𝑜𝑟)
6: if 𝐺𝑜𝑎𝑙𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐴𝑛𝑔𝑙𝑒 >= 0 then
7: 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐶𝑢𝑟𝑙𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 1
8: else
9: 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐶𝑢𝑟𝑙𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = −1
10: end if
11: end for
12: for 𝑋, 𝑌 ∈ 𝐴𝑟𝑒𝑎 do
13: if 𝐹𝑖𝑟𝑠𝑡𝑀𝑎𝑝𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 then
14: 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙(𝑋, 𝑌, 𝑉𝐹𝑁𝐺𝑜𝑎𝑙)
15: end if
16: 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙(𝑋, 𝑌, 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐿𝑖𝑠𝑡)
17: 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑀𝑎𝑝 ← 𝑇𝑜𝑡𝑎𝑙𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙(𝑋, 𝑌, 𝑃𝑜𝑠𝑡𝑖𝑣𝑒𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙, 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙)
18: end for
19:
20:
21: 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙(𝑋, 𝑌, 𝑉𝐹𝑁𝐺𝑜𝑎𝑙) ∶
22: 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟 = [0, 0]
23: for 𝑁𝑒𝑤𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠 do
24: if 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 <= (𝑅𝑜𝑣𝑒𝑟𝑅𝑎𝑑𝑖𝑢𝑠 + 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑅𝑎𝑑𝑖𝑢𝑠) ∗ 𝑆𝑎𝑓𝑒𝑡𝑦𝐹𝑎𝑐𝑡𝑜𝑟 then
25: if 𝑋, 𝑌 == 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐶𝑒𝑛𝑡𝑟𝑒(𝑥,𝑦) then
26: 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟 = [0, 0]
27: else
28: 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑋 = 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐶𝑢𝑟𝑙𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ∗ (𝑌 − 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐶𝑒𝑛𝑡𝑟𝑒(𝑦))
29: 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑌 = −𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐶𝑢𝑟𝑙𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ∗ (𝑋 − 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐶𝑒𝑛𝑡𝑟𝑒(𝑥))
30: 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑋 = 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑋/𝑉𝑒𝑐𝑡𝑜𝑟𝐿𝑒𝑛𝑔𝑡ℎ
31: 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑌 = 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑌/𝑉𝑒𝑐𝑡𝑜𝑟𝐿𝑒𝑛𝑔𝑡ℎ
32: end if
33: 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟+ = [𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑋 , 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑌]
34: end if
35: end for
36: return 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟 ∗ 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝐺𝑎𝑖𝑛
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6.2. Clustered rotation
To improve the reachability it needs to be identified in what particular situations the algorithm is not
able to find a path. A condition that will immediately results in the termination of the algorithm, is a path
planned through an obstacle. A detailed look at the situations that fail to create a path, shows that in
the majority of the cases, the algorithm tries to create a path through obstacles.

6.2.1. Challenge
Making a path through an obstacle can be caused when there are two conflicting vector fields. If the
rover is approaching a single obstacle, it will move around it without any problems. However, when
two obstacles are close to each other, the corresponding vector fields can interfere. When they are
both having the same rotation direction this isn’t a problem, as the rover will just pick up the rotation of
the next obstacle and continues the path. The algorithm determines the rotation of the field depending
on the locations of the rover, obstacle and the goal. This ensures taking the shortest path around an
obstacle. However, this approach could lead to adjacent obstacles having different rotations. This
is shown in Fig.6.1, where Fig.6.1a shows the obstacle situation with the planned path(red line) and
walked path(yellow dots). For demonstration purposes, the condition which makes it impossible to plan
a path through an obstacle is removed here. The figure shows a planned path through two adjacent
obstacles. Fig.6.1b shows that this is caused by the joint vector fields of both obstacles. These vectors
have a pointing, and therefore suggested direction, through the obstacles. This problem will not occur
when both obstacles have the same vector rotation, which can either be clockwise or counterclockwise.

(a) Obstacles situation (b) Vector field caused by obstacles

Figure 6.1: Non clustered obstacles

6.2.2. Improvements
The suggested solution for this challenge is to force both obstacles in the same vector direction. Forcing
all obstacles in the map to the same direction would make the algorithm inefficient regarding path
length, as this would look similar to the bug algorithm. The only obstacles that should have the same
rotation, are the ones that are too close to each other for the rover to pass through. The solution for
this problem would be to give new obstacles that are too close to an already detected obstacle, the
same rotation as the already detected obstacle. This check needs to be done when the rotation of an
obstacle is determined. The algorithm for determining the rotation of the obstacle is already shown in
Alg.6. The improvement must be implemented after line 10 in Alg.6. The pseudo code for this new
obstacle check is shown in Alg.7. A 𝐹𝑟𝑒𝑒𝑆𝑝𝑎𝑐𝑒 of at least three times the 𝑅𝑜𝑣𝑒𝑟𝑅𝑎𝑑𝑖𝑢𝑠 is chosen
instead of a just two times the 𝑅𝑜𝑣𝑒𝑟𝑅𝑎𝑑𝑖𝑢𝑠. This is due to the discreet grid, which can result in a grid
point not exactly in the middle of two obstacles. When this is the case the 𝐹𝑟𝑒𝑒𝑆𝑝𝑎𝑐𝑒 could still be two
times the 𝑅𝑜𝑣𝑒𝑟𝑅𝑎𝑑𝑖𝑢𝑠, but the discreet grid point could still be too close to the obstacle. When taking
three times the 𝑅𝑜𝑣𝑒𝑟𝑅𝑎𝑑𝑖𝑢𝑠, there will always be a grid point far enough from both obstacles. This
approach requires that the 𝐺𝑟𝑖𝑑𝑆𝑖𝑧𝑒 should be equal or smaller than the 𝑅𝑜𝑣𝑒𝑟𝑅𝑎𝑑𝑖𝑢𝑠. The result can
be seen in Fig.6.2. Fig.6.2a and Fig.6.2b show the new planned path and corresponding vector field
respectively.
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Algorithm 7 Rotational vector field with cluster improvement
Require: Alg.6 after line 10, 𝐺𝑟𝑖𝑑𝑆𝑖𝑧𝑒 ≤ 𝑅𝑜𝑣𝑒𝑟𝑅𝑎𝑑𝑖𝑢𝑠
Ensure: Reachability improved rotational vector field algorithm
1: for 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠 do
2: 𝐹𝑟𝑒𝑒𝑆𝑝𝑎𝑐𝑒 ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒,𝑁𝑒𝑤𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒
3: if 𝐹𝑟𝑒𝑒𝑆𝑝𝑎𝑐𝑒 ≤ 3 ∗ 𝑅𝑜𝑣𝑒𝑟𝑅𝑎𝑑𝑖𝑢𝑠 then
4: 𝑁𝑒𝑤𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 = 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛
5: end if
6: end for

(a) Obstacles situation (b) Vector field caused by obstacles

Figure 6.2: Clustered obstacles

6.3. Outward potential
Further improvement on the reachability can still be made by reducing the planned paths through ob-
stacles. The clustered rotation improvement explained and discussed in Sec.6.2, is also causing a new
problem. Looking at Fig.6.2b, it shows that when the rover is following the left obstacle closely it could
potentially end up with a path inside the second obstacle. This is caused by the vector field from the
left obstacle that is ”throwing” the rover into the right obstacle.

6.3.1. Challenge
This problem is caused by the vectors that have a circular motion around the obstacle and don’t allow
the rover to ”detach” from the obstacle. Naturally because of the attractive vector field towards the
goal, this problem is slightly solved on the side of the obstacle that is facing the goal. At this side the
vectors are pointing a little bit outward, as adding the attractive vector to the repulsive vector causes
a slight deviation of the total vector towards the goal. However, this effect is negative on the side of
the obstacle that is not facing the goal, as adding the attractive vector will result in a slightly facing
inward(towards the obstacle) vector. As the rover is typically approaching the obstacle form this side, it
could be the case that the rover is getting too close to the obstacle and is therefore not able to detach
on time. Especially when two obstacles are close to each other, this problem occurs often, resulting in
a path that is planned through an obstacle. Fig.6.3a shows an example of an obstacle situation where
the large obstacle ”throws” the rover too close to the smaller obstacle that is located below the large
obstacles. The path is therefore formed through the smaller obstacle.

6.3.2. Improvements
When the environment is relatively cluttered with large obstacles, this can be a problem as shown in
Fig.6.3a. If the rover is forced away from the obstacle the chance of crashing in an adjacent obsta-
cle would be reduced. For this reason a slight outward vector is added to the repulsive vector field
around an obstacle. This outward vector is added to the already calculated repulsive vector from the
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(a) Path formed without outward potential (b) Path formed with outward potential

Figure 6.3: Outward potential obstacle situations

obstacle itself. Looking at Alg.6 this part of the code is therefore added between lines 32 and 33. Alg.8
shows how this outward potential is calculated and added to the original repulsive vector. Note that the
𝑂𝑢𝑡𝑤𝑎𝑟𝑑𝑆𝑎𝑓𝑒𝑡𝑦𝐹𝑎𝑐𝑡𝑜𝑟 should be less than the 𝑆𝑎𝑓𝑒𝑡𝑦𝐹𝑎𝑐𝑡𝑜𝑟 for determining the size of the repulsive
field. Having the whole repulsive field pointing outward could cause oscillations(local minima) when
bumping in the repulsive field. Therefore it is chosen to only use the outward potential when the rover
reaches a critical distance to the obstacle. The affect of adding this outward vector to the algorithm can
be seen in Fig.6.3b. The planned path is not crossing the obstacle boundaries anymore.

Algorithm 8 Rotational vector field with outward vector improvement
Require: Alg.6 between lines 32 and 33
Ensure: Reachability improved rotational vector field algorithm
1: if 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 <= (𝑅𝑜𝑣𝑒𝑟𝑅𝑎𝑑𝑖𝑢𝑠 + 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑅𝑎𝑑𝑖𝑢𝑠) ∗ 𝑂𝑢𝑡𝑤𝑎𝑟𝑑𝑆𝑎𝑓𝑒𝑡𝑦𝐹𝑎𝑐𝑡𝑜𝑟 then
2: 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑋 = 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑋 + (𝑋 − 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑥)/3
3: 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑌 = 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑌 + (𝑌 − 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑦)/3
4: end if

6.4. Gridsize dependency
The variables 𝑆𝑎𝑓𝑒𝑡𝑦𝐹𝑎𝑐𝑡𝑜𝑟 and 𝑂𝑢𝑡𝑤𝑎𝑟𝑑𝑆𝑎𝑓𝑒𝑡𝑦𝐹𝑎𝑐𝑡𝑜𝑟 are arbitrary determined and of large influ-
ence on the size of the repulsive fields. These factors determine how far the repulsive field can spread
around an obstacle by multiplying it with the ”no-go” radius from obstacles. This spreading is therefore
dependent on the size of the obstacles. As the size of the obstacle has nothing to do with the clearance
area that is needed for the rover around the obstacle, it should be eliminated from the equation. This
would make the algorithm scalable to any obstacle size instead of just the simulated and tested radius
sizes.

6.4.1. Challenge
As pointed out in Sec.6.3, if the outward vector is impacting the whole repulsive field it will create os-
cillations. A differentiation between the complete repulsive vector field and the outward pointing vector
must therefore be implemented. Second, the field must be large enough to ensure a safe distance
between the rover and the obstacle edge. Fig.6.4a shows an obstacle of radius 3 where the outward
potential is spread across the complete field. The outward potential will create a path that is not follow-
ing the curve of the obstacle as it will always throw the rover outside the repulsive potential field. To
meet the edge following requirement, a ring of grid points that is not influenced by the outward potential
must be created. A second challenge that should be resolved is the uneven spread field around an
obstacle. From Fig.6.4a it becomes clear that the vector field reaches more grid points towards the
origin of the field than towards the goal. This suggests that the field is not of equal size at every point
around the obstacle.
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(a) Vector field without grid dependency (b) Vector field with grid dependency

Figure 6.4: Vector potential for an obstacle with radius 3

6.4.2. Improvements
To obtain a ”ring” of repulsive vectors that is not influenced by the outward potential, the repulsive field
must at least reach two grid points outside the 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑅𝑎𝑑𝑖𝑢𝑠 + 𝑅𝑜𝑣𝑒𝑟𝑅𝑎𝑑𝑖𝑢𝑠. One grid point for
the outward vector and one for the normal repulsive vector field that is not influenced by the outward
pointing vector. The repulsive field must therefore be dependent on the grid size instead of just a safety
factor. To make a clear distinguish between the ”no-go” area and the repulsive outward potential, the
rover radius is included in the ”no-go” area. As the rover radius is determined to be zero during these
simulations, the ”no-go” area is defined as the obstacle(blue circle). Effectively the functioning of the
code is not changing, but the determination of the repulsive rings around the obstacle becomes more
clear.

The second challenge is the uneven spread repulsive field around the obstacle. Knowing the im-
portance of the field size, it gives an urge to create an even distributed field. When creating an even
spread field with a discreet grid, the diagonal length of a grid point at an angle from the X-axis or Y-axis
must be used. The largest distance is obtained when the point is found at an angle of 45° relative to
the X-axis or Y-axis. This point holds the largest euclidean distance to the obstacle center. To ensure
the inclusion of the grid points at this angle, the diagonal(Pythagoras) length of a grid point must be
used instead of the 𝐺𝑟𝑖𝑑𝑆𝑖𝑧𝑒. The diagonal length is used to determine the size of the field around
an obstacle. Taking into account both improvements, the new boundary conditions for determining the
repulsive vectors and outward vectors are shown in Eq.6.1 and Eq.6.2 respectively.

𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 <= (𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑅𝑎𝑑𝑖𝑢𝑠 + 𝑅𝑜𝑣𝑒𝑟𝑅𝑎𝑑𝑖𝑢𝑠 + 2 ∗ (√𝐺𝑟𝑖𝑑𝑆𝑖𝑧𝑒2 + 𝐺𝑟𝑖𝑑𝑆𝑖𝑧𝑒2)) (6.1)

𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 <= (𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑅𝑎𝑑𝑖𝑢𝑠 + 𝑅𝑜𝑣𝑒𝑟𝑅𝑎𝑑𝑖𝑢𝑠 + (√𝐺𝑟𝑖𝑑𝑆𝑖𝑧𝑒2 + 𝐺𝑟𝑖𝑑𝑆𝑖𝑧𝑒2)) (6.2)

Fig.6.4b shows the new repulsive vector field around an obstacle with a radius of three meters.
The figure shows a field with an outward vector field and a circular vector ring without the influence of
the outward vectors. Furthermore, the vector field is evenly distributed around the obstacle. With the
implementation of this improvement the algorithm is scalable to any obstacle size as it is only dependent
on the chosen 𝐺𝑟𝑖𝑑𝑆𝑖𝑧𝑒.

6.5. Path optimization
The final aspect of improvement can be found in the path length. As denoted in Ch.5, the rotational
vector field is not as optimal as the traditional APF algorithm regarding path length. However, the al-
gorithm could become closer to optimal with some improvements. Looking at the current hardware
and software state of Lunar Zebro, it is concluded that taking corners can not yet be executed during
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walking. Taking corners will be quite time consuming. Reducing the amount of corners is therefore
relatively beneficial for Lunar Zebro. In summary, path optimising is found in reducing the amount of
corners and reducing the path length.

6.5.1. Challenge
Fig.6.5a shows a constructed(red lines) and walked(yellow dots) path that is generated by the original
RVF algorithm. The algorithm constructs a path that takes a lot of unnecessary corners. This unnec-
essary corners especially occur when the rover is thrown from the first obstacle(left) to the second
obstacle(right) and a small gridsize (0.5m) is selected. The improvement here would be to remove
those corners and replace the path point by one that is exactly in the middle of that two surrounding
path points, such that the path becomes straight.

(a) Obstacle situation without path optimization (b) Obstacle situation with path optimization

Figure 6.5: Obstacle situations with path optimization, gridsize 0.5 meters

6.5.2. Improvement
To achieve this reduction in path length and corners, the algorithm described in Alg.9 is used. This
algorithm improvement can be applied to any formed path independently of the algorithms that created
the path. The placement of this improvement must be done just before the final created path is returned.
The improvement checks if the distance between a 𝑃𝑎𝑡ℎ𝑃𝑜𝑖𝑛𝑡 and the second next 𝑃𝑎𝑡ℎ𝑃𝑜𝑖𝑛𝑡 is
smaller or equal than two times the 𝐺𝑟𝑖𝑑𝑆𝑖𝑧𝑒. If that is the case, the next point must be exactly in
the middle. Note that for lines that are going parallel to the X-axis or Y-axis this is already the case.
Therefore, the next 𝑃𝑎𝑡ℎ𝑃𝑜𝑖𝑛𝑡 will be replaced by the same point. If the line between these two points
is not parallel to the X-axis or Y-axis and the distance is still smaller than 2 times the 𝐺𝑟𝑖𝑑𝑆𝑖𝑧𝑒, the
algorithm created an unnecessary corner. The unnecessary 𝑃𝑎𝑡ℎ𝑃𝑜𝑖𝑛𝑡 is than replaced by one exactly
between these two points. The result of this improvement is shown in Fig.6.5b, which shows a path
that is not making unnecessary turns compared to path shown in Fig.6.5a.

Algorithm 9 Rotational vector field with path improvement
Require: Alg.6
Ensure: Path length improved rotational vector field algorithm
1: for 𝑃𝑎𝑡ℎ𝑃𝑜𝑖𝑛𝑡𝑠 do
2: 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑁𝑜𝑑𝑒𝑠 ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐷𝑖𝑠𝑡𝑎𝑐𝑛𝑒(𝑉𝐹𝑁𝑃𝑎𝑡ℎ𝑃𝑜𝑖𝑛𝑡 , 𝑉𝐹𝑁𝑃𝑎𝑡ℎ𝑃𝑜𝑖𝑛𝑡+2)
3: if 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑁𝑜𝑑𝑒𝑠 <= 2 ∗ 𝐺𝑟𝑖𝑑𝑆𝑖𝑧𝑒 then
4: 𝑁𝑒𝑤𝑋 ← (𝑉𝐹𝑁𝑃𝑎𝑡ℎ𝑃𝑜𝑖𝑛𝑡+2,𝑋 − 𝑉𝐹𝑁𝑃𝑎𝑡ℎ𝑃𝑜𝑖𝑛𝑡,𝑋)/2 + 𝑉𝐹𝑁𝑃𝑎𝑡ℎ𝑃𝑜𝑖𝑛𝑡,𝑋
5: 𝑁𝑒𝑤𝑌 ← (𝑉𝐹𝑁𝑃𝑎𝑡ℎ𝑃𝑜𝑖𝑛𝑡+2,𝑌 − 𝑉𝐹𝑁𝑃𝑎𝑡ℎ𝑃𝑜𝑖𝑛𝑡,𝑌)/2 + 𝑉𝐹𝑁𝑃𝑎𝑡ℎ𝑃𝑜𝑖𝑛𝑡,𝑌
6: 𝑉𝐹𝑁𝑃𝑎𝑡ℎ𝑃𝑜𝑖𝑛𝑡+1 ← [𝑁𝑒𝑤𝑋 , 𝑁𝑒𝑤𝑌]
7: end if
8: end for
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6.6. Structuring and gain tweaking
The last step in code development is structuring, commenting and gain tweaking. Structuring and
commenting will ensure readability and comprehensibility for external readers. However, this is not the
only advantage. Structuring the code includes removing unnecessary calculations and use function
based methods where possible. This will not have any influence on the functionality of the code, but
it will impact the computational power that is needed for the algorithm. Therefore the path length and
reachability will not change, while the planning time is most likely to be positively affected.

Gain tweaking, on the other hand, will improve the functionality of the code. Gain tweaking results
in decreasing path lengths and increasing reachability. The tweaked gains are summed up below.

• Attractive gain,

• Rotational repulsive gain,

• Outward pointing repulsive gain.

It is determined that the repulsive gain must be larger than the attractive gain. The repulsive gain
must be around two orders of magnitude larger than the attractive gain. This ensures that the attractive
field has minor interference with the repulsive field, such that the rotational field is not deformed. Fur-
thermore, it is suggested that the rotational repulsive vector has the same magnitude as the outward
pointing repulsive vector. This results in an outward vector that has a 45° angle relative to the normal
vector on the obstacle edge. An outward vector with a 45° angle, shows the best results regarding path
length and reachability. Alg.11 as shown in the appendix, presents the complete rotational vector field
algorithm as implemented to obtain the final results.

6.7. Results
To compare the results of the improved and the original RVFalgorithm, the same obstacle scenarios
will be used as discussed in Sec.4.2.3. The saved obstacle location will again be used to create the
500 obstacle maps for all scenario’s. This ensures that the path length and number of NaN’s are a
direct comparison between the improvements and the basic algorithms. The planning time however
may differ even when the algorithm is creating the exact same paths. This is again caused by the
behaviour of a non-realtime system. For every improvement only the results of the rotational vector
field are determined and shown, as the performance of the other algorithms will not change if the RVF
algorithm is improved. The results for all obstacle scenario’s will be added together for each algorithm
or improvement. These total results will again be used to determine the quantitative performance im-
provements relative to the proposed algorithms in literature. First the planning time of all improvements
will be discussed, followed by the path length and finally the reachability.

6.7.1. Planning time
The results for the planning time of all improvements are shown in Tab.6.1. A significant decrease in
planning time is obtained when the time improvement is introduced. Some new improvements result in
a slightly increased planning time again. This is caused by two factors. The first being the small bias
that is introduced when the reachability is increased. This affect is extensively described in Sec.5.2.
Second, when introducing new functionalities or improvements, it could increase the computational
complexity of the algorithm. When introducing the gridsize dependency and path optimization the
planning time is again further reduced, despite the increase in reachability. The final gain tweaked
implementation even reaches a planning time that is lower than the original APF algorithm. The final
RVF algorithm accomplishes a planning time reduction of 62% on the original APF, a 68% reduction on
the forced direction APF and finally a remarkable 88% reduction on the original RVF algorithm.

Fig.6.6 shows the final results for the planning times in a boxplot analysis. The top figure shows
the planning times for the original RVF algorithm and the bottom figure shows the planning times for the
improved RVF algorithm. The obstacle scenario’s correspond respectively with the obstacle scenario’s
in Tab.6.1. Obstacle scenario zero corresponds with five random obstacles with radius of three meters.
Obstacle scenario five corresponds with 60 random obstacles with radius of one meter. The improved
algorithm shows a significant reduction in planning time for all obstacle scenario’s compared to the
original RVF. It can therefore be concluded that the introduced improvements have a strong positive
impact on the planning time.
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Table 6.1: Mean planning time of the APF base algorithms and RVF algorithm improvements for all obstacle scenario’s

Number of Random obstacles,
Radius size in meters

#5 #10 #15 #15 #30 #60 Total of
all obstacle
scenario’s

Radius 3
(m)

Radius 3
(m)

Radius 3
(m)

Radius 1
(m)

Radius 1
(m)

Radius 1
(m)

Mean
planning
time

improvements
(ms)

Original
APF [13] 223 470 789 552 1342 3869 7245

Forced
Direction 235 502 834 584 1566 4848 8570

Vector Field
original [5] 1280 2162 3192 2501 4585 8853 22573

Time
optimization 182 300 413 319 564 1078 2856

Clustered
rotation 193 330 457 329 600 1162 3071

Outward
potential 195 335 470 330 611 1178 3119

Gridsize
dependency 183 312 449 316 589 1173 3022

Path
optimization 180 304 438 309 571 1151 2953

Gain
Tweaked 175 302 433 296 531 1035 2772

Figure 6.6: Planning times on different obstacle scenario’s for the original and improved RVF algorithm (500 runs)
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6.7.2. Path length
Tab.6.2 shows the performance results of the improvements on the path length. Each improvement
introduces a small increase in path length. It can be concluded that this small increase is again created
by the upward bias in path length due to an increased reachability. The last two improvements reduce
the path length, while again the reachability is increased. These measures decrease the path length
as intended. More important, the path optimization reduces the amount of corners which is not shown
in this table. This improvement benefits the efficiency of LZ. Overall the path optimization is functional
but has minor influence on the performance of the algorithm, especially when taking into account the
upward bias from the increased reachability. However, the final RVF algorithm is close to the path
length as presented by the original APF algorithm for the simple obstacle scenario’s. The distribution of
the path lengths for different obstacle scenario’s can be found in the boxplot representation shown in
Fig.6.7. It shows the outliers that are the result of solving more difficult paths.

Table 6.2: Mean path length of the APF base algorithms and RVF algorithm improvements for all obstacle scenario’s

Number of Random obstacles,
Radius size in meters

#5 #10 #15 #15 #30 #60 Total of
all obstacle
scenario’s

Radius 3
(m)

Radius 3
(m)

Radius 3
(m)

Radius 1
(m)

Radius 1
(m)

Radius 1
(m)

Mean
path
length

improvements
(m)

Original
APF [13] 58.69 59.89 61.05 57.93 58.96 60.27 356.79

Forced
Direction 65.74 73.58 81.35 864.37 76.10 99.88 461.02

Vector Field
original [5] 59.98 61.73 62.90 58.59 59.79 61.58 364.57

Time
optimization 59.98 61.73 62.90 58.59 59.79 61.58 364.57

Clustered
rotation 60.99 65.46 68.96 58.89 61.28 65.75 381.33

Outward
potential 61.07 65.83 70.0 60.16 63.57 69.41 390.04

Gridsize
dependency 60.79 65.27 69.6 60.06 63.2 70.29 389.21

Path
optimization 60.38 64.36 68.24 59.52 62.23 68.58 383.31

Gain
Tweaked 59.84 62.88 66.32 59.22 61.21 64.71 374.18

Figure 6.7: Path lengths on different obstacle scenario’s for the original and improved RVF algorithm (500 runs)
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6.7.3. Reachability
The results of the reachability analysis are presented in Tab.6.3. Beside the planning time, the reach-
ability was a bottleneck for the application of the rotational vector field algorithm. furthermore, the
reachability was a concern for any APF based algorithm and therefore the initial problem that had to
be solved. The improved RVF algorithm shows an increased reachability compared to both the original
APF and original RVF algorithms. In some cases the reachability almost reaches 100%. All in all it can
be concluded that the suggested improvements reduced the amount of non-found paths and therefore
increases the reachability.

The total amount of runs for all obstacle scenario’s is six times 500 is 3000 runs. The amount of
failures of all obstacle scenario’s combined are presented in the last column of Tab.6.3. With 1336
failed runs, the APF algorithm has a reachability of 55%. The forced direction APF a reachability of 76%
and the original RVF accomplishes a reachability of 55%. The final RVF algorithm has a reachability of
90%, which is a significant improvement compared with the other three algorithms.

Table 6.3: Reachability of the APF base algorithms and RVF algorithm improvements for all obstacle scenario’s

Number of Random obstacles,
Radius size in meters

#5 #10 #15 #15 #30 #60 Total of
all obstacle
scenario’s

Radius 3
(m)

Radius 3
(m)

Radius 3
(m)

Radius 1
(m)

Radius 1
(m)

Radius 1
(m)

Amount of
NaN’s

improvements
(out of 500)

Original
APF [13] 98 235 348 79 186 390 1336

Forced
Direction 23 131 253 8 50 256 721

Vector Field
original [5] 89 254 374 51 190 389 1347

RVF Time
optimization 89 254 374 51 190 389 1347

RVF Clustered
rotation 21 95 201 19 66 241 643

RVF Outward
potential 3 34 114 8 63 252 474

RVF Gridsize
dependency 2 37 106 13 61 251 470

RVF Path
optimization 1 37 106 12 57 244 457

RVF Gain
Tweaked 1 9 40 12 51 181 294

6.8. Improvement conclusions
Looking at the presented results in Sec.6.7 and the results of the forced direction and original APF
algorithms in Tab.5.1, the RVF algorithm stands out. Overall it performs significantly better in planning
time than the original and forced direction APF algorithms with improvements of at least 62%. Regarding
path length, it is not yet as optimal as the original APF algorithm, but performs better than the forced
direction APF algorithm. Last but not least the reachability is clearly improved and outperforms in almost
all cases both algorithms. The total reachability of all obstacle scenario’s combined for the improved
RVF algorithms even reaches 90%. There is a slight benefit for the predefined direction APF algorithm
in two obstacle scenario’s. However, putting this in perspective with all the other improvements and
results, the improved rotational vector field algorithm is an obvious winner for the path finding algorithm
in the Lunar Zebro mission.



7
Architecture & C/C++ Implementation

The conclusion in Ch.6 discusses a suitable improved RVF implementation for a path finding algorithm
in Lunar Zebro. Having a structured written algorithm and pseudo code, does not automatically mean
it can be directly used in Lunar Zebro. Before the deployment of the algorithm in Lunar Zebro, several
steps have to be undertaken. These steps and challenges are discussed in this chapter with the help
of the software development process that is used during the development of code. The implementation
conclusion will be drawn at the end of this chapter based on the information discussed. The discussed
objectives are the used environment, algorithm architecture and the implementation challenges that
are still unsolved.

7.1. Process
Before getting into the architecture of the code, the process of software development and application
on the LZ path finding algorithm is explained in detail. In general the process consists of six stages,
which are described below:

• Requirements: this is the first stage in development. During this stage the software architect
will gather relevant information around the project. From the information a list with requirements
is made.

• Design: the requirements are translated into a relevant design and software architecture.

• Implementation: the design that meets the requirements is now implemented in actual code.

• Testing: the software written in the implementation stage is now tested and verified to be bug
free.

• Deployment: the tested software is deployed on the intended platform and is used according to
the defined purpose.

• Maintenance: During the lifetime of the software, it is updated and maintained to ensure proper
functioning and staying relevant for the intended application.

With this process and the explained stages, the software state of the current written code can be
determined. Ch. 4 explains the first step as gathering data by simulating the algorithms with the help
of the Python programming language. One of the given requirements of a finished algorithm is the
deployment in a Lunar Zebro rover. As this can only be achieved if the code is written in C/C++, the
presented path planning algorithm has to be rewritten in C or C++.

The Python implemented code would be ready for deployment as the implementation is completed
and the code is fully tested. Therefore the Python code can be defined as being in the deployment
stage. However, for a C/C++ implementation the code is still to be rewritten. Therefore the C/C++
code is at the implementation stage. The requirements for a C/C++ implementation are set and the
design is identical to the developed Python code. Further work would be the implementation in C/C++,
which is followed by testing, deployment in the rover and maintenance. Before the implementation of
C/C++ is created, the Python implementation will be explained in detail.
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7.2. Environment
The IDE that is used is VSC. To use VSC as an IDE for a Python written code, some extensions must be
installed. The following extensions are installed to enable full operation of the Python language:

• Python: Version 2022.18.2

• Pylance: Version 2022.12.20

• Isort: Version 2022.8.0

With the installation of these extension, the IDE is ready to be used with Python. During the develop-
ment of code, existing software functionality is used. This reduces coding time and ensures the correct
use of legacy code. This existing code can be added in the form of imported packages. These packages
are imported in the beginning of the code file and can be found after the keyword 𝑖𝑚𝑝𝑜𝑟𝑡. However, just
importing this legacy code in the Python files is not sufficient. As there are many existing packages,
these are not pre-installed in the coding environment. It therefore requires a separate downloading
and installing of these packages. The IDE provides the possibility to generate a 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠.𝑡𝑥𝑡 file
which contains all the necessary packages and corresponding versions. This file is shown in App.C.1.
Installing the correct version of these packages allows the Python implemented path planning algorithm
to run in the created environment.

7.3. Planning algorithm architectures
Ch.4 proposed three base algorithms that are researched. Ch.5 proposed two improved algorithms
based on the Artificial Potential Field algorithm. In total these two chapters extensively describe five
path finding algorithms. These algorithms are fully coded and tested such that they can be used for
comparison with each other. This is executed to generate data that can be used to determine which
algorithm performs the best in given conditions. To ensure a fair comparison and a structured code
each algorithm is build up with the same architecture. Each algorithm is described in a separate .𝑝𝑦
file and consists of three building blocks: a Planning class, a Rover class and a Main function. The
Planning class is different for each algorithm while to Rover class and Main function are identical in
each file. The only difference in the Main functions are the parameters and function names which are
deducted from the planning class. Each building block is described in detail in the next three sections.

7.3.1. Planning class
This class contains the actual search algorithm that must find a path between the start and the goal
while avoiding obstacles. Each planning class has different function or methods. However, they all at
least have the following common methods:

• An initialization method: This is where the parameters, that are available for all methods in the
class, are initialized.

• A path planning method: This contains the actual algorithm that determines the next step in the
path that has to be walked to reach the goal.

• A map designing method: This method makes a map for the rover and inserts the obstacles
when they are detected. Different planning algorithms use different kind of maps to represent
their obstacles. More detailed information about these maps is found in Ch.4.

• A ”create rover path” method: The last step for the planning algorithm is to output the feasible
path. The path changes as soon as an obstacle is detected. This method always has an array of
path point for a complete path from start to goal as output, independent of the rover location on
the path.

• Graph methods: A few methods that initialize a graph and show the search and path planning
of the algorithm. This methods are only used when the user desires an animation of the path
planning.

These are not the only methods described in the planning class. However, these are the most
relevant methods, while others are always used as an embedded method in one or more of the above
stated methods.
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7.3.2. Rover class
The Rover class is identical for each planning algorithm and has several methods that ensure the
possibility of simulating the rover. These methods are used to show the rover in a graph and simulating
the behaviour of a Lunar Zebro rover to define a realistic testing environment. The following methods
define the characteristics for this class:

• An initialization method: This is where the parameters, that are available for all methods in the
class, are initialized.

• A method to get the rover: This method creates the rover with the corresponding view area based
on the orientation and position of the rover.

• A method for obstacle checking: This method defines if the view area of the rover is intersecting
with a yet unknown obstacle. If this is the case, the obstacle will be added to the known obstacle
list. With this information the planning algorithm can replan the path to the goal if necessary.

• A method to simulate the rover: When the user desires to see an animation, the rover is shown
and simulated in the graph by this method.

7.3.3. Main
TheMain function uses both classes to create a planning object from the planning class and an LZ_rover
object from the Rover class. To get a better insight in how these classes are used and at what moment
the actual path planning is considered, an algorithm description is made. This pseudo algorithm can be
found in Alg.10. The main function consists of two parts. The first part is described between lines 1 and
13. This software block initializes all relevant parameters, the used planning algorithm, the LZ rover and
if desired the shown graph. The second software block is the𝑤ℎ𝑖𝑙𝑒 loop that is described between lines
17 and 43. The 𝑤ℎ𝑖𝑙𝑒 loop ensures the walking of the planned steps on the 𝑅𝑜𝑣𝑒𝑟𝑃𝑎𝑡ℎ. Each loop
corresponds with one single rover step. Each step checks possible collisions and simulates the rover
in a graph if desired. The loop is terminated when a path to the goal is found or if the algorithm failed
to find a path. In the last case, the loop terminates with an empty 𝑃𝑎𝑡ℎ list. All individual functions that
are used to present the main pseudo algorithm are the explained methods in the planning class(7.3.1)
and rover class(7.3.2) sections.
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Algorithm 10 Main function in planning algorithm files
Require: Path planning class and the Rover class
Ensure: Planned and shown path between start and goal.
1: 𝑆ℎ𝑜𝑤𝐴𝑛𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 𝑇𝑟𝑢𝑒
2: 𝐷𝑒𝑓𝑖𝑛𝑒𝐹𝑖𝑒𝑙𝑑𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠(𝑆𝑡𝑎𝑟𝑡, 𝐺𝑜𝑎𝑙, 𝐺𝑟𝑖𝑑𝑆𝑖𝑧𝑒, 𝐴𝑟𝑒𝑎𝐵𝑜𝑢𝑛𝑑, 𝑈𝑛𝑆𝑒𝑒𝑛𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐿𝑖𝑠𝑡)
3: 𝐷𝑒𝑓𝑖𝑛𝑒𝑅𝑜𝑣𝑒𝑟𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠(𝑅𝑜𝑣𝑒𝑟𝑅𝑎𝑑𝑖𝑢𝑠, 𝑉𝑖𝑒𝑤𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒)
4:
5: 𝑃𝑙𝑎𝑛𝑛𝑒𝑟 ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑒𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔𝐶𝑙𝑎𝑠𝑠(𝐺𝑟𝑖𝑑𝑠𝑖𝑧𝑒, 𝑅𝑜𝑣𝑒𝑟𝑅𝑎𝑑𝑖𝑢𝑠, 𝐴𝑟𝑒𝑎𝐵𝑜𝑢𝑛𝑑)
6: 𝑃𝑎𝑡ℎ ← 𝑃𝑙𝑎𝑛𝑛𝑒𝑟.𝑃𝑎𝑡ℎ𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔(𝑆𝑡𝑎𝑟𝑡, 𝐺𝑜𝑎𝑙, 𝑆𝑒𝑒𝑛𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠)
7: 𝑅𝑜𝑣𝑒𝑟𝑃𝑎𝑡ℎ ← 𝑃𝑙𝑎𝑛𝑛𝑒𝑟.𝐶𝑟𝑒𝑎𝑡𝑒𝑅𝑜𝑣𝑒𝑟𝑃𝑎𝑡ℎ(𝑃𝑎𝑡ℎ)
8:
9: 𝐿𝑍𝑅𝑜𝑣𝑒𝑟 ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑒𝑅𝑜𝑣𝑒𝑟𝐶𝑙𝑎𝑠𝑠(𝑆𝑡𝑎𝑟𝑡, 𝐺𝑜𝑎𝑙, 𝑃𝑎𝑡ℎ, 𝑈𝑛𝑠𝑒𝑒𝑛𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐿𝑖𝑠𝑡, 𝑆𝑒𝑒𝑛𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐿𝑖𝑠𝑡)
10: if 𝑆ℎ𝑜𝑤𝐴𝑛𝑖𝑚𝑎𝑡𝑖𝑜𝑛 then
11: 𝑃𝑙𝑎𝑛𝑛𝑒𝑟.𝐺𝑟𝑎𝑝ℎ𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛
12: 𝑃𝑙𝑎𝑛𝑛𝑒𝑟.𝐷𝑟𝑎𝑤𝐺𝑟𝑎𝑝ℎ(𝑆𝑡𝑎𝑟𝑡, 𝐺𝑜𝑎𝑙, 𝑃𝑎𝑡ℎ, 𝑈𝑛𝑠𝑒𝑒𝑛𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐿𝑖𝑠𝑡, 𝑆𝑒𝑒𝑛𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐿𝑖𝑠𝑡)
13: end if
14:
15: 𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑 = 𝐹𝑎𝑙𝑠𝑒
16: 𝑖 = 0
17: while 𝑁𝑂𝑇(𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑) do
18: 𝐿𝑍𝑅𝑜𝑣𝑒𝑟.𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑅𝑜𝑣𝑒𝑟(𝑅𝑜𝑣𝑒𝑟𝑃𝑎𝑡ℎ, 𝑖)
19: 𝑅𝑒𝑝𝑙𝑎𝑛𝑃𝑎𝑡ℎ = 𝐿𝑍𝑅𝑜𝑣𝑒𝑟.𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐶ℎ𝑒𝑐𝑘(𝑈𝑛𝑠𝑒𝑒𝑛𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐿𝑖𝑠𝑡, 𝑆𝑒𝑒𝑛𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐿𝑖𝑠𝑡)
20: if 𝑆ℎ𝑜𝑤𝐴𝑛𝑖𝑚𝑎𝑡𝑖𝑜𝑛 then
21: 𝐿𝑍𝑅𝑜𝑣𝑒𝑟.𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑅𝑜𝑣𝑒𝑟
22: end if
23: if 𝑅𝑎𝑝𝑙𝑎𝑛𝑃𝑎𝑡ℎ then
24: 𝑁𝑒𝑤𝑃𝑎𝑡ℎ ← 𝑃𝑙𝑎𝑛𝑛𝑒𝑟.𝑃𝑎𝑡ℎ𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔(𝑅𝑜𝑣𝑒𝑟𝑃𝑎𝑡ℎ[𝑖], 𝐺𝑜𝑎𝑙, 𝑆𝑒𝑒𝑛𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠)
25: if 𝑁𝑒𝑤𝑃𝑎𝑡ℎ == 𝑁𝑎𝑁 then
26: 𝑅𝑜𝑣𝑒𝑟𝑃𝑎𝑡ℎ ← 𝐸𝑚𝑝𝑡𝑦𝐿𝑖𝑠𝑡
27: 𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑 = 𝑇𝑟𝑢𝑒
28: Continue
29: else
30: 𝑅𝑜𝑣𝑒𝑟𝑃𝑎𝑡ℎ ← 𝑃𝑙𝑎𝑛𝑛𝑒𝑟.𝐶𝑟𝑒𝑎𝑡𝑒𝑅𝑜𝑣𝑒𝑟𝑃𝑎𝑡ℎ(𝑁𝑒𝑤𝑃𝑎𝑡ℎ, 𝑅𝑜𝑣𝑒𝑟𝑃𝑎𝑡ℎ, 𝑖)
31: if 𝑆ℎ𝑜𝑤𝐴𝑛𝑖𝑚𝑎𝑡𝑖𝑜𝑛 then
32: 𝑃𝑙𝑎𝑛𝑛𝑒𝑟.𝐷𝑟𝑎𝑤𝐺𝑟𝑎𝑝ℎ(𝑅𝑜𝑣𝑒𝑟𝑃𝑎𝑡ℎ[𝑖], 𝐺𝑜𝑎𝑙, 𝑃𝑎𝑡ℎ, 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐿𝑖𝑠𝑡𝑠)
33: end if
34: end if
35: end if
36: if 𝑆ℎ𝑜𝑤𝐴𝑛𝑖𝑚𝑎𝑡𝑖𝑜𝑛 then
37: 𝐿𝑍𝑅𝑜𝑣𝑒𝑟.𝑅𝑒𝑚𝑜𝑣𝑒𝑅𝑜𝑣𝑒𝑟
38: end if
39: if 𝑖 >= 𝐿𝑒𝑛𝑔𝑡ℎ(𝑅𝑜𝑣𝑒𝑟𝑃𝑎ℎ𝑡) − 1 then
40: 𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑 = 𝑇𝑟𝑢𝑒
41: end if
42: 𝑖 = 𝑖 + 1
43: end while

7.4. Performance comparison architecture
With these separate Python files for each planning algorithm, it is possible to run each algorithm on
different obstacle scenario’s and check their behaviour. However, it is not possible to compare all these
algorithms with each other yet. Comparison between the algorithms generated the relevant information
for a fully substantiated conclusion. To obtain this comparison a separate comparison code is written.
This file imports all planning algorithms by importing the individual planning algorithm files. The goal
of this file is to form a valuable comparison between the planning algorithms based on the different
performance metrics. This file again contains the Rover class as described in previous section and a
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main function. Every planning algorithm is assigned an LZ_rover object in the main function. If five
different planning algorithms are compared, five different rover objects will be created.

7.4.1. Main function
Essentially this function is similar to the main function of the separate planning algorithm files as de-
scribed in Sec.7.3.3. The difference can be found in planning all algorithms in one 𝑤ℎ𝑖𝑙𝑒 loop and
execute the planning 500 times to create data sets instead of single data points. The second objective
is recording the performance metrics: planning time, path length and success/fail of the algorithms in
each loop or run. This information is saved in lists and used in further comparison between the planning
algorithms.

7.4.2. Obstacle scenario’s
As described in Ch.6 there are six different scenario’s where the amount of obstacles and size of ob-
stacles is varied. Each scenario is simulated 500 times, where the obstacles are placed randomly even
distributed over the field. As these experiments must be repeatable, again the saved obstacle locations
of previous experiments are used. The main function loops over all different scenario’s. Depending
on the scenario, the corresponding 𝑐𝑠𝑣 file is opened and the obstacle locations are subtracted from
this file. Independently of the computer and/or operating system the obstacle locations of all scenario’s
and maps are identical. This ensures identical results for path length and reachability. Obviously the
planning time is still depending on the machine specifications that is running the simulation.

7.5. C or C++ implementation
As discussed in the beginning of this chapter, the rover deployment stage can only be reached when
the algorithm is written in a language that is able to run on the rover. Python is a high-level language
and is mainly developed to write code for (large) projects to keep code development easy and struc-
tured. Furthermore, it is extremely useful for the generation of data on a large variety of topics. This is
exactly why Python is used for generating the data on the performance of different algorithms. How-
ever, Python is not a hardware focused language and is therefore not optimal in communicating with
actual hardware. When implementing software in the Lunar Zebro microcontroller, it must communi-
cate with the hardware in the rover. This ensures that the microcontroller can send information to the
actuators and gather information from the sensors. For this reason C or C++ is the chosen language
for implementing code on the microcontroller of Lunar Zebro. C and C++ are low level languages that
are extremely powerful for communicating with hardware without the use of extensive computational
power. Before deployment of the final planning algorithm in Lunar Zebro, the planning algorithm has
to go back to the implementation stage such that it can be rewritten to C or C++ implementation.

7.5.1. Planning class implementation
In the implementation state it is decided which parts of the code are rewritten in C/C++. The major
part of the written code in Python is used only to gather data and compare the functioning of different
algorithms with each other. Looking from a Lunar Zebro perspective, the only relevant parts of the code
are the algorithm planning classes. Ch.6 concluded that the improved rotational vector field algorithm
is the path planning algorithm for Lunar Zebro. The improved rotational vector field planning class
is therefore the only class that has to be rewritten. As described in Sec. 7.3.1 a part of this class
is also used to initialize and draw the map for the simulation. Obviously this is not needed while the
planning algorithm is running on the rover. The software part that has to be rewritten in C or either C++
is significantly reduced compared to the software that is written to test and optimize the algorithm in
Python. From this section forward, the implementation of the C or C++ code will only be focused on
the rotational vector planning class. Methods for initializing and drawing the graphs are excluded from
the C or C++ implementation.

7.5.2. Language preference
The preference between C or C++ is extremely dependent on the exact implementation in Lunar Zebro.
When using the planning class in a single rover it does not need multiple objects, as it is just used for
one single rover. When implemented in a single rover, the planning algorithm can be seen as a single
function with some globally available variables. A single operating rover could therefore be provided
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with a C implemented planning algorithm. However, if the full functionality of a class is required, it
is recommended to implement the planning algorithm in C++. C++ is an object oriented based code
language, which makes coding with classes much easier than in C. The second advantage of a C++
implementation is the availability of a larger standard library with predefined functionalities.

7.5.3. Challenges
The requirements for an LZ path planning algorithm state that the final implementation has to be pro-
grammed in a low level language. During development in Python this was taken into account by min-
imising the usage of packages and predefined function in the planning algorithms. However, due to
the simplicity of some predefined functions and the difference in programming language, there are still
a few challenges that need attention. The challenges for the rotational vector field planning algorithm
are discussed in this section.

Class variables
Variables or methods in Python that are available for the whole class are denoted wit the keyword 𝑠𝑒𝑙𝑓.
In C/C++ these have to be set as𝑚𝑒𝑚𝑏𝑒𝑟 variables and𝑚𝑒𝑚𝑏𝑒𝑟 functions respectively. These can be
set 𝑝𝑢𝑏𝑙𝑖𝑐(accessible from inside and outside the class) or 𝑝𝑟𝑖𝑣𝑎𝑡𝑒(accessible only inside the class)
depending on the use case. These 𝑚𝑒𝑚𝑏𝑒𝑟 functions and variables must always be declared at the
initialization of the class.

Lists
Lists in Python are preferable in case small amounts of data need to be stored. Lists are extremely
convenient for data manipulation and storage of heterogeneous data types. However, in a C/C++
implementation, array’s are preferable as these are faster in the sense of computational time. As there
is no data manipulation in the planning class and the data in the lists are homogeneous, array’s are
recommended in the final implementation.

The Numpy package
The 𝑁𝑢𝑚𝑝𝑦 package contains mathematical equations and formulas that can be used right away in
code. However, when programming in a low level language it is advised to implement these func-
tions directly in the code to minimise computation time. The following functions are used and can be
implemented with use of simple mathematics.

• Hypot is the function which returns the euclidean norm between the origin and a given X,Y coor-
dinate.

• Norm is the function which returns the norm or length of a given vector.

• Dot is the function which returns the dot product between two given vectors.

• Arccos is the function which returns the inverse cosinus value in radians of the given x value

Deque
The double ended queue has the possibility to remove and add elements from both sides of an array.
In C++ this function is available in the standard template library. In C this functionality can be achieved
by making a simple function that adds or removes elements from the beginning or the end of the array
depending on the user request.

Set
A set is a list or an array that only contains unique values. It is not possible to have two of the same
values on different locations in the list or array. In C++ this function is available in the standard template
library. In C this functionality can be achieved by making a simple function that is not allowing the
addition of new elements if they are already present in the set.

Process time
Currently the process time of the algorithm is timed. As this is not relevant for functioning of the algo-
rithm, this has no mandatory implementation. However, it could be beneficial to time the process time
when a final implementation is made to check the time improvements when implemented in a low level
language. To achieve the same timing functioning as the Python code, the ℎ𝑖𝑔ℎ_𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛_𝑐𝑙𝑜𝑐𝑘 ∶∶
𝑛𝑜𝑤() from the 𝑐ℎ𝑟𝑜𝑛𝑜 package could be used for a low level implementation.
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7.6. Implementation conclusion
Writing the rotational vector field planning algorithm in a lower level language is the last step for deploy-
ment of the algorithm in Lunar Zebro. With the current algorithm written in Python, the challenges for
rewriting to a lower level algorithm are not a showstopper for correct operation of the algorithm. To gain
full potential of the algorithm it is recommended to use a C++ implementation. However, a C imple-
mentation would be possible but requires some extensive coding compared to a C++ implementation.
If the low level written code is deployed in Lunar Zebro, the code must be tweaked and maintained.
Parameters can be adjusted to the desired behaviour of the rover and it is recommended to maintain
the code for optimal functioning.



8
Conclusion

Lunar Zebro is a unique six-legged rover with the objective of operating in a swarm on the moon. The
unique characteristics are formed by the size, walking behaviour and swarming capabilities. The first
mission will focus on walking 200 meters in one Lunar day autonomously with a single rover. Ever
since the first moon rover landed on the moon, the localization and navigation on the moon environ-
ment has been a challenge. The navigation problem for LZ was partly addressed in this thesis. A path
planning algorithm was researched and developed, which enables the rover to construct a path to the
target location while avoiding the present obstacles. The final suggested path planning algorithm is an
improved artificial potential field type of algorithm. The suggested algorithm constructs an attractive
vector field towards the goal and a repulsive rotational vector field around obstacles. The so called
Rotational Vector Field algorithm accomplishes local path planning to the target location with any de-
sired grid accuracy and relatively low computational power. The RVF algorithm accomplishes a 62%
reduction in planning time and a similar path length compared to the traditional Artificial Potential Field
algorithm. Furthermore, the reachability of the RVF algorithm is 90%, while the traditional APF just ac-
complishes a reachability of 55% for the tested obstacle scenario’s. The proposed algorithm is fully
tested and ready for a low level implementation without compromising possible swarm functionality. It
can therefore be concluded that the objectives and functionality for a path finding algorithm in LZ are
achieved.
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8.1. Recommendations and future work
The remainder of the work can be split up in three parts. The first one being described in Ch.7. The next
step in the development process would be the deployment and testing of the path planning algorithm
in a LZ rover. For deployment of the algorithm, it has to be implemented in a low level programming
language. This programming language can either be C or C++, depending on the desired implemen-
tation for LZ. When addressing the challenges presented in Sec.7.5.3 with the suggested solutions, a
simple and robust implementation in either C or C++ can be achieved.

The second recommendation is improving the performance of the rotational vector field algorithm.
The motive for developing the rotational vector field was increasing the reachability, decreasing the
planning time and decreasing the path length. The applied improvements have had a significant positive
affect on all three performance metrics. The choice of taking an APF type algorithm was mainly made
on the large variety of possibilities that are offered by this algorithm type. As time was the bottleneck
for improving the algorithm even further, it is suggested to research further development to exploit the
full potential of the RVF algorithm. A few suggestions for further performance improvement are given in
Sec.4.4.2

Last but not least, the Lunar Zebro is designed for operation in a swarm. Smooth implementation of
swarm behaviour is one of the beneficial possibilities that the RVF algorithm is offering. To take advan-
tage of these possibilities, additional functionalities could be implemented. Two powerful functionalities
could be swarm computation or path improvement by swarm behaviour. It is suggested that these two
functionalities are deployed in the rovers as soon as the path planning algorithm is fully deployed in a
single Lunar Zebro.



A
State of the art research

A.1. Environment modeling methods
In this Appendix section each environment modeling technique will be explained in more detail. The
application of the methods is discussed in Ch.3

Grid model
The environment is split up in a grid, every grid cell has the same size. Each cell could either be free or
blocked duo to an obstacle. The model can be used in a 2D or 3D environment. This model contains
a lot of data as each cell has to be presented, when a higher accuracy is desired the grid gets a higher
resolution. A higher resolution results in more points and therefore more memory is needed.

Cell tree model or cell decomposition approach
This approach is similar to the grid model. However, the cells are of different sizes. This reduces the
amount of used memory. If a cell is filled with an obstacle the cell will be split up in 4 equal squares.
If a large cell is free it will not split up and the algorithm can assume a large free space. This way the
amount of unnecessary data is reduced. For 2D environments, the quadtree is sufficient and for 3D
environments, the Octree is sufficient.

Voronoi diagram model
The obstacles edges and the barrier of the work field are set as boundaries. All vertices are constructed
to be of equal distance away from three or more barrier boundaries. Edges are constructed between
two boundaries, with equal distance to the boundaries [4]. It results in high calculation speed but does
not guarantee a shortest path. It is more difficult to use in a dynamic environment than in a static
environment, but can be used in 2D and 3D environments.

Tangent Graph method
All tangents points of obstacles and the environment barriers are connected(edges) if they are not
intersecting an obstacle. These edges represent the possible path that can be used for path planning.
It can not results in an optimal path between start and goal. Can be used in 2D and 3D environments.

Visibility graph model
Is a bit more extensive as the Tangent graph as every obstacle is represented as a polygon. All corners
of the polygons and the environment barrier are connected. All these edges form again the possible
paths. Can also be used in 2D and 3D environments.
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Free Space Approach
The free space between obstacles within the environment is represented by only convex regions. The
midpoints of the convex regions are used as nodes. The connection between these nodes are the
links. This is called a MAKLINK graph, which can be used to determine a path between start and goal
through a field of obstacles. It is a flexible method which can adapts quickly in dynamic environments.
However, in an environment with a lot of obstacles this approach may fail.

Topological Method
This method is based on reducing dimensions and therefore reducing complexity. Instead of making
nodes of all possible points, this method looks only to relevant spaces, dimensions, obstacles, etc.
Than nodes and edges are created. This method is hard to use in a changing environment because
the process of establishing the topology network is complex.

Probabilistic Roadmap Method
Nodes between start and finish point are randomly created and are obtained milestones. The method
starts to connect start and finish point to nodes surrounding S(start) and F(finish). Path planning can
than be done by searching a path that connects S and F. The accuracy is dependent on the maximum
length is allowed between an existing point and a following random generated point.

A.2. Navigation algorithms
In this Appendix section each relevant navigation algorithm will be explained in more detail. The appli-
cation of the methods is discussed in Ch.3

Dijkstra Algorithm
Edges between nodes have a value that is determined by a weight function. The algorithm applies
a greedy strategy to determine the sequence of edges that result in the minimized sum of the edge
weights. The optimal edges are saved in an array. The algorithm has a high success rate as all nodes
are considered. However, this algorithm becomes very inefficient in large environments.

A* Algorithm
A* is an improvement on Dijkstra’s algorithm. It adds the estimated cost of the target point to the current
node. The algorithm makes use of an evaluation function which is f(n) = g(n) + h(n). g(n) is the actual
cost from initial node to node n and h(n) is the estimated cost from node n to the target node. When
minimizing this, it can be guaranteed that the search will always proceed in the direction of the target
node. Therefore it is more efficient than Dijkstra’s algorithm. It is best suitable for global search in a
static environment.

D* Algorithm
The D* algorithm is in principle the same as the A* algorithm. However, the D* algorithm is very effective
in searching a route in a dynamic environment. So this is a combination of global planning and local
information. According to some papers this is still only a global planning algorithm. There is also a D*
lite algorithm which is focused on a changing starting point in time with a fixed target point. D* lite is not
very applicable for local planning. When the local environment is carefully planned it caused significant
loss in time and efficiency.

Level set Method
The level set method is typically used in the definition of a front between two contours or planes in either
2D or 3D. This front can be represented as single point where the accuracy is obviously determined by
the concentration of points on the front. The level set method is used to add dynamics to the front and
mimic the behaviour between the surface motions [24]. [19] propose a time-optimal path planning by
making use of the level set concept.

Fast marching algorithm
Very similar to Dijkstra Algorithm, but it is not updated with the euclidean distance between two nodes.
It uses approximate partial differential equation reduced by the nonlinear Eikonal equation[26].
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Boustrophedon Decomposition Algorithm
Commonly used and simple coverage path search algorithm. It transforms the configuration space into
cell regions. Each cell is than completely covered by a path in ”zig-zag” motion [6]. This algorithm
is very use full if an area need to be searched and completely covered. But is not optimal regarding
shortest path problems from start to goal nodes. The coverage path determined by this algorithm does
not contribute to the goal of Lunar Zebro to reach a target, preferably with the optimal path length.

Internal Spiral Algorithm
This algorithm is similar to the Boustrophedon Decomposition Algorithm, it moves within the boundaries
of a covering area. The difference is the movement to cover the area, it goes spiral and ends therefore
in the middle of the covered area. Similar to the Boustrophedon Decomposition Algorithm, it is not
optimal regarding shortest path problems. Again the coverage path determined by this algorithm does
not contribute to the goal of Lunar Zebro to reach a target, preferably with the optimal path length.

Fuzzy
This method is deducted from the Boolean logic, in Boolean logic values can either be 0 or 1. In
fuzzy logic it can also be 0.5 or every other value between 0 and 1. The algorithm contains a set of
rules that are used as reference and that are based om human expert knowledge. The usage and
output of rules is dependent on the values between 0 and 1. First the input is ”fuzzified” such that
the rules can apply and after this the output is ”defuzzified” to a relevant output for the actuators. It
does not need an accurate mathematical model and good results can be obtained regarding obstacle
avoidance. However, it can not adapt to the environment and is very dependent on the rules that are
given beforehand. Which means in complex environment is looses its robustness. Note that the fuzzy
rule set is commonly used as an addition or in combination with another (path finding) algorithm. [20],
[15] and [3] propose a few examples of these possible implementation of a fuzzy rule set with another
algorithm for navigation problems. The fuzzy rule set is not commonly used on its own to solve the
navigation problem. However, this does not mean it cannot be used for navigation problems. During
the improvement of basic algorithms, fuzzy rule sets can still be considered as an improvement or
addition.

Probabilistic Roadmap Method
This method is already described as a method to model the environment. However, it can also be used
as a path finding algorithm. It first establishes a random roadmap and uses the A* algorithm to form a
path. As already said the forming of the nodes is random and therefore the path will not be completely
optimal in terms of length.

Rapidly exploring random tree
This makes use of spatial search technique. It expands the tree during the search while the endpoint
is not yet known. This is also not the optimal path regarding path length, as it is still based on random
generated nodes. This algorithms also has a relatively high computation resource consumption. Many
forms of the RRT algorithm exist that improve the algorithm for different environments, such as dynamic
vs static or 2D vs 3D environments.

Artificial potential field
The basics consist of a potential function that has an attractive force to the target location and a repul-
sive force from obstacles. Size and direction of the sum of these two form the next steps in the path
finding problem. Very usefull for online obstacle avoidance but has difficulties with dynamic obstacles
and is easily trapped in local minima. Large search field require relatively low computation resources
compared to other algorithms.

Bug algorithm
It connects the target point and starting point in a straight line. It uses edge tracking of obstacles to
avoid them and after the avoidance it continues in a straight line to the goal. The algorithms is not able
to find the optimal shortest path, but has relies on minor calculations and has a fast path search.
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Genetic Algorithm
It is based on the survival of the fittest strategy by making use of an iterative process search. The
optimal solution is found by a random solution and it has a memory function. Genetic Algorithm (GA)
can find the global optimum according to the optimal value of the current state. It is able to do local
planning and find an optimal path and has rapid global converges speed in early stages but has a slow
converges speeds during the end. Also it can fall into local minima easily and has a poor stability.

Differential Evolution
This approach has a lot of similarities with GA. The only difference is that the fitness level is calculated
using the difference vectors between individuals. In general it performs better than the GA and is more
robust regarding path planning.

Imperial competition algorithm
This algorithm is inspired by the concepts of imperialism and imperialistic competition process[39]. It
starts with an initial population that is divided in two groups. One group will have the particles that
have the best objective function (imperialists) and the other group(s) will form the colonies of these
imperialists. The more powerful the imperialist, the more colonies it will have. Due to competition, the
most powerful empires tend to grow while the weaker ones collapse. This leads the algorithm to finally
converge into just one remaining empire. It finds optimal paths in less time than the GA algorithm and
obtains equal robustness.

Q-learning/dynamic programming
This provides an agent(robot) in a Markov environment, an environment where the next state only
depends on the current state. In path planning this relates to the next step on the path is only dependent
on the place where the rover is right now. The process has no memory. The ”Q-value” determines how
useful an action. for example left,right or forward, is. This is done by making use of the so called state-
action value function. The modeling of this algorithm is simple and doesn’t require extensive training.
The two main disadvantages are falling into a local minimum and being weak regarding optimal path
generation.

Tabu Search
Is similar to Q-learning. However, this algorithm starts with an initial solution and start iteration on this
solution. During the iterations it is improving the solution towards an optimum [27]. The initial search
can be generated random or with a greedy strategy. The process of optimal search stops when the stop
criterion is reached, this means that when a local optimum is found, moves are still allowed. Therefore,
falling in a local minimum is less likely. It is a relatively unexplored method for path planning and it is
highly dependent on the initial solution.

Artificial neural network
This network is based on human behaviour and realizes the function of nonlinear algorithms using a
large number of simulated neurons like in the human brain. It needs training with sample data before
it can be used for actual path planning and obstacle avoidance. It has the ability for dynamic obstacle
avoidance with the correct training. It has slow processing speed and poor generalization performance.
However, it has strong learning and adaptive capabilities and has a high robustness/reachability. It is
therefore used in many path planning applications.

Simulated annealing algorithm
This algorithm is based on the cooling down of an object with an initial temperature. With the decrease
of temperature an optimal can be found. The equivalent of temperature is a measure of the randomness
by which changes are made to the path. High temperature means high randomness. Solutions can
differ every search. It has slow convergence speed, long execution time and is highly dependent on
the initial value.

Animal based bio-inspired intelligence algorithms
The following algorithms are all based on animals and their colony behaviour. These techniques are
mostly applied in swarm to imitate the swarming behaviour of the colonies.
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Ant colony Optimization is a probabilistic algorithm that makes use of heuristic search. The funda-
mental idea behind the ant colony algorithm is that it uses the behavior of a single ant to represent one
feasible solution of the path optimization problem, and the behavior of the entire ant colony constitutes
the solution space of the problem[4]. As time passes, the algorithm will convert to the shortest path
around obstacles. It has slow convergence in the beginning and fast convergence at the end. The total
solution speed is still slow.

Particle swarm optimization is a heuristic algorithm based on predation and return of the bird popu-
lations. Birds only know their own location and distance to the food. They try to find a bird that is closer
to the food and follow it. It can be adopted to obstacle avoidance. It is an easy and robust algorithm
and has a fast convergence speed in the beginning and slow convergence speed at the end. It is easy
to fall in local optimums.

Wolf pack algorithm makes use of three dominant ”Wolfs” that find the prey first. After that, all
omega(less dominant group) ”wolfs” are surrounding the target and coming closer. This way a path
can be formed even in a complex search space. The algorithm has good convergence and strong
robustness. However, the algorithm is more complex due to relatively more parameters that has to be
set.

Bacterial Foraging Optimization is based on bacterial movement which consists of four stages.
First the particles can move towards nutrient-rich areas and away from nutrient-poor areas. Secondly
when in a nutrient-rich area it will release an attract signal such that more particles can come. Then the
reproduction will start, the particles with a low fitness value are in high nutrient areas and will therefore
reproduce. In the last step particles are eliminated if they are in harsh environments. It is robust, easy
to implement and good at exploitation. However, it has poor convergent behaviour and decreasing
performance with an increasing search space and complexity.

Bee Colony Optimization Technique is inspired on the bee colony foraging behaviour, it explores
the search space with random samples(bees) and then converges to a solution. This solution can be
the target or nectar in case of bees. After the bees have set their target they learn the path to the
tarhet such that they can share this path with other bees. Literature proposes that it can outperform GA,
Differential Evolution (DE), Particle Swarm Optimization (PSO) or Evolution Strategies (ES) on a large
set of unconstrained test functions. However, it is not widely used and described in path planning
problems.

Firefly algorithm is based on firefly technique to attract other fireflies by the use of flashing their lights
with a certain frequency and intensity. This flashing behaviour can be used as an objective function for
an optimization technique. It has low computational cost, it can give an optimal path with good dynamic
obstacle avoidance. Again this technique is not very widely used.

SLAM
SLAM, short for Simultaneous Localization And Mapping, seems at first not to be related to a navigation
algorithm. However, looking further into the use of SLAM it can used as a basis for a navigation algorithm.
One way or another, each navigation algorithm makes use of the location of the rover. This can either
be the actual location of the rover or this can be a location that is estimated from the steps that are taken
from the navigation algorithm. SLAM determined the location of the rover within a self constructed map
of the environment[41]. It can therefore be said that this is the actual location and not the location based
on trace-back of steps in the navigation algorithm. So it adds the possibility to a navigation algorithm
to determine the exact location and plan a path with this information. [41], [21] and [34] show different
implementations of SLAM with a navigation algorithm. However, they also state that the combination
of SLAM with a navigation algorithm is still in an early development phase.

Behaviour decomposition method
This based on breaking down the navigation problem in multiple independent sub problems. For ex-
ample target tracking and obstacle avoidance or breaking up the whole path in smaller pieces. These
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solutions together form the navigation algorithm. The definition of this method is to break down the
problem in smaller algorithms for different tasks. The sub problems will again rely on the implementa-
tion of an actual path planning algorithm. This way of implementing the solution can still be used but
will not be considered as an individual algorithm.

Cased-Based Learning Method
A database with predefined cases is set up before deployment of the algorithm. This database contains
cases that are relevant for the path planning and obstacle avoidance algorithm. During operation the
algorithm tries to find the best matching saved case to the current situation and operates according to
the predefined solution. It is not very robust for divergent cases and it needs a lot of data collection
beforehand. However, it reduces the search space and works according to the predefined preferences
for well-known cases. This method relies heavily on the predefined cases. An artificial network is more
robust and can also train on predefined cases. An ANN would be a form of cased-based learning
method and therefore considering Cased-Based Learning as an algorithm would be irrelevant.

Rolling Window Algorithm
The local environment, that can be obtained by sensors of the robot, is formed to a window with infor-
mation. For each window sub-targets are obtained to form a path. This sub-target and path is updated
every new window until the task is completed. It has good obstacle avoidance capabilities. However, it
may be trapped in local optima and the obtained path is not guaranteed to be the optimal path regarding
length. To avoid obstacles, this algorithm still needs another path planning algorithm to find a path in
each created window. An example of this is presented in [42], where a artificial potential field algorithm
is used as path planner.

Vector-polar histogram
The method uses a two-dimensional Cartesian histogram grid. Each cell in the grid holds a value, the
value represents the confidence of the algorithm in the existence of an obstacle at that location. This
existence value can make up for uncertainty from the sensors or from far distance readings. With this
information the robot plans a path by making use of for example a repulsive force from these obstacles.
The algorithm is computationally efficient, robust and it allows continuous motion without stopping for
obstacles. It is quite similar to the Artificial potential field algorithm but has a slight difference in obstacle
mapping and avoidance [32].

Reinforcement learning
This method allows the agent(robot) to interact with the environment and learn on trial and error base.
The agent will be rewarded if it finds a way around an obstacle and keeps its distance to obstacles. It
is very effective for unknown environments as it can learn and adapt from the environment. It can deal
with any shape or form of obstacles and doesn’t need information beforehand. However, before it is
able to find a collision free path it needs to learn about the environment. This process is time consuming
and hard to validate outside the simulating space(real world).

Deep Reinforcement learning
This combines the properties of Reinforcement learning with an artificial neural network. This way large
state space (lot of sensor data) and large action space( lots of movement possibilities) can be handled.
The neural network can be partly trained beforehand but the reinforcement decision process needs to
be trained by trial and error. Doing this in simulation environment will again be difficult regarding the
real world and would again take a lot of time.

Both reinforcement learning and deep reinforcement learning would therefore require training during
the mission of Lunar Zebro. Currently training of these algorithms is very time expensive. Looking at
the mission of LZ it will be around 30 days. Time expensive training of the rover will possibly harm the
goal of the mission. [35] propose a path planning algorithm based on deep reinforcement learning.
Where accessing free path will be rewarded and ”hitting” obstacles has a penalty. It took the robot
200000 steps of training to reach a reward of around 80% of the maximum possible reward. This
amount of training steps for Lunar Zebro would cost around 40 full earth days of training. This is based
on sequence walk with interwalk, which is the fast way of walking for LZ and the walking height is set to
the average height of 25 mm [2]. So even in the best scenario, it will cost LZ to much time to train and
reach the goal safely.



B
Simulation Results

B.1. Base algorithm comparison
This appendix section will show the boxplot analysis of all tested environmental factors. The boxplots
present the performance metrics planning time and path length for the A*, RRT and original APF algo-
rithms.

B.1.1. GridSize adjustment results

Figure B.1: Algorithm performance with 50x50 grid (standard conditions) for 500 runs
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Figure B.2: Algorithm performance with 25x25 grid for 500 runs

Figure B.3: Algorithm performance with 100x100 grid
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Figure B.4: Algorithm performance with 200x200 grid for 500 runs

B.1.2. Object size adjustment results

Figure B.5: Algorithm performance with object radius of 3 metres(standard conditions) for 500 runs
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Figure B.6: Algorithm performance with object radius of 1 metres for 500 run

Figure B.7: Algorithm performance with object radius of 5 metres for 500 run
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Figure B.8: Algorithm performance with object radius of 8 metres for 500 run

B.1.3. View distance adjustment results

Figure B.9: Algorithm performance with view distance of 3 metres(standard conditions) for 500 runs
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Figure B.10: Algorithm performance with view distance of 1 metres for 500 runs

Figure B.11: Algorithm performance with view distance of 5 metres for 500 runs



B.1. Base algorithm comparison 76

Figure B.12: Algorithm performance with view distance of 8 metres for 500 runs

Figure B.13: Algorithm performance with view distance of 10 metres for 500 runs
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B.1.4. Obstacle scenario adjustment results

Figure B.14: Algorithm performance with standard obstacle scenario for 500 runs

Figure B.15: Algorithm performance with zero obstacles for 500 runs
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Figure B.16: Algorithm performance with 5 random obstacles(radius 3 meter) for 500 runs

Figure B.17: Algorithm performance with 10 random obstacles(radius 3 meter) for 500 runs
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Figure B.18: Algorithm performance with 15 random obstacles(radius 3 meter) for 500 runs

Figure B.19: Algorithm performance with 15 random obstacles(radius 1 meter) for 500 runs
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Figure B.20: Algorithm performance with 30 random obstacles(radius 1 meter) for 500 runs

Figure B.21: Algorithm performance with 60 random obstacles(radius 1 meter) for 500 runs



C
Miscellaneous

C.1. Python package requirements
Listing C.1: Python environment packages with versions

ma t p l o t l i b ==3.5.2
numpy==1.22.3
sc ipy ==1.8.1
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C.2. Full rotational vector field algorithm
This section describe the complete Rotation vector field algorithm. The pseudo code is given in Alg.11.
Fig.C.1 shows corresponding flowchart of the complete rotational vector field algorithm.

Algorithm 11 Rotational Vector Field Algorithm
Require: 𝑉𝐹𝑁𝑆𝑡𝑎𝑟𝑡 , 𝑉𝐹𝑁𝐺𝑜𝑎𝑙 , 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐿𝑖𝑠𝑡, 𝑅𝑜𝑣𝑒𝑟𝑅𝑎𝑑𝑖𝑢𝑠, 𝐺𝑟𝑖𝑑𝑆𝑖𝑧𝑒, 𝐴𝑟𝑒𝑎𝐵𝑜𝑢𝑛𝑑𝑠, 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑀𝑎𝑝
Ensure: 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝐹𝑟𝑒𝑒 𝑃𝑎𝑡ℎ
1: 𝑃𝑎𝑡ℎ ← [𝑉𝐹𝑁𝑠𝑡𝑎𝑟𝑡]
2: 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑁𝑜𝑑𝑒𝑠 ← 𝑑𝑒𝑞𝑢𝑒()
3:
4: 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛(𝑉𝐹𝑁𝑆𝑡𝑎𝑟𝑡 , 𝑉𝐹𝑁𝐺𝑜𝑎𝑙 , 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐿𝑖𝑠𝑡)
5:
6: for 𝑋, 𝑌 ∈ 𝐴𝑟𝑒𝑎 do
7: if 𝐹𝑖𝑟𝑠𝑡𝑀𝑎𝑝𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 then
8: 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙(𝑋, 𝑌, 𝑉𝐹𝑁𝐺𝑜𝑎𝑙)
9: end if
10: 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙(𝑋, 𝑌, 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐿𝑖𝑠𝑡)
11: 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑀𝑎𝑝 ← 𝑇𝑜𝑡𝑎𝑙𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙(𝑋, 𝑌, 𝑃𝑜𝑠𝑡𝑖𝑣𝑒𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙, 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙)
12: end for
13:
14: 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑉𝐹𝑁𝐺𝑜𝑎𝑙 , 𝑉𝐹𝑁𝑆𝑡𝑎𝑟𝑡)
15: 𝑉𝐹𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑉𝐹𝑁𝑆𝑡𝑎𝑟𝑡
16: while 𝑁𝑜𝐿𝑜𝑐𝑎𝑙𝑀𝑖𝑛𝑖𝑚𝑢𝑚 do
17: 𝑃𝑜𝑖𝑛𝑡𝑉𝑒𝑐𝑡𝑜𝑟 ← 𝐺𝑒𝑡𝑉𝑒𝑐𝑡𝑜𝑟𝐹𝑟𝑜𝑚𝑁𝑜𝑑𝑒(𝑉𝐹𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
18: 𝑃𝑜𝑖𝑛𝑡𝐴𝑛𝑔𝑙𝑒 ← 𝐺𝑒𝑡𝐴𝑛𝑔𝑙𝑒𝑂𝑓𝑉𝑒𝑐𝑡𝑜𝑟(𝑃𝑜𝑖𝑛𝑡𝑉𝑒𝑐𝑡𝑜𝑟)
19: 𝑉𝐹𝑁𝑛𝑒𝑥𝑡 ← 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑁𝑒𝑥𝑡𝑃𝑜𝑖𝑛𝑡(𝑃𝑜𝑖𝑛𝑡𝐴𝑛𝑔𝑙𝑒)
20: 𝑉𝐹𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑉𝐹𝑁𝑛𝑒𝑥𝑡
21: 𝑃𝑎𝑡ℎ ← 𝐴𝑑𝑑𝑁𝑜𝑑𝑒𝑇𝑜𝐿𝑖𝑠𝑡(𝑉𝐹𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , 𝑃𝑎𝑡ℎ))
22: 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑉𝐹𝑁𝐺𝑜𝑎𝑙 , 𝑉𝐹𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
23: if 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 < 𝐺𝑟𝑖𝑑𝑆𝑖𝑧𝑒 then
24: for 𝑃𝑎𝑡ℎ𝑃𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑃𝑎𝑡ℎ do
25: 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑁𝑜𝑑𝑒𝑠 ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐷𝑖𝑠𝑡𝑎𝑐𝑛𝑒(𝑉𝐹𝑁𝑃𝑎𝑡ℎ𝑃𝑜𝑖𝑛𝑡 , 𝑉𝐹𝑁𝑃𝑎𝑡ℎ𝑃𝑜𝑖𝑛𝑡+2)
26: if 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑁𝑜𝑑𝑒𝑠 <= 2 ∗ 𝐺𝑟𝑖𝑑𝑆𝑖𝑧𝑒 then
27: 𝑁𝑒𝑤𝑋 ← (𝑉𝐹𝑁𝑃𝑎𝑡ℎ𝑃𝑜𝑖𝑛𝑡+2,𝑋 − 𝑉𝐹𝑁𝑃𝑎𝑡ℎ𝑃𝑜𝑖𝑛𝑡,𝑋)/2 + 𝑉𝐹𝑁𝑃𝑎𝑡ℎ𝑃𝑜𝑖𝑛𝑡,𝑋
28: 𝑁𝑒𝑤𝑌 ← (𝑉𝐹𝑁𝑃𝑎𝑡ℎ𝑃𝑜𝑖𝑛𝑡+2,𝑌 − 𝑉𝐹𝑁𝑃𝑎𝑡ℎ𝑃𝑜𝑖𝑛𝑡,𝑌)/2 + 𝑉𝐹𝑁𝑃𝑎𝑡ℎ𝑃𝑜𝑖𝑛𝑡,𝑌
29: 𝑉𝐹𝑁𝑃𝑎𝑡ℎ𝑃𝑜𝑖𝑛𝑡+1 ← [𝑁𝑒𝑤𝑋 , 𝑁𝑒𝑤𝑌]
30: end if
31: end for
32: return 𝑃𝑎𝑡ℎ
33: end if
34: end while
35: return 𝑁𝑜𝑛𝑒
36:
37: 𝑁𝑜𝐿𝑜𝑐𝑎𝑙𝑀𝑖𝑛𝑖𝑚𝑢𝑚(𝑉𝐹𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ∶
38: 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑁𝑜𝑑𝑒𝑠 ← 𝐴𝑑𝑑𝑁𝑜𝑑𝑒𝑇𝑜𝐿𝑖𝑠𝑡(𝑉𝐹𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑁𝑜𝑑𝑒𝑠))
39: if 𝑙𝑒𝑛𝑔𝑡ℎ(𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑁𝑜𝑑𝑒𝑠) > 3 then
40: 𝑅𝑒𝑚𝑜𝑣𝑒𝐹𝑖𝑟𝑠𝑡𝐼𝑡𝑒𝑚𝐹𝑟𝑜𝑚𝐿𝑖𝑠𝑡(𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑁𝑜𝑑𝑒𝑠)
41: end if
42: if 𝑁𝑜𝑑𝑒𝐼𝑛𝐿𝑖𝑠𝑡𝐼𝑠𝐷𝑜𝑢𝑏𝑙𝑒(𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑁𝑜𝑑𝑒𝑠) then
43: return 𝑇𝑟𝑢𝑒
44: else
45: return 𝐹𝑎𝑙𝑠𝑒
46: end if
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47:
48: 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛(𝑉𝐹𝑁𝑆𝑡𝑎𝑟𝑡 , 𝑉𝐹𝑁𝐺𝑜𝑎𝑙 , 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐿𝑖𝑠𝑡) ∶
49: 𝑅𝑜𝑣𝑒𝑟𝐺𝑜𝑎𝑙𝑉𝑒𝑐𝑡𝑜𝑟 ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑉𝑒𝑐𝑡𝑜𝑟(𝑉𝐹𝑁𝐺𝑜𝑎𝑙 , 𝑉𝐹𝑁𝑆𝑡𝑎𝑟𝑡)
50: for 𝑁𝑒𝑤𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠 do
51: 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐶𝑒𝑛𝑡𝑟𝑒(𝑥,𝑦), 𝑉𝐹𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
52: 𝑅𝑜𝑣𝑒𝑟𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑉𝑒𝑐𝑡𝑜𝑟 ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑉𝑒𝑐𝑡𝑜𝑟(𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐶𝑒𝑛𝑡𝑟𝑒(𝑥,𝑦), 𝑉𝐹𝑁𝑆𝑡𝑎𝑟𝑡)
53: 𝐺𝑜𝑎𝑙𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐴𝑛𝑔𝑙𝑒 ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐴𝑛𝑔𝑙𝑒(𝑅𝑜𝑣𝑒𝑟𝐺𝑜𝑎𝑙𝑉𝑒𝑐𝑡𝑜𝑟, 𝑅𝑜𝑣𝑒𝑟𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑉𝑒𝑐𝑡𝑜𝑟)
54: if 𝐺𝑜𝑎𝑙𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐴𝑛𝑔𝑙𝑒 >= 0 then
55: 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐶𝑢𝑟𝑙𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 1
56: else
57: 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐶𝑢𝑟𝑙𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = −1
58: end if
59: for 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠 do
60: 𝐹𝑟𝑒𝑒𝑆𝑝𝑎𝑐𝑒 ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒,𝑁𝑒𝑤𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒
61: if 𝐹𝑟𝑒𝑒𝑆𝑝𝑎𝑐𝑒 ≤ 3 ∗ 𝑅𝑜𝑣𝑒𝑟𝑅𝑎𝑑𝑖𝑢𝑠 then
62: 𝑁𝑒𝑤𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 = 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛
63: end if
64: end for
65: for 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠 do
66: 𝐹𝑟𝑒𝑒𝑆𝑝𝑎𝑐𝑒 ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒,𝑁𝑒𝑤𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒
67: if 𝐹𝑟𝑒𝑒𝑆𝑝𝑎𝑐𝑒 ≤ 3 ∗ 𝑅𝑜𝑣𝑒𝑟𝑅𝑎𝑑𝑖𝑢𝑠 then
68: 𝑁𝑒𝑤𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 = 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛
69: end if
70: end for
71: end for
72:
73: 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙(𝑋, 𝑌, 𝑉𝐹𝑁𝐺𝑜𝑎𝑙) ∶
74: 𝐺𝑟𝑖𝑑𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙 = √𝐺𝑟𝑖𝑑𝑆𝑖𝑧𝑒2 + 𝐺𝑟𝑖𝑑𝑆𝑖𝑧𝑒2
75: 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟 = [0, 0]
76: for 𝑁𝑒𝑤𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠 do
77: if 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 <= (𝑅𝑜𝑣𝑒𝑟𝑅𝑎𝑑𝑖𝑢𝑠 + 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑅𝑎𝑑𝑖𝑢𝑠 + 2 ∗ 𝐺𝑟𝑖𝑑𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙) then
78: if 𝑋, 𝑌 == 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐶𝑒𝑛𝑡𝑟𝑒(𝑥,𝑦) then
79: 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟 = [0, 0]
80: else
81: 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑋 = 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐶𝑢𝑟𝑙𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ∗ (𝑌 − 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐶𝑒𝑛𝑡𝑟𝑒(𝑦))
82: 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑌 = −𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐶𝑢𝑟𝑙𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ∗ (𝑋 − 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐶𝑒𝑛𝑡𝑟𝑒(𝑥))
83: 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑋 = 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑋/𝑉𝑒𝑐𝑡𝑜𝑟𝐿𝑒𝑛𝑔𝑡ℎ
84: 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑌 = 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑌/𝑉𝑒𝑐𝑡𝑜𝑟𝐿𝑒𝑛𝑔𝑡ℎ
85: end if
86: if 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 <= (𝑅𝑜𝑣𝑒𝑟𝑅𝑎𝑑𝑖𝑢𝑠 + 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑅𝑎𝑑𝑖𝑢𝑠 + 𝐺𝑟𝑖𝑑𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙) then
87: 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑋 = 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑋 + (𝑋 − 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑥)/𝑉𝑒𝑐𝑡𝑜𝑟𝐿𝑒𝑛𝑔𝑡ℎ
88: 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑌 = 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑌 + (𝑌 − 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑦)/𝑉𝑒𝑐𝑡𝑜𝑟𝐿𝑒𝑛𝑔𝑡ℎ
89: end if
90: 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟+ = [𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑋 , 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑌] ∗ 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝐺𝑎𝑖𝑛
91: end if
92: end for
93: return 𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟
94:
95: 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙(𝑋, 𝑌, 𝑉𝐹𝑁𝐺𝑜𝑎𝑙) ∶
96: 𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑋 = 𝑉𝐹𝑁𝐺𝑜𝑎𝑙,𝑋 − 𝑋
97: 𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑌 = 𝑉𝐹𝑁𝐺𝑜𝑎𝑙,𝑌 − 𝑌
98: 𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟 = [𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑋/𝑉𝑒𝑐𝑡𝑜𝑟𝐿𝑒𝑛𝑔𝑡ℎ, 𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑌/𝑉𝑒𝑐𝑡𝑜𝑟𝐿𝑒𝑛𝑔𝑡ℎ]
99: return 𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟 ∗ 𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝐺𝑎𝑖𝑛
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