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A B S T R A C T

In recent years we have seen the emergence of new industrial paradigms such as Industry 4.0/5.0 or the
Industrial Internet of Things (IIoT). As the use of these new paradigms continues to grow, so do the number of
threats and exploits that they face, which makes the IIoT a desirable target for cybercriminals. Furthermore,
IIoT devices possess inherent limitations, primarily due to their limited resources. As a result, it is often
impossible to detect attacks using solutions designed for other environments. Recently, Intrusion Detection
Systems (IDS) based on Machine Learning (ML) have emerged as a solution that takes advantage of the large
amount of data generated by IIoT devices to implement their functionality and achieve good performance,
and the inclusion of the Multi-Access Edge Computing (MEC) paradigm in these environments provides the
necessary computational resources to deploy IDS effectively. Furthermore, TabPFN has been considered as an
attractive option for solving classification problems without the need to reprocess the data. However, TabPFN
has certain drawbacks when it comes to the number of training samples and the maximum number of different
classes that the model is capable of classifying. This makes TabPFN unsuitable for use when the dataset
exceeds one of these limitations. In order to overcome such limitations, this paper presents a Weighted Fusion-
Ensemble-based TabPFN (WFE-Tab) model to improve IDS performance in IIoT-MEC scenarios. The presented
study employs a novel weighted fusion method to preprocess data into multiple subsets, generating different
ensemble family TabPFN models. The resulting WFE-Tab model comprises four stages: data collection, data
preprocessing, model training, and model evaluation. The performance of the WFE-Tab method is evaluated
using key metrics such as Accuracy, Precision, Recall, and F1-Score, and validated using the Edge-IIoTset public
dataset. The performance of the method is then compared with baseline and modern methods to evaluate its
effectiveness, achieving an F1-Score performance of 99.81%.
1. Introduction

The industrial sector has undergone a huge transformation since the
First Industrial Revolution. The most recent phase in this is referred
to as Industry 4.0 or the Industrial Internet of Things (IIoT), and is
characterized by the integration of emerging technologies such as the
Internet of Things (IoT), Big Data, 5G networks, and innovative applica-
tions like artificial vision, Deep Learning (DL), and Machine Learning
(ML) models for industrial process optimization [1]. The integration
of these modern technologies with traditional Operational Technology
(OT) services has facilitated this transformation, giving rise to a coex-
istence that has led the industrial sector into a new era of innovation
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and growth [2]. In this context, the integration of IIoT technologies
into traditional industries presents a unique set of challenges. These
challenges arise from the need to maintain the integrity and efficiency
of existing industrial processes while simultaneously incorporating new
technologies that can optimize them. One promising solution is the
use of Multi-Access Edge Computing (MEC) [3]. MEC is a cloud-based
service environment that provides computing capabilities at the edge of
the network, and thus closer to the source of data providing multiple
benefits in terms of low-latency and scalability.
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However, the integration of the IIoT and MEC has introduced new
ybersecurity vulnerabilities that must be addressed. These vulnerabil-
ties are especially noticeable in traditional industrial devices, which
ften lack regular updates and have limited capabilities [4,5], making
hem prime targets for cyberattackers. The Intrusion Detection System
IDS), which is an application that monitors network traffic to identify
nown threats and suspicious or malicious activity, is thus a crucial
lement in securing IIoT networks. For that reason, the use of ML algo-
ithms for developing IDS has become a powerful strategy for securing
IoT-MEC environments [6,7]. These ML-based IDSs can analyse data
eft by attackers on their networks or applications, making them an
ffective method for monitoring, preventing (or at least mitigating)
he impacts of attacks [8]. Moreover, ML algorithms can be trained

to adapt to new types of attacks, making them particularly effective
against zero-day ones. This adaptability, coupled with the ability to
rovide monitoring and response features, significantly reduces the

window of opportunity for attackers [9,10]. Nevertheless, the efficacy
of this IDS-based ML is largely tied to the expertise of the developer
tasked with processing the collected data to enhance its performance
and extract valuable insights, thereby selecting the optimal model for
attack detection and classification.

In recent years, new approaches have emerged in the field of ML,
such as Automated Machine Learning (AutoML), which aims to auto-
mate these repetitive tasks in the ML pipeline. This significantly speeds
up the model-building process and allows data scientists to focus on
higher value-added duties [11]. One of the most promising approaches
s the TabPFN model [12], which is a variant of Prior-Data Fitted Net-

works (PFN). It has the unique ability to achieve high performance on
ome tabular classification problems [13]. This is even the case when

the data set is small and computational resources are limited. However,
its utility is somewhat constrained by inherent limitations related to
he number of training samples, which is up to 1000 samples, and
he number of classes, which is up to 10. These constraints restrict its
pplicability across a broader range of environments and applications,
hich includes the deployment of an IDS based on ML. Due to huge
mount of data present in IIoT-MEC environments and the numerous
ypes of attacks present at the network layer, it is quite challenging
o utilize this technique in such conditions [14]. As a result, the data
mployed may not offer sufficient diversity for each class to provide
he model with the necessary information to differentiate between
he various attacks. Furthermore, due to the limitations imposed by
he number of classes, the developers were unable to provide a focus
etection for the specific techniques employed by the attacks [15,16].

The objective of this paper is to improve the performance and over-
ome the limitations of training samples and classes for classification
n the TabPFN model [12], and enable its use in an IDS in an IIoT-

MEC environment. To ensure the model’s applicability beyond network
raffic classification, we conduct a comprehensive study and develop
nd test various ensemble-based methodologies to address the limita-
ions of TabPFN that may affect its performance or application. Finally,
e present the Weighted Fusion-Ensemble-based TabPFN (WFE-Tab)
odel, which utilizes a novel fusion pre-processing technique to divide

he collected data into multiple subsets. This approach allows the
evelopment of multiple specialized sets of TabPFN models, resulting in
ore accurate decisions during the aggregation stage of the ensemble
ethod. Furthermore, this approach considers that every specialized set
ust validate its knowledge to inform its decision about the different

ypes of traffic during classification. Additionally, the classification of
nknown attacks is considered in order to improve the real-world de-
loyment of our implementation. In summary, the major contributions
resented in this paper are the following:

• An in-depth performance analysis of the TabPFN model for net-
work traffic classification was conducted using the Edge-IIoTset
public dataset [17], which was specifically designed for IIoT-
MEC scenarios. The analysis provided useful information about
2 
the strengths and limitations of the models in these particular
contexts. To enhance the performance of the TabPFN model in
these contexts, ensemble techniques were developed.

• In this study, we introduce a new TabPFN-based model which
incorporates a weighted fusion-based approach. The model is
capable of handling an extensive range of classification classes,
encompassing over 10, and a substantial number of training
instances, exceeding 1000. Furthermore, its incorporation into the
IDS architecture enables the detection of anomalous events.

• A comprehensive performance analysis of the proposed approach
is provided, utilizing a range of evaluation metrics to illustrate
the efficacy of the model in addressing imbalanced classification
problems. A comparison is provided with other baseline models
and algorithms, including Random Forest (RF) and boosting algo-
rithms, which have demonstrated efficacy in addressing tabular
data problems [18]. This comparison allows us to evaluate our
approach in relation to established methods.

The rest of the paper is organized as follows. Section 2 presents
n overview of IDS-based ML approaches, while Section 3 explains

the evolution of the different approaches to enhancing TabPFN until
the WFE-Tab model implementation is reached is explained. Section 4
explains the assumptions made during the execution of the IDS archi-
tecture in our study. The workflow of the experimentation in our study
of WFE-Tab and the rest of the ML techniques and TabPFN approaches
considered is detailed in Section 5. Section 6 present an assessment
of the performance of all the models considered in our study. Finally,
Section 7 contains the conclusions and lines for future work.

2. Related work

In this section, we present a synopsis of the most relevant pieces
f research on IDS in IIoT environments, where the proposed research
akes use of FL, ML, DL or Deep Q-Network (DQN) learning tech-
iques. The focus is on studies that bear a resemblance to our work
nd show a high degree of relevance in this research domain.

2.1. IDS based on FL approaches

The authors in [19] present a cyber threat intelligence framework
for securing IIoT environments. It is based on federated learning and
nformation fusion (FL-CTIF) and uses a cloud-based security auditor
o design and test updated models for detecting various cyberattacks,
uch as man-in-the-middle, SSL-based, and DNS flood attacks. Informa-
ion fusion techniques are employed to merge features from different
atasets, which are ToN-IoT and CIC-DDoS2019. A proposed federated
earning-based Artificial Neural Network (ANN) model aims to reduce
odel training rounds and CPU consumption based on satisfaction level

nd average accuracy score. The model is evaluated in a digital twin-
ased IIoT environment and demonstrates improved performance in
erms of F1 score, accuracy, recall, and true negative rate compared
ith existing methods, achieving an overall F1-score performance of
8.73% for each case.

The authors in [20] propose Fed-Inforce-Fusion, which is a feder-
ted reinforcement-based fusion model designed to enhance the secu-
ity and privacy protection of IoMT networks against cyber-attacks. The
odel utilizes Q-learning to learn the latent relationships of medical
ata and detect complex attack vectors. Additionally, the model em-
loys a fusion/aggregation strategy to improve detection performance
nd reduce communication overhead by allowing participating clients
o dynamically join the federation process. The model was evaluated on
 real-world IoMT dataset, and the results demonstrate higher accuracy
nd detection rates than existing benchmark methods. Additionally, it
xhibits better communication efficiency and privacy preservation.

In [21], the authors present Fed-ANIDS, a distributed network in-
rusion detection method that utilizes federated learning and autoen-

coders. Fed-ANIDS facilitates the secure and collaborative learning of a



S. Ruiz-Villafranca et al.

i

a

n
f
i
t
s
p
s
u
s
i
i
F
e

c
a
l
a
a
t
a
o
d
p
a
r
p

t
a

m
t
b
f

u
s
i

C

c
b
s

M

m
a

o

d

i
p

p

Future Generation Computer Systems 166 (2025) 107707 
global model for network intrusion detection by enabling each entity in
the system to learn locally with its own data. The authors utilize three
types of autoencoders: simple autoencoders, variational autoencoders,
and adversarial autoencoders. They also compare two federated learn-
ng algorithms, namely FedAvg and FedProx. The proposed method is

evaluated on three well-known datasets: USTC-TFC2016, CIC-IDS2017,
nd CSE-CIC-IDS2018. The results show high performance in terms of

accuracy, F1-score, and false discovery rate, while preserving data pri-
vacy. The authors demonstrate the capacity for generalization of Fed-
ANIDS with unseen datasets and compare it with centralized learning
and Generative Adversarial Network (GAN)-based models.

The work in [22] introduces DAFL, an innovative FL system for
etwork intrusion detection. DAFL expands the data resources available
or training while preserving data privacy, resulting in an improvement
n the detection accuracy of the global model. The authors compare
he performance of DAFL with other federated and centralized learning
chemes. Comparisons are made in convergence speed, recognition
erformance and communication overhead. The experimental results
how that DAFL outperforms other schemes in several respects when
sing the CSE-CIC-IDS2018 dataset. It achieves a higher convergence
peed, which means it can learn and adapt more quickly. Additionally,
t delivers a higher detection performance, making it more effective at
dentifying network intrusions, with a F1-Score performance of 93.3%.
inally, DAFL has a lower communication overhead, making it more
fficient and scalable.

In [23], a novel federated deep learning intrusion detection system
(FEDGAN-IDS) for IoT systems is introduced. The paper aims to provide
a clear and concise explanation of the proposed system and its architec-
ture. The system is designed with a distributed GAN architecture, where
each IoT device has a local generator and discriminator network, and
the edge node has a central generator and discriminator network. The
local generators generate synthetic data to augment the local datasets.
These augmented datasets train the local discriminators, which act as
classifiers. The local model parameters are periodically aggregated by
the central networks using FL, ensuring a global model that benefits
from the learning of all local models. The authors evaluate FEDGAN-
IDS on three standard datasets: KDD99, NSL-KDD, and UNSW-NB15.
The results indicate that FEDGAN-IDS achieves a high F1-Score of
98.53% and a high convergence rate.

Finally, all the FL IDS proposals analysed in this section exhibit
ommon limitations. Firstly, none of the proposals consider detecting
nomalous behaviour beyond the attacks present in the dataset. This
ack of functionality may result in the IDS failing to detect zero-day
ttacks in the network. Secondly, most of the proposals employ a DL
lgorithm as the client model. Due to the computational limitations of
ypical IIoT devices and gateways, it is necessary to analyse algorithms
nd adapt them in order to use them on these devices. Our proposal
vercomes these limitations by introducing the ability to inherently
etect anomalous classes in our model and incorporating the MEC
aradigm into our IDS architecture design. Furthermore, our proposal
chieves 99.54% and 99.70% for the F1-Score and Accuracy metric,
espectively, which is an improvement with 1%–6% compared to other
roposals.

2.2. IDS based on ML approaches

The authors of [24] conducted a thorough study of various ensemble
ML methodologies, together with a feature selection classifier, designed
o detect and prevent intrusions and attacks in IIoT networks. The study
nalysed Xgboost [25], Bagging, Random Forest (RF) [26], Extremely

Randomized Trees (ERT) [27], and Adaptive Boosting (Adaboost) [28]
odels. The dataset’s feature selection process uses the Chi-Square Sta-

istical method, a robust statistical test that measures the dependence
etween stochastic variables. This method identifies the most relevant
eatures that significantly contribute to the model’s predictive power.

To assess the efficacy of each model, the authors use seven distinct
3 
datasets derived from the Telemetry of Networks for IoT (ToN-IoT)
dataset [29]. The analysis reveals that the Xgboost model outperforms
the other models in terms of overall performance over all the datasets
sed for evaluation. The Xgboost model achieves an impressive F1
core of 98.30%, indicating a high degree of precision and recall in
ts predictions.

The development of an IDS based on an RF model is the subject of
the research described in [30]. The approach uses Pearson’s Correlation

oefficient (PCC) and Isolation Forest (IF) to perform feature selection
and reduce the dimensionality of the datasets used for model training
and evaluation. The performance of each model individually and in
combination is evaluated in the study, which used two distinct datasets,
namely Bot-IoT [31] and WUSTL-IIOT-2021 [32], to assess the models.
The datasets offer a comprehensive and diverse range of data for model
assessment. The study’s results show that the proposed approach, which
ombines the three models under consideration, outperforms the other
aseline models and combinations. This is supported by an overall F1
core of 93.57%.

In [33], the authors propose a new architecture for an IDS using
EC in IIoT environments. The main goal of this architecture is to

take advantage of MEC’s capabilities, especially in network manage-
ent and computational resources. The article presents an innovative

rchitecture and conducts a comprehensive study to assess the perfor-
mance and computational cost differences between various boosting
tree algorithms. The study evaluates five models, namely Xgboost,
LightGBM [34], AdaBoost, CatBoost [35], and GradientBoosting [36],
which are evaluated on a custom dataset that considers traditional in-
dustrial protocols such as Modbus/TCP, OPC Unified Architecture (OPC
UA), and S7 communications (S7COMM). The evaluation assesses the
models’ ability to detect various attacks, including scanning techniques,
DDoS attacks, packet manipulation, and attacks on web applications.
The study found that the Xgboost classifier performs better than other
classifiers when dealing with multiple attacks, achieving an impressive
F1 score of 99%. Additionally, the study shows that the LightGBM
classifier has a better classification ratio and computational cost.

The authors of [37] examine the use of GPT and interpolation-
based data augmentation for multiclass intrusion detection in IIoT
networks. They compare different data augmentation techniques and
their impact on five intrusion detection algorithms, such as Decision
Tree (DT) [38] or Xgboost. The study concludes that the advantages
f data augmentation are specific to the algorithm and data used.

Xgboost outperforms all the other classifiers but does not benefit from
ata augmentation. This highlights the challenges of using GPT-based

methods for tabular data generation, as they were found to generate
nvalid data, which negatively affects classification performance. The
aper presents a systematic evaluation of data augmentation methods

for intrusion detection models.
By taking application and transport layer features as a basis, su-

ervised ML was applied in [39]. The researchers developed feature
clusters for flow, MQTT, and TCP, using the UNSW-NB15 data-set,
and they applied supervised ML algorithms, such as RF and Support
Vector Machine (SVM), to these clusters. Their proposal achieved high
accuracy and a low training time in binary and multi-class classifi-
cation of normal and malicious packets. When compared with other
contemporary approaches, the proposed feature clusters demonstrated
significant advantages, achieving an accuracy of 97.37% when using
the RF algorithm for multiclass problems.

The proposals reviewed in this section have one main limitation:
they do not detect unknown attacks. It is crucial to consider this
functionality in IDSs deployed in IIoT scenarios due to the constant
evolution and discovery of new vulnerabilities in this environment.
Additionally, each proposal focuses on optimizing the preprocessing
stage of the data using different techniques. Our proposal overcomes
both limitations effectively. Using TabPFN as a base model allows us to
avoid the need for deep data preprocessing and reduces the complexity
of the IDS proposal. Additionally, WFE-Tab is designed to directly
detect anomalies in the specific application it will be deployed in.
Finally, our proposal outperforms previous ones in terms of F1-Score

and Accuracy metrics.
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Table 1
Related work corresponding to proposals from other researchers.

Ref (Year) Category Technique(s) Dataset Anomalous
detection?

Evaluation metric/Performance

[19] (2023) ANN ToN-IoT and CIC-DDoS2019 No F1-Score overall 98.73%
[20] (2024) Q-Learning ToN_IoT No Accuracy 94.40%
[21] (2023) FL Autoencoders USTC-TFC2016, CIC-IDS2017,

and CSE-CIC-IDS2018
No F1-Score overall 94.44%

[22] (2023) DAFL CSE-CIC-IDS2018 No F1-Score 93.3%
[23] (2023) GAN KDD99, NSL-KDD, and

UNSW-NB15
No F1-Score overall 98.53%

[24] (2023) Xgboost, Bagging, RF, ET,
Adaboost

ToN-IoT No Xgboost F1-Score 98.30%

[30] (2022) RF with IF and PCC Bot-IoT and WUSTL-IIoT-2021 No F1-Score overall 93.57%
[33] (2023) ML Xgboost, Adaboost, Catboost,

GradientBoosting and
LightGBM

Custom Dataset No Xgboost F1-Score 99%

[37] (2024) Decision Tree (DT), RF,
TabNet, Xgboost

Not specified No Xgboost F1-Score 91%

[39] (2021) RF, SVM UNSW-NB15 No RF Accuracy 97.37%

[40] (2022) DenseNet, Inception Time Edge-IIoT and UNSW-NB15 No Both F1-Score overall 96.9%
[41] (2024) NASP, NASP-MTC USTC-TFC2016 and

Edge-IIoTset
No NASP-MTC F1-Score overall

99.42%
[42] (2023) DL GraphAN DAPT2020 and Edge-IIoTset No F1-Score overall 97.99%
[43] (2021) ANN, DNN, RNN and LSTM UNSW-NB15 modified No ANN/DNN Accuracy 99.59%
[44] (2023) DNN with Proposed Feature

Selection
NSL-KDD, UNSWNB-15, and
CIC-IDS-2017

No F1-Score overall 98.7%

[45] (2024) DQN-HIDS UNSW-NB15 Yes F1-Score overall 70.33%
[46] (2024) DQN Double DQN-LP Simulation No Detection Rate 90%
[47] (2024) DQN-CVAE TON-IoT Yes F1-Score 99.5%
[48] (2024) MFGD3QN Simulation No 100% accuracy in detection of

DoS attacks

Our proposal FL TabPFN with Fusion data
clustering phase

Edge-IIoTset Yes F1-Score 99.81%
Accuracy 99.57%
D

a

(
A

e
N
i
t
r
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2.3. IDS based on DL approaches

The authors of [40] designed two deep learning models, DenseNet
nd Inception Time, to detect and classify cyber-attacks. The models
ere trained and tested on network traffic data from two datasets:
dge-IIoT, and UNSW-NB15. Their performance was evaluated using
 comprehensive set of metrics, including accuracy, precision, recall,
nd F1-score. The DenseNet and Inception Time models outperformed
ot only traditional ML methods but also other deep learning archi-
ectures, achieving an F1-Score of 95.3% when using the Edge-IIoTset
nd 98.5% with the UNSW-NB15 dataset. The study also explored the

application of the sliding window technique and class weights to tackle
he challenges posed by imbalanced and heterogeneous data, which
re common in network traffic data. The sliding window technique
nhanced the models’ feature extraction capabilities, while the use of

class weights improved their generalization capabilities.
In [41] the authors made a significant contribution by developing

n automatic and efficient method for classifying malware traffic.
heir method, called Neural Architecture Search via Proximal Iterations
NASP), is designed to quickly search for the optimal neural network
odel based on network traffic in real-world environments. The search
rocess is redefined as an optimization problem with discrete con-
traints of the model complexity. This allows NASP to adapt to different

network traffic scenarios. The effectiveness of the NASP-MTC method
was evaluated on two realistic datasets, namely USTC-TFC2016 and
Edge-IIoTset. The results showed superior classification performance
and lower model complexity compared with existing methods, with
an overall F1-Score of 99.42%. This research represents a significant
advancement in the field of malware traffic classification, offering a
romising approach for enhancing IoT security.

In the realm of IIoT-enabled Cyber–Physical Systems (CPS), de-
tecting and classifying Advanced Persistent Threat (APT) attacks is
a critical challenge. The authors of [42] propose a novel method
hat leverages the power of Graph Attention Networks (GraphANs)
o capture the complex and dynamic features of APT attacks. Their
 t

4 
system consists of five layers, each contributing to the overall efficacy
of the detection process. The method was validated using two publicly
available datasets, namely DAPT2020 and Edge-IIoTset, and it achieved
high detection accuracy and a low prediction time, outperforming
conventional ML techniques. The F1 Score metric was 96.58% with the

APT2020 dataset and 99.4% with the Edge-IIoTset dataset, indicating
that their approach could provide effective protection against APT
ttacks in the IIoT-enabled CPS environment.

The researchers in [43] propose a deep intrusion detection system
Deep-IDS) that is based on three types of deep learning models:
rtificial Neural Network (ANN), Deep Neural Network (DNN), and Re-

current Neural Network (RNN) with Long Short-Term Memory (LSTM).
They utilized the UNSW-NB15 dataset, which contains realistic net-
work traffic data with various types of attacks, and enhanced it by
merging, cleaning, normalizing, and relabelling the data. The study
compared the performance of their proposed Deep-IDS models with
12 other ML and DL models in terms of accuracy, loss, and training
time. The ANN and DNN models proposed by the authors achieved the
highest accuracy, with 99.59% accuracy for multi-class classification.
This finding highlights the effectiveness of deep learning models for
intrusion detection, particularly when using the enhanced UNSW-NB15
dataset.

In [44] the author propose a new feature selection technique for
deep neural network-based intrusion detection systems. The technique
is based on the fusion of the statistical importance of features using
standard deviation and difference of mean and median. The authors
valuate their approach on three intrusion detection datasets, namely
SL-KDD, UNSWNB-15, and CIC-IDS-2017, and compare it with exist-

ng feature selection techniques. The results indicate that the proposed
echnique achieves better performance in terms of accuracy, precision,
ecall, F1-Score, false positive rate, and execution time. They also
onducted a statistical test to validate the significance of their results.

Their approach achieved an overall F1-Score performance of 98.7%.
DL algorithm-based approaches have an inherent limitation due

o the computational cost of running these models on IIoT devices.
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Depending on the deployment, some of the approaches may not be
suitable for certain IIoT architectures. Another limitation that could
prevent the proposals from reaching their optimal performance is the
eneralization, preprocessing, and feature selection of the data. Finally,
s has been mentioned, none of the proposals using DL algorithms
onsider detecting anomalous or unknown attacks. Our proposal in-
roduces an MEC layer to overcome the inherent limitations of the
IoT paradigm, and the design of WFE-Tab includes the detection of
nomalous samples. Furthermore, our proposal’s performance surpasses
hat of other approaches based on DL algorithms.

2.4. IDS based on DQN approaches

A heuristic IDS based on DQN for Social Internet of Things (SIoT)
environments, named as DQN-HIDS, is proposed in [45]. It is designed
o address the challenge of zero-day attacks in SIoT networks, which
ften lack sufficient training data. The DQN-HIDS employs a traffic
rocessing module and a heuristic learning network, thereby enhancing
he system’s capacity to classify SIoT network traffic. A reward and
enalty mechanism is introduced to impose a penalty on incorrect

labelling actions and to adapt rewards to different actions. The results
of the study demonstrate that DQN-HIDS is an effective approach for
mproving the accuracy of SIoT traffic labelling while reducing the
orkload of cybersecurity examiners. A comparison with state-of-the-
rt DL models, including CNN-BiLSTM, and ML methods, such as RF,
hows that DQN-HIDS outperforms other methods in terms of F1-Score,
ith an average of 70.33% in testing scenarios with fewer training

amples.
In [46], authors present a novel intrusion detection approach for the

IIoT, which combines stochastic games and Double DQN with a ‘‘lazy
penalty’’ mechanism to enhance performance. The strategy employs
a dynamic, adversarial, stochastic-game model, which incorporates
ncomplete information to simulate interactions between IIoT attackers
nd defenders. The proposed system dynamically adjusts its detection
trategies by analysing Nash equilibria and leveraging reinforcement
earning. Simulation results demonstrate that this approach achieves
igher detection rates and lower resource consumption compared to
xisting methods, such as Actor–Critic and Reinforce. In particular, the
ouble DQN-LP algorithm outperforms the baselines with a detection

ate of 90%, while significantly reducing overhead through its ‘‘lazy
enalty’’ mechanism.

The authors in [47] present a novel intrusion detection solution
for the IIoT, one that is based on a DQN framework and has been
specifically designed for open-set recognition problems. The solution
incorporates a conditional variational autoencoder (CVAE) to augment
the value network in DQN, thereby enabling it to distinguish between
known and unknown malicious traffic. By treating the intrusion de-
tection task as a discrete-time Markov decision process, the model
efficiently classifies known traffic and uses reconstruction errors to
detect unknown attacks. The authors conducted experiments utilizing
the TON-IoT dataset, and their results demonstrate that the DC-IDS
model exhibited superior performance compared to existing method-
ologies such as EVM, or an implementation of CVAE with extreme
value theory (EVT), achieving an F1-score of 99.5%. Furthermore,
the model demonstrated higher recognition rates for unknown attacks
whilst maintaining consistent classification accuracy for known traffic.

In [48], a novel defence mechanism against Distributed Denial-of-
Service (DDoS) attacks in edge intelligence environments is presented.
It employs a Mean-Field Game (MFG) framework in conjunction with
a Dueling Double Deep Q-Network (D3QN), designated as MFGD3QN.
The objective of this method is to optimize the defence strategy for
arge-scale edge intelligence devices (EIDs) in scenarios where they
re subjected to intense DDoS attacks. By modelling the interactions

between attackers and defenders as a multi-agent problem, the system
mploys a combination of mean-field games and multi-agent deep
reinforcement learning to compute optimal defence policies. The results

5 
of the simulation demonstrate that MFGD3QN outperforms traditional
algorithms, including A2C, DDQN, D3QN, MFGDDQN, and MFGA2C. It
achieves faster convergence and a higher defence success rate against
DDoS attacks. In particular, MFGD3QN achieved a 0.2 reward by
the 500th iteration and effectively mitigated all DDoS attacks in the
simulation after 400 iterations.

DQN approaches for intrusion detection in IIoT environments
present a number of significant challenges, primarily related to the high
computational demand and the necessity for extensive training data,
which may prove to be a barrier to their implementation in resource-
constrained IIoT devices. Furthermore, these methods frequently en-
counter difficulties in adapting to evolving attack strategies, as they
require constant retraining in order to maintain optimal performance.

To conclude, the literature review shows that there are several ways
o implement IDS using FL, DL, ML, and DQN. These solutions achieve
erformance ratios measured by the F1-Score, a metric commonly used
n imbalanced classification problems. However, most of these studies
o not focus on the unique environment of IIoT-MEC and its inherent
dvantages. Furthermore, the distributed solutions proposed using FL
echniques require a significant number of clients to achieve optimal
erformance. In this study, we introduce WFE-Tab, a novel model that
s based on the TabPFN model and designed for the implementation of
 smart IDS specifically tailored for IIoT-MEC scenarios. Our proposal
an detect unknown attacks that the model has not been trained to
ecognize, a functionality which is absent from most other studies.
astly, our proposal outperforms the majority of the studies considered
n this section, even with a reduced number of clients, demonstrating
he efficiency and effectiveness of our approach.

Table 1 presents a comparison of the current FL, DL, ML, and DQN
pproaches for IDS, as well as the original approach proposed in this
ork.

3. Methodology

This section outlines the procedural steps and reviews the previous
approach taken before implementing the WEF-Tab model. The aim of
the model is to address the limitations of TabPFN, specifically the lim-
ited number of training samples and classification classes. Additionally,
there is a detailed description of the IDS architecture that WFE-Tab can
use to detect and classify malicious traffic in an IIoT-MEC environment.

3.1. First development iterations

This section explains the incremental iterations made to reach our
inal proposal. We started with the base model and then incorporated
arious ensemble and clustering approaches to the TabPFN model.

3.1.1. TabPFN base model limitations
During the initial phase of this research, we attempted to implement

an intrusion detection application using the TabPFN model. However,
we found that this model, which has demonstrated robust performance
in various applications [13,49], was unsuitable for the specific require-
ments of another real-world application that contains multiple classes,
r that needs a large amount of data to perform well.

The TabPFN model lacked the specialized properties required for
effective intrusion detection in an IIoT-MEC context, as it was originally
esigned for a wide range of applications. The features required for

such environments include the ability to handle high volumes and
varieties of data, as well as to accurately classify and respond to
potential security threats.

When considering the complexity and diversity of IIoT-MEC envi-
onments, the limitations of the TabPFN model became particularly
pparent. This context requires the model to have knowledge about

the data from various IoT devices, each designed for specific tasks and
producing unique types of data. Additionally, this fact makes the model

training stage challenging, as it is necessary to check every 1000 sample
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combinations obtained from the environment, and ensure that there are
sufficient samples from each class to provide the model with minimal
nowledge.

On the basis of these considerations, it was concluded that the
abPFN model, despite its strengths, was not the optimal choice for this
articular application or other applications with similar requirements,
hich could benefit from the use of TabPFN to reduce the complexity
f their implementation. As a result, a new model was developed to
ddress the limitations of TabPFN.

3.1.2. Ensemble approaches with TabPFN
After initial attempts with the TabPFN model, the research direction

shifted towards implementing ensemble approaches. This strategic shift
aimed to overcome the inherent limitations of the TabPFN model,
articularly its inability to handle a large number of training samples.

The original design of the TabPFN model constrained it to work with
 maximum of 1000 training samples. This highlighted a critical limi-
ation in the TabPFN model’s applicability to real-world applications.

To tackle this issue, we investigated the implementation of ensemble
ethods. This involved using multiple instances of the TabPFN model,

nown as client models, in conjunction. By doing so, a greater pro-
portion of the data collected could be incorporated during the training
phase, resulting in the model being exposed to a wider range of data
samples.

In our research, we implemented two ensemble methods:

• Sequential Majority Voting (SMV) is a simple yet effective
ensemble method. In this approach, each model is trained with a
sequential subset of 1000 samples from the original dataset, and
in the ensemble step, each model makes a prediction for each
sample. The class that obtains the majority of votes across all
models is chosen as the final prediction. This method is based
on the principle that the collective wisdom of multiple models
is likely to be more accurate than the prediction of any single
model [50]. However, one limitation of Majority Voting is that
it assumes all models in the ensemble are equally reliable, which
may not always be the case.

• Enhanced Majority Voting (EMV) is another ensemble method
that we implemented. Derived from SMV, EMV involves creat-
ing multiple random subsets of the original dataset, keeping a
similar proportion of the classes in the subset to ensure correct
performance. A separate model is trained on each subset, and for
each sample, the final prediction is made by majority voting. EMV
can reduce overfitting and reduce the determinism contributed
by the order of the samples in the original dataset, and improve
the stability and accuracy of ML algorithms [51]. However, the
ensemble may not perform well if the models are too similar, as
they may all make the same mistakes. This disadvantage is also
present in the SMV proposal.

Nevertheless, this approach presented its own set of difficulties.
espite the increased number of training samples, the classification
as limited to only 10 classes. Additionally, although the ensemble
odel was expected to perform better with the increased number

f training samples, this was not consistently observed. During the
ombination decision process, each model in the ensemble was given
qual weight. However, this approach did not consider the varying
evels of information contained in different samples or the potential for
isclassifications by individual models.

In some situations, certain models in the ensemble lacked sufficient
information to classify accurately. In some instances, misclassifications
made by models were propagated through the ensemble due to equal
weighting. These issues highlight the necessity for a more nuanced
approach to model weighting and combination in the ensemble.
 m

6 
3.1.3. Clustering-based Ensemble (CE) approach
In the following research phase, we utilized clustering algorithms

o improve our model’s performance, specifically the K-Means++ algo-
ithm. This method involves an initial step of clustering the data, which
enerates subsets based on the produced clusters.

Each subset contains classes that are highly similar to each other,
allowing us to create multiple families of TabPFN models. Each model
family specializes in different types of classes contained in the dataset,
as they are trained on a specific subset of data that best represents a
particular class.

This approach has the significant advantage of identifying anoma-
ous classes by designating one of the clusters as the ‘anomalous’
luster, which contains packets that are significantly different from
hose in other clusters. These unusual packets are then distributed
mong the other subsets. This approach is especially effective in identi-
ying unknown attacks, as it enables the model to flag any packet that

does not fit well into any of the known attack types or benign packet
types for the IDS.

This implementation allowed us to overcome several limitations of
the basic TabPFN model. For example, the model could be trained with
over 1000 samples, classify more than 10 families, and use more than
100 features depending on the dataset and use case. This represents
a significant improvement with respect to the base model, which was
limited by these constraints.

However, this approach also presents its own set of challenges.
For example, classes with a low number of samples may not have the
orrect distribution across the clusters, and underrepresented classes in

the training data could negatively impact the model’s performance.
Furthermore, the fact that the ensemble’s models have equal weight

ay lead to misclassification of similar packets generated by differ-
nt attacks. This is due to the model’s inability to distinguish subtle

differences in the packets that indicate different types of attacks.
In order to classify anomalous attacks, it is necessary to establish

 threshold that determines which attacks are considered anomalous
r misclassified. This is because only one subfamily of models will
orrectly classify the class, and the rest will determine that the packet
s anomalous. Determining the optimal threshold is a challenging task
hat requires a careful balance between sensitivity and specificity.

These issues highlight the need for a more nuanced approach to
model weighting and combination in the ensemble. In spite of the
hallenges, the clustering-based ensemble approach is a promising

direction for improving the performance of the TabPFN base model,
and it forms the basis of our final WFE-Tab approach.

3.2. The WFE-Tab approach: A clustering fusion-based ensemble method

This methodology is an advanced version of the TabPFN model
and previous iterations of this model detailed in Section 3.1, incor-
porating several enhancements to address its limitations and improve
performance.

WFE-Tab introduces significant improvements in model weighting,
ata distribution and anomalous sample handling to the TabPFN model,
s it is shown in Fig. 1. These improvements increase the accuracy

and reliability of intrusion detection, making WFE-Tab a significant
pgrade of TabPFN. The methodology of our purpose is divided into
he following steps:

1. Data division by clustering . This step provides the distribution of
the classes of different subsets in accordance with the clusters identi-
fied by the K-Means++ algorithm. In order to determine the number
of clusters that the algorithm will consider, K-Means++ attempts to
allocate each class to a cluster during 300 iterations, thereby ensuring
optimal algorithm performance [52]. Following the completion of the
lgorithmic iterations, the resulting clusters will identify the subsets of
lasses that have converged. At the conclusion of this phase, the user
ay designate one of the subsets as anomalous. This will enable the
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Fig. 1. Schematic WFE-Tab deployment.
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model to determine that certain samples that have not been previously
classified may be assigned to a specific class defined during this step.

The K-Means++ algorithm employs a mathematical representation
f the clustering process, whereby the objective is to minimize the
istance between data points and their assigned cluster centroids.

arg min
𝐶

𝑘
∑

𝑖=1

∑

𝑥∈𝐶𝑖

‖𝑥 − 𝜇𝑖‖
2 (1)

The objective function for K-Means++ is described by Eq. (1), where
represents the samples found in the dataset used for the training of
FE-Tab, 𝐶𝑖 is the 𝑖th cluster. 𝜇𝑖 is the centroid of the 𝑖th cluster, and
⋅ ‖ denotes the Euclidean distance.

2. Fusion data strategy . In this step, a small proportion of each
subset selected by the user (approximately 1%–20% of the total subset)
is redistributed to one or more other subsets to ensure cross-sample
representation. In addition, a designated anomalous subset is partially
included in the fusion process, thereby allowing the model’s ability to
etect anomalies. Let the data from each cluster 𝐶𝑖 be represented as a
ubset 𝐷𝑖. A fusion process is applied where a portion 𝛼 ⋅ 𝐷𝑖 is mixed
ith another subset 𝐷𝑗 , where 𝛼 ∈ [0.01, 0.20] and a portion 𝛽 ⋅ 𝐷𝑎,
here 𝐷𝑎 is the anomalous subset and 𝛽 ∈ [0, 0.10]. This fusion process

s represented by Eq. (2)

𝐷fused
𝑖 = 𝐷𝑖 ∪ (𝛼 ⋅𝐷𝑗 ) ∪ (𝛽 ⋅𝐷𝑎) (2)

The fusion process ensures that each subfamily of models has some
familiarity with classes from different subsets, which is the primary
objective of this fusion strategy, even when an anomalous subset is
included to prevent misclassification. The inclusion of an anomalous
subset will not contain every heterogeneous class present in this subset,
allowing for the classification of certain unknown samples without
prior knowledge. This is accomplished by incorporating a diverse array
of samples into the training data for each model. Although the number
f samples from different classes may be limited, exposure to these
amples can enhance the model’s capacity to accurately recognize

and classify various classes. Subsequently, a distinct feature selection
rocess is conducted for each subset. This process involves the identi-
ication of the most pertinent features for each subset, employing the
RT algorithm.
7 
3. Model group generation. The subsets are divided into two distinct
ets: 𝐷 = 𝐷𝑡𝑟𝑎𝑖𝑛 ∪ 𝐷𝑠𝑐 𝑜𝑟𝑒, where 𝐷train is the training set and 𝐷score is
he scoring set. 𝐷𝑠𝑐 𝑜𝑟𝑒 plays a significant role in determining the weight
𝑗 = {𝑤𝑗 𝑐0 , 𝑤𝑗 𝑐1 ,… , 𝑤𝑗 𝑐𝑛} assigned to each model for a given class. The
roportion of accurate predictions made by the model 𝑀𝑗 for a given
lass 𝑐𝑛 is directly proportional to the weight assigned to that model
or that predicted class 𝑤𝑗 𝑐𝑛 . The calculation of weight is represented
y Eq. (3)

𝑤𝑗 𝑐𝑛 =
Correct Predictions by 𝑀𝑗 classifying 𝑐𝑛

Total Samples of 𝑐𝑛 in 𝐷𝑠𝑐 𝑜𝑟𝑒
(3)

In order to achieve optimal splitting, a score evaluation stage is
stablished that is similar in nature to a typical FL system training
tage. Then, a number of iterations 𝑘 is evaluated to identify the most
uitable partitioning of training and scoring data. For each iteration 𝑘
he optimal partitioning is selected based on performance.

Optimal split = ar g max
𝑘

(𝑓𝑠𝑐 𝑜𝑟𝑒(𝐷𝑘
𝑡𝑟𝑎𝑖𝑛, 𝐷𝑘

𝑠𝑐 𝑜𝑟𝑒)) (4)

The selection is described by Eq. (4), where 𝑓score is the evaluation
function that assesses the quality of the split based on classification
performance.

The optimum split is then implemented for the final deployment of
the WFE-Model model groups. Each model within a group is trained
on a specific subset of data, thereby becoming an expert in detecting
and classifying the classes represented in its subset. The number of
TabPFN models within each model group will be consistent in order
to ensure a fair classification between the various subset classes and
to optimize the benefits of the weighting voting. Each TabPFN model
is trained on a different subset of 1000 samples from the training set
of the model group to ensure diversity and reduce overlap between
models. Furthermore, the possibility of detecting anomalous and new
classes that may not have been previously identified is also considered,
with the inclusion of an anomalous class in each model group with the
anomalous subset that was designate during the Step 1.

4. Weight ensemble prediction. In the final step, the predictions pro-
duced by the various models within the ensemble are aggregated in
accordance with the objective of determining the final classification.
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To guarantee that the models with greater reliability have a more
significant impact on the final decision, each model’s prediction is
weighted according to its performance on the scoring set. The WFE-Tab
approach employs a weighted voting mechanism to leverage the spe-
cialized knowledge of each model in the ensemble, thereby facilitating
the generation of a more accurate and robust classification.

𝑦(𝑥𝑖) = ar g max
𝑐

𝑁
∑

𝑗=1
𝑤𝑗 ⋅ I(𝑀𝑗 (𝑥𝑖) = 𝑐) (5)

This weighted voting mechanism is represented by Eq. (5), where
𝑀𝑗 (𝑥𝑖) is the prediction of the 𝑗th model for instance 𝑥𝑖, 𝑤𝑗 is the
weight assigned to model 𝑀𝑗 , I is an indicator function that returns
1 if 𝑀𝑗 (𝑥𝑖) = 𝑐, and 0 otherwise, and 𝑁 is the total number of models.

Algorithm 1 WFE-Tab Model algorithm
Require: Dataset 𝐷
1: Apply K-Means++ to divide data into 𝑘 clusters.
2: Result: Subsets 𝐷1, 𝐷2, ..., 𝐷𝑘
3: for each subset 𝐷𝑖 do
4: Introduce a proportion 𝛼⋅𝐷𝑗 from other subsets and a proportion

of 𝛽 ⋅𝐷𝑎 from anomalous subset:
5: 𝐷fused

𝑖 = 𝐷𝑖 ∪ (𝛼 ⋅𝐷𝑗 ) ∪ (𝛽 ⋅𝐷𝑎), where 𝑗 ≠ 𝑖.
6: end for
7: for each subset 𝐷fused

𝑖 do
8: Split into training and scoring sets:
9: 𝐷fused

𝑖 = 𝐷train
𝑖 ∪𝐷score

𝑖
10: Train indicated number of models 𝑀 on 𝐷train

𝑖
11: end for
12: for each model 𝑀𝑗 do
13: Evaluate 𝑀𝑗 on the scoring set 𝐷score

𝑖
14: end for
15: Classification
16: for each sample instance 𝑥 do
17: for each model 𝑀𝑗 do
18: Predict class 𝑀𝑗 (𝑥)
19: Apply the model’s weight 𝑤𝑗
20: end for
21: Compute final classification 𝑦(𝑥) and return it
22: end for

The WFE-Tab classification process is outlined in Algorithm 1.
This illustrates how each step, from data division and clustering to
model training, weighting, and final ensemble voting, contributes to
the overall classification.

3.3. Time complexity of WFE-Tab model

The WFE-Tab model employs a multi-step process comprising clus-
tering, training and ensemble voting, which collectively ensure robust
classification results. In this context, N represents the total number
of instances in the dataset, while K denotes the number of clusters
generated during the data division by the clustering step. The time
complexity of this step is 𝑂(𝑁 × 𝐾 × 𝑑 × 𝑖), where d is the number
of features and i is the number of iterations for convergence, and it is
achieved using the K-means++ algorithm.

Once the clustering and fusion processes have been completed,
FE-Tab trains multiple TabPFN models for each subset. We let 𝑀𝑘,

𝐶𝑘, 𝑓 (𝑥) and 𝐼𝑡𝑟𝑎−𝑠𝑐 𝑜 denote the TabPFN models of a group 𝑘, the size of
the fusion subset, the time complexity of the TabPFN training models,
and the iterations associated to obtain the optimal split with the scoring
split. The complexity of the training time is 𝑂

(

𝐾 ×𝑀 × |𝐶𝑘| × 𝑓 (𝑛)×
𝐼tra-sco

)

. After training the models, a scoring set is used to evaluate
the accuracy of each one, and a weight is assigned to each based
on its performance for specific classes. The complexity of the scoring
8 
Fig. 2. Proposed IIoT-MEC IDS architecture.

depends on the size of the scoring set 𝑆 and the number of mod-
els 𝑀𝑘 per cluster. The total scoring complexity for all clusters is
𝑂
(

𝐼𝑡𝑟𝑎−𝑠𝑐 𝑜 ×
∑𝐾

𝑘=1 𝑀𝑘 × 𝑆
)

. Finally, after the weights are determined,
the models’ predictions are combined using a weighted voting mecha-
nism. The complexity of the vote depends on the number of models 𝑀𝑘
per cluster and the size of the data 𝑃 to predict. The total complexity
of the vote is 𝑂

(

∑𝐾
𝑘=1 𝑀𝑘 × 𝑃

)

.
By summing up the time complexities of the clustering, training,

scoring, and voting stages, we obtain the time complexity of WFE-Tab
epresent in Eqs. (6) and (7):
𝑂𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔(𝑁 ×𝐾 × 𝑑 × 𝑖 +𝐾 ×𝑀 × |𝐶𝑘| × 𝐼tra-sco × 𝑓 (𝑛)

+𝐼𝑡𝑟𝑎−𝑠𝑐 𝑜 ×
𝐾
∑

𝑘=1
𝑀𝑘 × 𝑆)

(6)

𝑂𝑝𝑟𝑒𝑑 𝑖𝑐 𝑡𝑖𝑜𝑛(
𝐾
∑

𝑘=1
𝑀𝑘 × 𝑃 ) (7)

3.4. Proposed IDS architecture

Taking into account the benefits offered by MEC, particularly the
omputational resources that facilitate the implementation of an IDS

based on ML models distributed over multiple MEC stations, and con-
sidering the characteristics of our WFE-model, we chose to use it as the
basis for the proposed IIoT architecture referenced in [53].

This architecture is a three-layer structure that describes the differ-
ent components of an IIoT-MEC scenario, with the addition of a cloud
layer to incorporate potential IoT, Big Data, or storage services. The
proposed architecture, depicted in Fig. 2, integrates the MEC stations
into the MEC layer that will be present within every IIoT network
associated with the manufacturing process.

Two types of nodes are considered within these MEC stations, each
with its own functionality. The MEC nodes run various IIoT servers
to provide and compute IIoT applications, along with MEC services
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Table 2
Distribution of class values in the Edge-IIoTset.

Traffic Classes Records Total

Normal Normal 11 223 940 11 223 940

Attack

Backdoor 24 862

9 728 708

DDoS_HTTP 229 022
DDoS_ICMP 2 914 354
DDoS_TCP 2 020 120
DDoS_UDP 3 291 626
Fingerprinting 1001
Man In The Middle 1229
Password 1 053 385
Port_Scanning 22 564
Ransomware 10 925
SQL_injection 51 203
Uploading 37 634
Vulnerability_scanner 145 869
XSS 15 915

to ensure their correct functionality. Additionally, a Security Network
Node is introduced, which implements the Local Model Detector and
the Monitoring service. This service sends alarms to alert administra-
tors or activate defensive measures, thereby mitigating potential risks
within the topology.

This node establishes communication with the IDS Control nodes,
which contain the main functionality of our architecture. The Ensemble
Decision propagates and receives the classification of every packet
received by the model clients present in the MEC layer, returning the
final decision of the classification to the requesting client. The Fusion
Data Collection Service is responsible for receiving each packet received
by the IDS Control Nodes. It also performs scheduled implementation of
preprocessing operations on the data that has been collected and stored.
This service is used by the Re-Update Local Clients implementation to
prevent data drift in classifications by Local Clients and to add more
information and knowledge to these models.

In the IIoT layer, each IIoT device is connected to the Supervisory
Control And Data Acquisition (SCADA) node, enabling communication
with other IIoT devices or IIoT servers located within the MEC layer.
The SCADA node’s primary function within our architecture is to iden-
tify and determine measures to prevent anomalous behaviour detected
in the IIoT network.

4. Threat model

With reference to the IDS architecture outlined in Section 3.4,
our local model detector operates as an application within the MEC
stations connected to the IIoT networks. The IDS Control nodes are
executed on designated machines, which are strategically isolated from
the remaining nodes of the MEC stations.

The local model detector receives mirrored traffic from the SCADA
of the IIoT topology, undertakes a comprehensive analysis, and ini-
tiates a classification process. The Ensemble Decision Server receives
the information regarding the classification, which is the result of
an ensemble decision among multiple local model detectors located
within the MEC layer network. The classification is then returned to
the originating local model detector. If a packet is classified as mali-
cious, the monitoring application receives an alert. This application,
which is also operational within the MEC station, can initiate defensive
countermeasures to prevent potential damage to the IIoT network.

The assumption is that the nodes where the IDS functions are
located are free of malware infection. Additionally, it is assumed that
during the collection of normal traffic for model training, the devices
within the IIoT topology exhibit typical behaviour and are functioning
optimally. The model has been trained using the types of attacks that
a malicious attacker would typically employ within the IIoT. During
the data preprocessing phase, each packet is tagged according to the
attack it originates from. Furthermore, the results of the model will
9 
Fig. 3. Workflow of the experimentation.

not be subject to manipulation by attackers by means of poisoning or
tampering attacks.

The behaviour of the attackers is primarily aimed at scanning the
IIoT to gather information about the connected devices. The objective
of these attacks is to disrupt the normal operation of industrial devices,
manipulate the information exchanged between them, halt their service
through DoS attacks, gain unauthorized access to the devices’ various
services, generate blocks in the devices using different encryption meth-
ods, install backdoors to control already compromised IIoT devices, and
employ various techniques to crack passwords. These attacks primarily
target the network layer and the web application layer. It is assumed
that the attacker is connected to the IIoT network using a previously
compromised device, from which the attacks are launched.

The IDS is not limited to correctly classifying only those attacks
it has been trained to detect. It can also provide general anomalous
classifications if the attacker executes an unknown attack, and alert
administrators with a special alarm. The IDS nodes are centralized
in the MEC layer across different network segments and machines. If
a disconnection occurs between the two networks, the detector will
stop functioning. This is to prevent any potential manipulation of the
classification by attackers. If an attacker gains access to the machine
running the detector and infects it, they could potentially conceal
attacks on the industrial network.

5. Experimentation

The performance of our proposed architecture was tested using
the Edge-IIoTset dataset with the experimentation aimed at analysing
its performance in comparison with other baseline algorithms which
shows a good performance solving tabular data problems [18,54]. The
ML algorithms selected for our experimentation are: DT, RF, Xgboost,
LightGBM, AdaBoost, GradientBoosting, CatBoost.

This section describes the dataset, the hardware, and the data
science process used to measure the performance of each model and
obtain the results for the situations considered. The workflow used
during this process is illustrated in Fig. 3.
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Table 3
Experimentation setup.

Resource Details

Central Processing Unit (CPU) Intel i7-13700KF
Random Access Memory (RAM) 32 GB
Graphics Processing Unit (GPU) NVIDIA RTX 3060 Ti
Operating System Ubuntu 22.03 LTS
Language Python 3.10

5.1. Dataset

The Edge-IIoTset dataset [17] collection was carried out by or-
chestrating a bespoke IIoT-MEC testbed design. This design includes
a range of devices, sensors, protocols, and configurations, providing a
comprehensive and representative dataset.

This dataset comprises data from over ten distinct types of IoT
evices, each designed for specific tasks. These devices include digital

sensors for monitoring temperature and humidity, ultrasonic sensors,
ater level sensors, pH meters, soil moisture sensors, heart rate sensors,
nd flame sensors, among others.

Various features from different sources such as alarms, system re-
sources, logs and network traffic are used to increase the specificity
of the dataset. It is worth noting that the dataset has been enriched
y the authors of the dataset with 61 new features, carefully selected

from a pool of 1176 features considered during the deployment and
unning stages of the scenario. This careful analysis has increased the
omplexity of the dataset, making it a valuable resource for our analysis
nd modelling process.

The Edge-IIoT set addresses the connectivity challenges of IIoT
nd MEC protocols, as analysed by an extensive examination of 14
nterrelated attacks. These attacks can be broadly categorized into five
roups:

• DoS/DDoS attacks. This types of attacks aim to disrupt services
available to authorized users, either individually or through a
distributed approach. Four primary techniques that are commonly
used in such situations are considered in this dataset, these being
TCP SYN Flood, UDP flood, HTTP flood, and ICMP flood.

• Information Gathering attacks. The first step in any effective
attack is usually the gathering of information about the target of
the attack. This dataset examines port scanning, operating sys-
tem fingerprinting and vulnerability scanning, three key actions
that malicious actors often take during the information gathering
phase.

• Man in the Middle (MitM) attacks. The aim of this attack is to
intercept and control communication between two entities who
believe they are directly interacting. The dataset focuses on the
use of this attack strategy, targeting protocols that are widely used
in almost all modern systems, namely the Domain Name System
(DNS) and Address Resolution Protocol (ARP) protocols.

• Malware attacks. The impact of such attacks can be consider-
able, with the potential for significant damage caused by a range
of malware types. The dataset focuses on the examination of
backdoor, password cracking, and ransomware attacks.

• Injection attacks. These attacks aim to compromise the security
and confidentiality of the system being targeted. Three methods
have been considered for the dataset: Cross-site Scripting (XSS),
SQL injection, and upload attacks.

In Table 2, we illustrate the distribution of different traffic types across
he attacks and techniques in the dataset.

5.2. Experimentation setup

During the experimental phase of our research, we employed a high-
erformance workstation that was equipped with the hardware and
oftware specifications detailed in Table 3.
10 
Table 4
Features selected from the EdgeIIoTset dataset by ERT algorithm.

Name

http.request.version-0.0 icmp.seq_le
http.request.method-0.0 tcp.ack
http.request.version-0 tcp.connection.rst
http.request.method-0 tcp.seq
http.referer-0.0 tcp.len
http.referer-0 http.request.version-HTTP/1.1
tcp.flags http.request.method-GET
tcp.flags.ack http.response
tcp.checksum http.content_length
tcp.ack_raw tcp.connection.fin
icmp.checksum dns.qry.name.len
udp.stream http.request.version-HTTP/1.0
tcp.connection.syn

5.3. Data preprocessing

The dataset requires adaptation to ensure compatibility with the
designated algorithms. It is important to identify techniques suitable
for data manipulation and to determine the most relevant features.

his process includes preparing data for analysis, which requires the
trategic selection of techniques to improve data processing quality. In
ddition, selecting features carefully can greatly improve the perfor-
ance of the algorithms, allowing them to better identify patterns and
roduce accurate results. This phase consists of the following tasks:

Data transformation. To make alphanumeric data compatible with
ML algorithms, it needs to be transformed into a binary format. Bi-
narisation techniques, which assign a unique numerical value to each
category, are used to perform this transformation. This process ensures
hat the data is in a format that is suitable for being processed by the ML
lgorithms. This phase for the CE approach and WFE-Tab is explained
n Sections 3.1.3 and 3.2. For this experiment, three subsets of classes
ere identified and an additional anomalous subset was designated

o include samples representing diverse and heterogeneous classes not
ncluded in the previous subsets.

Data optimization. After completing data preprocessing, it is impor-
tant to review data storage and correct any instances of incorrect
data types. Unnecessary memory consumption can be avoided and the
overall performance of the ML model can be improved by ensuring the
correctness of the data types.

Feature selection. Some features may even have a negative impact
on the model’s performance. Therefore, it is crucial to identify the
eatures that have the most influence for predictive purposes. During
ur experimentation phase, we used the ERT [27] methodology to

select the attributes that provide the most valuable information to the
models. This approach enhances the model’s predictive accuracy by
focusing on the most informative features. The features selected by the
algorithm during the experimentation are shown in Table 4.

5.4. Model training

The final set of data is used for the training of the ML models in our
study. The training phase is divided into the following tasks:

Data split . Data splitting, which is a crucial step in our research
workflow, involves the dataset or subset being split according to the
pecific ML algorithm used in the experiment. The data has been
ivided into three distinct phases: training, scoring, and validation.

The training phase accounts for 70% of the data, the scoring phase
ccounts for 10% of the data, which is utilized exclusively for the WFE-
ab to enable weight voting, and the validation phase accounts for

the remaining 20% of the data. We used cross-validation to divide the
training set into five subsets during the training phase. The evaluation
and selection of the optimal model is facilitated by this approach.
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Table 5
Hyperparameters selected for the ML algorithms of the study.
Algorithm Best hyperparameters

DT criterion:gini, max_depth: 19, min_samples_leaf: 20, min_samples_split: 8
RF max_depth: 12, n_estimators: 174, criterion: gini, max_features: auto,
Xgboost learning_rate: 0.1, eta: 0.1, max_depth: 6, subsample: 0.8, seed: 0
LightGBM learning_rate: 0.0952, max_bin: 20, max_depth: 15, num_leaves: 80, subsample: 0.75
AdaBoost n_estimators: 526, learning_rate: 0.1

GradientBoosting max_depth: 13, max_features: auto, min_samples_leaf: 60, min_samples_split: 871,
n_estimators: 140, subsample: 0.8

CatBoost depth: 16, iterations: 30, learning_rate: 0.01
t
o

p

f
o
a
m
e
o
u
c

Parameter tuning . The efficacy of the training process can be en-
hanced by fine-tuning the parameters of the algorithms. In our study,
we used Grid Search [55], a widely recognized technique, to sys-
tematically traverse and determine the optimal parameters for our
ML models in a heuristic fashion, ensuring superior performance and
obustness.The hyperparameters found for the ML algorithms consid-
red in our study are detailed in Table 5. It should be noted that

for our methodology involving individual TabPFN models, this step is
considered unnecessary. However, for the distributed approaches the
experimentation is repeated until reaching the optimal ratio of number
f clients and performance. Finally, for WFE-Tab score validation stage
e established 15 rounds as a way to obtain the best training/score

plitting [56].

5.5. Model validation

This validation phase is crucial for evaluating the model’s predictive
ehaviour when classifying IIoT traffic. Several metrics should be con-

sidered for a comprehensive evaluation of the model during this stage.
ll of these metrics use the information contained in the confusion
atrix, which includes:

• True Positives (TP): In this scenario, TP represents the instances
in which the model correctly identifies packets as belonging to a
particular type of attack or as belonging to a benign classification.

• True Negatives (TN): TN represents the number of instances
correctly classified as non-members of a particular attack or
category.

• False Positives (FP): When dealing with specific types of attacks
or benign categories, FP refers to cases where the model incor-
rectly classifies benign traffic as a specific type of attack, or vice
versa.

• False Negatives (FN): In this scenario, FN refers to situations
in which packets of a particular type of attack are mistakenly
labelled as non-attack or benign traffic.

These values align with the classification performed by the model
for each packet, and the metrics considered are:

Accuracy . This metric that measures the ratio of correct predictions to
the total number of predictions that are generated by the model, and
is calculated using the formula outlined in Eq. (8).

𝐴𝑐 𝑐 𝑢𝑟𝑎𝑐 𝑦 = 𝑇 𝑃 + 𝑇 𝑁
𝑇 𝑃 + 𝑇 𝑁 + 𝐹 𝑁 + 𝐹 𝑃 (8)

Precision. The precision metric represents the ratio of true positive
predictions to the total number of positive predictions made by the
model, as shown in Eq. (9). This result highlights the effectiveness
f the detector in reducing the number of legitimate packets that are
istakenly identified as malicious.

𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 = 𝑇 𝑃
𝑇 𝑃 + 𝐹 𝑃 (9)
11 
Recall. This measure represents the ratio of true positive predictions
to the total number of positive predictions produced by the model, and
is calculated via Eq. (10). A higher recall score indicates the effec-
tiveness of the intelligent intrusion detector in accurately identifying
a significant number of attacks that match the category it aims to
detect.

𝑅𝑒𝑐 𝑎𝑙 𝑙 = 𝑇 𝑃
𝑇 𝑃 + 𝐹 𝑁 (10)

F1-score. The F1 score is a metric commonly used to evaluate models
rained on imbalanced datasets. It is calculated as the harmonic mean
f precision and recall as shown in Eq. (11), and is particularly useful

for models dealing with skewed class distributions.

𝐹1_𝑆 𝑐 𝑜𝑟𝑒 = 2 ⋅ 𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐 𝑎𝑙 𝑙
𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐 𝑎𝑙 𝑙 (11)

Training-test time. The time in seconds taken by each model to com-
lete the training, validation, and testing stages is used as a metric

for measuring the complexity of each method. This metric enables an
evaluation of the impact of complexity on performance with respect to
the given dataset.

6. Results

The results of our extensive analysis of ML models are presented in
this section. Starting with an examination of our model approach and
its improved models, the results are structured to reflect the progression
of our research. We then highlight the strengths and weaknesses of
our approach in comparison with others, and provide a comparative
analysis of WEF-Tab with baseline algorithms.

6.1. Comparison between TabPFN approaches

Our analysis begins with an examination of the original TabPFN
model, which, despite its strengths, is limited by its capacity to train
on a maximum of 1000 samples. Furthermore, both the original model
and ensemble approaches encounter difficulties when tasked with clas-
sifying more than 10 classes, as has been mentioned in Section 3.1. In
the subsequent analyses, we execute each derived TabPFN model to its
ull potential and compare their performance. This comparison will not
nly highlight the advances our approach offers over the original model
nd ensemble methods, but also underscore the potential of our derived
odels in handling complex classification tasks. As SMV and EMV are

nsemble models, their performance has been evaluated using a range
f client or model combinations, which consider the number of models
sed to generate the predictions, up to the maximum number that
ould be deployed with the available dataset. In the analysis of these

approaches, only the number of clients demonstrating the best perfor-
mance in terms of the metrics used in this study will be considered.
Finally, the clustering-based approaches, which are Clustering-based
Ensemble TabPFN and WFE-Tab, will be tested with different numbers
of clients to see the importance and the impact of increasing this
parameter. The results are shown in Table 6.
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Table 6
Results of experiments for the different approaches from TabPFN.
Approach Number of clients Accuracy Precision Recall F1-Score Training test time (s)
TabPFN 1 75.52 69.44 70.15 69.79 4.01
SMV 89 81.07 81.32 81.40 81.36 104.5
EMV 75 80.81 84.00 81.33 82.64 100.8

9 99.61 90.58 90.90 90.73 12.1
CE approach 12 94.10 95.88 95.63 95.55 15.2

15 96.20 96.73 90.87 92.18 18.2

9 99.20 99.66 99.42 99.53 12.3
WFE-Tab 12 99.12 99.62 99.63 99.61 15.5

15 99.57 99.81 99.82 99.81 18.6
The TabPFN model has an accuracy of 75.52%, a precision of
69.44%, a recall of 70.15%, and an F1 score of 69.79%. These metrics
indicate that the model’s performance is poor for an IDS. In order to
correctly identify and classify network activity, IDSs require high accu-
racy and precision. TabPFN’s relatively low metrics are an indication
that it may have a high rate of false positives and negatives, which is
undesirable in an IDS.

Although the SMV and EMV models have an accuracy above 80%,
they are still not suitable for IDS use. Despite outperforming TabPFN,
they still do not provide the required level of precision and recall for
effective intrusion detection. The EMV model shows some promise with
a higher accuracy of 84.00%, but further improvements will be required
before it can be considered a viable solution for use in an IDS.

The CE approach exhibits a notable enhancement in comparison
to the previous models, emphasizing a reduction in the number of
clients with respect to SMV and EMV, which ultimately leads to an
improvement in performance. It achieves the highest accuracy of all
the models of 99.61% with 9 clients. However, its precision, recall, and
F1-Score, while higher than some other models, are still not the highest.
With 12 clients, the CE approach shows consistent performance across
all metrics. It achieves an accuracy of 94.10%, a precision of 95.88%,
a recall of 95.63% and an F1 score of 95.55%. With 15 clients, the
accuracy increases to 96.20%, the precision rises to 96.73%, but the
recall drops slightly to 90.87%. This fact makes it possible to see that
the CE approach has difficulties in correctly identifying the classes that
are not common.

The WFE-Tab model performs better than all the other models and
configurations, in particular with 15 clients. It achieves an accuracy of
99.57%, the highest precision (99.81%) and the highest recall (99,82%)
and F1 score (99.81%). This suggests that in this comparative analysis,
the WFE-Tab model is the most effective model for IDS use, as it
provides the most reliable and consistent results.

In the context of integrating a model into the IDS architecture,
it is of the utmost importance to consider the balance between the
classification of performance and the computational costs. The training
test time, as it is often referred to, is a critical factor in determining
the efficiency and effectiveness of a model within the system during the
phases of training and testing of the different approaches. The Training
Test Time metric allows us to determine the number of resources that
may require a proposal to run multiple predictions and the time needed
for this. This is a crucial element to take into account, as it is not only
essential to ensure the model accurately classifies the diverse samples,
but also to minimize the time required to provide predictions and
to reduce the resources and time needed in the event of future re-
training. This factor is of increasing importance in the context of an
IDS application.

In view of this, it can be concluded that the WFE-Tab model exhibits
an optimum performance training test time ratio. This indicates that
the WFE-Tab model is capable of delivering high-quality performance
while maintaining a low time cost, rendering it an optimal choice for
deployment within the IDS architecture. This finding emphasizes the
necessity of considering both performance and cost when selecting
a model for deployment. Furthermore, this finding demonstrates the
12 
Fig. 4. Confusion matrix of WFE-Tab attack classification.

Table 7
Results of experiments with the baseline algorithms and our approach.

Model Accuracy Precision Recall F1-Score Training-test
time (s)

DT 96.20 96.74 90.87 92.18 10.42
RF 96.48 94.84 93.87 94.28 19.68
Xgboost 96.48 96,31 94.69 95.39 25.16
LightGBM 97.41 96.85 94.96 95.71 20.31
AdaBoost 97.31 95.32 93.37 94.15 21.72
GradientBoosting 96.45 93.76 93.97 93.86 35.14
CatBoost 97.62 97.41 94.99 95.95 20.52
WFE-Tab 99.57 99.81 99.82 99.81 18.6

value of the WFE-Tab model in maintaining balance between the two
critical factors, thereby enhancing the overall efficiency and effective-
ness of the IDS architecture. Fig. 4 shows the confusion matrix of the
WFE-Tab and the distribution of the attack classifications.

To conclude, the WFE-Tab model with 15 clients shows superior
performance across all metrics, making it the most effective model to
use when deploying IDS.

6.2. Comparison of WEF-Tab with baseline algorithms

The performance in terms of accuracy, precision, recall and F1
score of the baseline algorithms, which were selected in Section 5,
was compared with our approach, the WFE-Tab model using 15 clients.
Table 7 summarizes the results of the comparison, and it can be seen
that the WFE-Tab outperformed all the other ML models significantly
in all the metrics.
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Among the other models, CatBoost achieved the second-best per-
formance with an accuracy of 97.62%, a precision of 97.41%, a recall
of 94.99% and an F1 score of 95.95%. However, the second-best

odel is still lacking in accuracy and precision by approximately
2%, and in recall and F1-Score by about 5%, when compared with
WFE-Tab. The high degree of precision demonstrates the efficacy of
CatBoost in minimizing false positives. This can be attributed to the
innovative handling of categorical features and the method employed
to combat overfitting through gradient boosting. However, the slightly
lower recall rate indicates that, while the model is highly accurate in
correctly identifying positive cases, it may potentially overlook a few
true positives.

The DT model falls short with a recall of 90.87% and an F1 score of
2.18%, despite its relatively high accuracy of 96.20% and precision of
6.74%. Nevertheless, DT has the potential to overfit in this context,
hich may account for the reduced recall. The elevated precision

ndicates that although the model predicts fewer false positives, it may
lso fail to identify some true positives, resulting in a trade-off in recall.

The RF model shows a balanced performance with an accuracy of
6.48%, a precision of 94.84%, a recall of 93.87% and an F1 score

of 94.28%. The Random Forest algorithm produces slightly superior
results to those obtained by the Decision Tree. This enhancement can
be attributed to the ensemble nature of the Random Forest, whereby
multiple decision trees are trained and aggregated to avoid overfitting
and enhance generalization. However, it falls short compared to WFE-
Tab, suggesting that there is room for improvement in reducing the
misclassification of attack packets as normal traffic, which remains a
hallenge in achieving higher detection accuracy.

The Xgboost model also achieved a high performance with an
ccuracy of 96.48%, a precision of 96.31%, a recall of 94.69%, and a
1-Score of 95.39%. The model demonstrates a balanced performance
cross all metrics, but falls short when compared to WFE-Tab. This sug-
ests that XGBoost’s strong performance is due to its gradient boosting
echanism that optimizes model performance iteratively. It tends to

chieve higher precision by efficiently handling complex data patterns.
owever, it may not be the optimal choice for this particular task when

ts compared with CatBoost or WFE-Tab, whose approaches present a
etter performance classifying and detecting different anomalies in the
etwork.

The LightGBM model performs better than the above models with
an accuracy of 97.41%, a precision of 96.85%, a recall of 94.96% and
n F1 score of 95.71%, but is still outperformed by the WFE-Tab. The
indings suggest that LightGBM’s gradient-based one-sided sampling

and efficient leaf-wise tree growth enable it to outperform XGBoost in
terms of F1-Score. However, it is observed that the model falls short in
certain aspects during the classification process when compared to the
proposed approach.

The AdaBoost model achieved an accuracy of 97.31%, a precision of
95.32%, a recall of 93.37%, and a F1-Score of 94.15%. Despite its high
accuracy, its precision, recall and F1-Score are lower than those of WFE-
Tab. This suggests that AdaBoost’s mechanism of focusing on difficult
samples in each iteration helps it maintain a strong accuracy, though
he slightly lower recall indicates it struggles with correctly identifying
ll true positives. This is likely due to its sensitivity to noisy data.

The model with the lowest performance was Gradient Boosting,
hich achieved an accuracy of 96.45%, a precision of 93.76%, a recall
f 93.97% and an F1 score of 93.86%. Although this model produces
ompetitive outcomes, its slightly inferior F1-score in comparison to
lternative boosting techniques may be attributed to overfitting or
ensitivity to noise. This highlights the effectiveness of the WFE-Tab,
s it outperforms the worst performing model by more than 3% in
ccuracy and by approximately 6% in precision, recall and F1 score.

The computational time and cost associated with training and test-
ing various models were also evaluated. It was found that the DT model
was highly efficient, requiring only 10.42 s to complete the entire
process. This efficiency is indicative of the streamlined nature of the DT
13 
model, which allows for rapid data processing and decision-making.
The WFE-Tab model, configured with 15 clients, is the next most

efficient, requiring 18.6 s for completion. This slightly longer time can
e attributed to the increased complexity of the WFE-Tab model, which

incorporates additional parameters and computations in its process.
he RF model trails closely behind, requiring 19.68 s. The RF model

s renowned for its resilience and accuracy. Its training phase involves
he generation of numerous decision trees, which contributes to its
lightly longer time requirement. However, it is essential to note that
he remaining models exhibit a significant increase in computational
ost, resulting in training and testing times exceeding 20 s.

Despite differences in computational cost and time, analysis of the
performance classification metrics indicates that the WFE-Tab repre-
sents the optimal balance between performance and computational
resources. This balance between efficiency and effectiveness is crucial
in the field of machine learning, where both are key factors in model
success.

In conclusion, due to its superior performance in all metrics, WFE-
Tab is the best model for implementation in an IDS architecture after
a comparative analysis of model algorithm performance.

7. Conclusions and future work

The WFE-Tab model addresses the shortcomings of the existing
abPFN model, which encountered difficulties in dealing with larger
lasses and training samples. The WFE-Tab model employs a weighted
usion technique to preprocess data into subsets, thereby creating an
nsemble of specialized TabPFN models. The IDS is capable of detecting
ntrusions in IIoT-MEC environments. The WFE-Tab model attained a
1-score of 99.81%. It should be acknowledged that our approach is not
ithout inherent limitations. These include the protection of the model
gainst attackers who may attempt to poison the data used during the
raining stage, as well as the issue of imbalanced classes with fewer
amples, which could present a challenge for the training and scoring
tages of multiple models. Secondly, the model has the capacity to
dentify unknown or anomalous samples during prediction. However, it
oes not assign these samples to any of the predefined known classes.
oreover, this study has only considered the IIoT-MEC environment,

nd thus the model has not been tested in other contexts.
To address these limitations, we propose the following enhance-

ments to the proposal and its security:

Algorithm optimization. The objective of our approach is to sur-
pass the intrinsic constraints of the TabPFN model. Nevertheless, the
methodology presented in this work could be extended to other baseline
algorithms with the aim of improving their performance for different
use cases and, as a result, consider possible strategies to address the
challenges presented by under-represented classes in the dataset.

Inclusion of blockchain to the IDS architecture. The intrinsic decen-
tralization, transparency and immutability of blockchain could enhance
the security of our IDS architecture against potential attacks on our
model.

Classification of anomalous samples. We plan to focus on the detailed
classification of anomalous samples. This will involve exploring tech-
niques such as semi-supervised learning and refined clustering methods
to better differentiate and categorize unknown attacks.

Extended cross-domain study . It would be beneficial to assess the
suitability of the WFE-Tab model in a variety of domains in order to
evaluate its efficacy in different environments. Even with the potential
for adaptations to enhance its functionality for each case.
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