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Preface

As the final part of the bachelor programme Applied Mathematics at Delft
University of Technology, a bachelor project must be completed. This thesis is
the result of one semester of research in the field of GPU computing. Being a
mathematics student, numerical analysis has my interest and I also have a lot of
affinity with computer science. This is the reason why this particular project,
‘Speedups of the CONTACT-software through the GPU’, immediately took my
interest. GPU computing makes it possible to do floating point calculations
at very high speeds. The biggest problem is that the algorithms have to be
suitable for the tasks a GPU can perform, which in practice means they have
to be adapted quite a lot. The speedup is also highly dependent on the scale
the algorithm can be parallelized. Because of the fact this field is relatively
new, it took my special interest.
In addition this was one of few projects in cooperation with a company, which,
I think, also contributes to the value of it. The company I worked with is
VORtech BV. VORtech is situated in Delft, and is a combination of a soft-
ware house and an engineering firm in applied mathematics. They combine
a thorough knowledge of mathematical modeling, simulation techniques and
computational algorithms with state-of-the-art software development methods.
VORtech spun off from Delft University of Technology in 1996. Since then, it
has seen a steady development, which still continues to this day. They service
a broad range of customers, including both government departments and many
commercial clients. VORtech supports the CONTACT computer programme
that was developed by professor J.J. Kalker at Delft University of Technol-
ogy. This software is considered to be an accurate model for contact mechanics
and is used in various application fields. VORtech finances an active research
programme to further extend and improve the software.
I want to specially thank professor Vuik and Edwin Vollebregt for guiding me
through the project. Edwin is one of the founders of VORtech, and has a lot
of knowledge of the CONTACT programme. Whenever I had questions about
the algorithms involved, he helped me out. Professor Vuik helped me with the
more general numerical issues, and the programming on the GPU in general.
Furthermore the feedback they gave on my drafts helped me to improved the
final result. A final word of thanks to all the people who posted on the CUDA
GPU Computing forums of NVIDIA1. They helped me solving a lot of minor
issues in a short amount of time.

1CUDAGPU Computing Subforums: http://forums.nvidia.com/index.php?showforum=62
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Chapter 1

Problem formulation

CONTACT is a computer programme designed to calculate deformations in
three-dimensional frictional contact problems. The programme is based on
algorithms designed by professor J.J. Kalker.1

When two surfaces roll over each other, both surfaces deform due to tractions in
the normal and tangential directions. The three-dimensional frictional contact
problem determines the contact area of the two surfaces, and divides this area
into a slip and an adhesion area. This gives information on which are the
wearing parts of the surfaces. For example this information is used to determine
where abrasion takes place on a train wheel and rail.

Figure 1.1: Train wheel on the rail, from www.emeraldinsight.com.

To determine which points are in adhesion and which are in slip, an iterative
process makes sure all deformations are in equilibrium, under the condition of
certain non-linear frictional constraints.

1See http://www.kalkersoftware.org/ for more information on the programme and papers
describing the used algorithms.
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10 CHAPTER 1. PROBLEM FORMULATION

During the iterative process, the Conjugate Gradients method and a certain
Gauss-Seidel method are used. The first method consists of a full matrix-vector
product during each iteration, the second method consists of a single inner
product during each iterations. It are these operations that we will investigate
in detail during this project.
The GPU is known for its parallel power, since it consists of a lot of seperate
processors, each capable of performing floating point operations simultaneously.
When calculating matrix-vector products and inner products, most calculations
are independent of each other, and therefore might be suitable for the GPU.
The goal of this Bachelor project is to investigate possible speedups by using
the parallel arithmetic capabilities of the Graphics Processing Unit, instead of
just the Central Processing Unit, when calculating these matrix-vector products
and the inner products.



Chapter 2

The frictional contact problem

The general problem considered is the three-dimensional frictional contact prob-
lem with homogeneous, but not necessarily the same, materials. In this prob-
lem, two surfaces roll over each other. The contact area is assumed to be con-
centrated. This means that the contact area is much smaller than the typical
size of the objects. The contact surfaces can then be taken flat. The forces ex-
erted on both surfaces will result in deformation of both materials. The degree
of deformation depends on the materials used and the total force exerted.

During the solution process both the normal and the tangential contact problem
are solved. The procedure is an iterative one, which will alternate between
solving the normal contact problem and solving the tangential contact problem,
using the solution of the last problem solved as input for the next. This process
is repeated until all the forces are in balance, or in practice, until some tolerance
is met. During this process, the contact area is updated continuously, resulting,
in the end, in the true contact area.

The main equation, governing the deformations is

ui(x) =
∑

j

∫

C

Aij(x, y)pj(y)ds, for i = x, y, n. (2.1)

Aij(x, y) is the influence coefficient of the force at y in the direction j, on the
deformation at x in the direction i. pj(y) is the traction, or force per unit area,
at y in the direction j, and ds is the surface element. ui(x) is the resulting
deformation at x in the direction i. In general the possible directions are x, y
and n. The integral is taken over C, the contact area. Of course points outside
the contact area will not contribute to the deformation. C can also be taken as
the potential contact area, setting pj(y) = 0 outside the contact area.

One important property of the influence coefficients is that they are invariant
under translation. This means that points with the same relative position to
each other will have the same influence on each other. This makes it possible to
reduce the number of independent influence coefficients dramatically, resulting
in less memory usage. The details about the storage structure will be discussed
later.

11



12 CHAPTER 2. THE FRICTIONAL CONTACT PROBLEM

2.1 One-dimensional grid

The first step to solve the problem, is to discretize the contact area. If we
look at the one-dimensional problem, the contact area is an interval [0, L] ⊆ R.
Equation 2.1 will change to

u(x) =

∫ L

0
A(x, y) p(y) dy. (2.2)

This equation needs to be discretized in order to perform the calculations.

The interval is divided into nx equal-sized intervals xI , 1 ≤ I ≤ nx, of size
δx = L

nx
. The tractions are assumed to be constant in each interval, and the

influence coefficient is determined by integrating over the inverval. The integral
in Equation 2.2 changes to a sum over all the intervals. The resulting sum is

u(xI) =
nx
∑

J=1

A(xI , xJ) p(xJ), for 1 ≤ I ≤ nx. (2.3)

This sum can be written as a matrix-vector product. If u and p are defined
so that uI = u(xI) and pI = p(xI), and the matrix A is given by AIJ =
∫

J
A(xI , y) · dy, then Equation 2.3 can be written as

u = Ap. (2.4)

As stated earlier, influence coefficients are invariant under translations. This
means, for the one dimensional case, that A(xI , xJ) = A(xK , xL) if xI − xJ =
xK − xL. So an array BK can be defined by

BK = BJ−I = A(xI , xJ), for −n+ 1 ≤ K ≤ n− 1. (2.5)

The total number of independent influence coefficients will now be 2n − 1.
Remark that in general BK 6= B−K . The total number of independent influence
coefficients is much smaller than without this symmetry, 2n − 1 instead of n2.
For n = 128 for example, the number of independent influence coefficients is
255 instead of 16384. In the two dimensional case the difference will be even
bigger.

The original sum can now be replaced by

uI =
n
∑

J=1

AIJ pJ =
n
∑

J=1

BJ−I pJ , for 1 ≤ I ≤ n. (2.6)

This will be used later, when implementing the calculations on the computer.

Geometrically this sum can be visualized by stretching the B vector from left
to right, and aligning the p vector above it, with the rightmost element of p
shifted I − 1 elements to the left and then taking the inner product of elements
aligned above each other. See Figure 2.1 for an example. The blue elements of
p are multiplied with the green elements of A, aligned above each other, and
after addition, this results in the red element of u.
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Figure 2.1: Example of an one dimensional inner product.

2.2 Two-dimensional grid

In the two-dimensional case a rectangular potential contact area is defined.
This potential contact area is divided into nx×ny rectangular elements of size
δx×δy. The elements will be labeled by xI , with I = (iy−1)×nx+ix. ix and iy
represent the x and y coordinates of a grid point. The tractions now have three
components, two components in the plane of the grid and one component in
the normal direction. For simplicity we will only consider the normal direction.
The tangential tractions will be covered later. This does not affect the process,
because during the solving of the normal contact problem, the tangential effects
are assumed to be constant, and are covered by the term h∗I , as we will see later.
Again the tractions and influence coefficients are assumed to be constant in each
particular element. This will change the integral over the potential contact area
to a sum over the individual elements, so Equation 2.1 will change to

u(xI) =
∑

J

A(xI , xJ)p(xJ). (2.7)

A(xI , xJ) is the influence coefficient of the traction at element xJ on element xI .
If we again define AIJ =

(∫

J
A(xI , x

′)dx′
)

· δx · δy, pJ = p(xJ) and uI = u(xI),
this sum can be written as

uI =
∑

J

AIJ pJ . (2.8)

As in the one dimensional case, the influence coefficients are invariant under
translation. If the source and the target have the same relative position, the
influence coefficients are equal. This means that AIJ = AKL if ix−jx = kx−lx
and iy − jy = ky − ly. As in the one dimensional case, an array B can be
introduced so that

BK = AI,J ⇒ B(kx,ky) = A(ix,iy),(jx,jy), (2.9)

with kx = jx− ix and ky = jy − iy. Remark that K is no longer a grid point,
but a vector, representing the position of grid point J relative to I. Because
ix, jx ∈ {1, ..., nx}, we have kx ∈ {−(nx− 1), ..., 0, ..., nx− 1}, which results in
a total number of possible values for kx of 2nx − 1. In the same way we have
iy, jy ∈ {1, ..., ny}, so the total possible values of ky is 2ny−1. The dimensions
of B are therefore (2nx−1)×(2ny−1). So the number of independent influence
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coefficients is (2nx− 1)× (2ny− 1) instead of (nx ·ny)2. Equation 2.8 can now
be written as a matrix-vector product,

u = Ap, (2.10)

exactly as in the one-dimensional case.

There is also a geometric interpretation in terms of B and p. If B and p
are represented as two dimensional arrays, the different inner products of the
matrix-vector product can be calculated by aligning p on top of B, and choosing
the appropriate two-dimensional translation. So p is shifted over B in two
directions. uI can be calculated by aligning p so that pI is on top of B0. Values
ofB and p on top of each other are now multiplied, and the total sum is the inner
product needed in the matrix-vector product. See Figure 2.2 for an example.
As in the one dimensional case, the blue elements of p are multiplied with the
green elements of B, aligned directly above each other, and after addition, this
results in the red element of u.

Figure 2.2: Example of a two dimensional inner product.

2.3 Normal contact problem

With the grid defined, the normal contact problem can now be solved. e(x) is
defined as the distance between the two bodies, in deformed state, and h(x) is
the distance in undeformed state. As stated earlier u(x) is the deformation in
the normal direction, so

e(x) = h(x) + u(x). (2.11)

As stated at the beginning of this section, the normal and tangential contact
problem are solved in an iterative way, alternating between the two. Because
of this, during the solving process of the normal contact problem, tangential
tractions are assumed to be constant. In practice this means that deformations
due to tangential tractions can be absorbed in the term representing the distance
in undeformed state. We will therefore write h∗(x) instead of h(x). This results
in

e(x) = h∗(x) + u(x). (2.12)
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If e(x) > 0 the traction is zero since there is no contact, so p(x) = 0. If e(x) ≤ 0,
there is a traction acting. The deformation as function of the traction is now
given by Equation 2.1.
For the discretized problem, two sets of grid points are defined. Grid points for
which eI > 0 are set ‘inactive’. At these points, the bodies are not in contact,
so there is no traction. Points for which eI ≤ 0 are set ‘active’. At these points
there is contact and thus a traction. The set of active points is C, the contact
area, and the set of inactive points is E, the exterior area. Note that these
sets will change during the iterations. The problem we now want to solve, is
to find the active grid points, and the tractions pI at these grid points, so that
the distances in deformed state are zero for active grid points. In this case the
bodies will only be in contact at the surfaces, and they will not interpenetrate
each other, which, of course, would be nonsense in reality. Equation 2.12 will
change to

eI = h∗I + uI = 0, (2.13)

for all active grid points I ∈ C.
The deformations uI are given by Equation 2.8. If we substitute this in Equation
2.13, we get

eI = h∗I +
∑

J

AIJpJ = 0, for all I ∈ C. (2.14)

Remark that it does not matter whether the sum is taken over all grid points
J , or J ∈ C, since pJ = 0 if J /∈ C. We can write this equation as

Ap = −h∗. (2.15)

We now have a large linear system in pJ , for all active grid points I ∈ C. This
system is solved by the iterative Conjugate Gradients method is used instead.
This method will iterate, until the relative norm of the update of the solution
vector is within a certain tolerance. When this tolerance is met, the iteration
is stopped and the sets of active and inactive grid points are updated. From
the resulting pI , new uI and eI can be calculated. All grid points I ∈ C with
pI < 0 are moved to the exterior set E, and all grid points I ∈ E with eI < 0
are moved to the contact set C.
The normal contact problem is iterated until the contact area is constant, so
when C and E do no longer change.
For the first iteration of the Conjugate Gradient method, a starting vector is

needed. It is assumed that p
(0)
I = 0 for all I in the potential contact area, so

from Equation 2.14 we have

e
(0)
I = h∗I . (2.16)

2.3.1 Conjugate Gradients

The Conjugate Gradients method works only for positive semi-definite sys-
tems. In general, the system we get from the normal problem possesses this
property, so the method will converge. The most important property of the
Conjugate Gradients method, from our point of view, is that during each itera-
tion a full matrix-vector product has te be calculated, which in general is very
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time-consuming. There are several possible implementations of the iterative
Conjugate Gradients method. We have for example Algorithm 2.1 from [3].

Algorithm 2.1 Iterative conjugate gradients algorithm.
u0 := 0
r0 := b
for k = 1, 2, ... do
if k = 1 then

5: p1 = r0
else

βk :=
r
T

k−1
rk−1

r
T

k−2
rk−2

pk := rk−1 + βkpk−1

end if

10: αk :=
r
T

k−1
rk−1

p
T

k
Apk

uk := uk−1 + αkpk

rk := rk−1 − αkApk

end for

As can be seen on lines 10 and 12, the matrix-vector product Apk has to be
calculated. In Chapter 4 this matrix-vector product is discussed in detail.

2.4 Tangential contact problem

The tangential contact problem is defined through the friction law. The dis-
cretization is similar to the normal contact problem, resulting in the same grid
as in Section 2.2. Since the constraints are non-linear, the Conjugate Gradients
method cannot be applied. A specific version of the Gauss-Seidel method is
used, to solve the non-linear problem.

During each iteration of the Gauss-Seidel like algorithm, the frictional con-
straints are taken care of, by shifting grid points from the slip area to the
adhesion area and vice versa. During each iteration, four inner products need
to be calculated. These inner products determine the total slip distance in the
x and y direction in element I, due to the tractions in the x and y direction.
There is also an additional term, consisting of the distance due to tractions in
the normal direction and the rigid shift of the bodies.

The total deformation in both the x and y direction for grid point I is given by

{

sIx = W ∗

Ix +
∑

J A
xx
IJ pJx +

∑

J A
xy
IJ pJy

sIy = W ∗

Iy +
∑

J A
yx
IJ pJx +

∑

J A
yy
IJ pJy.

(2.17)

We use the same indexing as in Section 2.2, so we have I = (iy − 1) · nx + ix
and J = (jy − 1) · nx+ jx.

The influence coefficients have the same translational invariance as in the nor-
mal contact problem, so again we can define matrices B, with the geometric
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interpretation explained in Section 2.2. This will change Equation 2.17 to

{

sIx = WIx +
∑

J B
xx
K pJx +

∑

J B
xy
K pJy

sIy = WIy +
∑

J B
yx
K pJx +

∑

J B
yy
K pJy,

(2.18)

with kx = jx − ix and ky = jy − iy. Remark that the inner products stated
in Equation 2.18 are exactly the inners product from Figure 2.2. In Chapter 5
the inner products are discussed in detail.
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Chapter 3

CUDA

In this chapter we will first review some historical background behind scientific
computing on graphics cards, after which the way CUDA works will be de-
scribed in more detail. The main goal is that the implementations in the next
chapter can be understood.

3.1 Historical background

Nowadays almost all desktop computers come with a graphics accelerating card.
These cards are specially designed to perform the calculations necessary to
render three-dimensional images. Because most of these calculations can be
performed independently of each other, these cards have a highly parallel char-
acter. The same calculations are performed on different sets of data. For this
reason, a lot of space on the chip, normally used for control logic (fetching and
decoding instructions etcetera), can be dedicated to performing calculations.

This combined with a huge market demand for better and faster graphics cards,
especially from the video game industry, resulted today in high performance
cards, with calculation performance comparable with supercomputers. Figure
3.1 illustrates the exponential growth of the graphics card performance, com-
pared to general processors. In the figure, NVIDIA graphics cards are compared
to Intel processors.

Figure 3.1: Intel CPU’s compared to NVIDA GPU’s, from [1]
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20 CHAPTER 3. CUDA

In the past, all the stages performed by the graphics card were hardwired. These
were the so-called fixed-function graphics pipelines. The application created the
input data, and the graphics card performed a set of fixed operations on these
data, resulting ultimately in a three-dimensional picture on the screen. One
example is the stage applying the textures to the objects, built up from a large
set of triangles.

This was the way graphics cards operated from the early 1980s to the late
1990s. During this time, the different stages were optimized, and new graph-
ical algorithms resulted in ever increasing performance. But by the graphics
industry growing larger, the application developers became more and more so-
phisticated, and the demand for more features grew with them. These demands
could not be realized using the built-in fixed functions, so the next step was a
programmable processor.

In 2001 NVIDIA took the first step with their GeForce 3. The developers could
access the instruction set of the floating-point vertex engine. At the same mo-
ment, DirectX and OpenGL came with new releases to use these new features,
allowing developers to use their own algorithms. The most interesting stages
to be programmable were the stages where the different render algorithms take
place. These are the stages using the most computational power, in particular,
the vertex shader and pixel shader.

Because these stages performed so well on independent floating-point opera-
tions, it quickly took the attention of scientists in the field of scientific com-
puting. They saw possibilities to port certain algorithms, gaining a huge per-
formance boost for a relative low price. The problem was that, because the
graphics cards were meant for graphical purposes, the interface was not suitable
for general problems. So scientific problems needed to be adapted to ‘graphical
problems’, meaning for example, that data needed to be translated to the same
format as how vertices are stored on the GPU. Also the memory interface did
not allow to read from, or write to random locations. So it took a huge effort to
program the graphics card for general purposes. Because of these difficulties,
only a few scientists demonstrated some useful applications.

To make scientific computing on the graphics card more accessible, NVIDIA
introduced CUDA in November 2006. CUDA is an acronym for Compute Uni-
fied Device Architecture, and gives developers the opportunity to program the
GPU using an extended version of the C programming language. Since the
hardware architecture has to support CUDA, only the more recent models of
the NVIDIA GPU’s are compatible with CUDA.

3.2 The programming model

In the CUDA programming model, a distinction is made between the host and
the device. The host consists of the CPU, together with the internal memory1.
The device consists of the GPU, with different kinds of memory residing on the
graphics card. When writing a CUDA program, separate code is written to run
on the host and the device. The host code initializes the device for performing

1We will call the traditional internal memory the host memory.
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the calculations. This means memory on the device is allocated and data needed
for the calculations is transferred from the host memory to the device memory.
After this is done, the host program calls a function intended to run on the
device, a so-called kernel. It is the kernel that performs the calculations, using
the data that is transferred earlier.

During the execution of a program, it is possible to invoke the same kernel more
than one time, or to invoke different kernels. To every kernel call, a specific grid
is attached. A grid is set of blocks, with a one- or two-dimensional structure,
defined by the programmer. Every block consists of a set of threads, which are
organized in a one-, two- or three-dimensional structure, again this structure
is defined by the programmer. This hierarchy is important, because threads
in different blocks are more limited to access the same memory locations than
threads in the same block. Threads can identify themselves by built-in variables,
containing the index of the block they are part of, and their own index, inside
the block they are part of. This gives for example a mechanism to determine
which memory index should be referenced. A more detailed explanation will
follow later.

Another important consequence of the way threads are divided into blocks, is
the way the threads are scheduled by the device. To better understand this,
the lay-out of the device needs to be explained.

3.3 Lay-out of the device

A device consists of different parts. Figure 3.2 shows an overview. Every device
is equipped with a number of Streaming Multiprocessors, and a certain amount
of global memory. Multiprocessors are processing units operating independent
of each other. The number of multiprocessors depends on the device model and
can vary from 1 on the older notebook models to 120 on the high-end Tesla
models. The total amount of global memory also varies, usually between 512
MiB for the older models and 2 GiB for the new high-end ones. A small portion
of the global memory is accessible through the constant cache and the texture
cache. These parts are usually called the constant memory and texture memory.
These parts cannot be written to from the device. Because they are cached,
memory read transactions from the same locations have a much lower latency
than the normal global memory. The constant memory has a capacity of 16
KiB (per multiprocessor). The constant memory and texture memory will not
be used during this project.

Every multiprocessor consists of 8 Streaming Processors, an Instruction Unit,
16 KiB of shared memory and a number of registers, each capable of storing
4 bytes of data. The total number of registers depends on the device and can
vary between 8192 and 16384. Since the shared memory and registers are on-
chip, they can be accessed very fast. However their size is very limited, because
they are used by all the threads active on that multiprocessor. The differences
between the different kinds of memories will be explained in detail later.

Since each multiprocessor has only one Instruction Unit, every processor in a
multiprocessor executes the same instructions, and thus calculations, at the
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Figure 3.2: Layout of a typical GPU, adapted from [1]

same moment. The data on which these instructions are executed can of
course differ. This model is called SIMT (Single-instruction multiple-threads)
by NVIDIA. It is very similar to the SIMD-model (single-instruction multiple-
data).

Now the role of threads and blocks can be explained. During execution, up to 8
blocks are assigned to a particular multiprocessor. These are called the active
blocks. The actual number of blocks can be lower, depending on the number
of threads per block and the amount of memory used per block. For example
older models have a maximum of 768 active threads, so if the number of threads
per block is 128, there are only 6 active blocks per multiprocessor. Furthermore
if each block uses 4 KiB of shared memory, there will be only 4 active blocks,
due to the limited amount of shared memory. For the use of registers the same
applies. The reason we want as much active threads as possible, is that because
when one set of threads is waiting until some high latency operation is finished,
the (hardware) scheduler can assign a different set of threads for execution.
This way the total time spent waiting for these high latency operations will be
minimized.

The occupancy is defined as the number of active threads, compared to the
maximum number of active threads possible. So if we have blocks of 256 threads,
we can achieve an occupancy of 1, if memory usage allows three active blocks
per multiprocessor. If we only have two active blocks, because each block uses
a lot resources, the occupancy will be 2

3 , since we only have 512 active threads.

The threads are executed in groups, called warps. Although the number of pro-
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cessors is only 8 per multiprocessor, a warp consists of 32 consecutive threads,
from the same block.2 This means that all 32 threads in a warp will execute the
same instruction at a specific moment. One important consequence of warps
executing the same instructions, is branching. When the code contains condi-
tional statements, and the threads in a warp ‘diverge’, they will execute different
statements. But as mentioned earlier this is not possible since there is only one
Instruction Unit, so the execution will be performed sequentially. In general
this will cost more execution time. When the threads converge again, execution
will continue parallel. Remark that because warps consist of 32 threads from
the same block, the number of threads per block should be a multiple of 32 for
maximum performance.
A warp is divided in two half-warps. Each consisting of 16 consecutive threads.
Remark that from a programmers point of view, the division of threads into
warps is completely transparent. This means that for the correctness of the
code, you do not have to be aware of the existence of warps. But huge per-
formance gains can be realized when the code is designed with this division in
mind.

3.4 Extension of the C language

As already mentioned, CUDA is an extension of the C programming language.
This means that extra keywords and special syntax are added, which are then
compiled by the NVIDIA compiler. Without getting into too much detail, some
of these extension are discussed.
The most important part is the kernel. The kernel is the function that is
executed on the device. When launching the kernel, the CUDA driver needs to
know certain parameters. We will be using only three of them, the number of
blocks in the grid, the number of threads per block and the amount of (dynamic)
shared memory used by each block. A kernel launch has the form

Kernel<<<dimGrid, dimBlock, Sharedmem>>>(...);

Kernel is the name of the function. dimGrid and dimBlock are the dimensions
of the grid and the blocks. The parameters are of type dim3, which is a struc-
ture of three unsigned integers, representing the structure of the grid and the
blocks. Sharedmem is the amount of shared memory used, in bytes. The type
is size t, which basically is an unsigned integer. The dots represent the addi-
tional arguments used by the kernel, like pointers to global memory locations,
or the size of a particular array. When defining (or declaring) the kernel, the
keyword global has to be placed in front, and the type is void. So we get
something of the form

global void Kernel(...);

The keyword global specifies that this function can be called from both the
device and the host. It is executed on the device. Other possible keywords are

2This has to do with the different pipeline stages during the executing of an instruction.
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device which means the function can be called from the device only, and
is executed on the device, and the host keyword, which means the function
can be called from the host and is executed on the host. This is also the de-
fault keyword. Inside the kernel several built-in variables are accessible. These
can be used by a thread to identify itself, as in calculating its unique index,
and determining what the the dimensions of the grid and blocks are. The used
built-in variables are threadIdx, blockIdx, blockDim and gridDim. For exam-
ple the unique index of a thread in a grid can be calculated by blockIdx.x *

blockDim.x + threadIdx.x; given that blocks have a one-dimensional struc-
ture. Otherwise extra terms consisting of y and z members have to be added.
One important other CUDA function that is used is syncthreads(). This
function makes sure execution continues only when all threads in that particu-
lar block have reached that statement. This is important when data is shared
between different threads. It ensures that memory updates are in sync. We will
see the importance later on.

These are just the basic CUDA keywords used. Later on other functions will
be introduced, for example when allocating memory on the device, and copying
data. Also the use of shared memory will require special syntax.

3.5 Compute capability

To make it easy to get information on what the capabilities of a specific device
are, NVIDIA assigned a ‘compute capability’ to every CUDA compatible de-
vice. This compute capability consists of a major revision number and a minor
revision number. The major revision number defines the core architecture. The
minor revision number corresponds to small improvements of the core architec-
ture, and newly introduced features. At the moment of writing, all the cores
are of major revision number 1. The minor revision numbers can vary from
0 to 3. For example only devices with compute capability 1.3 support double
precision floating-point numbers. Devices with lower compute capability only
support single precision floating-point numbers. Furthermore compute capabil-
ity 1.2 and 1.3 have 16384 registers per multiprocessor while 1.0 and 1.1 only
have 8192 registers per multiprocessor. There are also differences in the way
memory accesses are ‘coalesced’. We will see this later in more detail. We will
not get into too much detail regarding the compute capabilities, and all the
code written is compatible with the lowest compute capability 1.0.3

3.6 Different memory types

As mentioned earlier, there are different types of memory. In this section a
detailed description of the global memory, shared memory and the registers
will be given and the syntax needed to use these different memories will be

3Although the code is compatible with any compute capability, there can be performance
differences between different compute capabilities. For example because of different ways of
memory coalescence.
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explained. We will also look at the effect of the number of blocks assigned per
multiprocessor due to the amount of memory used by each block and thread.

3.6.1 Global memory

Of the different types of device memory, the global memory has the biggest
capacity. As mentioned earlier it can range from 512 MiB to 2 GiB. For the
purposes of this project this will be more than enough. The global memory is
used to store the bulk of the data supplied by the host. Because this memory is
not located on-chip, it has a relatively high latency. Meaning that transactions
from and to the global memory will cost a lot of clock ticks and should be
avoided as much as possible. Also, for maximum performance, when moving
data between the host and the device, it is better to move big data chunks
instead of moving multiple small data chunks.
Allocating memory, freeing memory and copying data from the host memory
to the global memory on the device and vice versa is done by special CUDA
API calls. These functions are invoked from the host code, so before or after a
kernel is invoked. There are different kinds of functions. For moving data for
example, there are synchronous and asynchronous functions available. We will
be using the synchronous functions only.
All the CUDA API calls return an error code. In the case of no error, the value
cudaSuccess will be returned. In case of an error, a code describing what went
wrong is returned, for example cudaErrorMemoryAllocation is returned when
allocating memory fails. For obvious reasons we will check these return values
when a CUDA function is invoked.
Allocating memory is done by invoking the function

cudaError t cudaMalloc( void ** devPtr,

size t size ).

The location of the allocated memory is stored in *devPtr. The second argu-
ment, size is amount of memory to be allocated, in bytes. Freeing memory is
done by invoking

cudaError t cudaFree( void * devPtr ).

where devPtr is the location of the memory chunk to be freed. Once memory
is allocated, data can be copied to and from that location. This is done by the
function

cudaError t cudaMemcpy( void * dst,

const void * src,

size t count,

enum cudaMemcpyKind kind ),

where dst is a pointer to the destination of the data. This can be located either
in the host memory or the global memory. src is a pointer to the source of the
data. This can also be either in the host or the global memory. count is the
amount of data to be copied, in bytes. Finally, kind gives the direction in which
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the memory has to be copied. The possible values are cudaMemcpyHostToHost,
cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost and
cudaMemcpyDeviceToDevice. These values speak for themselves. We will
mainly use the second and third mode. Again different kinds of error codes
can be returned in case of an error.
When the data is copied to the global memory, it can be accessed from within
a kernel. When invoking that kernel, the location of the chunk of data (in the
global memory) is passed as a pointer in the argument list of the kernel, and
normal C statements can be used to access it. Remark that the global memory
has one memory space, so every thread can access every location. Still the
global memory should not be used to communicate between threads of different
blocks. This is because the order of execution of the different blocks is not
defined. Even for threads in the same block it is very important to keep an
eye on synchronization issues. A thread writing to a specific memory location,
can change the input of another thread, because the order of thread execution
is not defined. All we know for certain is that threads in the same warp are
executed simultaneously. If a programmer does not anticipate this, and does
not use syncthreads() properly, this may lead to undefined results.
Special care is needed by the use of these pointers. The host memory and the
global memory consist of different memory spaces, so a particular pointer points
to particular locations both in the general and the global memory. When using
a pointer, pointing to allocated memory in the global memory space, in the
context of the host memory the results will be undefined, and an exception is
probably raised. Vice versa it will lead to undefined results, since non-initialized
data is used. For this reason we will be using prefixes in the names of the
variables, making clear to which type of memory it points. We will use the h

to point to host memory and the d to point to device memory. For example
float* hA will point to some location in the host memory, while float* dA

will point to a location in the device memory.
For maximum performance, it is important to use the correct alignments when
moving data. For example, for device capability 1.0 and 1.1, when a half-warp,
consisting of 16 threads, access consecutive 4-byte memory locations in a sin-
gle 64-byte segment, aligned at a 64-byte boundary, this will result in a single
memory transaction. This is called memory coalescence, and the memory trans-
action is called coalesced. In contrast to a non-coalesced memory transaction,
for example when the alignment is incorrect. It is very important to ensure
coalescing happens when possible, because it can have drastic influence on the
total performance. When a memory transaction is non-coalesced, is it serial-
ized in 16 seperate transactions. See Figure 3.3 for an example. Both access
patterns are coalesced and will result in one memory transaction. In the access
pattern on the right-hand side, the warp has diverged because of some condi-
tional statement. This will lead to bandwidth loss, because some data that is
read is not used, but the pattern is still coalesced.
In Figure 3.4 there are two examples of access patterns that will lead to non-
coalesced memory transactions. The left access pattern is non-sequential, and
will lead to 16 memory transactions on devices of compute capability 1.0 and
1.1. The right access pattern is misaligned, because the first thread does not
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Figure 3.3: Examples of coalesced global memory transactions

access a location on a 64-byte boundary. This access pattern will also lead to
16 memory transactions. This illustrates that it is very important to make sure
transactions are coalesced.

On devices with a higher compute capability, misaligned memory transactions
will result in two memory transaction instead of 16, one for each segment data
is requested from.

In the next chapter, the first CUDA implementation will show the use of the
global memory. Also the effect of coalescing will be shown.

3.6.2 Shared memory

The next type of memory is the shared memory. Shared memory is shared
among threads of the same block. This makes it the easiest and fastest way of
data exchange between threads. The current devices consist of 16 KiB shared
memory per multiprocessor. This amount is shared between all the active
blocks. As mentioned earlier, when blocks use a lot of shared memory, this
might lead to a decrease of the number of active blocks per multiprocessor. In
the case of a block exceeding the total amount of 16 KiB, the kernel will not
launch at all.

The shared memory can be used in two ways, either static or dynamic. Static
means that the amount of shared memory per block is known when the code
is compiled and dynamic means it is only known when the kernel is invoked.
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Figure 3.4: Examples of non-coalesced global memory transactions
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So the total amount per block can be determined during runtime. These two
different ways of using the shared memory need different syntax.
To make use of the shared memory, variables have to be declared as shared ex-
plicitly. This is done by the type qualifier shared . When using static shared
memory, a variable can be declared within the kernel, with the shared type
qualifier. For example

shared float values[16];

For each block a different instance of the array values will be allocated. Threads
from the same block will access the same instance of values, and can read and
write from and to it. As mentioned earlier, special care is needed to avoid sync
issues.
When using dynamic shared memory, the total amount of used shared memory
is given by the programmer as a parameter when the kernel is launched. This
amount of memory is then allocated by the CUDA engine as a linear array. It
is the responsibility of the programmer to make sure this linear array is divided
in the correct structure. A special statement,

extern shared float array[];

has to be placed in the global scope, and the kernel has to be invoked by a
statement like

Kernel<<<dimGrid, dimBlock, Sharedmem>>>(...);

where Sharedmem is the desired amount of shared memory, in bytes. The CUDA
engine makes sure that for each block this amount is allocated and it can be
accessed by the threads through array.
When using shared memory it is important to understand how this memory
is organized for maximum performance. The total shared memory is divided
into 16 memory modules, or banks. These banks can be accessed simultane-
ously. The memory is divided in such a way that successive 4-byte words fall
in successive banks. During each cycle, each bank can deliver one 4-byte word.
If multiple threads try to read different 4-byte words from the same bank, the
requests are serialized, resulting in a lower performance. This is called a bank
conflict. Since there are 16 banks and 32 threads in a warp, the first half-warp
is served first, and then the second half-warp is served. This means that there
cannot be bank conflicts between threads in a different half-warp. When access-
ing an array of shared memory, it is important to make sure the access pattern
does not result in bank conflicts. See Figure 3.5 for an example. The left access
pattern will not lead to any bank conflict, since every bank serves one word to
one thread. The right access pattern will lead to a two-way bank conflict, since
half of the banks have to serve two different words.
The shared memory also has a broadcast mechanism. This means that one of
the words can be broadcast to all the threads in the half-warp. See Figure 3.6 for
an example. The right access pattern will lead to a single memory transaction,
since the word from Bank 0 will be broadcast. The left access pattern will lead
to two memory transactions.
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Figure 3.5: Examples of access patterns with and without shared memory bank
conflicts: The left access pattern will not load to a bank conflict, the right
access pattern will lead to a two-way bank conflict.
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Figure 3.6: An example of how the shared memory broadcast mechanism works:
The left access pattern will lead to one single memory transaction, while the
right access pattern will lead to two sequential transactions.
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When no bank conflicts occur, accessing shared memory is as fast as accessing
registers.

3.6.3 Registers

Registers are the fastest memory (together with shared memory with no con-
flicts). When using registers, an instance of a variable is made for every thread.
This means that when in a kernel n register variables are used, the total number
of registers used per block will be n × m, where m is the number of threads
per block. It is important not to exceed the total number of registers of 8192
or 16384, otherwise the kernel will not launch. It is possible to make sure the
compiler uses a maximum number of registers for the kernel. This is achieved
by mapping some variables to the global memory (which in this context is called
the ‘local memory’). Although this might lead to more active threads, it costs
a lot of extra time to access these variables.

Registers are used for variables of standard types which are declared inside the
kernel. Small structures and arrays are also mapped to registers. To avoid
register memory bank conflicts, the best results are achieved when the number
of threads per block is a multiple of 64. These conflicts are resolved by the
compiler, and the programmer has no influence on it.

3.7 Timing

To measure the performance of a certain implementation, time measurements
have to be taken. Both the host and the device can be used to do the timing.
When using CUDA for timing, we have to work with CUDA-events. Although
this might be a bit more accurate, the differences are small. This is the reason
that the timing mechanism of the host is used.

To get the most accurate results, the gettimeofday() function, from the
<sys/time.h> header is used. This function returns the current time, in sec-
onds and microseconds. Timing can be achieved by simply taking the difference
of two different results of gettimeofday().

The resolution of the measurements is usually about 10 ms, but accurate in-
formation cannot be given without getting in too much detail. For example
the resolution is both dependent on the hardware, and the software platform
running on. For our purposes, a resolution of 10 ms is sufficient, and we will
not get into more detail.

For accurate timing it is necessary to realize that some CUDA functions behave
asynchronous. For example, when a kernel is invoked, the CPU continues exe-
cuting the next statements, and will not wait for the kernel to finish. This can
be solved by invoking the function cudaThreadSynchronize(). This function
will not return until all previous CUDA calls are finished. So before taking any
time measurement, cudaThreadSynchronize() should be called. In particu-
lar before the first measurement, since the CUDA engine might be performing
certain startup routines in the background.
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3.8 Accuracy

Floating point accuracy is an important concept in scientific computing. Cal-
culations have to be performed accurate enough, and rounding errors should
not build up, resulting in significant differences. One important consequence of
programming on the GPU is that floating point operations can produce slighly
different results than on the CPU. This is a consequence of different methods
of rounding off, for example because this might save space on the chip, making
them cheaper. To make sure the results are accurate enough, each experiment
run on the GPU is also run on the CPU, and the results are compared. This
comparison is done by calcuting the relative norm of the difference vector of
the two results. So we check if

‖uCPU − uGPU‖

‖uCPU‖
< ǫ,

for some small ǫ ≈ 10−5. This also validates the algorithms on the GPU.
We will not get in more detail on rounding off differences.
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Chapter 4

Matrix-vector products

In Section 2.3 we see that the normal contact problem is solved using the
iterative conjugate gradients method. During the execution of this method a
large matrix-vector product has to be calculated during each iteration. This
matrix has a special geometric structure, which results in the matrix B. See
Figure 2.2 for the structure of this matrix.
In this chapter we will investigate a number of implementations of this matrix-
vector product, using CUDA. Because a lot of calculations can be performed
independent of each other, a huge speed-up might be possible when using the
GPU. The first implementation is a direct port of the CPU version, using only
global memory. Then we will use shared memory, to gain performance. All the
implementations are written in the C programming language, with the CUDA
extensions.
During the experiments, the performance is given by the number of floating
point operations executed divided by the execution time. The number of float-
ing point operations executed during a matrix-vector product is the number
per inproduct, multiplied by the number of rows. The total number of floating
point operations per inproduct is 2 ·n, we have n multiplications, followed by n
additions. The number of rows is also n, bringing the total number of floating
point operations to 2n2.

4.1 Direct implementation

In this section we will derive an algorithm for calculating the matrix vector
product u = Ap, in terms of the matrix B. This algorithm will be implemented
on both the CPU and GPU.
From Equation 2.9 we have

B(kx,ky) = A(ix,iy),(jx,jy),

with kx = jx− ix and ky = jy − iy. As stated earlier, we have kx ∈ {−(nx−
1), ..., 0, ..., nx− 1} and ky ∈ {−(ny − 1), ..., 0, ..., ny − 1}.
We can now rewrite Equation 2.8 in terms of B, resulting in

uI =
∑

J AIJpJ ⇒ u(ix,iy) =
∑

jy

∑

jxA(ix,iy),(jx,jy)p(jx,jy)
=

∑

jy

∑

jxB(kx,ky)p(jx,jy),
(4.1)

35



36 CHAPTER 4. MATRIX-VECTOR PRODUCTS

Figure 4.1: The different ways of numbering, for a grid of size 4× 3.

with kx = (jx− ix) and ky = (jy − iy).

When implementing in C, we want positive indices, starting with 0. For ix, iy,
jx we simply subtract 1 from the values. We then have ix′ = ix−1, iy′ = iy−1,
jx′ = jx− 1 and jy′ = jy − 1, with ix, jx ∈ [0, nx− 1] and iy, jy ∈ [0, ny − 1].
For kx and ky, we add an offset nx−1 to kx and an offset ny−1 to ky, resulting
in

kx′ = kx+ (nx− 1), with kx′ ∈ {0, ..., nx− 2} and
ky′ = ky + (ny − 1), with ky′ ∈ {0, ..., ny − 2}.

From now on, we will always use this zero-based indexing, unless states other-
wise.

Because we use linear (one-dimensional) arrays in C, we have to transform the
double indices to a single index. In the arrays, the horizontal lines of u, p and
B will occupy consecutive memory locations. This results in an absolute index
kk = ky′ · bx+kx′ for B, and ii = iy ·nx+ ix for u and p. See Figure 4.1 for an
example of the different ways of labeling the grid points. Algorithm 4.1 gives
the resulting algorithm for calculating u = Ap.

This algorithm can be implemented in C directly. For the source code, see
Appendix A.

We can now port this algorithm to the GPU. In doing so, we have to choose how
we divide the total work over the different blocks and threads. One possible
method to proceed, is to divide u into rectangular tiles, and let each block
calculate the values of u in one specific tile. Each thread in a block can then
calculate a specific element of u. We denote the size of a tile by tx and ty. The
total number of tiles is denoted by Tx and Ty. See Figure 4.2 for an illustration
of this division. Here the grid has size 8× 4, and is divided into 4× 2 tiles each
of size 2× 2. So we have nx = 8, ny = 4, Tx = 4, T y = 2 and tx = ty = 2. Of
course the dimensions of a tile must be chosen in such a way, that the whole
grid can be tiled.

When using a division like this, each tile of u is calculated by a different block,
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Algorithm 4.1 Algorithm to calculate u = Ap in terms of B.

for iy = 0 to ny − 1 do
for ix = 0 to nx− 1 do
ii = iy · nx+ ix
uii = 0

5: for jy = 0 to ny − 1 do
ky = jy − iy + ny − 1
for jx = 0 to nx− 1 do
kx = jx− ix+ nx− 1
jj = jy · nx+ jx

10: kk = ky · bx+ kx
uii = uii +Bkk · pjj

end for
end for

end for
15: end for

Figure 4.2: Example of a division in tiles of the grid.
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and in each tile, each component of u is calculated by a different thread. Since
the threads are executed in parallel, we do not need the two outer-most loops
of Algorithm 4.1. Each thread calculates its unique ix, iy and ii values and
proceeds with the inner-loops. This way each iteration of the outer-most loop
of Algorithm 4.1 corresponds to a different block, and each iteration of the first
nested loop corresponds to a different thread in a particular block.

Algorithm 4.2 gives the steps that need be to performed by each thread when
using a tiling like this.

Algorithm 4.2 Algorithm when using tiles to divide u. This algorithm is
executed by each thread in the grid.

iy = blockIdx.y · blockDim.y+ threadIdx.y

ix = blockIdx.x · blockDim.x+ threadIdx.x

ii = iy · nx+ ix
uii = 0

5: for jy = 0 to ny − 1 do
ky = jy − iy + ny − 1
for jx = 0 to nx− 1 do
kx = jx− ix+ nx− 1
jj = jy · nx+ jx

10: kk = ky · bx+ kx
uii = uii +Bkk · pjj

end for
end for

When stating an algorithm like this for the GPU, it is executed by each thread
of all blocks. We assume that all threads in a block simultaneously execute
a particular line of code. This way memory synchronization problems cannot
occur. It is important to be aware of the fact that when implementing an
algorithm in CUDA the lines of code are not executed simultaneously, but in
warps, and we have to use the syncthreads() instruction for synchronization.
This is particularly important when using shared memory.

This algorithm is implemented on both the CPU and the GPU, where on the
CPU the tiling has no effect and we just iterate over ii and jj.

On the CPU we expect more or less equal speeds, regardless the size of the grid.
There might be deviations when using small grids, due to memory latencies.
For smaller grids, which allow the whole matrix A to be stored in the host
memory, the matrix vector product is calculated using both A and B. This
shows the effect of the extra addressing when using B.

On the GPU the size of the tiles is important. This is because of memory
coalescing and thread divergence. If the number of grid points in a block is not
a multiple of 32, we expect less performance because of warps that are not filled
completely. On the other hand, we expect the number of memory transactions
to be much higher than the number of arithmetic instructions, and for memory
transactions only half-warps are important. So we expect the difference between
tiles with tx = 32 and tx = 16 to be less then the difference between tiles with
tx = 16 and tx = 8. If we chose tx to be a multiple of 32 none of these problems
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arise.

As mentioned earlier, when threads in a half-warp access consecutive locations
in the global memory, this will result in a single memory transaction. When
using the tiling described earlier, for memory coalescing, threads in the same
half-warp, with consecutive threadIdx.x indices have to access consecutive
memory locations. Also the first thread should access a memory location on
a 64-byte boundary. Assuming that in Algorithm 4.2 the arrays B, p and u
are aligned on such a boundary, we can see that the write operations to u are
always coalesced if blockDim.x is a multiple of 16, but the read operations from
B and p are not, in general.

In Section 4.3 the results of these implementations will be discussed.

4.2 Using shared memory

In the previous section only the global memory was used. This resulted in
a lot of non-coalesced memory transactions. We will now investigate the use
of shared memory to gain higher performance. The total amount of shared
memory per multiprocessor is 16 KiB, or 4096 4-byte floating point numbers.
We must make sure not to exceed this amount per block, or else the kernel will
fail to launch.

When using shared memory, a lot of addressing has to be performed. This
means the threads need to perform a lot of integer arithmetic, not contributing
to the overall floating-point performance. As we will see in Section 4.3, the size
of the tiles in the y direction does not have much influence on the performance.
For these reasons, we will use tiles with only one grid point in the y direction.
The number of grid points in the x direction should be a multiple of 32 to make
sure it can be divided in a particular number of warps. We might want to
maximize the size in the x direction, for maximum use of the shared memory.

We define Tx as the number of tiles in the x direction, and tx as the size of
the tiles in the x direction. Again we choose kx = jx − ix + nx − 1 and ky =
jy−iy+ny−1. Furthermore we have jx = jTx ·tx+jtx and ix = iTx ·tx+itx.
We can now rewrite Equation 4.1 to

u(ix,iy) =

ny−1
∑

jy=0

nx−1
∑

jx=0

B(kx,ky)p(jx,jy) =

ny−1
∑

jy=0

Tx−1
∑

jTx=0





tx−1
∑

jtx=0

B(kx,ky)p(jx,jy)



 . (4.2)

Each block calculates one tile of u and each thread calculates one element of
u. This means we can use a register variable for this value of u. For p and B
we will use shared memory. Because shared memory is scarce we cannot load
the complete arrays at once, and we have to load tiles of B and p during the
kernel execution. We denote the regions of shared memory by B′ and p′. We
will focus on the inner-most loop of Equation 4.2.

For particular tiles of u and p, that is, for particular values of iTx and jTx,
we have

jx ∈ [jTx · tx, (jTx+ 1) · tx− 1],
ix ∈ [iTx · tx, (iTx+ 1) · tx− 1].
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For kx we then have

kx ∈ [(jTx− iTx− 1) · tx+ nx, (jTx− iTx+ 1) · tx+ nx− 2].

As expected, when calculating the contribution of a specific tile of p to a tile
of u we need tx values of p and 2tx − 1 values of B. We can now define new
indices











ix′ = (iTx+ 1) · tx− ix− 1

jx′ = jx− jTx · tx

kx′ = kx− (jTx− iTx− 1) · tx− nx,

so that we have
ix′ ∈ [0, tx− 1]
jx′ ∈ [0, tx− 1]
kx′ ∈ [0, 2tx− 2].

Furthermore, since kx = jx − ix + nx − 1 we have kx′ = ix′ + jx′ and jx′ =
jx− jTx · tx = jTx · tx+ jtx− jTx · tx = jtx. If we now define











u′ = u(ix,iy)

p′jx′ = p(jx,jy)

B′

kx′ = B(kx,ky),

Equation 4.2 can be rewritten as

u′ =

ny−1
∑

jy=0

Tx−1
∑

jTx=0





tx−1
∑

jx′=0

B′

kx′ p′jx′



 . (4.3)

Algorithm 4.3 states how we can calculate the matrix-vector product using the
shared memory. Remark that we perform one assignment for p′, but two for
B′. This is because we need to load one tile of p but two tiles of B.
When implementing this in CUDA, we will use a block to attain a particular
value of iTx, and the threads of that block to attain the values of itx. Each
thread will then loop over jy, jTx and jx′. The tiles of p and B are read
from the global memory on the beginning of the loop over jTx, just before the
values are needed. When reading from global memory, each thread will read
one value. Of course after the read instructions, a synchronization is needed to
make sure all threads read and stored their values. A synchronization is also
needed before reading the new tiles from the global memory, to make sure all
the previously read values are used.
When tx is a multiple of 16, the read operation of p will coalesce, but special
care is needed when reading B. We will read 2tx values for each value of jTx,
but because the size of B in the x-direction is 2nx−1, for values of iy 6= 0, these
read operations will in general be non-coalesced, since they do not start at a
64-byte boundary. Furthermore, when the very last tile of B is read, this will
result in reading non-allocated memory location. This is of course always a bad
idea. The common solution for these two problems, is to add a dummy value at
the end of each row of B. thereby changing its dimensions to 2nx× (2ny − 1)
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Algorithm 4.3 Algorithm when using shared memory.

iy = blockIdx.y

iTx = blockIdx.x

ix′ = threadIdx.x

u′ = 0
5: for jy = 0 to ny − 1 do

ky = jy − iy + ny − 1.
for jTx = 0 to Tx− 1 do
kx = (jTx− iTx− 1)tx+ nx+ threadIdx.x

kx′ = threadIdx.x

10: B′

kx′ = B(kx,ky)

B′

kx′+tx = B(kx+tx,ky)

jx = jTx · tx+ threadIdx.x

jx′ = threadIdx.x

p′jx′ = p(jx,jy)
15: ix′ = threadIdx.x

for jx′ = 0 to tx− 1 do
kx′ = jx′ + ix′

u′ = u′ +B′

kx′ · p′jx′

end for
20: end for

end for
ix = (iTx+ 1)tx− 1− threadIdx.x

ix′ = threadIdx.x

u(ix,iy) = u′
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Figure 4.3: A dummy entry is padded to each row of B.

instead of (2nx− 1)× (2ny− 1). Of course when accessing a specific row of B,
we should now stride by 2nx values instead of 2nx− 1 values. Figure 4.3 shows
what changes when nx = 4 and ny = 3. The red entries are read, but never
used for calculations. The dotted line shows where the 2nx boundaries are. We
see that each tile will start on a tx boundary, so read transactions will coalesce
if tx is chosen properly. Again the source code can be found in Appendix A.

4.3 Results

For the results each implementation is run on the specified system. For each
point in the dataset, the corresponding implementation is run 5 times, and the
average runtime is used. The GPU on which all the implementations are tested
is a NVIDIA Quadro FX 570M, consisting of 256 MiB global memory, and 4
multiprocessors. The clock rate is 0.95 GHz. The device has compute capability
1.1.1 The system is running Ubuntu 9.04, and CUDA 3.0 is used.

The CPU’s on which the direct implemenation is tested, are the Intel Core 2
Duo T7300 2.00 GHz, running Ubuntu 9.04, and the Intel Pentium 4 3.40 GHz,
running Ubuntu 10.04.

4.3.1 Direct implementation

The direct implemtation is run on both the CPU and the GPU. Figure 4.4 shows
the overall computation speed, expressed in Mflops for different grid sizes. We
see that in both cases the performances is higher when using matrix A. This is
because less integer arithmetic is needed for addressing. Both figures show that
with growing grid sizes, the performance quickly converges to a maximum, as
we expected. The maximum performance achieved is 252 Mflops.

When we use the GPU for the direct implementation, we can vary both the
grid size and the tile size. Figure 4.5 shows the results for a grid of 256× 256,

1See Section 3.5 for more information.
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(a) Pentium 4, using matrix A.
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(b) Pentium 4, using matrix B.
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(c) Core 2 Duo T7300, using matrix A.
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(d) Core 2 Duo T7300, using matrix B.

Figure 4.4: Performance of the direct implementation on the Pentium 4 and
the Intel Core 2 Duo T7300.

for different tile sizes. Since a tile can consist of a maximum of 512 grid points,
only values of tx and ty are valid with tx · ty ≤ 512. We see that when tx ≤ 8
the performance is very low. This is because of the non-coalesced memory
transactions. When tx ≥ 16 the differences are small, but we see that the
smaller tx and ty the higher the performance. This might be explained because
when tiles are small, there are more blocks, and the hardware scheduler can
assign more block per multiprocessor. This leads to better results, because
during the time one active block is waiting for some memory transaction to be
completed, the multiprocessor can perform work for another active block. The
maximum performance achieved is 555 Mflops. This is about twice the speed
when using the direct implementation on the CPU.

4.3.2 Shared Memory

In Figure 4.6 we see that using the shared memory implementation, the per-
formance is much higher. The grid size in the x direction is 256 grid points,
divided into tiles of size tx. The grid size in the y direction, ny, is varying from
1 to 32. We use tile size ty = 1 in the y direction. We see two distinct effects.
For small values of ny the performance is low, but grows very quickly as ny
grows, to a maximum. Furthermore, for small values of tx, the performance is
very low, but grows quicly when tx gets bigger, and converges to a maximum
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Figure 4.5: Results for grid size 256× 256 and different tile sizes.

for tx ≥ 64.
That the performance is low when ny is small, can be explained by the fact the
when tx is small, the total number of tiles, and thus blocks, is small, and as we
saw earlier, this limits the performance. Furthermore, when ty is odd, we see the
performance drops a bit, which is probably caused because the total number
of multiprocessors is even, so the last block has to run on a multiprocessor
with the other multiprocessors idle. Here we assumed the multiprocessors are
finished at the same time with the other blocks, which in general might not
be true, but deviations are likely to be small compared to the time it takes to
complete one block.
The rise in performance when tx gets bigger, can be explained by two reasons.
First of all, For tx < 32 we have blocks consisting of less threads then 32, thus
less then one warp. This decreases the performance tremendously. Furthermore,
by looking at Algorithm 4.3 we see that the bigger tx, the more shared memory
is used, and the less memory bandwidth is an issue. We see that for tx ≥ 64
the performance is more or less stagnant.
Figure 4.7 shows that for nx = 256, ny has no significant influence on the
performance if it is taken a multiple of 32. In the figure different grid sizes are
shown, with ny multiples of 32. The tiles have size 1 in the y direction. The
maximum performance achieved is 9305 Mflops, for tx = 128. This is a factor
17 higher then in the direct implementation on the GPU. We also see that for
tx ≤ 32 performance significanlty increases for growing tiles. This is the effect
of warps being more and more filled, until we have full warps for tx = 32.
Finally, Figure 4.8 shows that the value of nx does not have a significant in-
fluence on the performance. This, together with the observation that ty does
not have much influence either, makes us expect that the implementation of
the algorithm performs well when the grid size is scaled up in either direction.
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(a) Performance for ny varying from 1 to 32.
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(b) Performance for different grid sizes in y direction, for
tx = 128.

Figure 4.6: Results for shared memory implementation, using grid size 256×ny
with ty = 1 and tx varying.

The tile size does have a significant influence, and tiles should be scaled up as
much as posible.

We have seen that when only using the global memory, the tile sizes are not
very important, as long as they are larger then the size of a warp. This is
a consecuence of memory coalescence. When using shared memory the tile
size is of great influence on the total performance. In general the tile size
should be relatively large, so that the use of shared memory is maximized. This
results in a performance gains of a factor 17 compared to the global memory
implementation, and a gain of a factor 37 compared to the CPU implementation.
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(a) Performance for different tile sizes tx × 1 for growing
grid in y direction.
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(b) Performance for different tile sizes tx×1 when ny = 32.

Figure 4.7: Influence of different tile sizes tx×1 and grid sizes in the y direction,
with ny varying from 32 to 256 and nx = 256.
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Figure 4.8: Influence of growing grid size in the x direction, for different tile
sizes tx× 1. ny = 128.
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Chapter 5

Inner products

As stated in Section 2.4, during each iteration of the tangential algorithm, four
inner products have to be calculated. In general there are four matrices of
influence coefficients, Axx, Axy, Ayx and Ayy. During each iteration of the
tangential algorithm, one value of sx and one value of sy are updated. With
these new values of sx and sy, a system of equations is solved, resulting in
new values of the corresponding elements of px and py. See Figure 5.1 for an
illustration of the inner products calculated.

During a specific iteration, the inner products of the red rows of the A matrices
with the p vectors are calculated, and the red values of the W∗ vectors are
added. This results in the two new blue elements of the s vectors. Then the
second part of the algorithm calculates the new dark greens elements of the
p vectors. All four A matrices have the translational invariance explained in
Chapter 2, so we have four associated B matrices. Figure 5.2 visualizes the
calculations using the B matrices. For simplicity the grids of the W∗ vectors
and s vectors are omitted.

Since after each iteration new values of p are calculated, the inner products
of different iterations cannot be calculated parallel, but have to be calculated
in a consecutive order. On the GPU this means a significant drawback of
performance, since we can only perform four inner products simultaneously. In

Figure 5.1: Inner products in terms of matrices A.

49
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Figure 5.2: Inner products in terms of matrices B.

the next sections of this chapter we will consider implementations on the CPU
and the GPU, and the results will be stated.

To determine the performance of a specific implementation, we need the total
number of floating point operations executed.1 Per inner product we have to
perform n = nx · ny multiplications, and the same number of additions, so the
total number of floating points operations per inner product is 2n. Per iteration
we calculate 4 inner products, and finally we add two inner products, and the
corresponding element of W∗ together for each direction x and y, so the total
number of floating point operations, per iteration is given by 8n + 6. During
the experiments, we measure the time it takes to perform the inner products
for each element, so the total number of iterations will be n, bringing the total
number of floating point operations to 8n2 + 6n.

During the program execution, this whole process will be repeated a given num-
ber of times, to make sure background processes do not influence the outcome
significantly. The actual number of times an experiment is run will be stated
at the results.

5.1 CPU Implementation

To derive an algorithm to calculate a specific inner product, we use the same
indexing as in Chapter 4, so we have ix and iy for elements of the s and W∗

vectors, jx and jy for elements of the p vectors and kx and ky for elements of

1Remark that this is the theoretical number of operations. In reality more operations might
be performed, but they do not count as ‘useful’ operations
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the B matrices. Again we have kx = jx− ix+nx−1 and ky = jy− iy+ny−1,
and all indices are zero-based, so for example ix ∈ [0, nx − 1]. From Equation
2.18 we have

{

sIx = W ∗

Ix +
∑

J B
xx
K pJx +

∑

J B
xy
K pJy

sIy = W ∗

Iy +
∑

J B
yx
K pJx +

∑

J B
yy
K pJy,

If we concentrate on one inner product, we get the slip distance in one particular
direction due to tractions in one particular direction. If we call this distance s′

and omit the direction labels, we can write

s′ =
∑

J

BK pJ =

ny−1
∑

jy=0

nx−1
∑

jx=0

B(kx,ky) p(jx,jy). (5.1)

Using this equation we can derive an algorithm to perform the calculations on
the CPU. Since the CPU works sequential, the four inner products are calcu-
lated independent of each other. Algorithm 5.1 shows the most direct method.
In the experiments, this algorithm is implemented as a seperate function.
ix and iy are constant for a specific inner product. Of course during each
iteration the algorithm is executed four times, with matrices Bxx, Bxy, Byx,
and Byy, and the vectors px and py. Finally, the contributions in a particular
direction are added, and the appropriate value of W∗ is added.

Algorithm 5.1 Direct algorithm to perform inner product.

s′ = 0
for jy = 0 to ny − 1 do
ky = jy − iy + ny − 1
for jx = 0 to nx− 1 do

5: kx = jx− ix+ nx− 1
s′ = s′ +B(kx,ky) · p(jx,jy)

end for
end for

5.2 GPU Implementation

In the previous section it did not really matter that inner products of different
elements cannot be performed parallel, since the CPU executes them sequen-
tially, but on the GPU this means a major drawback. After the four inner
products of a particular element are calculated, and the two new values of the
s vectors are calculated, the second part of the tangential algorithm is executed
on the CPU, calculating the new values of the p vectors. At this moment,
CUDA does not offer a mechanism to synchronize between the kernel and the
host thread. This means that our kernel can only perform four inner products
and then has to terminate. Control is given back to the host thread, and the
results of the kernel are used to calculate the new values of the p vectors. When
the host thread is finished, the same kernel is launched again to calculate the



52 CHAPTER 5. INNER PRODUCTS

next four inner products. Since shared memory is not persistent between differ-
ent kernel instances (in fact it is persistent during the live-time of one particular
block only), we have to reinitialize it for each instance, making shared memory
less useful as in the matrix-vector product implementations.

The global memory is persistent during different kernel instances, so we do not
need to copy all the data to the device each time a kernel is launched, only the
new values of p have to be updated.

When we port Algorithm 5.1 to the GPU, we have to chose a division of the
elements in blocks and threads, and how to divide the four inner products over
different blocks. As in Chapter 4, we will split the p vectors in rows, so the
tile size in the x direction is equal to the grid size in the x direction. This way
the tiles consist of a specific number of rows of p. Remark that we implicitely
assume that the grid is small enough in the x direction, that is, that nx ≤ 512,
otherwise we have to break the rows down in different tiles. This is necessary
because the maximum number of threads per block is 512.

When calculating an inner product, we can perform the multiplications parallel,
since they do not depend on each other. After these multiplications are per-
formed, the results need to be added. This is called a ‘sum reduction’. There
are several strategies to perform such a reduction, with different performance.
The fact that threads are executed in warps becomes very important when per-
forming a sum reduction. When not all the threads in a warp perform a (useful)
additions, performance is lost. In the next section we will consider different sum
reduction methods and compare them to each other.

If the four inner products are calculated independent of each other, we need to
perform four sum reductions. A better strategy is to perform the inner products
corresponding to the same direction simultaneously, and add the individual
elements along the way. This way we only need to reduce two sums, one for
each direction.

During execution of the kernel, the results of the two multiplications are added
and stored in shared memory. The resulting array of values is then reduced to
a single value. In the algorithm the array of shared memory is called t and has
nx elements. The final result of the reduction is stored in t0. Since each block
only processes a number of rows of the p vectors, we end up with an array r
consisting of Ty values, where Ty is the number of tiles. This array needs to
be reduced further to the final result. This last reduction can be performed on
the GPU, with a kernel designated to just reduce an array, or it can be reduced
by the host thread, thereby omiting the overhead of launching a kernel. Both
possibilities are investigated.

When we have the final results of the inner products, we still need to add the
appropriate value of W∗. This is done by the host thread, since it consists of
two single additions, one for each direction.

A final important difference with the full matrix-vector multiplication is that
we now only need a specific part of the B matrices. The only elements we
need are the red elements from Figure 5.2. This means we can change the
indices kx and ky to kx′ = −ix + nx − 1 and ky′ = −iy + nx − 1, so that
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(kx′, ky′) = (0, 0) corresponds to the ‘first’ element needed.2 This way the
host thread can calculate this adress one time for each B matrix, and give it
as an argument to the kernel. The fact that only a particular part of the B
matrices is needed brings a problem with it. In general this sub-matrix will not
be aligned on a 16-byte boundary, so memory read transactions will in general
be non-coalesced. For devices of device capability 1.0 and 1.1 this will result in
16 memory transaction instead of one single transaction for each warp reading
from the global memory. Devices of higher compute capability will perform
only two memory transaction, so the problem is less significant. See Section 3.6
for more information on memory coalescence for different compute capability.
In the experiments we will look at the effect of these non-coalesced memory
transactions, and the difference in performance will be determined. To achieve
coalesced memory transactions, we simply use the lower-left part of matrix B
for each inner product. Since the matrix B is alligned at a 16-byte boundary,
this will result in coalesced memory transactions. Of course these experiments
will produce incorrect outcomes, but we are only interested in the performance.

When we consider the x direction, Algorithm 5.2 gives an example how this can
be implemented. Again, ix and iy are constant. Ty is the number of tiles and
ty is the tile size in the y direction, so ty is the number of rows of p per tile.
The results of this algorithm can be found in Section 5.3.

Algorithm 5.2 Algorithm when performing two inner products.

Ty = blockIdx.x

jy = Ty · ty + threadIdx.y

jx = threadIdx.x

jj = jy · nx+ jx
5: kk′ = jy · stride+ jx

tjx = Bxx
kk′ · pjj,x +Bxy

kk′ · pjj,y
reduction(...)

if jx = 0 then
rjy = t0

10: end if

5.2.1 Sum reduction

The algorithm in the previous section is not complete, we still need to perform
the sum reduction. There are several ways to perform a sum reduction, each
with its own performance, in [2] two ways are considered.

The first method follows the pattern of Figure 5.3. The biggest drawback is
that this pattern results in highly divergent warps, as explained in Section 3.3.
During the first iteration, half the threads in a warp do not perform an addition,
and after each iteration, this number doubles. This means a lot of potential
performance is wasted. Algorithm 5.3 shows how to implement this reduction
method. Here t is the thread index and n is the total number of threads.

2The elements in the lower left corner of the red rectangles in Figure 5.2.
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Figure 5.3: Sum reduction with divergent warps.

Algorithm 5.3 Algorithm for sum reduction, with divergent warps.
s = 1
while s < n do
if tmod2s = 0 then
Nt = Nt +Nt+s

end if
s = 2s

end while

One way to tackle this problem is to use threads with consecutive indices instead
of just the even ones to perform the reduction, as in Figure 5.4. This way thread
divergence is minimized. This introduces another problem, bank conflicts. For
example during the first iteration we see that thread 0 uses memory bank 0 and
memory bank 1, while thread 8 will also use memory bank 0 and memory bank
1. In Figure 5.4 the blue and red memory locations illustrate the bank conflict.
Since a memory bank can only serve one specific value at a time, the memory
transactions will be serialized, resulting in a performance drawback. Remark
that the total number of threads needed to perform the sum reduction is half
the number of elements needed to be add.

Algorithm 5.4 Algorithm for sum reduction, with memory bank conflicts.
s = 1
while s < n do
i = 2st
if i < n then
Ni = Ni +Ni+s

end if
s = 2s

end while

The third method to perform the sum reduction does not has divergent warps,
or memory bank conflicts. When using the pattern of Figure 5.5, the number of
threads involved in the reduction halves each iteration, and the ‘active’ threads
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Figure 5.4: Sum reduction with bank conflicts.

Figure 5.5: Sum reduction without warp divergence and bank conflicts.

are consecutive, belonging to the same warps. So only when the total number
of ‘active’ threads comes under 32, this single warp will diverge. Using this
method to reduce a sum, the total number of values needs to be a power of
two. To perform a reduction with an arbitrary number of values, zeros can be
padded until the total number of values is again a power of 2. Algorithm 5.5
gives a possible implementation of this method. n is the number of values to be
added and N is an array containing these numbers. s is the number of ‘active’
threads, and t is the index of the current thread. The final answer will be N0.

As we see, all threads with t ≥ s will not perform an addition, but still all
threads have to execute the while-loop and the conditional statement during
each iteration. In the implementation there is also a syncthreads() state-
ment needed to make sure the additions are performed with the correct values.
This results in a lot of instructions executed without any calculations per-
formed. If we unroll the last iterations of the loop, one conditional statement
can make sure threads belonging to warps that are no longer needed to perform
calculations can be dismissed. Furthermore, when only one warp is active, the
syncthreads() statement is no longer needed. Algorithm 5.5 now changes

to Algorithm 5.6. Remark that during these last 6 additions all threads in the
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Algorithm 5.5 Algorithm for sum reduction without divergent warps and bank
conflicts.
s = n

2
while s > 0 do
if t < s then
Nt = Nt +Nt+s

end if
s = s

2
end while

warp perform additions, but not all the results are used. It is just cheaper to
perform useless calculations than to check whether or not to perform them.
Remark that by unrolling the last 6 iterations, we assume n ≥ 64, otherwise
non allocated values of N are referenced. When the total number of values is
smaller, we can just state all the additions explicitely, so for example for n = 32
this will result in just 5 additions.

Algorithm 5.6 Algorithm for sum reduction with enrolled iterations.

s = n
2

while s > 32 do
if t < s then
Nt = Nt +Nt+s

end if
s = s

2
end while
if t < 32 then
Nt = Nt +Nt+32

Nt = Nt +Nt+16

Nt = Nt +Nt+8

Nt = Nt +Nt+4

Nt = Nt +Nt+2

Nt = Nt +Nt+1

end if

Figure 5.6 shows the performance of the different reduction methods. Only 1
reduction is done per kernel launch, so only 1 multiprocessor is used. The time
measurement is taken as the average over 10000 iterations. ‘Fast’ refers to the
algorithm without warp divergence and memory bank conficts. Remark that
when reducing n values, we perform n floating point operations. We see that
the algorithm with the enrolled iterations is the fastest, and the performance
is higher for greater values of n. For n = 512, the performance is 75.8 Mflops.
Table 5.1 shows the different speeds and the relative performances of the differ-
ent algorithms. In the experiments with the inner products we will use the fast
reduction without the enrolled loop, to make sure it works correct with arrays
of size n < 64.

As stated we only use 1 block, which is of course not very efficient. We will now
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Figure 5.6: Performances of different reduction algorithms.

Algorithm Speed (Mflops) Relative performance

Divergent warps 16.0 1.00
Memory bank conflicts 38.8 2.42

Fast 63.5 3.96
Fast with enrolled loop 75.8 4.73

Table 5.1: Relative performance of different reduction algorithms.
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Figure 5.7: Performances of reduction algorithm for increasing number of
blocks. Lowest performance for 1 block, highest for 1024 blocks.

investigate the fast unenrolled algorithm further to see the effect of using more
blocks. An important question is whether or not n = 512 stays the fastest.
Figure 5.7 shows the performance of the reduction algorithm for different num-
ber of blocks. The lowest performance corresponds to 1 block, to highest to 1024
blocks, and in between the number of blocks doubles. An important thing we
see is that for 1024 blocks, we achieve maximum performance for n = 128. The
exact reason for this is not clear. The performance depends on the resources
per block, but also on the rate at which latency can be hide. The occupancy for
n = 512 and n = 256 is 1. For n = 128, it is only 2

3 since we have 64 threads,
and a maximum of 8 active blocks per multiprocessor, so the number of active
treads is only 512 per multiprocessor, yet we see that n = 128 is most efficient
when having many blocks. For 64, 128 and 256 blocks n = 256 is most efficient
and for less then 64 blocks, n = 512 becomes most efficient.

5.3 Results

In previous section the inner products needed during the Gauss-Seidel iterations
are described in detail. This section gives the result for different experiments
run. The same systems are used as in Section 4.3, so the GPU device is the
NVIDIA Quadro FX 570M and the CPU devices are the Pentium 4 2.5 GHz
and the Core 2 Duo T7300 2.0 GHz.

5.3.1 CPU implementation

On the CPU we again expect more or less constant performance once the grid
size is big enough. Figure 5.8 shows the performance using both the matrix
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A and B. The overall performance is taken as the average of 50 iterations.
Again we see that the performances are nearly equal. Using the A matrix we
converge faster to the maximum speed, because less addressing is necessary, so
the performance is less dependent on the grid size. For example when using
matrix A we only have to increase the jj counter, while when using matrix B,
we have to increase both jj and kk. The maximum performance is 307 Mflops
for the Intel Core 2 Duo T7300, and 261 Mflops for the Intel Pentium 4 3.40
GHz.
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(a) Pentium 4, using matrix A.
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(b) Pentium 4, using matrix B.
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(c) Core 2 Duo T7300, using matrix A.
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(d) Core 2 Duo T7300, using matrix B.

Figure 5.8: Performance of the inner products on the Pentium 4 and the Intel
Core 2 Duo T7300.

5.3.2 GPU implementation

On the GPU we expect different behaviour. During execution of the algorithm
to perform an inner product, each block performs two sum reductions. Each
thread also reads 4 elements of the matrix B, and these transactions are in
general non-coalesced. We will investigate what the consecuences of different
divisions in blocks and threads are, and what the effect of memory coalescence
is.

In Figure 5.7 we see that for sum reduction the performance increases with
the number of blocks, and in Figure 5.6 we see that for increasing n, the tile
size in this case, the performance also increases to a maximum for n = 128,
n = 256 or n = 512 depending on the number of blocks. This suggests that for
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larger problems, with a large grid size, performance is higher than for smaller
problems. Figure 5.9 shows this effect. The left figure shows the results when
performing non-coalesced global memory read transaction of matrix B. The
right figure shows the performance when using coalesced transactions.

2
4

8
16

32
64

128
256

512

1
2

4
8

16
32

64
128

0

200

400

600

800

1000

nxny

M
flo

ps

(a) Varying grid size, non-coalesced memory
transactions.
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(b) Varying grid size, coalesced memory
transactions.

Figure 5.9: Performance of the inner product for different grid sizes.

When using non-coalesced global memory read transactions for B, we have a
performance of 785 Mflops. When using coalesced transactions, the maximum
performance is 1008 Mflops, which is about 28% higher. Both are achieved
for nx = 256, so we have 256 threads per block. Beside this difference in
performance the figures look very similar and we see that for growing grids the
overal performances rises. This also suggests that it is only interesting to use
the GPU for performing the inner products, when the grid size is large enough.
For small grids the CPU implementation might perform better. In Figure 5.10
the performance can be seen as function of the total grid size. Here we used
the results for the non-coalesced implementation, with nx = 256.
We see that for this particular GPU device, the NVIDIA Quadro FX 570M, it
is only interesting to use the GPU for grids larger then n ≈ 5000, since then
the performance gets larger on the GPU than on the CPU. Of course different
grid sizes can be interesting when using other GPU and CPU devices.

As a final experiment we will consider two particular grids, a smaller and a
larger one and look at the effect of using different tile sizes in the y direction.
For the small one we chose nx = ny = 64 and for the large one nx = ny = 128.
This way we can see the consequence of varying both the number of blocks and
the number of threads per block. Figure 5.9 suggests that the differences are
not very large, since the diagonals, n = nx ·ny for a certain n do not vary much.
Figure 5.11 shows the results. In the figure both coalesced and non-coalesced
global memory transaction are measured. Furthermore performances are mea-
sured when the final reduction is performed on the CPU and the GPU.
For the small grid we see that the performance is about 35 Mflops, and decreases
slightly for larger ty. This suggests that it is more efficient to have more blocks
than to have more threads per block. For the large grid this effect is even
larger. ty = 1 is most efficient, ty = 2 is a little bit less efficient, but when
ty = 4 we see a bigger decrease in performance. This can be explained because
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Figure 5.10: Performances as function of grid size n

the occupancy decreases. For ty = 2 we have 256 threads per block, resulting
in 3 active blocks per multiprocessor, and an occupancy of 1. For ty = 1 we
have 512 threads per block, resulting in 1 active block per multiprocessor, and
an occupancy of only 2

3 .
Furthermore we see in both cases that the CPU reduction performs slighly
better than the GPU reduction. This suggests that the final reduction is too
small to be useful to be performed on the GPU. Again we see that coalescence
results in a better performance. For the small grid the performance is about
35% higher, and for the large grid it varies between 30% and 40%.

To summarize, we have seen that only for relatively large grids the GPU is
efficient at performing the inner products. The biggest drawback for small grids
is that the total number of blocks is relative small, so latency hiding cannot be
achieved very efficiently. Also the number of threads per block is small which
results in a less effecient sum reduction.
The fact that the global memory transactions of the matrix B are non-coalesced
decreases the performance by about 25%. On newer devices with compute
capability 1.2 or higher this would probably be a smaller issue since only 2
memory transactions are performend instead of 16 in case of a non-coalesced
acces pattern.
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(a) Performance using different tile sizes for grid size 64× 64.
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(b) Performance using different tile sizes for grid size 128× 128

Figure 5.11: Performance of grid sizes 64× 64 and 128× 128.



Chapter 6

Conclusions &

recommendations

In this chapter conclusions will be made for the matrix-vector multiplication and
the inner products. Furthermore recommendations will be stated and potential
interesting further research is suggested.

6.1 Matrix-vector multiplication

When performing a full matrix-vector multiplication, we have seen that a sig-
nificant speed-up can be achieved. In general, the larger the tiles, the higher
the performance, until a tile size of about 128 elements is reached. It is very
important to make sure the tile size is a multiple of 32. This ensures all warps
are completely filled with threads.
Also the number of blocks is important for the performance. When ny ≤ 8 the
performance increases fast with the total number of blocks. On devices with
more multiprocessors this effect might be even more significant.
A possible method to gain even more performance is to use seperate kernels for
different tile sizes. For example if we have tiles with ty = 1, we do not need
to iterate over the tiles in the y direction, and this instruction overhead can
be overcome by creating a second kernel, for this special case, omiting the loop
over the tiles in the y direction.
A final conclusion on the calculation of a full matrix-vector product is that when
grid sizes become large, a dedicated device might be necessary, since when the
primary device is used, time-outs might occur during kernel execution since the
device is also needed for other purposes like video output.

6.2 Inner products

As we have seen the speed-ups for the inner products are less than for the full
matrix-vector multiplication. For the used devices, the GPU only performed
better when the grid size is larger than n ≈ 5000. This is a consequence of how
the Gauss-Seidel algorithm works. Between the calculation of the succesive
inner products, the vector involved is updated, which means that we can only
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calculate one inner product during each kernel invocation. This highly reduces
the performance since all data need to be read from global memory again for
the next inner product.
At this moment the non-linear part of the algorithm is executed on the CPU.
One might suggest to port this to the GPU, but this introduces another problem.
Since there is no way for blocks to synchronize with each other, the different
blocks cannot determine whether another block is finished. As long as the whole
algorithm is not divided in a per-block manner, we still need independent kernel
launches, and are bounded by the high latency of the global memory.
The experiments run in this project are performed on a device with a relative
small number of multiprocessors of 4. It might also be interesting to investigate
the effect of more multiprocessors. For a given grid size, this will probably lead
to a larger number of blocks each consisting of relatively few threads.
For smaller grids, it might be interesting to investigate performances when using
the large A matrix structure, and use the highly optimized CUBLAS routines
for performing the inner products. If for example a grid of size n = 32 · 64 =
2048 is used, 64 MiB global memory is needed for 4 matrices1. This ensures
memory coalescence during each global memory transaction. Also less adressing
arithmetic is needed.

1Memory needed per matrix is (32 · 64)2 · 4 bytes = 224 bytes = 16MiB.



Appendix A

Source code

The following sections contain the source code of the different implementations
run, for the full matrix vector multiplication and the calculation of the inner
products.

A.1 Matrix-vector multiplication

A.1.1 CPU implementation

#include <stdio.h>

#include <stdlib.h>

#include <sys/time.h>

#include <math.h>

/* Direct matrix-vector product, in terms of matrix A */

void prod_A(float* u, float *A, float *p, unsigned int n) {

unsigned int ii, jj, kk;

kk = 0;

for(ii = 0; ii < n; ii++) {

u[ii] = 0;

/* Calculate the inproduct corresponding to index jj */

for(jj = 0; jj < n; jj++) {

u[ii] += A[kk] * p[jj];

kk++;

}

}

return;

}

/* Direct matrix-vector product, in terms of matrix B */

void prod_B(float* u, float *B, float *p, unsigned int nx, unsigned int ny, unsigned int bx) {

unsigned int ix, iy, jx, jy, ky, kx;

unsigned int ii, jj, kk;

ii = 0;

unsigned int offset = bx - nx;

for(iy = 0; iy < ny; iy++) {

for(ix = 0; ix < nx; ix++) {

u[ii] = 0;

ky = ny - 1 - iy;

kx = nx - 1 - ix;

jj = 0;

kk = ky * bx + kx;

for(jy = 0; jy < ny; jy++) {

for(jx = 0; jx < nx; jx++) {

u[ii] += B[kk] * p[jj];

kk++;

jj++;

}
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kk += offset;

}

ii++;

}

}

return;

}

int main( int argc, char **argv) {

unsigned int nx, ny, n;

unsigned int bx, by, m;

unsigned int i;

unsigned int ix, iy, jx, jy;

unsigned int ii, jj;

struct timeval start1, start2, stop1, stop2;

float lapsed1, lapsed2;

float speed1, speed2;

float diff;

/* default parameters */

unsigned int iterations = 5;

nx = 32;

ny = 32;

switch(argc) {

case 4:

sscanf(argv[2], "%d", &nx);

sscanf(argv[3], "%d", &ny);

case 2:

sscanf(argv[1], "%d", &iterations);

break;

case 1:

break;

default:

printf("Incorrect commandline options, exiting...\n");

exit(1);

}

n = nx * ny;

/* size of matrix B */

bx = 2 * nx - 1;

by = 2 * ny - 1;

m = bx * by;

/* declarations of matrices A and B and vector p */

float *B;

float *A;

float *p;

/* declarations of results of the direct and indirect matrix-vector product */

float *u[2];

/* random seed */

srand( (unsigned)time( NULL ) );

/* filling the grid B with random numbers */

B = (float *)malloc(m * sizeof(float));

for(ii = 0; ii < m; ii++) {

B[ii] = (float) rand()/RAND_MAX;

}

/* create traction vector */

p = (float *)malloc(n * sizeof(float));

for(ii = 0; ii < n; ii++) {

p[ii] = (float)rand() / RAND_MAX;

}

/* allocate space for the results */

u[0] = (float *)malloc(n * sizeof(float));

u[1] = (float *)malloc(n * sizeof(float));

if(n <= 16384) {

/* creating the big matrix A */

A = (float *)malloc(n * n * sizeof(float));

for(ii = 0; ii < n; ii++) {

iy = ii / nx;

ix = ii % nx;

for(jj = 0; jj < n; jj++) {

jy = jj / nx;

jx = jj % nx;

A[ii * n + jj] = B[(ny - 1 + jy - iy) * bx + (nx - 1 + jx - ix)];

}
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}

/* calculate the results by the direct function */

gettimeofday (&start1, NULL);

for(i = 0; i < iterations; i++) {

prod_A(u[0], A, p, n);

}

gettimeofday(&stop1, NULL);

lapsed1 = stop1.tv_sec - start1.tv_sec + 1e-6 * (stop1.tv_usec - start1.tv_usec);

lapsed1 /= iterations;

speed1 = mflops(lapsed1, n);

free(A);

}

else {

lapsed1 = -1;

}

gettimeofday(&start2, NULL);

for(i = 0; i < iterations; i++) {

prod_B(u[1], B, p, nx, ny, bx);

}

gettimeofday(&stop2, NULL);

lapsed2 = stop2.tv_sec - start2.tv_sec + 1e-6 * (stop2.tv_usec - start2.tv_usec);

lapsed2 /= iterations;

speed2 = mflops(lapsed2, n);

if(n <= 16384) {

diff = normdiff(u[0], u[1], n);

if(diff != 0) {

printf("Different solutions, error in calculations. Exiting...\n");

exit(1);

}

}

else {

diff = -1;

}

if(n <= 16384) {

printf("%u %u %u %f %f %f %f\n", n, nx, ny, lapsed1, lapsed2, speed1, speed2);

}

else {

printf("%u %u %u NaN %f NaN %f\n", n, nx, ny, lapsed2, speed2);

}

/* free all allocated memory space */

free(B);

free(p);

free(u[0]);

free(u[1]);

return 0;

}

A.1.2 GPU implementation

Global memory implementation

#include <stdio.h>

#include <sys/time.h>

#include <cuda.h>

#include "util.h"

__global__ void Global_mem(float* dB, float* dp, float* du, unsigned int nx, unsigned int ny, unsigned int bx) {

unsigned int ix, iy, ii, jx, jy, jj, kx, ky, kk;

/* calculate absolute indices of u */

iy = blockIdx.y * blockDim.y + threadIdx.y;

ix = blockIdx.x * blockDim.x + threadIdx.x;

ii = iy * nx + ix;

/* initialize final answer to 0 */

du[ii] = 0;

/* loop over the y-direction of p */

for(jy = 0; jy < ny; jy++) {

/* determine which row of B is needed */

ky = jy - iy + ny - 1;
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/* loop over the x-direction of p */

for(jx = 0; jx < nx; jx++) {

/* determine which elements of B and p are needed */

kx = jx - ix + nx - 1;

jj = jy * nx + jx;

kk = ky * bx + kx;

/* multiply the correct elements and add to u, remark that both read transaction are non-coalesced,

since the order is reversed, the write action to u is coalesced */

du[ii] += dB[kk] * dp[jj];

}

}

}

int main(int argc, char **argv) {

unsigned int nx, ny;

unsigned int bx, by;

unsigned int n, m;

unsigned int i, ii;

unsigned int iterations;

unsigned int Tx, Ty, tx, ty;

float *hB;

float *dB;

float *hp;

float *dp;

float *du;

float *u_cpu;

float *u_gpu;

struct timeval start, stop;

float lapsed;

float diff;

cudaError_t err;

/* default values */

iterations = 5;

nx = 64;

ny = 16;

tx = 64;

ty = 1;

/* simple commandline arguments, we have shared_memory <iterations> <nx> <ny> <tx> <ty> */

switch(argc) {

case 6:

sscanf(argv[4],"%u", &tx);

sscanf(argv[5],"%u", &ty);

case 4:

sscanf(argv[2], "%u", &nx);

sscanf(argv[3], "%u", &ny);

case 2:

sscanf(argv[1], "%u", &iterations);

break;

case 1:

break;

default:

printf("Incorrect commandline options, usage: %s <iterations> <nx> <ny> <tx> <ty>\n", argv[0]);

exit(1);

}

bx = 2 * nx - 1;

by = 2 * ny - 1;

n = nx * ny;

m = bx * by;

Tx = nx / tx;

Ty = ny / ty;

if(tx == 0 || ty == 0 || nx % tx != 0 || ny % ty != 0) {

printf("Tiles have an incorrect size, exiting...\n");

exit(1);

}

if(tx * ty > 512) {

/* of tiles are incorrect, output NaN’s which can be dealed with by Matlab */

printf("%u %u %u %u %u NaN NaN NaN\n", n, nx, ny, tx, ty);

exit(1);

}

/* set dimensions of grid and threads */

dim3 dimGrid(Tx, Ty);

dim3 dimBlock(tx, ty);

/* random seed */

srand( 1337 );
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/* filling the grid B with random numbers */

hB = (float *)malloc(m * sizeof(float));

for(ii = 0; ii < m; ii++) {

hB[ii] = (float) rand()/RAND_MAX;

}

/* create traction vector */

hp = (float *)malloc(n * sizeof(float));

for(ii = 0; ii < n; ii++) {

hp[ii] = (float)rand() / RAND_MAX;

}

/* allocate memory for results*/

u_cpu = (float *)malloc(n * sizeof(float));

u_gpu = (float *)malloc(n * sizeof(float));

/* allocate memory on device, copy B matrix and p vector to device */

err = cudaMalloc((void**)&dB, m * sizeof(float));

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

err = cudaMemcpy(dB, hB, m * sizeof(float), cudaMemcpyHostToDevice);

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

err = cudaMalloc((void**)&dp, n * sizeof(float));

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

err = cudaMemcpy(dp, hp, n * sizeof(float), cudaMemcpyHostToDevice);

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

err = cudaMalloc((void**)&du, n * sizeof(float));

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

err = cudaMemset(du, 0, n * sizeof(float));

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

/* determine start time */

err = cudaThreadSynchronize();

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

gettimeofday(&start, NULL);

for(i = 0; i < iterations; i++) {

/* invoke the kernel, we don’t need any shared memory */

Global_mem<<<dimGrid, dimBlock>>>(dB, dp, du, nx, ny, bx);

/* check if an error occured when launching the kernel */

err = cudaGetLastError();

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

/* copy result to host, part of the time measurement */

err = cudaMemcpy(u_gpu, du, n * sizeof(float), cudaMemcpyDeviceToHost);

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

}

/* determine stop time and calculate lapsed time per iterations */

err = cudaThreadSynchronize();

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

gettimeofday(&stop, NULL);

lapsed = stop.tv_sec - start.tv_sec + 1e-6 * (stop.tv_usec - start.tv_usec);

lapsed /= iterations;
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/* run on cpu too, for numerical comparison */

prod_B(u_cpu, hB, hp, nx, ny, bx);

/* calculate relative difference */

diff = normdiff(u_cpu, u_gpu, n) / norm(u_cpu, n);

/* print results */

printf("%u %u %u %u %u %f %E %f\n", n, nx, ny, tx, ty, lapsed, diff, mflops(lapsed, n));

/* free all allocated memory */

free(u_cpu);

free(u_gpu);

free(hB);

free(hp);

err = cudaFree(dB);

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

err = cudaFree(dp);

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

err = cudaFree(du);

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

return 0;

}

Shared memory implementation

#include <stdio.h>

#include <sys/time.h>

#include <cuda.h>

#include "util.h"

/* allocated shared memory array */

extern __shared__ float shared_mem[];

__global__ void Kernel_shared(float* dB, float* dp, float* du,

unsigned int nx, unsigned int ny, unsigned int stride) {

unsigned int jTx, jx, jy, iy;

unsigned int tx, Tx, iTx;

unsigned int kx, ky;

float *shared_p, *shared_B, *shared_u;

float u;

/* just for simple syntax later on */

tx = blockDim.x;

Tx = gridDim.x;

iy = blockIdx.y;

iTx = blockIdx.x;

/* make sure shared memory has correct structure */

shared_p = shared_mem;

shared_u = &shared_p[tx];

shared_B = &shared_u[tx];

/* initialize result to zero */

u = 0;

/* loop over the different tiles of p in the y-direction */

for(jy = 0; jy < ny; jy++) {

ky = jy - iy + ny - 1;

/* loop over the different tiles of p in the x-direction */

for(jTx = 0; jTx < Tx; jTx++) {

kx = (jTx - iTx - 1) * tx + nx + threadIdx.x;

/* loading the two tiles of B and the one tile of p from the global memory */

shared_B[threadIdx.x] = dB[ky * stride + kx];

shared_B[threadIdx.x + tx] = dB[ky * stride + kx + tx];

shared_p[threadIdx.x] = dp[jy * nx + jTx * tx + threadIdx.x];

/* make sure all data is read */

__syncthreads();
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/* loop over the different grid points in the current tile of p */

for(jx = 0; jx < tx; jx++) {

/* add the contribution of p to u */

u += shared_B[jx + threadIdx.x] * shared_p[jx];

}

/* make sure all the contribution of the current tile of p are used, and can be overwritten by the next tile */

__syncthreads();

}

}

/* save the final answer to the global memory. This one is non-coalesced, but happens only once, so no big deal */

du[iy * nx + (iTx + 1) * tx - 1 - threadIdx.x] = u;

}

int main(int argc, char **argv) {

unsigned int nx, ny;

unsigned int bx, by;

unsigned int n, m;

unsigned int i, ii;

unsigned int iterations;

unsigned int Tx, Ty, tx, ty;

unsigned int stride;

float *hB;

float *dB;

float *hp;

float *dp;

float *du;

float *u_cpu;

float *u_gpu;

struct timeval start, stop;

float lapsed;

float diff;

cudaError_t err;

/* default values */

iterations = 5;

nx = 64;

ny = 16;

tx = 64;

ty = 1;

/* simple commandline arguments, we have shared_memory <iterations> <nx> <ny> <tx> <ty> */

switch(argc) {

case 6:

sscanf(argv[4],"%u", &tx);

sscanf(argv[5],"%u", &ty);

case 4:

sscanf(argv[2], "%u", &nx);

sscanf(argv[3], "%u", &ny);

case 2:

sscanf(argv[1], "%u", &iterations);

break;

case 1:

break;

default:

printf("Incorrect commandline options, usage: %s <iterations> <nx> <ny> <tx> <ty>\n", argv[0]);

exit(1);

}

bx = 2 * nx - 1;

by = 2 * ny - 1;

stride = 2 * nx;

n = nx * ny;

m = stride * by;

Tx = nx / tx;

Ty = ny / ty;

if(ty != 1 || nx % tx != 0) {

/* of tiles are incorrect, output NaN’s which can be dealed with by Matlab */

printf("%u %u %u %u %u NaN NaN NaN\n", n, nx, ny, tx, ty);

exit(1);

}

if(tx > 512) {

printf("Tiles too big, exiting...\n");

exit(1);
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}

/* set dimensions of grid and threads */

dim3 dimGrid(Tx, Ty);

dim3 dimBlock(tx, ty);

/* random seed */

srand( 1337 );

/* filling the grid B with random numbers */

hB = (float *)malloc(m * sizeof(float));

for(ii = 0; ii < m; ii++) {

if((ii + 1) % stride == 0) {

hB[ii] = 0;

}

else {

hB[ii] = (float) rand()/RAND_MAX;

}

}

/* create traction vector */

hp = (float *)malloc(n * sizeof(float));

for(ii = 0; ii < n; ii++) {

hp[ii] = (float)rand() / RAND_MAX;

}

/* allocate memory for results*/

u_cpu = (float *)malloc(n * sizeof(float));

u_gpu = (float *)malloc(n * sizeof(float));

/* allocate memory on device, copy B matrix and p vector to device */

err = cudaMalloc((void**)&dB, m * sizeof(float));

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

err = cudaMemcpy(dB, hB, m * sizeof(float), cudaMemcpyHostToDevice);

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

err = cudaMalloc((void**)&dp, n * sizeof(float));

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

err = cudaMemcpy(dp, hp, n * sizeof(float), cudaMemcpyHostToDevice);

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

err = cudaMalloc((void**)&du, n * sizeof(float));

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

err = cudaMemset(du, 0, n * sizeof(float));

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

/* determine start time */

err = cudaThreadSynchronize();

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

gettimeofday(&start, NULL);

for(i = 0; i < iterations; i++) {

/* invoke the kernel, we need 3 tiles of shared memory, one for p and two for B */

Kernel_shared<<<dimGrid, dimBlock, 4 * tx * ty * sizeof(float)>>>(dB, dp, du, nx, ny, stride);

/* check if an error occured when launching the kernel */

err = cudaGetLastError();

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

/* copy result to host, part of the time measurement */

err = cudaMemcpy(u_gpu, du, n * sizeof(float), cudaMemcpyDeviceToHost);

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}
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}

/* determine stop time and calculate lapsed time per iterations */

err = cudaThreadSynchronize();

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

gettimeofday(&stop, NULL);

lapsed = stop.tv_sec - start.tv_sec + 1e-6 * (stop.tv_usec - start.tv_usec);

lapsed /= iterations;

/* run on cpu too, for numerical comparison */

prod_B(u_cpu, hB, hp, nx, ny, stride);

/* calculate relative difference */

diff = normdiff(u_cpu, u_gpu, n) / norm(u_cpu, n);

/* print results */

printf("%u %u %u %u %u %f %E %f\n", n, nx, ny, tx, ty, lapsed, diff, mflops(lapsed, n));

/* free all allocated memory */

free(u_cpu);

free(u_gpu);

free(hB);

free(hp);

err = cudaFree(dB);

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

err = cudaFree(dp);

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

err = cudaFree(du);

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

return 0;

}

A.1.3 Utility functions

#include <math.h>

#include <stdio.h>

/* Direct matrix-vector product, in terms of matrix B */

void prod_B(float* u, float *B, float *p, unsigned int nx, unsigned int ny, unsigned int bx) {

unsigned int ix, iy, jx, jy, ky, kx;

unsigned int ii, jj, kk;

for(iy = 0; iy < ny; iy++) {

for(ix = 0; ix < nx; ix++) {

ii = iy * nx + ix;

u[ii] = 0;

for(jy = 0; jy < ny; jy++) {

ky = jy - iy + ny - 1;

for(jx = 0; jx < nx; jx++) {

kx = jx - ix + nx - 1;

jj = jy * nx + jx;

kk = ky * bx + kx;

u[ii] += B[kk] * p[jj];

}

}

}

}

return;

}

float normdiff(float *u1, float *u2, unsigned int n) {

/* calculate the norm of the difference of u1 and u2 */

unsigned int ii;

float res, update;

res = 0;

for(ii = 0; ii < n; ii++) {

update = u1[ii] - u2[ii];

update *= update;
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res += update;

}

res = pow(res, 0.5);

return res;

}

float norm(float *u, unsigned int n) {

/* calculate the norm of a vector */

unsigned int ii;

float res;

res = 0;

for(ii = 0; ii < n; ii++) {

res += u[ii] * u[ii];

}

res = pow(res, 0.5);

return res;

}

float mflops(float time, unsigned int n) {

float size = n;

return (time? 2 * size * size / time / 1e6 : 0);

}

bool ispowof2(unsigned int n) {

if(n == 0)

return false;

while(n != 1) {

if(n % 2 == 0)

n /= 2;

else

return false;

}

return true;

}

void printu(float* u1, float* u2, int n) {

int ii;

for(ii = 0; ii < n; ii++) {

printf("%5.4f", u1[ii]);

(u2 ? printf(" %5.4f\n", u2[ii]) : printf("\n"));

}

printf("\n");

return;

}

A.2 Inner product calculation

A.2.1 CPU implementation

Matrix A implementation

#include <stdio.h>

#include <stdlib.h>

#include <sys/time.h>

#include <math.h>

#include "util.h"

/* Direct inner product, in terms of matrix B */

float innerprod_B(float *B, float *p, unsigned int nx,

unsigned int ny, unsigned int bx, unsigned int iy, unsigned int ix) {
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unsigned int jx, jy, ky, kx;

unsigned int jj, kk;

float res;

res = 0;

for(jy = 0; jy < ny; jy++) {

ky = jy - iy + ny - 1;

kx = nx - 1 - ix;

jj = jy * nx;

kk = ky * bx + kx;

for(jx = 0; jx < nx; jx++) {

res += B[kk] * p[jj];

jj++;

kk++;

}

}

return res;

}

/* Direct inner product, in terms of matrix A */

float innerprod_A(float *A, float *p, unsigned int n, unsigned int ii) {

unsigned int jj;

float res;

res = 0;

/* Calculate the inproduct corresponding to index jj */

for(jj = 0; jj < n; jj++) {

res += A[ii * n + jj] * p[jj];

}

return res;

}

int main( int argc, char **argv) {

unsigned int nx, ny, n;

unsigned int bx, by, m;

unsigned int i, j, k;

unsigned int ix, iy, jx, jy;

unsigned int ii, jj;

/* variables for timing and speed measuring */

struct timeval *start, *stop;

float *lapsed;

float *speed;

float averagespeed, averagelapsed;

float varspeed, varlapsed;

/* variable for numerical comparison */

float diff;

/* default parameters */

unsigned int iterations = 5;

nx = 32;

ny = 32;

switch(argc) {

case 4:

sscanf(argv[2], "%d", &nx);

sscanf(argv[3], "%d", &ny);

case 2:

sscanf(argv[1], "%d", &iterations);

break;

case 1:

break;

default:

printf("Incorrect commandline options, exiting...\n");

exit(1);

}

start = (struct timeval *)malloc(iterations * sizeof(struct timeval));

stop = (struct timeval *)malloc(iterations * sizeof(struct timeval));

lapsed = (float *)malloc(iterations * sizeof(float));

speed = (float *)malloc(iterations * sizeof(float));

n = nx * ny;

/* check if grid is small enough for four A matrices to fit in memory */

if(n > 8192) {

printf("%u %u %u NaN NaN\n", n , nx, ny);

exit(1);

}
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/* size of matrix B */

bx = 2 * nx - 1;

by = 2 * ny - 1;

m = bx * by;

/* declarations of matrices A and B and vector p */

float *Bxx, *Bxy, *Byx, *Byy;

float *Axx, *Axy, *Ayx, *Ayy;

float *px, *py;

/* declarations of results of the direct and indirect matrix-vector product */

float *ux, *uy;

float *uxB, *uyB;

/* declarations of the initial deformation */

float *wx, *wy;

/* random seed */

srand( (unsigned)time( NULL ) );

/* filling the grids B with random numbers */

Bxx = (float *)malloc(m * sizeof(float));

Bxy = (float *)malloc(m * sizeof(float));

Byx = (float *)malloc(m * sizeof(float));

Byy = (float *)malloc(m * sizeof(float));

for(ii = 0; ii < m; ii++) {

Bxx[ii] = (float) rand()/RAND_MAX;

Bxy[ii] = (float) rand()/RAND_MAX;

Byx[ii] = (float) rand()/RAND_MAX;

Byy[ii] = (float) rand()/RAND_MAX;

}

/* creating A matrices */

Axx = (float *)malloc(n * n * sizeof(float));

Axy = (float *)malloc(n * n * sizeof(float));

Ayx = (float *)malloc(n * n * sizeof(float));

Ayy = (float *)malloc(n * n * sizeof(float));

for(ii = 0; ii < n; ii++) {

iy = ii / nx;

ix = ii % nx;

for(jj = 0; jj < n; jj++) {

jy = jj / nx;

jx = jj % nx;

Axx[ii * n + jj] = Bxx[(ny - 1 + jy - iy) * bx + (nx - 1 + jx - ix)];

Axy[ii * n + jj] = Bxy[(ny - 1 + jy - iy) * bx + (nx - 1 + jx - ix)];

Ayx[ii * n + jj] = Byx[(ny - 1 + jy - iy) * bx + (nx - 1 + jx - ix)];

Ayy[ii * n + jj] = Byy[(ny - 1 + jy - iy) * bx + (nx - 1 + jx - ix)];

}

}

/* create traction vectors */

px = (float *)malloc(n * sizeof(float));

py = (float *)malloc(n * sizeof(float));

for(ii = 0; ii < n; ii++) {

px[ii] = (float)rand() / RAND_MAX;

py[ii] = (float)rand() / RAND_MAX;

}

/* create initial deformation vectors */

wx = (float *)malloc(n * sizeof(float));

wy = (float *)malloc(n * sizeof(float));

for(ii = 0; ii < n; ii++) {

wx[ii] = (float)rand() / RAND_MAX;

wy[ii] = (float)rand() / RAND_MAX;

}

/* allocate space for the results */

ux = (float *)malloc(n * sizeof(float));

uy = (float *)malloc(n * sizeof(float));

uxB = (float *)malloc(n * sizeof(float));

uyB = (float *)malloc(n * sizeof(float));

for(i = 0; i < iterations; i++) {

gettimeofday(&start[i], NULL);

for(ii = 0; ii < n; ii++) {

ux[ii] = wx[ii] + innerprod_A(Axx, px, n, ii) + innerprod_A(Axy, py, n, ii);

uy[ii] = wy[ii] + innerprod_A(Ayx, px, n, ii) + innerprod_A(Ayy, py, n, ii);

}

gettimeofday(&stop[i], NULL);

}

timing(start, stop, lapsed, speed, &averagelapsed, &averagespeed, &varlapsed, &varspeed, iterations, n);

for(iy = 0; iy < ny; iy++) {

ii = iy * nx;

for(ix = 0; ix < nx; ix++) {
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uxB[ii] = wx[ii] + innerprod_B(Bxx, px, nx, ny, bx, iy, ix) + innerprod_B(Bxy, py, nx, ny, bx, iy, ix);

uyB[ii] = wy[ii] + innerprod_B(Byx, px, nx, ny, bx, iy, ix) + innerprod_B(Byy, py, nx, ny, bx, iy, ix);

ii++;

}

}

diff = normdiff(uxB, ux, n) + normdiff(uyB, uy, n);

if(diff != 0) {

printf("Error in calculations, exiting...\n");

exit(1);

}

printf("%u %u %u %f %f\n", n, nx, ny, averagelapsed, averagespeed);

/* free all allocated memory space */

free(Bxx);

free(Bxy);

free(Byx);

free(Byy);

free(Axx);

free(Axy);

free(Ayx);

free(Ayy);

free(px);

free(py);

free(wx);

free(wy);

free(ux);

free(uy);

free(uxB);

free(uyB);

free(start);

free(stop);

free(lapsed);

free(speed);

return 0;

}

Matrix B implementation

#include <stdio.h>

#include <stdlib.h>

#include <sys/time.h>

#include <math.h>

#include "util.h"

/* Direct inner product, in terms of matrix B */

float innerprod_B(float *B, float *p, unsigned int nx,

unsigned int ny, unsigned int bx, unsigned int iy, unsigned int ix) {

unsigned int jx, jy, ky, kx;

unsigned int jj, kk;

float res;

res = 0;

for(jy = 0; jy < ny; jy++) {

ky = jy - iy + ny - 1;

kx = nx - 1 - ix;

jj = jy * nx;

kk = ky * bx + kx;

for(jx = 0; jx < nx; jx++) {

res += B[kk] * p[jj];

jj++;

kk++;

}

}

return res;

}

int main( int argc, char **argv) {

unsigned int nx, ny, n;

unsigned int bx, by, m;

unsigned int i, j, k;

unsigned int ix, iy, jx, jy;

unsigned int ii, jj;

/* variables for timing and speed measurement */
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struct timeval *start, *stop;

float *lapsed;

float *speed;

float averagespeed, averagelapsed;

float varspeed, varlapsed;

/* default parameters */

unsigned int iterations = 5;

nx = 32;

ny = 32;

switch(argc) {

case 4:

sscanf(argv[2], "%d", &nx);

sscanf(argv[3], "%d", &ny);

case 2:

sscanf(argv[1], "%d", &iterations);

break;

case 1:

break;

default:

printf("Incorrect commandline options, exiting...\n");

exit(1);

}

start = (struct timeval *)malloc(iterations * sizeof(struct timeval));

stop = (struct timeval *)malloc(iterations * sizeof(struct timeval));

lapsed = (float *)malloc(iterations * sizeof(float));

speed = (float *)malloc(iterations * sizeof(float));

n = nx * ny;

/* size of matrix B */

bx = 2 * nx - 1;

by = 2 * ny - 1;

m = bx * by;

/* declarations of matrices A and B and vector p */

float *Bxx, *Bxy, *Byx, *Byy;

float *px, *py;

/* declarations of results of the direct and indirect matrix-vector product */

float *ux, *uy;

/* declarations of the initial deformation */

float *wx, *wy;

/* random seed */

srand( (unsigned)time( NULL ) );

/* filling the grids B with random numbers */

Bxx = (float *)malloc(m * sizeof(float));

Bxy = (float *)malloc(m * sizeof(float));

Byx = (float *)malloc(m * sizeof(float));

Byy = (float *)malloc(m * sizeof(float));

for(ii = 0; ii < m; ii++) {

Bxx[ii] = (float) rand()/RAND_MAX;

Bxy[ii] = (float) rand()/RAND_MAX;

Byx[ii] = (float) rand()/RAND_MAX;

Byy[ii] = (float) rand()/RAND_MAX;

}

/* create traction vectors */

px = (float *)malloc(n * sizeof(float));

py = (float *)malloc(n * sizeof(float));

for(ii = 0; ii < n; ii++) {

px[ii] = (float)rand() / RAND_MAX;

py[ii] = (float)rand() / RAND_MAX;

}

/* create initial deformation vectors */

wx = (float *)malloc(n * sizeof(float));

wy = (float *)malloc(n * sizeof(float));

for(ii = 0; ii < n; ii++) {

wx[ii] = (float)rand() / RAND_MAX;

wy[ii] = (float)rand() / RAND_MAX;

}

/* allocate space for the results */

ux = (float *)malloc(n * sizeof(float));

uy = (float *)malloc(n * sizeof(float));

for(i = 0; i < iterations; i++) {

gettimeofday(&start[i], NULL);

for(iy = 0; iy < ny; iy++) {

for(ix = 0; ix < nx; ix++) {

ii = iy * nx + ix;

ux[ii] = wx[ii] + innerprod_B(Bxx, px, nx, ny, bx, iy, ix) + innerprod_B(Bxy, py, nx, ny, bx, iy, ix);
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uy[ii] = wy[ii] + innerprod_B(Byx, px, nx, ny, bx, iy, ix) + innerprod_B(Byy, py, nx, ny, bx, iy, ix);

}

}

gettimeofday(&stop[i], NULL);

}

timing(start, stop, lapsed, speed, &averagelapsed, &averagespeed, &varlapsed, &varspeed, iterations, n);

printf("%u %u %u %f %f\n", n, nx, ny, averagelapsed, averagespeed);

/* free all allocated memory space */

free(Bxx);

free(Bxy);

free(Byx);

free(Byy);

free(px);

free(py);

free(wx);

free(wy);

free(ux);

free(uy);

free(start);

free(stop);

free(lapsed);

free(speed);

return 0;

}

A.2.2 Sum reduction algorithms

For the first algorithm the complete program is stated. For the next three
algorithms only the different kernels are stated. Remarkt that for the fast
algorithms with and without enrolled loop, the number of threads per block is
n
2 instead of n.

Divergent warps

#include <stdio.h>

#include <stdlib.h>

#include <sys/time.h>

#include <math.h>

#include <cuda.h>

extern __shared__ float shared_mem[];

/* reduction with divergent warps */

__device__ void divergent_reduce(unsigned int n, unsigned int t, float *N) {

unsigned int s;

for(s = 1; s < n; s *= 2) {

if((t % (2 * s)) == 0) {

N[t] += N[t + s];

}

__syncthreads();

}

}

__global__ void Kernel_reduce(float* N, float* Nresult, unsigned int n) {

shared_mem[threadIdx.x] = N[threadIdx.x];

__syncthreads();

divergent_reduce(n, threadIdx.x, shared_mem);

if(threadIdx.x == 0) {

Nresult[blockIdx.x] = shared_mem[0];

}

}

int main( int argc, char **argv) {

unsigned int i, n;

float *hN, *dN, hNresult, *dNresult, result;
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struct timeval start, stop;

float lapsed;

float speed;

float diff;

/* default parameters */

unsigned int iterations = 1000;

n = 512;

switch(argc) {

case 3:

sscanf(argv[2], "%d", &n);

case 2:

sscanf(argv[1], "%d", &iterations);

break;

case 1:

break;

default:

printf("Incorrect commandline options, exiting...\n");

exit(1);

}

/* maximum of 512 elements */

if(n > 512) {

printf("%u NaN NaN NaN\n", n);

exit(1);

}

cudaError_t err;

/* set dimensions of grid and threads */

dim3 dimGrid(1000, 1, 1);

dim3 dimBlock(n, 1);

/* random seed */

srand( (unsigned)time( NULL ) );

/* filling the array */

hN = (float *)malloc(n * sizeof(float));

for(i = 0; i < n; i++) {

hN[i] = (float) rand()/RAND_MAX;

}

/* allocate memory on device */

err = cudaMalloc((void**)&dN, n * sizeof(float));

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

err = cudaMalloc((void**)&dNresult, 1000 * sizeof(float));

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

/* copy data */

err = cudaMemcpy(dN, hN , n * sizeof(float), cudaMemcpyHostToDevice);

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

/* determine start time */

err = cudaThreadSynchronize();

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

gettimeofday(&start, NULL);

/* perform kernel invocations */

for(i = 0; i < iterations; i++) {

Kernel_reduce<<<dimGrid, dimBlock, n * sizeof(float)>>>(dN, dNresult, n);

/* check if an error occured when launching the kernel */

err = cudaGetLastError();

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

}

hNresult = 0;

/* copy result to host */

err = cudaMemcpy(&hNresult, dNresult, 1 * sizeof(float), cudaMemcpyDeviceToHost);

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);
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}

/* determine stop time and calculate lapsed time per iterations */

err = cudaThreadSynchronize();

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

gettimeofday(&stop, NULL);

lapsed = stop.tv_sec - start.tv_sec + 1e-6 * (stop.tv_usec - start.tv_usec);

lapsed /= iterations;

speed = 1000 * n / lapsed * 1e-6;

/* run on cpu for numerical comparison */

result = 0;

for(i = 0; i < n; i++) {

result += hN[i];

}

diff = abs(result - hNresult);

printf("%u %f %f %f\n", n, diff, lapsed, speed);

/* free all allocated memory space */

free(hN);

err = cudaFree(dN);

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

err = cudaFree(dNresult);

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

return 0;

}

Shared memory bank conflicts

/* reduction with bank conflicts */

__device__ void conflicts_reduce(unsigned int n, unsigned int t, float *N) {

unsigned int s, i;

for(s = 1; s < n; s *= 2) {

i = 2 * s * t;

if(i < n) {

N[i] += N[i + s];

}

__syncthreads();

}

}

__global__ void Kernel_reduce(float* N, float* Nresult, unsigned int n) {

shared_mem[threadIdx.x] = N[threadIdx.x];

shared_mem[blockDim.x + threadIdx.x] = N[blockDim.x + threadIdx.x];

__syncthreads();

conflicts_reduce(n, threadIdx.x, shared_mem);

if(threadIdx.x == 0) {

Nresult[blockIdx.x] = shared_mem[0];

}

}

Fast algorithm

/* reduction without divergent warps and bank conflicts */

__device__ void fast_reduce(unsigned int n, unsigned int t, float *N) {

unsigned int i;

for(i = n / 2; i > 0; i >>= 1) {

if(t < i) {

N[t] += N[t + i];

}

__syncthreads();

}

}
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__global__ void Kernel_reduce(float* N, float* Nresult, unsigned int n) {

shared_mem[threadIdx.x] = N[threadIdx.x];

shared_mem[blockDim.x + threadIdx.x] = N[blockDim.x + threadIdx.x];

__syncthreads();

fast_reduce(n, threadIdx.x, shared_mem);

if(threadIdx.x == 0) {

Nresult[blockIdx.x] = shared_mem[0];

}

}

Fast algorithm, enrolled

/* reduction with last 6 steps enrolled, nx >= 64 */

__device__ void fast_reduce_enrolled(unsigned int n, unsigned int t, float *N) {

unsigned int i;

for(i = n / 2; i > 32; i >>= 1) {

if(t < i) {

N[t] += N[t + i];

}

__syncthreads();

}

/* enrolled iterations */

if(t < 32) {

N[t] += N[t + 32];

N[t] += N[t + 16];

N[t] += N[t + 8];

N[t] += N[t + 4];

N[t] += N[t + 2];

N[t] += N[t + 1];

}

}

__global__ void Kernel_reduce(float* N, float* Nresult, unsigned int n) {

shared_mem[threadIdx.x] = N[threadIdx.x];

shared_mem[blockDim.x + threadIdx.x] = N[blockDim.x + threadIdx.x];

fast_reduce_enrolled(n, threadIdx.x, shared_mem);

__syncthreads();

if(threadIdx.x == 0) {

Nresult[blockIdx.x] = shared_mem[0];

}

}

A.2.3 GPU implementation

#include <stdio.h>

#include <stdlib.h>

#include <sys/time.h>

#include <math.h>

#include <cuda.h>

#include "util.h"

__device__ void fast_reduce(unsigned int nx, unsigned int thread, float *temp) {

unsigned int i;

for(i = nx / 2; i > 0; i >>= 1) {

if(thread < i) {

temp[thread] += temp[thread + i];

}

__syncthreads();

}

}

extern __shared__ float shared_mem[];

__global__ void Kernel_reduce(float* dreductionx, float* dreductiony, unsigned int ny, float* dx, float* dy) {
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if(blockIdx.x == 0) {

shared_mem[threadIdx.x] = dreductionx[threadIdx.x];

__syncthreads();

fast_reduce(ny, threadIdx.x, shared_mem);

if(threadIdx.x == 0) {

*dx = shared_mem[0];

}

}

else {

shared_mem[threadIdx.x] = dreductiony[threadIdx.x];

__syncthreads();

fast_reduce(ny, threadIdx.x, shared_mem);

if(threadIdx.x == 0) {

*dy = shared_mem[0];

}

}

}

__global__ void Kernel_inner_prod(float* dBxx, float* dBxy, float *dByx, float *dByy, float* dpy, float* dpx,

unsigned int nx, unsigned int ny, unsigned int stride,

unsigned int ix, unsigned int iy, unsigned int ty, float *dreductionx, float *dreductiony) {

unsigned int jx, jy;

unsigned int jj, kk;

float temp;

unsigned int index;

float *prodx, *prody;

prodx = shared_mem;

prody = &prodx[ty * nx];

index = threadIdx.x + threadIdx.y * nx;

jy = ty * blockIdx.x + threadIdx.y;

jx = threadIdx.x;

jj = jy * nx + jx;

kk = jy * stride + jx;

temp = dpx[jj];

prodx[index] = dBxx[kk] * temp;

prody[index] = dByx[kk] * temp;

temp = dpy[jj];

prodx[index] += dBxy[kk] * temp;

prody[index] += dByy[kk] * temp;

__syncthreads();

fast_reduce(ty * nx, index, prodx);

fast_reduce(ty * nx, index, prody);

if(index == 0) {

dreductionx[blockIdx.x] = prodx[0];

dreductiony[blockIdx.x] = prody[0];

}

}

int main( int argc, char **argv) {

unsigned int nx, ny, n;

unsigned int ty;

unsigned int bx, by, stride, m;

unsigned int i;

unsigned int ix, iy;

unsigned int ii, kk;

struct timeval start, stop;

float lapsed;

float speed;

float diffx, diffy;

/* default parameters */

unsigned int iterations = 5;

nx = 32;

ny = 32;

ty = 1;

switch(argc) {

case 5:

sscanf(argv[4], "%d", &ty);

case 4:

sscanf(argv[2], "%d", &nx);

sscanf(argv[3], "%d", &ny);

case 2:

sscanf(argv[1], "%d", &iterations);

break;
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case 1:

break;

default:

printf("Incorrect commandline options, exiting...\n");

exit(1);

}

n = nx * ny;

/* size of matrix B */

bx = 2 * nx - 1;

stride = bx + 1;

by = 2 * ny - 1;

m = stride * by;

if(ty * nx > 1024) {

printf("%u %u %u NaN NaN NaN NaN\n", n, nx, ny);

exit(1);

}

cudaError_t err;

/* declarations of matrices B */

float *hBxx, *hBxy, *hByx, *hByy;

float *dBxx, *dBxy, *dByx, *dByy;

/* declarations of vectors p */

float *hpx, *hpy;

float *dpx, *dpy;

/* declarations of resulting vectors */

float *hux, *huy;

float *dux, *duy;

float *hux_gpu, *huy_gpu;

/* declarations of the initial deformation */

float *hwx, *hwy;

/* declaration of the device memory used to perform final sum reduction */

float *dreductionx, *dreductiony;

/* set dimensions of grid and threads */

dim3 dimGrid(ny / ty, 1);

dim3 dimBlock(nx, ty);

/* random seed */

srand( (unsigned)time( NULL ) );

/* filling the grids B with random numbers */

hBxx = (float *)malloc(m * sizeof(float));

hBxy = (float *)malloc(m * sizeof(float));

hByx = (float *)malloc(m * sizeof(float));

hByy = (float *)malloc(m * sizeof(float));

for(ii = 0; ii < m; ii++) {

if((ii + 1) % stride == 0) {

hBxx[ii] = 0;

hBxy[ii] = 0;

hByx[ii] = 0;

hByy[ii] = 0;

}

hBxx[ii] = (float) rand()/RAND_MAX;

hBxy[ii] = (float) rand()/RAND_MAX;

hByx[ii] = (float) rand()/RAND_MAX;

hByy[ii] = (float) rand()/RAND_MAX;

}

/* create traction vectors */

hpx = (float *)malloc(n * sizeof(float));

hpy = (float *)malloc(n * sizeof(float));

for(ii = 0; ii < n; ii++) {

hpx[ii] = (float)rand() / RAND_MAX;

hpy[ii] = (float)rand() / RAND_MAX;

}

/* create initial deformation vectors */

hwx = (float *)malloc(n * sizeof(float));

hwy = (float *)malloc(n * sizeof(float));

for(ii = 0; ii < n; ii++) {

hwx[ii] = (float)rand() / RAND_MAX;

hwy[ii] = (float)rand() / RAND_MAX;

}

/* allocate space for the results */

hux = (float *)malloc(n * sizeof(float));

huy = (float *)malloc(n * sizeof(float));

hux_gpu = (float *)malloc(n * sizeof(float));

huy_gpu = (float *)malloc(n * sizeof(float));

memset(hux, 0, n);

memset(huy, 0, n);
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/* allocate memory on device, copy Bxx matrix to device */

err = cudaMalloc((void**)&dBxx, m * sizeof(float));

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

err = cudaMemcpy(dBxx, hBxx, m * sizeof(float), cudaMemcpyHostToDevice);

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

/* allocate memory on device, copy Bxy matrix to device */

err = cudaMalloc((void**)&dBxy, m * sizeof(float));

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

err = cudaMemcpy(dBxy, hBxy, m * sizeof(float), cudaMemcpyHostToDevice);

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

/* allocate memory on device, copy Byx matrix to device */

err = cudaMalloc((void**)&dByx, m * sizeof(float));

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

err = cudaMemcpy(dByx, hByx, m * sizeof(float), cudaMemcpyHostToDevice);

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

/* allocate memory on device, copy Byy matrix to device */

err = cudaMalloc((void**)&dByy, m * sizeof(float));

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

err = cudaMemcpy(dByy, hByy, m * sizeof(float), cudaMemcpyHostToDevice);

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

/* allocate memory on device, copy px vector to device */

err = cudaMalloc((void**)&dpx, n * sizeof(float));

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

err = cudaMemcpy(dpx, hpx, n * sizeof(float), cudaMemcpyHostToDevice);

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

/* allocate memory on device, copy py matrix to device */

err = cudaMalloc((void**)&dpy, n * sizeof(float));

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

err = cudaMemcpy(dpy, hpy, n * sizeof(float), cudaMemcpyHostToDevice);

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

/* allocate resulting vectors on device and fill with zeros */

err = cudaMalloc((void**)&dux, n * sizeof(float));

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

err = cudaMemset(dux, 0, n * sizeof(float));

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

err = cudaMalloc((void**)&duy, n * sizeof(float));

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

err = cudaMemset(duy, 0, n * sizeof(float));
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if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

/* allocate resulting vectors on device and fill with zeros */

err = cudaMalloc((void**)&dreductionx, ny / ty * sizeof(float));

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

err = cudaMalloc((void**)&dreductiony, ny / ty * sizeof(float));

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

/* determine start time */

err = cudaThreadSynchronize();

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

gettimeofday(&start, NULL);

kk = 0;

ii = 0;

/* perform kernel invocations */

for(i = 0; i < iterations; i++) {

for(iy = 0; iy < ny; iy++) {

kk = (ny - 1 - iy) * stride + (nx - 1);

ii = iy * nx;

for(ix = 0; ix < nx; ix++) {

Kernel_inner_prod<<<dimGrid, dimBlock, ty * 2 * nx * sizeof(float)>>>

(&dBxx[kk], &dBxy[kk], &dByx[kk], &dByy[kk],

dpy, dpx,

nx, ny, stride, ix, iy, ty, dreductionx, dreductiony);

Kernel_reduce<<<2, ny / ty, ny / ty * sizeof(float)>>>

(dreductionx, dreductiony, ny / ty, &dux[ii], &duy[ii]);

/* check if an error occured when launching the kernel */

err = cudaGetLastError();

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

/* copy result to host, part of the time measurement */

err = cudaMemcpy(&hux_gpu[ii], &dux[ii], 1 * sizeof(float), cudaMemcpyDeviceToHost);

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

err = cudaMemcpy(&huy_gpu[ii], &duy[ii], 1 * sizeof(float), cudaMemcpyDeviceToHost);

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

hux_gpu[ii] += hwx[ii];

huy_gpu[ii] += hwy[ii];

kk--;

ii++;

}

}

}

/* determine stop time and calculate lapsed time per iterations */

err = cudaThreadSynchronize();

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

gettimeofday(&stop, NULL);

lapsed = stop.tv_sec - start.tv_sec + 1e-6 * (stop.tv_usec - start.tv_usec);

lapsed /= iterations;

speed = mflops(lapsed, n);

/* run on cpu for numerical comparison */

for(iy = 0; iy < ny; iy++) {

for(ix = 0; ix < nx; ix++) {

ii = iy * nx + ix;

hux[ii] = hwx[ii] + innerprod_B(hBxx, hpx, nx, ny, stride, iy, ix) +

innerprod_B(hBxy, hpy, nx, ny, stride, iy, ix);
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huy[ii] = hwy[ii] + innerprod_B(hByx, hpx, nx, ny, stride, iy, ix) +

innerprod_B(hByy, hpy, nx, ny, stride, iy, ix);

}

}

/* calculate relative difference */

diffx = normdiff(hux, hux_gpu, n) / norm(hux, n);

diffy = normdiff(huy, huy_gpu, n) / norm(huy, n);

printf("%u %u %u %u %f %f %f %f\n", n, nx, ny, ty, lapsed, diffx, diffy, speed);

/* free all allocated memory space */

free(hBxx);

free(hBxy);

free(hByx);

free(hByy);

free(hpx);

free(hpy);

free(hwx);

free(hwy);

free(hux);

free(huy);

free(hux_gpu);

free(huy_gpu);

err = cudaFree(dBxx);

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

err = cudaFree(dBxy);

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

err = cudaFree(dByx);

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

err = cudaFree(dByy);

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

err = cudaFree(dpx);

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

err = cudaFree(dpy);

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

err = cudaFree(dux);

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

err = cudaFree(duy);

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

err = cudaFree(dreductionx);

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

err = cudaFree(dreductiony);

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

return 0;

}

Final CPU reduction

To perform the final reduction on the CPU instead of the GPU, the second
kernel launch is replaced with the following code snippet.
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/* copy values for final reduction to host */

err = cudaMemcpy(hreductionx, dreductionx, ny / ty * sizeof(float), cudaMemcpyDeviceToHost);

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

err = cudaMemcpy(hreductiony, dreductiony, ny / ty * sizeof(float), cudaMemcpyDeviceToHost);

if(err != cudaSuccess) {

printf("Cuda error: %s\n", cudaGetErrorString(err));

exit(1);

}

hux_gpu[ii] = hwx[ii];

huy_gpu[ii] = hwy[ii];

for(j = 0; j < ny / ty; j++) {

hux_gpu[ii] += hreductionx[j];

huy_gpu[ii] += hreductiony[j];

}

Coalesced memory read transaction

The perform experiments with coalsced memory read transaction when reading
matrix B from global memory, the kernel invocation is replaced by the following
statement.

Kernel_inner_prod<<<dimGrid, dimBlock, ty * 2 * nx * sizeof(float)>>>

(dBxx, dBxy, dByx, dByy, dpy, dpx, nx, ny, stride, ix, iy, ty, dreductionx, dreductiony);

A.2.4 Utility functions

#include <math.h>

#include <stdio.h>

/* Direct inner product, in terms of matrix B */

float innerprod_B(float *B, float *p,

unsigned int nx, unsigned int ny, unsigned int bx, unsigned int iy, unsigned int ix) {

unsigned int jx, jy, ky, kx;

unsigned int jj, kk;

float res;

res = 0;

for(jy = 0; jy < ny; jy++) {

ky = jy - iy + ny - 1;

kx = nx - 1 - ix;

jj = jy * nx;

kk = ky * bx + kx;

for(jx = 0; jx < nx; jx++) {

res += B[kk] * p[jj];

jj++;

kk++;

}

}

return res;

}

float normdiff(float *u1, float *u2, unsigned int n) {

/* calculate the norm of the difference of u1 and u2 */

unsigned int ii;

float res, update;

res = 0;

for(ii = 0; ii < n; ii++) {

update = u1[ii] - u2[ii];

update *= update;

res += update;

}

res = pow(res, 0.5);

return res;

}

float norm(float *u, unsigned int n) {

/* calculate the norm of a vector */
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unsigned int ii;

float res;

res = 0;

for(ii = 0; ii < n; ii++) {

res += u[ii] * u[ii];

}

res = pow(res, 0.5);

return res;

}

float mflops(float time, unsigned int n) {

float size, speed;

if(time == 0)

return 0;

size = n;

speed = size * (8 * size + 6) / time / 1e6;

return speed;

}

bool ispowof2(unsigned int n) {

if(n == 0)

return false;

while(n != 1) {

if(n % 2 == 0)

n /= 2;

else

return false;

}

return true;

}

void printu(float* u1, float* u2, int n) {

int ii;

for(ii = 0; ii < n; ii++) {

printf("%5.4f", u1[ii]);

(u2 ? printf(" %5.4f\n", u2[ii]) : printf("\n"));

}

printf("\n");

return;

}

float average(float* values, unsigned int n) {

unsigned int i;

float sum;

sum = 0;

for(i = 0; i < n; i++) {

sum += values[i];

}

return sum / n;

}

void print(float *vector, unsigned int n) {

unsigned int i;

for(i = 0; i < n; i++) {

printf("%f\n", vector[i]);

}

printf("\n");

}

void timing(struct timeval *start, struct timeval *stop,

float *lapsed, float *speed, float *averagelapsed, float *averagespeed,

float *varlapsed, float *varspeed, unsigned int iterations, unsigned int n) {
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int i;

for(i = 0; i < iterations; i++) {

lapsed[i] = stop[i].tv_sec - start[i].tv_sec + 1e-6 * (stop[i].tv_usec - start[i].tv_usec);

speed[i] = mflops(lapsed[i], n);

}

*averagelapsed = average(lapsed, iterations);

*averagespeed = average(speed, iterations);

*varlapsed = variance(lapsed, iterations, *averagelapsed);

*varspeed = variance(speed, iterations, *averagespeed);

return;

}
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