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ECG Artefact Suppression and External Data
Synchronization with the Medtronic Percept, a

Deep Brain Stimulator with Sensing Technology
Mariëlle J Stam1

1 Neuro Muscular Control Lab, BioMechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands

Abstract— Deep brain stimulation (DBS) is used to treat a variety of movement disorders. In current DBS therapy, the stimulation
parameters are manually adjusted based on a subjective assessment of patient’s symptoms. State-of-the-art DBS research focuses
on recording brain activity to create a patient-specific neuronal profile that correlates with the patient’s symptom-severity. The neuronal
profile could then be used as feedback signal for an adaptive DBS system that automatically adjusts the stimulation. The Medtronic
Percept™ is the first commercially available, fully implanted neurostimulator with sensing technology. In this study, the neuronal activity
in the form of local field potentials (LFPs) of eleven patients were recorded with Percept during both stimulation off- and on. To obtain a
reliable neuronal profile from the LFPs, the signals should be free from electrocardiography (ECG) artefact and should be synchronized
with externally recorded data that informs us about the patient’s symptom-severity. A template subtraction method and a method based
on independent component analysis were developed to suppress ECG artefact. Both methods were compared to the ECG removal
method of the Perceive Toolbox. Three methods of synchronization were explored: externally tapping, using the stimulation artefact, and
by ECG cross-correlation. Results show the template subtraction method to most effectively suppress ECG artefacts while preserving
LFP frequency content. To save effort but assure accuracy of the synchronization, the ECG cross-correlation method should be applied
though validated by confirming accurate alignment of the stimulation artefact. The development and evaluation of the ECG artefact
suppression- and external data synchronization methods contribute to research focused on finding a reliable feedback signal for adaptive
DBS.

Index Terms—DBS, Movement Disorders, Medtronic Percept, ECG Artefact, Synchronization.

F

1 INTRODUCTION

D EEP brain stimulation (DBS) is an important
therapeutic strategy for a variety of movement

disorders, such as Parkinson’s Disease (PD), Essential
Tremor (ET), and Dystonia (DYS). Patients are implanted
with a DBS system when medication have become less
effective or when side effects of the medicines interfere with
daily activities. To date, over 160,000 patients worldwide
are treated with DBS [1]. Electrical current is generated
by an implanted pulse generator (IPG) and is targeted
to structures in the basal ganglia through implanted
electrodes [2]. Although the underlying principles and
exact mechanisms of DBS are not fully understood, the
electrical current is intended to regulate pathological
activity in the deep brain structures. In PD, the electrodes
are generally implanted in the subthalamic nucleus (STN).
The nucleus ventralis intermedius (VIM) of the thalamus is
a popular target for DBS in ET and the internal segment of
the globus pallidus (GPi) is usually implanted in DYS.

Current DBS therapy requires a clinician to manually adjust
the stimulation parameters (frequency, amplitude, pulse
width) based on a subjective assessment of the patient’s
symptoms. Adjusting the parameters is an ad hoc empirical
process which is expensive in terms of time, price and most
importantly, patient discomfort [3]. There is quite a big
variation of clinical outcomes between patients [4] and DBS
frequently causes unwanted side effects [5].

Considering the limitations of current neurostimulation,
state-of-the-art DBS research aims to develop adaptive
neurostimulation that makes the parameter adjustments
by a clinician unnecessary. Whereas conventional DBS
delivers continuous stimulation, an adaptive DBS system
actively adjusts stimulation to meet the real-time patient
needs. Adaptive DBS limits DBS-induced side effects [6], [7]
and saves energy, therefore prolongs battery lifetime and
reduces IPG replacement surgeries [8].

A critical determinant of the performance of adaptive DBS
is the reliability of the feedback signal. In order to meet
the real-time patient needs, the feedback signal should be
indicative of the patient’s clinical state. In current adaptive
DBS research, the feedback signal is recorded from the
basal ganglia structures in the form of local field potentials
(LFPs). LFPs are measured as a differential signal between
the two contacts adjacent to the stimulation contact on the
implanted electrode lead [9]. These LFPs show oscillations
at several frequency bands, including the delta and theta
band (1 ∼ 7 Hz), alpha and beta band (8 - 35 Hz), gamma
band (35 - 200 Hz) and high frequency oscillations (>
200 Hz). Parkinsonian motor symptoms (rigidity and
bradykinesia) are found to worsen with increased beta
activity amplitude [10]. Similarly, a correlation is also found
between a treatment-induced reduction of beta activity
and an improvement of bradykinesia-rigidity [7], [11],
[12]. Dyskinesia symptoms are reported to be linked to an
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increased amplitude of LFPs at low theta/alpha frequencies
(4 - 8 Hz) [13] and tremor to potentials at tremor frequency
(4 - 7 Hz) [14]. With the intention to develop a reliable
feedback signal, adaptive DBS research explores the ability
of this disease-specific pathological brain activity to monitor
therapeutic demand.

The initial studies to adaptive DBS recorded the basal
ganglia LFPs via externalized electrode leads between op-
erations for electrode placement and IPG implantation [9],
[15], [16]. For these recordings, external customized neu-
rostimulators were used. Only recently, a fully implanted
neurostimulator able to simultaneously record the LFPs and
deliver stimulation is commercially available: the Medtronic
Percept™. The LFPs are stored on the Percept and can be
viewed real time on the tablet programmer. This data can
also be exported wirelessly for offline data processing.

1.1 Problem Statement

Since recording LFPs with a fully implanted DBS system
is such a novel technique, there is only limited knowledge
of the artefacts that may corrupt the recorded signals.
Nevertheless, the heart as strongest source of electrical
activity in the human body causes an electrocardiography
(ECG) artefact in all types of biomedical signals. Surface
electromyography (EMG) recordings of the trunk muscles,
for example, are often contaminated by ECG [17], [18],
[19]. As a matter of fact, the neurostimulator is generally
implanted in the chest or abdomen, so in close proximity of
this large signal generator. The ECG signals are in the range
of 0.5 mV to 5 mV [20], whereas the LFP signals are in the
range of 1 - 20 µV. The ECG artefact is superimposed on
top of the LFPs and is difficult to filter, due to considerable
overlapping of the frequency spectra of the signals [21].

The ECG artefact can be attributed to an inadequate
common mode rejection ratio (CMRR) of the sensing input
chain of the neurostimulator. As LFPs are measured as a
differential signal, the ECG spikes are regarded as common
mode signals which can be rejected by differentiating [22].
Studies have shown that a CMRR greater than 60 dB is
required to eliminate ECG artefacts [23]. However, due to
limited power consumption and size of the neurostimulator,
it is challenging to achieve a high CMRR in an implantable
system. Additionally, slight leakage of fluid into the IPG
can lead to an input impedance mismatch. Such mismatch
breaks the symmetry of the differentiated signal, which
alters the CMRR [24].

Apart from the ECG artefact contaminating the LFPs, an-
other challenge for offline data processing is the fact that the
LFPs are isolated from other possible data inputs. However,
in order to explore the ability of the LFPs to serve as a
reliable feedback signal for adaptive DBS, they should be
indicative of the patient’s clinical state. Externally recorded
data, such as accelerometry, can inform us about the pa-
tient’s symptom-severity [25], [26]. Correlating this data
with the recorded LFPs will result in a patient-specific pro-
file of neuronal activity that is associated with the presence
and severity of the symptoms. Before such patient-specific

profile can be obtained, the externally recorded data should
be synchronized with the LFPs recorded with the Percept.

1.2 Goal

To obtain a reliable patient-specific neuronal profile, the
ECG artefact in the LFPs should be mitigated. Some research
focuses on reducing sensing sensitivity to cardiac artefacts
by exploring the effect of neurostimulator placement [22],
[23]. However, to also obtain reliable LFP signals from
already implanted systems, the first goal of this study is to
remove the ECG artefact at the stage of signal processing.
To be able to correlate the cleaned LFPs to the patient’s
symptom-severity, the second goal of this study is to syn-
chronize the LFPs stored on the Percept with externally
recorded data.

2 METHODS

2.1 Participants

Eleven patients participated in this study: two patients
suffering from Dystonia, one Essential Tremor patient, and
eight patients suffering from Parkinson’s Disease (Table 1).
All patients were bilaterally implanted (one electrode lead
per hemisphere) between 2013-2016. Due to battery deple-
tion of their old IPG, the patients received the Medtronic
Percept™ neurostimulator between September 2020 and
March 2021. To reduce the patient burden, all recordings
were performed immediate post-operative, right after the
Percept was placed. Each recording took between 20-30
minutes during which the patient was asked to perform
a behavioural protocol twice, first while the stimulation
was off (off-DBS) and then while the stimulation was on
(on-DBS). The protocol included a period of rest, a part of
reading out loud and a variety of upper limb movements.
During the recordings, patients lay comfortably on a bed
with the head rest in a 45 degree angle and were instructed
not to talk or sleep (Fig. 1). The study was approved by the
local ethics committee of the Amsterdam UMC – Academic
Medical Center and informed written consent was received
from all patients.

Fig. 1: Schematic overview of the experimental setup. On the left the
wireless communication via a relay device between the implanted Per-
cept and the tablet programmer. On the right the external data running
through the TMSi amplifier to the laptop. A webcam videotaped the
recording.
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2.2 Percept Data Collection
In all patients, LFPs were recorded from both electrode
leads. To enable simultaneous stimulation and sensing in
the on-DBS condition, the manufacturer of the Percept
has put a lot of effort into avoiding the artefact caused
by stimulation. These include (1) the use of a common
mode rejection to suppress such stimulation artefact by
”sandwiching” the monopolar electrode(s) between the two
differential sensing electrodes. In monopolar stimulation
configuration, the titanium case of the Percept acts as
the return electrode (anode). In electrical terms, this is an
infinite distance away from the neuronal elements that
are stimulated and can therefore be considered monopolar
stimulation. All patients were implanted with the Medtronic
leads 3389 model, which contains four electrode contacts.
Therefore, monopolar stimulation could be applied through
either or both of the two middle contacts. It depended on
the patients’ pre-operative DBS settings which contact(s)
was/were used for stimulation (Table 1). According to
the stimulation contact(s), contact pair 0-2, 0-3, or 1-3 was
used for the bipolar recording of the LFPs. To maintain
consistency, the same sensing pair was used in both the off-
as well as on-DBS condition.

Another technique to avoid stimulation artefact is (2)
preventing sense channel saturation by rejecting the
stimulation artefact prior to amplification. Additionally,
(3) adding a high pass filter that removes the DC content
in the time domain prior to performing the Fast Fourier
transform as part of the frequency analysis helps to reduce
the transient response to stimulation ramps. To help
mitigate the stimulation artefact further, (4) the stimulation
pulse is applied with an active recharge to achieve charge
balance in a short time interval (100 µs), instead of the full
passive recharge duration (10 ms). In fact, optimizing the
active recharge ratio allows to limit the peak to peak input
into the sensing channel and avoid amplifier saturation.
By minimizing stimulation peaks, the residual voltage
on the electrode coupling capacitor approaches zero,
which improves the step response that occurs when the
stimulation parameters are adjusted. This is important for
control algorithms that require fast turn-on and turn-off
times.

The sampling rate of the Percept is 250 Hz. By default,
the Percept has two low pass filters of 100 Hz and one
1 Hz high pass filter, which is configurable up to 10
Hz. The raw LFPs were gained up by 250x, buffered on
the device, and streamed wirelessly to the Percept tablet
programmer. This data was exported as JSON-file and
visualized offline using the open-source Perceive Tool-
box (www.github.com/neuromodulation/perceive/) and
the FieldTrip Toolbox for EEG/MEG-analysis ( [27],
http://fieldtriptoolbox.org) in Matlab (version R2020b, The
Mathworks, Inc.,Natick, MA, USA).

2.3 TMSi Data Collection
Two 3D accerelometers (± 3g, TMS International, The
Netherlands) were attached to the dorsal surface of
the right and left hand in order to measure kinematic
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movements of the hand and the presence of tremor. A
bipolar ECG signal was measured between two electrodes
placed on the right and left shoulder. Two electrodes were
placed on the head at the F3 and F4 positions of the 10-20
electroencephalography placement system to capture the
electrical signal of the DBS. The patient ground was placed
on cervical C7 vertebrae. The data was recorded using
a TMSi Porti amplifier (monopolar, average reference,
anti-aliasing low-pass filtering with a cut-off frequency
of 500 Hz and sampling frequency of 2048Hz, TMSi, The
Netherlands).

The software application toolbox TMSi Polybench was used
to monitor the recording. Triggers were manually pressed
on the Polybench software to indicate the start and stop of
each task of the protocol and an USB Webcam (Trust Exis)
was connected to videotape the recording. A schematic
overview of the complete experimental setup is visualized
in Fig. 1.

All data running through the TMSi amplifier was also
imported into Matlab and analyzed using FieldTrip. This
data was band stop (Notch) filtered for the power-line
interference (between 49-51 Hz) and its harmonics (99-101
Hz).

2.4 ECG Artefact Removal

The LFP signals that contain an ECG artefact will be
presented both in time- as well as frequency domain. The
frequency domain analysis is done by evaluating the mean
relative power spectral density (PSD). Relative rather than
absolute PSD is analysed in order to aggregate the results
of different participants. Also, absolute power is more
likely to be dependent on proximity to the LFP source
than relative power and to vary with minor changes in
recording technique [28]. The relative PSD parameter gives
an indication of the feasibility of the LFPs to serve as a
feedback signal for adaptive DBS.

First, the absolute PSD is estimated by Welch’s method,
using an Hanning window for overlapping segments. The
duration of the recordings is between 7.5-14.5 minutes.
Segments of four seconds (1000 samples) with 50% overlap
are used. The relative PSD is obtained by normalizing the
power spectrum to the summed average power of 0.5-45
and 55-95 Hz [29]. The 0–0.5 and 45–55 Hz ranges are
omitted so as to avoid contamination by movement artefact
and mains noise, respectively. Only the relative PSD up to
35 Hz will be shown, since these are the most interesting
frequencies for the patient cohorts in the current study.

Common methods used to remove ECG artefact require a
multi-channel recording or an ECG reference signal. The
LFP signal is a single-channel recording, usually indepen-
dently recorded without ECG reference. Most existing meth-
ods can therefore not directly be applied to the LFP signals.
During the course of the current thesis project, the open-
source Perceive Toolbox was extended with a method to
remove ECG artefact from the brain recordings. The Per-
ceive ECG removal method applies cross-correlation over

Fig. 2: Flow charts of template subtraction and ICA-based ECG
removal methods. For both charts, the output is the ECG artefact which
is subtracted from the original LFP signal, as described in (2) and (4).

sliding windows to create a recording-specific template of
the ECG artefact. It then uses pattern matching (correlation)
of the template on the raw signal to identify segments of
the signal affected by the ECG artefact. These segments are
replaced by mirrored padding. For the current project, two
other methods to remove ECG artefact from the LFP data
are proposed: 1) a template subtraction method and 2) an
approach based on independent component analysis (ICA).
The flow charts of the methods are shown in Fig. 2. The
template subtraction is proposed because it is a traditional
ECG removal method [30], whereas the ICA-based method
is a fairly new and unexplored approach to remove ECG
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artefact from biomedical signals [19]. Despite its novelty,
studies using electroencephalography (EEG) and magne-
toencephalography (MEG) have showed an improved signal
quality and allowed better clinical interpretation after ICA-
based ECG removal [31], [32], [33], [34].

2.4.1 Template Subtraction
The first step of the template subtraction method is to
create a recording-specific QRS complex template. The
QRS complex is the most prominent repeating peak in the
ECG signal and corresponds to the depolarization of the
right and left ventricles of the heart. The LFP signal is
normalized and applied with an ECG-detection algorithm
that searches for R-peaks with a specific height (at least
twice the standard deviation) and at a specific distance
apart (500 ms). The algorithm accounts for a negative QRS
complex. LFP signals containing at least one R-peak every
three seconds and a heart rate of at least 40 beats per minute
were specified as contaminated with the ECG artefact.
These criteria are included because they led to the most
accurate automatic detection of ECG artefact for the current
set of LFP signals. Of the signals specified as containing
ECG artefact, epochs of 400 ms around the R-peaks (50
samples before and after) are made (QRS complex epochs)
and are averaged to create the recording-specific ECG
artefact template. The part of this template that contains
the QRS complex is kept and the tail values are set equal
(preferably zero).

On each QRS complex epoch in the original LFP signal,
LFP(QRS), the QRS complex template is optimized by ad-
justing the parameters, scale and offset, such that the sum of
squared error is minimized (1):

This QRS-specific optimized template, LFPECG(QRS), is then
subtracted from the QRS complex epoch in the original
LFP signal, LFP(QRS), to obtain the LFP signal at the QRS
complex epochs without ECG artefact: LFPclean(QRS) (2):

2.4.2 Independent Component Analyis
ICA is a method for solving the Blind Source Separation
problem by assuming that the different source signals are
statistically independent. Independence means that observ-
ing the value of one source signal does not give any in-
formation about the value of another source signal. The
goal of ICA is then to determine the source signals given
only the observed mixtures. This model can be put into a
mathematical equation by:

where LFP contains the measured (mixed) signals, which
are obtained by multiplying the vector of independent

source signals, Sources, by a specific Mixing Matrix.

Whereas the template subtraction method is applied to each
individual sensing channel, ICA can only be applied to
multi-channel recordings [35]. The multidimensional input
for ICA is obtained by using the LFP signals of both the left-
and right hemisphere of the patient, as well as the mean of
these two signals. However, before calculating the mean,
the LFP signals are first filtered for ECG-specific frequencies
(between 0.5-20 Hz) [36]. Since the noise level of the ECG
artefact, stimulation artefacts as well as movement artefacts
in the LFP recordings is high, there is a bigger change
that most separated components will include some noise.
Applying the bandpass filter increases the probability of
sufficient isolation of the ECG artefact.

Mathematically, it is impossible to uncover more source
signals (independent components) than the number of
input signals, so for this approach, only three components
are separated. Due to the regularity and salience of the
heartbeat, ICA should be able to separate the ECG artefact
as one of the first components. The current method
uses kurtosis as nongaussianity measure and a fixed-
point optimization algorithm to separate the components
(FastICA, [37]). To select which component represents the
ECG artefact, the components are normalized and applied
with the same ECG detection algorithm as previously
described (see section 2.4.1). The component specified as
ECG artefact is kept, while the other two are set to zero. By
performing inverse ICA, the part caused by ECG artefact
is isolated from the recorded LFP signals (right panel Fig. 2).

Similar to the template subtraction method, the cleaned LFP
signals are then obtained by subtracting the ECG artefact,
LFPECG(t), of the original LFP signals, LFP(t), (4). However,
instead of solely suppressing the ECG artefact at the QRS
complex epochs, the ICA-based method suppresses the ECG
artefact over the entire recording.

2.4.3 Performance ECG Artefact Removal
The performances of the template subtraction and ICA-
based ECG artefact removal methods are assessed by com-
paring them to the performance of the Perceive ECG re-
moval. This comparison is done by evaluating the results in
time domain as well as comparing the mean relative PSD.

2.5 Synchronization
The current project explores three methods to synchronize
the Percept data with the externally recorded TMSi data.
Applying the methods to either the left- or right LFP signal
of one patient will suffice to synchronize both channels.

2.5.1 External Tapping
The first method for synchronization is external tapping on
the F3 or F4 electrode, so on the forehead. The idea is that
tapping will not only cause an artefact on the electrode itself,
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but also on the DBS electrode, since the electrode is placed
close to the burr hole.

2.5.2 Stimulation Ramping
Another proposed method to synchronize the data
recording systems is by slightly ramping the stimulation
up and down at the start of the recording. The F3 and
F4 electrodes are expected to capture this ramping of
stimulation, which can be synchronized with the LFP data
of the Percept since the stimulation amplitude is registered
while recording the LFPs.

To find the moment F3 and/or F4 captures the stimulation
ramping, the rate of change with respect to time is calcu-
lated. This is done by taking the derivative of the F3 and/or
F4 signal with respect to time (5):

The first sample at which the absolute value of the rate of
change exceeds a recording-specific threshold, is defined as
the start of the stimulation ramping. In order to align the
recording systems, the sample at which the stimulation in-
crease is registered by Percept is converted to the sampling
frequency of the TMSi. Finally, the TMSi recording is shifted
by the difference in samples between the two recording
systems.

2.5.3 ECG Cross-Correlation
The last method for synchronization uses cross-correlation
to find the delay between the ECG artefact in the LFP
signal and the ECG signal measured externally. The cross-
correlation is a measure of similarity between two signals as
a function of time shift of one relative to the other. Because
the ECG artefact is in most cases prominent in the LFP signal
of the right hemisphere, that channel is used. A prerequisite
for applying cross-correlation is that both signals have the
same sampling frequency. Therefore, the ECG signal is first
down-sampled to the sampling frequency of the Percept
(250 Hz). Both the LFPs as well as the ECG signal are then

Fig. 3: LFP signals recorded while stimulation was off (upper panels)
and on (lower panels). All three channels have severe ECG artefact and
are categorized according to the level of stimulation artefact: absent
(left), moderate (middle) or severe (right).

filtered for ECG-specific frequencies (between 0.5-20 Hz)
[36]. After applying the cross-correlation, one signal will be
shifted relative to the other such that the peak of similarity
will be at a lag of zero and the signals are synchronized.

2.5.4 Performance Synchronization
In order to rate the performance of the synchronization
methods, the LFPs are assessed by cross validation. The
synchronization performed by external tapping can be eval-
uated by proving the stimulation artefact and the QRS
complexes in the LFPs overlap with the stimulation artefact
captured by the F3 and F4 electrodes and the QRS complex
of the externally recorded ECG signal. Likewise, the per-
formance of the synchronization by stimulation artefact can
be evaluated by proving the artefact caused by externally
tapping and ECG artefact overlap. Finally, the performance
of the synchronization by ECG artefact can be evaluated
by proving the externally tapping artefact and stimulation
artefact overlap.

3 RESULTS

Bilateral recordings of the eleven patients resulted in 22
LFP channels. An overview of these channels is provided
in Table 2. Throughout the results, there will be referred to
the LFP signals by either calling the individual channel (ch)
or both channels of one patient (pt).

3.1 Stimulation Artefact
Despite all measures taken by the manufacturer of the
Percept to remove the stimulation artefact (see section 2.2),
only five channels had no visual stimulation artefact during
the on-DBS condition. The stimulation signal is about one
million times larger than the LFP signal, which in most
cases leads to an increase in recorded LFP signal amplitude.
Furthermore, the stimulation often causes the operational
amplifier of the Percept to saturate, which results in a spiky
signal as shown in the middle and right panel of Fig. 3.

Table 2. Overview of the recorded LFP channels

Channel Patient Side Sensing Contact Pair ECG Visible

1 1 L 0 - 2 Minor
2 2 L 0 - 2 Minor
3 3 L 0 - 2 Minor
4 4 L 0 - 2 Minor
5 5 L 0 - 2 Minor
6 6 L 0 - 2 Minor
7 7 L 0 - 2 Severe
8 8 L 0 - 3 Severe
9 9 L 0 - 2 Minor
10 10 L 0 - 2 Moderate
11 11 L 0 - 2 Minor
12 1 R 0 - 2 Severe
13 2 R 0 - 2 Moderate
14 3 R 0 - 2 Severe
15 4 R 1 - 3 Moderate
16 5 R 0 - 2 Minor
17 6 R 1 - 3 Moderate
18 7 R 1 - 3 Severe
19 8 R 1 - 3 Severe
20 9 R 0 - 2 Moderate
21 10 R 1 - 3 Severe
22 11 R 0 - 2 Minor
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Fig. 4: Examples of the ECG artefact in the time domain. Channels are
categorized into minor, moderate and severe ECG contamination.

3.2 ECG Artefact Removal

Considering the stimulation artefact during on-DBS,
consistency is assured by applying the ECG artefact
removal methods only for the off-DBS condition. Although
severe ECG artefact will still (vaguely) show from the
channels affected by stimulation artefact, the channels in
which the ECG artefact is minor or moderate might be left
unnoticed. Additionally, the spiky pattern of the stimulation
artefact is sometimes indistinguishable from ECG artefact.

The level of ECG artefact in the channels during the off-
DBS condition is defined in the right column of Table 2.
This discrimination is based on visual inspection of the
ECG contamination of the LFP signal in time domain. As
an example, the difference in ECG artefact is visualised in
Fig. 4. All channels contained at least a minor ECG artefact.
If a channel contains only minor ECG artefact, the tip of
the QRS complex lays close to the level of neural activity.
In five channels, the ECG artefact was moderate and seven
channels were even severely contaminated.

3.2.1 Template Subtraction
The first step of removing the ECG artefact using the
template subtraction method is detecting the R-peaks in

Fig. 5: One epoch of the original LFP signal containing the QRS
complex (LFP (QRS), red line); The QRS-specific optimized template
(LFPECG(QRS), green line). Ultimately, this optimized template is sub-
tracted from this particular LFP epoch, resulting in an LFP signal at the
QRS complex epoch with artefact removed (LFPclean(QRS), black line).

Fig. 6: The mean relative power spectral density (PSD) with the
standard deviation (STD). Categorized into minor, moderate and severe
ECG contamination.

the LFP signal. The ECG detection algorithm successfully
detects the R-peaks of channels in which the ECG artefact
was moderate and severe (twelve channels in total). The
algorithm does not work sufficiently in channels with
minor ECG artefact. The mean relative PSD with its
standard deviation (STD) in Fig. 6 shows that minor ECG
artefact affects the frequency content of the LFPs only
mildly. Therefore, the fact that the ECG detection algorithm
only works for moderate and severely contaminated
channels is acceptable.

For each ECG contaminated channel, the ECG artefact tem-
plate is generated. On each QRS complex epoch, this tem-
plate is adjusted to optimally subtract the ECG artefact. An
example of a QRS complex template specifically optimized
for one particular epoch is shown in Fig. 5. The result of
the template subtraction for the example channels in which
the ECG artefact is moderate and severe is visualized in the
upper panels of Fig. 7, respectively.

3.2.2 Independent Component Analysis

For the ICA-based method, both channels of one patient are
analysed together. Five patients have at least one channel in
which the ECG artefact is moderate, and five patients have
at least one channel in which the ECG artefact is severe
(Table 2).

The most important feature of the ICA-based method, is
separating the ECG artefact as one of the three independent
components (IC) (Fig. 8). If the ECG detection algorithm
assigns all three components as containing ECG artefact, it
will basically be a very cumbersome way of applying a 0.5-
20 Hz bandpass filter. Similarly, since an ECG component
usually is a higher power signal, too much signal content
below 20 Hz is also filtered if two of the three components
are detected as ECG artefact.

None of the components separated in patients with minor
ECG contamination are detected as ECG artefact. The ICA
was not capable of separating any ECG component in two
of the five patients with moderate ECG contamination. In
one patient, two components were detected as ECG artefact.
This means that the ICA was only capable of separating
one ECG component in two of the five patients that have
at least one channel in which the ECG artefact is moderate.
In all five patients that have at least one channel with
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Fig. 7: The result of suppressing moderate and severe ECG artefact
(respectively left and right) by template subtraction (upper panels),
ICA (second row panels), and Perceive Toolbox (third row panels). The
effect of the ECG removal methods on these two channels in frequency
domain is shown by the relative PSD in the lower panels.

severe ECG artefact, the ICA was able to separate one ECG
component. However, in these patients, ICA sometimes
separates two ECG components. That is why the ICA is run
repeatedly until it separates only one ECG component, with
a maximum of twenty runs.

The result of the ICA-based ECG removal method in time
domain is shown in the middle panels of Fig. 7. These
channels were recorded from the left- and right hemisphere
of patient 10 and had moderate and severe ECG artefact,
respectively. Fig. 9 contains a more thorough analysis of the
effect of the ICA ECG removal method on these channels.
The upper panels of this figure show the LFP signals of
the other patient that has one channel in which the ECG
artefact is moderate and for which the ICA was capable
of separating one single ECG component. For patient 10,
the other channel contained severe ECG artefact. Contrarily,
the other channel of patient 6 only contains minor ECG
artefact. Due to the fact that the ICA-based method uses
both channels as input, the level of ECG artefact in the
other channel has a massive impact on the result of the ECG
removal. This difference in performance suggests that the
ICA-based method basically separates the channel with the
worst ECG contamination as ECG component and subtracts
that share of both channels.

Fig. 8: An example of the independent components (IC) as a result of
the FastICA. In this specific case, only the third separated component
(IC 3 - lower panel) is detected as ECG artefact contributor.

3.2.3 Performance ECG Artefact Removal

The upper three rows of panels in Fig. 7 represent the
difference between the ECG removal methods in time
domain. Here it shows that for the channel with severe
ECG artefact, the template subtraction method effectively
suppresses the QRS complexes, whereas the ICA-based
method leaves a residue of the R-peaks in the signal.
The Perceive Toolbox suppresses the R-peaks sufficiently,
though only if the R-peak is correctly detected. When
looking at the channel with moderate ECG artefact, it
shows that the Perceive method annotates different parts
of the signal as R-peaks than the ECG detection algorithm
used for the template subtraction method. The fact that
the Perceive Toolbox occasionally even misses out on an
R-peak in severely contaminated channels suggests that
their method of pattern matching of the template on the raw
signal is less adequate than the ECG detection algorithm of
the template subtraction method.

Fig. 9: The result of the ICA-based method in time domain for the
two patients that have at least one channel in which the ECG artefact
is moderate and for which the ICA was capable to separate one single
ECG component. The LFP signals are obtained from the left- and right
hemisphere, respectively.
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Fig. 10: The performance of the ECG removal methods for moderate and severe ECG artefact contamination.

Next, the performance of the proposed ECG removal
methods are compared by evaluating the mean relative
PSD (Fig. 10). For moderate ECG artefact, this figure shows
that the template subtraction performs best in reducing
the spiking pattern of PSD caused by the ECG artefact.
Moreover, the proportion power of the lower frequencies
reduces most for the template subtraction method. All three
methods perform sufficiently in preserving the important
beta peak. However, as discussed in section 3.2.2 and Fig.
9, the ICA was only applied to two channels, of which
one was basically left unaffected. Therefore, the mean
relative PSD result of the ICA is not as meaningful as of the
template subtraction and Perceive Toolbox.

The unreliability of the ICA-based method becomes appar-
ent from the result of the severely contaminated LFP signals
(right panel of Fig. 10). Here, the power of frequencies below
20 Hz are greatly reduced. The ICA method is designed
to isolate the ECG artefact by first applying a 0.5-20 Hz
bandpass filter. Usually, the ECG component is of high
power. Subtracting this ECG component of the original LFP
signal explains why the the relative PSD after ICA ECG
suppression shows such a big reduction of power below
20 Hz. Contrarily, both the template subtraction method as
well as the Perceive Toolbox ECG removal method perform
well on reducing the ECG artefact. As a matter of fact, the
beta peak is absent in the relative PSD of the original LFP
signal, and becomes apparent after applying the template
subtraction method. Similar to the results on the moderate
ECG artefact, the template subtraction method shows the
highest performance on preserving the beta frequency peak
while the proportion of lower frequency power reduces.

3.3 Synchronization
The following sections will discuss the proposed methods
to synchronize the Percept data with the externally recorded
TMSi data. Again, the results will refer to specific patients

instead of separate channels. Contrary to the ECG removal
methods, synchronization is performed in both the off-DBS
condition, as well as to the on-DBS condition.

3.3.1 External Tapping
Tapping on the electrode close to the burr hole (F3 and F4
electrodes) does not cause an artefact on the LFP signals
(Fig. 11). Medtronic probably recommended this way of
synchronization because they assumed newly implanted
patients would be recorded, for which the burrhole is not
yet fully recovered. Additionally, tapping does not cause a
clear artefact in the signals of the F3 or F4 electrodes when

Fig. 11: Normalized LFPs and signals measured at the F3 and F4
electrodes, after synchronization using ECG cross-correlation. The black
arrows indicate seven times externally tapping on F3, and five times on
F4.
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the stimulation is on. That case, the stimulation artefact
overshadows the external tapping. As an alternative, we
tried tapping with an accelerometer on the skin above the
freshly implanted case of the Percept. Apart from this being
uncomfortable for the patient due to the sensitivity of the
skin immediately after surgery, it did not leave any sign of
artefact on the LFPs.

3.3.2 Stimulation Ramping

In the off-DBS condition, the stimulation amplitude
was slightly ramped up and down as an attempt to
synchronize the recording systems. Apparently, the Percept
splits the streamed data into separate recordings when
changing either the pulse width or the frequency of
the simultaneously delivered stimulation. Ramping up
and down the stimulation amplitude does not split the
recording. This feature of the Percept should be taken into
account when using stimulation ramping to synchronize
the data.

Fig. 12 shows the normalized signal of the stimulation
amplitude registered by the Percept, as well as the
normalized signals captured by the F3 and F4 electrodes.
When analyzing critically, the signals at the F3 and F4
electrodes indicate that the stimulation is not yet turned
off while the Percept already registers zero stimulation
amplitude. Apparently, the Percept only registers the
stimulation amplitude twice per second (with 2 Hz). This
is far less precise than the stimulation artefact captured by
the F3 and F4 electrodes and will reduce the accuracy of the
synchronization.

The LFP signals, on the other hand, are recorded at 250
Hz. Despite all the efforts taken by the manufacturer of
the Percept to remove the stimulation artefact (see section
2.2), all of the recordings still show an increase of LFP
amplitude and/or a step response on the electrode lead of
which the stimulation is ramped up or down. By ramping
up the stimulation on the left side, the amplitude of the LFP
signal of the left hemisphere increases (Fig. 13). An example
of the step responses that sometimes occur when ramping
the stimulation is shown around 700 seconds in the upper

Fig. 12: Stimulation amplitude (at 60 Hz) and the normalized and
absolute signals measured at the F3 and F4 electrodes (50 Hz high pass
filtered).

panel of Fig. 14. Due to the higher sampling frequency of
the LFPs compared to the registered stimulation amplitude,
using the stimulation artefact on the LFPs to synchronize the
recording systems is more precise. On the other hand, the
stimulation artefact is reflected differently on each sensing
channel. Therefore, applying this method of synchronization
requires quite a lot of coding.

3.3.3 ECG Cross-Correlation
The final method proposed to synchronize the recording
systems, is by making use of the minor ECG artefact
present in every recording with Percept. From Table 2, it is
determined that the LFP signal of the right hemisphere is
usually the channel with a bigger ECG artefact. The upper
panel of Fig. 14 shows the LFPs of the right hemisphere
during the full recording (both off- and on-DBS condition)
of one patient. The middle panel is the bipolar ECG signal
measured between two electrodes placed on the shoulders.
The lower panel shows the zoomed in result of the cross-
correlation between the upper two signals. The maximum
correlation is found at 11960 lag, which corresponds to
approximately 48 seconds.

Interestingly, recordings that only have minor ECG artefact
still find a clear optimum time lag. Furthermore, the cross-
correlation also finds a peak in the on-DBS recordings.
However, there is also a potential pitfall of this method.
That is, using the LFP signal of the left hemisphere leads
to a small difference in optimum time lag. The fact that
the externally recorded ECG signal has to be downsampled
to 250 Hz before cross-correlation can be performed, might
induce these small lateral differences.

3.3.4 Performance synchronization
Although externally tapping on the F3 and F4 electrode
or at the case of the Percept seems as a convenient
method to cause a clear simultaneous artefact at both

Fig. 13: LFP signals of the left- and right hemisphere (normalized,
absolute and 90 Hz high pass filtered) and signals measured at the F3
and F4 electrodes.
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Fig. 14: LFP signal of right STN filtered for ECG-specific frequencies
(upper panel); Externally recorded ECG signal filtered for ECG-specific
frequencies (middle panel); Cross-correlation coefficient of the LFP- and
ECG signal over samples (250 Hz).

recording systems, this was not the case. That means
the synchronization can only be cross validated for the
stimulation artefact method and the ECG cross-correlation
method.

To be able to perform a cross validation, the recording
must contain both a stimulation- as well as a ECG artefact.
Fig. 15 shows the cross validation of one patient in which
both synchronization methods are successful. The upper
panels contain the results of synchronization using the
stimulation artefact, the lower panels show the result after

Fig. 15: Cross validation of the synchronization methods. For this
recording, both synchronization methods are successful.

synchronizing using ECG cross-correlation. In both cases,
the stimulation artefact on the LFP signal and on the F3
electrode are aligned, as well as the R-peaks of the ECG
artefact on the LFP signal and the externally recorded ECG
signal. As expected, the time lag between the LFPs and the
ECG signal (filtered for ECG-specific frequencies) after such
successful synchronization through stimulation artefact is
only minimal (3 samples ∼ 12 ms).

The cross validation of the synchronization methods in
another patient is shown in Fig. 16. This figure suggests,
however, that the ECG cross-correlation method result in an
incorrect synchronization. After both synchronization meth-
ods, the R-peaks of the ECG artefact align. However, the
stimulation artefact proves that the ECG cross-correlation
picked up the wrong time lag. It is most likely that the repet-
itive nature of the ECG artefact caused the cross-correlation
to have shifted one heartbeat.

3.4 Proof of Concept for Tasks Analysis
As the LFP signal is synchronized with the TMSi data, the
start and stop triggers can be used to cut the recording into
the different tasks of the protocol. The relative PSD during
rest, the finger-to-nose-test (movement) [38], and reading
out loud (speech) before and after ECG artefact suppression
are calculated (Fig. 17). Due to missing data, there are
no channels with moderate ECG artefact for which the
synchronization could be cross-validated that also contain
data for all three tasks. All seven channels with severe
ECG artefact contain data for the three tasks, though the
synchronization of only two could be cross-validated in the
off-DBS condition. These were channels 8 and 19; the left
and right hemisphere of patient 8.

The upper panels of Fig. 17 show that it is impossible to an-
alyze the differences in relative PSD between the tasks in the
original data containing severe ECG artefact. Since the ICA-
based method has shown to be unable to suppress the ECG
artefact (section 3.2.3), the analysis of cutting the recording

Fig. 16: Cross validation of the synchronization methods. This result
suggest that the ECG cross correlation is not successful.
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Fig. 17: The relative PSD of channels 8 (left column) and 19 (right
column) of the original signal (upper panels), the signal after ECG arte-
fact suppression using the Perceive Toolbox (middle panels), and after
the template subtraction method is applied (lower panels). This figure
demonstrates the feasibility of the Perceive ECG suppression method
and template subtraction method to start analyzing the differences in
brain activity during different tasks: rest (61 seconds, blue line), finger-
to-nose-test (32 seconds, pink line), and reading out loud (33 seconds,
yellow line).

into different tasks is not performed on the LFP signals
after applying the ICA-based method. Although the ECG
removal method of the Perceive Toolbox seems to perform
well on reducing severe ECG artefact of the entire recording
(Fig. 10), the middle panels of Fig. 17 demonstrate that it
is still not possible to analyze the differences in relative
PSD of the LFPs between tasks after applying the Perceive
method. However, the lower panels of Fig. 17 prove that
suppressing the ECG artefact using the template subtraction
method makes it feasible to start analyzing the differences
between tasks for individual frequencies. Unfortunately, for
patient 8, no clear differences in relative PSD of the LFP
signal between the tasks are found.

4 DISCUSSION

The current study explores the sensing capabilities of the
Medtronic Percept™, a fully implanted neurostimulator
able to simultaneously record LFPs and deliver stimulation.
Although this technology paves the way for the
development of adaptive DBS, it is difficult to obtain a
reliable LFP signal due to ECG contamination. Additionally,
adaptive DBS can only be applied if the feedback signal
is indicative of the patients’ clinical state. Further research
that aims to create a patient-specific profile of neuronal
activity correlated with the severity of the motor symptoms
requires synchronization of the Percept data with externally
recorded data.

In this study, two methods for removing ECG artefact
were developed: 1) an optimized template subtraction and

2) an ICA-based ECG suppression. These methods were
evaluated both in time- as well as in frequency domain.
The performances were compared to each other, and to an
existing ECG artefact removal method implemented in the
open-source Perceive Toolbox. Following these analyses,
the optimized template subtraction method performs best
in effectively suppressing the QRS complex present in the
LFP signal as well as preserving the frequency content.

In order to extract features in the brain signal that correlate
with the patients’ motor symptoms, the second aim of this
study was to find a way to synchronize the LFP signal
with externally recorded data. Here, three methods were
explored. Externally tapping on an electrode close to the
burr hole did not leave an observable artefact on the LFPs,
nor did tapping on the neurostimulator. Contrary, both
ramping the stimulation as well as using the ECG cross-
correlation did allow to synchronize the recording systems.

4.1 Similarities and Differences of the Perceive Toolbox
ECG Removal Method and the Template Subtrac-
tion Method

As the results of the current study show that the template
subtraction method performs better at suppressing the ECG
artefact than the ECG removal method implemented in the
Perceive Toolbox, it is important to understand their simi-
larities as well as their differences. The two ECG removal
methods are similar in that they both aim to detect and
suppress the QRS complexes present in the LFP signal.
However, the algorithms used by the methods to detect
the segments containing the QRS complexes differ. The
ECG detection algorithm of the Perceive Toolbox performs
pattern matching over the raw signal by a template gen-
erated using cross-correlation. The Perceive method will
always detect segments that have a matching pattern, but
these segments do not necessary have to be actual QRS
complexes. The template subtraction method, on the other
hand, specifically searches for the R-peaks that meet the
criteria described in section 2.4.1. The two methods also
differ in how the ECG artefact suppression is performed.
The Perceive Toolbox applies mirrored padding over the
QRS complexes, whereas the template subtraction method
uses a QRS-specific optimized template to suppress the ECG
artefact.

4.2 ECG Suppression Preserves Significant Part of
Signal’s Information

The two ECG artefact removal methods developed in the
current study both aim to isolate the ECG artefact from the
LFP signal (Fig. 2). The part containing this ECG artefact is
then subtracted from the original LFP signal. The fact that
the methods suppress the ECG artefact at the significantly
affected segments of the LFP signal, instead of removing
all these segments, is beneficial for the continuity of the
recording. Previous studies to PD have reported that the
pathological beta-band activity is not constantly increased
but comes in bursts of different durations and amplitudes
[10], [39]. Bursts with a longer duration are positively corre-
lated with motor impairment in PD, while bursts of shorter
duration are negatively correlated. Cutting out the artefacts
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and attaching the rest of the recording or replacing the
segments containing artefact with zero would have made
burst analysis impossible.

4.3 Improving ECG Detection Algorithm for Better ECG
Artefact Removal

Fig. 10 shows that the beta frequency peak reenters most
effectively when the ECG artefact is removed by the tem-
plate subtraction method, as compared to the ICA and
Perceive Toolbox. However, template subtraction does only
work for LFP signals in which the ECG artefact is moderate
or severe. This limitation is due to the performance of
the ECG detection algorithm. A suggestion to enable ECG
artefact removal using the template subtraction method
of LFP signals with minor contamination, is by obtaining
the timings of the QRS complexes by applying the ECG
detection algorithm to the simultaneous externally recorded
ECG signal. This approach, however, will rely heavily on
perfect synchronization of the recording systems. A better
solution is suggested by Chen and colleagues [40], who
demonstrated the feasibility of recording an ECG reference
signal using the monopolar montage of a sensing-enabled
neurostimulator. That method even allowed to extract a
clear R-peak through large stimulation artefacts. In theory,
the Percept could be implemented with such ECG reference
signal as well, but currently is not. It is noteworthy, however,
that the PSD of an LFP signal is only minimally affected by
minor ECG artefact. That is why care has to be taken when
removing minor ECG artefact, such that unnecessary loss of
LFP information is avoided.

4.4 Include Lateral Optimization to Further Improve
Template Subtraction Method

The performance of the template subtraction method does
not only depend on the performance of the ECG detection
algorithm. The current method allows for scaling of the
waveform of the ECG artefact. However, characteristics of
the ECG artefact, i.e. the shape of the waveform, might alter
due to fatigue or discomfort [18]. If the optimization would
also allow the QRS complex template to lengthen or shorten
in time, the effect of the template subtraction method could
even further improve.

4.5 Evaluation of the ICA-based ECG Removal Method
Theoretically, there are many aspects in favor of applying
an ICA-based method for ECG artefact removal. ICA
makes use of the joint ECG contamination of both
hemispheres. Therefore, if one hemisphere only has minor
ECG contamination, the ICA should be able to use the
same ECG contamination present in the other hemisphere
to remove the ECG artefact in both. Secondly, whereas
the template subtraction method improves with increasing
number of QRS complexes, the performance of an ICA-
based method will not increase with a longer recording
duration. Theoretically, ICA could also be applied to the
recording split into the separate tasks. This could even
improve its performance since irregularities of the ECG
artefact (caused by, for example, the heart rate) will reduce.
However, for the current data sets, cutting the recording

into smaller pieces did not improve performance.

Despite the plausible theory behind the ICA-based method,
it showed to be incapable of removing the ECG artefact
from the LFP signals. Typically, the channel containing the
biggest ECG contamination was separated as ECG compo-
nent and subtracted from both channels. This lead to almost
full suppression of frequency content below 20 Hz for the
most severely ECG contaminated channel. Apart from its
incapability to serve its purpose, another problem with this
method was the inconsistency of ICA in separating com-
ponents. The fact that the components may vary each time
the ICA is performed, is because the technique is initialized
with a random vector of weights. This inconsistency makes
this method unrepeatable.

4.6 The Wavelet-ICA Approach as a Last Attempt
An explanation for the malfunction of the ICA-based
method to remove ECG artefact is the fact that ICA is ca-
pable of estimating original signals which are non-Gaussian
distributed. However, the problem here is that the sources
are not known to be Gaussian or non-Gaussian. In addition,
the LFP signal is the result of the joint activity of multiple
neurons. This actually means that the number of sources is
greater than the number of observations, making it impos-
sible for the ICA to separate the source signals [41]. For the
current approach, the number of observations are generated
by taking the LFP signals from both hemispheres and their
mean. However, another proposed method to increase the
number of observations in a single channel recording is to
precede ICA by wavelet decomposition [35]. Wavelet anal-
ysis splits the LFP signal into a number of frequency com-
ponents. These signals have non-overlapping spectra and
could be taken together to serve as multidimensional input
for ICA. Although this combined wavelet-ICA approach has
shown to successfully remove ECG artefacts from surface
EMG recordings [35], it did not allow to remove the ECG
artefact from the recorded LFP signals in the current study.
This difference in performance could be due to the small
range of frequency of interest of the LFPs compared to EMG
data.

4.7 The Choice of synchronization Method is a Trade
Off Between Effort and Reliability

The results in section 3.3 indicate that externally tapping
does not allow synchronization of the isolated Percept data
with the TMSi data, as opposed to the stimulation arte-
fact and the ECG cross-correlation methods. Either of the
latter two synchronization methods have their advantages
and disadvantages. Both methods require the experimental
set up to include one or two extra electrodes. However,
considering the ECG artefact in the LFPs, it is sensible to
measure the ECG signal anyway. The signals at F3 and F4
serve no additional purpose. When using the stimulation
artefact, the experimenter should also remember to ramp
the stimulation up and down, whereas the ECG cross-
correlation does not need any additional actions from the
experimenter. This makes the ECG cross-correlation method
easier to use for recordings of short duration, as no extra
time will be spent on the synchronization. Apart from the
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convenience of the ECG cross-correlation method during the
patient recording, this method also runs fully automatic at
the stage of offline data processing. The stimulation artefact,
on the other hand, is reflected differently on each sensing
channel and requires a recording-specific threshold. There-
fore, applying this method of synchronization requires quite
a lot of coding. As shown from the cross validation of the
two methods, the trade off for the minimal effort of the ECG
cross-correlation method is its reliability. It synchronizes the
recording systems without supervision which apparently
may lead to an inaccuracy of one heartbeat.

4.8 Current Adaptive DBS Research Aims for Artefact-
Free LFP Recordings

Both effective synchronization methods (stimulation artefact
and ECG cross-correlation) depend on the induction of an
artefact in the LFP signal. However, as the development
of neurosensors progresses, manufacturers aim to remove
both the stimulation artefact as well as the ECG artefact
altogether. Artefacts reduce the signal to noise ratio and
therefore the reliability of the LFPs to serve as feedback
signal for adaptive DBS. A recent paper by Debarros and
colleagues [42] achieved a LFP recording free of stimulation
artefacts by synchronizing the sensing sampling clock with
the stimulation pulse. That way, the stimulation pulses
happen between the sensing samples which means that
the stimulation artefacts are never sampled. Other research
to adaptive DBS focuses on avoiding or removing ECG
artefact. Strategic placement of the IPG is one suggested ap-
proach to mitigate ECG contamination [22], [23]. Neumann
and colleagues [22] found that the ECG artefact appears to
be stronger and more frequent when the IPG is implanted
on the left side of the chest, when compared to right or
cranial implants. The current study confirms that finding,
as the Percept was implanted on the left side of the chest
in four out of the seven channels with severe ECG artefact.
Another suggestion to eliminate ECG artefact from the LFP
signals is by post-hoc ECG removal methods as proposed
in the current study. However, even if this proves to be
possible in real-time, which is a prerequisite for adaptive
DBS, it will involve additional power consumption. Alter-
native approaches to reduce ECG artefact are improving the
electrical properties of the electrode leads and extensions
or developing new coatings to lower the impedance of
the tissue-electrode interface. Although an artefact-free LFP
recording is essential to detect and extract reliable features
in the LFP signal, these features are only informative when
correlated to the patients’ symptom-severity. In order to
find such well-established correlations, manufacturers of
neurosensors should facilitate the synchronization of the
isolated LFP data with externally recorded data.

5 RECOMMENDATIONS

Regarding the ECG artefact in the LFP signal, several
suggestions can be made for future research. First of all,
ECG artefact should be avoided as much as possible. The
site of IPG implantation, among others, seems to have
an impact on the level of ECG artefact [22]. Although
a right chest/abdomen implant location reduces ECG

contamination in LFP signals as compared to left implant
locations, the development of DBS systems should focus on
cranial mount systems. Whereas the current project focused
on the ECG artefacts, another source of LFP contamination
are movement artefacts. Cranial mount systems are
suggested to allow only minimal physical motion of the
lead and IPG, which would minimize movement artefacts
as well.

As long as the ECG artefact can not be avoided, there
is enough room for improvement of the proposed
ECG removal methods. Considering both the template
subtraction method as well as the Perceive Toolbox to
remove ECG artefact, the externally recorded ECG signal
could be used to identify the timings of the QRS complexes.
Although this would allow to suppress the ECG artefact in
channels with minor contamination as well, its result will
depend on perfect synchronization. Research that focuses on
the development of a system added with an ECG reference
to the monopolar montage, as previously described [40],
would be preferred. Another suggestion to further improve
the performance of the template subtraction method, is
to include lateral optimization of the QRS complex template.

The current study evaluated the level of ECG artefact
visually. Objective measurements of the ECG contamination
would allow a more reliable validation of the ECG removal
methods. Another recommendation for future studies is to
apply the ECG removal methods to a simulated LFP signal
with ECG artefact. That way, the simulated clean LFP signal
is available which allows to quantify the ECG removal
performance. Finally, follow-up analysis of the template
subtraction method should involve a recommendation of
minimum recording duration required to obtain a reliable
QRS complex template. The accuracy of the template
improves with increasing number of QRS complexes.
Therefore, the longer the recording duration, the better the
performance of the template subtraction method. However,
it is very likely that at some point, the improvement of
template accuracy is only minimal. Knowledge of such
optimum between the duration of the recording and the
accuracy of the QRS complex template can be useful for
future recordings of shorter duration.

Some other suggestions for future research regards the
synchronization aspect of the current study. Considering
its ease of use, it is worth analyzing why the ECG cross-
correlation method is not always reliable. One could
argue the repetitive nature of the ECG artefact causes
the inaccuracy. However, in general, an ECG signal also
contains small variability of heart rate or inter-beat interval.
The cross-correlation should actually be able to use these
irregularities present in both signals to determine the
optimum time lag.

In case a true artefact-free LFP recording is achieved, the
synchronization methods proposed in the current study
cannot be used. An sensible solution for the manufacturers
of Percept to secure the accuracy of synchronization is to
increase the sampling frequency by which the stimulation
amplitude is registered from twice per second to the same
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sampling frequency as the LFP signal (250 Hz). Alterna-
tively, an ECG reference signal could be added to the
monopolar montage of the sensing-enabled neurostimula-
tor. Apart from being useful to remove the ECG artefact,
such ECG reference signal could also be used for the syn-
chronization. Instead of using the ECG artefact in the LFP
signal, this ECG reference signal could be cross-correlated
with the externally recorded ECG signal.

6 CONCLUSION

The ICA-based method was incapable of removing the ECG
artefact in the LFP signal, whereas the template subtraction
method performed even better than the Perceive ECG
removal method in suppressing ECG artefact while
preserving LFP frequency content. The performance of the
template subtraction method could be further improved by
1) implementing lateral optimization of the QRS complex
template, and by 2) using the timings of the QRS complexes
determined by an externally recorded ECG signal or by an
ECG reference signal added to the monopolar montage of a
sensing-enabled neurostimulator.

As long as the reason of failure of the ECG cross-correlation
method to synchronize the Percept data with the TMSi data
is unclear, a compromise between effort and accuracy can
be made by applying the ECG cross-correlation method, but
validate its performance by confirming accurate alignment
of the stimulation artefact. As current research aims for
artefact-free LFP recordings, manufacturers of neurosensors
should facilitate a way to synchronize the LFP signals with
externally recorded data in order to assist research focused
on finding a reliable feedback signal for adaptive DBS.
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Longitudinal recordings in patients implanted with  
DBS electrodes 

VISIT 1 
STIM OFF 

Patient Identificatie Nummer: | P | D |__|__|__|   Onderzoeker: |__|__| 

  

CRF visit 1 - PD - Longitudinal recordings in patients implanted with DBS electrodes 

 
 

Instellen BrainSense met gewenste frequenty en pulse width, 0 mA! 

Instrueer de patiënt niet te spreken tijdens de meting. 
 
Gebruik “Start” en “Stop” triggers TMSi per taak! 
 

o 1 minuut rust 

o 30 seconden statisch bewegen (vingers en pols RECHTS in hyperextensie) 

o 10 seconden rust 

o 30 seconden statisch bewegen (vingers en pols LINKS in hyperextensie) 

o 10 seconden rust 

o 30 seconden tappen RECHTS (wijsvinger op duim tappen RECHTS) 

o 10 seconden rust 

o 30 seconden tappen LINKS (wijsvinger op duim tappen LINKS) 

o 10 seconden rust 

o 30 seconden dynamisch bewegen (RECHTERhand open-dicht knijpen) 

o 10 seconden rust 

o 30 seconden dynamisch bewegen (LINKERhand open-dicht knijpen) 

o 10 seconden rust 

o 30 seconden dynamisch bewegen (RECHTERhand pro/supinatie) 

o 10 seconden rust 

o 30 seconden dynamisch bewegen (LINKERhand pro/supinatie) 

o 10 seconden rust 

o 30 seconden intentionele bewegingen (vinger onderzoeker – neus patiënt RECHTS) 

o 10 seconden rust 

o 30 seconden intentionele bewegingen (vinger onderzoeker – neus patiënt LINKS) 

o 10 seconden rust 

o 30 seconden spraak (tekst oplezen) 

o 10 seconden rust 

o 30 seconden stappen op de plaats (indien mogelijk) 

o 10 seconden rust 
 
 
BrainSense meting en TMSi meting CONTINUEREN, NIET PAUZEREN!    Maar let op: max. 30 min streamen. 
 
 

Brainsense meting STIM OFF en ON 



 
 

 
Longitudinal recordings in patients implanted with  
DBS electrodes 

VISIT 1 
STIM OFF 

Patient Identificatie Nummer: | P | D |__|__|__|   Onderzoeker: |__|__| 

  

CRF visit 1 - PD - Longitudinal recordings in patients implanted with DBS electrodes 

Amplitude (mA) langzaam opvoeren per electrode tot aan gewenste effect (of pre-operatief bepaald mA) 
Instellingen Percept: 
 
Rechts 
mA _______________             Frequency _________________           Pulse width _________________ 
 
Links 
mA _______________             Frequency _________________           Pulse width _________________ 
 
BrainSense meting met stimulatie aan 

Instrueer de patiënt niet te spreken tijdens de meting. 
 
Gebruik “Start” en “Stop” triggers TMSi per taak! 
 

o 1 minuut rust 

o 30 seconden statisch bewegen (vingers en pols RECHTS in hyperextensie) 

o 10 seconden rust 

o 30 seconden statisch bewegen (vingers en pols LINKS in hyperextensie) 

o 10 seconden rust 

o 30 seconden tappen RECHTS (wijsvinger op duim tappen RECHTS) 

o 10 seconden rust 

o 30 seconden tappen LINKS (wijsvinger op duim tappen LINKS) 

o 10 seconden rust 

o 30 seconden dynamisch bewegen (RECHTERhand open-dicht knijpen) 

o 10 seconden rust 

o 30 seconden dynamisch bewegen (LINKERhand open-dicht knijpen) 

o 10 seconden rust 

o 30 seconden dynamisch bewegen (RECHTERhand pro/supinatie) 

o 10 seconden rust 

o 30 seconden dynamisch bewegen (LINKERhand pro/supinatie) 

o 10 seconden rust 

o 30 seconden intentionele bewegingen (vinger onderzoeker – neus patiënt RECHTS) 

o 10 seconden rust 

o 30 seconden intentionele bewegingen (vinger onderzoeker – neus patiënt LINKS) 

o 10 seconden rust 

o 30 seconden spraak (tekst oplezen) 

o 10 seconden rust 

o 30 seconden stappen op de plaats (indien mogelijk) 

o 10 seconden rust 



 
 
function clean = Template_ECG_Removal(data) 
  
% Template-based ECG-subtraction method 
  
% Steps: 
% 1. Detect LFPs containing ECG artefact 
% 2. Determine QRS-complexes in the LFP signal  
% 3. Take the mean over the complexes to create a QRS-complex template  
% 4. Optimize this template by minimizing the summed squared error  
% 5. Subtract the optimized template of the original signal to suppress the ECG artefact. 
  
% If ECG artefact is detected, the output are the cleaned LFPs. 
  
fsample = 250; 
  
flag_peak = 0; 
  
noECGTemp = data; 
tvec = 1:length(noECGTemp); 
  
LFPecg = data; 
  
% ---- 1. Detect ECG artefact 
LFPnorm = normalize(LFPecg); 
  
[Rpeak,locs_Rwave] = findpeaks(LFPnorm,'MinPeakHeight',(2*std(LFPnorm)),... 
    'MinPeakDistance',fsample/2); 
  
% Also apply R-peak detection to flipped signal: 
LFPecg = -data; 
  
LFPnorm = normalize(LFPecg); 
  
[Speak,locs_Swave] = findpeaks(LFPnorm,'MinPeakHeight',(2*std(LFPnorm)),... 
    'MinPeakDistance',fsample/2); 
  
% Determine which way the peaks are highest, corresponding to R-peaks: 
if mean(Speak) > mean(Rpeak) 
    locs_Rwave = locs_Swave; 
    flag_peak = 1; 
else 
    LFPecg = data; 
    LFPnorm = normalize(LFPecg); 
end 
  
% If there are no R-peaks detected at all: 
if isempty(locs_Rwave) 
    disp('LFPs have no obvious R-peaks') 
    % If heartbeats are missed: no ECG artefact is detected: 
elseif any(diff(locs_Rwave)/fsample > 3) 
    disp('LFPs have no R-peak every three seconds') 
    % If heart rate is too low: 
elseif length(locs_Rwave) < (40/60)*(length(LFPecg)/fsample) 
    disp('LFPs have unreliable heart rate (< 40 bpm)') 
  
    % Else: continue with removal 
else 
 
 
 



    % Plot ECG detection figure: 
    if fig == 1 
        figure; 
        hold on 
        plot(tvec, LFPnorm) 
        plot(locs_Rwave, LFPnorm(locs_Rwave),'rv','MarkerFaceColor','r') 
        legend('LFPs', 'Detected R-peaks') 
        title('LFPs - filter for ECG', 'FontSize', 18) 
    end 
     
% ---- 2. Create QRS complex epochs (400 ms ~ 50 samples before and after R-peak) 
    locs = locs_Rwave'; 
    % Determine start and end sample of epoch 
    for i = 1:length(locs) 
        locs(i, 1:2)=[locs(i)-50, locs(i)+50]; 
    end 
    % Make sure intervals of 101 samples are possible (begin and end of signal) 
    if locs(1) <= 0 
        locs = locs(2:end,:); 
    end 
    if locs(end) > length(data) 
        locs = locs(1:end-1,:); 
    end 
     
    % Create QRS-template of the epochs the original LFP signal: 
    meanLFPecgfreqs = zeros(size(locs,1), 101); 
    for i = 1:length(locs) 
        meanLFPecgfreqs(i,:) = data(locs(i, 1):locs(i, 2)); 
    end 
     
% ---- 3. Take the mean of all epochs: 
    columnMeans = mean(meanLFPecgfreqs, 1); 
    columnMeans1 = columnMeans; 
     
     
    % Equalize start and end tails: 
    if flag_peak == 0 
        [~,pw] = findpeaks(-columnMeans); 
    elseif flag_peak == 1 
        [~,pw] = findpeaks(columnMeans); 
    end 
    low = find(pw<50); 
    high = find(pw>50); 
     
    firsthalf = columnMeans1(1:pw(low(end))); 
    tri = delaunayn(firsthalf'); 
    firstzero = dsearchn(firsthalf',tri,0); 
    secondhalf = columnMeans1(pw(high(1)):end); 
    tri = delaunayn(secondhalf'); 
    secondzero = (pw(high(1))-1) + dsearchn(secondhalf',tri,0); 
    columnMeans(1:firstzero-1) = columnMeans1(firstzero);       % Let tails run smoothly 
to smallest value 
    columnMeans(secondzero+1:end) = columnMeans1(secondzero); 
     
    % Important that both tails have same value: 
    if columnMeans(end) ~= columnMeans(1) 
        % Make beginning same value as end 
        firsthalf = columnMeans1(firstzero:pw(low(end))); 
        tri = delaunayn(firsthalf'); 
        firstzero1 = dsearchn(firsthalf',tri,columnMeans(end)); 
        firstzero1 = firstzero+firstzero1-1; 
        columnMeans(1:firstzero1) = columnMeans(end); 
    end 



     
    % Now subtract these templates of the LFP signals 
     
% ---- % 4. Optimize this template ~ lsqnonlin 
     
    ymod2 = zeros(length(locs), length(columnMeans)); 
    for i = 1:length(locs) 
        y = meanLFPecgfreqs(i,:); 
        t = 1:length(y); 
         
        % Gradient Search Options  
        options = optimset('lsqnonlin'); 
        options = optimoptions(@lsqnonlin,'Algorithm','trust-region-reflective'); 
        options = optimset('display','off'); 
         
        % Initial Guess & Upper & Lower Bounds 
        p0 = [2 2]; 
        lb = [-10 -10]; 
        ub = [10 10]; 
         
        % Error Function *see end of script! 
        func = @(p)fune2(p,columnMeans,y);      % gives vector, required for lsqnonlin 
         
        % LSQnonlin 
        [parest,J,~,~,output]=lsqnonlin(func,p0,lb,ub,options); 
         
% ---- 5. Subtract the optimized template, in fune2* 
        [noECGTemp(locs(i, 1):locs(i, 2)),ymod2(i,:)] = fune2(parest,columnMeans,y); 
         
    end 
     
    clear LFPecg 
    flag_peak = 0; 
     
end 
  
clean = noECGTemp; 
  
  
% *Error Function 
function [e, yhat] = fune2(p,u,y) 
  
a = p(1);   % Scale 
b = p(2);   % Offset 
  
% Optimized QRS template: 
yhat = a * u + b; 
  
% Error is LFP without ECG artefact: measurement - optimized template 
e = y - yhat; 
 
  



 



 
 
function [clean, ECG_components, iteration] = ICA_ECG_Removal(data) 
  
% ICA-based ECG-removal method 
  
% Steps: 
% 1. Filter LFP signal for ECG-frequencies 
% 2. Obtain the three inputs for ICA (LFPs Left, LFPs Right, Mean LFPs) 
% 3. Run fastICA to generate three components  
% 4. Determine which component represents the ECG artefact   
% 5. Isolate the ECG artefact component 
% 6. Perform inverse ICA 
% 7. Subtract the isolated ECG artefact part of the LFP signals of both hemispheres from 
both original LFP signals  
  
% The function isolates the ECG artefact and subtract this from the original LFP signal 
 
clean = data; 
  
% ---- 1. Filter LFP signal for ECG-frequencies 
    cfg = []; 
    cfg.hpfilter    = 'yes'; 
    cfg.hpfreq      = 0.5; 
    cfg.lpfilter    = 'yes'; 
    cfg.lpfreq      = 20; 
    dataECG = ft_preprocessing(cfg, data.LFPs{1}); 
     
    flag_isolation = 1; 
    ECG_components{1} = zeros(1, 3);  % Variable that saves which component is ECG 
     
    fsample = data.LFPs{1}.fsample; 
     
% ---- 2. Obtain the three inputs for ICA     
    x1 = dataECG.trial{1}(1,:);   % Left LFPs (ch 1) 
    x2 = dataECG.trial{1}(2,:);   % Right LFPs (ch 2) 
     
    if length(x1) > 2*290 % Signal length must be greater than twice the required FIR  

    filter order (RequiredOrder = 290) 
         
        gem = mean([x1; x2]);       % Mean LFPs 
        Zmixed = [x1; x2; gem];     % Three ICA inputs 
  
% ---- 3. Run fastICA to generate three components        
        rd = 0;         % Counter to limit 20 iterations 
       
        while rd < 20     
            [Zfica, W, T, mu] = fastICA(Zmixed,3,'kurtosis',0);  % Generate three  

 components 
             
% ---- 4. Determine which component represents the ECG artefact  
  
            % ICA-component ECG detection algorithm: 
            Zfica2 = zeros(size(Zfica,1),size(Zfica,2));    % Variable to save filtered  

  components 
            for i = 1:size(Zfica,1) 
                Zfica1 = normalize(Zfica(i,:));   % Run each component seperately 
                 
                % Two STD threshold height of R-peaks at 0.5 sec distance 
                [Rpeak,locs_Rwave] = findpeaks(Zfica1,'MinPeakHeight',(2*std(Zfica1)),... 
                    'MinPeakDistance',fsample/2); 
                 



                Zfica1 = normalize(-Zfica(i,:)); 
                 
                [Speak,locs_Swave] = findpeaks(Zfica1,'MinPeakHeight',(2*std(Zfica1)),... 
                    'MinPeakDistance',fsample/2); 
                 
                if mean(Speak) > mean(Rpeak) 
                    locs_Rwave = locs_Swave; 
                end 
                 
% ---- 5. Isolate the ECG artefact component; set other two to zero  
  
                % Then check if valid ECG (more than 40 bpm) is in there.  

If so: isolate it 
                if length(locs_Rwave) > (40/60)*(length(Zfica)/fsample) && 
all(diff(locs_Rwave)/fsample < 3)  
                    Zfica2(i,:) = Zfica(i,:); 
                    ECG_components{1}(1,i) = 1; 
                else 
                    Zfica2(i,:) = 0; 
                    ECG_components{1}(1,i) = 0; 
                end 
                 
            end 
             
            if length(find(ECG_components{1}(1,:) == 1)) ~= 1 
                rd = rd + 1; 
                disp(['At iteration ' num2str(rd) ' - ' 
num2str(length(find(ECG_components{1}(1,:) == 1))) ' ECG Components']) 
                iteration = rd; 
            elseif length(find(ECG_components{1}(1,:) == 1)) == 1 
                iteration = rd; 
                rd = 20; 
            end 
        end 
         
        % Stop running fastICA after 20 iterations 
        if length(find(ECG_components{1}(1,:) == 1)) ~= 1 && rd == 20 
            Zfica2 = Zfica; 
            flag_isolation = 0; 
        end 
        
 
% ---- 6. Perform inverse ICA 
        Zr2 = (T \ W' * Zfica2) + repmat(mu,1,size(Zfica2,2));   
         
% ---- 7. Subtract the isolated ECG artefact part of the LFP signals of both hemispheres 
from both original LFP signals  
  
        for i = 1:2 
            if flag_isolation == 1 
                clean.LFPs{1}.trial{1}(i,:) = data.LFPs{1}.trial{1}(i,:) - Zr2(i,:); 
            end 
        end 
         
    end  
  
 
 
 



 
 
function data = ECGxcorrSync(R, Start, Stop, Sync) 
  
% This function synchronizes Percept data with TMSi data by using the ECG cross-
correlation method.  
  
% Steps: 
% 1. TMSi data is downsampled to the same sampling frequency of the Percept (250 Hz) 
% 2. Percept and TMSi data are filtered for ECG-specific frequencies (0.5 - 20 Hz) 
% 3. Cross-correlation finds time lag between the LFP signal and externally recorded ECG 
signal 
% 4. One signal is shifted relative to the other to complete synchronization  
  
% R: Variable containing both TMSi and LFP data 
  
% Start: Trigger pressed on TMSi Polybench, indicating start of task [sec] 
% Stop: Trigger pressed on TMSi Polybench, indicating stop of task [sec] 
% Sync: Trigger pressed on TMSi Polybench, indicating sync of task [sec] 
 
% Get sampling frequencies of both systems: 
fsLFP   = R.LFPs{1}.fsample; 
fsTMSi   = R.TMSi{1}.fsample; 
  
% ---- 1. Downsample TMSi data to 250 (equal to fsample LFPs): 
% (FieldTrip Toolbox) 
cfg = []; 
cfg.resamplefs = fsLFPs; 
TMSi250{1} = ft_resampledata(cfg, R.TMSi{1}); 
  
% ---- 2. Filter TMSi250 and LFPs for solely the ECG frequencies: 
% (FieldTrip Toolbox) 
cfg = []; 
cfg.hpfilter    = 'yes'; 
cfg.hpfreq      = 0.5; 
cfg.lpfilter    = 'yes'; 
cfg.lpfreq      = 20; 
LFPstemp{1} = ft_preprocessing(cfg, R.LFPs{1}); 
TMSitemp{1} = ft_preprocessing(cfg, TMSi250{1}); 
  
% Create variable to save lag 
tr{1}   = 1; 
  
% Percept LFPs Right Hemisphere (ch 2) 
Lr = LFPstemp{1}.trial{1}(2, :);    
     
% TMSi ECG Left (ch 1) and Right (ch 2) 
Te1 = TMSitemp{1}.trial{1}(1, 1:end-(fsLFP*10));  % End usually shows big artefact 
Te2 = TMSitemp{1}.trial{1}(2, 1:end-(fsLFP*10)); 
Te  = Te1-Te2;              % ECG Left - ECG Right 
  
% ---- 3. Calculate lag with maximum correlation: 
[r1, lags1] = xcorr(Lr, Te); 
r1 = r1/max(r1); 
[m1, i1] = max(abs(r1));                         
tr{1} = lags1(i1);  
% Outcome:  if t = positive, then LFP lags ECG with t amount of samples 
%           if t = negative, then ECG lags LFP with t amount of samples 
  
% ---- 4. Shift one signal in relation to the other signal 
% (FieldTrip Toolbox) 
cfg = []; 



if tr{1} > 0 % LFPs started first, so shift LFPs to match TMSi 
    cfg.begsample = tr{1}+1;                            % tr{1} is basically 0, so start 
at first sample by +1    
    cfg.endsample = length(Lr);                      
    S.LFPs{1} = ft_redefinetrial(cfg, R.LFPs{1});        
    S.TMSi{1} = R.TMSi{1};                              % TMSi remains the original 
elseif tr{1} < 0 % TMSi started first, so shift TMSi to match LFPs 
    S.LFPs{1} = R.LFPs{1};                              % LFPs remains the original 
    cfg.begsample = ((-tr{1}+1)/fsLFP)*fsTMSi;          % Recalculate to keep high 
sampling frequency TMSi 
    cfg.endsample = length(R.TMSi{1}.trial{1}(2,:));    % Length of original signal with 
high sampling frequency 
    S.TMSi{1} = ft_redefinetrial(cfg, R.TMSi{1}); 
    Start{1} = Start{1} + (tr{1}/fsLFP);                % Add delay in seconds to 
triggers 
    Stop{1} = Stop{1} + (tr{1}/fsLFP);       
    Sync{1} = Sync{1} + (tr{1}/fsLFP);        
end 
  
% Make sure time vectors start at 0: 
S.LFPs{1}.time{1} = S.LFPs{1}.time{1} - S.LFPs{1}.time{1}(1); 
S.TMSi{1}.time{1} = S.TMSi{1}.time{1} - S.TMSi{1}.time{1}(1);   
  
% Make LFPs and TMSi data equal size (in seconds): 
cfg = []; 
if S.TMSi{1}.time{1}(end) > S.LFPs{1}.time{1}(end) 
    cfg.begsample = 1;           % Add starting sample as well! 
    cfg.endsample = S.LFPs{1}.time{1}(end)*fsTMSi; 
    S.TMSi{1} = ft_redefinetrial(cfg, S.TMSi{1}); 
elseif S.TMSi{1}.time{1}(end) < S.LFPs{1}.time{1}(end) 
    cfg.begsample = 1;           % Add starting sample as well! 
    cfg.endsample = S.TMSi{1}.time{1}(end)*fsLFP; 
    S.LFPs{1} = ft_redefinetrial(cfg, S.LFPs{1}); 
end 
  
S.Start = Start; 
S.Stop = Stop; 
S.Sync = Sync; 
  
data = S; 
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