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Bursting Dynamics of Thin Free Liquid Films from Newtonian and Viscoelastic Solutions
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The rupture velocity of a liquid film is usually obtained from an energy balance: Energy of the
disappearing surface is transformed into kinetic energy of a moving rim, and dissipated due to the
inelastic impact of this rim with a resting part of the film. This gives= (2y/ph)"/? where# is the
film thickness,p is the liquid density, ang is the surface tension. While thick films obey this behavior,
thinner films can deviate remarkably: The velocity is drastically decelerated. This follows from the
model developed, which accounts for elasticity when the thickness of a film becomes commensurate
with (or smaller than) the mesh size, reflecting an enhanced structure. [S0031-9007(97)04779-0]

PACS numbers: 68.15.+e

During the last decade, attention to confined liquidthin films. From such a photograph, the hole radius as a
layers increased rapidly. This is explained by veryfunction of time can readily be extracted (see Fig. 2).
different properties of these systems compared to their Usually, writing an energy (impulse) balance for such a
bulk analogies—thin and ultrathin films demonstrate arsystem, it is assumed that the energy of a “disappearing”
enhanced viscoelastic behavior (see, for example, [1-6]surface (which is expressed in terms of the surface
In the present Letter, we investigate the bursting behavidgiension) transforms partially into the kinetic energy of
of very thin films from Newtonian and viscoelastic a moving rim. Also, a part of the energy dissipates
solutions, which cannot be explained within the frame ofduring impact of this rim with a still-standing part of the
existing theories. film [8,9]. However, the treatment of gel-like systems

In [4], we have improved the experimental setup ofimplies an incorporation of the elasticity into a balance
McEntee and Mysels [7], and reported a few new featuregquation describing deformation of a confined molecular
of the rupture dynamics of very thin films from New- network. As it will be seen later, the experimentally
tonian and viscoelastic solutions. In those experimentsanalogous behavior of both systems creates a basis for
rupture was initiated by an electric spark, which triggeredhe unified description, where the mesh size in confined
simultaneously a high-speed cine-photoflash. In the latphysical gel phase can directly be compared with the
ter, a nanosecond pulse generator activates periodicalgharacteristic length describing correlations arising in
a light flash with repeating capability of abot®* s™! molecular bilayers (the Newton-black films, for instance).
with an accuracy within 2%. With our setup, one can We write after Pandit and Davidson [9] an energy
follow the evolution of a hole in a liquid flm on one balance equation, where, however, the air drag effect
single photo. This allows observing additional fine de-(introduced in [10]) and elastic deformation are also taken
tails of the dynamic rupture process, which were not reinto account:

ported before. We have carried out experiments with free dEg = dExin + dEgiss + dEgra

liquid films drawn from Newtonian, sodium dodecylsul- ) o g’z

fate (SDS) solutions and from viscoelastic cetyl-trimethyl dEqi = d(ZyAﬁ%), dEvin = d(ﬂ)
ammonium bromide (CTAB-gel) solutions as well. Films 2 (1)
from CTAB-gel up to~1 wm thickness burst with a sig- dEgiss = v}/2dm, m = pAV,

nificantly lower velocity than that predicted by Culick [8], ) L )
but for thicker films a transition to a Culick-like behavior Wherem is the mass of a moving film elememtV’is the
occurs. The main new feature, that all CTAB-gel films Volume of this film elementy is the density of a liquid,
demonstrate, is a deceleration of the rupture process. Th¥!
deceleration becomes more pronounced as the film thick- dEc1ast = d(%AVG[A% + A2+ A3 - 3)),
ness decreases. Also, films of the “equilibrium” thick- | R
nesses have a scalloped appearance of the rim, which was dEgra; = FaragdR = ECD V2 patmy| —AdR,
discussed in more detail in [4,5]. a

In Fig. 1, a typical result of experiments with the whereAV = hRZAﬁ%. A; IS an extension ratio in thi¢h
Newton-black film of a Newtonian solution (a) and of a direction. A radial coordinate system with the origin at
CTAB-gel solution (b) as well, is presented. The pictureshe center of a hole is used. We must notice here that a
closely resemble each other, suggesting that both systerasnple, neo-Hookian response of the material is assumed.
on this length scale have many common features, whickurther, we model the deformation of a film element to
determine the overall macroscopic behavior of these verthe shape of the moving rim by a simplified geometry as
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for R's of an interest is always fulfilledA; > 1), Eq. (1)
is reduced to

1 d d
=212 + —R*ph —[v*(R)] + —
4yR = 2v-(R)Rph 2R ph R [v"(R)] R

1 1 /R3h
X [EthG)é} + 5CDzﬂ(R)pm — (2)

Actually, Cp is a function of the Reynolds number
(Re = vd/u, where d(R) is the rim diameter andu
is the kinematic viscosity). An approximate analytical
expression for the geometry we are dealing with is
known for rather low and large Reynolds numbers only.
However, the interval < Re < 100 is typically a field
of numerical calculations [11]. Under conditions of our
experiment, a characteristic Reynolds number is falling
into this intermediate region (Re 2-5), and this makes
Eqg. (2) quite complex. Fortunately, the rupture velocity
decays withR, whereas the characteristic size of the rim
grows. These two effects compensate each otherCand
remains nearly constant. One can see that only terms of
the highest order with respect /4 make a significant
contribution into the elastic component [Eq. (2)], and, as
a consequence, the choice of a proper rheological model
is not really so important.

In Eq. (2) G is the relaxation modulus of a film, that is
for neo-Hookian response given by

G =G, + foodTH(T) exp(—t/7), 3
0

where G, is the equilibrium modulus, andi(7) is the
relaxation spectrum. If we assume, for the sake of brevity,
that the relaxation spectrum consists of one relaxation
time (7) only [for a wormlike micellar phase (CTAB-gel)
this is generally accepted [12]], Eqg. (3) can be reduced to

G = Golg + exp(—t/71)], (3a)

where G, is the plateau modulus, and, usually,=
G,/Go < 1. Finally, we write

d_w + iW(l _i_CDM i)_
p

dR R ah
412 3 GR
R\ph 2a ph

wheret = [dR/v(R), andw = v?(R).

At the very beginning of the rupture proce@s<x 7),
Eq. (4) can be solved analytically if the drag effect is
dropped, yielding

(b) v = 2y iGo(h)ﬁ.

5

ph  Sa ph ©)
FIG. 1. Bursting Newton-black films drawn from SDS (a) and —, . o : . .
CTAB-gel (b) solutions. Photos show a “stroboscopic movie” This clarifies a role of the elastic term in the dynamic

of a hole expanding in a liquid sheet with thicknéss= 5 nm. ~ Process. o
To describe the explicit dependence of on the

is illustrated by Fig. 3. This corresponds to a pure sheahole radiusR and the film thicknes$, we must know
deformation. Since for very thin films conditiogn<« R dependence of the elasticity modul@son the properties
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(x102) ing cases. CTAB-gel is assumed (in zero approximation)
2.5 to retain its bulk mesh size in the film plane. But in the
20 P perpendicular (to the film plane) direction, the characteris-
15 ’*_,.-——"" tic size determining structural properties is commensurate
T 0] g with the film thickness (“chains” weakly attached to the
= el surface). The Newton-black films drawn from an SDS
037 solution are supposed to resemble the bilayer of a self-
004 106 similar grid. In this way, dependence of the elastic modu-
o 2 4 & 8 10 1 lus in these 2D-similar systems becontgs~ 1/£%h and
t(s) G, ~ 1/h?, respectively. The proportionality constant in

) ) _ the first case can be obtained from data on CTAB-gels
e e T e e iica o2 he bulk phase (see [16]) I, wherbecomes cor-
from an SDS solution. The dashed line indicates a trend of th _ens.uratelwnff, Gi has to acquire its bulk value. The
dynamic process. situation with SDS bilayers is more complicated. There
is an experimental evidence of enhanced elastic properties
of Newtonian fluids confined on a nanometer scale [1,2];
of a film. Following descriptions based upon a scalinghowever, a procedure to extract the needed constants from
concept, the bulk value of this characteristic is defined bygxperiments is not established well, because such systems
so-called mesh siz& in a networklike system [13,14] as do not reveal the bulk elasticity. In this wag, can be
Go ~ kpT /&4 (6) ot_)talned b_y matching the_ numerical sc_)lut|on of our model
] ) i . ] . with experimentally acquired data. This constant has been
whered is the topological dimension of this system (in t5und from one experimental point, and then the whole
our cased = 3). _ , _ . velocity map (as a function d® andh), is reconstructed.
However, if such a system is confined into a restricted Equation (4) can be recast to a form more suitable for

volume, the relation between this characteristic meshy,merical calculations. Having substituted= dR/dt
length ¢ in the bulk phase and the characteristic size ofye wrote the equation fdR as a function of:

that volume (in our casd) is crucial [15]. Wher > ¢, ) 5
the bulk properties preserve; howeverhibecomes much 4R + 2 <d_R> 1 + ¢, Pam RY_2 X
smaller than&, the film thickness rather than the bulk dr> R \ dt p \ah R
mesh size determines elastic properties of the confined 2 3 R G

. . X Y 0
network. In the latter situation, when modeling the system <p_h eV £3(h) eXF(—f/T)> =0.(8)
behavior, the structure of a network at the interface must __ . ) . .
be known. Thus, dependence of the elasticity modulus This equation has to be accompanied by appropriate

on the film thicknesi may generally be described by a oundary conditions. In our experiments, a hole of a finite
scaling relation size (typically, of about a micron) is created. The driving

. force—the surface tension—gives as an initial velocity
Go ~ 1/h", (") of the hole propagation the Culick velocity; i.e., we may
wherex is an exponent, which, actually, reflects the structakeR(0) = &, v(g) = vculick, Wheres ~ 1 um.
ture of a molecular network close to the interface. The
systems under investigation are attributed to two limit-
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FIG. 4. The velocity of an expanding hole as a function of the
FIG. 3. A sketch of the model geometry of the deforming rim. film thicknessh and the hole radiuR.
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v (m/s) and is typical for a rather large radius of the hole.
The intercept with thex-z plane on the side of thick
films demonstrates a very slight sensitivity of the rupture
velocity to the hole radius, i.e., typically Culick’s behavior
with the air drag correction. For the Newton-black film,
the rupture velocity depends significantly on the hole size.
This is a new result, which deserves more attention. We
compare computations carried out on the basis of our
theoretical modeling with the experimental data in Figs. 5
and 6, where the rupture velocity of a Newton-black film
is plotted against the radius of the propagating hole for
CTAB-gel and SDS solutions, respectively. It is obvious
that the elastic term which is proportional to the volume
of the growing rim is responsible for such a deceleration.

A rather primitive model has been used when describ-

0005 001 0015 002 0025 003 0035 Rm) ing the elastic response of a confined molecular network.

FIG. 5. The rupture velocity as a function of the hole radius As one can see, this model reproduces quite well the qual-
Points represent the experimental results for Newton-black filmétatlve behavior of the rupture velocity as a functionfof

of a CTAB solution. The line is the solution of Eg. (8), where andh, and it haS_ a rather good 0\_/eraII quantitative agree-
T = 0.015sec,Cp, = 7,andG, = 1.1 N/m*> atT = 25°C. ¢ ment with experimental observations. However, because

in the bulk phase was taken 100 nm. of a very primitive geometry used in our modeling, and
the relaxation spectrum being cut down, some fine details
of the rupture process cannot be rendered, revealing the
fshortcomings of our approach.
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On the basis of numerical calculation, behavior o
the rupture velocity as a function d® and h can be
obtained. This is illustrated by a three-dimensional plot
drawn in Fig. 4 for an SDS system. The intercept of
this plot with they-z plane on the background gives the
dependence of the rupture velocity on the film thickness
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