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Bursting Dynamics of Thin Free Liquid Films from Newtonian and Viscoelastic Solutions
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(Received 12 May 1997)

The rupture velocity of a liquid film is usually obtained from an energy balance: Energy of the
disappearing surface is transformed into kinetic energy of a moving rim, and dissipated due to the
inelastic impact of this rim with a resting part of the film. This givesn  s2gyrhd1y2 whereh is the
film thickness,r is the liquid density, andg is the surface tension. While thick films obey this behavior,
thinner films can deviate remarkably: The velocity is drastically decelerated. This follows from the
model developed, which accounts for elasticity when the thickness of a film becomes commensurate
with (or smaller than) the mesh size, reflecting an enhanced structure. [S0031-9007(97)04779-0]
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During the last decade, attention to confined liqu
layers increased rapidly. This is explained by ve
different properties of these systems compared to t
bulk analogies—thin and ultrathin films demonstrate
enhanced viscoelastic behavior (see, for example, [1–
In the present Letter, we investigate the bursting beha
of very thin films from Newtonian and viscoelast
solutions, which cannot be explained within the frame
existing theories.

In [4], we have improved the experimental setup
McEntee and Mysels [7], and reported a few new featu
of the rupture dynamics of very thin films from New
tonian and viscoelastic solutions. In those experime
rupture was initiated by an electric spark, which trigger
simultaneously a high-speed cine-photoflash. In the
ter, a nanosecond pulse generator activates periodic
a light flash with repeating capability of about104 s21

with an accuracy within 2%. With our setup, one c
follow the evolution of a hole in a liquid film on one
single photo. This allows observing additional fine d
tails of the dynamic rupture process, which were not
ported before. We have carried out experiments with f
liquid films drawn from Newtonian, sodium dodecylsu
fate (SDS) solutions and from viscoelastic cetyl-trimeth
ammonium bromide (CTAB-gel) solutions as well. Film
from CTAB-gel up to,1 mm thickness burst with a sig
nificantly lower velocity than that predicted by Culick [8
but for thicker films a transition to a Culick-like behavio
occurs. The main new feature, that all CTAB-gel film
demonstrate, is a deceleration of the rupture process.
deceleration becomes more pronounced as the film th
ness decreases. Also, films of the “equilibrium” thic
nesses have a scalloped appearance of the rim, which
discussed in more detail in [4,5].

In Fig. 1, a typical result of experiments with th
Newton-black film of a Newtonian solution (a) and of
CTAB-gel solution (b) as well, is presented. The pictur
closely resemble each other, suggesting that both sys
on this length scale have many common features, wh
determine the overall macroscopic behavior of these v
50 0031-9007y97y79(24)y4850(4)$10.00
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thin films. From such a photograph, the hole radius a
function of time can readily be extracted (see Fig. 2).

Usually, writing an energy (impulse) balance for such
system, it is assumed that the energy of a “disappearin
surface (which is expressed in terms of the surfa
tension) transforms partially into the kinetic energy o
a moving rim. Also, a part of the energy dissipate
during impact of this rim with a still-standing part of the
film [8,9]. However, the treatment of gel-like system
implies an incorporation of the elasticity into a balanc
equation describing deformation of a confined molecu
network. As it will be seen later, the experimentall
analogous behavior of both systems creates a basis
the unified description, where the mesh size in confin
physical gel phase can directly be compared with t
characteristic length describing correlations arising
molecular bilayers (the Newton-black films, for instance

We write after Pandit and Davidson [9] an energ
balance equation, where, however, the air drag eff
(introduced in [10]) and elastic deformation are also tak
into account:

dEsurf  dEkin 1 dEdiss 1 dEdrag ,

dEsurf  ds2gDq
1
2 d, dEkin  d

µ
mn2

2

∂
,

dEdiss  n2y2 dm, m  rDV ,
(1)

wherem is the mass of a moving film element,DV is the
volume of this film element,r is the density of a liquid,
and

dEelast  ds 1
2 DVGfl2

1 1 l2
2 1 l2

3 2 3gd,

dEdrag  FdragdR 
1
2

CDn2ratm

s
R3h

a
Dq dR ,

whereDV  hR2Dq
1
2 . li is an extension ratio in theith

direction. A radial coordinate system with the origin a
the center of a hole is used. We must notice here tha
simple, neo-Hookian response of the material is assum
Further, we model the deformation of a film element
the shape of the moving rim by a simplified geometry
© 1997 The American Physical Society
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FIG. 1. Bursting Newton-black films drawn from SDS (a) an
CTAB-gel (b) solutions. Photos show a “stroboscopic movi
of a hole expanding in a liquid sheet with thicknessh ø 5 nm.

is illustrated by Fig. 3. This corresponds to a pure she
deformation. Since for very thin films conditionh ø R
d
”

ar

for R’s of an interest is always fulfilledsl3 ¿ 1d, Eq. (1)
is reduced to

4gR  2n2sRdRrh 1
1
2

R2rh
d

dR
fn2sRdg 1

d
dR

3

∑
1
2

R2hGl2
3

∏
1

1
2

CDn2sRdratm

s
R3h

a
. (2)

Actually, CD is a function of the Reynolds numbe
(Re  ndym, where dsRd is the rim diameter andm
is the kinematic viscosity). An approximate analytica
expression for the geometry we are dealing with
known for rather low and large Reynolds numbers on
However, the interval1 , Re , 100 is typically a field
of numerical calculations [11]. Under conditions of ou
experiment, a characteristic Reynolds number is falli
into this intermediate region (Re, 2 5), and this makes
Eq. (2) quite complex. Fortunately, the rupture veloci
decays withR, whereas the characteristic size of the ri
grows. These two effects compensate each other, andCD

remains nearly constant. One can see that only terms
the highest order with respect toRyh make a significant
contribution into the elastic component [Eq. (2)], and,
a consequence, the choice of a proper rheological mo
is not really so important.

In Eq. (2)G is the relaxation modulus of a film, that is
for neo-Hookian response given by

G  Gr 1
Z `

0
dt Hstd exps2tytd , (3)

where Gr is the equilibrium modulus, andHstd is the
relaxation spectrum. If we assume, for the sake of brevi
that the relaxation spectrum consists of one relaxat
time std only [for a wormlike micellar phase (CTAB-gel)
this is generally accepted [12]], Eq. (3) can be reduced

G > G0fg 1 exps2tytdg , (3a)

where G0 is the plateau modulus, and, usually,g 
GryG0 ø 1. Finally, we write

dw
dR

1
4
R

w

√
1 1 CD

ratm

r

s
R
ah

!
2

4
R

µ
2

rh
2

3
2a

GR
rh

∂
 0 , (4)

wheret 
R

dRynsRd, andw  n2sRd.
At the very beginning of the rupture processst ø td,

Eq. (4) can be solved analytically if the drag effect
dropped, yielding

n 

s
2g

rh
2

6
5a

G0shd
R

rh
. (5)

This clarifies a role of the elastic term in the dynam
process.

To describe the explicit dependence ofn on the
hole radiusR and the film thicknessh, we must know
dependence of the elasticity modulusG on the properties
4851
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FIG. 2. The hole radius versus the time after nucleation
this hole. Typical results are shown for Newton-black film
from an SDS solution. The dashed line indicates a trend of
dynamic process.

of a film. Following descriptions based upon a scalin
concept, the bulk value of this characteristic is defined
so-called mesh sizej in a networklike system [13,14] as

G0 , kBTyjd , (6)

where d is the topological dimension of this system (i
our case,d  3).

However, if such a system is confined into a restrict
volume, the relation between this characteristic me
length j in the bulk phase and the characteristic size
that volume (in our case,h) is crucial [15]. Whenh ¿ j,
the bulk properties preserve; however, ifh becomes much
smaller thanj, the film thickness rather than the bul
mesh size determines elastic properties of the confin
network. In the latter situation, when modeling the syste
behavior, the structure of a network at the interface mu
be known. Thus, dependence of the elasticity modu
on the film thicknessh may generally be described by
scaling relation

G0 , 1yhx , (7)

wherex is an exponent, which, actually, reflects the stru
ture of a molecular network close to the interface. Th
systems under investigation are attributed to two lim

FIG. 3. A sketch of the model geometry of the deforming rim
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ing cases. CTAB-gel is assumed (in zero approximation
to retain its bulk mesh size in the film plane. But in the
perpendicular (to the film plane) direction, the characteri
tic size determining structural properties is commensura
with the film thickness (“chains” weakly attached to the
surface). The Newton-black films drawn from an SDS
solution are supposed to resemble the bilayer of a se
similar grid. In this way, dependence of the elastic modu
lus in these 2D-similar systems becomesG1 , 1yj2h and
G2 , 1yh3, respectively. The proportionality constant in
the first case can be obtained from data on CTAB-ge
in the bulk phase (see [16]); i.e., whenh becomes com-
mensurate withj, G1 has to acquire its bulk value. The
situation with SDS bilayers is more complicated. Ther
is an experimental evidence of enhanced elastic propert
of Newtonian fluids confined on a nanometer scale [1,2
however, a procedure to extract the needed constants fr
experiments is not established well, because such syste
do not reveal the bulk elasticity. In this way,G2 can be
obtained by matching the numerical solution of our mode
with experimentally acquired data. This constant has be
found from one experimental point, and then the whol
velocity map (as a function ofR andh), is reconstructed.

Equation (4) can be recast to a form more suitable fo
numerical calculations. Having substitutedn  dRydt,
we wrote the equation forR as a function oft:

d2R
dt2

1
2
R

µ
dR
dt

∂2
√

1 1 Cd
ratm

r

s
R
ah

!
2

2
R

3µ
2g

rh
2

3
2a

R
h

Gp
0

j3shd
exps2tytd

∂
 0 . (8)

This equation has to be accompanied by appropria
boundary conditions. In our experiments, a hole of a finit
size (typically, of about a micron) is created. The driving
force—the surface tension—gives as an initial velocit
of the hole propagation the Culick velocity; i.e., we may
takeRs0d  ´, ns´d  nCulick, where´ , 1 mm.

FIG. 4. The velocity of an expanding hole as a function of th
film thicknessh and the hole radiusR.
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FIG. 5. The rupture velocity as a function of the hole radiu
Points represent the experimental results for Newton-black film
of a CTAB solution. The line is the solution of Eq. (8), wher
t  0.015 sec,CD  7, andG1  1.1 N/m2 at T  25 ±C. j
in the bulk phase was taken 100 nm.

On the basis of numerical calculation, behavior o
the rupture velocity as a function ofR and h can be
obtained. This is illustrated by a three-dimensional pl
drawn in Fig. 4 for an SDS system. The intercept o
this plot with they-z plane on the background gives th
dependence of the rupture velocity on the film thickne
at the very beginning of the process, i.e., for very sma
R’s. This behavior resembles a Culick-like dependen
corrected for the air drag effect [10]. The intercept of th
surface with they-z plane on the foreground illustrates th
dependence of the rupture velocity on the film thicknes
which was reported in the literature previously [7,10

FIG. 6. The rupture velocity as a function of the hole radiu
Points are the experimental results for Newton-black films fro
an SDS solution. The line is the solution of Eq. (8), wher
t  0.03 sec, CD  7, andG2  1.7 Nym2 at T  25 ±C.
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and is typical for a rather large radius of the hole
The intercept with thex-z plane on the side of thick
films demonstrates a very slight sensitivity of the rupture
velocity to the hole radius, i.e., typically Culick’s behavior
with the air drag correction. For the Newton-black film,
the rupture velocity depends significantly on the hole size
This is a new result, which deserves more attention. W
compare computations carried out on the basis of ou
theoretical modeling with the experimental data in Figs. 5
and 6, where the rupture velocity of a Newton-black film
is plotted against the radius of the propagating hole fo
CTAB-gel and SDS solutions, respectively. It is obvious
that the elastic term which is proportional to the volume
of the growing rim is responsible for such a deceleration

A rather primitive model has been used when describ
ing the elastic response of a confined molecular networ
As one can see, this model reproduces quite well the qua
itative behavior of the rupture velocity as a function ofR
andh, and it has a rather good overall quantitative agree
ment with experimental observations. However, becaus
of a very primitive geometry used in our modeling, and
the relaxation spectrum being cut down, some fine detai
of the rupture process cannot be rendered, revealing t
shortcomings of our approach.
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University of Technology, Postbus 513, 5600 MB
Eindhoven, The Netherlands.

[1] J. Van Alsten and S. Granick, Phys. Rev. Lett.61, 2570
(1988).

[2] A. Dhinojwala and S. Granick, J. Chem Soc. Faraday
Trans.92, 619 (1996).

[3] G. Debrégeas, P. Martin, and F. Brochard-Wyart, Phys
Rev. Lett.75, 3886 (1995).

[4] L. J. Evers, S. Yu. Shulepov, and G. Frens, Farada
Discuss.104, 335 (1996);104, 360 (1996).

[5] L. J. Evers, E. J. Nijman, and G. Frens (to be published).
[6] P. G. de Gennes, Faraday Discuss.104, 1 (1997).
[7] W. R. McEntee and K. J. Mysels, J. Phys. Chem.73, 3018

(1969).
[8] F. E. C. Culick, J. Appl. Phys.31, 1128 (1960).
[9] A. B. Pandit and J. F. Davidson, J. Fluid Mech.212, 11

(1990).
[10] G. Frens, J. Phys. Chem.78, 1949 (1974).
[11] G. K. Batchelor, An Introduction to Fluid Dynamics

(Cambridge University Press, Cambridge, 1994).
[12] J.-F. Berret, Langmuir13, 2227 (1997).
[13] M. Daoud and A. Coniglio, J. Phys. A14, L301 (1981).
[14] J. E. Martin and D. Adolf, Annu. Rev. Phys. Chem.42,

311 (1991).
[15] P. G. de Gennes,Scaling Concepts in Polymer Physics

(Cornell University Press, Ithaca, 1993).
[16] T. A. Strivens, Colloid Polym. Sci.267, 269 (1989).
4853


