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Abstract. In this study, we investigate a strategy to accel-
erate the data assimilation (DA) algorithm. Based on eval-
uations of the computational time, the analysis step of the
assimilation turns out to be the most expensive part. After
a study of the characteristics of the ensemble ash state, we
propose a mask-state algorithm which records the sparsity
information of the full ensemble state matrix and transforms
the full matrix into a relatively small one. This will reduce
the computational cost in the analysis step. Experimental re-
sults show the mask-state algorithm significantly speeds up
the analysis step. Subsequently, the total amount of comput-
ing time for volcanic ash DA is reduced to an acceptable
level. The mask-state algorithm is generic and thus can be
embedded in any ensemble-based DA framework. Moreover,
ensemble-based DA with the mask-state algorithm is promis-
ing and flexible, because it implements exactly the standard
DA without any approximation and it realizes the satisfying
performance without any change in the full model.

1 Introduction

Volcanic ash erupted into atmospheres can lead to severe in-
fluences on aviation society (Gudmundsson et al., 2012). Tur-
bine engines of airplanes are extremely threatened by ash in-
gestion (Casadevall, 1994). Thus, accurate real-time aviation

advice is highly required during an explosive volcanic ash
eruption (Eliasson et al., 2011). Using data assimilation (DA)
to improve model forecast accuracy is a powerful approach
(Lu et al., 2016a). Recently, ensemble-based DA (Evensen,
2003) has been evaluated as very useful for improving vol-
canic ash forecasts and regional aviation advice (Fu et al.,
2016). It corrects volcanic ash concentrations by continu-
ously assimilating observations. In Fu et al. (2016), real air-
craft in situ measurements were assimilated using the ensem-
ble Kalman filter (EnKF), which is the best known and most
popular ensemble-based DA method. Based on the validation
with independent data, ensemble-based DA was concluded
as being powerful for improving the forecast accuracy.
However, to make the methodology efficient also in an op-
erational (real-time) sense, the computational efforts must
be acceptable. For volcanic ash DA problems, so far, no
studies on the computational aspects have been reported in
the literature. Actually, when large amounts of volcanic ash
erupted into atmospheres, the computational speed of vol-
canic ash forecasts is just as important as the forecast ac-
curacy (Zehner, 2010). For example, due to the lack of a
fast and accurate forecast system, the sudden eruption of
the Eyjafjallajokull volcano in Iceland from 14 April to
23 May 2010 caused an unprecedented closure of the Euro-
pean and North Atlantic airspace, resulting in a huge global
economic loss of USD 5 billion (Oxford-Economics, 2010).
Since then, research on fast and accurate volcanic ash fore-
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casts has gained much attention, because it is needed to pro-
vide timely and accurate aviation advice for frequently oper-
ated commercial airplanes. It was shown that the accuracy of
volcanic ash transport can be significantly improved by the
DA system in Fu et al. (2016). Therefore, it is urgent to also
consider the computational aspect, i.e., improving the com-
putational speed of the volcanic ash DA system as quickly as
possible. This is the main focus of this study.

Due to the computational complexity of ensemble-based
algorithms and the large scale of dynamical applications,
applying these methods usually introduces a large compu-
tational cost. This has been reported from the literature on
different applications. For example, for operational weather
forecasting with ensemble-based DA, Houtekamer et al.
(2014) reported computational challenges at the Canadian
Meteorological Center with an operational EnKF featuring
192 ensemble members, using a large 600 x 300 global hor-
izontal grid and 74 vertical levels. An initialization require-
ment of over 7 x 10'? values to specify each ensemble results
in large computational efforts on the initialization and fore-
cast steps in weather forecasting. For oil reservoir history-
matching (Tavakoli et al., 2013), the reservoir simulation
model usually has a large number of state variables; thus,
the forecasts of an ensemble of simulation models are often
time-consuming. Besides, when time-lapse seismic or dense
reservoir data are available, the analysis step of assimilat-
ing these large observations becomes very time-consuming
(Khairullah et al., 2013). Large computational requirements
of ensemble-based DA have also been reported in ocean cir-
culation models (Keppenne, 2000; Keppenne and Rienecker,
2002), tropospheric chemistry assimilation (Miyazaki et al.,
2015), and many other applications.

To accelerate an ensemble-based DA system, the ensem-
ble forecast step can first be parallelized because the propa-
gation of different ensemble members is independent. Thus
if a computer with a sufficiently large number of parallel pro-
cessors is available, all the ensemble members can be simul-
taneously integrated. In the analysis stage, to calculate the
Kalman gain and the ensemble error covariance matrix, all
ensemble states must be combined together. In weather fore-
casting and oceanography sciences, Keppenne (2000), Kep-
penne and Rienecker (2002), and Houtekamer and Mitchell
(2001) have reported using parallelization approaches to ac-
celerate the expensive analysis stage. In reservoir history
matching, a three-level parallelization has been proposed by
Tavakoli et al. (2013); Khairullah et al. (2013) in recent years,
to significantly reduce computational efforts of both fore-
cast and analysis steps due to massive dense observations
and large simulation models. The first parallelization level is
to separately perform the ensemble simulations on different
processors during the forecast step. This approach is usually
quite efficient when a large ensemble size is used. However,
the scale or model size of one reservoir simulation is con-
strained by the memory of a single processor. Thus, the sec-
ond parallelization level is to perform one ensemble member
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simulation using a parallel reservoir model. These two lev-
els do not deal with the analysis step, which collects all en-
semble members to do computations usually on a single pro-
cessor. Therefore, a third level of parallelization was imple-
mented by Tavakoli et al. (2013) and Khairullah et al. (2013)
by parallelizing matrix-vector multiplications in the analysis
steps. Furthermore, some other approaches on accelerating
ensemble-based DA systems have also been reported, such
as GPU-based acceleration (Quinn and Abarbanel, 2011) in
numerical weather prediction (NWP) and domain decompo-
sition in atmospheric chemistry assimilation (Segers, 2002;
Miyazaki et al., 2015). The observations used in an DA sys-
tem can also be optimized with some preprocessing proce-
dures, as reported by Houtekamer et al. (2014).

Although for other applications there were many efforts
in dealing with large computational requirements in an
ensemble-based DA system, most of them cannot be directly
used to accelerate volcanic ash DA. This is because the accel-
eration algorithms are strongly dependent on specific prob-
lems, such as model complexity (high or low resolution), ob-
servation type (dense or sparse), or primary requirement (ac-
curacy or speed). These factors determine, for a specific ap-
plication, which part is the most time-consuming, and which
part is intrinsically sequential. Thus, no unified approach for
efficient acceleration of all the applications can be found. Al-
though the successful approaches in other applications can-
not be directly employed in volcanic ash forecasts, their suc-
cess does stress the importance of designing a proper ap-
proach based on the computational analysis of a specific DA
system. Therefore, the computational cost of our volcanic ash
DA system will first be analyzed. Then, based on the compu-
tational analysis, we will investigate a strategy to accelerate
the ensemble-based DA system for volcanic ash forecasts.

This paper is organized as follows. Section 2 introduces
the methodology of volcanic ash DA. Section 3 analyzes the
computational cost of the conventional volcanic ash DA sys-
tem. In Sect. 4, the mask-state algorithm (MS) is developed
for acceleration. The comparison between MS and standard
sparse matrix methods is presented in Sect. 5. The discus-
sions on MS is in Sect. 6. Finally, the last section summarizes
the concluding remarks of our research.

2 Methodology of the volcanic ash DA system

In this study, the EnKF (Evensen, 2003) is employed to per-
form ensemble-based DA. EnKF is typically a sequential
Monte Carlo method, according to the uncertain state esti-
mate with N ensemble members, &{,&,, ---, & y. Each mem-
ber is assumed as one sample in the distribution of the true
state. It has been proposed that for operational applications,
the ensemble size can be limited to 10—-100 for cost effective-
ness (Nerger and Hiller, 2013; Barbu et al., 2009). Thus, in
this study, an ensemble size of 100 is used due to the high ac-
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curacy requirement of the volcanic ash forecasts to aviation
advice as mentioned in Sect. 1.

To simulate a volcanic ash plume, an atmospheric trans-
port model is needed. In this paper, the LOTOS-EUROS
(abbreviation of LOng Term Ozone Simulation — EURo-
pean Operational Smog) model is used (Schaap et al., 2008)
with model version 1.10 (http://www.lotos-euros.nl/). The
LOTOS-EUROS model (Schaap et al., 2008) is an opera-
tional model focusing on nitrogen oxides, ozone, particu-
late matter, and volcanic ash. The model configurations for
volcanic ash were discussed in detail by Fu et al. (2016).
For volcanic ash simulation, the model is configured with a
state vector of size 180 x 200 x 18 x 6 (the dimensions cor-
respond to longitude, latitude, vertical level, and ash species),
and the size of the model state is thus calculated as ~ 10°.

The experiment in this study starts at 7y (09:00 UTC,
18 May 2010 for this study) by considering an initial con-
dition from a previous LOTOS-EUROS conventional model
run (see Fig. 1a). In the second step (the forecast step) the
model propagates the ensemble members from the time #;_1
to tx (k > 0, the time step is 10 min):

£ = M1 (&3 Kk — 1)), (1)

The operator Mj_1 describes the time evolution of the state
which contains the ash concentrations in all model grid
boxes. The state at the time #; has a distribution with the
mean x' and the forecast error covariance matrix P! given
by

N
') =D &l wI/N, @
j=1
LIk = (& (k) —x/ (), -, &L (k) — x7 (k)] 3)
P'(k) = [L"()L ()T 1/(N - 1), )

where L represents the ensemble perturbation matrix. In this
study, the forecast step is performed in parallel because of
the natural/common parallelism of the independent ensem-
ble propagation, which is a trivial approach when employing
ensemble-based DA (Liang et al., 2009; Tavakoli et al., 2013;
Khairullah et al., 2013).

When the model propagates to 09:40 UTC, 18 May 2010,
the volcanic ash state gets sequentially analyzed by the DA
process by combining real aircraft in situ measurements of
PM o and PM; 5 concentrations until 11:10 UTC. The mea-
surement route and values are demonstrated in Fig. 1b, c and
the details are described in Weber et al. (2012) and Fu et al.
(2016). The observational network at time # is defined by
the operator Hy which maps the state vector x to the obser-
vational vector y by

y(k) = Hi(x (k) + v(k), &)

where y contains the aircraft measurements and v represents
the observational error. Hy selects the grid cell in x (k) that
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corresponds to the locations of the observation. When mea-
surements are available, the ensemble members are updated
in the analysis step using

K(k) = Pi(k)H(k) T [H(K)P' ()HK) T +R]™, (6)
£4(k) = &5 (k) + KO [y (k) — HK)E" (k) + v (K)], (7)

where K represents the Kalman gain, H is the observational
matrix formed by the observational operator H, R repre-
sents the measurement error covariance matrix, and v ; repre-
sents the realization out of the observation error distribution
v. After the continuous assimilation ending at 11:10 UTC,
the forecast at 12:00 UTC is illustrated in Fig. 1d, for which
the forecast accuracy has been carefully evaluated as signifi-
cantly improved compared to the case without DA (Fu et al.,
2016).

The EnKF with the above setups is abbreviated as “con-
ventional EnKF” and used in this study for the computational
evaluation. Note that in the study we do not use covariance
localization as proposed by Hamill et al. (2001) for reducing
spurious covariances. This is because although localization
is possible, the ideal case is not to use it in order to have
the correct covariances in a large (converged) ensemble. It is
crucial for localization that when unphysical (spurious) co-
variances are eliminated, physical (correct) covariances can
be well maintained (Petrie and Dance, 2010). If the “filtering
length scale” for localization is too long (i.e., all the dynam-
ical covariances are allowed), many of the spurious covari-
ances may not be eliminated. If the length is too short, im-
portant physical dynamical covariances then may be lost to-
gether with the spurious ones. Therefore, essentially deciding
on an accurate localization is a challenging subject (Riisho-
jgaard, 1998; Kalnay et al., 2012), especially for accuracy-
demanding applications. Therefore, in this study we choose
the ensemble size of 100 to guarantee the accuracy and avoid
large spurious covariances.

3 Computational analysis for volcanic ash DA
3.1 Computational analysis of the total runtime

Ensemble-based DA is a useful approach to improve the fore-
cast accuracy of volcanic ash transport. However, if it is time-
consuming, it cannot be taken as efficient due to the high re-
quirement on speed for volcanic ash DA (see Sect. 1). Based
on this consideration, we need to analyze the computational
cost of a conventional volcanic ash DA system.

As introduced in Sect. 2, the total execution time of con-
ventional EnKF comprises four parts, i.e., initialization, fore-
cast, analysis, and other computational cost. The initializa-
tion time includes reading meteorological data, initializing
model geographical and grid configurations, reading emis-
sion information, initializing stochastic observers for reading
and transforming observations to the model grid, and initial-
izing all the ensemble states and ensemble means. The fore-

Geosci. Model Dev., 10, 1751-1766, 2017
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Figure 1. Methodology of ensemble-based DA. (a) The initial volcanic ash state at 09:00 UTC. (b) Flight route of measurement aircraft.
(c) Aircraft in situ measurements of PM1y and PM, 5 from 09:30 to 11:10 UTC, 18 May 2010. (d) Volcanic ash assimilation result at

12:00 UTC.

cast time is obtained from Eq. (1), while the analysis time
corresponds to the computational sum from Egs. (2) to (7).
The other computational time includes script compiling, set-
ting environment variables, and starting and finalizing DA
algorithms.

The evaluation result of the conventional EnKF is shown
in Table 1 (the middle column). It can be seen that the total
computational time (4.36h) is relatively large compared to
the simulation window (3.0h, i.e., from 09:00 to 12:00 UTC,
18 May 2010), which is too much in an operational sense.
Therefore, in this study, we aim to accelerate the computation
to within an acceptable runtime (i.e., requiring less runtime
than the time period of the DA application).

It can also be observed from Table 1 that the main contri-
bution to the total execution time is the analysis step. Com-
pared to the initialization and forecast time, the analysis stage
takes 72 % of the total runtime. Due to the expensive analy-
sis step, although some approaches (such as MPI-parallel I/O
Filgueira et al., 2014, domain decomposition Segers, 2002)
can potentially accelerate the initialization and forecast step,

Geosci. Model Dev., 10, 1751-1766, 2017

the effect on the final acceleration of the total computational
cost is little. Therefore, to get an acceptable computational
time, the cost reduction in the analysis step is the target. One
may wonder that since the number of observations is small,
why does analysis take so much time? The large state vec-
tor seems to be left responsible for the problem. To know the
exact reason, the detailed computational cost of the analysis
step must be evaluated.

3.2 Cost estimation of all analysis procedures

We start with the formulations of the analysis step. The anal-
ysis step is represented by Eq. (7), which can be written in a
full matrix format with Eq. (8),

A v =AL v Kn Y v —HunAy ), )
where the subscripts represent the matrix’s dimensions. Af
and A? represent the forecasted and analyzed ensemble state
matrix, and are respectively built up from g/ and £* with N
ensembles. The measurement ensemble matrix Y is formed

www.geosci-model-dev.net/10/1751/2017/
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Table 1. Comparison of the computational cost of conventional EnKF and MS-EnKF. (The results are obtained from the bullx B720 thin
nodes of the Cartesius cluster, which is a computing facility of SURFsara, the Netherlands Supercomputing Centre. Each node is configured
with 2 x 12-core 2.6 GHz Intel Xeon E5-2690 v3 (Haswell) CPUs and with memory 64 GB.)

Case

Cores used

Tracer number (ngpec)
Measurements of tracers (m)
Ensemble size (N)

Parallel in forecast step
Parallel in analysis step
Mask state in analysis step

Initialization
Forecast
Analysis
Others

Total runtime

Conventional EnKF ~ MS-EnKF
102 102

6 6

2 2

100 100
Yes Yes
No No
No Yes
0.42h 0.42h
0.65h 0.65h
3.14h 0.88h
0.15h 0.12h
4.36h 1.95h

h: hour; simulation window = 3.0 h; the time is wall clock time.

by an ensemble of y 4+ v (see Eq. 7). H is the observational
matrix, which is used to select state variables (at measure-
ment locations) in the full ensemble state matrix correspond-
ing to the measurement ensemble matrix Y. n is the number
of model state variables in a three-dimensional (3-D) domain,
i.e., ~ 10° in this study (see Sect. 2). m is the number of mea-
surements at one assimilation time, which depends on the
measurement type. For aircraft in situ measurements used in
this study (see Fig. 1c), two measurements are made at each
time by one research flight, so that m is 2 here. N is the en-
semble size and is taken as 100 in this study. As described in
Eq. (3), the ensemble perturbation matrix L' in EnKF can be
re-written as

Ly y= AZXN_AfszzAfsz(INXN_NleN)

=Al VByxn, )

where I is an N x N unit matrix and 1 is an N x N ma-
trix with all elements equal to 1. Thus, Lf A'B where
By « w is introduced to represent (Iy « vy — lN « N), so that

HL! = O'B, where Of . n 1s used to represent (HA"). Here

we explicitly express Lf and HL' in the form of Af and Of,
respectively. This is because in our volcanic ash DA system,
A and Of are two of the three inputs (another one is the mea-
surement ensemble matrix Y for the analysis step). These are
the three inputs used for actual computations in the analysis
step. As shown in Fig. 2a, A is obtained from the forecast
step, and O' and Y are acquired from our stochastic observer
module (see Fig. 2a) which is used for a volcanic ash trans-
port model to integrate geophysical measurements. With the
input Y, the measurement error covariance R, as introduced

www.geosci-model-dev.net/10/1751/2017/

in Eq. (6), can then be computed with

(meN_?me)(meN_meN)/

Rm><m =

N -1
1 /
= —N_I(YB)(YB) ) (10)

Based on previous definitions and Egs. (2) to (7), the anal-
ysis step can be reformulated as follows:

2 v =AT+K(Y -HA"
=Af+ P'H (HP'H + R)*1 (Y —HA")

=Af 4 LLf(HLf) o (HLf)(HLf )

1 .

+ 7 (YB(YB)]™!(Y —HAD (11)

= A"+ A™B(O'B)'[(O'B)(O'B)

+(YB)(YB)']"!(Y - O)

= AN{I+B(O'B)[(O'B)(O'B)’

+(YB)(YB)']"!(Y - 0")

= Ay v XN N
where
Xy x ¥ = {I+B(O'B)[(O'B)(O'B)

+ (YB)(YB)']~ (Y — Oh)}. (12)
Equation (11) shows how the analysis step is performed in
a volcanic ash DA system. In order to accelerate the anal-

ysis step, the most time-consuming part must be reduced.
Figure 2b shows estimations of the computational cost for

Geosci. Model Dev., 10, 1751-1766, 2017
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1. X,=0'B O(mN?)
2. X;=YB O(mN?)
3. X3=X1Xy' + X2Xo' O(m?N)
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6. Xg=X5X4 O(m?N)
7. X=I+Xe(Y -0 O(mN?)
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(n=3.888 x 10%, m=2, N=100.)

Figure 2. Computational evaluation of the analysis step. (a) Illustration of the analysis step. (b) Computational cost of all sub-parts of the

analysis step.

each procedure in the analysis step. Considering that the state
number n (~ 10%) is significantly larger than the measure-
ment number m (m = 2 here) and the ensemble size N (N =
100), the most time-consuming procedure in the analysis step
is thus the last one, that is A® = AfX with a computational
cost of O(n N 2). Therefore, in our volcanic ash DA system,
this part is the most time-consuming part in the analysis step.
Note that the procedure [(O'B)(O'B)’ + (YB)(YB)']~! for
singular value decomposition (SVD) in our study is not time-
consuming, which is different from applications of reservoir
history matching (Tavakoli et al., 2013; Khairullah et al.,
2013). This is because of the SVD procedure costs O(m?>),
and due to the measurement size on the order of the size of
the state in those cases, the SVD procedure thus requires a
huge computational cost for reservoir DA.

Geosci. Model Dev., 10, 1751-1766, 2017

4 The mask-state algorithm (MS) for acceleration of
the analysis step

4.1 Characteristic of ensemble state matrix Af

Analysis in the previous section shows that A? = AfX is
most expensive in the analysis step. Each column of Af is
constructed from a forecasted ensemble state; thus, the di-
mension of Afis 7 x N. In each column, the element values
correspond to volcanic ash concentrations in a 3-D domain.
Figure 3 shows the coverage of all ensemble forecast states
at a selected time, 10:00 UTC, 18 May 2010, without loss
of generality. A common phenomenon can be observed: that
is, only a part of the 3-D domain is filled with volcanic ash.
The ash clouds only concentrate in a plume which is trans-
ported over time. This is because volcanic eruption is a fast
and strong process. The advection dominates the transport,
and the volcanic ash plume is transported with the wind.
This is a particular characteristic of volcanic ash transport,

www.geosci-model-dev.net/10/1751/2017/
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Figure 3. Characteristics of a volcanic ash state.

in contrast to other atmospheric-related applications such as
ozone (Curier et al., 2012), SO, (Barbu et al., 2009), and CO,
(Chatterjee et al., 2012). For those applications, the concen-
trations are everywhere in the domain, the emission sources
are also everywhere, and observations are available through-
out the domain too (especially for satellite data), whereas for
application of volcanic ash transport, the source emission is
only at the volcano; thus, usually only a limited domain is
polluted by ash. As shown in Fig. 3, in the 3-D domain with a
grid size of 3.888 x 10°, the number of grids in the area with
volcanic ash is counted as 1.528 x 10°, whereas the number
of no-ash grids is 2.36 x 10°. Note that shown in the figure
are accumulated ash coverages of all ensemble states; thus,
in the no-ash grids, there is no ash for any of the ensemble
states. Thus a very large number of rows in Af are zero corre-
sponding to the no-ash grids. These zero rows in Af have no
contributions to A = A X, because a zero row in Af always
results in a zero row in A?. Therefore, for the case of Fig. 3,
2/3 of the computations are redundant and can be avoided.
To realize this, one may think to limit the domain for the en-
tire assimilation step; then, the number of zero rows certainly
would be largely reduced. This is actually incorrect, because
these zero rows are changing along with the transport of ash
clouds, and are not constant at each analysis step. So the full
domain must be considered and it should be adaptive (choose
different zero rows according to different A” at different anal-
ysis times).

4.2 Derivation of the mask-state algorithm (MS)
Here we introduce item npg,sh to represent the number of

zero rows in the ensemble state matrix Af, and use nug to
represent the number of other rows (also, n,sy represents
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()
CSR-based SpMV (A7 is represented in CSR format)

Algorithm 1 A“[;,1];, x 1 = CSR-based SpMV(A£ Y« N UNx1)

1 fori=1:n

2 A 1] =0

3 for j = row_ptr[i] : row_ptr[i] — 1

4. w = col_idx|j]

5 A%[i, 1] += wvallj] x v[w]

6 end for

7. end for

(n =3.888 x 105, N = 100)
(b)
SDMM is conducted by looping SpMV N times

Algorithm 2 A%:,1: N],, « n = N-times Algorithm 1)

1. fork=1: N

2. A°[:, k], x 1 = CSR-based SpMV(A71 N X[ KN x1)

3. end for

(n=3.888 x 105, N=100)

Figure 4. Algorithms for CSR-based SDMM to compute the mul-
tiplication of sparse matrix Af and dense matrix X. (a) Multiplica-
tion of Af by a column vector v (in X) by CSR-based sparse matrix
vector multiplication (SpMV). val, col_idx, and row_ptr are the
three arrays to represent Af in CSR format. (b) Looping SpMV N
times (each with one column of X) to obtain A% = A?X.

the grid size of ash plume). When computing A* = AfX, to
avoid all the computations related to nppasn TOWs with zero
elements, the index of other n,s, rows must first be decided.
This index is meant to reduce the dimensions of Af. After
getting a A? with a dimension of n,gn X N, the index will be
used again to reconstruct the full matrix A* with the dimen-
sion of n x N. Based on this idea, we propose a mask-state
algorithm (MS) which deals with the time-consuming analy-
sis update. MS includes five steps.

i. Compute ensemble mean state Af. The mean state
Af «1 can be easily computed by averaging AnX N
along N columns. Due to all elements in Af nx N corre-
sponding to ash concentrations, all elements in Af, <N
are larger than or equal to zero. The index of non-zero
rows in Af, « 1 1s thus equivalent to that in Ai « N+ The
computational cost for this step is O(n N).

ii. Construct mask array z. Based on previously obtained
Az « |» We search the non-zero elements of Alc 1 and
record the index into a mask array z,, x 1. With this
strategy, we do not need to search the full matrix Afl <N
and build an index matrix for storage. This is a benefit
for saving memory. The computational cost for this step

is O(n).
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iii. Construct masked ensemble state matrix Kj Using the
mask array z,,,, » 1 obtained from step (ii), Af,ash « N €an
be constructed column by column according to Eq. (13),
and the computational cost (overhead) for this step is
O(nash N).

AL g, 1:N) = Af@(1 :ngg), 1: N) (13)

iv. Compute A? by multiplying Af and X. Perform matrix

computation A} =y = Agash « vXN x N- This step is
similar to A? = AfX, as described in Sect. 3.2, but the
computational cost now becomes O(n,5n N 2) instead of

O(n N?).

v. Construct analyzed ensemble state matrix A®. With the
computed A? from step (iv) and the mask array z from
step (ii), the final analyzed ensemble state matrix A%
can be constructed based on Eq. (14). The computa-
tional cost (overhead) for this step is O(n N).

A%(z(1 : nash), 1: N) = A%(1 : nagn, 12 N) (14)

According to the derivations of MS, the computational
costs related to zero rows are avoided. Here the “zero rows”
do not equal “zero elements”. The former corresponds to the
regions where there is no ash for all the ensemble members,
while the latter also counts the no-ash regions specifically for
some ensembles. Certainly the consideration of all “zero ele-
ments” can include all the sparsity information of the ensem-
ble state matrix, but extra computations and memories must
be spent on searching the full matrix Afl « y With a computa-
tional cost of O(nN) and storing a mask-state matrix with di-
mensions of n x N. This is expensive compared to construct-
ing the mask array in procedure (ii). Actually, after a careful
check of the volcanic ash ensemble plumes, there is no “bad”
ensemble which is really different from others. Although the
concentration levels in ensemble members are distinct, the
main direction and the occurrence to the grid cells are more
or less the same. This means that the “zero rows” actually
more or less equal “zero elements” but are much faster than
the way with “zero elements”, which confirms the suitabil-
ity and advantage of procedure (ii). Probably when there are
big meteorological uncertainties, the “zero elements” will be
much larger than “zero rows”. In this case, how to make use
of the sparsity information in the ensemble state matrix will
be considered in future.

Based on procedures of MS, the computational cost of
A? = AfX can be reduced. However, without a careful eval-
uation, we cannot conclude MS is fast, because the algo-
rithm also employs other procedures. If these procedures (i),
(ii), (iii), and (v) are much cheaper than the main procedure
(iv), MS can definitely speed up the analysis step, and vice
versa. Now we analyze MS’s computational cost, which can
be summed as O(n N) + O(n) + O(nash N) + O(n5n N2) +
O(n N),i.e., O(n N+nyn N2). Thus, the computational over-
head involved in transforming the full matrix to a small one
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(@i.e., O(nash N) for procedure (iii)) has little effect on the to-
tal computation cost of MS (i.e., O(n N +nygh N 2)). However,
the computational overhead of transforming the small matrix
to the full one (i.e., O(n N) for procedure (v)) does contribute
a part, which cannot be ignored, to the total MS’s computa-
tional cost. The computational cost without MS is O(n N 2,
The comparison between both costs (with and without
MS, ie., O(n N + nasn N2) and O(n N)) indicates when the
number of non-zero rows (1,gh, i.€., the number of grids
with ash) of the forecasted ensemble state matrix satisfies

Nash < %n; then, MS can accelerate A? = A'X. Here,

O(n N + nan N?) and O(n N) are on the same order when
Nash < NT_ln The larger the difference between n,gn and
N—1

=51, the better the speedup can be achieved. According

to this analysis, and the characteristic (e.g., ”“T‘h approxi-

mately equals % in this case) of volcanic ash transport as de-
scribed in Sect. 4.1, the relation is certainly satisfied and is
actually nygy < % n (significantly smaller) for our study.
Therefore, for our volcanic ash DA system, with MS, the
computational cost for the time-consuming part A* = AfX
is O(nasn N?), which is much reduced compared to O(n N?)
with conventional computations.

The relation n,gn < %n indicates whether we would
have speedup by the MS method; actually, it can be extended
to Eq. (15),

o O(nN?) _of" 15)
ms_o(”N+”ashN2)_ Nash '

which explicitly specifies the expected amount of speedup
(Sms) of A2 = AT X by the MS algorithm. In this case study,
N is taken at 100 and "&b ~ %, 80 Sms is approximately 3.0.

According to Amdahl’s law (Amdahl, 1967), the total
computational speedup (Sioa1) by MS can be predicted by

Eq. (16),

1

Stotal (1 _ Pms) T g:;: ’ (16)
where pps is the proportion of the computational cost of
A? = A"X in the overall DA computations. It has been evalu-
ated that the computational cost of A% = AfX dominates the
analysis step (see Fig. 2b); thus, the proportion of the compu-
tational cost of A% = AT X approximates the proportion of the
analysis step in the total DA computations (i.e., ppms ~ 72 %
in this case, as described in Sect. 3.1). Therefore, based on
Eq. (16), the maximum (“‘ideal””) computational speedup can
be predicted to be 1_Lms (i.e., ~3.57 for this case study)
when Sp¢ approximates infinity. However, this is not the ac-
tual speedup because Sy is in fact specified by Eq. (15).
Based on the discussions above, Siota1 can therefore be es-
timated by Eq. (15) at ~2.0 in this case.

4.3 Experimental results

Analysis of the algorithmic complexity of MS shows that MS
is an efficient approach to reduce the computational cost of

www.geosci-model-dev.net/10/1751/2017/



G. Fu et al.: A mask-state algorithm

1759

Table 2. Computational evaluation of all the steps of the mask-state algorithm (MS) for A? = AfX. (See the details of each step of MS in

Sect. 4.2.)

Sub-step Computational time
(i) Compute ensemble mean state Af 0.0097 h
(ii) Construct mask array z _ 0.0002 h
(iii) Construct inasked ensemble state matrix Af 0.0057h
(iv) Compute A? by multiplying Afand X 0.8474h
(v) Construct analyzed ensemble state matrix A? 0.0070h
Total 0.87h

h: hour; the time is wall clock time.

the time-consuming A* = A" X. Now MS will be applied in
the real volcanic ash DA system, to investigate whether in
practice it can speed up the analysis step well. We perform
MS in the conventional EnKF, which means initialization and
forecast steps are all computed as the conventional EnKF.
The only difference between MS-EnKF and conventional
EnKEF is that in the former MS is employed for the analy-
sis step, and in the latter is the standard analysis step. The
result and related specifications are shown in Table 1. As in-
troduced in Sect. 2, the forecast step has been configured with
the conventional parallelization; thus, N+2 (102 here) cores
are actually used (one core for the DA algorithm, the other
N+1 cores for the parallel forecast of N ensemble members
and one ensemble mean). It can be seen from Table 1 that MS
indeed largely accelerates the analysis step (as expected, by
a factor of about 3.0 for this study), which confirms the the-
oretical cost evaluation. The detailed experimental time for
each step of MS is shown in Table 2. As expected, the dense—
dense matrix multiplication in step (iv) takes the largest part
(i-e., 0.8474 h for this case study) of the total computational
time (0.87 h) of MS. However, step (iv) has been a big im-
provement compared to the case without MS (3.14 h; see
Table 1), which is because the computational time for the
other steps (e.g., steps (i—iii) cost only 0.0156 h to reduce
the size of the ensemble state matrix) is little and ignorable.
Note that the total computational time of A? = ATX with MS
(i.e., 0.87 h in Table 2) is not exactly equal to the computa-
tional time of the MS-EnKF analysis procedures (i.e., 0.88 h
in Table 1). The subtraction (i.e., 0.01 h) corresponds to the
summed computational time of all the other analysis proce-
dures (i.e., procedures 1-8) except for A* = Af X (see Fig. 2b
and Table 3).

MS is now experimentally proven as efficient to signifi-
cantly reduce the computational time for the analysis step
during volcanic ash DA. Note that it can also be observed
that the computational time for the “other” parts in Table 1
(such as operations for setting environmental variables, start-
ing and finalizing DA algorithms, as mentioned in Sect. 3.1)
is slightly reduced by the MS method (i.e., 0.03h in this
case). This is because in the conventional EnKF, the ensem-
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ble mean state Af is calculated in the “other” parts as an out-
put to finalize the DA algorithms, while in MS-EnKF, the
calculations of A! are needed and directly involved in the
“Analysis” part.

The result shows that, benefitting from the success of a
reduced analysis step, the overall computational cost indeed
gets significantly reduced. The total execution time is 1.95h,
which is less than the simulation window of 3h (09:00-
12:00 UTC, 18 May 2010). This result satisfies our goal to
accelerate the computation to an acceptable runtime (i.e., re-
quires less runtime than the time period of the DA applica-
tion). Therefore, aviation advice based on the MS-EnKF can
be provided as not only accurate, but also sufficiently fast.
Note that the result (1.95h) is obtained after the volcanic
ash is transported to continental Europe. If the assimilation
is performed in the starting phase of volcanic ash eruption
(when aircraft measurements are available), a more signifi-
cant acceleration would be obtained. This is because in this
case the volcanic ash is only transported in an area near to
the volcano; thus, the number of no-ash grid cells will take a
large proportion (much higher than 2/3 for this case study)
of the full domain.

There is another interesting point. According to Fig. 3, the
ash grids comprise 39.3 % of the total grids. Thus, the min-
imum computing time by using MS to utilize this model’s
characteristic should be =~ 1.234h (i.e., 0.393 x 3.14h).
However, the experimental result shows that the computa-
tional time goes down to 0.88 h (see Table 1). One reason for
this time decrease is that when the size of the matrix is re-
duced, the memory access cost also goes down (e.g., through
better cache usages). Another possible reason is that the ash
grid number actually decreases with time (not always taking
39.3 % of the total grid number), due to ash sedimentation
and deposition processes (Fu et al., 2015).

Note that in this study we only perform the commonly
used ensemble parallelization for the forecast step (already
efficient compared to the expensive analysis step) but do not
choose model-based parallelization (e.g., tracer or domain
decomposition). As specified in Table 1, no parallelization
is implemented on the six tracers. This is because due to
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Table 3. Computational time for the analysis step of conventional EnKF, MS-EnKF, and CSR-based-SDMM-EnKFE.

Analysis procedures (see Fig. 2b) Conventional EnNKF ~ MS-EnKF  CSR-based-SDMM-EnKF
procedures 1-8 0.01h 0.01h 0.01h
procedure 9 (A2 = AfX) 3.13h 0.87h 1.21h

Total 3.14h 0.88h 1.22h

h: hour; the time is wall clock time.

the important aggregation process (Folch et al., 2010), there
are big dependencies between different ash components and
thus it does not make much sense to parallelize them. As for
domain-decomposed parallelization (Segers, 2002), it is not
efficient for our application. This is because volcanic ash is
special in the sense that the model is only doing computa-
tions in a small part of the domain (i.e., there are no data
in a rather large part of domain), and this active part is con-
tinuously changing. Thus, a fixed domain decomposition is
not very useful here because of the changing plume posi-
tion. In this sense, some advanced approach such as adaptive
domain-decomposed parallelization (Lin et al., 1998) should
be adopted to achieve additional acceleration to the volcanic
ash forecast stage. This is an interesting subject for future ap-
plication, when a more complicated model is employed, only
ensemble parallelization may be not enough for the forecast
stage.

5 Comparison between MS and standard sparse
matrix methods

5.1 Issues related to the generation of CSR-based
arrays

According to Sect. 4, MS has proven to be capable of solv-
ing the computational issue of A* = AX. Motivated by the
model’s characteristics, MS was proposed from an applica-
tion’s perspective and achieved a good result by managing
the irregular sparsity in our complicated volcanic ash DA
system. The main reason why MS is efficient is that the
sparsity of Al can be well utilized by MS. In Sect. 4, we
only performed the comparison between MS and the case of
full storage dense matrices. However, the problem abstracted
here (AfX) is actually a sparse—dense matrix multiplication
(SDMM) problem, since Al is sparse and X is dense (see
Eq. 12 for X). Thus, one may wonder what the result would
be if the comparison of MS is made to more standard sparse
matrix methods, such as compressed sparse row (CSR)-based
methods (Saad, 2003; Bank and Douglas, 1993), which are
commonly used for sparse matrix vector/matrix multiplica-
tion.

Before we make the comparison, we need to first address
the intrinsic problem when considering standard sparse ma-
trix methods in EnKF for A* = AfX. The issue is that it is
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not possible to directly generate a sparse storage format (e.g.,
CSR) of Af without first generating the full matrix Af. This
is mainly because A! comes from the model-driven ensem-
ble forecast step, where each A’ column corresponds to one
member of the ensemble. During model forecast, we know
there are indeed no-ash grids. However, it is not certain where
the plume is exactly after one forecasting time step. This is
highly dependent on the weather conditions and the model
processes (e.g., advection and diffusion for horizontal grids,
sedimentation and deposition for vertical grids). Thus, a fixed
and wide domain is usually needed by the model to avoid
complications, resulting in the generation of the full storage
of Af (to be used in A? = AfX). Therefore, if we want to
implement a CSR storage format for the sparse matrix Af,
we must first generate the full storage A! from the ensem-
ble forecast step, and then we generate the three CSR arrays
based on Al

Generating CSR arrays is usually much more expensive
(computationally) than a single sparse matrix-vector multi-
plication (SpMV). Thus, if we generate CSR arrays for only
performing one-time SpMYV, it would be meaningless from
HPC’s point of view. Fortunately, this is not the case for
A? = AfX (i.e., SDMM), which can actually be considered
as N-times SpMV. (Here, X has N columns, and one SpMV
means the multiplication of Af by one column of X.) Thus,
CSR-based SDMM might also be a candidate in reducing
the computation time of A = A X. It remains interesting to
compare the performance of CSR-based SDMM and MS in
dealing with A* = AfX for our study case.

5.2 Result of CSR-based SDMM

To implement CSR-based SDMM for A? = AfX, the three
CSR arrays for Af (denoted val, col_idx, and row_ptr in
this study) need first to be generated. The array val of size
Npal Stores non-zero values of Af, where nyq = napn N. (In
this study case, n =3.888 x 10°, Nash ~ %n and N =100.)
The array col_idx of the same size Nyal Stores the column
index of the non-zeros. The array row_ptr saves the start
and end pointers of the non-zeros of the rows in A", The size
of row_ptrisn+1.

After the above three CSR arrays are generated, CSR-
based SpMV can be performed for multiplying A’ by a col-
umn vector v in X (see Algorithm 1 in Fig. 4a). With that,
Algorithm 2 (Fig. 4b) can be implemented by looping Algo-
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rithm 1 for N times to obtain A* = AfX. The experimental
result of CSR-based SDMM is shown in Table 4, where all
the environmental conditions (such as the DA system, the
programming environment) are the same as the case of MS.
This gives a fair comparison between CSR-based SDMM
and MS. In addition, for a pure algorithmic comparison with
the serial MS, here the CSR-based SDMM is also performed
in a serial case.

From Table 4, we can first confirm that the computational
time (i.e., 0.0407h) for the generation of the three CSR-
based arrays (val, col_idx, and row_ptr to represent the
sparse matrix Af) indeed takes more time than the computa-
tional time of one CSR-based SpMV (i.e., 0.0117h). Thus,
there is little value in performing sub-step (i) (see Table 4)
if only one SpMYV (i.e., sub-step (ii)) is needed. However, to
getall N (i.e., 100) columns of A?, the sub-step (ii) is looped
for N times, resulting in an ignorable impact of sub-step (i)
on the total computational time (i.e., 1.21h) of CSR-based
SDMM.

The result of CSR-based SDMM also shows that the stan-
dard sparse matrix methods can reduce the computational
time of A? = A'X, by comparing with the conventional way
in Table 3. However, it can also be observed that the compu-
tational time of CSR-based SDMM is larger than MS (i.e.,
1.21 h versus 0.87 h in Table 3). Thus, although application
of sparse matrix multiplication methods is positive, it is still
slower than MS on our problem.

5.3 Comparison between CSR-based SDMM and MS

In the CSR-based SDMM, only non-zero elements in A’ par-
ticipate in the multiplication between Af and X; thus, redun-
dant computation (related to zero elements in AY) is avoided.
So the computation time of Af X is reduced with CSR-based
SDMM. In the following, we analyze the performance differ-
ence between CSR-based SDMM and MS.

Firstly, from the programming’s perspective, in CSR-
based SDMM, the loop number for the rows of Af is from
1 to n (see Fig. 4a), while the corresponding loop number
in MS is from 1 to nag (see step (iv) of MS in Sect. 4.2,
nash ~ (1/3)n). Although only non-zero elements are used
in the multiplication in CSR-based SDMM, the length of the
outer loop is still n (much larger than n,g,), which is the
essential reason that MS is faster than CSR-based SDMM.
Note that as discussed in Sect. 4.1, there are many zero rows
in A'; thus, CSR-based SDMM actually does nothing when
it comes to a zero row, but still needs to execute the loop.
Within each loop number, it has to check the information
from row_ptr (size n + 1), where the value corresponding
to a zero row is usually set to be the value in row_ptr cor-
responding to the first subsequent non-zero row.

Secondly, with respect to the algorithm, CSR-based
SDMM utilizes the sparsity of Af by its generation of three
CSR arrays, while MS not only utilizes the sparsity informa-
tion of the sparse matrix Af, but also utilizes the consistency
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of ensemble forecasts; that is, ensemble forecasted states are
not consistent in values but usually consistent in non-zero
locations. This is a typical property in ensemble-based DA,
resulting in N ensemble plumes being different in concen-
tration values but having similar transport directions/shapes
(see Sect. 4.2). Thus, most of the zero elements in Af are
actually in zero rows of Af for an EnKF application, which
leads to a small number of non-zero rows (n,sn) compared
to the full number of rows (n) of Af. Therefore, only con-
sidering n,5h TOWS in A’gash « N XN x N (see step (iv) of MS in
Sect. 4.2) is more advantageous for an EnKF application than
considering all n rows in CSR-based SDMM. Based on the
above analysis, MS can be considered a specific sparse ma-
trix method, which typically works for ensemble-based DA
applications.

It is useful to apply standard sparse matrix methods (e.g.,
CSR-based SDMM) for our assimilation application. The ac-
celerated analysis step by CSR-based SDMM (1.22 h; see Ta-
ble 3) also reduces the total computational time (i.e., 2.29 h;
see Table 1 for the computational time of initialization, fore-
cast, and others) to an acceptable level (i.e., less than 3 h for
our case study). In practice, due to the better performance
of MS than CSR-based SDMM, we will use MS as a better
choice for assimilation applications. In addition, we do not
only intend to present MS, but also intend to reveal which
part is the most time-consuming part for plume-type assimi-
lation of in situ observations.

6 Discussions on MS
6.1 Applicability

For volcanic ash forecasts, only a relatively small domain
is polluted compared to the full 3-D domain, so that MS
can work efficiently. Using MS is also applicable for many
other DA problems, where the domain is not fully polluted
by the species. It does not matter what the emission looks
like and whether the releases are short- or long-lived species.
Given an assimilation problem, the only restriction for MS
to gain an acceleration is whether the whole domain is fully
polluted or partly polluted. The assimilation problems where
MS can achieve the acceleration effect on the computations
of A* = AfX include all the volcanic-related ash/gas assimi-
lations, e.g., assimilation of satellite data/LIDAR data/in situ
data; (sand/desert) dust-storm-related assimilation; tornado-
related assimilation; assimilation of exploding nuclear plants
or factories; chemicals or oils leaking into seas; global (fore-
cast) fire assimilation; and assimilation of environmental pol-
lutant transport, e.g., severe smog. In addition, for DA appli-
cations (e.g., ozone, SO,) where pollutants spread over the
whole domain, usually the focus is only on the high concen-
trations, and a threshold can be set to ignore the very low
values without losing the necessary assimilation accuracy. In
this case, MS can also lead to a potential acceleration since
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Table 4. Computational evaluation of the sub-steps of the sparse—dense matrix multiplication with compressed sparse row storage (CSR-

based SDMM) for A? = AfX.

Sub-step Computational time
(i) Compute three arrays (in CSR format) of Al 0.0407h
(ii) Compute CSR-based SpMYV for the first column of A? 0.0117h
(iii) Loop (ii) for N-1 times for other N-1 columns of A? 1.1576 h
Total 1.21h

CSR-based SDMM is formed by (ii) and (iii). h: hour; the time is wall clock time.

many very low concentrations can be explicitly truncated to
be zeros.

It has been analyzed that when the number of non-zero
rows (nagh, i.€., the number of ash grids in a 3-D domain)
of Af satisfies nasn < n, MS can work faster than standard
EnKF. For volcanic ash application, because n,gn is much
less than n, the acceleration is quite large. Hence, in this case,
we propose to embed MS in all ensemble-based DA methods
because it is fast and the implementation using MS is exact to
the standard ensemble-based methods; i.e., it does not intro-
duce any approximation in view of MS procedures. Actually
this proposal can be extended to all real applications, even if
the condition is not satisfied. This is because in this case the
computational cost of MS for A? = AfX becomes O(n N?),
which is the same as that of using the standard assimilation
(shown in Fig. 2b). Therefore, if the state numbers are equal
to or close to the total number of grid points in the domain,
the added computational cost of using MS is very small (neg-
ligible), so that the computational time with MS is almost
the same as the time of using the standard approach, whereas
when the condition n,g, < n is satisfied, MS will accelerate
the analysis step. Thus MS is generic and can be directly used
in any ensemble-based DA, and this acceleration can be au-
tomatically realized for some potential applications, without
spending time investigating whether the condition is satis-
fied. In a real (or operational) 3-D DA system, MS can be
easily included; i.e., we only need to invoke the MS module
when computing A? = A"X, without any other change to the
current framework. Note that MS is applicable in ensemble-
based DA but not in variational-based DA. This is because
in a variational-based DA system, the minimization of a cost
function is mostly operated within several/many continuous
time steps (Lu et al., 2016b, 2017); thus, it is convenient to
always use the full (i.e., non-masked) domain to represent
different state matrices (corresponding to different time steps
in variational-based DA).

As stated in Eq. (15), the speedup of the MS method is ap-
proximately the inverse of ”jfh. So far there are no statistical
data on the value of ’% Considering the problem of volcanic
ash transport, there is one emission point (at the volcano); all
the ashes in atmospheres are transported by the directional
wind drive from the same source point. Thus volcanic ash
cloud is actually transported in a shape of a plume, which in
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general does not cover the full but only a small part of the 3-
D domain. At the start phase of a volcanic ash eruption, = ah
is much smaller than 1.0 (started from 0). During transport
over a long time (1.5 months for this case study), * in-
creases to approximately 1/3. Therefore, the speedup of MS

in ensemble-based volcanic ash DA will be significant.

6.2 MS and localization

Based on the formulation of MS, one may think it can be
taken as a localization approach (Hamill et al., 2001). There
is indeed a similarity between MS and the localization ap-
proach, in a sense that when computing A* = A X, both get
rid of a large number of cells and only do computations re-
lated to the selected grids. These two algorithms are however
functionally different. This is because the localization ap-
proach is meant for reducing spurious covariances outside a
local region which is built up around the measurement; thus,
the results with and without localization approaches are dif-
ferent, while MS is developed for the acceleration purpose.
The masked region is discontinuous and independent of loca-
tions of measurement, but dependent on the model domain.
Thus, there is no difference in the assimilation results be-
tween using MS and without using it. Therefore, based on
the functional difference, MS cannot be taken as a localiza-
tion approach.

In this study, we do not employ the localization strategy in
the analysis step, because we use a rather large ensemble size
of 100 to guarantee the accuracy, as introduced in Sect. 2.
But for some applications (e.g., ozone, CO», sulfur dioxide),
especially when assimilating satellite data, localization is a
necessary approach and has been widely used in reducing
spurious covariances (Barbu et al., 2009; Chatterjee et al.,
2012; Curier et al., 2012). In these cases, because the local-
ization approach forces the analysis only to update the state
within a localization region, one may think that localization
could replace MS and that there would be no significance in
employing MS. Actually this is not correct. We explain the
reason as follows.

The localization approach is usually realized in Eq. (6) by
employing a Schur product of a localization matrix and the
forecast error covariance matrix (Houtekamer and Mitchell,
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1998, 2001) given by
K(k) = (fo P'()HK) T [HK)Eo PFk)HK) T + R (17)

The Schur product foP' in Eq. (17) is defined by the element-
wise multiplication of the covariance matrix P! and a local-
ization matrix f. f is defined based on the distance between
two locations; thus, it is dependent on the domain and needs
information on the full ensemble state locations. In this way,
f o Pf can contain more zeros than Pf, but the dimensions are
not changed, so that the computations related to fo P are ac-
tually not reduced. Therefore, we can understand the local-
ization approach in the analysis step as that the states within
and outside a local region are both updated with increments,
but just the increments outside the region are zero (which
seems like not updating). This is also the reason why the lo-
calization approach is not meant for acceleration, but only
for reducing spurious covariances. Now it is clear that local-
ization cannot replace MS. Actually both can be performed
together in dealing with the time-consuming part A* = AfX.
The localization approach can first transfer Af to a localized
matrix with more zero rows. Then MS can be used to ac-
celerate the multiplication of the localized matrix and X. In
this way, MS is expected to accelerate A* = A" X with a high
speedup rate, because the computational cost of more zero
rows in the localized ensemble state matrix is avoided.

6.3 MS and parallelization

Motivated by the model’s physics, the implementation MS
currently is for the serial case. This implementation has re-
duced the computation time to an acceptable time (i.e., the
simulation time is less than the period of forecast in real-
world time). It is however interesting to discuss the potential
of parallelization of the dense—dense matrix multiplication
(Ad o N= Agash . nXN x ) in step (iv) of the algorithm
(see Sect. 4.2 and Table 2). The related matrix multiplication
can be easily parallelized on multiple processors. Optimiza-
tion and evaluation on the parallelized MS will be considered
in future. For the current case study, the computational time
(3.13 h; see Table 3) for an “ideal” reduction by paralleliza-
tion of MS is not much larger than the acceleration (already)
gained by MS (2.26 h, subtraction between 3.13 h and 0.87 h;
see Table 3). Therefore, from the application’s perspective,
further acceleration by parallelization is not required.
Alternatively, one may also consider to (1) directly par-
allelize the expensive matrix multiplication of A% . =
A’f1 « N XN x N, without first performing MS, or (2) imple-
ment CSR-based SDMM (see Sect. 5) with parallelization.
Both are possible alternative approaches to accelerate the
expensive matrix multiplication. The first approach can be
implemented by a user’s own designed parallelization, or
by utilizing scaLAPACK (https://www.netlib.org/scalapack/,
where the main function is “pdgemm”). The second approach
can be realized by using some general parallel sparse—dense
matrix multiplication methods (e.g., sending each column of
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X and three CSR arrays of A' to each processor to calcu-
late each column of A?) or using a good parallel algebra li-
brary like PeTSC (https://www.mcs.anl.gov/petsc/) which al-
lows users to specify own orderings and comes with machine
optimized parallel matrix—matrix multiplication operations.
However, given the fact that MS can also be parallelized us-
ing similar ways or the same libraries, it is fair to not consider
parallelization for all cases (i.e., using MS, not using MS, us-
ing CSR-based SDMM). Actually, the parallelization in MS
could be performed much more easily than other approaches
in dealing with A? = AfX, because the dense—dense matrix
multiplication (parallelization in step (iv) of MS) is easier to
parallelize than the sparse—dense matrix multiplication (di-
rect parallelization for A% = A" X or parallelized CSR-based
SDMM).

In this paper, for the current usage, we keep the possibility
of parallelization open, because a serial MS has been efficient
already.

7 Conclusions

In this study, based on evaluations of the computational cost
of volcanic ash DA, the analysis step turned out to be very ex-
pensive. Although some potential approaches can accelerate
the initialization and forecast steps, there would be no no-
table improvement to the total computational time due to the
dominant analysis step. Therefore, to get an acceptable com-
putational cost, the key is to efficiently reduce the execution
time of the analysis step.

After a detailed evaluation of various parts of the analy-
sis stage, the most time-consuming part was revealed. The
mask-state algorithm (MS) was developed based on a study
of the characteristics of the ensemble ash states. The algo-
rithm transforms the full ensemble state matrix into a rela-
tively small matrix using a constructed mask array. Subse-
quently, the computation of the analysis step was sufficiently
reduced. MS is developed as a generic approach; thus, it can
be embedded in all ensemble-based DA implementations.
The extra computational cost of the algorithm is small and
usually negligible.

The conventional ensemble-based DA with MS is shown
to successfully reduce the total computational time to an ac-
ceptable level, i.e., less than the time period of the assim-
ilation application. Consequently, timely and accurate vol-
canic ash forecasts can be provided for aviation advice. This
approach is flexible. It boosts the performance without con-
sidering any model-based parallelization such as domain or
component decomposition. Thus, when a parallel model is
available, MS can easily be combined with the model to gain
a further speedup. It implements exactly the standard DA
without any approximation and with easy configurations, so
that it can be used to accelerate the standard DA in a wide
range of applications.
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In this case study with the LOTOS-EUROS model (ver-
sion 1.10), after the parallelization is performed for the fore-
cast step of EnKF assimilation, the analysis step takes 72 %
of the total runtime, which means the analysis step is the
bottleneck. This case might not be general for all ash fore-
casts, as the computational cost for initialization and fore-
cast greatly depends on the forecast model that is used. For
the current development, it makes sense to use the LOTOS-
EUROS model, because the model has been configured and
evaluated in (Fu et al., 2015) by comparison with other fa-
mous models (e.g., NAME, Jones et al., 2007, and WRF-
Chem, Webley et al., 2012) in simulating volcanic ash trans-
port. However, if a more expensive ash forecasting model is
used, then the bottleneck would be the forecast step. In this
case, the forecast step should be the goal for acceleration,
and probably a parallel model or adaptive domain decompo-
sition (as discussed in Sect. 4.3) needs to be employed to-
gether with the parallel ensemble forecasts.

The use of in situ measurements is one important reason
why MS works perfectly. For each analysis step, the number
of measurements are quite small, and the procedure of the
singular value decomposition (SVD) costs little. However,
in some applications when many measurements are assim-
ilated (e.g., satellite-based data Fu et al., 2017 or seismic-
based data Khairullah et al., 2013), and the number of mea-
surements is on the same order as the number of state vari-
ables, the most time-consuming part will be the SVD. In
these cases, the contributions of MS will be limited. The re-
duction of the total computing time using MS is therefore
less significant; an effective acceleration algorithm for the
analysis step must be used and should consider the computa-
tionally expensive SVD in the first place.

Code and data availability. The averaged aircraft in situ data used
in this study are available from Fig. 1c. The used continuous air-
craft data and the model output data can be accessed by request
(G.Fu@tudelft.nl). The mask-state algorithm (MS) is implemented
in OpenDA (the open source software for DA, www.openda.com)
and the software can be downloaded from sourceforge (https:/
sourceforge.net/projects/openda).
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