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a b s t r a c t

The first and second order sensitivity analysis of the eigenvalue problem of generalised,
non-symmetric matrices using perturbation theory is developed. These results are then
applied to sensitivity analysis of wave propagation in structures modelled using the wave
and finite element (WFE) method. Three formulations of the WFE eigenvalue problem are
considered: the transfer matrix method, the projection method and Zhong's method. The
sensitivities with respect to system parameters of wavenumbers and wave mode shapes
are derived. Expressions for the group velocity are presented. Numerical results for a thin
beam, a foam core panel and a cross-laminated timber panel are used to demonstrate the
proposed approach. It is shown that sensitivities can be calculated at negligible compu-
tational cost.
© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The characteristics of wave propagation in structures e wavenumbers, wave mode shapes, group velocity, reflection and
transmission coefficients, etc e depend on the material and geometric properties of the medium [1]. Changes (or un-
certainties) in these properties result in changes (or uncertainties) in the wave properties. This paper concerns sensitivity
analysis relating changes in the physical properties to changes in thewavenumbers andwavemode shapes. A related problem
is the estimation of group velocity. The particular emphasis is on complicated structures (e.g. laminates) where analytical
solutions are not available and where the wave characteristics are estimated numerically, in this paper using a finite element-
based technique. In this wave and finite element (WFE) method [2,3] the dispersion behaviour is found by solving an
eigenproblem. Potential applications of the results include: sensitivity analysis, the determination of the most important
parameters onwhich wave behaviour depends and the development of robust designs; model updating and the estimation of
physical properties and dispersion behaviour from measurements; uncertainty modelling, relating uncertainties in physical
properties to uncertainties in wavenumbers, reflection or transmission coefficients, and hence to uncertainties in vibrational
behaviour, response, noise transmission, etc; the estimation of group velocity, which is found from the rate of change of
wavenumber with respect to frequency; stability analysis; identification and determination of the cut-off, veering or crossing
behaviour of branches of the dispersion curves.
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Perturbation theory can be used to evaluate the sensitivity of the eigencharacteristics of a systemwith respect to changes
in a parameter, without requiring the eigenproblem to be solved multiple times. In particular, this approach yields approx-
imate expressions for the eigenvalues and eigenvectors of the perturbed system which are computed via matrix multipli-
cations, reducing the computational cost drastically. When applied to structural dynamics, the system is frequently
characterized by symmetric matrices, and therefore much research effort has focused on the analysis of so-called symmetric
systems which are characterized by symmetric eigenvalue problems. Solutions for first order perturbations of the eigen-
problem for real symmetric matrices with respect to a parameter can be found in Ref. [4e7], for example. However, the
matrices that result from WFE analysis are asymmetric and often complex [2,3], as shown also in recent developments on
WFE applications to problems on noise transmission [8,9], periodic structures [10], beamswith asymmetric cross-section [11],
two-dimensional structures [12,13], pipes [14] and cylinders [15].

In this paper the first and second order derivatives of the eigensolutions with respect to the system's parameters are
derived for generalised, asymmetric eigenproblems. The analysis of real, non-symmetric matrices for the case of weak and
strong interaction with equal eigenvalues was considered by Seyranian [5e7]. The problem of distinct eigenvalues was
addressed in Ref. [5] but did not include results for the second order sensitivity. Recent developments on this topic have been
presented in Refs. [16]. The eigensolutions derivatives found below are then applied to WFE models, for which the matrices
involved are asymmetric and normally complex.

The paper is organised as follows. The generalised eigenproblem and eigensolution sensitivities are presented in section 2.
Both first and second order perturbations are developed. Three forms of theWFE eigenvalue problem and their perturbations
are discussed in section 3. Estimation of the group velocity is discussed. Section 4 contains numerical examples concerning
eigenvalue sensitivities, while section 5 contains the conclusions.

2. The generalised eigenproblem and eigensolution sensitivities

This section presents the sensitivities of the eigenvalues and eigenvectors of the generalised eigenvalue problem. The
analysis follows that in Ref. [5] with additional expressions for the second order sensitivities being developed below.

2.1. The generalised eigenproblem for fixed system parameters

Let us consider the generalised eigenvalue problem (EP) expressed as

BðpÞu¼ lCðpÞu; (1)

where BðpÞ and CðpÞ are complex, non-symmetric system matrices of dimensionsm�m (with CðpÞ being non-singular) and

are functions of n real system parameters in the n� 1 vector p. Here l and u are the eigenvalue and right eigenvector. The left
EP

zTBðpÞ¼ lzTCðpÞ; (2)

involves the left eigenvector z. For specific values of the parameters p ¼ p , the two EPs can be written as
0

B0u0 ¼ l0C0u0; zT0B0 ¼ l0z
T
0C0; (3)

where B ¼ Bðp Þ and C ¼ Cðp Þ, and z and u are the left and right eigenvectors which are normalised such that
0 0 0 0 0 0

zT0C0u0 ¼1: (4)
The jth and kth eigenvectors also satisfy the orthogonality conditions

zT0;kC0u0;j ¼ djk; zT0;kB0u0;j ¼ l0;jdjk; (5)

being djk the Kronecker delta (i.e. djj ¼ 1 and djk ¼ 0 for jsk). The following derivationswill bemade for the jth eigenvalue and
the corresponding eigenvector. For simplifying the notation, the subscript j will be omitted in what follows.

2.2. Perturbation of the eigenproblem

Consider a perturbation of order ε of the system parameters p0 in an arbitrary vector of variation e ¼ ðe1; :::; enÞT , such that

p¼p0 þ εe; kek ¼ 1: (6)
As a result, the system matrices can be expressed as
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B¼B0 þ εB1 þ ε
2B2 þ :::; C ¼ C0 þ εC1 þ ε

2C2 þ ::: (7)

where

B1 ¼
X
r¼1;n

vB
vpr

er ; C1 ¼
X
r¼1;n

vC
vpr

er; (8)

B2 ¼
1
2

X
r;s¼1;n

v2B
vprvps

eres; C2 ¼ 1
2

X
r;s¼1;n

v2C
vprvps

eres; (9)

where all the partial derivatives are evaluated at p ¼ p0. Consequently, each eigenvalue and right eigenvectors can be
expanded as powers series in ε as

l¼ l0 þ εl1 þ ε
2l2 þ :::; u ¼ u0 þ εu1 þ ε

2u2 þ ::: (10)

where, in a similar fashion to Eq. (8) and Eq. (9),

l1 ¼
X
r¼1;n

vl

vpr
er ; u1 ¼

X
r¼1;n

vu
vpr

er; (11)

l2 ¼
1
2

X
r;s¼1;n

v2l

vprvps
eres; u2 ¼ 1

2

X
r;s¼1;n

v2u
vprvps

eres; (12)

and where all the partial derivatives are evaluated at p ¼ p0.

2.3. First order perturbation of the eigensolution

The first order derivative of the eigenvalue l1, assuming that the unperturbed eigenvalues lo are distinct, can be obtained
by substituting Eqs. (6) and (7) in Eq. (1), using the normality and orthogonality conditions (Eqs. (4) and (5)) and keeping the
first order terms, resulting in

vl

vpr
¼ zT0½B1 � l0C1�u0: (13)
The same result can be obtained by considering the derivative with respect to the parameter pr of the eigenvalue problem in
Eq. (1) [5]. This can be rewritten as

ðB0 � l0C0Þ
vu
vpr

¼
�
l0

vC
vpr

þC0
vl

vpr
� vB
vpr

�
u0 (14)
Eq. (14) is a linear algebraic systemwith unknown derivatives vl=vpr and vu=vpr . Since the matrix ðB0 �l0C0Þ is singular, the
solution of Eq. (14) exists if and only if

zT0

�
l0

vC
vpr

þC0
vl

vpr
� vB
vpr

�
u0 ¼0 (15)
Pre-multiplying the left and the right hand side of Eq. (14) by zT0, and noting the results in Eq. (3), it follows that [5]

vl

vpr
¼
zT0

�
vB
vpr

� l0
vC
vpr

�
u0

zT0C0u0
(16)
Given the normalization condition in Eq. (4), Eq. (16) reduces to Eq. (13).
As shown in Ref. [5], the expression for u1 is obtained by differentiating Eq. (4) so that
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zT0C0
vu
vpr

¼0: (17)
Multiplying this equation by the complex conjugate of the left eigenvector z0, and adding this term to the LHS of Eq. (14)
[5,17], it follows that [5]

vu
vpr

¼ G�1
0 ðl1C0 þ l0C1 � B1Þu0 (18)
where G0 is a non-singular matrix given by [5]

G0 ¼ B0 � l0C0 þ z0zT0C0 (19)
Eqs. (13) and (18) are first-order perturbations of the eigensolutions for the non-symmetric system of Eq. (1) with matrices of
dimensionsm�m. These results reduce to those for symmetric eigenproblems for which B, C are real and symmetric and the
left and right eigenvectors are equal.

When there is only a single parameter p, Eqs. (13) and (18) reduce to

vl

vp
¼ zT0½B1 � l0C1�u0; (20)

vu �
T

��1
vp
¼ B0 � l0C0 þ z0z0C0 ðl1C0 þ l0C1 �B1Þu0; (21)
with

B1 ¼
vB
vp

; C1 ¼ vC
vp

: (22)
2.4. Second order perturbation of the eigensolution

The second order derivatives of the eigenproperties can be used to investigate local curvature effects, and therefore wave
phenomena such as cut-off, veering and locking. The second order derivatives of the eigenvalues can be found by taking the
derivatives of the eigenvalue problem in Eq. (1) with respect to the parameters pr and ps. This can be written as

ðB0 � l0C0Þ
v2u

vprvps
¼
 
l0

v2C
vprvps

þ C0
v2l

vprvps
� v2B
vprvps

!
u0 þ C0

�
vl

vpr

vu
vps

þ vl

vps

vu
vpr

�
þ

2
�
vl

vpr

vC
vps

þ vl

vps

vC
vpr

�
u0 þ l0

�
vC
vpr

vu
vps

þ vC
vps

vu
vpr

�
�
�
vB
vpr

vu
vps

þ vB
vps

vu
vpr

� (23)
As for the first order case, since ðB0 �l0C0Þ is singular, Eq. (23) has a solution if and only if the terms on the RHS of Eq. (23)
premultiplied by zT0 equal zero. Moreover, because of Eq. (3), the second order derivative of the eigenvalue is

v2l

vprvps
¼ zT0

" 
v2B

vprvps
� l0

v2C
vprvps

!
u0 þ

�
vB
vpr

� l0
vC
vpr

�
vu
vps

þ
�
vB
vps

� l0
vC
vps

�
vu
vpr

�C0

�
vl

vpr

vu
vps

þ vl

vps

vu
vpr

�
�2
�
vl

vpr

vC
vps

þ vl

vps

vC
vpr

�
u0

#,�
zT0C0u0

�
: (24)
Because of Eqs. (4) and (17), and by differentiating Eq. (4) so that

zT0
vC
vpr

u0 ¼0; (25)
Eq. (24) can be now written as
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v2l

vprvps
¼ zT0

" 
v2B

vprvps
� l0

v2C
vprvps

!
u0 þ

�
vB
vpr

� l0
vC
vpr

�
vu
vps

þ
�
vB
vps

� l0
vC
vps

�
vu
vpr

#
(26)
The expression for u2 can be obtained by differentiating Eq. (4) giving

zT0C0
v2u

vprvps
¼0: (27)
Multiplying this equation by the complex conjugate of the left eigenvector z0, and adding this term to the left hand side of Eq.
(23), we find that

v2u
vprvps

¼ G�1
0

" 
l0

v2C
vprvps

þ C0
v2l

vprvps
� v2B
vprvps

!
u0 þ C0

�
vl

vpr

vu
vps

þ vl

vps

vu
vpr

�
þ

þ2
�
vl

vpr

vC
vps

þ vl

vps

vC
vpr

�
u0 þ l0

�
vC
vpr

vu
vps

þ vC
vps

vu
vpr

�
�
�
vB
vpr

vu
vps

þ vB
vps

vu
vpr

�� (28)
When there is only a single variable parameter p, Eqs. (26) and (28) reduce to

v2l

vp2
¼ zT0 ½2ðB2 � l0C2Þu0 þ2ðB1 � l0C1Þu1�; (29)

v2u � ��1
" �

vl
�

v2l
! #
vp2
¼ B0 � l0C0 þ z0z

T
0C0 2 C2l0 �B2 þ2

vp
C1 þC0

vp2
u0 þ2ðl1C0 þ l0C1 �B1Þu1 (30)

where
u1 ¼
vu
vp

; B2 ¼ 1
2
v2B
vp2

; C2 ¼ 1
2
v2C
vp2

: (31)
The results in this section are used in the following sections to compute the eigencharacteristics of a system modelled
using the WFE approach.

3. The WFE eigenproblem and sensitivity analysis

In this paper the perturbations developed in section 2 are applied to determine the sensitivities of the wavenumbers and
wave mode shapes that describe wave propagation in a medium. For simple situations analytical solutions are available, and
perturbations follow straightforwardly. The focus here is on more complicated constructions for which the wave charac-
teristics are found using the WFE method.

The WFE method for free wave propagation [2,3] involves developing a finite element model of a short segment of the
structure of length D as shown in Fig. 1. This involves the degrees of freedom (DOFs) q and nodal forces f of the segment. The
mass and stiffness matrices M and K are determined. Time harmonic motion at frequency u is assumed and the dynamic
stiffness matrix (DSM) D ¼ K� u2M is formed. This relates the DOFs and nodal forces by

f¼Dq: (32)
Damping can be included by a viscous damping matrix C or by K being complex. Under the propagation of a wave, the DOFs
and nodal forces at the ends of the segment are related by
Fig. 1. A segment of a uniform waveguide.
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qR ¼ lqL; fR ¼ � lfL; q¼
�
qL
qR

�
; f¼

�
fL
fR

�
: (33)

where l ¼ expð� ikDÞ, with k being the wavenumber, which is generally complex, and the subscripts L, R denote the left and
right ends of the segment. The FE model may involve internal nodes and their DOFs condensed. The periodicity conditions in
Eq. (33) are applied and an eigenproblem follows, the solutions yielding the eigenvalues l ¼ expð�ikDÞwith the eigenvectors
being the wave mode shapes, i.e. the DOFs and nodal forces under the passage of the free wave.

TheWFE eigenproblem can be phrased in at least 3 different ways as described below. These result in eigenproblems of the
form of Eq. (1). The parameter vector p may contain any of the material, geometric or physical properties of the segment, or
the frequency u which is involved in the calculation of the DSM. The results derived in the previous section can then be
applied to determine the sensitivity of the eigenvalues and eigenvectors with respect to a parameter.

3.1. The transfer matrix of the segment

The first form of the eigenproblem involves the transfer matrix T of the segment. The DSM is partitioned into

D¼
	
DLL DLR
DRL DRR

�
; (34)
By rearranging Eq. (32), the DOFs q and nodal forces f at the left and right ends of the segment can be related by�
qR
fR

�
¼T
�
qL
fL

�
; T¼

	 �EDLL E
�DRL þ DRREDLL �DRRE

�
; E¼D�1

LR ; (35)
In the notation of Eq. (1), B ¼ T and C ¼ I. For the case of a single parameter p the first order matrix derivatives are

B1 ¼
"

�E0DLL � ED0
LL E0

�D0
RL þ D0

RREDLL þ DRRE
0DLL þ DRRED

0
LL �D0

RRE� DRRE
0

#
; C1 ¼ 0; (36)

where ð0Þ denotes d/dp and E0 ¼ � ED0
LRE. Given the eigenvalue derivative vl=vp, the derivative of the wavenumber is
vk
vp

¼ i expðikDÞ
D

vl

vp
(37)
While the transfer matrix approach is perhaps the simplest intuitively, it is prone to poor numerical conditioning [18] and
this is exacerbated for the case of sensitivity estimation.

3.2. Projection of the equations of motion onto the left-hand DOFs

Projecting the equations of motion onto the left-hand DOFs qL leads to a quadratic eigenproblem that can be recast as the
linear eigenproblem [2,3]		

0 DRL
�DRL �ðDLL þ DRRÞ

�
� l

	
DRL 0
0 DLR

� ��
qL
lqL

�
¼ 0: (38)
Hence

B ¼
	

0 DRL
�DRL �ðDLL þ DRRÞ

�
; C ¼

	
DRL 0
0 DLR

�
(39)

and the matrix derivatives follow straightforwardly.

3.3. The method of Zhong and Williams

Zhong's method [19,20] is the perhaps the most numerically robust approach to solving the eigenproblem, especially for
large system matrices. The eigenproblem becomes

½B� mC�
�

qL
lqL

�
; B ¼

	
DRL 0
0 DLR

�
; C ¼

	�ðDLL þ DRRÞ �ðDLR � DRLÞ
ðDLR � DRLÞ �ðDLL þ DRRÞ

�
(40)
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In this case also the matrix derivatives follow straightforwardly. The double eigenvalues m in this formulation are related to
l ¼ expð�ikDÞ by

m¼ 1
ðlþ 1=lÞ; l¼1±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

p
2m

: (41)

so that the sensitivities are related by
vl

vp
¼
�
1þ l2

�2�
1� l2

� vm

vp
: (42)
3.4. Group velocity estimation

The group velocity has been estimated in a number of ways using FE-based approaches. For undamped systems it is
identical to the energy velocity and can be found by calculating the ratio of the time average energy flow and energy density
[2]. Finnveden [21] differentiated the equations of motion of a spectral finite element model, with the resulting solution
yielding the group velocity: this is an analogous approach to that developed here for WFE models. Finally, the wavenumbers
can be estimated at two, close frequencies and the group velocity estimated by a finite difference approach (e.g. Ref. [22]).

In the notation of this paper, the group velocity can be found by choosing the parameter as

p¼u2 (43)

and noting that
vD
vp

¼ �M (44)
For the second eigenformulation we therefore have

vB
vp

¼ �
	

0 MRL
�MRL �ðMLL þMRRÞ

�
;

vC
vp

¼ �
	
MRL 0
0 MLR

�
(45)

with analogous expressions for the third eigenformulation. The group velocity for a propagating wave is then given by

cg ¼ vu

vk
¼ 1

2uvk=vp
(46)

and is hence given directly from the calculated wavenumber derivative.

3.5. Estimation of matrix derivatives

The sensitivity analysis requires the matrix derivatives vB=vp and vC=vp. Where analytical expressions for K and M are
available, these derivatives follow immediately. Matrix sensitivities might be available in some commercial and in-house
codes, particularly where model updating applications are required. If not, then they can be numerically estimated using a
finite difference approximation after generating K and M for a number of values of the system properties.

4. Numerical examples

In this section various results for the first order sensitivities are presented. For the first example results are compared with
analytical predictions. Analytical solutions are not available for the second and third examples.

4.1. Thin beam undergoing axial and bending vibration

Consider a thin beam undergoing axial and bending vibrations. The axial and transverse displacements are v and w
respectively. The axial and bending wavenumbers of the propagating waves are respectively [23]

ka ¼u

ffiffiffi
r

E

r
; kb ¼

ffiffiffiffiffiffiffiffiffiffiffi
rAu2

EI
4

s
(47)

where E, r, A and I are respectively the elastic modulus, density, cross-sectional area and secondmoment of area. There is also

a bending nearfield wave, which decays exponentially with distance, and is not considered further. The group velocities are
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cg;a ¼
ffiffiffi
E
r

s
; cg;b ¼ 1

2

ffiffiffiffiffiffiffiffiffiffi
EIu2

rA
4

s
(48)
The WFE model consists of a single, two-noded element with 3 nodal DOFs q ¼ ½v;w; vw=vx�T at each node. The shape
functions for axial and transverse displacements are taken as linear and cubic functions of x respectively, leading to the mass
and stiffness matrices given in Appendix 1 [24].

Fig. 2 shows the wavenumbers, taking E ¼ 210� 109 N=m2, r ¼ 7850 kg=m3, thickness ¼ 15 mm and width ¼ 30 mm. At
the largest frequency shown kDz1 and hence FE discretisation errors are noticeable. The numerical predictions are almost
real-valued, with the imaginary parts (not shown) resulting from rounding errors etc. The projectionmethod (section 3.2) and
Zhong's method (section 3.3) give virtually identical results, with results using the projection method shown. The agreement
with the theory is very good but of decreasing accuracy as frequency increases due to discretisation effects. The transfer
matrix approach, however, suffers from poor numerical conditioning and yields accurate solutions only up to a frequency of
approximately u ¼ 4� 104 rad/s and results are not shown.

The analytical sensitivities of the wavenumbers with respect to the material parameters are

vka
vr

¼ u

2
ffiffiffiffiffiffi
rE

p ;
vka
vE

¼ � u

2E

ffiffiffi
r

E

r
(49)

vk u1=2 �Ar�1=4 vk u1=2 �Ar�1=4

b

vr
¼

4r EI
; b

vE
¼ �

4E EI
: (50)
The sensitivities, evaluated using the method described in section 3.2, are shown in Fig. 3, while Fig. 4 shows the analytical
and predicted group velocities. Fig. 5 shows the absolute values of the relative errors for wavenumber, sensitivities and group
velocity. The agreement is good, with relative errors increasing as frequency increases, typically as u2. Given that at the
highest frequency shown kbDz1, FE discretisation effects would be expected to be apparent. For this example, the numerical
results for the sensitivities and group velocity are virtually identical. Note that the sensitivities and group velocity are up to an
order of magnitude less accurate thanwavenumber estimates, while the accuracy of the results for the axial waves is up to an
order of magnitude worse for axial waves than bending waves, due in part to the fact that a higher order FE shape function is
used to describe the bending behaviour.
Fig. 2. Wavenumbers for a beam: bending and axial waves; theory (solid line) and WFE predictions (dotted line).



Fig. 3. Wavenumbers for a beam: bending and axial waves; (a) sensitivity with respect to density r, (b) sensitivity with respect to elastic modulus E;
theory (solid line) and WFE predictions (dotted line).
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Fig. 4. Group velocity for a beam: bending and axial waves; theory (solid line) and WFE predictions (dotted line).

Fig. 5. Relative errors for a beam: wavenumbers and group velocity for bending (dotted) and axial (dashed) waves; sensitivity with respect to r or E for bending
(dash-dot) and axial (solid) waves.
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4.2. Foam-cored panel

The second example is the sandwich panel shown in Fig. 6. The skins are 0.5 mm thick (E ¼ 4:9� 1010Pa; r ¼ 1600kg=m3

and Poisson's ratio n ¼ 0:15) while the core is 6.35mm thick foam (E ¼ 8:3� 109Pa; r ¼ 160kg=m3 and n ¼ 0:34). Damping is



Fig. 6. Foam-cored sandwich panel and FE mesh.
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neglected here to ensure that the propagating wavenumbers are real, but it is straightforward to include a complex elastic
modulus, especially for the core. All wavenumbers are then complex. Fig. 6 also indicates the FEmesh of the cross-section that
was used. One ANSYS SOLID 45 element (now implemented within SOLID 185) was used to mesh each skin and 6 elements
used to mesh the core, giving a total of 8 elements. Each element has 8 nodes, each of which has three nodal degrees of
freedom, in-plane and transverse displacements, giving 27 DOFs in the WFE model. The length of the meshed region was
D ¼ 0.001 m, which gives good accuracy for wavenumbers up to about k ¼ 1000/m.

The wavenumbers for this isotropic structure are shown in Fig. 7(a). In the frequency range shown there are three
propagating waves, these broadly being extensional, shear and bending waves of the plate. Further propagating waves cut off
at higher frequencies and involve higher order modes across the thickness of the sandwich panel. Fig. 7(b) shows the nor-
malised sensitivities ðG =kÞdk =dG of the wavenumbers with respect to the shear modulus of the core. The matrix derivatives
were estimated using a finite difference approximation, varying G by ±10%. As would be expected, the axial wavenumber is
insensitive to the shear modulus, while the shear wavenumber is very sensitive, while the bending wave is increasingly
sensitive to the shear modulus of the core as frequency increases.
4.3. Cross-laminated timber panel

Cross-laminated timber (CLT) panels are constructed from a number of layers of wooden beams laid at right-angles in
adjacent layers and bonded with adhesive [25] (Fig. 8). Layering the timber in this way gives a relatively high stiffness in all
directions for the wooden panel, which has relatively low mass compared with other traditional building materials such as
concrete or brick [26]. Because of these advantages, and the fact that CLT structures can be assembled quickly and easily on-
site, CLT is gaining in popularity as a building material in many countries [27]. However, due to their low mass and high
stiffness, CLT structures are prone to poor acoustic performance, both for sound transmission over the whole audio-frequency
range and for structure-borne sound transmission, typically impact noise below 1 kHz. The vibroacoustic behaviour is not
well understood and is a subject of current research activity, given that there is a need for improved design tools.

The properties of wood are highly uncertain and depend onmany factors including the tree growing conditions, what part
of the tree the wood is taken from, the direction in which the panel is cut, knots, grain slope etc. The elastic properties along-
and cross-grain differ by an order of magnitude [28]. For example, the density of radiata pine varies from 340 to 540 kg/m3

while the along-grain elastic modulus ranges from 6 to 14 GPa, correlates to some degree with density and is substantially
higher than the cross-grain value [29]. The mechanical properties of a specific panel often need to be determined from
experimental measurements, while uncertainty modelling is required to develop robust designs.

The CLT panel considered here has 6 layers of equal thickness and is 0.1 m thick in total. The nominal properties are listed
in Table 1. The segment in the WFE model is 5 mm square, with 3 ANSYS SOLID 45 elements per layer, giving 18 elements in
total and 57 DOFs at each corner of the segment. This structure is anisotropic, so that the wavenumbers depend on the di-
rection of wave propagation. Numerical results for waves propagating in the global y-direction are presented, with the
wavenumber in the other in-plane direction being set to zero.

The propagating wavenumbers are shown in Fig. 9. At low frequencies (Fig. 9(a)) there are 3 propagating wave modes
dominated by bending, in-plane shear and in-plane axial motion. As frequency increases, the “bending” mode becomes
increasingly affected by shear in the transverse layers. At higher frequencies many other wave modes cut on, involving
through-thickness effects, including substantial shear in the weaker layers, significant symmetric transverse displacements
etc. The wave characteristics are considered in detail in Ref. [30]. The sensitivity with respect to the along-grain elastic
modulus dk=dEx and the normalised sensitivity ðEx =kÞdk =dEx are shown in Figs. 10 and 11. At lower frequencies (Fig. 10),
where the behaviour can be interpreted as an equivalent plate, the axial and bending wave modes are seen to be sensitive to
Ex while the shear wave mode is insensitive, as would be expected. The axial wave has a normalised sensitivity of approx-
imately �0.5, the same as axial waves in a homogeneous solid, the cross-grain stiffness of the transverse layers being very



Fig. 7. Foam-cored panel: (a) wavenumbers and (b) normalised sensitivity of wavenumbers with respect to shear modulus of the core: bending, shear
and axial dominated waves.
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small. The normalised sensitivity of the bendingwave tends to�0.25 at zero frequency, the same value as the bendingwave in
a homogeneous thin plate, but the effects of shear in the transverse layers become significant at low frequencies, the
dependence of the sensitivity with frequency changing from u�1/2 to approximately u�1. At higher frequencies (Fig. 11) the
behaviour is very complicated. Higher wavemodes cut on above 1 kHz, involving through-thickness effects where themotion
can no longer be regarding as that of an equivalent plate. These modes can be important both for sound transmission and
structure-borne sound [30]. Note that around 2300 Hz two wave modes appear to lock and veer (see Fig. 9(b)), with the



Fig. 8. Cross-laminated timber panel.

Table 1
Material properties and stacking sequence of CLT panel. The local x-axis of each
layer is along the grain and aligned at the angle relative to the global x-axis
specified in the stacking sequence row.

Material property

Ex
h
N m�2

i
1:1� 1010

Ey
h
N m�2

i
3:67� 108

Ez
h
N m�2

i
3:67� 108

Gxy

h
N m�2

i
6:9� 108

Gyz

h
N m�2

i
6:9� 107

Gxz

h
N m�2

i
6:9� 108

nxy 0:42
nyz 0:3
nxz 0:42
h 0:02

r
h
kg m�3

i
450

Stacking sequence 0�=90�=0�=0�=90�=0�
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sensitivities in Fig. 11 becoming very large: here, two eigenvalues become equal so that the eigenvalue sensitivities developed
in section 2 are no longer valid.
5. Concluding remarks

In this paper a perturbation approach was used to evaluate the first order and second order sensitivities of the eigen-
properties of complex, non-symmetric matrices. The results were then applied to wave and finite element models to estimate
the sensitivity of the wavenumber with respect to system parameters. Expressions for the group velocity were derived. Three
different eigenformulationswere presented, namely, the transfermatrixmethod, the projectionmethod and Zhong's method.
Numerical results for a thin beam, a foam cored panel and a cross-laminated timber panel were presented to demonstrate the
applicability of the proposed approach. The computational cost over and above the generation of the FE matrices is small: for
example, for the last, most complicated, example, wavenumbers, wave mode shapes and sensitivities were calculated using
non-optimised Matlab code at less than 10 ms per frequency.

It is worth noting that the sensitivity expressions derived break down for the case of equal (or very close) eigenvalues.
There are two situations, termed weak or strong interaction in Ref. [5], corresponding to mode crossing or veering/instability
in modal analysis, or wavenumber crossing or veering/locking for wave propagation. For spatially varying properties, addi-
tional problems arise at and around any critical sections, also known as turning points, at which part of a waveguide of a
particular wave mode is propagating in one frequency range (cut-on transition), while it is non-propagating in another range
(cut-off transition). As a result, the changes in the characteristics of wave propagation at these critical sections typically lead
to strong wave reflections. These situations are the subject of future work.

There are various potential applications of the results developed here. The first is the calculation of group velocity (section
3.4) for which the matrix derivatives just depend on the mass matrix (equation (45)). Note also that the group velocity is
calculated independently for each branch of the dispersion curve, in contrast to finite difference approaches, where the



Fig. 9. Wavenumbers for CLT panel: (a) lower frequencies bending, shear and axial dominated waves. and (b) higher frequencies.
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Fig. 10. CLT panel: (a) sensitivity and (b) normalised sensitivity of wavenumbers with respect to elastic modulus along-grain, lower frequencies: bending,
shear and axial dominated waves.
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Fig. 11. CLT panel: (a) sensitivity and (b) normalised sensitivity of wavenumbers with respect to elastic modulus along-grain, higher frequencies.
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dispersion curves have to be tracked from one frequency to the next: this is problematical where two branches are close and
may cross, veer or lock. A second area of application concerns uncertainty modelling, and the propagation of uncertainties in
properties to uncertainties in various response quantities: for example, on-going work includes the effects of material
variability in CLT panels on the air- and structure-borne noise performance, which depend on wavenumbers etc, and the
attempt to put bounds on the performance. A third area concernsmodel updating, for example usingmeasuredwavenumbers
to update a WFE model.
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Appendix 1. Mass and stiffness matrices for thin beam

For axial vibrations, the nodal DOF vector is q ¼ ½vLvR�T and the element matrices for an element of length L are [16]

Ma ¼ rAL
6

	
2 1
1 2

�
; Ka ¼ EA

L
½1�1�11� (51)

T
For bending vibrations, the nodal DOF vector is q ¼ ½wLvwL=vxwRvwR=vx� and the element matrices are [16]

Mb ¼
rAL
420

2
664
156 22L 54 �13L

4L2 13L �3L2

156 �22L
SYM 4L2

3
775; Kb ¼ EI

L3

2
664

12 6L �12 6L
4L2 �6L 2L2

12 �6L
SYM 4L2

3
775 (52)

T
For an element undergoing both axial and bending vibrations, the nodal DOF vector is q ¼ ½vLwLvwL=vxvRwRvwR=vx� and the
mass and stiffness matrices follow by assembling the matrices above. Note that derivatives with respect to the material
properties E and r and the geometric properties A and I follow straightforwardly.

References

[1] L. Cremer, M. Heckl, B.A.T. Petersson, Structure-Borne Sound, third ed., Springer-Verlag, 2005.
[2] B.R. Mace, D. Duhamel, M.J. Brennan, L. Hinke, Finite element prediction of wave motion in structural waveguides, J. Acoust. Soc. Am. 117 (2005)

2835e2843.
[3] D. Duhamel, B.R. Mace, M.J. Brennan, Finite element analysis of the vibration of waveguides and periodic structures, J. Sound Vib. 294 (2006) 205e220.
[4] R.L. Fox, M.P. Kapoor, Rate of change of eigenvalues and eigenvectors, AIAA J. 6 (12) (1968) 2426e2429.
[5] A.P. Seyranian, A.A. Mailybaev, Multiparameter Stability Theory with Mechanical Applications, World Scientific Publishing, Singapore, 2003.
[6] A.P. Seyranian, Sensitivity analysis of multiple eigenvalues, J. Struct. Mech. 21 (1993) 261e284.
[7] A.P. Seyranian, A.A. Mailybaev, Interaction of eigenvalues in multi-parameter problems, J. Sound Vib. 267 (5) (2003) 1047e1064.
[8] Y. Yang, B.R. Mace, M.J. Kingan, Prediction of sound transmission through, and radiation from, panels using a wave and finite element method, J.

Acoust. Soc. Am. 141 (4) (2017) 2452e2460.
[9] Y. Yang, B.R. Mace, M.J. Kingan, A wave and finite element based homogenised model for predicting sound transmission through honeycomb panels, J.

Sound Vib. 463 (2019) 114963.
[10] Y. Yang, B.R. Mace, M.J. Kingan, Vibroacoustic analysis of periodic structures using a wave and finite element method, J. Sound Vib. 457 (2019)

333e353.
[11] B.E. Takiuti, E. Manconi, M.J. Brennan, V. Lopes Junior, Wave transmission from asymmetrical changes of cross-sectional area in a beam, in: Journal of

Physics: Conference Series, vol. 1264, Thirteenth International Conference on Recent Advances in Structural Dynamics (RASD), 15e17 April 2019.
Valpre, Lyon, France.

[12] G. Mitrou, N. Ferguson, J. Renno, Wave transmission through two-dimensional structures by the hybrid FE/WFE approach, J. Sound Vib. 389 (2017)
484e501.

[13] F. Errico, F. Franco, M. Ichchou, S. De Rosa, G. Petrone, An investigation on the vibrations of laminated shells under aeroacoustic loads using a WFE
approach, Adv. Aircraft Spacecraft Sci. 6 (6) (2019) 463e478.

[14] E. Manconi, S. Sorokin, R. Garziera, A. Soe-Knudsen, Wave motion and stop-bands in pipes with helical characteristics using wave finite element
analysis, J. Appl. Comput. Mech. 4 (5) (2018) 420e428.

[15] F. Errico, M. Ichchou, S. De Rosa, O. Bareille, F. Franco, AWFE and hybrid FE/WFE technique for the forced response of stiffened cylinders, Adv. Aircraft
Spacecraft Sci. 5 (1) (2018) 1e19.

[16] P.D. Cha, A. Shin, Perturbation methods for the eigencharacteristics of the symmetric and asymmetric systems, Shock Vib. (2018).
[17] V.A. Yakubovich, V.M. Starzhinskii, Parametric Resonance in Linear Systems, Nauka, Moscow, 1987 (in Russian).

http://refhub.elsevier.com/S0022-460X(20)30176-0/sref1
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref2
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref2
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref2
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref3
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref3
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref4
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref4
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref5
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref6
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref6
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref7
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref7
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref8
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref8
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref8
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref9
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref9
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref10
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref10
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref10
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref11
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref11
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref11
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref11
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref12
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref12
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref12
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref13
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref13
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref13
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref14
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref14
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref14
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref15
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref15
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref15
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref16
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref17


A. Cicirello et al. / Journal of Sound and Vibration 478 (2020) 11534518
[18] Y. Waki, B.R. Mace, M.J. Brennan, Numerical issues concerning the wave and finite element method for free and forced vibrations of waveguides, J.
Sound Vib. 327 (2009) 92e108.

[19] W.X. Zhong, F.W. Williams, On the direct solution of wave propagation for repetitive structures, J. Sound Vib. 181 (1995) 485e501.
[20] W.X. Zhong, F.W. Williams, Wave problems for repetitive structures and symplectic mathematics, Proc. Inst. Mech. Eng., Part C 206 (1992) 371e379.
[21] S. Finnveden, Evaluation of modal density and group velocity by a finite element method, J. Sound Vib. 273 (2004) 51e75.
[22] M.N. Ichchou, S. Akrout, J.-M. Mencik, Guided waves group and energy velocities via finite elements, J. Sound Vib. 305 (2007) 931e944.
[23] K.F. Graff, Wave Motion in Elastic Solids, Dover Publications Inc., New York, 1975.
[24] M. Petyt, Introduction to Finite Element Vibration Analysis, Cambridge University Press, New York, USA, 1990.
[25] Z. Wang, J. Zhou, W. Dong, Y. Yao, M. Gong, Influence of technical characteristics on the rolling shear properties of cross laminated timber by modified

planar shear tests, Maderas Cienc. Tecnol. 20 (2018) 469e478.
[26] F. Morandi, S. De Cesaris, M. Garai, L. Barbaresi, Measurement of flanking transmission for the characterisation and classification of cross laminated

timber junctions, Appl. Acoust. 141 (2018) 213e222.
[27] R. Brandner, G. Flatscher, A. Ringhofer, G. Schickhofer, A. Thiel, Cross laminated timber (CLT): overview and development, Eur. J. Wood Wood Prod. 74

(2016) 331e351.
[28] J.A. Kininmonth, L. Whitehouse, Properties and Uses of New Zealand Radiata Pine, 1991.
[29] A. Homb, C. Guigou-Carter, A. Rabold, Impact sound insulation of cross-laminated timber/massive wood floor constructions: collection of laboratory

measurements and result evaluation, Build. Acoust. 24 (2017) 35e52.
[30] Y. Yang, M.J. Kingan, B.R. Mace, Analysis of the acoustic characteristics of cross-laminated timber panels using a wave and finite element method, in:

Proc ICSV 26, Montreal, 2019.

http://refhub.elsevier.com/S0022-460X(20)30176-0/sref18
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref18
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref18
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref19
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref19
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref20
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref20
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref21
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref21
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref22
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref22
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref23
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref24
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref25
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref25
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref25
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref26
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref26
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref26
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref27
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref27
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref27
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref28
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref29
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref29
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref29
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref30
http://refhub.elsevier.com/S0022-460X(20)30176-0/sref30

	Sensitivity analysis of generalised eigenproblems and application to wave and finite element models
	1. Introduction
	2. The generalised eigenproblem and eigensolution sensitivities
	2.1. The generalised eigenproblem for fixed system parameters
	2.2. Perturbation of the eigenproblem
	2.3. First order perturbation of the eigensolution
	2.4. Second order perturbation of the eigensolution

	3. The WFE eigenproblem and sensitivity analysis
	3.1. The transfer matrix of the segment
	3.2. Projection of the equations of motion onto the left-hand DOFs
	3.3. The method of Zhong and Williams
	3.4. Group velocity estimation
	3.5. Estimation of matrix derivatives

	4. Numerical examples
	4.1. Thin beam undergoing axial and bending vibration
	4.2. Foam-cored panel
	4.3. Cross-laminated timber panel

	5. Concluding remarks
	Declaration of competing interest
	CRediT authorship contribution statement
	Acknowledgements
	Appendix 1. Mass and stiffness matrices for thin beam
	References


