
Intent-Based
Networking with
Programmable
Data Planes

Mohammad Riftadi

Intent-Based
Networking with
Programmable
Data Planes

by

Mohammad Riftadi
to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Thursday August 8, 2019 at 10:00 AM.

Student number: 4743792
Project duration: September 19, 2018 – August 8, 2019
Thesis committee: Dr. ir. F. A. Kuipers, TU Delft, supervisor

Dr. M. Nasri, TU Delft
Dr. C. Hauff, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface
This thesis report document lying before you serves as the final artifact of my 2-year journey
as a master student in Computer Science at the Delft University of Technology. I have spent a
major part of my second year working on this thesis, during which I have learned and grown
a lot. This work would not be possible without the support of the people that I would like to
mention here.

First, I would like to express my deepest gratitude and appreciation to my supervisor,
Dr. Fernando Kuipers, for allowing me to realize my dream of working on a thesis related to
artificial intelligence in my favorite domain of computer networking. Without his guidance
and patience, I would surely not be able to finish this thesis work. He made me felt very
welcome in Delft, even already guided me before I got accepted into the university. On a
more special note, he also introduced me to the wonderful world of research and also gave
me opportunities to disseminate the knowledge that I gained during the process. If I am going
to be a successful researcher one day, I will surely attribute my success on his name.

I would also like to thank my collaborator, Jorik Oostenbrink, who has helped me a lot
during the work on the GP4P4 chapter of this thesis. His amazing insight has widened my
perspective while looking into a problem. Special thank also goes out to Belma Turkovic for
the discussion and the brainstorming of ideas during the initial phase of this work.

Further, I would like to thank my friends for their companionship and support throughout
my endeavor in Delft: Gilang, Haris, Enreina, Francisco, and many others that would be too
long to be named here. I am also deeply grateful to my wife, Syifa, for her support and care
she had provided me during this work, and my daughter, Sheryl, for providing a cheerful
atmosphere at home. I would also like to express my sincerest gratitude to my parents for
their never-ending love, affection, and good wishes to me. Last but not least, I would also like
to thank the Ministry of Communication and Information Technology of Indonesia for providing
me the funding that enabled me to pursue my study at the Delft University of Technology.

Mohammad Riftadi
Delft, 8 August 2019

iii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Problem Definition . 2
1.3 Research Question . 2
1.4 Thesis Outline . 2
1.5 Publication . 3

2 Theoretical Background 5
2.1 Data-Plane Programmability . 5

2.1.1 Network Data-Plane . 5
2.1.2 Programmable Switches . 6
2.1.3 P4 Language . 7

2.2 Intent-Based Networking . 9
2.2.1 Intent Definition . 9
2.2.2 Intent-Based Networking Architecture . 10
2.2.3 Intent Extraction . 11
2.2.4 Policy Refinement . 11
2.2.5 Policy Assurance . 12

2.3 Genetic Programming . 12
2.3.1 Genotype Representation . 13
2.3.2 Workflow . 13
2.3.3 Selection Mechanism. 14
2.3.4 Crossover and Mutation . 15
2.3.5 End Condition. 15

3 P4I/O: Intent-Based Networking with P4 17
3.1 Introduction . 17
3.2 Network Telemetry Use Cases. 19
3.3 Intent Definition Language . 20

3.3.1 Requirements. 20
3.3.2 Nile Language Extension. 20

3.4 P4 Code Templates . 21
3.4.1 Network Telemetry Function Structures . 21
3.4.2 Template Representation. 22

3.5 Intent Realization . 23
3.5.1 Software Components . 23
3.5.2 Intent Modification . 23

3.6 Evaluation. 24
3.6.1 Proof of Concept Setup . 24
3.6.2 Result and Discussion . 25

3.7 Related Work . 25
3.8 Conclusion . 25

4 GP4P4: Enabling Self-Programming Networks 29
4.1 Introduction . 29
4.2 GP4P4 . 30

4.2.1 Behavioral Rules . 30
4.2.2 Program Generation . 32
4.2.3 Program Evaluation . 37
4.2.4 End Condition. 39

v

vi Contents

4.3 Experiments . 40
4.3.1 Generation Time and Program Length in Various Network Functions 40
4.3.2 Various Parameter Effects on the Generation Time 41
4.3.3 Various Parameter Effects on the Program Length 42

4.4 Conclusion . 43

5 Conclusion 49
5.1 Answer to the Research Question . 49
5.2 Contribution . 49
5.3 Future Work. 50

Bibliography 51

1
Introduction

1.1. Background
The Internet has become an essential part of modern life. Popular user applications like
social media and video sharing platforms promote the usage of the Internet by billions of
people every day and generating massive amounts of user traffic. From another perspective,
this phenomena can be viewed by the network operators as a new challenge: how to manage
a network that serves millions or even billions of users while minimizing the operating cost?

Traditionally, network devices were rigid, fixed-function devices developed by network de-
vice manufacturers. This approach was necessary as the software and hardware components
needed to be developed hand-in-hand to be able to produce highly-performing devices that
can cater to the high throughput required by the operators. With this approach, the func-
tionality of each device is essentially “locked” and the operators are only left with the option
to configure and tune the parameters exposed by the manufacturers. It is also for this rea-
son that network devices are traditionally referred to by the name of their functionality, e.g.
switch, router, firewall, load-balancer, etc.

The situation changed as of recent advances on-chip designs have enabled programmable
hardware to achieve terabit speeds [7, 39]. This development enables network vendors to
build high-performing network devices that are also user-programmable. With this tool in
hand, we are now ready to challenge the status quo of the bottom-up approach in which
the hardware dictates what a network can do, into a more promising top-down approach, in
which the network controller governs the behavior of the forwarding hardware.

Further, the introduction of P4 data-plane abstraction language [8] made the development
of customized network functions possible for everyone. It hides the complex low-level mech-
anisms and the native configuration languages of various programmable network devices.
Network programmers only need to learn about the abstraction model of the P4 language
and let the P4 compiler take over and translate the program into a target device-specific
configuration.

Yet, P4 does not come without drawbacks. P4 is written in the form of a procedural lan-
guage, requiring the network operators to learn how to program in it before they can reap
the benefit of custom network functionality. In contrast, most networks today are run by in-
dividuals that have deep knowledge of networking protocols and strong skills in configuring
network devices while possessing little to no exposure to programming. Furthermore, the
operators also have to face the problem of managing various software artifacts along with
other complexities associated with software management. It is impractical to expect a net-
work operation department to possess a skill set similar to that of a software engineering
department. These two reasons effectively create a barrier in the adoption of programmable
switch technology.

The “problem” of removing the barrier of having to learn a procedural programming lan-
guage is a recurring theme within this work. We develop a solution to this problem based on
the philosophy of Intent-Based Networking (IBN). Instead of having to “tell” the network de-

1

2 1. Introduction

vices what to do, the operators can instead just state their intended behavior to the network
controller, after which the network carries out the implementation by itself.

The concept of IBN is analogous to the self-driving car concept. Instead of manually driving
the car, the passenger can just state the destination and, optionally, some other constraints,
e.g. taking the most scenic route, minimizing the fuel utilization, etc. For the passenger,
this alleviates the burden of learning how to drive a car. Translated to the context of network
management, we want the network operator to be able to “drive” the network without having
to master the mechanics of how the network devices operate.

1.2. Problem Definition
While P4 provides more flexibility by enabling operators to implement their required network
functions in the form of a procedural program, it also has some drawbacks associated with
it as well. The disadvantage mainly comes from the fact that now network operators have to
learn a new programming language and write code before they can run the network. As the
skill set needed to operate traditional network devices and new programmable devices are
different, this might pose some difficulties for most network operators.

We propose a solution to this problem by using the Intent-Based Networking (IBN) ap-
proach. Instead of requiring operators to code the network functions in the form of a proce-
dural language, we give the network operators a tool to control their network based on their
intentions, i.e. network goals. The network should then find a way to satisfy the expressed
network goals by searching for a network condition that fulfills the network goals and then
implementing this certain condition automatically.

1.3. Research Question
Before the IBN concept can be realized, we have to find the answers to the following research
questions:

• RQ1. In what language can we express our network intent? One of the key require-
ment of this intent language is that it should be easier for the network operators to learn
compared to a procedural programming language like P4.

• RQ2. How to design and implement a system that can generate a P4 program
based on user intent? The system should be able to find a correct P4 program from
the supplied intents and the current network conditions.

• RQ3. How is the efficacy of such a system? To be able to replace the current approach
on data-plane programming, the system should be able to generate P4 program with
reasonable performance, i.e. in a short time. Therefore, it is mandatory to evaluate the
performance of our solution.

1.4. Thesis Outline
Apart from this introductory chapter, this thesis report is written with the following structure:

• Chapter 2: Theoretical Background aims to give the readers the necessary back-
ground knowledge required to understand the concepts and techniques described in
this article. We start by describing the concept of data-plane programmability and also
P4 the most popular language in the domain of network data-plane programming. We
continue with delineating the concept of Intent-Based Networking before finally closing
the chapter with a description of Genetic Programming, a machine learning technique
that can be utilized to build imperative/procedural programs using a concept borrowed
from evolutionary biology.

• Chapter 3: P4I/O: Intent-Based Networking with P4 describes a framework that is
capable to generate P4 programs based on parameterized templates to satisfy certain
network intents. This chapter is based and adapted from our publication with the same
title [56].

1.5. Publication 3

• Chapter 4, GP4P4: Enabling Self-Programming Networks defines a framework that
can generate a certain part of a P4 program based on some network behavioral rules
using a Genetic Programming technique. This chapter is based and adapted from our
submitted paper with the same title.

• Chapter 5, Conclusion summarizes the conclusions that could bemade from the design
and evaluation of the frameworks that have been described in Chapter 3 and Chapter
4. We close the chapter with some directions for future research.

1.5. Publication
Part of the work described within this thesis report has led into one publication and one
paper that is currently under review. The publication and paper details are as follows:

1. Mohammad Riftadi and Fernando A. Kuipers. 2019. P4I/O: Intent-Based Networking
with P4. In Proceeding of 2019 2nd International Workshop on Emerging Trends in
Softwarized Networks (ETSN 2019 at NetSoft). Paris, France.

2. Mohammad Riftadi, Jorik Oostenbrink, and Fernando A. Kuipers. 2019. GP4P4: En-
abling Self-Programming Networks. Submitted to ANCS 2019: The 15th ACM/IEEE
Symposium on Architectures for Networking and Communications Systems. Cam-
bridge, UK.

2
Theoretical Background

This chapter provides the necessary background on various concepts and techniques that
are used throughout this manuscript. We start by introducing the concept of data-plane
programmability and the P4 language, continuing with intent-based networking and closing
it with a description of genetic programming.

2.1. Data-Plane Programmability
This section describes network data-plane programmability. We begin by describing the
definition of network data-plane, then describing the programmable switches that are used
to implement the notion of data-plane programmability, and finally closing the section by
delineating P4, the most popular language used in data-plane programming.

2.1.1. Network Data-Plane
Network data-plane is defined as the part of the network that does the actual packet for-
warding. This is in contrast with the control-plane, which gives certain instructions to the
forwarding elements for it to be able to forward a packet to the correct destination while sat-
isfying any constraints at the same time. Traditionally, the data-plane and control-plane of
a network device reside in the same hardware, although the control-plane is usually imple-
mented as a piece of software running on top of general-processing CPU. The network devices
then “learn” the information of the network, e.g. topology, link utilization, by communicat-
ing with each other using a set of networking protocols. The networking protocols used by
the traditional network devices can be categorized into various layers in the OSI framework.
Table 2.1 provides examples of the networking protocols used by traditional network devices
to gather information over the network.

The notion of network control- and data-planes is analogous to how the brain and muscles
work in nature. The “muscles” or the forwarding devices perform the packet forwarding
activities, while the “brain” or the software controller instructs the forwarding elements from
a distance.

Software-Defined Networking changed this approach, by physically separating the control-
plane software and the data-plane forwarding elements in the network [40]. The centralized

Table 2.1: Network Protocol Examples

OSI Layer Protocols

Physical layer Bidirectional Forwarding Detection (BFD) [34]
Data-link layer Spanning Tree Protocol (STP) [1], Link Layer Discovery

Protocol (LLDP) [2]
Network layer Routing protocols: OSPF [47], BGP [54], IS-IS [50]; Multi-

cast protocols: PIM-DM [4], IGMP [12]

5

6 2. Theoretical Background

Controller

Forwarding
elements

Network Device

Controller

Forwarding
elements

Network Device

Controller

Forwarding
elements

Networking
protocols

Controller

Forwarding
elements

Network Device Forwarding
elements

Network Device

Forwarding
elements

Network Device

Control-plane Data-planeLegends:

Pre-SDN Post-SDN

Network Device

Programmable
interface

Figure 2.1: Pre- and post- SDN data- and control- planes separation.

control-plane software, or usually termed as the network controller, has full visibility over
the network and is able to communicate with the forwarding elements over a vendor-agnostic
interface, such as OpenFlow [44]. The SDN philosophy was born with the main mission of
giving network developers, operators or programmers more flexibility to manage and control
the network. Figure 2.1 illustrates the pre- and post-SDN definitions of the network control-
and data-planes.

2.1.2. Programmable Switches
From the network data-plane perspective, a trade-off is often needed between flexibility and
speed. The network data-planes are traditionally realized on top of specialized hardware,
such as ASICs. They give high performance, up to terabit speed, at the cost of sacrificing
flexibility – they are specifically designed for fixed functionality. On the other hand, there
are also network data-planes built on top of general-purpose CPU, e.g. OpenvSwitch [52],
Click [36], RouteBricks [19]. These systems are characterized by their high flexibility, as
they can be programmed to perform any kind of network functions, but at the cost of slower
forwarding speed.

On the other hand, the proliferation of bandwidth-hungry applications (e.g. big data pro-
cessing applications, multimedia content platforms) in data-center networks creates a torrent
of network traffic. New network virtualization technologies, like NVGRE, VXLAN, and STT,
are invented to help network operators manage these networks with massive scale. These
technologies keep evolving at a fast pace, while the network device manufacturers still op-
erate with a long development cycle resulting in a gap in possible improvements and their
realization.

We refer to this as a “bottom-up” approach, as this approach lets the capability of the
forwarding hardware (e.g. ASICs) govern what a network can do. This traditional approach
of waiting for the network device manufacturers to build devices that are able to run the
latest technologies needs a major revision.

Bosshart et al. [8] demonstrated another example of the disadvantage of fixed-functionality
hardware that is observable in the evolution of the OpenFlow protocol. In the beginning,
OpenFlow [44] version 1.1 only supported matching a dozen of protocol header fields (e.g.
MAC addresses, IP addresses, TCP/UDP port numbers, etc.). But over the years, as the user
requirements grew more complex, the OpenFlow protocol specification also became more
complex. For example, OpenFlow version 1.4 already needs to support recognizing 41 dif-
ferent protocol headers. This means that the data-plane hardware should also be able to

2.1. Data-Plane Programmability 7

Table 2.2: OpenFlow protocol evolution.

Version Date Fields

OF 1.0 Dec 2009 12 fields (Ethernet, TCP/IPv4)
OF 1.1 Feb 2011 15 fields (MPLS, inter-table metadata)
OF 1.2 Dec 2011 36 fields (ARP, ICMP, IPv6, etc.)
OF 1.3 Jun 2012 40 fields
OF 1.4 Oct 2013 41 fields

SDN Control Plane

Parser & Table
Configuration

Rule
Translator

Configuration:
P4 Program

Populating:
Installing and
querying rules

P4 Compiler

Classic
OpenFlow

Figure 2.2: P4 overview.

recognize and parse these protocol headers each time the specification is revised, posing
challenges for fixed-functionality hardware to keep up. Table 2.2 depicts the evolution of the
OpenFlow protocol in more detail.

Only recently, the trade-off of flexibility and performance was proven wrong. Recent ad-
vances on-chip designs have enabled several programmable forwarding hardware to achieve
terabit speeds [7, 39]. This development enables network vendors to build devices that can
be programmed by the users. Finally, it was possible to change the aforementioned “bottom-
up” approach with a “top-down” approach, in which the network controller is able to tell the
forwarding hardware what it should do.

Regardless, programming custom network functions on these chips is by no means an
easy task. Each of these programmable devices has a different set of low-level functionalities,
not to mention the different languages used to implement them [8]. P4 [8] proposes to solve
this data-plane programming challenge by providing a generic abstraction language that can
be used to write forwarding behavior for theoretically any kind of forwarding hardware.

2.1.3. P4 Language
P4, which stands for Programming Protocol-independent Packet Processors, is a data-plane
programming abstraction language, proposed by Bosshart et al. [8]. It was designed with the
main goal of enabling network end-users to be able to write their network functions. The
language defines various components of the data-plane which can be used to govern the way
a network device processes incoming packets.

While OpenFlow gives a tool for network operators to customize forwarding behavior based
on matching a set of protocol headers and determining what action(s) to take for various kind

8 2. Theoretical Background

Programmable
Parser

Programmable
DeparserProgrammable Match-Action Pipeline

Figure 2.3: P4 data-plane abstraction model. Reproduced from the P4 language tutorial [51].

of header combinations, P4 enables network operators to govern all data-plane functionalities
that a programmable device can support, including defining (new) network headers and the
corresponding (customized) actions. In other words, P4 enables a network controller to tell
the switch how to operate [8]. It enables countless new possibilities and gives the agile char-
acter of the software development cycle in the context of network data-plane development.
Figure 2.2 illustrates the high-level working of P4 and its differences compared to OpenFlow.

To provide a high degree of flexibility, P4 was designed with 3 main goals in mind:

• Reconfigurability. The network operator should be able to adapt the network functions
as needed. This implies that these changes should also be able to be implemented on-
the-fly.

• Protocol independence. We should not limit the switch to predefined supported packet
headers, but instead, we have to be able to define any network headers that we need.
Further, we can build a customized match-action table based on the header values.

• Target independence. The P4 programmer does not need to know the details of the
target switch. Instead, the compiler should translate the written P4 program into a form
of software that is understood by the target hardware.

To write a program in the P4 language, the network programmers should understand the
concept of P4’s abstract forwarding model in advance. Derived from OpenFlow, the abstract
forwarding model generalizes the packet forwarding process from various network devices
(e.g., L2 switches, L3 routers, firewall, load-balancers) and by different technologies (e.g.,
fixed-function ASICs, NPUs, FPGAs, software switch). The model, as shown in Figure 2.3,
allows to build a target-independent program that can be mapped into a variety of network
devices.

The abstraction model comprises 3 main components:

• Programmable Parser. This component abstracts the declaration of the packet headers
that should be recognized by the switch along with their order in the packet.

• Programmable Match-Action Pipeline. This component defines the packet processing
algorithm and also the match-action tables used to decide which actions to take based
on the value available in the packet headers.

• Programmable Deparser. This component is used to define how a processed packet
should look when transmitted back on the wire.

Further, the P4 language has several important elements:

• Parsers. This element provides the state machine needed to do bit field value extraction
from the packet headers.

• Controls. This element contains the match-action table definitions that are used to
determine which action to take. We can use branching control flow statements, i.e.
IF-THEN-ELSE statements, to implement more complex functionality.

2.2. Intent-Based Networking 9

Architecture
Description

Extern Libraries

Programmable blocks
and their interfaces

Support for specialized
components

Data Types Bistrings, headers,
structures, arrays

Controls Tables, Actions,
control flow
statements

Parsers

Expressions Basic operations
and operators

State machine,
bitfield extraction

Figure 2.4: P4 language elements. Reproduced from the P4 language tutorial [51].

• Expressions. The expression element defines the operators and operands available in
the P4 language.

• Data Types. P4 comes with several basic data types, such as strings, Boolean, integer.
We can also define new data structures by combining the basic data types, just like in
other imperative languages.

• Architecture Description. It specifies a particular configuration of programmable
parsers, control blocks, and perhaps vendor-specific blocks.

• External Libraries. P4 also supports a library of “externs”. The external functions
provide some functionality that is not implemented in P4 but can be invoked from the
P4 programs. An example of an external function is the hashing function, which is
usually performed on specific hardware.

Figure 2.4 illustrates the P4 language components and their corresponding locations, if
any, in the abstraction model. The complete specifications of the P4 language can be found
in the P4ኻዀ language specification document [61].

2.2. Intent-Based Networking
The basic idea of Intent-Based Networking (IBN) is to manage the network through describing
the network services as what goals we would like to achieve instead of how the services
should be built [5]. The network controller can then work to implement the intended goal by
computing what kind of resource and configuration that is needed to provide such a service.
The controller should go as far as guaranteeing that the intended service is being enforced
correctly in the network.

While the concept of IBN is relatively still new, the notion of network management by
describing policies is not. The concept of Policy-Based Network Management (PBNM) far
predates the concept of IBN. Even though the main ideas between these two approaches
are similar, the IBN is fundamentally different in which intents are independent of the net-
work topology, technology, and vendor-specific features [28]. This independence allows us
to move intents between one network to another conceptually without requiring any forms of
modification or adaptation.

2.2.1. Intent Definition
There is no standard definition of intent in the context of IBN, but it is commonly understood
as business or system-level policies used to govern network services [28]. A business-level

10 2. Theoretical Background

Intents Policies Service
Definitions

Network
Resources

Monitoring
System

are translated into are refined into

are implemented in

are monitored by

assures the enforcement of

Figure 2.5: Intent Based Networking Architecture.

policy is usually described in a natural language, employing business domain vocabularies.
For example, a network intent in a business level could be stated like every gold level users
should always get an uninterrupted session of high-resolution video streaming at all time. In
this example, the definition of some entities such as gold level users and a high-resolution
video streaming is still not explicitly defined. The technical definition of what the entities are
could be drilled down further in the controller by means of defining network policies, i.e. the
formal definitions of what the entities are. The network policies can vary from network to
network, but the service intent does not need to be modified.

2.2.2. Intent-Based Networking Architecture
Many works have been done in attempts to define the architecture of IBN. One of the earliest
attempts was [66], which proposed a general policy-based administration framework adapted
from the IETF/Distributed Management Task Force (DMTF) policy framework. More recently,
Cohen et al. [15] introduced an intent-based network virtualization reference architecture.
They realized it using an intent-based North-Bound Interface (NBI) and a network overlay
technique called DOVE. However, they did not specifically describe the detail regarding their
intent-based NBI or the design they used to implement the system.

Some works also brought up the idea of end-to-end intent-based networking deployment,
although many of them only worked on developing a simple deployment to evaluate the fea-
sibility of IBN. Cerroni et al. [13] developed simple intent-based network management for
provisioning end-to-end network services over several network domains, but did not attempt
to standardize any part of IBN management. Han et al. [28] took a different approach of
a layered architecture for managing an intent-based virtualized network. They argued that
each layer should give an abstraction for the next layer. Their architecture consisted of five
layers: protocol adaptation, abstraction, virtualization, virtual abstraction, and intent layer.

There are also some efforts in defining the architecture of IBN in the industry. Cisco
Systems [14] defined an intent-based network as a network that should fulfill 3 functions:
translation of intent, deployment of the computed intent to the network, and assurance of
the deployed intent using continuous monitoring. Veriflow Systems [25] shared a similar
view and defined an intent-based network control loop consisting of 5 functions: intent de-
scription, translation, implementation, awareness, and verification.

From the aforementioned works, we can infer a general architecture of an intent-based
network. The general intent-based management architecture is illustrated in Figure 2.5. The
service definition starts with a form of intent description. The intent description is further
translated into network policies by formalizing the intent into some form of explicit network
policies. These policies are then refined, i.e. checked for consistency and usability, into
some form of service definitions which are ready to be implemented in the network. After
the service is deployed, a specialized monitoring system will monitor the network resource to
assure that the policies are enforced correctly by the network.

The following sections are organized based on the entities in this general architecture.

2.2. Intent-Based Networking 11

2.2.3. Intent Extraction
Onemain challenge in the domain of intent extraction is how to translate intent from a natural
language to formal policies. Jacobs et al. introduced Nile [31], a high-level intent definition
language that is used as an abstraction layer between a natural language and the associated
network policy. Nile is human-readable, as it closely resembles the English language, while
still providing the conciseness that is required for further computation.

In Nile, the entities from the user’s utterance are extracted using DialogFlow [30], a natural
language processing framework developed by Google, which in turn utilizes machine learning
techniques to perform the entities extraction. The intent is then presented, in the format of
Nile language, to the user, who will give feedback regarding the translated intent, e.g. confirm
or reject the translation of the intent. The feedback will be used to re-train the learning model
that they used, improving the entities extraction accuracy of the model.

Attempts in standardizing network intent in the form of a language have also been made.
One notable example is the Nemo project [49]. The project aims to develop a standard NBI
API which allows applications to use intent-based policy to create virtual networks. Further
extension on the Nemo language was also proposed in [64], which appended the functionality
of conditional operators into the language.

2.2.4. Policy Refinement
Policy refinement is defined as the problem of translating a high-level abstract notation to
the language, e.g. configuration, used in various policy enforcement points [17]. There are
a lot of works that have been done in the domain of network policy, with a special emphasis
on the problem of policy refinement. The problems tackled by these works also vary from
the problem of policies reconciliation [3, 53], selecting a set of NFVs required to implement a
service chain [59], up to where to implement encryption in the network [60].

Policies Reconciliation
The problem of policies reconciliation can be defined as how to combine several network
policies with differing requirements, to the extent that the policies might be conflicting with
each other. This problem is possible when several users of the network specify their intent.
For example, the network owner has the policy of disallowing all traffic on TCP port 23, while
on the other hand, a network user needs to use TCP port 23 for her application to work.
PGA [53] solved this problem by using a graph abstraction to reconcile high-level policies.
However, PGA only dealt with access control list policy.

Janus [3] extended the graph-based abstraction introduced in PGA by adding support for
QoS constraints and dynamic intent-based policies. The dynamic policies can be categorized
as two main types: (1) temporal policies which include the notion of time into the policy, e.g.
limit bandwidth at working hours, and (2) stateful policies that depend on the state of the
network and/or application, e.g. direct traffic from a specific host to IDS when there are too
many TCP SYN packets sourced from the host. In this work, the authors also developed some
heuristic to maximize the number of policies being enforced by the mean of policy negotiation,
i.e. degrading service for applications with loose QoS requirements.

Service Chaining
Scheid et al., in their work INSpIRE [59], offered another perspective on how intent-based
networking can be utilized. They proposed a solution to refine intents in the form of a con-
trolled natural language to do Virtual Network Functions (VNFs) selection based on a Non-
Functional Requirements (NFRs) in the intent. NFRs are informal specifications of a service,
which are usually based on empirical observation from stakeholders. An example of an in-
tent which contains NFR is financial traffic from the marketing division should be secured
and confidential. The notions of secure and confidential are not explicit, leaving room for
interpretation.

INSpIRE solved the NFR definition problems using the technique of Softgoal Interdepen-
dency Graph (SIG) and machine learning algorithm to do clustering, e.g. K-mean clustering.
It produces the output of the set of VNFs that should be employed to fulfill the intended spec-
ification. The order of the VNFs involved in the service chaining itself was outside of their
scope of work.

12 2. Theoretical Background

Determining Encryption Location
Intent-based networking has also been adopted in the domain of network security. Szyrkowiec
et al. [60] used policies based management to decide where best to implement encryption.
They argued that there are 3 layers to implement encryption: physical layer (using hardware-
based optical encryptor), link-level layer (using MACsec), and logical layer (using IPsec). As
each of these layers has different performance characteristics, i.e. latency, throughput, flex-
ibility, the policy compiler should decide where best to implement the encryption, based on
the performance requirement policies predefined by the users.

2.2.5. Policy Assurance
Policy assurance is the process of guaranteeing that the deployed policies are indeed running
correctly. The policy guarantee mechanism is implemented by monitoring various metrics
from the deployed service and taking appropriate action whenever the policies are violated
or predicted to be violated. The domain of policy assurance still could benefit from more
research as not many works have been done in this domain. The question of how to best
assure the deployed policies are enforced correctly in the network remains an open question.

Some of the works that have been done in this domain are too specific, leaving us with
no general framework on how to tackle this problem. Examples of such works are [43] and
[58]. Marsico et al. [43] demonstrated that more intents can be deployed in the network if
negotiation of intent is possible. They did it by offering a degraded version of the intended
service or by re-arranging the policy enforcement location of the existing deployed services.
Sanvito et al. [58] extended ONOS1 by implementing an off-platform application, i.e. not
a part of the ONOS controller itself, that does the function of optimizing and re-routing for
the deployed intent-based services. The resulting optimized network configuration is then
communicated back to the controller via an API.

2.3. Genetic Programming
Gulwani et al. [26] states that Genetic Programming (GP) [38] can be regarded as an extension
of Genetic Algorithms (GA) [29], specifically for the computer program synthesis domain, with
the aim to generate computer programs. GP searches for a program by “evolving” an initial
population of random programs and “breeds” them into new generations of programs via the
means of genetic operations inspired from Darwin’s theory of natural selection. The genetic
operations consist of the crossover, mutation, duplication and deletion operations [37].

The original GP proposal [38] evolves structures containing computer programs built on
top of a set of primitives, i.e. functions, and terminal values. This set of primitives and
terminal values together form the hypothesis (search) space of possible programs. The GP
algorithm first creates a population of random programs with a certain size, after which it
does the crossover and mutation genetic operators in order to produce new program variants.
The crossover operation swaps a part of a program with a part from another program with
the intention to combine “useful” subprograms, while the mutation operation introduces
random changes in a program. It then evaluates how well a program complies to a certain
specification by using a certain fitness evaluation function. It then expresses the fitness of
the evaluated program in the form of a numerical value. This value is then used to asses the
suitability of the program. The program with the highest fitness value is then promoted as
the solution.

The GP algorithm works on top of a set of terminals and primitives that are specific to the
application domain. This set defines the complete search space of possible programs. To be
able to produce a program that satisfies the specification, there are 2 requirements for the
search space:

1. a program that satisfies the specification should exist in the search space, and

2. each function (primitive) should be able to accept a value returned by another function
or a terminal value as its argument.

1https://onosproject.org/

https://onosproject.org/

2.3. Genetic Programming 13

+

* -

x x 2x

r[1] := x * x

r[2] := x - 2

r[0] := r[1] + r[2]

* -2x + - out1+

(a) (b)

(c)
Figure 2.6: GP program examples in: (a) tree-based representation, (b) linear representation, (c) graph-based representation.
All representations shows the program that computes the value of ፟(፱) ዆ ፱Ꮄ ዄ ፱ ዅ ኼ, with ፱ as input and ፟(፱) as output.

2.3.1. Genotype Representation
There are three gene representations in Genetic Programming:

• Tree-based representation. It represents the genes in the form of a tree data structure,
in which the functions reside in the internal nodes, while the terminal values reside in
the leaves of the tree. The outputted value is always the evaluated value at the root of
the tree. The original GP proposal [38] uses the tree-based representation.

• Linear representation. It represents the genes linearly as an imperative program [11].
Each line of the program consists of one function and its input values, which can be
obtained from either another function or terminal value. Each program line modifies
the content of an array of registers. The outputted value is conventionally stored in
register number 0.

• Graph-based representation. It represents the genes in the form of a graph. The
terminal values and functions are represented in the form of nodes, which then contain
links to other functions or terminal values. The output is obtained by back-propagating
the chain of nodes and links from a set of output nodes. One example of a GP variant
that uses a graph-based representation is Cartesian Genetic Programming [45].

Figure 2.6 gives an illustration on the three GP representations for the program that com-
putes the value of 𝑓(𝑥) = 𝑥ኼ + 𝑥 − 2.

2.3.2. Workflow
To design a GP workflow, we need to define 4 main steps:

1. define a set of functions/primitives and the terminal values,

14 2. Theoretical Background

0.5

0.8

0.9

0.85

0.4

Top-N
Selection

(N=2)
Tournament

Selection (Tsize=3)

0.1

0.5

0.5

0.8

0.9

0.85

0.4

0.1

0.5

0.85

0.5 0.1

0.5

Winners Losers

Winner

Winner

Figure 2.7: Selection methods: (left) top-N values selection (N=2), (right) tournament selection. Each box represents a fitness
value.

2. define a fitness measurement function to assess the suitability of a program, i.e. how
“close” the program is to our intent,

3. define the values of search parameters that guide the evolutionary process, such as
the population size, the number of available primitives, the chance to do reproduction,
crossover, mutation, deletion, etc., and

4. define the termination condition to end the evolutionary process and to return the best
program.

The GP algorithm first needs to create a random population of initial programs, in which
each individual is generated randomly from the set of terminal values and functions. Each
program also needs to be syntactically correct in order to participate in the evolutionary
process. It then measures the fitness of each program in the population using a fitness
value evaluation function. The method of how to compute fitness value measurement is
domain-specific and problem-dependent. Insight and creativity are often needed to build
a good fitness value evaluation function. Some examples of fitness measures are counting
the number of correct input-output value pairs, measuring the deviation of the program
output and the desired output, measuring the properties generated after program execution
(e.g. game score, energy, time, etc.) or the combination of these measurements. We can
expect that the initial population contains programs with poor fitness values. However, some
programs will have better fitness values than others. The discrepancy in these fitness values
is our guidance to select which program to reproduce using the crossover and mutation
operations.

2.3.3. Selection Mechanism
The GP algorithm then selects two individuals based on certain criteria from the popula-
tion. The selection process is usually performed by comparing the fitness values of the pro-
grams. The most straightforward method is to just select two individuals with the highest
and second-highest fitness values. However, the selection of best programs only might make
the GP process stuck in a local minimum as it is likely that the gene pools will be limited to a
few select individuals. Therefore, there also exist some alternatives for the program selection
mechanism, like the tournament selection. The tournament selection does not necessarily
select the programs with the highest fitness values, but instead, it introduces randomness
into the process by comparing only a subset of programs. Each subset of programs will take
part in a tournament. Each tournament returns one winner and one loser, which are the

2.3. Genetic Programming 15

Parent individuals potential offsprings

are crossed over into ..

cutting
point

Figure 2.8: Crossover genetic operation example.

Parent individual

potential offsprings

is mutated into ..

Figure 2.9: Mutation genetic operation example.

programs with the highest and lowest fitness values, respectively. Figure 2.7 illustrates the
top-N and tournament selection mechanisms.

2.3.4. Crossover and Mutation
The crossover operation is then performed to the designated parent individuals. It selects a
block of genes within one parent individual to be swapped with the ones selected from the
other parent individual. This operation can be repeated multiple times to produce a set of
“child” programs. Figure 2.8 gives an illustration of the crossover operation.

The mutation operation is performed to a select program in order to introduce changes
within the program. The changes can be in the form of modification, addition or even removal
of some genes. Figure 2.9 gives an illustration of the mutation operation. There is also the
reproduction operation, which is used to duplicate a program and then insert the clone in
the new population.

2.3.5. End Condition
The GP algorithm then repeats the whole process with the newly generated population. Each
pass of this population modification is called a generation. It iterates through generations of
programs until the end condition is reached. The end condition can be:

• when a perfect solution has been found,

• a predefined generation limit has been reached, or

• no significant improvement in the fitness value of the programs after several consecutive
generations.

After the process terminates, the best program, the program with the highest fitness value,
is returned as the result. The process is deemed successful when the returned program
fulfills all specifications.

16 2. Theoretical Background

Needless to say, the success of each GP run depends on the design of the fitness evaluation
function. A good evaluation function can tell, in fine granularity, how suitable a program
is and express it in a numerical value. The design of a good fitness value requires deep
knowledge in the domain and also a handful of creativity.

3
P4I/O: Intent-Based Networking with P4

Abstract. Switches that can be (re)programmed through the network programming language
P4 are able to completely change – even while in the field – the way they process packets.
While powerful, P4 code is inherently static, as it is written and installed to accommodate a
particular network requirement. Writing new P4 code each time new requirements arise may
be complex and limits our agility to deal with changes in network traffic and services.

In this chapter, we present P4I/O, a new approach to data-plane programmability based on
the philosophy of Intent-Based Networking. P4I/O provides an intent-driven interface that can
be used to install and/or remove P4 programs on the switches when needed and which is easy
to use. In particular, to realize P4I/O, we (1) describe an extensible Intent Definition Language
(IDL), (2) create a repository of P4 code templates, which are parsed and merged based on the
intents, (3) provide a technique to realize the resulting P4 program in a programmable switch,
while accommodating intent modifications at any time, and finally (4) implement a proof-of-
concept to demonstrate that intent modifications can be done on-the-fly.

3.1. Introduction
Recent advances in data-plane programmability have enabled the implementation of cus-
tomized high-speed network functions directly into programmable switches. Network opera-
tors can specify any pipeline processing logic by expressing their will in the form of a pipeline
abstraction language, which was made famous by P4 [8].

The applications are virtually limitless, with examples ranging from performing network
telemetry on the switches [27, 48], to fast congestion detection on the data-plane [65], to
offloading distributed consensus algorithms to the data-plane [18].

Unfortunately, to reap the benefits of data-plane programmability, network operators have
to face the burden of learning its associated abstraction languages, such as P4 [8], to be able
to express their desired data-plane functionality. This translates to a steep learning curve,
effectively creating a barrier before operators can reap the benefits of data-plane programma-
bility.

To alleviate that burden, in this work, we present P4I/O, an Intent-Based Networking (IBN)
framework that allows the user to express their network functionality intents in a close-to-
English style, which subsequently is translated into P4 code, as illustrated in Figure 3.1, with
the goal of facilitating the general public to attain the benefits of data-plane programmability.
To realize P4I/O, we combine the notion of Intent-Based Networking (IBN) along with the
concept of pipeline configuration abstraction, resulting in a Intent-Based P4 Code Generation
technique. As network services are dynamic in nature, the P4I/O is designed to accommodate
changes in the intent description and realize them right away with minimum disruption to
the existing services.

In order to realize P4I/O, in this work, we present the following key contributions:

• Extensible Intent Definition Language (IDL). In order to describe various kinds of
network services as intents, we devise in §3.3 a high-level language that is close to the

17

18 3. P4I/O: Intent-Based Networking with P4

combined.p4

Intent 1 Intent 2 Intent N

Intent Parser

Policy Builder

Services
Library

P4 Code Generator

Topology
Manager

Switch Controller

combined.p4

gRPC

States Manager

Figure 3.1: P4I/O architecture.

3.2. Network Telemetry Use Cases 19

human language, yet precise enough to be interpreted unambiguously by the network
controller. Furthermore, this language is extensible so that we can define any kind of
data-plane functionality.

• Template-Based P4 Code Generation. We construct a repository of relevant network
functions in the form of P4 code templates. These templates are then parsed and repre-
sented in a specialized data structure that facilitates combining the network functions,
following the intent instructions. The code templates are then finally merged together
to form a valid P4 program, as described in §3.4.

• Dynamic Intents Realization. We provide, in §3.5, a technique to install the resulting
P4 code in a programmable switch, while permitting intent modification at any time. We
realize intent modifications, with minimal disruption to the traffic forwarding process,
through a state-transfer mechanism.

• Framework Evaluation. In §3.6, we demonstrate that P4I/O works, by building a
proof-of-concept. P4I/O code has been released as open-source code [55].

3.2. Network Telemetry Use Cases
Our research has the main goal of developing a framework that has the capability to take
intent descriptions as input and to generate pipeline configuration, in the form of P4 code,
as output. P4I/O can be used for any network function, but to explain its building blocks,
we will consider several use cases from the domain of network telemetry. Network telemetry
functions provide interesting challenges to solve, because they require a state to be stored
in the switch, e.g. in the form of P4 registers [61], along with complex pipeline processing
logic to compute the states. We consider the following use cases: (1) Threshold-based Heavy-
Hitter (HH) detection, (2) Distributed Denial of Service (DDoS) victim detection, and (3) Super-
Spreader (SS) detection, which is the inverse of DDoS detection. All of these use cases are
implemented using sketches, in particular Count-Min Sketch [16] and Bitmap [21].

For example, consider use case (1): HH detection is a mechanism to compute whether a
packet is part of an HH flow, which we define as a flow that has more than our threshold
of 𝑇 packets. Consequently, the switch must track the number of packets in each flow,
while it has very limited memory and processing resources. To effectively make use of the
limited resources, we use the Count-Min sketch, which enables our switch to track a virtually
unlimited number of flows at the expense of slightly reduced accuracy. Once we identify if
a packet is a part of a heavy-hitter flow, we can take actions against it. To illustrate, some
possible actions are: dropping it, marking it with a particular DSCP value, metering (rate-
limiting) it, or even combination of them.

Our goal is to run a network in which network functions, such as the described teleme-
try functions, can be (de)activated at any time by adding/removing intents in the controller.
Realizing this goal is challenging, because of the following issues:

• Intents Composition. As wemay have several intents that run in parallel on the switch,
the ordering of the execution in the pipeline processing will impact forwarding perfor-
mance.

• Hardware Constraints. Physical switches have a limited amount of resources. Wemust
be able to calculate how much resources will be consumed to run a set of functions even
before implementing them in the switch. Failure to do so might lead to unpredictable
switch behaviour.

• State Preservation. Intent modification translates to the changing of switch pipeline
configurations. As each set of network functions has its own requirements for state con-
tainers, we must consider the problem of preserving the state from one set of functions
to another. Moreover, as the new set of functions might not have the same state con-
tainers available, we need a mechanism to manage the unused state values. Finally, we
also have to minimize the effect of intent modifications on the traffic forwarding process.

The following sections describe how we tackle these issues.

20 3. P4I/O: Intent-Based Networking with P4

Listing 3.1: Drop Heavy-Hitter Action Example.

import drop_heavy_hitters

define intent drop_hh_any_any:
from endpoint(’any’)
to endpoint(’any’)
for traffic(’any’)
apply drop_heavy_hitters
with threshold(’more or equal’, 20)

3.3. Intent Definition Language
This section discusses the Intent Definition Language (IDL) that is employed to express net-
work intents. We begin by identifying the requirements for such a language and subsequently
present a working solution based on extending an existing IDL.

3.3.1. Requirements
While Han et al. [28] claim that there is currently no standardized definition of network intent,
they also argue that intent is generally perceived as a business-level goal of how the network
should behave, abstracting the implementation details from the operators. Reflecting on this
objective, we identify the following requirements to be satisfied by our IDL:

• Readability. Network operators should be able to intuitively express their intended
services with minimum training. We propose to cater to this need by developing a lan-
guage that is close to a natural language, e.g. English, yet still concise enough to be
interpreted unambiguously by the controller.

• Abstraction. The language should abstract out technical details of the implementation.
To realize this, we have to move the details of the implementation to a lower layer.
The lower-layer implementation should still be accessible by operators with advanced
technical knowledge for debugging purposes.

• Flexibility. The language should be flexible enough to be extended with any kind of
required network functions. This means that we have to design for a modular architec-
ture, which facilitates easy extensions of new network functions.

3.3.2. Nile Language Extension
We employ Nile [31] as the base language for our IDL. Nile is a network intent language
with the goal of providing an intermediate layer between a natural language and lower-level
policies. In [31], user utterance is processed into a network intent expressed in the Nile
language. Interested readers are referred to [31] for the grammar of Nile in EBNF notation.
Nile satisfies our requirements of readability and abstraction, but does not facilitate the
import of external module definitions. To that end, we introduce several constructs:

1. import: to define custom actions and import them from the actions repository,

2. apply: to apply the custom action by specifying the name of the action in the intent
definition, and

3. with: to provide parameter values required by the custom action.

The import construct can be used multiple times to define more than one custom action.
The specified action is then executed whenever the specified conditions in the intent definition
are satisfied.

For example, consider the code snippet in Listing 3.1. We define a new action named
drop_heavy_hitters that performs a threshold-based HH detection, with threshold 𝑇 = 20

3.4. P4 Code Templates 21

const bit<8> HH_THRESHOLD = {{ hh_threshold_val }};

const bit<8> HH_THRESHOLD = 1000;

if (meta.minRegVal > HH_THRESHOLD) {
drop();

}

Figure 3.2: (Top) Template example with placeholder. (Mid) Template example with rendered placeholder value. (Bottom)
Manipulation section example.

packets. The drop_heavy_hitters action is to drop HH flows. This intent applies to all traffic,
from any source or destination.

3.4. P4 Code Templates
In this section, we describe our template-based method for forming P4 code. A knowledgeable
party predefines P4 code templates that correspond to specific actions. The code templates
are then imported into a special repository in the network controller. To render a template,
the controller takes various attributes defined in the intent as inputs. If there is more than
one intent or the intent itself is more complex, we may also need to “merge” multiple P4 code
templates into one final P4 program.

The templates are written in a templating-language that has several constructs that are
syntactically distinguishable from the actual text. The constructs act as placeholders that
can be populated with string values. This way, the final P4 code can be rendered by populat-
ing each placeholder with precomputed string values. We employ Jinja2 [57], one of the most
popular parameterized templating-languages, as our language of choice. Figure 3.2 (Top and
Mid) illustrates the placeholder and its associated rendered code. The {{𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒_𝑛𝑎𝑚𝑒}}
struct is used as a placeholder for a string named hh_threshold_val.

3.4.1. Network Telemetry Function Structures
The P4 code templates for the majority of network telemetry functions can be built upon the
following structures:

• Constant Definition. Integer constants, that are needed for the function computation,
are stored in this structure. The combination of constants can be done by a straight-
forward concatenation. Figure 3.2 (Top and Mid) depicts an example for P4 constant
definition.

• Parser Definition. The state machine to parse the required packet headers.

• Metadata Definition. The metadata fields that are required by the network function to
perform its computation. The metadata fields name in a P4 program should be unique.
We can ensure the uniqueness of each field name by prepending a simple text that
differs for each function.

• Packet Identification. In the packet identification section, we perform a computa-
tion to identify whether a packet belongs to a specified group of traffic (or vice versa).
In our heavy hitter example, this structure is represented by the computation of the
hash values and the update process of the register values. No action is enforced in the
identification phase.

• Packet Manipulation. In this final phase, actions are taken on the identified traffic.
In the P4 language, the possible actions are virtually limitless, but common ones are:
count, mark, drop, meter and/or a combination of them. Considering our heavy hitter

22 3. P4I/O: Intent-Based Networking with P4

header ethernet_t {
macAddr_t dstAddr;
macAddr_t srcAddr;
bit<16> etherType;

}

header ipv4_t {
bit<4> version;
bit<4> ihl;
bit<8> diffserv;

...

register<bit<8>>(1024) regCountMin;

action compute_tcp_reg_index() {
hash(meta.hAddr_s1,

HashAlgorithm.crc16, 10w0,
{

hdr.ipv4.srcAddr,
hdr.ipv4.dstAddr,
hdr.ipv4.protocol,

...

if (meta.minRegVal > HH_THRESHOLD) {
drop();

} else {
...

Parser Identification Manipulation

Eth

IPv6

IPv4 TCP

UDP

Start End
HH_
com
pute

Start End
Reg
_val
ue

Drop

NoA
ction

(N,inf]

[1,N]

Figure 3.3: P4 code template translation to a Directed Acyclic Graph (DAG) structure.

example, an example of the action would be marking a packet with a specific DSCP
value once a packet is identified to be part of a heavy hitter flow. Figure 3.2 (Bottom)
depicts an example for this phase.

3.4.2. Template Representation
In this section, we present a formal data structure to facilitate combining intents and their
corresponding P4 code. As the network functions that we are dealing with are logical repre-
sentations of packet pipeline processing, the data structure should also be able to move from
one condition to the next, which is possible via a Directed Acyclic Graph (DAG) that is based
on PGA’s [53] graph structure.

Policy Graph Structure
To help illustrate our graph structure, we use the HH example code in Figure 3.3. The con-
stant and metadata definitions contain no flow information and therefore are not processed
further. The parser definition code can be represented as a directed graph with the vertices
representing the packet header names and the edges representing a possible state transfer
from one header to another.

Combining Templates
We proceed to define how several policy graphs can be combined. Each of the phases in
§3.4.1 has different characteristics and should be treated differently. The simplest cases are
the constant and metadata definitions. To combine constant and metadata definitions from
several intents, we need to make the names unique by prepending each name with a unique
text – preferably generated from the intent id number – and then do a string concatenation
to combine all of the constant and metadata definitions from various intents together.

For the parser graphs, we expect many overlapping nodes coming from several policies,
which can be resolved via computing the union of the vertices and the union of the edges
from all of the graph policies. The resulting edges and vertices comprise the final graph for
the parser.

Finally, the identification and manipulation actions are stitched together one after an-
other. Formally, let’s consider two intents 𝐼ኻ ∶= (𝑖። , 𝑚ኻ) and 𝐼ኼ ∶= (𝑖ኼ, 𝑚ኼ), with (𝑖፧ , 𝑚፧) defined
as a sequence of identification and manipulation actions. After the combination, we get the
action sequence of 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 ∶= (𝑖ኻ, 𝑚ኻ, 𝑖ኼ, 𝑚ኼ).

P4 Code Generation
For the final P4 program, we need another base template that contains placeholders for
the aforementioned P4 code structures in §3.4.1. This base template represents a valid P4
program with several empty sections, ready to be filled in with the rendered policies.

3.5. Intent Realization 23

3.5. Intent Realization
This section describes the realization of the final P4 program that we generated in §3.4.2 into
the network. We also aim to design a solution that is able to handle intents modification,
i.e. added or removed, at any time. We start by defining the software components used to
realize the controller and finally discusses how the system handles intent modification. For
ease of explanation, we limit the scope of the intent realization to one programmable switch
connected to several hosts, but our framework can be extended to intent realization over
multiple switches.

3.5.1. Software Components
To realize the solution that we have described in §3.4, we design a software that is composed
as depicted in Figure 3.1, P4I/O consists of the following components:

1. Intent Parser. The intent parser parses the intents and stores them in a hierarchical
key-value storage intended to be used by the policy builder.

2. Actions Library. The actions library acts as a repository for defined actions represented
as P4 code templates. It parses the P4 code templates into a policy graph as explained
in §3.4.2.

3. Topology Manager. The topology manager keeps track of each host connected to the
switch ports. The information of which host is connected to which port is used to build
a correct P4 match-action table entry required for the packet forwarding process.

4. Policy Builder. The policy builder executes the policy graphs join computation as ex-
plained in §3.4.2. It outputs the combined policy graph required to generate the final
P4 program.

5. P4 Code Generator. The P4 code generator has as main objective to generate a working
P4 program with the input of a policy graph, as described in §3.4.2.

6. States Manager. The states manager keeps track of all match-action table entries that
are implemented on the switch. Each time a new P4 program is installed in the switch,
the switch will lose all of its old entries and therefore needs to be repopulated by the
entries stored in this component.

7. Switch Controller. The switch controller is responsible for pushing the generated
pipeline configuration file into the switch and maintaining the communication chan-
nel to the switch, e.g. via gRPC. This process is done on-the-fly, while the switch is
forwarding traffic. The push process is done by calling the setPipelineConfig procedure,
as defined in P4Runtime [63].

3.5.2. Intent Modification
Switch pipeline configurationmodification is realized via the interface defined in the P4Runtime
specification [63], via the procedure of SetForwardingPipelineConfig. By default, each time a
BMV2 [6] simple_switch_grpc is instructed to load a new pipeline configuration, it will lose
all of the match-table entries and all of the other states, e.g. register, counter, meter, etc.
We refer to this problem as the state preservation problem.

We handle the problem of state preservation by providing two mechanisms:

1. Match-Table Entries Preservation. Preservation is done by rewriting the match-action
table entries every time a switch pipeline configuration is reloaded. The entries are
stored at the State Manager component. However it should be noted that the speed of
rewriting table entries could be a potential bottleneck for the whole configuration reload
process.

2. Switch States Preservation. The states in the switch can be preserved via two ap-
proaches: external and internal backup.

24 3. P4I/O: Intent-Based Networking with P4

(a) External Backup. In this approach, the value in the states is first read by the
network controller. After the states are completely read, the controller reloads the
switch with the new configuration and writes back the state arrays into the switch.
The writing process can be done in two ways: (1) multiple single values are written
into the switch memory, or (2) single multiple values are written by passing the
whole array in one write procedure. The default simple_switch_grpc only supports
method (1).

(b) Internal Backup. This method does the backup within the internal memory of the
switch. As it does not require any external communication, there will be no external
communication overhead. However, the switch should have enough memory for
the backup and dedicate some computation resources for the states duplication
procedure.

For our proof-of-concept, we adopt the internal backupmechanism by developing a custom
P4 software switch based on BMV2’s simple_switch_grpc that has the functionality to preserve
state from one configuration to another. It will first store all of its state to its internal memory.
After the new pipeline configuration is enforced, the switch will try to restore the backed-up
state, provided the previous state container still exists in the new one. The algorithm for the
switch state preservation is depicted in Algorithm 1. This process happens while incoming
packets are temporarily stored on an input buffer in the switch.

foreach registers ∪ counters ∪ meters ∪ ... do
𝑏𝑎𝑐𝑘𝑢𝑝𝑆𝑡𝑎𝑡𝑒[𝑠𝑡𝑎𝑡𝑒𝑁𝑎𝑚𝑒] ← 𝑜𝑙𝑑𝑉𝑎𝑙𝑢𝑒;

end
enforceNewPipelineConfig;
foreach element in backupState do

if element exists in new pipeline then
𝑛𝑒𝑤𝑉𝑎𝑙𝑢𝑒 ← 𝑏𝑎𝑐𝑘𝑢𝑝𝑆𝑡𝑎𝑡𝑒[𝑠𝑡𝑎𝑡𝑒𝑁𝑎𝑚𝑒];

end
end

Algorithm 1: State Transfer Algorithm.

3.6. Evaluation
We evaluate the feasibility of P4I/O through a proof-of-concept implementation. We begin
with describing the setup to realize P4I/O before closing it with a discussion of our result. To
note, our prototype implementation is written in Python and contains approximately 4.530
lines of code.

3.6.1. Proof of Concept Setup
We define 6 epochs, 𝑡ᖣኺ, 𝑡ᖣኻ, .., 𝑡ᖣ኿, to aid us in evaluating intent modifications on P4I/O. In each
epoch, different intents are defined. In 𝑡ᖣኺ, we run DDoS and SS detection functions. In 𝑡ᖣኻ,
we add one Heavy-Hitter (HH) detection intent, which drops traffic exceeding a threshold of
𝑇 = 1800 packets. In 𝑡ᖣኼ, we remove the SS detection. Further, in 𝑡ᖣኽ we also remove the HH
detection, leaving us with only DDoS detection. We then add back HH detection in 𝑡ᖣኾ, this
time with a threshold of 𝑇 = 3600 packets. Finally, we enter the last epoch of 𝑡ᖣ኿ by removing
the HH detection function, effectively leaving DDoS detection as the only running function.

Formally, we can express the network functions in each epoch as the following sets:
𝑡ᖣኺ = {𝐷𝐷𝑜𝑆, 𝑆𝑆}, 𝑡ᖣኻ = {𝐷𝐷𝑜𝑆, 𝑆𝑆, 𝐻𝐻(𝑇 = 1800)}, 𝑡ᖣኼ = {𝐷𝐷𝑜𝑆, 𝐻𝐻(𝑇 = 1800)}, 𝑡ᖣኽ = {𝐷𝐷𝑜𝑆},
𝑡ᖣኾ = {𝐷𝐷𝑜𝑆, 𝐻𝐻(𝑇 = 3600)}, and 𝑡ᖣ኿{𝐷𝐷𝑜𝑆}.

We use a simple topology with our modified simple_switch_grpc software switch connected
to a traffic generator and a traffic receiver as illustrated in Figure 3.4. The generator then
injects random UDP traffic containing random payload with the traffic rate of 1 megabyte per
second. We use a single IP address per sending/receiving side. The topology is run on top of

3.7. Related Work 25

Traffic
generator

simple_switch_grpc Traffic
receiver

Figure 3.4: Proof-of-Concept topology.

Mininet [41], which in turn runs on top of a Ubuntu Linux 16.04 desktop with a dual-core
1.6 GHz Intel i5 processor and 2GB of RAM. The resources are shared between the host,
Mininet, simple_switch_grpc, and P4I/O.

3.6.2. Result and Discussion
Figure 3.5 depicts the throughput graph as observed from the receiving side. At epoch 𝑡ᖣኺ,
the traffic rate is relatively stable until we reach 𝑡ᖣኻ, which temporarily causes a fluctuating
rate, due to the actualization of the new P4 code. We can note that at approximately 𝑡 = 27𝑠,
the HH threshold 𝑇 = 1800 is reached causing the traffic to be dropped. At epoch 𝑡ᖣኼ, the HH
state from the previous epoch is successfully preserved as proven by the absence of traffic.
The removal of HH detection network function at the beginning of epoch 𝑡ᖣኽ gives us back the
inbound traffic. Likewise, 𝑡ᖣኾ also demonstrates the same phenomenon as 𝑡ᖣኻ, but with a twice
as long delay before we reach the new threshold of 𝑇 = 3600.

Reflecting on this result, we believe that our approach is applicable to real-world use
cases. We can conclude that the existing hardware is fast enough to do pipeline configuration
modifications with minimum interruption to the traffic forwarding process. While we see
some fluctuating throughput rate in the result, it can be explained by the condition of our
testbed that performs all computation, e.g. P4 code generation and traffic forwarding, in a
single machine.

3.7. Related Work
Programmable Network. Pyretic [46] allows building network services by means of net-
work programmability. However, their approach to the network programming language is
of imperative nature. PGA [53] addresses the problem of network policies reconciliation, i.e.
aligning overlapping/conflicting policies, by devising a graph abstraction that inspires our
DAG abstraction. PGA is implemented as an extension of Pyretic. Janus [3] extends the work
of PGA by adding the notion of dynamic policies and incorporating QoS constraints. Janus’
implementation is also based on Pyretic.

Intent-Based Networking. Nile [31] provides a human-readable IDL for implementing
network services and is focused on translating user utterance into an IDL and incorporating
user feedback to improve the translationmodel. Marple [48] and Sonata [27] generate pipeline
configurations – also in P4 – from dynamic queries, but do not focus on the technique for
generating the code. Moreover, they do not consider the problem of intent modification on-
the-fly. Donovan & Feamster [20] propose the notion of intention-based monitoring, which
offloads the task of matching traffic to the data-plane. Their Pyretic-based implementation
matches traffic based on attributes with static mapping like domain name and AS number.

Sketch-Based Network Telemetry. OpenSketch [70] utilizes sketches for various flow
measurement tasks. However, their implementation is on NetFPGA, which provides no mech-
anism to reload the switch pipeline configuration on-the-fly. UnivMon [42] contests OpenS-
ketch’s approach by proposing a universal sketch algorithm adopted from universal stream
theory. UnivMon focuses on evaluating the performance and memory utilization of the uni-
versal sketch.

3.8. Conclusion
In this work, we have presented P4I/O, an intent-based networking framework that facili-
tates a simple adoption of P4 data-plane programmability. Through P4I/O, programmable

26 3. P4I/O: Intent-Based Networking with P4

switches can be quickly and easily programmed, without having to learn the corresponding
data-plane programming languages, such as P4. In order to build P4I/O, we have described
an extensible Intent Definition Language, used a P4 code template approach, and enabled
intent modifications on-the-fly. We have made an open-source Proof-of-Concept implementa-
tion of P4I/O, with which we have demonstrated that intents can indeed be installed/removed
in the field.

3.8. Conclusion 27

t’ 0
t’ 1

t’ 2
t’ 3

t’ 4

H
ea

vy
-

hi
tte

r
th

re
sh

ol
d

T=
18

00
ex

ce
ed

ed

H
ea

vy
-h

itt
er

re
gi

st
er

fil

lin
g

up

H
ea

vy
-h

itt
er

re
gi

st
er

fil
lin

g
up

H
ea

vy
-

hi
tte

r
th

re
sh

ol
d

T=
36

00
ex

ce
ed

ed

t’ 5

Fi
gu
re
3.
5:

Th
ro
ug
hp
ut
as

ob
se
rv
ed

fro
m
th
e
re
ce
iv
in
g
si
de

in
va
rio
us

ep
oc
hs
.

4
GP4P4: Enabling Self-Programming

Networks
Abstract. Recent advances in programmable switches have enabled network operators to
build high-speed customized network functions. Although this is an important step towards
self-* networks, operators are now faced with the burden of learning a new language and
maintaining a repository of network function code. Inspired by the Intent-Based Networking
paradigm, we propose a new framework, GP4P4: a genetic programming approach able to au-
tonomously generate programs for P4-programmable switches directly from network intents.
We demonstrate that GP4P4 is able to generate various network functions in up to a few min-
utes; an important first step towards realizing the vision of ‘Self-Driving’ networks.

4.1. Introduction
The concept of Self-Driving Networks, analogous to the concept of Self-Driving Cars, has been
a Utopian dream in the field of computer networks. That ultimate goal of running a network
that behaves solely based on our intent is rapidly coming in reach through fast advances in
the domains of network programmability and artificial intelligence [10, 35].

The introduction of the network programming language P4 [9], which allows for data-plane
programmability, has enabled network operators to construct high-speed network functions
customized to their own needs. However, this does require them to create and maintain a
large library of network function code, which is prone to human error: a single mistake can
render the system unusable. Moreover, data-plane programming languages keep evolving
and new languages are constantly introduced. For example, the move from P4ኻኾ [62] to P4ኻዀ
[61] introducedmajor non-backward-compatible changes to the language. As languages keep
evolving, to remain up to date, a network operator would need to adjust his entire catalog of
code templates.

To avoid these problems entirely, we propose to leave the programming of the network to
the network itself by enabling it to automatically generate data-plane code based on sets of
less complex, human-readable rules or intents. As a proof of concept, we present GP4P4,
a framework that automatically generates data-plane programs satisfying sets of behavioral
rules based on first-order logic. GP4P4 enables operators to modify their network func-
tionality near instantaneously without modifying any code themselves. Figure 4.1 depicts a
high-level rendition of GP4P4.

To the best of our knowledge, GP4P4 is the first framework for automatically generating
data-plane code. We believe that this framework is an important first step towards a future
where self-programming networks can fully program and adapt themselves to their current
goals and circumstances with minimum intervention by network operators.

Machine-learning has recently been applied within the control-plane (see [67]) and to boost
the performance of network functions (e.g. [23, 24, 68]), but the utilization of machine learn-
ing techniques to generate network functions themselves has yet to be considered. Also, a

29

30 4. GP4P4: Enabling Self-Programming Networks

Building BlocksRules

Inner Genetic
Programming Loop

Does the
program
satisfy all
intents?

Best P4 Program
(top fitness value)

Solution

Outer Genetic
Programming Loop

yes

no, reboot the
population

are
transformed

into ..

are used for
evaluating fitness in ..

are used to build an initial population
of random programs in ..

produces ..

Figure 4.1: LGP4P4 overview.

few position papers on self-driving networks have appeared [22, 23, 32, 33, 69], but again a
concrete framework that enables the network to program itself is missing.

Our main contributions are:

1. GP4P4 itself, a framework for automatically generating P4 programs using techniques
adapted from Linear Genetic Programming (LGP). LGP is a machine-learning technique
to “evolve” an initially randomized population of programs towards satisfying an objec-
tive function [11],

2. an evaluation module required to make LGP suitable for data-plane programmability.
Our proposed evaluation module evaluates programs by creating synthetic network
traces and simulating the output of P4 programs on these traces. In this regard, GP4P4
is fully self-sufficient and does not depend on any external network traces or physical
switches, and

3. a Proof-of-Concept experiments demonstrating the efficacy of GP4P4.

4.2. GP4P4
Figure 4.2 gives a high-level overview of GP4P4. Behavioral rules – the intents of the network
operator – lie at the base of our framework. They are analyzed to obtain the P4 building blocks
which the framework uses to create P4 programs, as well as for evaluating the programs
during and after their generation. In the inner loop, GP4P4 evolves programs using Linear
Genetic Programming (LGP), a machine-learning technique to “evolve” an initially randomized
population of programs towards satisfying an objective function [11]. If the best of these
programs satisfies all behavioral rules, GP4P4 presents this program as the solution. If not,
it reboots the population of P4 programs and restarts the inner loop. This process continues
until a solution has been found.

4.2.1. Behavioral Rules
We describe combinations of network functions as a set of behavioral rules on packet at-
tributes (headers and metadata). If these rules are followed for each packet, we deem the

4.2. GP4P4 31

Primitives:
func1(a, b)
func2(a)
func3()

Packet attributes

Constants

Intents

Rules

Parameters

Randomized
P4 programs Fitness value

evaluator

Selection:
Tournament

Reproduction:
Crossover &

Mutation

Is end
condition
reached?

Best P4
program

Building Blocks

no

yes

Inner genetic
programming loop

Does the
program
satisfy all
intents?no, reboot the

population

Solution

Outer genetic programming loop

yes

Figure 4.2: Program generation overview.

P4 program valid. In contrast to P4 programs themselves, these rules describe the intended
outcome of a program, and not its methodology. In other words, these rules can be seen as
a low-level description of the intents of a network operator. The goal of GP4P4 is to automat-
ically generate a valid P4 program for any provided set of behavioral rules. Consequently, to
change the functionality of their switches, network operators only need to state their intents
in the form of behavioral rules, after which a P4 program can automatically be generated and
installed in the network.

In GP4P4, behaviour rules are expressed in the form of IF-THEN predicates connecting
packet input conditions to output conditions. For any packet for which the input conditions
(IF) are true, we require the output conditions (THEN) to be also true. Both the input and
output conditions are expressed as one or more equal (EQ) or not equal (NEQ) Boolean ex-
pressions on packet attributes combined with AND. Packet attributes are referenced using
dot notation (e.g. pkt_in.src_ip). For example, the rule

IF (pkt_in.src_ip EQ 192.168.1.1)
THEN (pkt_out.out_port EQ 2)

means that if the source IP address of an incoming packet is 192.168.1.1, the packet should
be outputted from port 2. We require all input conditions (IF statements) to be mutually
exclusive.

NAT Example
Consider the example situation in Figure 4.3. A P4 switch connects two networks, inside and
outside. To apply NAT, we want the switch to replace the source destination IP address of
host H1 in inside, 192.168.1.1, with 10.0.0.10 in any outgoing packet, and the destination
IP address 10.0.0.10 with 192.168.1.1 in any incoming packet. The IP addresses of all other
packets should be left unchanged. To determine if packets are from inside or outside, we
can match on their input port (pkt_in.port_num); packets arriving at port 0 are moving
from inside to outside, while packets arriving at port 1 are moving from outside to inside.
Figure 4.5 shows the resulting 4 behavioral rules for this network function, while Figure 4.4
illustrates a flow-chart that covers all possible input cases in the NAT example.

32 4. GP4P4: Enabling Self-Programming Networks

H1
IP: 192.168.1.1

P4 switch

H2
IP: 10.0.0.50

Inside
network

Outside
network

Translate
192.168.1.1 <> 10.0.0.10

Figure 4.3: NAT example topology.

Inside-to-outside or
outside-to-inside?

Source IP matched?

Translate source IP

Do nothing

Destination IP
matched?

Translate destination IP

Do nothing

Inside-to-outside

Outside-to-inside

Yes

No

Yes

No

Figure 4.4: NAT example behavior Flow-chart.

RULE1:
IF (pkt_in.port_num EQ 0

AND pkt_in.src_ip EQ 192.168.1.1)
THEN (pkt_out.src_ip EQ 10.0.0.10

AND pkt_out.dst_ip EQ pkt_in.dst_ip)
RULE2:
IF (pkt_in.port_num EQ 0

AND pkt_in.src_ip NEQ 192.168.1.1)
THEN (pkt_out.src_ip EQ pkt_in.src_ip

AND pkt_out.dst_ip EQ pkt_in.dst_ip)
RULE3:
IF (pkt_in.port_num EQ 1

AND pkt_in.dst_ip EQ 10.0.0.10)
THEN (pkt_out.src_ip EQ pkt_in.src_ip

AND pkt_out.dst_ip EQ 192.168.1.1)
RULE4:
IF (pkt_in.port_num EQ 1

AND pkt_in.dst_ip NEQ 10.0.0.10)
THEN (pkt_out.src_ip EQ pkt_in.src_ip

AND pkt_out.dst_ip EQ pkt_in.dst_ip)

Figure 4.5: NAT example behavioral rules.

4.2.2. Program Generation
In Genetic Programming (GP), an initially randomized population of programs is gradually
evolved to satisfy an objective function by selection and reproduction, similar to the biological
concept of natural selection. To move through the search space, reproduced programs are

4.2. GP4P4 33

randomly modified by mutation and/or crossover operations.
An important concept in GP is that of the phenotype versus the genotype. The phenotype is

the program itself, while the genotype is an internal lower-level representation of the program
that is more suitable for GP. Given a genotype, we can directly construct the phenotype by
de-encoding this representation. In practice, there are three major genotype representations
in GP: (1) linear, (2) tree-based, and (3) graph-based. In a tree-based approach, programs
permanently branch of after every IF-statement. Thus, this representation is more likely
to evolve nested IF-statements than successive IF-statements. The graph-based approach,
such as the one implemented by Cartesian Genetic Programming (CGP) [45], does not suffer
from this “problem,” but limits our ability to perform crossover operation1. Crossover is
vital for creating programs that satisfy our behavioral rules, as it allows a program that
satisfies one rule to “merge” with a program that satisfies another rule to, hopefully, create
an offspring that satisfies both rules. As we want to be able to evolve programs with both
nested and successive IF-statements, as well as make use of crossover, we choose to use
Linear Genetic Programming (LGP) in GP4P4. LGP evolves sequences of primitives of an
imperative programming language. Each of these primitives represents a snippet of code in
the phenotype program. In GP4P4 each primitive corresponds to a basic one-line declaration
in P4, such as src_ip = 10.0.0.10;. We assume a set of primitives is provided to GP4P4
every time a new program has to be generated.

Figure 4.2 gives an overview of the program generation module of GP4P4. Program gen-
eration in GP4P4 runs in two loops: the outer and inner loop. In the inner loop, LGP is
applied to evolve an initial random population of programs, i.e. sequences of primitives, into
a program that satisfies all behavioral rules. The inner loop finishes either when a solution
has been found or when this process takes too long. In the later case, the outer loop restarts
the inner loop with a new initial population of random programs. This process helps prevent
the program generation module from getting stuck in a sub-optimal local minimum.

Building Blocks
A primitive may read (write) from (to) any switch register, metadata value, or packet header.
Additionally, a primitive may also access one or more constants (e.g. port 0). In GP4P4 we
treat all these input/output locations and values as registers. We store these registers in a
single array, and allow a primitive to operate on any combination of registers in this array.
Note that this means that the same primitive may correspond to different P4 declarations,
depending on which registers it accesses. The registers of constants are read-only and are
not allowed to be written to. Figure 4.6 shows an example of the combination of GP4P4
primitives, registers, and an individual program. Note that we do not have to store the explicit
values of each register, but only to which part of the memory or packet they refer. We refer
to the combination of registers and primitives as the building blocks of a GP4P4 program.

To construct GP4P4 primitives, P4 declarations are simplified and written in prefix nota-
tion. For example, the P4 declaration var3 = var5; is transformed to the GP4P4 primitive
ASSIGN(var3, var5). Although P4 declarations are normally written in infix notation, it
is easier to encode genes in prefix format. The if-then statement (if() { }) is cut into
two primitives, corresponding to if() { and }. In addition, we restrict these primitives to
two input registers, and create a separate primitive for each possible comparison operator:
IF_EQ(a,b) for if (a == b) {, IF_NEQ(a,b) for if (a != b) {, and ENDIF for }. We do
not allow any other control-flow statements, such as the else statement. Although this choice
of primitives is rather limited, it still supports a wide range of possible declarations, albeit in
the form of multiple primitives. For example, if(a == b && b == c) { is represented as
IF_EQ(a,b), IF_EQ(b,c).

P4 allows for a wide array of possible memory locations, metadata values and packet
headers. Including all these possibilities as registers would severely hamper the ability of
GP4P4 to evolve programs into the right direction. Thus, GP4P4 automatically extracts all
registers from the behavioral rules themselves. A packet attribute or constant is included as
a register if and only if it is used in at least one of the behavioral rules.

1Combining information from two parent programs to create new offspring.

34 4. GP4P4: Enabling Self-Programming Networks

func2()

func3(reg5, reg1)

func1(reg3, reg4)

func2()

func3(reg0, reg2)

Primitives:
func1(a, b)
func2()
func3(a, b)

Constants

Registers
0 1 2 3 4 5

Packet attributes read/write
access

read only
access

LGP individual

Figure 4.6: Example primitives, registers, and GP4P4 program genotype.

4.2. GP4P4 35

IF_EQ(port_num, 0)
IF_EQ(src_ip, 192.168.1.1)
ASSIGN(src_ip, 10.0.0.10)
ENDIF()
ENDIF()
IF_EQ(port_num, 1)
IF_EQ(dst_ip, 10.0.0.10)
ASSIGN(dst_ip, 192.168.1.1)
ENDIF()
ENDIF()

if port_num == 0 {
if src_ip == 192.168.1.1 {
src_ip = 10.0.0.10
}
}
if port_num == 1 {
if dst_ip == 10.0.0.10 {
dst_ip = 192.168.1.1
}
}

Primitives:
IF_EQ(a, b)
ENDIF()
ASSIGN(a, b)

Inputs:
port_num
src_ip
dst_ip

Constants:
0
1
10.0.0.10
192.168.1.1

(a)

(b)

(c)

Figure 4.7: NAT function code: (a) in P4 language, (b) in GP4P4 notation, (c) building blocks

36 4. GP4P4: Enabling Self-Programming Networks

As an optimization step, we categorize each attribute and constant by its data type, such as
integer, string, Boolean, or IP address. We then limit the registers each primitive is allowed
to access by type. This reduces the search space and ensures each primitive + register
combination translates to correct P4 code.

Figure 4.7 depicts an example of a P4 code snippet and its translation in the prefix notation
that is used throughout this work. Note that these two formats represent the exact same P4
code.

Initial Population
To initialize the inner loop, we generate a population of 𝑁 syntactically correct programs of
primitives with a length between min_len and max_len. To construct each program, GP4P4
first randomly picks a program length between min_len and max_len. Then it randomly
selects this number of primitives (with replacement), randomly selects valid registers for each
primitive, and puts the primitives in sequence. This process is repeated every time the inner
loop is restarted.

Selection and Reproduction
Within each iteration of the inner loop, GP4P4 holds two tournaments between 𝑡፫×𝑁 randomly
selected programs, where 𝑡፫ is the tournament size ratio. The program with the highest
fitness value of each tournament (or winner) is chosen for reproduction, while the bottom 𝑛፫
programs (or losers) of each tournament are chosen to be replaced by the offsprings of the
two winners. In LGP, the new set of programs created by replacing the losers by the offspring
of the winners is called a new generation. The inner loop continues the process of generating
new generations until it either finds a valid program or reaches a predefined generation limit.

Each of the 2 × 𝑛፫ offspring is created in pairs of two:

1. Duplicate both winners

2. Perform a crossover between both offspring with probability 𝑃፜
3. Mutate offspring 1 with probability 𝑃፦
4. Mutate offspring 2 with probability 𝑃፦

To reduce the computation time, we compute and store the fitness value of each program
as soon at it is created. This way, we reduce the number of fitness values that need to be
computed every iteration from 𝑡፫ × 𝑁 to 2 × 𝑛፫.

Mutation
To mutate a program, GP4P4 first selects a random index 𝑖 in the program. Then, with equal
probability, it either adds a new random primitive to the program at 𝑖+1, removes the current
primitive at 𝑖, or replaces the current primitive at 𝑖 with a new random primitive. Random
primitives are generated in the same way as described previously in Section 4.2.2, with a few
notable exceptions: To help evolve the program towards satisfying new rules, we generate new
random if-then primitives with a higher probability than other primitives. GP4P4 selects a
new, random if-then primitive with probability 𝑃if and a non-if-then primitive with probability
1 − 𝑃if. In addition, to prevent new if-then primitives from dropping the fitness level of the
program, GP4P4 adds an ENDIF() primitive directly after every new if-then primitive it adds
to a program. Similarly, when removing an if-then or ENDIF() primitive, GP4P4 also removes
the corresponding ENDIF() or if-then primitive.

Crossover
To perform a crossover between two programs, GP4P4 randomly selects a unit of code of both
programs and swaps these units with each other. In GP4P4, a unit is either a single non-if-
then primitive or a sequence of primitives starting with an if-then primitive and ending with
its corresponding ENDIF() primitive. By only swapping valid blocks of code, we ensure that
the resulting two programs remain syntactically valid. The crossover process is demonstrated
in Figure 4.8.

4.2. GP4P4 37

ASSIGN(reg2, reg1)

IF_EQ(reg5, reg2)

IF_EQ(reg2, reg4)

ASSIGN(reg4, reg5)

END_IF()

END_IF()

ASSIGN(reg0, reg4)

ASSIGN(reg3, reg2)

Individual A

Individual B

(a)

ASSIGN(reg2, reg1)

IF_EQ(reg5, reg2)

IF_EQ(reg2, reg4)

ASSIGN(reg4, reg5)

END_IF()

END_IF()

ASSIGN(reg0, reg4)

ASSIGN(reg3, reg2)

Individual A’ Individual B’

(b)

: P4 code unit

Figure 4.8: Unit-based crossover in GP4P4: (a) parent individuals, (b) offspring individuals. The ’}’ symbol denotes a swappable
unit.

Behavioral rules

Trace Generator

Network trace:
Input attributes Output conditions

port_num src_ip port_num src_ip
0 192.168.1.1 * EQ 10.0.0.10
0 192.168.1.0 * EQ 192.168.1.0

Switch Simulator

Syntax CheckProgram

𝐹፯ = ፀᑔ
ፍ×ፀᑡ

𝐹፯ = −1
Fail

Pass

Evaluation Function

Figure 4.9: Evaluation module overview.

4.2.3. Program Evaluation
The evaluation module plays a critical role in GP4P4, as it guides the evolution of programs
in the right direction, as well as checks if a program satisfies all behavioral rules. A good
evaluation function should evaluate, in fine granularity, how close a program is to satisfying
all rules and express this in a numerical value. In the case of P4 programs, this is not

38 4. GP4P4: Enabling Self-Programming Networks

Data: Behavioral rules 𝑅ኻ to 𝑅ፌ, packet multiplier 𝑘
Result: Network trace of input packet attributes 𝑃ኻ, … , 𝑃ፌ×፤ and output conditions 𝐶ኻ, … , 𝐶ፌ×፤
foreach Rule 𝑅። do

for 1 ≤ 𝑗 ≤ 𝑘 do
index ∶= (𝑖 − 1) × 𝑘 + 𝑗;
Construct semi-randomized packet 𝑃index that satisfies the IF conditions of 𝑅።;
Set the output conditions 𝐶index to the THEN conditions of 𝑅።;

end
end

Algorithm 2: Trace Generator.

a straightforward process, as programs may seemingly satisfy a rule for one packet, while
breaking it for another. Figure 4.9 gives an overview of the evaluation module.

First, we check the syntax correctness of the program by inspecting it in Syntax Checker
module. A syntactically incorrect program is assigned a fitness value of −1 and will not go
through further checks. Further, the Trace Generator generates a synthetic network trace
of packets and output conditions based on the behavior rules supplied to the framework.
Next, the Switch Simulator simulates the program and processes the network trace. For
each packet in the trace, the simulator counts the number of packet output attributes that
satisfy the behavioral rules.

Next, the fitness value 𝐹፯ is calculated using the following equation:

𝐹፯ ∶=
𝐴፜

𝑁 × 𝐴፩
, (4.1)

where:

• 𝐹𝑣: the fitness value

• 𝐴፜: the total number of valid output attributes over all packets in the trace

• 𝑁: the total number of packets in the network trace

• 𝐴፩: the number of output attributes per packet

As the fitness value is normalized, a fitness value of 1 denotes a program that satisfies all
output conditions of the behavioral rules.

Trace Generator
The Trace Generator is responsible for generating network traces to evaluate generated pro-
grams on. In addition to generating the input packet attributes themselves, the Trace Gen-
erator also generates the corresponding conditions on the output packet attributes, so the
Switch Simulator can quickly evaluate each program. To reduce computation time, the same
network trace is re-used throughout the inner and outer genetic programming loops. Thus,
the Trace Generator is only run once, just before starting the outer genetic programming
loop.

Algorithm 2 describes the Trace Generator. For each rule, the Trace Generator creates
𝑘 packets. Packet input attributes are created in a semi-randomized fashion to match the
IF conditions of the rule, while the output attribute conditions are directly taken from the
THEN conditions of the rule. By creating packets for each rule, we ensure that the fitness
evaluation function evaluates programs on each rule as well. As the IF conditions of the
behavioral rules are required to be mutually exclusive, the Trace Generator only needs to
consider one rule at a time. To reduce computation time, the same network trace is re-used
throughout the inner and outer genetic programming loops. Thus, the Trace Generator is
only run once, just before starting the outer genetic programming loop.

4.2. GP4P4 39

Switch Simulator
Compiling a program to P4, and then running the program on a real or emulated switch can
take up a significant amount of time. Thus, this approach would not be practical for GP4P4,
which constantly needs to evaluate new programs. We propose running and evaluating each
program on a simulated switch instead, while guaranteeing the same output/fitness as a
real switch. This way, we can still assign accurate fitness scores to programs and test if they
satisfy all behavioral rules, without wasting time on P4 code compilation and installation.
The GP4P4 Switch Simulator assigns an evaluation score to programs by simulating their
output for each packet of the network trace. As the simulator and an actual switch would
both give exactly the same output, the fitness value as determined by the simulator is equal
to that determined by an actual switch as well.

To save time, the simulator (written in Python) runs directly on the sequence of primitives
(the genotype) described in Section 4.2.2 instead of on P4 code (phenotype). When simulating
a program, the Switch simulator first initializes a new list of registers, as described in Section
4.2.2. It then “runs” the program on each packet of the network trace by

1. Copying the packet attributes to the corresponding registers.

2. Interpreting the GP4P4 primitives line by line, reading and modifying the register values
whenever required.

3. Copying the output packet attributes from the corresponding registers.

The fitness value of the program is then determined by counting the total number of satisfied
output conditions, 𝐴፜, and dividing this value by the total number of output conditions, 𝑁×𝐴፩.

In the Switch Simulator, all primitives are assigned their own Python function. Conse-
quently, to interpret a GP4P4 primitive, the simulator simply executes the corresponding
Python function. If-then primitives form their own special case: when the simulator encoun-
ters an if-then primitive, it checks if its condition is true. If it is, the simulator continues
to the next line. If not, the simulator searches for and skips forward to the corresponding
ENDIF() primitive. To prevent the simulator from jumping to the end of a nested if-then block
instead, it keeps track of its current depth while searching for the correct ENDIF() primitive.

4.2.4. End Condition
In this subsection, we describe several possible end conditions to terminate the inner and
outer loops.

Inner Loop End Condition
The inner GP loop can be terminated on several conditions:

• A correct program has been found. This is the most straightforward condition. The
loop stops whenever a program that satisfies all rules has been found.

• Generation limit has been reached. To abruptly terminate an inner loop that has
been running for a long time, we can set a predefined limit of generations. If the limit
has been reached, the loop exits without a correct program.

• No significant improvement after certain generations. Another possible end condi-
tion is to stop whenever we do not see any significant improvement in the maximum
fitness value of the population for a certain number of generations.

The second and third end conditions produce an incorrect program that satisfies only
some part of the rules. However they are needed in practice to terminate loops that run for
an indefinite amount of time.

Outer Loop End Condition
Similar to the inner loop, the outer GP loop can be terminated on two conditions: when a
correct program has been found or the attempt limit has been reached. An attempt is defined
as one run through the outer loop.

40 4. GP4P4: Enabling Self-Programming Networks

Table 4.1: LGP Parameters.

Parameters Values

Population size, ፍ 3200
Inner loop iteration limit 3000

፦።፧_፥፞፧ 1
፦ፚ፱_፥፞፧ 10

Crossover rate, ፏᑔ 1
Mutation rate, ፏᑞ 0.4

ፏif 0.5
Tournament size ratio, ፭ᑣ 0.05
Tournament losers, ፧ᑣ 3

Trace generation multiplier, ፤ 1

Table 4.2: Network Function Properties.

Function Name rules prims ins outs cons blen bifd

NAT 4 IFEQ, ENDIF, ASSIGN 3 2 4 6 1
Firewall 4 IFNEQ, ENDIF, DROP 5 5 2 5 2
Server Balancer 2 IFEQ, ENDIF, ASSIGN 2 2 6 4 1
Link Balancer 2 IFEQ, ENDIF, ASSIGN 2 2 5 4 1
DSCP Marker 2 IFEQ, ENDIF, ASSIGN 5 5 4 4 1
PAT 4 IFEQ, ENDIF, ASSIGN 4 4 4 5 2
Router 2 IFEQ, ENDIF, ASSIGN, SUB 4 4 7 5 1

Header definitions. rules: number of rules, prims: primitives used as building blocks, ins: number
of inputs, outs: number of outputs, cons: number of constants, blen: baseline (manually written
solution) code length, bifd: baseline code maximum nested-IF-statement depth.

4.3. Experiments
We demonstrate GP4P4 on 7 small network functions: Network Address Translation (NAT),
Firewall, Server Balancer, Link Balancer, DSCP Marker, Router, and Port Address Trans-
lation (PAT). Table 4.2 shows the properties of these network functions. The prototype of
GP4P4 was implemented in Python language, while the experiments were run on an Intel
Xeon CPU E5-2690 running Ubuntu 14.04.6 LTS (kernel version 3.13.0-151).

Unless explicitly mentioned, by default the experiments are run with the parameters in-
dicated in Table 4.1. Further the inner loop is terminated when a generation limit is reached
or whenever a correct program is found. As for the outer loop, it is terminated when the
attempt limit reaches a threshold of 2000 attempts or a correct program is found.

4.3.1. Generation Time and Program Length in Various Network Functions
As can be seen in Figure 4.10, GP4P4 can generate each of the 7 network functions in a
matter of minutes. Even for the most difficult function (Router), a valid solution is usually
found within 100 seconds. The worst-case generation time we encountered was around 329
seconds. As network functions do not constantly need to be regenerated, this is well within
acceptable limits. In fact, GP4P4 enables networks to almost immediately react to changing
requirements from users or network operators, as the network can generate and install a
completely new P4 program within minutes.

From Figure 4.11, we can observe that GP4P4 in general generates program with small
variance between program lengths. Only the PAT network function has a relatively larger
variance. One possible explanation is because the solution to PAT has a larger nested-if
depths requirement to all other network function, except for Firewall. Interestingly, this
phenomenon does not occur in Firewall, which has the same nested-if depth requirement as
PAT. However, if we observe the generation time for Firewall, it becomes clear that Firewall
usually finds a solution in a really short time (near zero), most likely because the solution
is often found in the initial population. Thus, the Firewall does not even have to evolve any

4.3. Experiments 41

0

100

200

300

NAT RouterFirewall Server Balancer Link Balancer DSCP Marker PAT

Network Function

G
en

er
at

in
g

T
im

e
(s

ec
)

Figure 4.10: Tukey boxplot of the generation times of 7 network functions. The blue triangle shows the average generation time.
Each network function was generated 100 times.

nested-if blocks like PAT. This can be further explained because the number of constants in
the Firewall function is relatively low (2).

4.3.2. Various Parameter Effects on the Generation Time
Next, we consider the effect of changing different parameters on the program generation time.
In general, there does not seem to be a clear-cut rule for the optimal setting for all network
functions. However, in all our experiments, a program could still be generated within 15
minutes at worst, suggesting that it is still possible to achieve reasonable generation times
even with non-optimal parameters.

Figure 4.12 and Figure 4.13 show the generation time of DSCP Marker and PAT func-
tions versus the population size, generation limit, tournament size ratio, tournament losers,
minimum initial program length, maximum initial program length, crossover rate, mutation
rate and mutation IF-block rate. We chose to illustrate these 2 network functions because
they have relatively high generation times, and thus presumably are more difficult to gener-
ate. We can observe that in both network function, the effect that each parameter does to
the generation time is fairly similar.

For all network functions except NAT, a population size of around 1000 seems to be near-
optimal. Going below 1000 increased generation times. Given that NAT is a relatively easy
function to generate2 and we want to prioritize the generation time of more difficult functions,
this seems to be an optimal choice for the population size.

For the more difficult programs, a low tournament size ratio of at most 0.1 results in
both lower generation times and generation time variance. A lower tournament size ratio
allows more sub-optimal programs to evolve. Presumably, this helps increase the number of
possibilities GP4P4 considers, which allows it to find valid programs more quickly.

2In fact, even with a population size of 1000 all NAT experiments finished within 3 minutes.

42 4. GP4P4: Enabling Self-Programming Networks

20

40

60

NAT RouterFirewall Server Balancer Link Balancer DSCP Marker PAT

Network Function

P
ro

gr
am

 L
en

gt
h

Figure 4.11: Tukey boxplot of the resulting program length of 7 network functions. The blue triangle shows the average program
length. Each network function was generated 100 times.

Introducing crossover decreases the generation times of all network functions. In addition,
increasing the crossover rate also seems to reduce variance. Increasing the crossover rate
had a large impact on all generation times except those for PAT, which it reduced slightly.
The optimal crossover rate seems to be around 0.9.

Changing the mutation rate only had a noticeable effect on the generation times of PAT and
DSCP Marker. However, as it decreased both the average generation time and the variance
between generation times of these functions, mutation is clearly worthwhile to include in
GP4P4.

On the other hand, the size of generation limit, tournament losers, minimum initial pro-
gram length, and the probability of introducing new if-blocks do not seem to give any sig-
nificant impact on the generation time for both function, except for a slight variation in the
variance between the generation times.

4.3.3. Various Parameter Effects on the Program Length
We now inspect the impact of changing different parameters on the resulting program length.
In general, the size of generated programs are relatively more stable than the time needed
to generate those program. Even while varying the maximum initial program length – the
parameter that has most significant effect on the program lengths – the average program
lengths do not seem to change much, while the variance between program lengths do change
quite significantly.

Figure 4.14 and Figure 4.15 show the resulting program lengths of DSCPMarker and PAT
functions versus the population size, generation limit, tournament size ratio, tournament
losers, minimum initial program length, maximum initial program length, crossover rate,
mutation rate and mutation IF-block rate. We chose to illustrate these 2 network functions
for the same reason as in the previous subsection, with an additional reason to inspect the
interesting behavior of the PAT, which was the only function with high variance between the

4.4. Conclusion 43

program lengths as depicted in Figure 4.11.
We can observe that most of the parameters do not seem to impact the program length

significantly, thus we do not analyse the results we get for these parameters. The parameters
with little to no effect to the program lengths are: population size, generation limit, tourna-
ment size ratio, size of tournament losers, mutation rate, and probability of introducing new
if-blocks.

The minimum and maximum initial program lengths do seem to have the most significant
effect on the program length. As can we logically expect, longer initial program length – either
minimum or maximum – generates a longer program. As we aim for shorter, more effective,
solutions, the most optimal value for these parameters is as low as possible, translated to 1
for the minimum initial length and 10 for maximum initial length.

Further, the crossover rate also seems to give some impact on the variance between the
resulting program lengths. This is quite noticeable for the PAT function, but not so much
in the DSCP marker function. From the PAT function, we can see that lower crossover rate
gives programs with shorter length. Although the lowest value for the crossover rate seems
to be best in this case, we must also remember that the highest crossover value gave us
the shortest generation time. As minimizing the length of the resulting program is not first
priority, the conclusion that we have for crossover rate from the generation section still holds
true in this case.

4.4. Conclusion
The size and complexity of networks has grown formidably, making managing and program-
ming them a daunting task. In this work we provide a first step towards automating this
process by enabling self-programming networks. While the introduction of P4 has enabled
network operators to construct high-speed customized network functions, this has come at
a significant cost: Network operators now have to create and maintain a large repository of
network functions, which introduces a completely new vector for network failures. However,
this does not need to be the case. We have proposed GP4P4, a framework for automatically
generating data-plane code satisfying sets of simple behavioral rules. Our proposed frame-
work, called GP4P4, uses Linear Genetic Programming techniques to automatically evolve
a population of P4 network programs towards satisfying a given rule-set. GP4P4 evaluates
these programs by simulating a P4 switch and generating a synthetic trace of network packets
tailored towards effectively evaluating a specific rule-set. This not only reduces the compu-
tation time significantly, but also allows GP4P4 to generate P4 programs without relying on
any external switches or network traces.

Our experiments show that GP4P4 can generate P4 programs within minutes. This en-
ables networks to quickly react to changing requirements, as networks can now generate and
install completely new P4 programs quickly.

Although GP4P4 is currently tested with simple behavioral rules, we believe it is an im-
portant first step towards a future of self-programming networks: networks that can fully
program and adapt themselves to their current goals and circumstances with minimal inter-
vention by network operators.

44 4. GP4P4: Enabling Self-Programming Networks

0

100

200

300

1000 3000 5000 7000 9000

Population Size

G
en

er
at

in
g

T
im

e
(s

ec
)

0

100

200

300

1000 3000 5000 7000 9000

Generation Limit

0

100

200

300

0.1 0.2 0.3 0.4 0.5

Tournament Size Ratio

0

100

200

300

2 3 4 5 6 7

Tour. Losers Mult.

G
en

er
at

in
g

T
im

e
(s

ec
)

0

100

200

300

1 3 5 7 9

Min. Init. Program Length

0

100

200

300

10 20 30 40

Max. Init. Program Length

0

100

200

300

0 0.2 0.4 0.6 0.8 1

Crossover Rate

G
en

er
at

in
g

T
im

e
(s

ec
)

0

100

200

300

0 0.2 0.4 0.6 0.8 1

Mutation Rate

0

100

200

300

0 0.1 0.3 0.5 0.7

Mutation IF−Block Rate

Figure 4.12: Tukey boxplots of the generation times of DSCP Marker function versus the population size, generation limit, tour-
nament size ratio, tournament losers, minimum initial program length, maximum initial program length, crossover rate, mutation
rate and mutation if-block rate. The blue triangle shows the average generation time. All experiments were repeated 100 times.

4.4. Conclusion 45

0

100

200

300

400

500

1000 3000 5000 7000 9000

Population Size

G
en

er
at

in
g

T
im

e
(s

ec
)

0

100

200

300

400

500

1000 3000 5000 7000 9000

Generation Limit

0

100

200

300

400

500

0.1 0.2 0.3 0.4 0.5

Tournament Size Ratio

0

100

200

300

400

500

2 3 4 5 6 7

Tour. Losers Mult.

G
en

er
at

in
g

T
im

e
(s

ec
)

0

100

200

300

400

500

1 3 5 7 9

Min. Init. Program Length

0

100

200

300

400

500

10 20 30 40

Max. Init. Program Length

0

100

200

300

400

500

0 0.2 0.4 0.6 0.8 1

Crossover Rate

G
en

er
at

in
g

T
im

e
(s

ec
)

0

100

200

300

400

500

0 0.2 0.4 0.6 0.8 1

Mutation Rate

0

100

200

300

400

500

0 0.1 0.3 0.5 0.7

Mutation IF−Block Rate

Figure 4.13: Tukey boxplots of the generation times of PAT function versus the population size, generation limit, tournament
size ratio, tournament losers, minimum initial program length, maximum initial program length, crossover rate, mutation rate and
mutation if-block rate. The blue triangle shows the average generation time. All experiments were repeated 100 times.

46 4. GP4P4: Enabling Self-Programming Networks

0

10

20

30

40

50

1000 3000 5000 7000 9000

Population Size

P
ro

gr
am

 L
en

gt
h

0

10

20

30

40

50

1000 3000 5000 7000 9000

Generation Limit

0

10

20

30

40

50

0.1 0.2 0.3 0.4 0.5

Tournament Size Ratio

0

10

20

30

40

50

2 3 4 5 6 7

Tour. Losers Mult.

P
ro

gr
am

 L
en

gt
h

0

10

20

30

40

50

1 3 5 7 9

Min. Init. Program Length

0

10

20

30

40

50

10 20 30 40

Max. Init. Program Length

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1

Crossover Rate

P
ro

gr
am

 L
en

gt
h

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1

Mutation Rate

0

10

20

30

40

50

0 0.1 0.3 0.5 0.7

Mutation IF−Block Rate

Figure 4.14: Tukey boxplots of the resulting program length of DSCP Marker function versus the population size, generation
limit, tournament size ratio, tournament losers, minimum initial program length, maximum initial program length, crossover rate,
mutation rate and mutation if-block rate. The blue triangle shows the average program length. All experiments were repeated
100 times.

4.4. Conclusion 47

0

25

50

75

100

1000 3000 5000 7000 9000

Population Size

P
ro

gr
am

 L
en

gt
h

0

25

50

75

100

1000 3000 5000 7000 9000

Generation Limit

0

25

50

75

100

0.1 0.2 0.3 0.4 0.5

Tournament Size Ratio

0

25

50

75

100

2 3 4 5 6 7

Tour. Losers Mult.

P
ro

gr
am

 L
en

gt
h

0

25

50

75

100

1 3 5 7 9

Min. Init. Program Length

0

25

50

75

100

10 20 30 40

Max. Init. Program Length

0

25

50

75

100

0 0.2 0.4 0.6 0.8 1

Crossover Rate

P
ro

gr
am

 L
en

gt
h

0

25

50

75

100

0 0.2 0.4 0.6 0.8 1

Mutation Rate

0

25

50

75

100

0 0.1 0.3 0.5 0.7

Mutation IF−Block Rate

Figure 4.15: Tukey boxplots of the resulting program length of PAT function versus the population size, generation limit, tour-
nament size ratio, tournament losers, minimum initial program length, maximum initial program length, crossover rate, mutation
rate and mutation if-block rate. The blue triangle shows the average program length. All experiments were repeated 100 times.

5
Conclusion

This chapter concludes the work that has been done within this report. We begin by answer-
ing the research questions from Chapter 1, stating the contributions that we have made in
P4I/O and GP4P4 frameworks, before finally closing it with mentioning some possible future
research directions.

5.1. Answer to the Research Question
The research questions posed in Chapter 1 can be answered as follows:

• RQ1. In what language can we express our network intent? The answer to this
question is twofold: we can express our intent in a high-level close-to-English style as
demonstrated in the P4I/O platform or the lower-level behavioral rules as demonstrated
in the GP4P4 platform. We based the former on the Nile language [31], which already
satisfies all our objectives for an easy-to-learn and intuitive intent language, while the
latter is specifically developed to guide our adaptation of Genetic Programming tech-
nique for “evolving” P4 programs.

• RQ2. How to design and implement a system that can generate a P4 program based
on user intent? Our first framework, P4I/O searches for a program using a straightfor-
ward graph union operation and then generates it using parameterized templates. Our
second framework, GP4P4 aims to fix the static characteristic intrinsic to the code tem-
plates by using a more intelligent technique of Linear Genetic Programming (LGP). The
LGP searches for a solution from a hypothesis domain of P4 language primitives, packet
attributes and constants derived from the user-supplied network behavioral rules.

• RQ3. How is the efficacy of such a system? We have shown by a Proof-of-Concept
demonstration that the generation of a working P4 program in our first framework of
P4I/O takes a really short time, even on non-server-grade hardware. P4I/O was also
able to push the code into the BMV2 software switch in a short time, enabling us to
change intent even on-the-fly. The second framework of GP4P4 was able to generate P4
code in a relatively short time with amaximum generation time of around 5minutes even
for the most complex network function in our test cases. We consider this generation
time acceptable as the behavioral rules are not often revised by the users so that the
framework can even generate the code proactively – before the user requests for it.

5.2. Contribution
We have presented the following key contributions in the P4I/O framework:

1. Extensible Intent Definition Language (IDL). To describe various kinds of network
services as intents, we devise a high-level language that is close to the human lan-
guage, yet precise enough to be interpreted unambiguously by the network controller.

49

50 5. Conclusion

Furthermore, this language is extensible so that we can define any kind of data-plane
functionality.

2. Template-Based P4 Code Generation. We constructed a repository of relevant net-
work functions in the form of P4 code templates. These templates are then parsed and
represented in a specialized data structure that facilitates combining the network func-
tions, following the intent instructions. The code templates are then finally merged to
form a valid P4 program.

3. Dynamic Intents Realization. We provided a technique to install the resulting P4 code
in a programmable switch while permitting intent modification at any time. We realize
intent modifications, with minimal disruption to the traffic forwarding process, through
a state-transfer mechanism.

4. Framework Evaluation. We demonstrated that P4I/O works, by building a proof-of-
concept. P4I/O code has been released as open-source code [55].

Besides, the following contributions were presented in the GP4P4 framework:

1. GP4P4. We presented GP4P4, a framework for automatically generating P4 programs
using techniques adapted from Linear Genetic Programming (LGP). LGP is a machine-
learning technique to “evolve” an initially randomized population of programs towards
satisfying an objective function [11].

2. An evaluation module to make LGP suitable for data-plane programmability. We
proposed an evaluation module that evaluates programs by creating synthetic network
traces and simulating the output of P4 programs on these traces. In this regard, GP4P4
is fully self-sufficient and does not depend on any external network traces or physical
switches.

3. Proof-of-Concept experiments demonstrating the efficacy of GP4P4. The experi-
ments demonstrated that GP4P4 was able to generate P4 codes based on rules within
a few minutes.

5.3. Future Work
For future work, we have identified the following potential research directions:

1. Enhancing the behavioral rules for GP4P4 with more advanced operators. The cur-
rent behavioral rule is quite limited in the sense it only supports the IF-THEN construct
and also only supports conjunctive (AND) logical operator between the conditions. It
would be interesting to add more logical constructs, like ALL and disjunctive (OR) logical
operator, to build more complex network functions.

2. “Mining” network behavioral rules from external sources. Currently, the behavioral
rules are supplied by the network operators. This can limit the usefulness of the GP4P4
framework as the network function is only going to be as good as how the rules are
defined. Further, writing behavioral rules for network functions requires deep knowl-
edge of the behavior of the intended function. To this end, we propose to search for a
way to obtain these rules automatically from an external source. An example approach
for this problem would be mining behavioral rules from the corpus of network device
documentation on the World Wide Web.

Bibliography
[1] Ieee standard for local and metropolitan area networks: Media access control (mac)

bridges. IEEE Std 802.1D-2004 (Revision of IEEE Std 802.1D-1998), pages 1–281, June
2004. doi: 10.1109/IEEESTD.2004.94569.

[2] Donald E. Eastlake 3rd and Anoop Ghanwani. Transparent Interconnection of Lots
of Links (TRILL) Support of the Link Layer Discover Protocol (LLDP). Internet-
Draft draft-eastlake-trill-lldp-01, Internet Engineering Task Force, September 2012.
URL https://datatracker.ietf.org/doc/html/draft-eastlake-trill-lldp-01.
Work in Progress.

[3] Anubhavnidhi Abhashkumar, Joon-Myung Kang, Sujata Banerjee, Aditya Akella, Ying
Zhang, and Wenfei Wu. Supporting Diverse Dynamic Intent-based Policies using Janus.
In Proceedings of the 13th International Conference on emerging Networking EXperiments
and Technologies - CoNEXT ’17, number 1, pages 296–309, New York, New York, USA,
2017. ACM Press. ISBN 9781450354226. doi: 10.1145/3143361.3143380. URL http:
//dl.acm.org/citation.cfm?doid=3143361.3143380.

[4] A. Adams, J. Nicholas, and W. Siadak. Protocol Independent Multicast - Dense Mode
(PIM-DM): Protocol Specification (Revised). RFC 3973 (Experimental), January 2005.
URL http://www.ietf.org/rfc/rfc3973.txt.

[5] Saeed Arezoumand, Kristina Dzeparoska, Hadi Bannazadeh, and Alberto Leon-garcia.
MD-IDN : Multi-Domain Intent-Driven Networking in Software-Defined Infrastructures.
2017.

[6] Barefoot Network. Behavioral model repository. https://github.com/p4lang/
behavioral-model, 2019. [Online; accessed 23-January-2019].

[7] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Martin Iz-
zard, Fernando Mujica, and Mark Horowitz. Forwarding metamorphosis: Fast pro-
grammable match-action processing in hardware for sdn. In Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM ’13, pages 99–110, New York, NY,
USA, 2013. ACM. ISBN 978-1-4503-2056-6. doi: 10.1145/2486001.2486011. URL
http://doi.acm.org/10.1145/2486001.2486011.

[8] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford,
Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and David Walker. P4:
Programming protocol-independent packet processors. SIGCOMM Comput. Commun.
Rev., 44(3):87–95, July 2014. ISSN 0146-4833. doi: 10.1145/2656877.2656890. URL
http://doi.acm.org/10.1145/2656877.2656890.

[9] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford,
Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al. P4: Programming
protocol-independent packet processors. ACM SIGCOMM Computer Communication Re-
view, 44(3):87–95, 2014.

[10] Raouf Boutaba, Mohammad A Salahuddin, Noura Limam, Sara Ayoubi, Nashid
Shahriar, Felipe Estrada-Solano, and Oscar M Caicedo. A comprehensive survey on
machine learning for networking: evolution, applications and research opportunities.
Journal of Internet Services and Applications, 9(1):16, 2018.

[11] Markus F. Brameier and Wolfgang Banzhaf. Linear Genetic Programming. Springer Pub-
lishing Company, Incorporated, 1st edition, 2010. ISBN 1441940480, 9781441940483.

51

https://datatracker.ietf.org/doc/html/draft-eastlake-trill-lldp-01
http://dl.acm.org/citation.cfm?doid=3143361.3143380
http://dl.acm.org/citation.cfm?doid=3143361.3143380
http://www.ietf.org/rfc/rfc3973.txt
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
http://doi.acm.org/10.1145/2486001.2486011
http://doi.acm.org/10.1145/2656877.2656890

52 Bibliography

[12] Brad Cain, Steve Deering, Isidor Kouvelas, Bill Fenner, and Ajit S. Thyagarajan. Internet
group management protocol, version 3. RFC, 3376:1–53, October 2002. URL http:
//www.ietf.org/rfc/rfc3376.txt.

[13] Walter Cerroni, Chiara Buratti, Simone Cerboni, Gianluca Davoli, Chiara Contoli,
Francesco Foresta, Franco Callegati, and Roberto Verdone. Intent-based management
and orchestration of heterogeneous openflow/IoT SDN domains. 2017 IEEE Confer-
ence on Network Softwarization: Softwarization Sustaining a Hyper-Connected World: en
Route to 5G, NetSoft 2017, 2017. doi: 10.1109/NETSOFT.2017.8004109.

[14] Cisco. Intent-based networking: Building the bridge between business
and it, 2018. URL https://www.cisco.com/c/dam/en/us/solutions/
collateral/enterprise-networks/digital-network-architecture/
nb-09-intent-networking-wp-cte-en.pdf. Online; accessed 1 November 2018.

[15] Rami Cohen, Katherine Barabash, Benny Rochwerger, Robert Birke, and Renato Recio.
An Intent-based Approach for Network Virtualization. pages 42–50, 2013.

[16] Graham Cormode and S. Muthukrishnan. An improved data stream summary: The
count-min sketch and its applications. J. Algorithms, 55(1):58–75, April 2005. ISSN
0196-6774. doi: 10.1016/j.jalgor.2003.12.001. URL http://dx.doi.org/10.1016/
j.jalgor.2003.12.001.

[17] Robert Craven, Jorge Lobo, and Emil Lupu. Policy refinement: decomposition and op-
erationalization for dynamic domains. International Conference on Network and Service
Management, CNSM, (October 2015):1–9, 2011. doi: 10.1109/CNSM.2010.5691331.

[18] Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fernando Pedone, and Robert Soulé.
Netpaxos: Consensus at network speed. In Proceedings of the 1st ACM SIGCOMM Sym-
posium on Software Defined Networking Research, SOSR ’15, pages 5:1–5:7, New York,
NY, USA, 2015. ACM. ISBN 978-1-4503-3451-8. doi: 10.1145/2774993.2774999. URL
http://doi.acm.org/10.1145/2774993.2774999.

[19] Mihai Dobrescu, Norbert Egi, Katerina Argyraki, Byung-Gon Chun, Kevin Fall, Gian-
luca Iannaccone, Allan Knies, Maziar Manesh, and Sylvia Ratnasamy. Routebricks: Ex-
ploiting parallelism to scale software routers. In Proceedings of the ACM SIGOPS 22Nd
Symposium on Operating Systems Principles, SOSP ’09, pages 15–28, New York, NY,
USA, 2009. ACM. ISBN 978-1-60558-752-3. doi: 10.1145/1629575.1629578. URL
http://doi.acm.org/10.1145/1629575.1629578.

[20] Sean Donovan and Nick Feamster. Intentional network monitoring: Finding the needle
without capturing the haystack. In Proceedings of the 13th ACMWorkshop on Hot Topics
in Networks, HotNets-XIII, pages 5:1–5:7, New York, NY, USA, 2014. ACM. ISBN 978-1-
4503-3256-9. doi: 10.1145/2670518.2673872. URL http://doi.acm.org/10.1145/
2670518.2673872.

[21] Cristian Estan, George Varghese, and Michael Fisk. Bitmap algorithms for counting
active flows on high-speed links. IEEE/ACM Trans. Netw., 14(5):925–937, October 2006.
ISSN 1063-6692. doi: 10.1109/TNET.2006.882836. URL http://dx.doi.org/10.
1109/TNET.2006.882836.

[22] Nick Feamster and Jennifer Rexford. Why (and how) networks should run themselves.
arXiv preprint arXiv:1710.11583, 2017.

[23] Y. Geng, S. Liu, F. Wang, Z. Yin, B. Prabhakar, and M. Rosenblum. Self-programming
networks: Architecture and algorithms. In 2017 55th Annual Allerton Conference on
Communication, Control, and Computing (Allerton), pages 745–752, Oct 2017. doi: 10.
1109/ALLERTON.2017.8262813.

http://www.ietf.org/rfc/rfc3376.txt
http://www.ietf.org/rfc/rfc3376.txt
https://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise-networks/digital-network-architecture/nb-09-intent-networking-wp-cte-en.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise-networks/digital-network-architecture/nb-09-intent-networking-wp-cte-en.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise-networks/digital-network-architecture/nb-09-intent-networking-wp-cte-en.pdf
http://dx.doi.org/10.1016/j.jalgor.2003.12.001
http://dx.doi.org/10.1016/j.jalgor.2003.12.001
http://doi.acm.org/10.1145/2774993.2774999
http://doi.acm.org/10.1145/1629575.1629578
http://doi.acm.org/10.1145/2670518.2673872
http://doi.acm.org/10.1145/2670518.2673872
http://dx.doi.org/10.1109/TNET.2006.882836
http://dx.doi.org/10.1109/TNET.2006.882836

Bibliography 53

[24] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar, Mendel Rosenblum, and
Amin Vahdat. Simon: A simple and scalable method for sensing, inference and mea-
surement in data center networks. In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19), pages 549–564, 2019.

[25] Brighten Godfrey. Verification and intent-based networking: Clos-
ing the control loop, 2017. URL https://www.veriflow.net/
verification-intent-based-networking-closing-control-loop/. Online;
accessed 1 November 2018.

[26] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. Program synthesis. Founda-
tions and Trends® in Programming Languages, 4(1-2):1–119, 2017. ISSN 2325-1107.
doi: 10.1561/2500000010. URL http://dx.doi.org/10.1561/2500000010.

[27] Arpit Gupta, Rob Harrison, Ankita Pawar, Rüdiger Birkner, Marco Canini, Nick Feam-
ster, Jennifer Rexford, and Walter Willinger. Sonata: Query-Driven Network Telemetry.
2017. doi: 10.1109/TBME.2002.804593. URL http://arxiv.org/abs/1705.01049.

[28] Yoonseon Han, Jian Li, Doan Hoang, Jae-hyoung Yoo, and James Won-ki Hong. An
Intent-based Network Virtualization Platform for SDN. 2016.

[29] John H. Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis
with Applications to Biology, Control and Artificial Intelligence. MIT Press, Cambridge,
MA, USA, 1992. ISBN 0262082136.

[30] Google Inc. Dialogflow, 2018. URL https://dialogflow.com/. Online; accessed 1
November 2018.

[31] Arthur Selle Jacobs, Ricardo José Pfitscher, Ronaldo Alves Ferreira, and Lisandro Zam-
benedetti Granville. Refining Network Intents for Self-Driving Networks. In Proceedings
of the Afternoon Workshop on Self-Driving Networks - SelfDN 2018, pages 15–21, New
York, New York, USA, 2018. ACM Press. ISBN 9781450359146. doi: 10.1145/3229584.
3229590. URL http://dl.acm.org/citation.cfm?doid=3229584.3229590.

[32] Juniper Networks. The self-driving network, March 2017. white paper.

[33] Patrick Kalmbach, Johannes Zerwas, Peter Babarczi, Andreas Blenk, Wolfgang Kellerer,
and Stefan Schmid. Empowering self-driving networks. In Proceedings of the Afternoon
Workshop on Self-Driving Networks, pages 8–14. ACM, 2018.

[34] Dave Katz and Dave Ward. Bidirectional forwarding detection (bfd). RFC, pages 1–49,
June 2010. URL https://tools.ietf.org/html/rfc5880.

[35] Wolfgang Kellerer, Patrick Kalmbach, Andreas Blenk, Arsany Basta, Martin Reisslein,
and Stefan Schmid. Adaptable and data-driven softwarized networks: Review, opportu-
nities, and challenges. Proceedings of the IEEE, 107(4):711–731, 2019.

[36] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek.
The click modular router. ACM Trans. Comput. Syst., 18(3):263–297, August 2000.
ISSN 0734-2071. doi: 10.1145/354871.354874. URL http://doi.acm.org/10.1145/
354871.354874.

[37] John R. Koza. Hierarchical genetic algorithms operating on populations of computer pro-
grams. In Proceedings of the 11th International Joint Conference on Artificial Intelligence -
Volume 1, IJCAI’89, pages 768–774, San Francisco, CA, USA, 1989. Morgan Kaufmann
Publishers Inc. URL http://dl.acm.org/citation.cfm?id=1623755.1623877.

[38] John R. Koza. Genetic programming as a means for programming computers by natural
selection. Statistics and Computing, 4(2):87–112, Jun 1994. ISSN 1573-1375. doi:
10.1007/BF00175355. URL https://doi.org/10.1007/BF00175355.

https://www.veriflow.net/verification-intent-based-networking-closing-control-loop/
https://www.veriflow.net/verification-intent-based-networking-closing-control-loop/
http://dx.doi.org/10.1561/2500000010
http://arxiv.org/abs/1705.01049
https://dialogflow.com/
http://dl.acm.org/citation.cfm?doid=3229584.3229590
https://tools.ietf.org/html/rfc5880
http://doi.acm.org/10.1145/354871.354874
http://doi.acm.org/10.1145/354871.354874
http://dl.acm.org/citation.cfm?id=1623755.1623877
https://doi.org/10.1007/BF00175355

54 Bibliography

[39] Christos Kozanitis, John Huber, Sushil Singh, and George Varghese. Leaping multiple
headers in a single bound: Wire-speed parsing using the kangaroo system. In Pro-
ceedings of the 29th Conference on Information Communications, INFOCOM’10, pages
830–838, Piscataway, NJ, USA, 2010. IEEE Press. ISBN 978-1-4244-5836-3. URL
http://dl.acm.org/citation.cfm?id=1833515.1833654.

[40] Diego Kreutz, Fernando M. V. Ramos, Paulo Veríssimo, Christian Esteve Rothenberg,
Siamak Azodolmolky, and Steve Uhlig. Software-Defined Networking: A Comprehensive
Survey. Proceedings of the IEEE, 103(1):63, 2015. URL http://arxiv.org/abs/1406.
0440.

[41] Bob Lantz, Brandon Heller, and NickMcKeown. A network in a laptop: Rapid prototyping
for software-defined networks. In Proceedings of the 9th ACM SIGCOMM Workshop on
Hot Topics in Networks, Hotnets-IX, pages 19:1–19:6, New York, NY, USA, 2010. ACM.
ISBN 978-1-4503-0409-2. doi: 10.1145/1868447.1868466. URL http://doi.acm.
org/10.1145/1868447.1868466.

[42] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, Vladimir Braverman
Johns, and Vladimir Braverman. One Sketch to Rule Them All: Rethinking Network
Flow Monitoring with UnivMon. Sigcomm, (Question 24):101–114, 2016. doi: 10.1145/
2934872.2934906. URL http://doi.acm.org/10.1145/2934872.2934906.

[43] Antonio Marsico, Michele Santuari, Marco Savi, Domenico Siracusa, Abdul Ghafoor,
Stephane Junique, and Pontus Skoldstrom. An interactive intent-based negotiation
scheme for application-centric networks. 2017 IEEE Conference on Network Softwariza-
tion: Softwarization Sustaining a Hyper-Connected World: en Route to 5G, NetSoft 2017,
2017. ISSN 20490801. doi: 10.1109/NETSOFT.2017.8004251.

[44] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jen-
nifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: Enabling innovation in
campus networks. SIGCOMM Comput. Commun. Rev., 38(2):69–74, March 2008. ISSN
0146-4833. doi: 10.1145/1355734.1355746. URL http://doi.acm.org/10.1145/
1355734.1355746.

[45] Julian F. Miller. Cartesian Genetic Programming, pages 17–34. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2011. ISBN 978-3-642-17310-3. doi: 10.1007/
978-3-642-17310-3_2. URL https://doi.org/10.1007/978-3-642-17310-3_2.

[46] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David Walker.
Composing software-defined networks. In Proceedings of the 10th USENIX Conference on
Networked Systems Design and Implementation, nsdi’13, pages 1–14, Berkeley, CA, USA,
2013. USENIX Association. URL http://dl.acm.org/citation.cfm?id=2482626.
2482629.

[47] J. Moy. OSPF Version 2. RFC 2328 (Standard), April 1998. URL http://www.ietf.
org/rfc/rfc2328.txt.

[48] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal, Venkat Arun,
Mohammad Alizadeh, Vimalkumar Jeyakumar, and Changhoon Kim. Language-
Directed Hardware Design for Network Performance Monitoring. In Proceedings of
the Conference of the ACM Special Interest Group on Data Communication - SIG-
COMM ’17, pages 85–98, 2017. ISBN 9781450346535. doi: 10.1145/3098822.
3098829. URL http://web.mit.edu/marple/marple-sigcomm17.pdfhttp://dl.
acm.org/citation.cfm?doid=3098822.3098829.

[49] NeMo. Nemo: An application’s interface to intent based networks, 2016. URL http:
//www.nemo-project.net/. Online; accessed 1 November 2018.

[50] D. Oran. OSI IS-IS Intra-domain Routing Protocol. RFC 1142 (Informational), February
1990. URL http://www.ietf.org/rfc/rfc1142.txt.

http://dl.acm.org/citation.cfm?id=1833515.1833654
http://arxiv.org/abs/1406.0440
http://arxiv.org/abs/1406.0440
http://doi.acm.org/10.1145/1868447.1868466
http://doi.acm.org/10.1145/1868447.1868466
http://doi.acm.org/10.1145/2934872.2934906
http://doi.acm.org/10.1145/1355734.1355746
http://doi.acm.org/10.1145/1355734.1355746
https://doi.org/10.1007/978-3-642-17310-3_2
http://dl.acm.org/citation.cfm?id=2482626.2482629
http://dl.acm.org/citation.cfm?id=2482626.2482629
http://www.ietf.org/rfc/rfc2328.txt
http://www.ietf.org/rfc/rfc2328.txt
http://web.mit.edu/marple/marple-sigcomm17.pdf http://dl.acm.org/citation.cfm?doid=3098822.3098829
http://web.mit.edu/marple/marple-sigcomm17.pdf http://dl.acm.org/citation.cfm?doid=3098822.3098829
http://www.nemo-project.net/
http://www.nemo-project.net/
http://www.ietf.org/rfc/rfc1142.txt

Bibliography 55

[51] P4.org. P4 language tutorial, 2018. URL http://bit.ly/p4d2-2018-spring.

[52] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan J. Jackson, Andy Zhou, Jarno Raja-
halme, Jesse Gross, Alex Wang, Jonathan Stringer, Pravin Shelar, Keith Amidon, and
Martín Casado. The design and implementation of open vswitch. In Proceedings of the
12th USENIX Conference on Networked Systems Design and Implementation, NSDI’15,
pages 117–130, Berkeley, CA, USA, 2015. USENIX Association. ISBN 978-1-931971-
218. URL http://dl.acm.org/citation.cfm?id=2789770.2789779.

[53] Chaithan Prakash, Jeongkeun Lee, Yoshio Turner, Joon-Myung Kang, Aditya Akella,
Sujata Banerjee, Charles Clark, Yadi Ma, Puneet Sharma, and Ying Zhang. Pga: Using
graphs to express and automatically reconcile network policies. In Proceedings of the
2015 ACM Conference on Special Interest Group on Data Communication, SIGCOMM ’15,
pages 29–42, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3542-3. doi: 10.1145/
2785956.2787506. URL http://doi.acm.org/10.1145/2785956.2787506.

[54] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4 (BGP-4). RFC 4271 (Draft
Standard), January 2006. URL http://www.ietf.org/rfc/rfc4271.txt.

[55] Mohammad Riftadi and Fernando Kuipers. riftadi/p4io: Intent-based p4 code genera-
tion framework. https://github.com/riftadi/p4io, 2019. [Online].

[56] Mohammad Riftadi and Fernando A. Kuipers. P4I/O: Intent-Based networking with P4.
In 2019 2nd International Workshop on Emerging Trends in Softwarized Networks (ETSN
2019 at NetSoft), Paris, France, June 2019.

[57] Armin Ronacher. Jinja2. http://jinja.pocoo.org/, 2019. [Online; accessed 11-
January-2019].

[58] Davide Sanvito, Daniele Moro, Ilario Filippini, Antonio Capone, and Andrea Campanella.
ONOS Intent Monitor and Reroute service: enabling plug&play routing logic. 2018 4th
IEEE Conference on Network Softwarization and Workshops (NetSoft), (NetSoft):272–276,
jun 2018. doi: 10.1109/NETSOFT.2018.8460064. URL https://ieeexplore.ieee.
org/document/8460042/.

[59] Eder J. Scheid, Cristian C. MacHado, Muriel F. Franco, Ricardo L. Dos Santos, Ri-
cardo P. Pfitscher, Alberto E. Schaeffer-Filho, and Lisandro Z. Granville. INSpIRE:
Integrated NFV-based Intent Refinement Environment. Proceedings of the IM 2017 -
2017 IFIP/IEEE International Symposium on Integrated Network and Service Manage-
ment, pages 186–194, 2017. doi: 10.23919/INM.2017.7987279.

[60] Thomas Szyrkowiec, Michele Santuari, Mohit Chamania, Domenico Siracusa, Achim
Autenrieth, Victor Lopez, Joo Cho, and Wolfgang Kellerer. Automatic Intent-Based
Secure Service Creation Through a Multilayer SDN Network Orchestration. Journal
of Optical Communications and Networking, 10(4):289, 2018. ISSN 0888-8892, 1523-
1739. doi: 10.1111/j.1523-1739.2011.01777.x. URL https://www.osapublishing.
org/abstract.cfm?URI=jocn-10-4-289.

[61] The P4 Language Consortium. P4ኻዀ language specification. https://p4.org/p4-spec/
docs/P4-16-v1.0.0-spec.html, 2017. [Online; accessed 13-January-2019].

[62] The P4 Language Consortium. P4ኻኾ language specification. https://p4lang.github.
io/p4-spec/p4-14/v1.0.5/tex/p4.pdf, 2018. [Online; accessed 16-May-2019].

[63] The P4.org API Working Group. P4runtime specification. https://s3-us-west-2.
amazonaws.com/p4runtime/docs/v1.0.0-rc4/P4Runtime-Spec.html, 2018. [On-
line; accessed 13-December-2018].

[64] Yoshiharu Tsuzaki. Reactive Configuration Updating for Intent-Based Networking.
pages 97–102, 2017.

http://bit.ly/p4d2-2018-spring
http://dl.acm.org/citation.cfm?id=2789770.2789779
http://doi.acm.org/10.1145/2785956.2787506
http://www.ietf.org/rfc/rfc4271.txt
https://github.com/riftadi/p4io
http://jinja.pocoo.org/
https://ieeexplore.ieee.org/document/8460042/
https://ieeexplore.ieee.org/document/8460042/
https://www.osapublishing.org/abstract.cfm?URI=jocn-10-4-289
https://www.osapublishing.org/abstract.cfm?URI=jocn-10-4-289
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html
https://p4lang.github.io/p4-spec/p4-14/v1.0.5/tex/p4.pdf
https://p4lang.github.io/p4-spec/p4-14/v1.0.5/tex/p4.pdf
https://s3-us-west-2.amazonaws.com/p4runtime/docs/v1.0.0-rc4/P4Runtime-Spec.html
https://s3-us-west-2.amazonaws.com/p4runtime/docs/v1.0.0-rc4/P4Runtime-Spec.html

56 Bibliography

[65] Belma Turkovic, Fernando Kuipers, Niels van Adrichem, and Koen Langendoen. Fast
network congestion detection and avoidance using p4. In Proceedings of the 2018 Work-
shop on Networking for Emerging Applications and Technologies, NEAT ’18, pages 45–51,
New York, NY, USA, 2018. ACM. ISBN 978-1-4503-5907-8. doi: 10.1145/3229574.
3229581. URL http://doi.acm.org/10.1145/3229574.3229581.

[66] D. C. Verma. Simplifying network administration using policy-based management. IEEE
Network, 16(2):20–26, March 2002. ISSN 0890-8044. doi: 10.1109/65.993219.

[67] Junfeng Xie, F Richard Yu, Tao Huang, Renchao Xie, Jiang Liu, Chenmeng Wang, and
Yunjie Liu. A survey of machine learning techniques applied to software defined network-
ing (sdn): Research issues and challenges. IEEE Communications Surveys & Tutorials,
21(1):393–430, 2018.

[68] Tong Yang, Lun Wang, Yulong Shen, Muhammad Shahzad, Qun Huang, Xiaohong
Jiang, Kun Tan, and Xiaoming Li. Empowering sketches with machine learning for
network measurements. In Proceedings of the 2018 Workshop on Network Meets AI &
ML, pages 15–20. ACM, 2018.

[69] Touseef Yaqoob, Muhammad Usama, Junaid Qadir, and Gareth Tyson. On analyzing
self-driving networks: A systems thinking approach. In Proceedings of the Afternoon
Workshop on Self-Driving Networks, pages 1–7. ACM, 2018.

[70] Minlan Yu, Lavanya Jose, and Rui Miao. Software Defined Traffic Measurement with
OpenSketch. Proceedings 10th USENIX Symposium on Networked Systems Design and
Implementation, NSDI, 13:29–42, 2013. ISSN 1470-0328.

http://doi.acm.org/10.1145/3229574.3229581

	Introduction
	Background
	Problem Definition
	Research Question
	Thesis Outline
	Publication

	Theoretical Background
	Data-Plane Programmability
	Network Data-Plane
	Programmable Switches
	P4 Language

	Intent-Based Networking
	Intent Definition
	Intent-Based Networking Architecture
	Intent Extraction
	Policy Refinement
	Policy Assurance

	Genetic Programming
	Genotype Representation
	Workflow
	Selection Mechanism
	Crossover and Mutation
	End Condition

	P4I/O: Intent-Based Networking with P4
	Introduction
	Network Telemetry Use Cases
	Intent Definition Language
	Requirements
	Nile Language Extension

	P4 Code Templates
	Network Telemetry Function Structures
	Template Representation

	Intent Realization
	Software Components
	Intent Modification

	Evaluation
	Proof of Concept Setup
	Result and Discussion

	Related Work
	Conclusion

	GP4P4: Enabling Self-Programming Networks
	Introduction
	GP4P4
	Behavioral Rules
	Program Generation
	Program Evaluation
	End Condition

	Experiments
	Generation Time and Program Length in Various Network Functions
	Various Parameter Effects on the Generation Time
	Various Parameter Effects on the Program Length

	Conclusion

	Conclusion
	Answer to the Research Question
	Contribution
	Future Work

	Bibliography

